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A Decomposition-Based Uncertainty Quantification Approach for Environmental
Impacts of Aviation Technology and Operation

Sergio Amaral, Douglas Allaire, Elena de la Rosa Blanco, Karen Willcox

Abstract. As a measure to manage the climate impact of aviation, significant enhancements to aviation tech-
nologies and operations are necessary. When assessing these enhancements and their respective
impacts on the climate, it is important that we also quantify the associated uncertainties—this is
important to support an effective decision and policy making process. However, such quantification
of uncertainty is challenging, especially in a complex system that comprises multiple interacting
components. The uncertainty quantification task can quickly become computationally intractable
and cumbersome for one individual or group to manage. Recognizing the challenge of quantifying
uncertainty in multicomponent systems, we utilize a divide-and-conquer approach, inspired by the
decomposition-based approaches used in multidisciplinary analysis and optimization. Specifically, we
perform uncertainty analysis and global sensitivity analysis of our multicomponent aviation system
in a decomposition-based manner. In this work we demonstrate how to handle a high-dimensional
multicomponent interface using sensitivity-based dimension reduction and a novel importance sam-
pling method. Our results demonstrate that the decomposition-based uncertainty quantification ap-
proach can effectively quantify the uncertainty of a feed-forward multicomponent system for which
the component models are housed in different locations and owned by different groups.

Key words.

1. Introduction. The aviation sector is projected to be one of the fastest growing con-
tributors to anthropogenic greenhouse gas emissions [19]. If left unconstrained, the emissions
from aircraft in 2050 are projected to be quadruple the emissions from aircraft in 2006 [1].
Many groups are using simulation-based tools to study technologies, designs, and policies
that address this challenge. In conducting such studies, it is critical to quantify the effects of
uncertainties and to account for their impacts in decision-making. Yet, uncertainty quantifi-
cation for such a complex multicomponent system—with multiple components ranging from
individual aircraft technologies to fleet-wide operations—is a significant challenge. This pa-
per demonstrates how a decomposition-based approach can manage the complexity to make
uncertainty quantification tractable for a large-scale feed-forward problem in environmental
impacts of aviation technology and operation. Our problem is large scale in several regards:
the dimension of the uncertain parameter space is 12; there are 100 variables describing the
coupling between the two components; and a single analysis (forward simulation) of the sys-
tem takes approximately 3 minutes on a desktop computer. To manage the high-dimensional
multicomponent interface, we apply a combination of dimension reduction to identify the im-
portant coupling variables and importance sampling to transform the information across the
interface in an efficient and dependable manner.

As a measure to manage the climate impact of aviation, the Committee for Environmen-
tal Protection (CAEP) under the International Civil Aviation Organization (ICAO) and with
support from the Federal Aviation Administration (FAA), adopted a 2% annual efficiency
improvement goal for aviation through 2050 [2]. To satisfy this fast paced fleet-wide improve-
ment requires significant enhancements to aviation technology, sustainable fuels with low C'O-
emissions, and efficient operational procedures [26]. To meet these demanding requirements,
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CAEP assembled a panel of independent experts with varying backgrounds to establish long-
term technology goals for aviation fuel consumption [14]. Within their study they investigated
future aviation technology scenarios, which represented varying regulatory pressure to reduce
fuel consumption. The future aircraft technology scenarios were then applied in analysis tools
as “technology packages” to assess the technology improvement on aircraft fuel consumption.
However, these technological enhancements are inherently uncertain and thus their respective
impacts on the environment are also uncertain.

Through a rigorous characterization and management of uncertainty, one can provide
quantitative estimates of uncertainty necessary to calculate relevant statistics and event proba-
bilities. However, to estimate relevant statistics and event probabilities requires an uncertainty
quantification of the entire system. Uncertainty quantification is a broad field encompassing
a number of different aspects [30]; this work focuses on uncertainty analysis and global sensi-
tivity analysis. The objective of an uncertainty analysis, also known as forward propagation
of uncertainties, is to quantify the distribution of the output of interest, given distributions
on the uncertain input variables. The objective of a global sensitivity analysis is to apportion
variability in the output quantity of interest according to contributions from the uncertain
input variables and their interactions.

Quantifying uncertainty of an entire system may be cumbersome due to factors that result
in inadequate integration of engineering disciplines, subsystems, and parts, which we refer
to collectively here as components. Such factors include components managed by different
groups, component design tools or groups housed in different locations, component analyses
that run on different platforms, components with significant differences in analysis run times,
lack of shared expertise amongst groups, and the sheer number of components comprising the
system. These challenges are only heightened by the fact that globalization has spread the
design and analysis of the complex systems throughout the world. Recognizing the challenge
of quantifying uncertainty in multicomponent systems, we establish a divide-and-conquer
approach, inspired by the decomposition-based approaches used in multidisciplinary analysis
and optimization [10, 18, 31, 16].

