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Abstract

Dynamical tidal effects impact the orbital motion of extended bodies, imprinting themselves in
several measurable ways. This thesis explores the saturation of weakly nonlinear dynamical tidal
interactions within two very different systems: hot Jupiters orbiting main-sequence hosts with ra-
diative cores and compact stellar remnants inspiraling due to gravitational radiation. In addition, it
discusses general aspects of detecting Gravitational Waves with ground-based laser interferometers.
Data quality and noise reduction along with source parameter estimation, with particular emphasis
on localization, are discussed in great detail. Conclusions drawn from statistical ensembles of sim-
ulated signals are applied to the first three confirmed detections of Gravitational Waves, all from
the coalescence of binary black hole systems.
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Chapter 1

Introduction

One of the most studied systems in physics is that of two bodies interacting gravitationally. Simple

models of these systems in Newtonian gravity are taught to first year students and more complex

models are applied to cutting-edge research throughout astronomy and astrophysics [34, 88, 89, 96,

123, 154, 1711. Throughout its long history, the binary problem has always posed a rich opportunity

to confront theory with experiment, and I present several such opportunities in this thesis, focusing

primarily on the impact of nonlinear tidal dynamics and the general Gravitational Wave (GW)

detection problem.

Dynamical tidal effects impact the orbital motion of extended bodies, imprinting themselves

in several measurable ways. This thesis explores the saturation of weakly nonlinear dynamical

tidal interactions within two very different systems: hot Jupiters orbiting main-sequence hosts

with radiative cores and compact stellar remnants inspiraling due to gravitational radiation. In

addition, it discusses general aspects of detecting GWs with ground-based laser interferometers.

Data quality and noise reduction along with source parameter estimation, with particular emphasis

on localization, are discussed in great detail. Conclusions drawn from statistical ensembles of

simulated signals are applied to the first three confirmed detections of GWs, all from the coalescence

of binary black hole systems.

The remainder of this chapter will review the preliminaries of tidal interactions, binary systems

in general, GW sources and their detection within laser interferometers. 2 then discusses nonlinear

tidal interactions within both ( 2.1) hot Jupiter exoplanetary systems and ( 2.2) binary neutron star

19



/4i 51/mi
M1

center of mass

r

R
m2

2 = P2/m2

Figure 1-1: Schematic of a general binary, showing multiple sets of coordinates and their relations.
We mostly work with the relative separation (r) and angle around the center of mass (9) of the two
components.

coalescences. 3 discusses general aspects of the GW detection problem, decomposing it into ( 3.1)

trigger generation, ( 3.2) data quality and vetting, and ( 3.3) parameter estimation with particular

emphasis on source localization. These studies are then applied to confirmed detections in 4,

namely GW150914 [146], GW151226 [145], GW170104 [151], and the less significant LVT151012 [7].

1.1 Binaries Containing Point Particles

We begin by considering a simple model of two point particles. If these particles interact through an

instantaneous central-force potential (Newtonian gravity), this is often called the Kepler problem.

The Newtonian solution's breakdown in observed binaries provided some of the first tests of GR [110,

173], and the fully relativistic analog provided the first directly observed GWs [7, 145, 146, 151].
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1.1.1 The Kepler Problem

The Kepler problem is most commonly written as

1 2 1 2 GmIm 2H = p, + -P2 - -(-)
2 mi 2m 2  Fr1 - F 2

1 2 1 2 GMp. L 2
- P2+ - + (1.2)

2M 2jp r 2pr2

where r = Ir - r-;2, M = m1 + M 2 , I = mim 2 /M, L = pr2 dO/dt where 0 is an angle describing

the position of the components. P is the canonical momentum associated with the system's center

of mass (which is often set to zero) and pr is the canonical momentum associated with r. Fig. 1-1

illustrates this system and our coordinates. From this Hamiltonian, we investigate the dynamics of

p, and r. We define the effective potential (Vff) for the radial coordinate and identify a centrifugal

barrier (L2 /2 pr2) associated with the conserved angular momentum (L). Fig. 1-2 shows the effective

potential as a function of angular momentum. This simple model already provides a lot of insight

into the system's dynamics, including both bound and unbound orbits, with dynamics described

by a 1st-order ordinary differential equation

1 dr 2  GM (L/p ) 2

2 (dt) - r + 2r2 E/p (1.3)

where Vff = -GM/r + (L/) 2/2r 2 . A specific example of common interest involves circular orbits

