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Abstract
Populations are subject to mutations conferring beneficial effects, as well as mutations
conferring deleterious effects. Even if deleterious mutations occur much more frequently
than beneficial mutations, the contribution of deleterious mutations to the overall rate
of change of the population-wide mean fitness may be limited, due to the efficient ac-
tion of selection. However, in particularly rapidly evolving populations, the stochastic
accumulation of deleterious mutations may negate a significant fraction of the fitness
increments provided by beneficial mutations, or even result in an overall decrease in
fitness over time. Here we obtain a constraint on beneficial and deleterious mutation
rates and selection pressures in order for positive adaptation to counterbalance fitness
decline via Muller's ratchet. The steady state that separates parameter regimes of
positive adaptation and negative adaptation is characterized by appealing to the expo-
nential dependence of fixation probabilities on fitness effect sizes. We consider a range
of fitness-mediated epistatic interactions and the corresponding implications regarding
the existence, location and stability of long-term evolutionary fixed points.
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Chapter 1

Introduction

A DAPTATION to a constant environment tends to slow down over time. This has
been observed in numerous microbial evolution experiments, in which competitive

fitness (for example, relative to an ancestral genotype) increases at a declining rate
[7]. Despite a declining rate of adaptation, fitness appears to have continued increas-
ing throughout 60,000 generations of evolution of Escherichia coli in the Long-Term
Evolution Experiment (LTEE) [49]. Fitting curves to the fitness trajectory supports
a power-law trajectory, in which fitness increases indefinitely, over a fitness trajectory
that asymptotes to a constant, steady-state fitness. In contrast, another study, in
which small populations of bacteriophage were evolved experimentally, suggests that
under certain conditions, fitness changes may not persist indefinitely [43]. Instead, over
long evolutionary timescales, populations of sufficiently high and low initial fitness may
converge to a steady state of intermediate fitness, where adaptation stops. It remains
unclear both (i) which microscopic mechanisms are fundamentally responsible for the
observed trend of declining adaptability and (ii) which factors determine whether a
population will tend to an evolutionary steady state.

Mutations drive adaptation-therefore, the phenomenon of declining adaptability
should be able to be explained by changes in the rate at which mutations occur and the
effects they confer. One mechanism is intuitively appealing: a finite number of benefi-
cial mutations may be available, so that as a population adapts, beneficial mutations
might occur less frequently. Compounding this effect, different mutations may overlap
in their functional effects, so that as adaptation proceeds, an increasing number of mu-
tations that were originally beneficial might become redundant [27,45]. Equivalently,
individuals at a lower fitness are more likely to possess a larger number of deleterious
mutations; back and compensatory mutations occur more frequently in these individu-
als, increasing the supply of beneficial mutations at lower fitness [3].

Recent empirical studies have demonstrated that in many cases, the rate of adapta-
tion declines even while beneficial mutations continue accumulating at a nearly constant
rate [27, 49, 51]. This suggests that a reduced beneficial mutation rate may not be the
primary cause of declining adaptability; instead, this phenomenon may be better ex-
plained by a tendency for beneficial mutations to confer weaker effects, on average, as
adaptation proceeds. Support for this explanation is found in several empirical studies
in which, after introducing beneficial mutations onto several different genetic back-
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CHAPTER 1. INTRODUCTION

grounds, beneficial fitness effects are found to be negatively correlated with background
fitnesses [5,30,46].

Both are explanations that fundamentally invoke epistasis-interactions in which
the fitness effects of new mutations are dependent on the background genotypes they
land on. More precisely, both assume a pattern of fitness-mediated epistasis, in which
the statistics of epistatic interactions can largely be summarized by a certain dependence
of the population-genetic parameters on fitness [14]. We will refer to the phenomenon
in which the beneficial mutation rate decreases with fitness as running out of beneficial
mutations and that in which the typical beneficial effect size decreases with fitness as
diminishing-returns epistasis for beneficial mutations . Other models of diminishing-
returns epistasis are certainly plausible. For instance, the typical selective effects of
deleterious mutations might vary systematically with fitness.

Previous theoretical work has focused on running out of beneficial mutations, and
established important theoretical consequences for the long-term fitness trajectory of
a population [20]. In this work, one of the simplest possible models is considered: the
beneficial mutation rate declines with increasing fitness, but at the same time, the dele-
terious mutation rate increases, such that the total mutation rate remains constant.
(As the supply of potential beneficial mutations "runs out", potential beneficial muta-
tions are replaced by potential deleterious back-mutations of the same magnitude but
opposite sign.) Consequently, the population will approach an evolutionarily stable
fixed point at which the rate of fitness increase due to the accumulation of beneficial
mutations is, on average, negated by the stochastic fixation of deleterious mutations
(Muller's ratchet). The fixed point is known to be stable by a simple argument: if the
fitness is perturbed above (or below) the fixed point, a smaller (or larger) fraction of
mutations will then be beneficial, so that the population-wide fitness will decrease (or
increase) back to the fixed point. The existence of this stable fixed point may explain
the plateaus observed in empirically obtained fitness trajectories. This work assumes
that mutational fitness effects are constant over the course of evolution, and that fit-
ness effects of beneficial mutations are of the same magnitude as the fitness effects of
deleterious mutations.

Given that mounting empirical evidence highlights the role of changes to the typical
selective effects in bringing about declining adaptability, a natural question is whether
the qualitative behavior predicted in [20] is implied by more general models of fitness-
mediated epistasis. As an example, one might consider a model in which the rates
of beneficial and deleterious mutations do not change appreciably over the course
of evolution, and effect sizes of deleterious mutations remain roughly constant, with
diminishing-returns epistasis for beneficial mutations the primary source of declining
adaptability. The rate of adaptation increases monotonically with the size of beneficial
effects, just as it increases monotonically with the rate of beneficial mutations, enabling
a clear parallel to be drawn to the model studied in in [20]. The same heuristic ar-
guments justify the prediction of the existence of an evolutionarily stable fixed point.
Quantitative theory would be necessary to establish the critical beneficial effect size
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at the fixed point, just as theory is employed in [20] to identify the critical beneficial
mutation rate at the fixed point.

A fundamental asymmetry exists between beneficial and deleterious mutations.
Stronger beneficial mutations are more likely to fix within a population, compared to
weaker beneficial mutations. In contrast, stronger deleterious mutations are less likely
to fix within a population, compared to weaker deleterious mutations. Consequently,
the rate of adaptation does not necessarily vary monotonically with the strength of dele-
terious mutations. Therefore, in considering the implications of an alternative model
of fitness-mediated epistasis, in which deleterious effect sizes change but beneficial ef-
fect sizes remain constant, the heuristic arguments of [20] do not necessarily apply. As
a result, theory is necessary to predict not only the location, but also the potential
existence and stability of any evolutionary fixed points.

To obtain the implications of more general models of fitness-mediated epistasis, in
which fitness effects and/or mutation rates of both beneficial mutations and deleterious
mutations depend on fitness, an understanding of how the rate of adaptation depends
on these parameters is of central importance. Using this information, and given a
model of how the population-genetic parameters vary with fitness, the long-term flow
of the population through parameter space can, at least in principle, be integrated
up, yielding predictions regarding the flow to (or possibly away from) fixed points. In
fact, given knowledge of how only the sign of the rate of adaptation depends on the
various population-genetic parameters, one can still extract the path of the population
through parameter space, at the expense of information regarding the temporal dynam-
ics through parameter space. Unfortunately, despite much recent attention, analytical
expressions for the rate of adaptation (or its sign) have not been obtained, except in
special cases [10, 13, 16,41].

The rate of adaptation is one observable of the evolutionary process; diversity statis-
tics such as the pairwise heterozygosity ir comprise a somewhat disparate class of observ-
ables [48]. A related quantity of interest is the pairwise coalescence timescale T2-the
average number of generations since two randomly chosen individuals share a com-
mon ancestor [26]. Knowledge of this timescale provides significant predictive power
regarding which mutations are likely to survive genetic drift and/or selection [25, 39].
Selection brings about significant changes to allele frequencies on a timescale that is
inversely related to fitness differences; if this timescale is larger than the coalescence
timescale, diversity is purged by genetic drift before selection is able to operate [13].
The inverse of the coalescence timescale therefore sets the fitness effect threshold above
which selection dominates drift: a longer coalescence timescale is associated with a
greater probability that a given beneficial mutation will survive genetic drift and a
lower probability that a given deleterious mutation will stochastically fix.

In this work, we exploit the relationship between the coalescence timescale, fitness
effect sizes and fixation probabilities to predict the rate of adaptation over a broad
range of parameters, in which the effects of clonal interference and hitchhiking may
play a significant role in the dynamics. We focus particular attention on the regime



in which the strength of selection is weak enough relative to mutation that Muller's
ratchet clicks often; this allows us to identify a v = 0 "boundary surface" and con-
struct an "evolvability phase diagram" that distinguishes regions of parameter space
in which positive adaptation dominates from those in which negative adaptation domi-
nates. From this we can immediately generate the long-term evolutionary implications
of diminishing-returns epistasis, running out of beneficial mutations, and various other
epistatic models. We find, in contrast to the model studied in [20], that not all fitness-
mediated epistatic models give rise to an evolutionary fixed point, and that the precise
details of a given epistatic model can determine the existence, location, and stability of
evolutionary fixed points.

0 1.1 The Model

We model an asexual haploid population of N individuals. Each generation, an indi-
vidual's offspring number is drawn from a Poisson distribution with an expected value
proportional to eX-X(t), where X is the individual's fitness and X(t) is the mean fitness
of the population at time t. An individual's fitness is determined by the mutations it
has acquired; we'll assume that individuals are subject to both beneficial and deleteri-
ous mutations occurring at a total rate U (per generation, per genome), and denote by
Ub and Ud the rates of beneficial and deleterious mutations, respectively. Our model
does not account for neutral mutations, since these mutations do not impact the rate
of adaptation or the pairwise coalescence timescale. The fraction of mutations that are
beneficial is denoted by e = Ub/U.