Previous works have tackled these challenges through the use of surrogate modeling and/or
a simplified representation of the uncertainty. Using surrogates in place of the higher fidelity
components in the system provides computational gains and also accommodates the task of
integrating components [21]. Using a simplified uncertainty representation (e.g., using mean
and variance in place of full distributional information) bypasses the need to propagate the
full nonparametric uncertainty from one component to another. Such simplifications are com-
monly used in uncertainty-based multidisciplinary design optimization methods as a way to
avoid a system-level uncertainty analysis (see e.g., [32] for a review of these methods and their
engineering applications). Other methods have exploited the structure of the multicomponent
system to manage the complexity of the system uncertainty analysis where the system contains
a feedback loop [5, 6, 7, 13, 29, 11]. Additionally, previous works have tackled decomposition-
based global sensitivity analysis within the application of feed-forward systems. A top-down
(i.e., assuming that all system variables are independent) sensitivity analysis strategy was de-
veloped to determine critical components in the system and used a simplified formulation to
evaluate the main sensitivity indices [33, 20]. Limitations in these existing approaches include
the introduction of approximations of the components comprising the system, parametric ap-



proximations of the uncertainty, a need to repeatedly evaluate the system in its entirety, and
a need to apply correlation between system variables to account for dependency structure.
Instead, we approach the problem using a decomposition-based vision of the multicompo-
nent uncertainty quantification task—performing uncertainty quantification on the respective
components individually, and assembling the component-level uncertainty quantifications to
quantify the system uncertainty.

In Section 2, we introduce the multicomponent aviation system of interest and describe
its constituent components: the aircraft technology component and aviation environmental
impacts component. In Section 3, we present the coupling between the aircraft technology
component and the aviation environmental impacts component. We discuss the challenges that
arise from this component-to-component coupling and our proposed solution for overcoming
said challenges. Our decomposition-based uncertainty quantification approach is introduced
in Section 4 along with the uncertainty quantification results. Our results are compared to
the standard Monte Carlo simulation of the entire system. Lastly, our conclusion and future
work are provided in Section 5.

2. Systems modeling of aviation environmental impacts. The multicomponent system
of interest consists of a conceptual-level aircraft design component, the Transport Aircraft
System OPTimization (TASOpt) [15], and an aviation environmental impacts component,
the Aviation Environment Design Tool (AEDT) version 2a [25]. This multicomponent system
is depicted in its entirety in Figure 1.

2.1. Transport Aircraft System Optimization (TASOpt). The TASOpt component is an
aircraft performance tool that allows users to evaluate and size future aircraft with potentially
novel airframe, aerodynamic, engine, or operation variables using low-order physical models
implementing fundamental structural, aerodynamic, and thermodynamic theory. TASOpt
uses historical-based correlations only when necessary, in particular only for some of the
secondary structure and aircraft equipment. The TASOpt component takes as input aircraft
technology and operational variables and can either optimize an aircraft over a specified
set of constraints or resize an aircraft to meet a desired mission requirement. The aircraft
configuration selected for this study is the Boeing 737-800W shown in Figure 2. This aircraft
operates in the short-to-medium range while seating approximately 180 passengers.

Table 1 contains the 27 uncertain TASOpt random input variables selected for this study
and their respective distributions. These input variables represent the technological and op-
erational variables of an aircraft that are considered to be uncertain in the design phase. The
uncertainty associated with the technology input variables captures our lack of knowledge
due to material properties and measurement capabilities. The uncertainty associated with
the operational input variables captures the designer lack of knowledge in the design phase
of an aircraft. We start by defining a baseline aircraft. The baseline aircraft configuration
used for this study was created using TASOpt’s optimization capabilities to best represent
the Boeing 737-800W aircraft configuration (defined in Figure 1’s “Boeing 737-800 Template
Input File”). We then generate a realization of the random variables associated with each of
the 27 input variables in Table 1. This defines a “sampled aircraft.” Next TASOpt resizes this
sampled aircraft in order to ensure that it is a feasible aircraft.
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Figure 1. System-level uncertainty quantification of the toolset comsists of quantifying how uncertainty in
aireraft technologies and operations impacts the uncertainty in the output of interest, here the aircraft’s payload
fuel energy intensity (PFEI).

= BOEING MODEL 737-800W
BOEING MODEL 737 BBJ2

Figure 2. Boeing 787-800W airframe configuration. Schematic taken from [12].



Table 1

TASOpt random input variables and their respective distributions.