(dr/dt = 0), and Eqn. 1.3 then specifies the radius of that orbit as a function of the energy or angular

momentum. Circular orbits form a one-parameter family of solutions obtained by minimizing Vff

with respect to r; there is a constraint relating E/[t and L/p. We focus on circular orbits throughout

2. Fig. 1-2 also shows phase portraits of various kinds of orbits, including circular, bound (elliptical

orbits), and unbound (hyperbolic orbits) systems. We note that the separatrix between bound and

unbound orbits corresponds to E = 0 (parabolic orbit).

For point particles, we can include the effects of spin by adding the associated kinetic energies.

However, in Newtonian gravity there are no tidal torques on point particles (with vanishingly small

radii) and therefore these spins cannot interact. This is not the case with extended objects, as we

shall see, and generally does not hold in General Relativity either.
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Figure 1-2: (a) Effective potentials for a point-particle in Newtonian gravity and GR. The warm
colors represent Newtonian gravity and the cool colors GR, with trends following increasing angular

momentum denoted. (b) Phase portrait for r and p, for Newtonian orbits when (L/I)/M = 5 in

non-dimensionalized units, demonstrating bound and unbound orbits. We note that no trajectory

ever reaches r = 0 because of the divergent centrifugal barrier. (c) Phase portrait for GR, which

resembles the Newtonian case but also includes plunging trajectories that do reach r = 0. We omit

out-going trajectories corresponding to the plunging orbits. Separatrices in both (b) and (c) are

shown in purple.
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1.1.2 General Relativity

General Relativity (GR) provides a dynamical theory for the geometry of spacetime as a Riemannian

metric.1 Fundamentally, this metric defines the spacetime interval between two events as

ds2 = g9,dxdx" (1.4)

The metric (g,,) is a rank-2 symmetric tensor that is the analog of the gravitational potential from

Newtonian gravity.2 The metric encodes the geometry of spacetime, including the curvature, which

can be determined through the Riemann tensor3

RP,,,Vo = [V, VI ]VP (1.5)

where the covariant derivative (V,) is defined in terms of the Christoffel connections, in turn defined

in terms of the metric

1
= +U p" A 29 (a9,gup + Ovg/p - &pglv) (1.6)

This derivative captures the concept of parallel transport, or moving a vector ( ') along a possibly

curved path in possibly curved spacetime in such a way as to keep it as parallel as possible to

itself throughout the process. The Riemann curvature tensor then encapsulates whether parallel

transport commutes along two different paths, as it does for flat space (RPtv -> 0). GR also posits

that the metric is smooth, meaning it can appear flat at any particular point by an appropriate

choice of coordinates. This means that observers confined to a small region of space will not be able

to detect the effects of gravity, exactly like the weightlessness experienced by astronauts or other

freely-falling observers.

'We defer to [37, 166] for a more complete discussion of GR and provide only the basics and specific points
applicable to our studies here. We also assume units in which c = G = 1 throughout.

2 We assume a basic knowledge of tensors throughout and adopt the Einstein summation convention unless ex-
plicitly stated otherwise.

3 We assumed no torsion, which is the case for metric compatible connections like the Christoffel connection.
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Worldlines of free-falling particles follow geodesics defined by parallel transport

U = (1.7)
dT

u"VAUa = 0 (1.8)

which is the relativistic analog of Newton's first law; object in motion stay in motion unless acted

upon by an external force. This also captures the equivalence principle; all freely-falling observers

follow the same geodesics and therefore fall at the same rate. We note that this is a radical departure

from the Newtonian picture, in which a gravitational force acts on all particles causing them to

accelerate. Instead, GR describes gravitation in a force-free paradigm. Particles move along straight

lines, generalized to geodesics, and their relative motion is controlled by the curvature of spacetime

through g,,, rather than a gravitational force.