We will assume that an individual's fitness X is given by the sum of the fitness
effects it has acquired. In much of the analysis that follows, we'll assume that all
beneficial mutations confer the same fitness effect sb > 0, and that all deleterious
mutations confer the same fitness effect -sd < 0. Later on we'll generalize much of our
analysis to account for distributions of fitness effects (DFE), so that the fitness effect
of a particular mutation is drawn from a given distribution p(s). The distributions
of beneficial and deleterious fitness effects need not be identical; we will partition the
overall DFE into a distribution of beneficial fitness effects Pb(s) and a distribution of
deleterious fitness effects Pd(s), with Up(s) Ubpb(s) + Udpd(s). The quantities N
and Up(s) fully determine the average rate of adaptation and the statistics of genetic
diversity; together, these specify a point in population-genetic parameter space.

We will limit our analysis to epistatic interactions in which p(s) depends on geno-
type, but only via the genotype's fitness (fitness-mediated epistasis). Additionally,
we will assume that the fitness scale on which the DFE varies is much greater than
the scale of fitness differences within the population, so that all individuals in the
population share the same DFE at any given point in time, and the DFE does not
change appreciably over the course of fixation of a single mutation. We refer to this
as a quasistatic approximation; invoking this approximation enables a mapping to an
epistasis-free model, simplifying the analysis considerably. In the discussion, we will
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consider the validity of this approximation and briefly consider epistatic interactions in
which the DFE varies more rapidly with fitness.
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Chapter 2

Evolvability phase diagrams

G IVEN the assumptions stated in Section 1.1, a specific model of fitness-mediated
epistasis will constrain the population to lie on a particular curve in population-

genetic parameter space. Since we're assuming that Up(s) depends only on the (mean)
fitness of the population, the direction of the population's flow along this curve is
determined by the sign of the rate of adaptation. This motivates us to construct an
"evolvability phase diagram" that describes, for a given mutation rate and distribution
of fitness effects, whether the corresponding rate of adaptation is positive or negative.
That is, we would like to divide the parameter space into a region in which the rate
of adaptation is dominated by Muller's ratchet, and a region in which the rate of
adaptation is dominated by the accumulation of beneficial mutations. In a later section,
we will use this information to generate the long-term implications of various models
of fitness-mediated epistasis on the approach to an evolutionary steady state.

Mutations with an effect on fitness between s and s + ds enter the population at
a total rate NUp(s)ds. Due to genetic drift, the vast majority of lineages carrying
these new mutations-even those with sizable beneficial effects-will go extinct before
reaching an appreciable frequency in the population. If a mutational lineage survives
genetic drift and selection, and expands to include all individuals in a population, that
mutation is said to have fixed. We'll denote by pfix(s) the probability that a mutation
with effect size s eventually fixes, so that the total fixation rate of mutations with effect
size between s and s + ds is given by NUp(s)pfi,(s)ds. Upon fixation, the mean fitness
of the population increases by an amount s; therefore, summing over all available effect
sizes, the overall average rate of adaptation is given by

v=NUJ p(s)pfix(s)sds (2.1)

Our problem is essentially reduced to predicting the fixation probabilities pfix(s) for
all relevant fitness effects s, given an arbitrary set of population-genetic parameters. A
classic result in population genetics is that

2s
Pfix(s) -

2  (2.2)
pverxs or ge-2Ns

provided that each mutation either fixes or goes extinct independently [11, 50]. Assum-
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ing that beneficial and deleterious mutations each consist of a single effect size,

U2 Us2
V= _2N __b (23)

(1 - e-2Nsb e2
Nsd _ 1)

The (hyper-)surface of parameter space on which v = 0 divides the space into two
regions: one in which Muller's ratchet dominates, and the other in which positive
adaptation dominates. The equation for this v = 0 surface is

s2 Ud S2
Sb _ U , d (2.4

1 - e- 2 Nsb Ub e2 Nsd _ 1

Regions of parameter-space with larger sb or larger Ub values than this surface corre-
spond to positive adaptation; regions with larger Ud values than the surface correspond
to the ratchet-dominated region. Perturbing sd by a positive amount from the surface
can result in either adaptation or fitness decline, depending on the values of N, Ub, Ud,
and sb, since, as a function of sd, the right-hand side of Equation 2.4 is non-monotonic.
In absence of beneficial mutations, this non-monotonicity can be illustrated by two lim-
iting cases. When NSd < 1, deleterious mutations accumulate nearly neutrally, with a
probability of roughly 1/N of fixing. An increase in the magnitude of the deleterious
effect therefore has a negligible impact on the fixation probability, and so corresponds
to a more negative rate of adaptation. In the opposite limit, deleterious mutations are
purged efficiently by selection, with a fixation probability that decays exponentially
with NSd. When fixed, deleterious mutations of larger effect size sd will impart a larger
fitness cost, but this additional cost is not large enough to compensate for the expo-
nentially reduced probability of fixing: stronger deleterious mutations correspond to a
less negative rate of adaptation.

Unfortunately, Equation 2.2 has limited applicability to the identification of the
v = 0 boundary surface. Muller's ratchet is clearly of importance on the v = 0 boundary
surface, and prediction of the rate of Muller's ratchet over a broad range of parameters
has been a topic of ongoing research [9, 18,37]. Even in the simple case involving no
beneficial mutations and deleterious mutations of a single effect size, deviations from
Equation 2.2 are apparent: unless the deleterious mutation rate is much less than the
deleterious effect size, deleterious load on the population will significantly reduce the
size of the most-fit class, enabling stochastic fixation of deleterious mutations to occur
much more frequently than would be predicted by Equation 2.2 [21]. This will likely
be the case if Muller's ratchet is able to counteract even a slow rate of accumulation of
beneficial mutations.

Even in the absence of deleterious mutations, significant deviations from the pre-
diction given by Equation 2.2 can occur. Multiple beneficial mutations, of potentially
different effect sizes, may segregate in a population at the same-this phenomenon is
known as clonal interference and has been observed in several recent empirical stud-
ies [1, 23, 28, 29, 34]. Much of the adaptive potential of the population is wasted: a
lineage carrying a beneficial mutation may survive genetic drift and grow to an appre-
ciable frequency, only to be later outcompeted by another more-fit lineage [8,41]. In a
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similar vein, deleterious mutations can "hitchhike" along with beneficial mutations to
fixation-this effect both increases the likelihood with which deleterious mutations fix,
and decreases the likelihood with which beneficial mutations fix [44].

In general, the probability that a particular mutation fixes depends not only on the
fitness effect it confers, but on the entire distribution of fitness effects p(s) available to
the population (as well as the population size N and the mutation rate U). Previous
work has argued that, if the mutation rate is much larger than typical fitness effects,
then

Pfix(S) e T2 s/2 (2.5)N
-that is, the effects of clonal interference, deleterious load and hitchhiking affect fixa-
tion probabilities only via their influence on the coalescence timescale T2 [40]. A simple
heuristic can provide some intuition on this formula: on average, two randomly chosen
individuals share a most recent common ancestor a time T2 generations in the past.
Consequently, roughly T2 generations after a mutation occurs, it is likely to either be
close to fixation or close to extinction. The mutation makes a significant contribution
to fitness variance in the population only over the course of the pairwise coalescence
timescale-after T2 generations, each of the N extant individuals are equally likely to
fix. Assuming that the mutation's lineage grows exponentially at rate s over the pair-
wise coalescence timescale then yields pfix(s) kLeT2s. This heuristic and Equation 2.5
differ by an 0(1) factor of T2 in the exponent, which is quantitatively significant, but
is consistent with the degree of inaccuracy expected in (i) estimating the timescale on
which mutational fates are determined as T2 and in (ii) assuming exponential growth of
the mutational lineage with a constant rate throughout the duration of this timescale.
In Chapter 3, we will more formally justify the applicability of this formula and detail
more precisely its regimes of validity; here we will assume its validity, examine the
resulting implications for the v = 0 boundary surface and compare our predictions to
results from simulations.

Inserting (2.5) into (2.1) yields an expression for T2v:

T2v = UbT2 SbeT2sb 2 - UdT2 sde~T2 sd/ 2  (2.6)

We'll define scaled fitness effects -yb -IT2sb and -Yb -T2Sd, and a scaled rate of adap-

tation v = 1T2v. The scaled rate of adaptation v can then be identified as proportional
to the fitness increase per pairwise coalescence timescale, and can be written in terms
of ^Yb, '}d, Ub, and Ud:

v = UVyMe'6 - Ude~7d (2.
(2.7)
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Figure 2.1: Cross sections of an "evolvability phase diagram" in the space of scaled

beneficial and scaled deleterious fitness effects, with the color of each point denoting the

average rate of adaptation as measured in a Wright-Fisher simulation, with NU = 104

(see Appendix A for more details on simulation methods). Unscaled fitness effects sb

and sd were specified, and for each point, the pairwise heterozygosity 7r was measured.

(This yields the pairwise coalescence timescale T2 =7r/2U and thus the corresponding

scaled fitness effects.) Unscaled fitness effects were chosen to make up a log-uniformly

spaced grid in the space of unscaled fitness effects (see Figure 3.2 for this grid); the

non-uniform density of points in the space of scaled fitness effects reflects variation in

T2 as a function of sb and Sd. The shape of the sampled region in the space of scaled

fitness effects is a consequence of the fact that T2 decays monotonically with sb, but is

a non-monotonic function of sd. The dashed line is the theoretical prediction for the

fixed-point curve given by Equation 2.8.

From this we can construct an "evolvability phase diagram", in which regions of

parameter space corresponding to positive adaptation and regions corresponding to

negative adaptation can be separated by the surface on which v = 0. In Figure 2.1,
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cross sections of this phase diagram are visualized in two dimensions, as a plot of -yb
vs. yd, for various relative frequencies of beneficial mutations to total mutations. Our
equation for the phase boundary curve can be written with -Yb an explicit, single-valued
function of -yd:

(db =)W e (2.8)

where W is the Lambert W-function defined by W(z)ew(z) = z. In Figure 2.2, pre-
dicted phase boundary curves are plotted along with boundary curves extracted from
simulation results.

2.0

.1.5
100 -

-b 1.0-

10-1 - 0.5 -

0.0
10-2 16-1 100 10-1 100

yP) Yd

10-3 1o-2 10-1

Figure 2.2: (Left) Points delineate fixed-point curves as measured from simulations,
over a range of Ub/U values with NU = 104 . Solid lines denote the corresponding
theoretical predictions for the same set of Ub/U values. (Right) Ratio of fixed-point
scaled beneficial effect as measured from simulation to the corresponding theoretically-
predicted fixed-point scaled beneficial effect, over a range of scaled deleterious effects
and Ub/U values, with NU = 104.