Input Description Distribution Units
€pol.ic low pressure compressor polytropic efficiency 1[0.936,0.938] ]
€pol,he high pressure compressor polytropic efficiency | 2/[0.903,0.904] ]
Epol. it low pressure Turbine polytropic efficiency U[0.870,0.872] ]
€pol,ht high pressure Turbine polytropic efficiency U[0.875,0.877] -]
O strut max allowable strut stress U[28500, 31500] [psi]
Tweb max allowable wing spar web shear stress U[19000, 21000] [psi]
Ocap max allowable wing spar cap stress U[28500, 31500] [psi]
Oskin | max allowable fuselage skin pressurization stress | ¢4[14500, 15500] [psi]
Obend max allowable fuselage shell bending stress U[28500, 31500] [psi]
Pstrut strut material density U[2672,2726] | [kg/m?]
Pweb wing box web material density U[2672,2726] | [kg/m?]
Peap wing box cap material density U[2672,2726] | [keg/m?]
Pskin fuselage pressure-skin density U[2672,2726] | [kg/m?]
Poend fuselage bending-material density U[2672,2726] | [kg/m?]
Trnetal turbine metal temperature U[1172,1272] K]
TTi10 turbine inlet total temperature for takeoff U[1783,1883] K]
TTycr turbine inlet total temperature for cruise U[1541,1641] K]
St turbine area-weighted Stanton number U[0.094, 0.096] ]
Oy film cooling efficiency U[0.315,0.325] ]
FPR fan pressure ratio U[1.60,1.62] ]
OPR operating pressure ratio U[24.2,28.2] ]
Ecap wing cap modulus of elasticity U[9.5€6, 10.5€6] [psi]
Eotrut wing strut modulus of elasticity U[9.5€6, 10.5¢6] [psi]
hcr start-of-cruise altitude U[34000, 36000] [ft]
CrL.max maximum aircraft lift coefficient U[2.2,2.3] ]
Cr, aircraft lift coefficient U[0.576,0.578| ]
Mach cruise flight Mach number U[0.77,0.79] ]

The next step of the process quantifies the sampled aircraft’s performance by flying 99 mis-
sion profiles, which are generated using a Latin hypercube design of experiments. The Latin
hypercube design of experiments populates the 12 mission input variables contained in Ta-
ble 2. Of the 100 mission profiles (baseline plus 99 additional missions) simulated in TASOpt,
the first 50 are flown under international standard atmosphere (ISA) conditions while the
remaining 50 are flown under non-ISA conditions. For any mission variable (e.g., Range) we
generate 99 realizations from the uniform distribution (i.e., U(a, b)) using the Latin hypercube
sampling scheme and the parameters provided in Table 2. This process allows, for example,
the Range to vary between 750 [nmi] and 3250 [nmi]. Lastly, the aircraft’s configuration, oper-
ational procedure, and performance over multiple flight segments and atmospheric conditions
are provided by the TASOpt component. This information is then transformed through a re-



gression process in order to construct a similar representative aircraft in the AEDT database.
We shall discuss this multicomponent coupling procedure further in Section 3.

Table 2
The performance of each sampled aircraft configuration is evaluated using a Latin hypercube design of
experiments. Presented here are the TASOpt mission input variables and their respective uniform distribution
parameters (i.e., U(a,b)). Parameters containing an asterisk are also TASOpt random input variables; in those
cases, the parameters here represent deviations from the input realization to TASOpt.

Input Description a b Units
Range mission profile range 750 3250 | [nmi]
Winaz | average weight per passenger (180 passengers) 165 265 [Ibs]
hro altitude at takeoff —4000 | 4000 [ft]
AT temperature difference from ISA at takeoff —12.5 12.5 K]
hcr deviation of start-of-cruise altitude —4000* | 4000* | [ft]
CL.maz | deviation of maximum aircraft lift coefficient | —0.05* | 0.05* -]
Or0 angle of attack at takeoff 39 41 [deg]
Orc angle of attack at initial climb 2.8 3.2 [deg]
OpE,1 angle of attack at initial descent —-3.2 —2.8 | [deg]
OpEs angle of attack at landing -3.2 —2.8 | [deg]
Cr deviation of aircraft lift coefficient —0.025* | 0.025* []
Mach deviation of cruise flight Mach Number —0.02* | 0.02* ]

2.2. Aviation Environmental Design Tool (AEDT). The AEDT component is a suite
AEDT provides users with the ability
to assess the interdependencies among aviation-produced fuel consumption, emissions, and
noise. For cruise conditions the AEDT component implements the EUROCONTROL’s Base
of Aircraft Data (BADA) [23] which uses an energy-balance thrust model and thrust specific
fuel consumption modeled as a function of airspeed. The BADA fuel consumption model has
been shown to work well in cruise, with differences from airplane reported fuel consumption of
about 5%) [23]. For terminal conditions (e.g., departure/arrival flights until 10, 000 [ft] above
ground level), the AEDT component implements a set of energy-balance equations to support
a higher level of fidelity in fuel consumption modeling.

The AEDT component characterizes an aircraft using 100 input variables as depicted
in Figure 1 as the “AEDT Aircraft Coefficients.” A detailed description of the AEDT in-
put variables are provided in the AEDT technical manual [17, 23]. These input variables
characterize the aircraft’s configuration and the operational procedure, and define the aircraft
performance over multiple flight segments and atmospheric conditions. To initialize the AEDT
component, we first generate a temporary Boeing 737-800W aircraft within the AEDT fleet
database. Any TASOpt-generated aircraft then replaces the 100 aircraft input variables in the
temporary Boeing 737-800 AEDT fleet database through the multicomponent coupling proce-
dure described in the next section. The objective of the multicomponent coupling procedure
is to ensure that an AEDT aircraft characterized through these 100 AEDT input variables is
an adequate representation of the sampled TASOpt aircraft.