GR provides evolution equations for g,, through the Einstein Field Equations (EFEs)

1
G -, = Riv - g-R + Agg, = 8irT, (1.9)2

where T,, is the stress-energy tensor of all matter and fields. Ry = RA,, is the Ricci Tensor and

R = Rl' the Ricci scalar, both contractions of the Riemann curvature tensor. A is a cosmological

constant that is often neglected over small scales (e.g. within binary stellar systems). These

equations enforce conservation of energy implicitly because VGA" = 0 and famously describe how

matter tells space how to curve while Eqn. 1.8 describes how space tells matter how to move.

Now, a standard analog of the Kepler problem is the (time-like) worldline of a test particle

orbiting a circularly symmetric body sourcing a time-independent metric. In this case, the relevant

metric was first determined by Schwarzschild [125]

ds2 =- 1 - 2M) dt2 + 2M) dr 2 + r2 (d0 2 + sin 2 OdO2) (1.10)
r r

In this case, we assume the test particle has a much smaller mass than the central body so that

m1 + m 2 - mi = M and p iM 2 . and the equation of motion for the radial position of the test

particle is

I dr 2 GM (L 1p) 2 
- GM(L/p) 2 = E/,

2 d - r 2r2 r3
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where E/p and L/p = r2do/dT are constants and assuming the motion is confined to the 0 = 7r/2

plane. We notice this looks very similar to the Newtonian case with an additional term in the

effective potential (-GM(L/p) 2 /r3 ). This term allows for plunging orbits; when two bodies are

close enough the gravitational attraction is strong enough to overcome the centrifugal barrier and

the two bodies fall toward one another at an ever increasing rate. This plunging behavior is very

important for coalescing compact objects, which eventually fall into each other due to the extra

term in Vff. We will discuss such systems in some detail within 2.2, 3, and 4. Fig. 1-2 compares

the effective potentials for similar Newtonian and GR systems. It also shows the different phase

portraits for the two potentials, and we see the additional plunging orbits present in GR that are

not present in Newtonian gravity.

Gravitational Radiation

GR also predicts GWs, which are sourced by accelerated matter or energy. This is typically shown

by linearizing the EFEs about a flat background metric, although the choice of background metric

is arbitrary. We will follow standard practice and linearize around the Minkowski metric (r

diag(-1, +1, +1, +1)) such that

gp, = r/, + hp, (1.12)

We also note that raising and lowering indices of h,,, is done with the unperturbed metric (h", =

7/"h,,) because we keep only terms linear in h,,. In vacuum (T,, = 0), the EFEs provide

propagation equations for h.,

G[V = I (oah"; + &a8ih, - 0,,aih - 0,0'ht, - q,,,OpOVhP" + nqUDQO&h) = 0 (1.13)

where h = h".. This is obtained directly from the EFEs by using the covariant derivative of the

unperturbed metric ( By an appropriate choice of coordinates, we can simplify this expression

for the transverse-traceless (TT) perturbation to

TaTAhl = 0 hT, hTT = 0 (1.14)

where h TT refers to the components of hTT with at least one time component. This is a wave

equation for a massless particle, which we call a gravitational wave. If the wave propagates in the
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z-direction, we can write

0 0 0 0

h TT 0 h+ hy 0

0 hx -h+ 0

0 0 0 0

and identify the two degrees of freedom as the + and x polarizations, named after the ways in

which they move test particles (see 1.3). This is commonly called the transverse-traceless gauge

because the perturbation's trace vanishes and all changes to the metric are orthogonal to the

wave's propagation direction (transverse). There is further gauge freedom in the choice of the x-

and y-directions, and the equations of motion are invariant under rotations about the direction of

propagation. This choice is often call the polarization angle ('b) and is important when we project

from the wave-frame onto GW detectors.

The TT gauge is particularly important because it is the only gauge invariant portion of the

metric perturbation which obeys a wave equation and therefore represents the physical information

carried by GWs [671.4 In fact, we can write the general perturbation as

htt = 2<0 (1.16)

h fi = 3i + Oj'y (1.17)

hj = h7 + 1 H + (Pic + OiED ) + Oog - I6,j k&k A (1.18)

where H 6klhkI, subject to

49A = 0 (1.19)

O Ei = 0 (1.20)

O&h T = 0 (guarantees this is transverse) (1.21)

ijh TT = 0 (guarantees this is traceless) (1.22)

along with the boundary conditions -y, Ei, A, Ok 090 -* 0 at spatial infinity. If we further parameterize

gauge transformations under (x')P = x4 + (t' such that (h', = hl, - 0,(, - 0,(, and (,=