Each boundary curve attains exactly one maximum scaled beneficial effect -y*, at

_Y* W( Lid
eUb (2.9)

* 1
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In Figure 2.3, the location of this inflection point as measured in simulations is com-
pared to the prediction in Equation 2.9, over a range of values of NU and Ub/U. For

Yb > -y*, positive adaptation is predicted to occur regardless of the value of yd, and for

Yb < -*, an intermediate range of -yd values is predicted to result in negative adaptation.
The value -y* 1 can be interpreted as the scaled deleterious fitness effect that requires
the largest Yb to counteract Muller's ratchet. The fact that 0*, = (1) has a simple in-
tuitive explanation: these mutations are typically purged by selection on approximately
the same timescale on which common ancestry is determined [13]. Significantly more
deleterious mutations are typically driven to extinction by selection; significantly less
deleterious mutations accumulate nearly-neutrally, but confer a smaller effect on the
population-wide fitness. Note that this phase boundary curve has no dependence on N
or U: these quantities influence the sign of the rate of adaptation only through their
effect on the coalescence timescale (which generally increases with N). The boundary
does depend on the relative frequency of deleterious mutations compared to benefi-
cial mutations, with an enhanced relative frequency of deleterious mutations shifting
boundary curves toward larger scaled beneficial fitness effects.

Note that even when v 74 0, Yd = 1 is the optimally deleterious scaled fitness effect in
the sense that it extremizes i/ for arbitrary fixed yb, Ub and Ud. It does not necessarily
extremize v; estimating the value of Yd that extremizes v can be done using the results
of Chapter 3.
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Figure 2.3: Scaling of -y* (top) and -y* (bottom), as measured from simulations. The
dashed line in the plot of -y* is the theoretical prediction. Error bars for -Y* encompass
the range of Yb values that could be an extreme value, assuming that true T2 values fall
within one standard error of their sample mean. Error bars for Y*y correspond to the
range of Yd values that correspond to a yb within the aforementioned range of Y[ values,
with the inherent correlation between Yb and yd taken into account. Variation in the
rate of adaptation from the sample mean rate is assumed to be negligible compared to
variation in the pairwise heterozygosity. (The population fitness and pairwise heterozy-
gosity are sampled approximately once every Tsweep generations, a total of 192 times,
where Tweep denotes the time until one of the founding individuals sweeps through the
population.)

Alternatively, our evolvability phase diagram can be visualized by fixing either Yb,
yd or the ratio 2. = , and varying the relative frequencies of beneficial and deleteri-

Yb S
ous mutations. Manipulating Equation 2.8, we can solve for the relative frequency of
beneficial to deleterious mutations at the fixed point:

Ub -de-^Id
b = e(2.10)

Ud Ybe~b

From Equation 2.10, we can see that the fixed-point value of Ub/Ud is a decreasing
function of Yb, but a non-monotonic function of yd. For fixed Yb, Ub/Ud is maximized
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with respect to Id when yd = 1, and takes on a maximum value

UN * 1
-U Yb+l (2.11)

If Ub/Ud > ,d then the population will adapt, no matter the (scaled) strength of

deleterious mutations. Simulation results corresponding to several specified values of
Ub/U are collected into Figure 2.4 to test the validity of Equation 2.10.

100.
10-3

10- - 10-6
-0

-10-6

10-2
-10-3

10-3 E 100

10-3 10 2 101100
Vdevyd

ybeyb

Figure 2.4: Rate of adaptation as a function of Ub/Ud and Yde- /beYbb. As in Figure
2.1, unscaled fitness effects and mutation rates Ub and Ud were specified; the correspond-
ing scaled fitness effects and the rate of adaptation were then obtained from simulations.

(See Figure 3.2 for the log-uniformly spaced grid of unscaled fitness effects, which was
specified identically for all values of Ub/Ud.) Results from simulations with NU = 102,
NU = 103 , and NU = 104 are included. The dashed line is the theoretical prediction
for points lying on the v = 0 boundary surface, given by Equation 2.10.

The above analysis considered the evolvability phase diagram with Yb and yd in-
dependent variables. We have defined Yb and -Yd as fitness effects scaled by their cor-
responding coalescence rates, which depend on sb and Sd in a potentially complicated
way. We will argue in Chapter 6 that the distribution of scaled fitness effects may be
more readily observable than the distribution of unscaled fitness effects, given DNA
sequencing data from natural populations. However, it may be desirable to obtain the
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evolvability phase diagram with unscaled fitness effects sb and sd as the independent
variables. We will turn to this objective in the next section, using the full traveling-wave
formalism of [10, 16] to solve for the v = 0 boundary surface.
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Chapter 3

Evolutionary equations

N 3.1 Evolutionary equations

T H ERE are two key aspects of rapidly evolving populations that several recent the-
oretical studies have explicitly accounted for [10, 16,22,47]. Individuals in a pop-

ulation comprise a range of fitnesses, so that a distribution of fitnesses f(X, t) can be
introduced, describing the probability density for a randomly sampled individual to
have an absolute fitness X at time t. Additionally, the probability that a mutation
eventually fixes within a population depends on the genetic background it lands on:
this can be modelled by considering the non-extinction probability w(X, t) of a lineage
founded by an individual with absolute fitness X at time t. Attention can then be
focused on how, in absence of epistasis, the population-genetic parameters N, U, and
p(s) determine the time-evolution of f(X, t) and w(X, t) [16]. This analysis can also
be applied to populations subject to fitness-mediated epistasis, provided that the as-
sumptions stated in Section 1.1, which enable a mapping to an epistasis-free model, are
met.

The dynamics of f(X, t) are described by

Of (X, t)-
&fX = (X - X(t)] f (X, t) + U p(s) [f(X - s, t) - f(X, t)] ds (3.1)

The terms of this equation have a clear interpretation as the rate of change to f(X, t)
as a result of selection, and as a result of mutation (both to and from a fitness X). (The
mean fitness of the population at time t is denoted by X(t).) After an initial transient
period, f(X, t) takes on a Gaussian profile that increases (or decreases) in fitness at
rate v. Upon transforming to the frame of the relative fitness x = X - X, this equation
becomes

- vO f(x) = xf(x) + U J p(s) [f (x - s) - f (x)] ds (3.2)

A similar equation can be derived for the non-extinction probability w(X, t):

_9w(X, t) -
- = (X - X(t)] w(X,t)

+ U J p(s) [w(X + s, t) - w(X, t)] ds - [1 + X - X(t)] w 2 (X, t) (3.3)
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which takes on the form

W(X)2
v&xw(x) = xw(x) +U Jp(s) [w(x + s) - w(x)] ds - (3.4)

after transforming to the frame of the relative fitness [16]. In this approach, genetic
drift is the source of the w 2 term; a noise term could be included in the equation for
f but is neglected in obtaining the mean-field fitness distribution. In principle, these
"evolutionary equations" can be solved together with the normalization conditions

f(x)dx 1 (3.5)

and

N f(x)w(x)dx : 1 (3.6)

tThe first equation ensures that the fitness distrilution is properly normalized; the
second equation ensures that, at any point in time, exactly one extant individual's
lineage will eventually fix.) Note the distinction between w(x), which denotes the
fixation probability of an individual with relative fitness x, and pfix(s), which denotes
the fixation probability of an individual which just acquired a mutation of effect size s.
The quantity pfix(s) can be related to f(x) and w(x) by averaging over initial relative
fitnesses:

Pfix(s) J dxf(x)w(x + s) (3.7)

Thus, provided that we can solve for f(x) and w(x), we can obtain v as

v = NU J dx J dsf(x)p(s)sw(x + s) (3.8)

These equations have been solved in special cases, but a solution for general Up(s)
has not been found [10, 13,16, 36]. There are two main challenges in solving these
equations: the equation for w(x) is nonlinear, and both equations are nonlocal. Earlier
work has shown that the nonlinearity in Equation 3.4 can be neglected for x below
an "interference threshold" xe, since in this region, the fixation probability w(x) is
small enough so that w(x) 2 is negligible compared to xw(x) [16,35]. For x > xc,
the nonlinearity in the equation for w(x) is not negligible, and w(x) is determined by
the balance between nonlinear and selection terms, so that w(x) ~~ 2x: lineages fix
provided that they establish, and they establish with probabilities given by neglecting
clonal interference. A boundary layer around x, exists where the behavior is more
complex, but to a good approximation it is possible to simply match both the values
and derivatives of the two solutions at xc. The resulting w(x) drops off rapidly below
x., as a result of interference: lineages can go extinct even if they survive genetic drift.

The second and more central problem in analyzing the equations for f(x) and w(x)
lies in the fact that the mutation term is nonlocal, even in the simple case involving
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mutations of a single effect size. Earlier work has simplified the analysis of this nonlo-
cality by focusing on two special cases, which represent opposite limits of the strength
of selection. In the first case (the strong-selection limit), the amount of fitness variation
within the population is assumed to be small compared to two quantities: the typi-
cal background fitness of a successful driver, and the fitness effect of a typical driver
[13]. (Assuming that all beneficial mutations confer the same effect Sb on fitness, these
conditions necessitate that Nsb > 1 and sb > Ub. ) Provided that these conditions
are met, another dominant balance approximation-neglecting the mutation term in
3.4-can be made to solve for w(x) below the interference threshold xe. In this ap-
proach, the quantity Up(s) is used only in determining the interference threshold x,

(as well another lower cutoff xmi, below which w(x) is assumed to vanish identically
to zero). This approach has been successfully applied in modeling populations subject
only to beneficial mutations [10,16], as well as to populations subject to both beneficial
and deleterious mutations [13,15], provided that these populations maintain a steady
increase in fitness over time.

Alternatively, the other approach to treating the nonlocality of Equations 3.2 and
3.4 is justified if mutations occur very frequently, but confer very small fitness effects [6,
13, 17, 22, 35, 36, 47]. More specifically, p(s) is assumed to enable a well-behaved Taylor
approximation of f(x - s) in and w (x + s) in Eq. (3.2). This approximation resembles a
completely linked version of the infinitesimal model from quantitative genetics, in which
variation in fitness is determined by an infinite number of infinitesimally weakly selected
loci [4]. We will now review the infinitesimal limit, and then present a generalized
infinitesimal limit which also treats the nonlocality in (3.2) and (3.4) with a Taylor
approximation, but which continues to give valid results for substantially larger fitness
effects.