For each sampled aircraft we must quantify its respective environmental impacts. To do
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so, we fly each sampled aircraft over a set of deterministic flight trajectories using the AEDT
component. The flight trajectories for this study were selected from a 2006 representative
day flight scenario database [22]. Using the representative day, the flights associated with the
Boeing 737-700 aircraft are included as possible flight trajectories, since the Boeing 737-800W
was not comprehensively represented in the 2006 representative day flight scenario. Twenty
flight trajectories were selected; they are presented in Table 3 and illustrated in Figure 3.
For computational purposes, these flight trajectories are approximated by a great circle path
from the departure airport to the arrival airport. Each flight trajectory was generated by the
TASOpt component using the baseline Boeing 737-800W aircraft configuration.

The output of interest, which we use to quantify an aircraft’s environmental impacts, is
the PFEI fuel consumption performance (i.e., fuel energy consumption per payload-range)
and is defined as,

Zi quel,ihfuel
Zi Wpay,iRtotal,i ’
where the summation is over number of missions, Wy ; is the total fuel consumption of the

it" mission, Ryosar; is the total range of the i'" mission, Wy, ; is the payload weight of the it
mission, and hy,e is the specific heating value of kerosene.

(2.1) PFEI =

Figure 3. Illustrated here are the 20 representative flight trajectories flown by the Boeing 737-800W in the
TASOpt-AEDT uncertainty quantification study.

3. Multicomponent Coupling & Dimension Reduction. The objective of the multicom-
ponent coupling procedure is to couple the tools and create a consistent representation of the
system, i.e., to accurately represent the sampled TASOpt aircraft within the AEDT compo-
nent. In this section we summarize the multicomponent coupling procedure and demonstrate
how to transform the TASOpt outputs (i.e., aircraft configuration and performance) into
AEDT inputs. We validate the multicomponent coupling by comparing the fuel consumption
over similar scenarios (i.e., flight trajectories and operations) of a sampled TASOpt aircraft
flown in TASOpt to that same aircraft imported into the AEDT component and flown in



Table 3
Presented here are the 20 representative flight trajectories (i.e., departure, arrival, and range) flown by the
Boeing 737-800W in the TASOpt-AEDT uncertainty quantification study.

Depart Airport | Depart Runway | Arrival Airport | Arrival Runway | Range [nmi]
KDTW 04L KPVD 21 535
KIAH 26L KLAX 241, 1197
KLGA 22 KMEM 27 835
KDTW 04L KSFO 28R 1801
KPDX 28R KLAX 24L 725
KMIA O8L KDEN 35R 1482
KPDX 28L KABQ 08 964
KJFK 31R KLGB 16L. 2138
KIAD 01R KORD 28 ol1
KPHX 26 KMSP 35 1106
KBWI 28 KFLL 09L 806
KPHX 26 KFLL 09L 1710
KMCO 35L KDCA 01 662
KIAH 26L KBOS 27 1387
KMCO 17R KMKE 07R 928
KSJC 30R KIAD 19L 2082
KSFO 28L KPHX 25L 565
KDFW 35L KSFO 28R 1270
KPHL 09R KFLL 09L 864
KCLE 241, KSFO 28R 1874

AEDT. Lastly, we reduce the dimensions of the multicomponent interface coupling by identi-
fying which of the AEDT inputs have a significant impact on the systems output of interest
uncertainty.

3.1. Multicomponent Coupling. The TASOpt component outputs the aircraft’s config-
uration variables, which include the maximum takeoff weight, empty weight, maximum fuel
weight, wing area, and maximum thrust. Additionally, the TASOpt component outputs the
aircraft’s performance for each mission, where each mission is composed of 15 individual flight
segments (i.e., three takeoff, five climb, two cruise, and five descent segments). The TASOpt



generated aircraft performance data contains,

Range
Altitude
True Airspeed
Mach Number
Lift Coefficient
Drag Coeflicient
Aircraft Weight
Thrust
Fuel Burn Rate
Angle of Attack
Total Temperature at Engine Inlet
Total Pressure at Engine Inlet

For demonstration purposes, we present an example of how to compute the AEDT thrust
coefficients TC¢,, TCc,, and TCc, in a flight’s climbing segment and under ISA conditions.
The AEDT aircraft thrust coefficients are related to the TASOpt outputs thrust, F, and
altitude, h, by the following relation [17, 23],

ok
TCe,

(3.1) F=TC¢ -(1 +TCcs - h?).