4 Throughout the rest of this section, we will use greek subscripts (r, /3, -y, etc) to indicate sums over all spacetime
dimensions and latin subscripts (i, j, k, etc) to represent sums over only spatial dimensions.
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(A, Bi + OjC)), we see that hjT is gauge invariant under infinitesimal changes of coordinates

S #+ Ot A (1.23)

f3i 0i + OtBi (1.24)

- A - OtC (1.25)

H - H - 20kOkC (1.26)

A - A - 2C (1.27)

Ej E - 2Bj (1.28)

hT.T - hT.T (1.29)

[67] define four gauge invariant quantities using this decomposition

=-D + O-y - - t A (1.30)
2

8 = (H - Ok kA) (1.31)

E1 = 2Ia i (1.32)
-2

and h T. They note that only h9T obeys a wave equation (Eqn. 2.62-2.65 of [67]). All other

gauge invariant, and therefore physically meaningful, parts of the metric perturbation obey Poisson

equations and do not contribute dynamically in the radiation field at leading order. There are

six gauge invariant degrees of freedom in this decomposition, consistent with the 10 independent

components of h,, and the four arbitrary gauge functions associated with (,. All but the two degrees

of freedom within hTT are completely determined by the source via their Poisson equations. To

wit, in vacuum we obtain

0%4< = 0 (1 degree of freedom) (1.33)

Ok,9k = 0 (1 degree of freedom) (1.34)

1k k Ei = 0 (3-1=2 degrees of freedom) (1.35)

4,,h TT = 0 (6-3-1=2 degrees of freedom) (1.36)

The constraints noted here are &iEi = 0, ihTT = 0, and hTT = 0.
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Now, when we consider how GWs are sourced, we define the trace-reversed perturbation hp,

hAV - -hr7,, and use the gauge freedom associated coordinate changes in GR to demand 0, P = 0,
often called the Lorentz gauge, which is sourced by accelerations in the mass-energy quadrupole at

leading order

hi - 2G d 2 Iij (t - r) Ii= d3y YiJTtt(t, Y) (1.37)

While higher order multipoles also source GWs, we typically consider only the quadrupole's contri-

bution because it dominates for most relevant frequencies in systems of interest. Furthermore, the

quadrupole formula assumes relatively slowly moving objects (v < c), which can break down near

the late inspiral of compact objects.

Because of GR's invariance under diffeomorphisms, it is possible to make spacetime appear

locally flat at any point in space by an appropriate choice of coordinates. This means the stress-

energy associated with perturbations to the metric can be made to vanish at any individual point.

Therefore, we define the stress-energy pseudo-tensor (t[,I) by averaging over a few wavelengths of

the associated perturbation in the radiation zone

1
ti-tv =3I ((04hp,) (Dvh"o)) (1.38)

327rG

The power radiated by a source can be found by integrating the outward flux of the time-like

component of this pseudo-tensor across a large sphere at spatial infinity

GW5dQ2 3 3 3  3 (1.39)

For two bodies with masses mi and M2 , respectively, orbiting their center of mass, separated by a

distance R, and with orbital angular velocity Qorb, this reduces to

32 4 m2m2 (mi + mn2)
LGW =-G 41 (1.40)5 R5

32 G7/3M 10/3 Q10/3 (1.41)
5 c5 orb

where the chirp mass (M) is given by M = (mim2)3/5/(mi + rn2 )1/ 5 ; see [113] for more details.

Now, equating the energy radiated with the time rate-of-change of the orbital energy (Eorb =
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-GmIm 2 /2R) yields

Qorb G 256G5/3M5/3(tc - t))-3/8 (1.42)

where t, is the time at which the point particles coalesce. Physically, this corresponds to a nearly

circular orbit of two bodies that radiates energy and angular momentum as GWs. As the system

loses energy, the bodies fall toward one another, orbiting faster and radiating at an increasing

rate. This will proceed until the particles are so close they plunge toward one another, overcoming

the centrifugal barrier associated with their orbital angular momentum, and coalesce into a single

object. This process is typically called compact binary coalescence (CBC).