0 3.2 Infinitesimal limit

The infinitesimal limit handles the special case in which adaptation is the result of a
large number of very weakly selected mutations. In the infinitesimal limit, we Taylor
approximate f(x - s) f(x) - sxf(x) + L& f(x), so that (3.2) reduces to

- vf() = f(x) + U p(s) -sf(x) 2 f(X) ds (3.9)

and therefore
U

- a2&9f (X) = Xf (X) + - (s 2) 02f (X) (3.10)
2

where we made use of Fisher's fundamental theorem v = o  +U (s), with u2 the variance
of the fitness distribution. Let's try a solution

f W) 0c e-4"o(x) (3.11)

with a and O(x) to be determined. Defining D -- i (s2)

D [a 2e-axg - 2ae-ax/'+ e-axlp"] + U2 [e-ao' - ae-axo] + xe-axo = 0 (3.12)
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We'll take o2 = 2aD, which simplifies the above to the Airy equation

DO" + (x - a2 D)o = 0 (3.13)

whose solution is

[a2D - xlO(X) = Ai a D1/3 (3.14)

and therefore

f(x) OC e 2DAi -4D4 /3 - (3.15)

Applying the same Taylor approximation to our equation for w, we get

a 2aW(X) = xw(x) + Doxw(x) - (X) (3.16)
2

))
This equatioi for w cannot be solved using the modified Airy equation, since it

contains a nonlinear w 2 term. We'll treat this nonlinearity using a dominant balance
approximation. For x < x, (with x, to be determined), w(x) < x and the nonlinear
term can be neglected. The resulting equation is the same as our equation for f, but with
a2 replaced by -a2. It follows that below the interference threshold xe, w(x) = e'x

with O(x) oc O(x). For x > xe, the dominant balance will be between xw(x) and 2
yielding

Cle2 _ ___ - 1
w(x) {Ce-DAi 4 / 3 

- 17
3  < te (3.17)
S2x X> x

Above the interference threshold xe, the fitness distribution f(x) is assumed to vanish
identically to zero, so that

f(x) {C 2 e 2DAi[ 4/
3 - X <Xz (3.18)

0 X> X4

The constants C1 and x, can be determined by enforcing the constraint that w(x) and

w'(x) are both continuous at x = x,. For convenience let's define b = D 1/ 3 and c ' .
The first constraint is easy to enforce and yields

C1 2xce-xcAi-1 c bXC (3.19)
1b

Equating the derivatives we get

Xe Ai' [ C-,]
1 =ax - - A (3.20)b Ai [C]X

We'll assume that axc > 1 and ab >> 1, and check the self-consistency of these assump-
tion later on. It follows that the two terms on the right-hand side must approximately
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cancel. Since Ai'(z) < 1 for all z > zo, the denominator of the second term on the
right-hand side must approach zero. This motivates us to define Cxc = zo + 6, with
zo = -2.33 satisfying Ai(zo) = 0, and expand to lowest order in 6:

a Ai' [zo + 6] Ai'(zo)
Ai [zo + 6] Ai(zo) + 6Ai'(zo)

-_(1

and
- -4

XC - bzo - 1/a C 4

Finally, we can solve for u2 , from which the rate of adaptation v can be obtained. To
do so we'll use our normalization conditions

N = f f(x)dx
f f(x)w(x)dx

fc e-axAi [- x] dx

2xce-axcAi-1 LC[rc] f_ Ai 2 Lc-x dx

Let's transform variables to z = z o + xc , so that

C -- 0 + I
b ab

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

c - x c - xe xe - x

b b b

1 1
= zo +- + (z - zo) = z +-

ab) ab

Then we have

f f(x)dx
f f(x)w(x)dx

e-abzo Ai[z ] f 00 abzAi [z + -] dz

2x, fz DAi 2 [z + '] dz

We want to evaluate this to lowest order in (ab)-1. Using the result f
xAi 2 (x) - Ai'(x) 2 , the denominator evaluates to

1 )2 _(O+- i Z2x, Ai' zo + - - + ) Ai2  2xAi'(zo)
ab ab ab

so

(3.28)

Ai2 (x)dx =

(3.29)

e-abzo

2abxcAi'(zo)

00 e -abzo 00
eabzAi z +- dz e bzAi(z)dz (3.30)

zoab 2abxcAi'(zo) _e(

(3.21)

(3.22)

and
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(For z < zo, the Airy function is oscillatory, and so we can neglect the integral of the
exponentially damped Airy function from -0c to zo.) Using fi0 e&Ai(t)dt e 3 we
have

e-abzo+(ab)3 /3 (3.31)

2abxcAi'(zo)

from which it follows that

(ab)3  
(_b)3

log(Nc) ; log(Nxc) -+ abjzo I - log(ab) (ab)3  (3.32)
3 3

We can now solve for a 2 in terms of underlying parameters:

02 = 2aD = 2 D 3 Vog Nc (24D2 log Nc)1 /3  (3.33)

with

Nc - Na _ N (24D 2 log Nc) 2/ 3 - 32/3 ND1/ 3 log2/ 3 Nc (3.34)
4D 4D

so that

[24D2 log 2ND1/3)] 1/3 (3.35)

where we used 32/3 ; 2.1 and neglected the log log Nc contribution. It follows that

v = a 2 + U (s) a 2  24D2 log 2ND1/3) 1/3 + U (s) (3.36)

We can now check that the approximations we made are self-consistent. Apart from
the initial Taylor approximation of f (x -s) and w(x+s), we assumed that a- 1 < b < c.
From our definitions of b and c, we can see that

4
21og2 /3 2ND1/3 (3.37)b 4D4/3

and

ab =- 1.4log1/ 3 2ND1/3 (3.38)
2D 2/3

so these approximations are self-consistent provided that ND 1/ 3 >> 1. Additionally, we
can check the self-consistency of our Taylor approximation. Roughly speaking, a Taylor
approximation of f(x - s) and w(x + s) should be valid if the typical fitness effect s is
smaller than the scale of variation of f(x) and w(x). Both of these functions vary on a
scale of 1/a, as can be seen by their exponential prefactors (they also vary on a scale of
b > 1/a). So we expect that the Taylor approximation should be valid provided that

as = - 1.8 log'/3 2ND1/3 <(3.39)
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Given the above constraint on ND 1/ 3 , the validity of this approximation requires that
s < U. Together, all of our assumptions are met in the limit that s -÷ 0 and U -+ C,
with the product D = 2 held fixed and ND 1/3 > 1. In this case, adaptation proceeds
by the accumulation of a large number of mutations with infinitesimal effect sizes (for
this reason it is called the infinitesimal limit).

The constants a, b, and c defined above each have interesting evolutionary interpre-
tations. Equation (3.9) suggests that we can interpret D as a diffusion constant. Under
this interpretation, as a lineage acquires a large number of small-effect mutations, it
"diffuses" through fitness space. After a time t, mutational diffusion will give rise typ-
ical mean-squared-displacement in fitness space KW) Dt. Selection acts to purge
this fitness variance on a timescale inversely related to the typical fitness differences in
the population, Ts 1 1 . At steady-state, the fitness scale Xd on which mutational

diffusion is important is then given by

X D - => = D13 - b (3.40)
Xd

so we can identify b as the fitness scale corresponding to mutational diffusion.
Furthermore, in [36] Neher and Hallatschek calculate the pairwise coalescence timescale

2
T2 in the infinitesimal limit, obtaining the result T2 = . This has a simple intuitive
explanation: if two individuals are sampled from a population, their fitnesses are likely
close to the mean of the fitness distribution. Because of the large number of individuals
with fitness near the mean of the distribution, there is a low probability of a coalescence
event near this mean fitness value; rather, the most recent common ancestor of the two
sampled individuals likely had a relative fitness above the interference threshold x,. The
time T since their ancestors had this relative fitness is given by the fitness difference
divided by the rate of fitness increase (without the mutation contribution U(s))

T -(3.41)
92 4D

More precisely, Neher and Hallatschek show that it takes roughly 2T generations
for the mean fitness to catch up with the high fitness nose, after which coalescence
occurs at rate 2 (with coalescence times after the initial delay time of 2T generations
distributed exponentially). Using the definition a 2 = 2aD, we can identify

T2  (3.42)
2

To the extent that Equation 3.42 holds, we can justify the applicability of Equation
2.5 in the infinitesimal limit. First, let's consider a deleterious effect size, with s < 0.
Fixation probabilities are then given by

Pfix(S) J f(x)w(x + s)dx = ef0-a,(x)a(x+s)q(x + s)dx (3.43)
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and given the above results for O(x) and O(x),

jx (x)#(x + s)dx = C1C2 Ai[cbx]Ai[c(bs) dx (3.44)
oo -f .r .

We'll quote an exact indefinite integral from [19]:

Ai [o(u + 31)] Ai [a(u + 32)] du

[a2(01 - 02)] ' (Ai' [o(u + 01)] Ai [a(u + 02)] - Ai [c(u + /1)] Ai' [a(u + 02)])
(3.45)

In applying this result, we'll identify a = -1/b, 1= -c and /2 = S - C.