To perform this transformation we use the TASOpt thrust and altitude performance data
in the first 50 missions (i.e., under ISA conditions) and in the five climbing flight segments.
With the TASOpt performance data collected, we perform a regression to obtain the AEDT
coefficients using Equation 3.1. A similar procedure to the one explained here is performed for
the remaining AEDT input variables. This multicomponent coupling procedure is depicted in
Figure 1 as the “TASOpt to AEDT Transformation.”

To validate our multicomponent coupling procedure we compare the total fuel consump-
tion and relative error over three flight trajectories. The results from our validation study
are provided in Table 4. The results indicate that we obtain a fair comparison between the
two components. Of the three trajectories, Flight B had the highest relative error, however,
this discrepancy can be attributed to how AEDT computes the aircraft’s takeoff weight with
respect to the flight trajectories range [17]. In Flight B, the AEDT takeoff weight was sig-
nificantly higher than the TASOpt takeoff weight, which resulted in the increased total fuel
consumption. The deviation in total fuel consumption in Flight A and Flight C are signifi-
cantly lower than Flight B, since the AEDT aircraft takeoff weight was approximately equal
to the TASOpt aircraft takeoff weight.

3.2. Dimension Reduction. The challenge with performing a decomposition-based un-
certainty quantification of the system illustrated in Figure 1 lies in the high-dimensional
multicomponent interface. The reason this is challenging is because our decomposition-based
uncertainty quantification of the multicomponent system, which we present in Section 4, re-
quires that we deconstruct then reconstruct this multicomponent interface. To mitigate this
challenge we exploit the fact that many of the AEDT input variables have an insignificant
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Table 4
Presented here are the fuel consumption results over the three flight trajectories. The TASOpt row represents
an aircraft generated by and flown in TASOpt. The AEDT row represents the TASOpt aircraft imported into the
AEDT component through the multicomponent coupling procedure and then flown on the same flight trajectory
as the TASOpt flight trajectory.

Flight A (850 [nmi]) | Flight B (1520 [nmi]) | Flight C (2300 [ami])
Fuel [Ib] | % Rel Error | Fuel [Ib] | % Rel Error | Fuel [Ib] | % Rel Error
TASOpt | 5015.6 - 8715.3 - 13186.4 -

AEDT 5284.7 5.37 97374 9.62 13594.4 3.09

impact on the uncertainty in the system output of interest. This permits us to reduce the
dimensions of the multicomponent interface to only those AEDT input variables that have
a significant influence on the system output of interest uncertainty. As a result, we perform
the decomposition-based uncertainty quantification on a reduced multicomponent interface.
In this section, we quantify the influence of the AEDT input variables on the system output
of interest and use this information to determine which of the AEDT input variables should
take part in the decomposition-based uncertainty quantification.

We quantify the influence of the AEDT input variables on the system output of inter-
est using a variance-based global sensitivity analysis of AEDT [27]. A variance-based global
sensitivity analysis of AEDT apportions the output of interest variance amongst the AEDT
input variables. Implicit in a variance-based global sensitivity analysis is the assumption that
the variance characterizes the uncertainty of the output of interest [9, 8]. However, in many
applications the variance only provides a restricted representation of the output of interest
uncertainty. In this work, we will assume the variance adequately characterizes the output of
interest uncertainty for our purposes, however, in general the results of a variance-based global
sensitivity analysis should be carefully interpreted. In addition, since the inputs to AEDT
are obtained from the outputs of TASOpt, there is no guarantee that the AEDT inputs are
independently distributed, which is a strong assumption in many methods for performing
variance-based global sensitivity analysis [27]. As a result, we implement a generalized anal-
ysis of variance (ANOVA) dimensional decomposition which addresses dependent variables
explicitly, that is, without invoking any isoprobabilistic transformations [24].

A generalized ANOVA dimensional decomposition aims to represents the high-fidelity
AEDT component using multivariate orthonormal polynomials as basis functions. The multi-
variate orthonormal polynomials are constructed with respect to the AEDT dependent input
probability distribution. The multivariate orthonormal polynomials form the basis for the
high-dimensional model representation (HDMR) subcomponent functions by which the coeffi-
cients are solved through a coupled system of equations satisfying the hierarchical orthogonal
condition of the subcomponent functions. The AEDT component, which we represent here as
f, admits a unique, finite, hierarchical expansion,

d d d
f(t) = floy + Z fray(t) + Z Z frip@aoty) + -+ fre,..a(t),
=1 =1 j>i
= Y falta),

(3.2)
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where t = [t1,t,...,t4]" are the inputs to f, f{oy is a constant, f;} is a function of only
ti, f{ij} is a function of only #; and t;, etc. [24]. Using the generalized ANOVA dimensional
decomposition, the expectation of the AEDT output of interest (i.e., PF'EI) is given by the
first subcomponent function (i.e., A = {0}),

(3.3) p=Ex[f(t)] = fio},

where X : Q — R? defined on the probability space (Q,F,P) is the AEDT random input
variable. Additionally, the variance of the AEDT output of interest is given by

(34) o> =Ex[(f(t)-w’= >  Ex[filta)]+ > Exlfata)fatq),
0#£AC{1,...,d} 0#£A,AC{1,....d}
AZAZA

where d = 100. The second sum accounts for the covariance contributions from two distinct
(ie, A C {1,...,d} and A C {1,...,d}) non-constant component functions that are not
hierarchically orthogonal.