Ai c x] Ai [C (x + s)d

(i Ai d_cc b b b 1

=2 Ai [c -b Ai' [c- (xce+-s)] -AicC - ] Ai [c - (xc + s) (3.46)
s ( b b bj b b )

Using the result ~- c - bzo - ,this can be written

pfix(s)

C1 C2eas
b21 1 s 1 [

- Ai zO + - Ai' zo + -- Ai' zO + - Ai zo + s (3.47)
s ab ab b ab ab b

b2i(z) (I - _s

a-Ai's(ZO)2 bAi'(zo) 2  (3.48)
s (ab ab

where we've used s/b < 1 and ab > 1. In particular, for s = 0, we have

1
- = pfx(O) = C1 C2 bAi'(zo)2 (3.49)N

It follows that Equation 2.5 is satisfied in the infinitesimal limit, for deleterious
mutations with s < 0. Justifying Equation 2.5 when s > 0 is a bit more complicated
because Equation 3.43 includes a contribution from the region x. - s < x < x, where
w(x + s) is linear. However, in the infinitesimal limit, this region is particularly narrow

(relevant fitness effects are much weaker than the interference threshold), and this extra
contribution can be neglected, so Equation 2.5 is also valid when s > 0. We emphasize
that Equation 2.5 has been justified in the infinitesimal limit, in which T2 ~~ a2 /D, but
that Equation 2.5 could, at least in principle, still hold in a parameter regime in which
T2 takes on a different functional form. Investigating the applicability of Equation
2.5 to regions of parameter space outside the infinitesimal limit is one motivation for
developing the generalized infinitesimal limit, which is discussed in the next section.
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S 3.3 Generalized infinitesimal limit

In the derivation of the infinitesimal limit, we assumed that the scale of variation of
both f(x) and w(x) was much larger than the scale of fitness effects in the support of
p(s), enabling Taylor approximations of f(x - s) and w(x + s) inside (3.2) and (3.4).
We later found that both f(x) and w(x) contained exponential prefactors that varied
on a scale of 1/a oc 1/T2 . This suggests that the Taylor approximation used in the
infinitesimal limit may become invalid when fitness effects with T2s I1 are included in
the support of p(s). Earlier we found that the inflection point of the boundary surface
of our evolvability phase diagram is located at T2sd = 2; we'd therefore like to modify
our approximation to better handle fitness effects of this magnitude.

Motivated by the infinitesimal limit, let's define

f (X) = e~4, (x), W(X) = ea,#(X) (3.50)

In the infinitesimal limit, a -Z-. This definition was chosen so that, after Taylor
__ 

2D
approximating f(x) and w(x) inside of (3.2) and (3.4), O(x) and O(x) would obey the
Airy equation. Here, let's instead define a by

U J p(s)seasds = v = NU p(s)spf(s)ds (3.51)

Written in terms of O(x) and #(x), (3.2) and (3.4) take the form

- vOx4(x) = (x - va)4(x) + U J p(s) [eas(x - s) - O(x)] ds (3.52)

vo&#(x) = (x - va)#(x) + U J p(s) [easO(X + s) - O(x)] ds (3.53)

Defining

Mp = U Jp(s)sPeasds (3.54)
P!

and Taylor approximating b(x - s) and #(x + s) to 2nd order, we have

0 = [x - va - U + Mo] O(x) + M2 O9'(x) (3.55)

0 = [x - va - U + Mo] O(x) + M2&Q#(x) (3.56)

where the &9xo(x) and &9#(x) terms vanish because of a cancellation of v and M1.
Evidently O(x) and O(x) differ only by a constant factor, so let's focus on #(x). Defining

Dgm = b3 = M2 p(s)s2 easds (3.57)

c = va + U - Mo = U p(s) [1 + (as - 1)eas] ds (3.58)
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we have
0 = (x - c)#(x) + b3 3#O(x) (3.59)

The solution to this Airy equation is then

#(x) oc Ai cb (3.60)

Now, the scale of variation of both #(x) and O(x) is seen to be b, making our Taylor
approximation valid so long as the relevant fitness effects are smaller than b. In summary
we find that

W(x) ~ CieAi [61 <XC (3.61)
2x X > xc

fW C2e- "Ai [C--X] X <X (3c62
0 X >c X

Our equations for f and w are identical to what was obtained in the infinitesimal
limit, so we can import those results from above, with the exception that in the in-
finitesimal limit, a ff2 , and in our generalized infinitesimal limit, a is defined by2D '
U f p(s)seasds _ v. In particular, we find

C1 = 2xce-acAil c b (3.63)
b

Xc ~~ C - bzo - 1/a ~ c (3.64)

lo(N~) (ab)3  (_b)3
log(Nc) ~ log(Nxc) ~ + abizo l - log(ab) (ab)3  (3.65)

3 3
and, as in the infinitesimal limit, we assumed ab > 1 and b < c. Using our expressions
for b and c, we can rewrite 3.65 as follows:

a 6 log (NU f p(s) [1 + (as - 1)eas] ds) (3.66)
U f p(s)(as) 2easds

Assuming that N and Up(s) are both known population-genetic parameters, Equation
3.66 can be solved numerically for a, which can be used to extract the rate of adaptation
v from Equation 3.51. As discussed in Section 3.4, analytical results for fixed-point
curves can also be obtained from Equation 3.66. A more accurate solution can be
obtained by using Equations 3.20 and 3.24, along with the definitions for b and c in
the generalized infinitesimal limit, to solve numerically for a. The definition (3.51)
is chosen to exploit the exponential dependence of fixation probabilities on T2 s (see
equation (2.5)) in ensuring that the associated #(x) and V(x) vary on a scale larger
than relevant fitness effects. In fact, we can see that consistency of the above definition

38



Sec. 3.3. Generalized infinitesimal limit 39

with (2.5) is achieved if a is identified as T2/2 and the function O(x) varies on a scale
larger than relevant fitness effects:

Pfix(s) f f(x)w(x- + s)dx = f O(x>O(x +-s)dx (3.67)N f V(x)#0(x)d

This suggests that a Taylor approximation of O(x - s) and #(x + s) inside of the relevant
integral equations may be valid. In Figure 3.1, we compare our theoretical prediction
for T2 (which is just 2a, with a obtained by the numerical solution described above)
with T2 obtained from simulations, over a broad range of beneficial and deleterious
fitness effects.
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Figure 3.1: Predicted T2 /N vs. simulated T2 /N, over a grid of sb and sd values with

NU = 104 . Beneficial fitness effects ranged from sb 1/N to Sb = 0.5; deleterious

fitness effects ranged from sd 1/N to sd = 3. For some combinations of Sb and Sd,

the numerical solution obtained is inconsistent with the initial assumption that both

sd < b and Sb < b; these points are omitted. Color denotes the corresponding simulated

value of -yd, which is found to be an reasonably good predictor of substantial deviations

of simulated values from predicted values.

* 3.4 Evolvability phase diagrams in the generalized infinitesimal limit

We will now use the solution to the evolutionary equations in the generalized infinites-

imal limit to obtain the v = 0 boundary surface in the parameter space with unscaled

fitness effects. For now we will confine our attention to populations subject to beneficial

mutations of a single effect sb and deleterious mutations of a single effect -sd; later we

will extend this analysis to distributions of fitness effects. From our definition of a in
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(3.51) we know that on the v = 0 surface

as S b log (3.68)
s + Sd Ubsb

Along with (3.65) we can solve for sb and Sd in terms of Ub, Ud and - Sd/Sb:

Sb = ( lo - log3 ( 6Ud /( (3.69)
6(1+ 6) 2 logNc UI Ub

sd = _j+62lg-log3 (3.70)
6( +o) lgNc Ub Ub

with c also a function of Ub, Ud and 6:

1+ 6) (Wd
c U Ub ( ) (3.71)

Thus, for any particular N, Ub, and Ud, by varying 6 we can generate the boundary
curve of the evolvability phase diagram in sd vs. sb space. For better quantitative
agreement with simulations, the numerical solution described in the previous section
can be used (and can be simplified using Equation 3.68). For small beneficial fitness
effects and large deleterious fitness effects, we find that the generalized infinitesimal
limit breaks down. (The generalized infinitesimal limit may be more applicable at
equally large beneficial fitness effects and small deleterious fitness effects because scaled
fitness effects are smaller in this region of parameter-space.) We find that, in all cases
considered, our numerically-obtained fixed-point curves attained a maximum deleterious
effect, and that sd exceeded the corresponding parameter b at this extremum, confirming
that the generalized infinitesimal limit is not applicable beyond this point. To address
this, we "cut off" our fixed-point curves at this extremum and extended the curves
linearly to the Sd axis. In Figure 3.2 we plot cross sections of our phase diagram in the
space of unscaled fitness effects, along with our theoretical prediction for the fixed-point
curve.
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Figure 3.2: Cross sections of an "evolvability phase diagram" in the space of unscaled
beneficial and unscaled deleterious fitness effects, with the color of each point denoting

the average rate of adaptation as measured in a Wright-Fisher simulation, with NU =
104 . The dashed line is the theoretical prediction for the fixed-point curve given by the
numerical solution outlined in Section 3.3.

An asymptotic expression for sd as a function of Sb on the fixed-point curve can be

obtained in the limiting case that 6 > 1. To leading order, the fixed-point curve is
given by

with

UbSb L W(zg)]
sd=Uex log) 1/3

2 ( 6Ubsb 10g NUd ) 113
z -= I\ U2

(3.72)

(3.73)

The Lambert W-function W(z) attains two real values for -1/e < z < 0; in our case, the

Wo branch corresponds to the portion of the fixed-point curve with weaker deleterious

10-3

- 10-6
0
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S-100
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effects and the W_ 1 branch corresponds to the portion of the fixed-point curve with
stronger deleterious effects. The inflection point (s, s*) is given by the intersection of
the two branches, where zg = -1/e; this point is located at

s* 9 (Ud 2
- (3.74)

Ub 16e 3 log NU Ub

s* 9
d- (3.75)

Ud 16e 3/ 2 log NUd

Note that s*/s =&e3/2, so this result for the location of the inflection point is
Udd

consistent with the approximation 6 > 1 when Ub > C.

An alternative way to visualize the boundary surface is to consider fixed fitness

effects sb and -Sd, which need not be the same, as well as a fixed total mutation rate

U, and then identify the ratio E = Ub/U of beneficial mutations to total mutations at
which v = 0. There are three relevant cases, which we will consider separately: Ub < Ud

(mostly deleterious mutations), Ub ; Ud, and Ub > Ud (mostly beneficial mutations).
In the case that Ub < Ud,

C - exp 3(Sb-+-SO)W(Z) (3.76)
Sb Sd

with
S(6s2 log Nc 1/3

Z 1 --- (3.77)
3 (U(sb + sd))

Alternatively, if beneficial and deleterious mutations occur at nearly the same rate

(Ub a Ud), then

E 3 - exp 6(Sb+SW(z) (3.78)
4 Sd sb - Sd

with

Sb - Sd 9s lOg 2 (Nc) 1/6
z = (3.79)

3sb 4 sd(Sb + Sd) 2 U2)

In the special case that Sb Sd .s and Ns > U/s, this can be shown to reproduce
the result

1 3 1/3
- ( logNNs (3.80)

2 (4A

given in [20] for the fast-ratchet regime (Nse-U/s < 1). Finally, if most of the mutations

are beneficial, then

sb 
3 (Sb + S)_- I - exp Sb W(z) (3.81)

Sd sb

with
I1 6s2 log Nc 1/3

z = (3.82)
3 U(sb + s))
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In summary, we find that for any beneficial effect Sb and deleterious effect Sd, there

is a fixed-point E at which the rate of fitness increase from beneficial mutations exactly

cancels the rate of fitness decline due to Muller's ratchet. For fixed NU and Sd, this ratio

E is a decreasing function of sb-if the strength of beneficial mutations is increased, a

smaller ratio of beneficial to total mutations is necessary to ensure positive adaptation.

However, we find that, with sb held fixed, c is not, in general, a monotonically increasing

(or decreasing) function of Sd. For a particular sb, across a broad range of parameters, an

intermediate value of Sd maximizes E-we denote this maximum E by Ec(sb). Ec(Sb) can

be interpreted as the ratio of beneficial mutations to total mutations that is necessary to

guarantee positive adaptation across all possible deleterious effect sizes (provided that

beneficial mutations confer a fitness effect Sb, and mutations occur at a population-wide

rate NU). In Figure 3.3 we compare our theoretical predictions for E as well as c, to

results obtained from simulations.
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Figure 3.3: (Left) Predicted fixed-point E vs. simulated fixed-point E, over a grid of sb

and sd values at NU = 102, NU = 103 , and NU = 104. For each combination of Sb

and Sd, the simulated E is obtained by interpolating between the largest simulated E
with a negative rate and the lowest simulated E with a positive rate. The corresponding

prediction for the fixed-point c is obtained using the numerical solution outlined in

the previous section. For some combinations of Sb and Sd, simulations over the entire

specified range of E values all resulted in v > 0 or all resulted in v < 0; these choices

of sb and sd are omitted from the figure. (Right) E, as a function of sb for a range of

values of NU. For a particular sb, E, is defined as the minimum E above which v > 0

regardless of Sd. Curves denote predicted values (using numerical solution) and points

denote simulation results.
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Chapter 4

Distributions of fitness effects

T H ESE predictions can be extended to account for distributions of fitness effects in
a straightforward way. We will first discuss the evolvability phase diagrams with

fitness effects scaled by coalescence rates, for which results are much simpler analytically.
We will then proceed to make use of the travelling-wave formalism to compute pairwise
coalescence times and obtain phase diagrams in sd VS. Sb space.

* 4.1 Evolvability phase diagrams in the space of scaled fitness effects

We'll first assume that effect sizes of beneficial and deleterious mutations are both
drawn from (possibly distinct) gamma distributions. Let ab > 0 and A3 > 0 be the
shape and rate parameters, respectively, of the distribution of beneficial fitness effects.
Similarly define parameters ad and /3d as shape and rate parameters of the distribution
of deleterious fitness effects. We then have

rad)

Up(s) = (cd)0(4.1)
Ub r y- s|ab-le-O|I s > 0

We'll gain the most intuition about distributions by eliminating rate parameters /b

and /d, treating shape parameters and mean effect sizes as the independent parameters.
(At a fixed shape parameter a, changing the mean of a gamma distribution is just a scale
transformation. This is reflected by the fact that the inverse of the "rate" parameter
/ is also referred to as the "scale" parameter. At fixed mean effect size, decreasing the
shape parameter amounts to broadening the DFE.) Additionally, throughout the rest
of this section we'll denote IT2 (sb) by yb and likewise for 1d.

The expected fitness increase per coalescence timescale is proportional to the scaled
rate of adaptation v = lT2 v. Assuming that fixation probabilities are related to the
coalescence timescale as in (2.5),

Ubyb Udld
Vab+l ( 1d+ (4.2)

aI I / Y
ab ) d)

provided that -Yb < ab. If Yb > ab, then (2.5) must be violated at least in some

portion of the support of p(s)-otherwise v would diverge. Equating the right-hand
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side of Equation 4.2 to zero predicts the phase boundary surface, for the case in which

beneficial mutations and deleterious mutations confer gamma-distributed effect sizes.

These predictions, along with phase-diagram cross sections obtained from simulations,
are displayed in Figure 4.1.
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Figure 4.1: Cross sections of an evolvability phase diagram, in the space of scaled fitness

effects, for gamma-distributed beneficial and deleterious mutations, with a0 = Cv = 1

(exponential distributions). The solid lines are the fixed-point curve predictions that

account for the finite shapes of the distributions of fitness effects, given by equating

the right-hand side Equation 4.2 to zero; the dashed lines are the theoretical predic-

tions given by Equation 2.8 for a single scaled beneficial effect size and a single scaled

deleterious effect size. The population-wide mutation rate was specified as NU = 104 .

It will be useful to define vb as the scaled rate of adaptation due to beneficial muta-

tions, and vd as the scaled rate of (negative) adaptation due to deleterious mutations,
so that V -- b - Vd. The quantity vd is maximized with respect to 'Yd at -Yd = 1, and

phase boundary curves in (-,-Yd) space (with fixed mutation rates and distributional
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shapes) possess a single inflection point located at (-ye, -*), which is determined by

75* Ua ) a+1
-yb d ad(4.3)

1 -Y s+ Ub ad + I
Cab)

Y=1 (4.4)

We can see that the result y* = 1 for single-effect distributions is insensitive with respect

to broadening either the beneficial DFE or deleterious DFE (so long as the resulting

DFEs are within the family of gamma distributions), while the corresponding result

for -y* is not. Note that the predicted value of -y*, and hence all values of -yb along the

fixed-point curve, satisfy -Yb < ab, a necessary condition for the validity of Equation

4.2. In Figure 4.2, the location of the inflection point, as obtained from simulations, is

compared to the predictions in Equation 4.3 and Equation 4.4, over a range of values

of Ub/U and population-wide mutation rates NU.
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0 . . . . .
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Figure 4.2: Scaling of -y* and -y* as a function of Ub/U. Both beneficial and deleterious
effect sizes were drawn from gamma distributions, with various choices of the shape
parameters ab and ad. The population-wide mutation rate was specified as NU = 104 .

Points are obtained from simulations; solid curves denote theoretical predictions given

by Equations 4.3 and 4.4.

Simplifications to the equations defining fixed-point curves and -Y* can be made in

a few special cases. If beneficial effect sizes are exponentially distributed (ab = 1), then

I ab= 1;ad=
1

S0 ab4;ad= 4

b a=16;ad=16

I T
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the fixed-point curve is given by

Yb (Yd) = 1 - I (V) + 4((d) - 1) (4.5)

and -y* is given by -Yb (md) evaluated at yd = 1, where

(-d _Ud 'Yd(46Ub (I + (4.6)

ad

In particular, if both beneficial and deleterious effect sizes are exponentially distributed,
then

VIEU (4-7)1 -
1 +

(A larger relative frequency of beneficial mutations to deleterious mutations entails
that a weaker scaled beneficial effect is necessary to ensure positive adaptation across
all scaled deleterious effects-this intuitive fact is reflected in the fact that -Y* is a
monotonically decreasing function of Ub/U.)

Finally, if beneficial mutations only confer a single effect (ab -+ oc), but deleterious
mutations are gamma-distributed with an arbitrary shape parameter ad, then the fixed-
point curve is given by

-Yb (-N) = W +1 (4.8)

. \ ad _

and the inflection point -y* by

I * = W [ L d a5 (4.9)
Y Ub ad+ 1

Now suppose one of the parameters is perturbed away from the v = 0 surface: does
that region correspond to adaptation, or to fitness decline? Examining (4.2) it is clear
that perturbing Ub/Ud above the v = 0 surface corresponds to positive adaptation;
negative perturbations to Ub/Ud result in fitness decline. Similarly, vb is an increasing
function of yb, provided that -yb < ab, so the region in which -Yb is larger than the
v = 0 surface corresponds to positive adaptation and the region in which 'yb is less
than the v = 0 surface corresponds to negative adaptation. For each 'yb < -y*, an

intermediate range of -yd values will correspond to negative adaptation; if 'b > 7* then
v > 0 regardless of the value of -yd. All of this matches the qualitative results obtained
for single-effect distributions.

We can also analyze whether perturbations of ab and ad away from the boundary
surface result in positive or negative adaptation. We can see that Vb is a decreasing
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function of ab: for a given -Yb, broadening the distribution of beneficial effect sizes always
increases the (scaled) rate of adaptation. Fixation probabilities of beneficial mutations
in the large-effect tail are sufficiently amplified to compensate for the larger prevalence
of weak-effect mutations.

The behavior of vd under changes in ad is qualitatively different than the behavior
of Vb under changes in ab. For -yd < 2, vd is an increasing function of ad-the delta-

distribution is the gamma distribution that maximizes fitness decline. For Yd > 2, a
gamma distribution of finite shape a* maximizes fitness decline, with a* determined by

* k + a --d * +1
'Yd = a( exp WO(-d e d ) + ] - 1) (4.10)

d ad

We can interpret this in the following way: when the mean deleterious effect is small
enough to fix relatively frequently (with a fixation probability larger than ,=1) the
maximum contribution to vd is achieved when all deleterious mutations confer that

same effect. As the mean deleterious effect becomes large enough so that it would fix

extremely rarely (compared to a neutral mutation) the maximum contribution to Vd is
achieved for a broader distribution, so that a larger fraction of deleterious mutations
have a reasonable chance of fixing. From equation (4.10) it is also possible to see that
a* is a decreasing function of y (and in fact rapidly decays to zero as yd -+ cc )
so that for substantially large values of yd, broadening the distribution of deleterious
effects always decreases the overall rate of adaptation. A fixed-point curve can be drawn

through (ab, ad) space with NY, yd and other parameters held fixed; this curve would
have a single inflection point if yd > 2 and no inflection point if Yd < 2.