When the input variables involve dependent probability distributions, we require a triplet
of global sensitivity indices [24]. The three .A-variate global sensitivity indices of f4, where
A C{1,...,d}, are denoted by S, Sa.,and Sy, and are defined by the ratios

55 4, = Ealfia),

>ozdcql,..dy Ex[fa(ta)fatq)]
AGAGA

(3.6) Sac=

o2

(3.7) Sa=5840+Sac-

The first two indices, S, and S4., represent the normalized versions of the variance con-
tribution from f4 to o and of the covariance contributions from f4 and all f4, such that
Ad A ¢ A, to 02, They are termed the variance-driven global sensitivity index and the
covariance-driven global sensitivity index, respectively, of f4. The third index, S4, referred
to as the total global sensitivity index of f4, is the sum of variance and covariance contri-
butions to o? that are associated with f4. Summing over all of the triplet global sensitivity
indices adds up to

(3.8) Z Saw+ Z Sae= Z Sa=1

0£AC(1,....d} 0£AC{L,....d} 0#£ACL,....d)

We use these sensitivity indices to identify the most influential AEDT input variables on
the AEDT output of interest. We construct the generalized ANOVA dimensional decompo-
sition of the AEDT component using first-order basis functions (i.e., A = {i}) with at most
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first-degree polynomials as the subcomponent functions. The AEDT random input variable
is distributed according to a multivariate Gaussian distribution where the mean and covari-
ance terms are computed using a subset of TASOpt output realizations. The reason for using
TASOpt output realizations is because we did not have adequate experience or prior knowl-
edge of this system to accurately guess these parameters; instead, a few TASOpt realization
provide an informed estimate. With the subcomponent functions in hand, we compute the
absolute maximum allowable variation (i.e., [S4 |+ [S4.|) due to each AEDT random input
variable. Using this criterion we rank the AEDT random input variables in decreasing order
of influence on the AEDT output of interest, as illustrated in Figure 4. These results confirm
that only a small subset, here just 15 AEDT random input variables, of the original d AEDT
random input variables have a substantial influence on the AEDT output of interest variation.
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Figure 4. This plot presents the absolute variance- and covariance-driven sensitivity indices from each of
the AEDT random input variables on the AEDT fuel consumption performance variance. This plot illustrates
that the absolute variance- and covariance-driven sensitivity indices decay rapidly and that 15 AEDT random
input variables capture almost all of the AEDT fuel consumption performance variance.

At this stage in the analysis we could approximately identify which of the TASOpt inputs
contribute the most to the variation of the important variables presented in Figure 4 by
performing a global sensitivity analysis of TASOpt with respect to the 15 important variables.
However, since our system is only composed of two components, there is no need to do this—
we can complete the uncertainty quantification study as is, through the computationally
efficient procedure described in the next section. If our system were composed of more than
two components, then one could possibly justify performing global sensitivity analysis on
more than one component to reduce the coupling interface dimensions across two or more
components.
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4. Uncertainty Quantification. Applying the results from Section 3, we reduce the mul-
ticomponent coupling interface and decompose the multicomponent system as illustrated in
Figure 5. Consequently, instead of performing the uncertainty quantification of the mul-
ticomponent system presented in Figure 1, we perform a decomposition-based uncertainty
quantification of the reduced multicomponent system presented in Figure 5.
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Figure 5. We partitioned the AEDT input variables into two sets; an influential set and a noninfluential
set. The noninfluential set contains AEDT input variables which were deemed not to influence, by the AEDT
component global sensitivity analysis, the AEDT output of interest. The influential set contains AEDT random
input variables which were labeled as influential by the AEDT component global sensitivity analysis.

4.1. Uncertainty Analysis. As illustrated on the left in Figure 6, we wish to perform the
multicomponent system uncertainty analysis that propagates uncertainty in system inputs to
uncertainty in system outputs. To tackle the complexity of a multicomponent uncertainty
analysis we propose to decompose the system uncertainty analysis into individual component-
level uncertainty analyses that are then assembled into the desired multicomponent system
uncertainty analysis [3]. The decomposed system uncertainty analysis is illustrated on the
right in Figure 6. The decomposition-based uncertainty analysis approach comprises of two
main procedures which are illustrated in Figure 7: (1) local uncertainty analysis: perform
a local Monte Carlo uncertainty analysis on each component using their respective proposal
distributions; and (2) global compatibility satisfaction: resolve the coupling among the com-
ponents without any further evaluations of the components or of the system as a whole.