Above we considered fixed-point curves and inflection points in spaces spanned
by scale transformations-(-Yb, -Y) space-and shape transformations- (ab, ad) space-
of the beneficial and deleterious DFEs, under the assumption that both were gamma
distributions. We will now generalize some of our results regarding scale transformations

to arbitrary DFEs. Again defining vb - vd v =T 2v but here also defining the variable
-y = IT2s and distributions of scaled fitness effects ,(-y)d-y = p[s(y)]ds we have

v - UbJ 5(Y)ye'd-Y - Ud j d(--)ye--dy (4.11)

Suppose that (normalization-preserving) scale transformations are performed on

Pb(-y) and 1d(-y) so that ,b(-y) -÷ Cb Ib(C7"y) and id(-y) -+ C71 kd(C2 1-y)-note that
Cb > 1 or Cd > 1 denotes a transformation that increases the scale of beneficial effects
or deleterious effects, respectively. Unsurprisingly, Vb increases with the scale of the

beneficial DFE Cb. The deleterious contribution to the rate of adaptation Vd depends
non-monotonically on the scale of the deleterious DFE, and is extremized by the Cd
such that

j Cj 1 ,d(-C '-)e-'>(y - 1)dy = 0 (4.12)
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Distributions of deleterious fitness effects that extremize V with respect to scale transfor-
mations satisfy the following property: the exponentially-damped mean-squared effect
size equals the exponentially-damped mean effect size (with the damping coefficient
proportional to the pairwise coalescence timescale T2). It's possible to check that this
result is consistent with our result in Equation 2.9 for single-effect distributions as well
as our result in Equation 4.4 for gamma distributions.

0 4.2 Evolvability phase diagrams in the space of unscaled fitness effects

Here we will provide simplified expressions for the moments MI = , f p(s)sPe"ads along
the fixed-point surface, in the case that both beneficial and deleterious effect sizes are
drawn from gamma distributions. We will use these moments to obtain the fixed-point
surfaces, focusing in particular on the case in which beneficial and deleterious DFEs have
the same shap parameter (but not necessarily the same scale phrameter). Provided
that v = 0, )

M Ub Fb F(ab+p) 1 + 1) (ad+P) (,3d+a)'- 4
P - _ O)(fib - aYOlb+P + ) F(a) (fib - a)b+l (.

17b F Obadb)a

With the additional assumption that Nb = Oz = a, we are able to eliminate the

parameter a:

asb = (Y 6) (4.14)

Ue F+ p/1y\1-P]S=L - + )P 1 + (--)P (4.15)
MP=p! b~a P + y

(We have defined y ( --E for convenience.) It follows that

~b3
-Uc 1 ,(y - l)3 (6-i+ y)"

(ab)3 = -a(a + 1)0 Y ) 6 ) (4.16)
2 y (6 + 1)a+2

and
S(6 + y)a+1

C =U I - - (4.17)
1 (1 + 6), -

Fixed-point curves in the space of unscaled mean fitness effects can be obtained as

follows:

1. For a given N, U, E, 6, and a, c can be computed using (4.17)

2. Using the asymptotic formula (ab)3 = 3log Nc or the numerical solution to the

generalized infinitesimal limit, ab can be obtained from c. Note that the relation-

ship between ab and c is unchanged by the presence of a distribution of fitness

effects, so the same numerical solver can be used as in the case of single effects.
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3. From ab, sb and therefore sd can be extracted. By varying 6, a fixed-point curve
can be drawn.

Asymptotically, the fixed-point curve is given by

s = + (y 1) (4.18)
6y(1+J) 2 logNc 1+6

sd = y+ -Y _1)3 (4.19) 6y(1 + J) 2 log Nc 14+6
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Figure 4.3: Scaling of s* and s* as a function of Ub/U. Both beneficial and deleterious
effect sizes were drawn from gamma distributions, with various choices of the shape
parameters ab and Oad. The population-wide mutation rate was specified as NU =
104 . Points are obtained from simulations; solid curves denote theoretical predictions
obtained using the numerical solution outlined above.
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Chapter 5

Fitness-mediated epistasis

MPLICATIONS of a given model of fitness-mediated epistasis follow immediately from
our knowledge of evolvability phase diagrams. We will first consider models of fitness-

mediated epistasis in which -Yb and/or 'Yd vary monotonically with fitness. We will also
consider fitness-mediated epistatic interactions in which 'yb and yd remain fixed, but
Ub/Ud varies with fitness, as well as interactions involving changes to the shape of the
distribution of fitness effects. Of course, since T2 depends on Ub/Ud, sb and sd in
general, the assumption that 'Yb and/or 'Yd remain fixed involves an implicit assumption
that sb and/or sd vary with fitness. This additional assumption can be removed by
considering fitness-mediated epistatic interactions in which unscaled fitness effects are
held constant or vary monotonically with fitness, instead of scaled fitness effects. While
the quantitative results are considerably more complicated, much of the same qualitative
behavior is predicted in these analogous scenarios.

As a first example, suppose that scaled fitness effects 7Yb and -yd remain constant,
while Ub/Ud decreases with increasing fitness. As previously discussed, a single fixed-

point exists, at Ub/U = . A larger relative frequency of beneficial to deleterious
mutations would correspond to a positive rate of adaptation, while a smaller relative
frequency of beneficial to deleterious mutations would correspond to a negative rate of
adaptation-therefore, this fixed point is stable. This result is reminiscent of the result
in [20]; exactly one fixed point exists, and it is always a stable attractor.

Alternatively, consider diminishing-returns epistasis for beneficial mutations, with
fixed Ub/Ud and -yd, but a variable -Yb that decreases monotonically with increasing
fitness. Examining (2.8) we see that for the given parameters, exactly one value of

7Yb = W ( yde-d) lies on the boundary surface. If the population starts out with

'Yb > W (b yde-'d), the rate of adaptation will be positive, so that 'Yb will decrease

over time until v = 0 and Yb = W (f'de -d). The same argument can be given if the

population initially starts out with 7Yb < W (Y e-d) to show that the population is

attracted to a stable evolutionary fixed point over time. This result is also reminiscent
of the result in [20]; at least with respect to the existence and stability of evolutionary
fixed-points, interactions involving changes to the beneficial effect size are qualitatively
similar to interactions involving changes to the beneficial mutation rate.
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An orthogonal model of fitness-mediated epistasis is plausible: suppose that Ub/Ud
and -Yb remain constant, but -yd increases monotonically with increasing fitness. Roughly
speaking, as individuals become more fit, a single deleterious mutation might be able
to cause more damage. Earlier we saw that if Yb > W(j-d), then v > 0 regardless of the
value of -yd-therefore, if this condition holds, no fixed points exist, and -yd will increase
indefinitely. Alternatively, if -Yb < W('), then two fixed points exist, corresponding

to the 0 and -1 branches of -W [-'YbeYbj, which we'll denote by -yd,o and NY,-1. It's

easy to see that v < 0 for Yd,o < 'Yd < yd,_1 and v > 0 otherwise; thus, if 'Yd < -yd,-1

initially, then the population will reach the yd = Yd,o fixed point. If 'Yd > 'Yd,_1 initially,
then the population will adapt in fitness, so that yd will increase, further pushing

the population away from the 'Y,_1 fixed point. In conclusion, this model predicts

substantially different qualitative behavior, including a bifurcation of the v = 0 fixed

point into a (lower -yd) stable fixed point and a (larger -yd) unstable fixed point.

It remains unclear, however, whether -Yd gnerally increases monotonically with

fitness. One might imagine that 'Yd decreases with increasing fitness, while Ub/Ud and

-Yd remain fixed. Under this assumption, there would still be two fixed points if -yb <
W(--.d) and no fixed points if -Yb > W(gj). However, the stability of the two fixed

points would be interchanged: the -yd,o fixed point would be unstable and the -yd,-1 fixed

point would be stable.

We can also posit models of fitness-mediated epistasis in which the shape of the DFE

varies monotonically with fitness. As in the previous section, we'll limit our analysis

to DFEs that consists of a gamma distribution of beneficial effects and another gamma

distribution of deleterious effects. For instance, suppose that as fitness increases, the

distribution of beneficial fitness effects narrows, while its mean remains fixed. Also

assume that the distribution of deleterious fitness effects remains unchanged. Under

this assumption, a v = 0 fixed point exists and is stable, since narrowing the distribution

of beneficial effects decreases the rate of adaptation. Assuming the opposite relationship

between the shape of the beneficial DFE and fitness, the fixed point would be unstable.

Fitness-mediated epistatic interactions involving the shape of the deleterious DFE

give rise to some more complicated behavior. If -yd < 2, the behavior is relatively

simple: broadening the DFE increases the rate of adaptation (a single-effect DFE is

optimally deleterious to the rate of adaptation). A stable fixed point would exist if the

deleterious DFE narrows with increasing fitness; an unstable fixed point would exist

if the deleterious DFE broadens with increasing fitness. However, if -Yd > 2, then two

fixed points would exist: one stable and one unstable. If the deleterious DFE narrows

with increasing fitness, then the fixed point corresponding to a broader deleterious DFE

will be stable; the other fixed point will be unstable. Additionally, this model gives rise

to a bifurcation of the two fixed points, with no fixed point existing if Ozb > cz, where

7 0 *+1 Uss *+1
1 b Ub'Yb + ( dd (5.1)

h ** UdYd

with a* given by (4.10).
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All of the above examples involved epistatic models in which one parameter varies

monotonically with fitness and all others remain constant over long evolutionary timescales.
This analysis can be straightforwardly generalized to cases in which multiple parameters

vary with fitness, if we suppose that the population is constrained to lie on a particular

curve in population-genetic parameter space, with its direction of motion at each point
of the curve dictated by the corresponding sign of the rate of adaptation at that point.

Intersections of the curve with the v = 0 surface are fixed-points, whose stability can
easily be determined.

To illustrate the approach that can be taken, we will introduce a toy example. First,
suppose that Ub/Ud is independent of fitness, and that

Yb = cf(X) (5.2)

Yd = f(X) (5.3)

with f(X) a monotonically decreasing function of the absolute fitness X. For concrete-

ness, assume that there exists some absolute fitness X0 above which both yb = 0 and
yd = 0. Existence of a fixed-point depends on the relative magnitude cUb to Ud: if

Ud exceeds cUb, then a stable fixed-point exists at yd = I log ); otherwise, no
xe eCUb

fixed-point exists.
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Chapter 6

Discussion

T HE evolutionary process does not always result in increasing fitness; in this work we
have mapped out an "evolvability phase diagram" that describes which population-

genetic parameters give rise to positive adaptation, and which parameters give rise to fit-
ness decline. Our analysis is motivated by the fact that the inverse coalescence timescale
sets the fitness effect threshold above which mutational fates are significantly impacted
by selection. In particular, we provide evidence from simulations that the simple rela-
tion (2.5) predicts the v = 0 boundary surface over a broad range of population-genetic
parameters, provided that NU > 1. We then use (2.5) to make an ansatz to the evo-
lutionary equations in order to obtain the scaling of the v = 0 boundary surface in the
space of unscaled fitness effects.

Especially near the inflection point, prediction of the v = 0 boundary surface in the
space of scaled fitness effects is found to be more quantitatively accurate than in the
space of unscaled fitness effects, though our analysis correctly predicts many qualitative
features of the phase diagrams in both the space of scaled fitness effects and the space of
unscaled fitness effects. In particular, the following features are observed: for sufficiently
weak fitness effects (much smaller than T -1), mutations accumulate neutrally, and the
boundary surface is approximately planar, determined by equality of Ubsb and Udsd. For
larger deleterious fitness effects, the boundary surface deviates from this plane toward
weaker beneficial effects, and for any fixed N, Ub and Ud, attains a single maximum
scaled beneficial effect. This maximum beneficial effect corresponds to a deleterious
effect size; for larger deleterious effect sizes, the boundary surface rapidly decays to
very weak beneficial effects as Muller's ratchet becomes suppressed. Increasing the
relative frequency of beneficial mutations to deleterious mutations largely amounts to
a shift in fixed-point curves towards weaker beneficial effects.

Arguably, the distribution of scaled fitness effects is more readily observable than
the distribution of unscaled fitness effects. By sequencing samples of two diverged
species, and comparing the levels of polymorphism and divergence among synonymous
and nonsynonymous mutations, the distribution of scaled selection coefficients can be
estimated [24,42]. In contrast, several efforts have been made to measure distribution
of unscaled fitness effects using laboratory evolution [12]. The relative frequency of
beneficial to deleterious mutations can also be obtained from population-genetic data
or experimental evolution; given this information, our results can be used to identify
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whether a population is adapting or declining in fitness over time. In particular, our
results can shed light on whether a population has approached a v = 0 steady state.
Convergence to this v = 0 steady state would be consistent with modes of fitness-
mediated epistasis that give always rise to a stable fixed point, such as running out of
mutations and diminishing-returns for beneficial mutations.

The tug-of-war between beneficial and deleterious mutations has been shown to play
an important role in cancer progression [32]. In [33], the authors assume a population
with a fitness-dependent size is subject to both beneficial (driver) and deleterious muta-
tions occurring at fixed rates and with fixed selection coefficients, and identify a critical
population size above which a population will adapt (and below which it will decline
in fitness). In a similar vein, a critical mutation rate is found above which population-
mean fitness will decline. In this model, positive adaptation of a precancerous lesion
entails an increase in size and progression to cancer; remission would presumably occur
if a population is below the crAical population size or above the critical mutationlrate
and declines in fitness. In this)sense, a population precisely at the critical popul4tion
size and corresponding critical mutation rate lies at a fixed-point, which is stable by the
same arguments given in [20]. Central to this analysis is the assumption that different
sites fix independently of one another, with fixation probabilities given by the Kimura
formula, with interference among beneficial mutations neglected. Our analysis can be
applied to predict the onset of cancer progression in the case that clonal interference
and hitchhiking play a more significant role in the dynamics, as has been suggested by
a recent empirical study [2] and a theoretical study [31].

In [40], the authors consider the equilibrium distribution of fitness effects that would
result purely from the consideration that, after a mutation occurs, a back mutation with
an effect size of the same magnitude but opposite sign becomes available. Once the DFE
approaches this equilibrium DFE, the population will be in a state of detailed balance,
such that, for each effect magnitude, the substitution rate of beneficial mutations ex-
actly matches that of deleterious mutations (thus, the population approaches the v = 0
state). Here we focus on an alternative case in which a population does not begin
to exhaust its supply of beneficial mutations, so that back mutations are not the pri-
mary drivers of changes to the DFE. Instead, changes to the DFE primarily consist
of epistatic interactions among different mutations, with these changes bearing a gen-
eral correlation with fitness. This will perhaps be the dominant form of epistasis at
intermediate timescales, with the considerations of [40] becoming increasingly relevant
at particularly long evolutionary timescales, when the supply of beneficial mutations
begins to be exhausted.

A limitation to our analysis is that we assume that changes to the DFE occur over
long evolutionary timescales, so that at any point in time, all individuals in a popula-
tion share the same DFE, and the population DFE varies negligibly over the course of
fixation of a single mutation. This quasistatic approximation, also employed in [20], is
a large simplification, because it enables the mapping of the problem to one without
any epistasis. More realistically, a lineage may be subject to fitness-mediated epistasis
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immediately after acquiring a mutation. The immediate action of epistasis may alter
the distribution of fixed fitness effects, relative to the distribution of fixed fitness effects
that follows from the model we consider. For example, if a lineage acquires a dele-
terious mutation, it may immediately be subject to a larger beneficial mutation rate
and a stronger typical beneficial selective effect; these effects may reduce its extinc-
tion probability, relative to the corresponding extinction probability predicted by our
model. In general, if the DFE varies sufficiently rapidly with fitness, these effects could
become rather pronounced and may alter the v = 0 boundary surface. A quantitative
understanding of rapid epistasis, in which immediate changes to the DFE might affect
fixation probabilities, remains an important topic for future study.

While our analysis accounts for the role of genetic drift in determining whether a
mutation will fix or go extinct, we neglect fluctuations in the bulk of the fitness distribu-
tion. Analysis of these fluctuations has demonstrated that fluctuations in the number
of particularly fit individuals can propagate to fluctuations in the bulk of the fitness
distribution, after a delay [37]. The delay between the correlated fluctuations speeds
the ratchet; this is one potential explanation for the discrepancy between predicted and
observed values of s*, especially if this effect is most pronounced for larger deleterious
effects.

We have confined our attention to asexual populations. In recombining popula-
tions, the phase diagram should be qualitatively similar, although Muller's ratchet
would click much less frequently, so the fixed-point may be well outside the range of
realistic population-genetic parameters. Our analysis could be extended to consider
recombination using the approach of [17, 38], identifying the self-consistent length of a
chromosomal "linkage block" on which the dynamics are essentially asexual.

In conclusion, here we present a computational framework for estimating the co-
alescence timescale and rate of adaptation over a broad range of population-genetic
parameters. We provide arguments that the approximations used are particularly ef-
fective in capturing the qualitative features of "evolvability phase diagrams" and gen-
erating the implications of any particular model of fitness-mediated epistasis. Simple
models of fitness-mediated epistasis, such as diminishing-returns for beneficial muta-
tions and running out of beneficial mutations, give rise to a long-term evolutionary
attractor. Other simple interactions, such as diminishing-returns for deleterious muta-
tions, and changes to the shape of the distribution of fitness effects, give rise to more
complicated behavior-fixed points may be stable or unstable, and may not exist in
certain parameter regimes. Given observations of fitness trajectories or DNA sequence
data, these predictions could be used to place constraints on the underlying patterns of
fitness-mediated epistasis that are active within a population.
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Appendix A

Simulation Methods

We implemented individual-based, discrete-time Wright-Fisher simulations of a popula-
tion of constant size. In all cases, we considered a population with N = 104 individuals,
and varied the mutation rates Ub and Ud as well as the distribution of fitness effects
p(s). Each generation, the total number of non-neutral mutations conferred on the
population is drawn from a Poisson distribution with mean N(Ub + Ud)-these mu-
tations are then randomly assigned to the individuals in the population with fitness
effects independently drawn from p(s). We do not track the identities of non-neutral
mutations possessed by individuals in the population; we only track the absolute fitness
X of each individual. The absolute fitness X is defined as the sum of fitness effects of
mutations acquired by an individual and its ancestors. Each generation, after mutations
are distributed among individuals in a population, we implement a reproductive step.
Individuals are sampled with replacement, with probabilities proportional to ex-X,
where X is the average absolute fitness of the population.

Populations were also subject to neutral mutations at a rate NU = 500. These
neutral mutations were tracked to obtain the pairwise heterozygosity 7r of the pop-
ulation, as well as to establish an appropriate sampling interval for the population.
More specifically, the population is initialized to be clonal. We measured the number
of generations T cep after initialization until a single neutral mutation was present in
all individuals in a population. We then sampled the average absolute fitness X of the
population as well as the pairwise heterozygosity Tr every Teep generations, for a spec-
ified number of sampling intervals. For delta-distributed fitness effects, we collected 192
samples for each set of parameters. For gamma-distributed fitness effects with a = 1
or with a = 2 we collected 48 samples; for gamma-distributed fitness effects with a = 4
or with oz = 16 we collected 192 samples.

Because the population was initialized clonally, transient dynamics at the beginning
of our simulation runs may differ from the long-term equilibrium behavior of the mean
fitness that we wish to predict. To focus on this equilibrium behavior, in measuring
the rate of adaptation, we considered only the change in absolute fitness throughout
the second half of collected samples. In measuring the pairwise coalescence timescale
T2 via the pairwise heterozygosity yr, we averaged over all collected samples.

For simulations involving mutations of a single beneficial effect size sb and a single
deleterious effect size sd, measurement of the pairwise coalescence timescale T2 deter-
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mines the corresponding scaled fitness effect sizes. We determined fixed-point curves
(Figure 2.2) and the locations of inflection points (Figure 2.3) in the space of scaled
fitness effects using the following method. Simulations were performed at NU = 102,
NU = 103 and NU = 104 , with the values of Ub/U as denoted in Figure 2.3. At each
combination of NU and Ub/U, simulations were conducted along the entire grid of un-
scaled fitness effects displayed in Figure 3.2. At each unscaled deleterious effect (and for
each value of Ub/U and NU), linear interpolation between the largest beneficial effect
with a negative rate and the smallest beneficial effect with a positive rate determines
the corresponding fixed-point unscaled beneficial effect. Linear interpolation of the
measured T2 values at these two points also determines the corresponding fixed point
in the space of scaled fitness effects. For each simulated combination of values of Ub/U
and NU, the value of -y* is obtained by identifying the largest measured scaled deleteri-
ous effect corresponding to a negative measured rate of adaptation, out of all points in
the above-mentioned grid of specified unscaled fitness effects. (The corresponding -y* is
just the scaleld beneficial effect measured at that same point in the grid of unscaled fit-
ness effects.) For simulations involving gamma distributions of fitness effects, a similar
approach was taken, but a grid of mean fitness effect sizes was specified.

Code is available upon request.
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