In the offline phase, demonstrated on the top in Figure 7, each local uncertainty analysis is
performed concurrently for each component. The challenge created by decomposition is that
the distribution functions of the inputs for each component are unknown when conducting
the local uncertainty analysis. Therefore, we propose an initial distribution function for each
component input, which we refer to as the proposal distribution function. Local uncertainty
analysis uses the proposal distribution function to generate samples of the uncertain compo-
nent inputs and propagate them through the component analysis to generate corresponding
samples of component outputs.
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Figure 6. The proposed method of multicomponent uncertainty analysis decomposes the problem into man-
ageable components, similar to decomposition-based approaches used in multidisciplinary analysis and optimiza-
tion, and synthesizes the system uncertainty analysis without needing to evaluate the system in its entirety.
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Figure 7. The process depicts the local uncertainty analysis and global compatibility satisfaction for our
two component system. First, local uncertainty analysis is performed on each component. Second, global
compatibility satisfaction uses importance sampling to update the proposal samples so as to approximate the
target distribution. Here we use X and Y to represent the proposal and target random wvariables, respectively.

In the online phase, demonstrated on the bottom in Figure 7, we learn the true distribution
function of the inputs of each component. We refer to these true distribution functions as the
target distribution functions. For those component inputs that correspond to system inputs,
the target distribution functions represent the particular specified scenario under which we
wish to perform the system uncertainty analysis. For those component inputs that correspond
to coupling variables (i.e., they are outputs from upstream components), the target distribu-
tion functions are specified by the uncertainty analysis results of the corresponding upstream
component(s).

Global compatibility satisfaction is ensured by starting with the most upstream compo-
nents of the system and approximating their respective target distribution functions using
importance sampling on the corresponding proposal distribution functions. The approach we
implement for the importance sampling step entirely avoids the probability density function
and works with the well-defined and determinable empirical distribution function associated
with the random samples [4]. A key attribute of the approach is its scalability: it lends it-
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self well to handling a large number of samples through a scalable optimization algorithm.
The approach also scales to problems with high-dimensional distributions, an important prop-
erty we use in this engineering example. The updated output importance weighted samples
of the upstream component then define the target distribution function for the downstream
component. The process of importance sampling is repeated for the downstream component
resulting in the downstream components importance weighted output samples. The down-
stream components importance weighted output samples characterizes the multicomponent
systems outputs of interest uncertainty under the target distribution and is used to quantify
the desired statistics of interest.

The proposal distribution selected for the AEDT component is the same distribution used
to construct the generalized ANOVA dimensional decomposition in Section 3 with the covari-
ance term multiplied by a factor of three. The proposal covariance term was multiplied by a
factor of three to ensure the unknown target distribution from the upstream TASOpt compo-
nent is supported by the AEDT input proposal distribution. In the situation that the input
proposal distribution does not support the forthcoming target distribution we must resam-
ple the AEDT module using the latest information from the forthcoming target distribution.
The uncertainty analysis results are presented in Figure 8. The results illustrate the system
output of interest distribution function under three different scenarios. The first scenario is
the outcome of running the AEDT component under the proposal distribution assumption.
The second scenario is produced by performing an all-at-once uncertainty analysis of the sys-
tem illustrated in Figure 1 using Monte Carlo simulation. The last scenario is the result of
performing a decomposition-based uncertainty analysis of the system illustrated in Figure 5.
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Figure 8. The AEDT fuel consumption performance distribution is shown, on the left, using the AEDT
output proposal distribution, all-at-once Monte Carlo uncertainty analysis, and the decomposition-based uncer-
tainty analysis. On the right are the resulting probability density functions. These results suggest that our
decomposition-based uncertainty analysis performed adequately which implies the change of measure across the
15 AEDT random input variables was successful and that the correct 15 AEDT random input variables were
selected by the AEDT component-level global sensitivity analysis.
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These results demonstrate that our decomposition-based uncertainty analysis of the re-
duced system in Figure 5 accurately produces the result from the standard approach, the
all-at-once Monte Carlo simulation of the full system in Figure 1. The discrepancy between
the decomposition-based approach and the all-at-once Monte Carlo simulation can be at-
tributed to performing the importance sampling on a subset of the coupling variables using
only a finite number of samples. The results presented imply that we successfully identi-
fied the 15 influential AEDT random input variables and also that we accurately performed
the importance sampling procedure across the resulting 15-dimensional interface between the
TASOpt component and the AEDT component. By reducing the dimensions of the multicom-
ponent interface, we illustrated that our decomposition-based uncertainty analysis approach
can be extended to calculate the relevant statistics and failure probabilities of complex and
high-dimensional systems.

4.2. Global Sensitivity Analysis. The purpose of a global sensitivity analysis is to identify
how the variability in a system output quantity of interest is related to a system input and
which of the system input sources dominate the response of the system output. Our motivation
for a system-level global sensitivity analysis is research prioritization: which system input
factor is the most deserving of further analysis or measurement? To address our objective
we apply the Sobol” variance-based global sensitivity analysis method, which quantifies the
amount of variance that each input factor contributes to the unconditional variance of the
output [28].

To perform the global sensitivity analysis of the multicomponent system we apply the gen-
eralized ANOVA framework presented in Section 3 to this context, where f now represents the
entire multicomponent system. Since the multicomponent system inputs are independently
distributed we can discard the covariance contribution in Equation 3.8 from our A-variate
global sensitivity indices. The resulting global sensitivity indices of the multicomponent sys-
tem,

d d
(4.1) 1= Z Sty + Z St jiw T+ S, dyes
=1

1<j

apportion the output variance amongst the system inputs. Global sensitivity indices with
only a single subscript (e.g., Sy;) are called main effect indices. Inputs with large main effect
indices are known as the “most influential factors”, or the inputs that, on average, once fixed,
would result in the greatest reduction in variance. Global sensitivity indices with multiple
subscripts (e.g., Sy; ;) are called interaction effect indices.

In this context, we cannot construct a generalized ANOVA dimensional decomposition of
the multicomponent system since this would result in having to evaluate the entire multicom-
ponent system. Instead, to evaluate the global sensitivity indices using a decomposition-based
approach, we first use a restated but equivalent definition of the global sensitivity indices. For
example, the main effect indices can be restated using the conditional and unconditional
variances,

_ vary, (Exe[f])

(4.2) S; . :

g
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where X; is the i*" component of the vector of random variables X and X{ is the vector
containing all components of X except X; [28].

Since Equation 4.2 requires evaluating the expectation of f conditioned on random vari-
ables, we cannot yet directly apply a decomposition-based methodology in a straightforward
way. Instead, we will approximate Equation 4.2 by evaluating the expectation of f condi-
tioned on the random variable existing in a finite range. By relaxing the conditional depen-
dence in this way, we can evaluate the expectations contained within Equation 4.2 using our
decomposition-based uncertainty analysis algorithm, since expectation is just a statistic of in-
terest. To construct these conditional sets of finite range, we partition the input space into a
finite number of bins [28]. For each bin we evaluate the expectation contained in Equation 4.2
using our decomposition-based uncertainty analysis algorithm and modifying the system input
target distribution to be contained in the bin of interest. After evaluating the expectations
over each bin, we can evaluate the variance over those expectations to approximate Equa-
tion 4.2. This procedure relies only on the offline step of our decomposition-based uncertainty
analysis algorithm. Therefore we can repeat these steps for each system input without having
to evalute the components comprising the system.

The results of the system-level main sensitivity indices are presented in Figure 9. The
results depict the system-level main sensitivity indices computed using the all-at-once Monte
Carlo simulation approach of the system illustrated in Figure 1 and the decomposition-based
approach of the system illustrated in Figure 5. These results confirm that our decomposition-
based sensitivity analysis algorithm can accurately quantify the main sensitivity indices of
the system in Figure 1. As previously mentioned, the decomposition-based sensitivity anal-
ysis algorithm hinges on the fact that we can evaluate the decomposition-based uncertainty
analysis. The main sensitivity indices suggest that the output of interest variation is mostly
dominated by a handful of aircraft technological and operational variables. That is, by im-
proving our understanding of these TASOpt random input variables through research, we can
reduce the variation of the overall system output of interest, which is beneficial for decision-
and policy-making.

5. Conclusion. This paper presents uncertainty quantification of a realistic application
problem involving a complex multicomponent system model of the environmental impacts of
aviation technologies and operations. The multicomponent system comprises a conceptual-
level aircraft design tool and an environmental impacts tool. The challenges of applying uncer-
tainty quantification to this multicomponent system include long computational run times, a
high-dimensional component-to-component interface, and a lack of software integration among
the system components. These challenges are overcome through a combination of dimension-
ality reduction and decomposition. A component-level global sensitivity analysis identifies
the most influential component-to-component interface variables and permits reduction of the
dimensionality of the component-to-component interface. With this reduction in dimensions,
a decomposition-based uncertainty quantification approach becomes feasible. This permits
local uncertainty analyses to be conducted, and the results synthesized to compute system-
level uncertainty estimates and system-level sensitivity indices. The results reveal the most
important sources of uncertainty across the system, which informs policy decision-making as
well as future tool development. Future work will extend these ideas to different and more
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Figure 9. The system-level main sensitivity indices are shown here using the all-at-once Monte Carlo global
sensitivity analysis and our proposed decomposition-based global sensitivity analysis. These results suggest that
our decomposition-based global sensitivity analysis performed adequately and that only a handful of technological
and operational system input variables have a significant influence, on average, on the system output of interest.
A description of the system inputs are provided in Table 1

complex architectures of feed-forward and feed-back multicomponent systems. This will re-
quire accounting for dependency among variables using only the samples but with no explicit
description of their underlying probability density functions. An additional future direction
includes performing decomposition-based uncertainty quantification with a goal-oriented ob-
jective. The aim in this case is to minimize the system complexity while approximating the
quantity of interest to within a specified tolerance.
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