In reality, the maximum frequency is set by the physical extent of the objects or, in the case of

black holes, their horizons. This chirping signal is characteristic of CBCs when the bodies are still

well separated and is the basis of many searches for GWs ( 3.1.1).

1.2 Binaries Containing Extended Bodies

While we can gain a lot of intuition from studying binary systems containing only point particles,

real binaries almost always involve extended bodies. Their non-vanishing size produces a gradient

in the gravitational force experienced by different parts of each object, which may produce a non-

vanishing net torque. This allows components to exchange angular momentum with each other and

with the orbit as a whole. We briefly review linear tidal theory here and focus on the implications

of nonlinear tidal interactions in subsequent chapters ( 2). In particular, we will investigate break-

downs of linear tidal theory and where nonlinearities saturate, with particular emphasis on how

these effects may manifest in measurable ways.
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1.2.1 Linear Perturbation Theory

Stars are self-gravitating systems composed of gas and plasma. We typically determine their un-

perturbed configurations using the equations of stellar structure (in geometric units: G = c = 1)

dm
= 47rpr2  (1.43)

dr
dP mp (1.44)
dr r2

where m is the mass contained within a radius r, p is the stellar density, and P the pressure, along

with a description of energy generation and (radiative) transport

d L
d= 47rEpr2  

(1.45)dr

47rr2.T3dT 3pL (1.46)
dr 16

and an equation of state (EOS) describing the matter within the star. Here, L is the luminosity

within the star (energy flux), E the local specific energy generation rate, K the opacity, and o-

the Stefan-Boltzmann constant. The analogous equations for a perfect fluid within GR are the

Tolman-Oppenheimer-Volkoff (TOV) equations

dm= 47rr2  

(1.47)
dr

dP _ (p+ P)(m+47rr3P) (1.48)
dr r(r - 2m)

which again are closed by the EOS. We note that the quantity m in the TOV equation is not

the contained mass because the measure does not account for the curved metric. However, it is

the gravitational mass, which determines the dynamics of orbiting bodies, analogous to the mass

parameter in the Schwarzschild metric (Eqn. 1.10). In the rest of this section, we focus on Newtonian

gravity.

Given a background stellar model, we determine the behavior of adiabatic Lagrangian fluid

displacements () under the star's restoring forces, which we recognize as an eigenvalue problem.

Typically, this involves a decomposition into spherical harmonics (Ym(, <0)) characterized by their

degree (1) and azimuthal number (m). The solutions to the eigenvalue problem are generally
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categorized by their restoring forces. For non-rotating sun-like stars, p-modes are predominantly

radial and are restored by pressure (acoustic waves); g-modes are restored by buoyancy or com-

positional gradients and their fluid displacements often contain significant transverse components.

In fact, there are no 1 = 0 g-modes because there is no horizontal motion (and therefore different

fluid strata do not cross). Our studies primarily focus on g-modes because they can have natural

frequencies near orbital frequencies for interesting systems, and higher order g-modes have lower

natural frequencies (wg). Commonly, g-modes have frequencies lower than the fundamental stellar

frequency (wo = NGM/R3 ) and p-modes have higher frequencies.

The oscillatory region for each g-mode is defined by the star's Brunt-Vdisdld frequency (N) [91,

which represents the buoyancy frequency for fluid displacements. For sun-like stars, N is linear

with the radius near the stellar core because the enclosed mass (and therefore local gravitational

acceleration) grows linearly and vanishes at the radiative-convective envelop near the star's sur-

face. g-modes propagate where N is larger than their natural frequency, which implies that high

order g-modes with lower natural frequencies propagate deep into the stellar core before N be-

comes comparable to wg. High-order g-modes spectra can be described by WKB scaling relations,

which describe their natural frequencies and other parameters as functions of the mode numbers.

Generally, these follow the form

9 = a/- (1.49)
n

-y = -o wo A2 A2=l +) (1.50)
92

where -y describes radiative damping within radiatively supported cores of main sequence stars [137].

g-modes excited by the linear tide are launched from radiative-convective interfaces within the star.

For solar mass stars, this means they propagate inward toward the stellar core, being geometrically

focused to larger amplitudes according to ( 1/r2 . If the modes reach the core before they dissipate,

they reflect off the inner Brunt profile. Modes that reflect many times from global standing waves

within the resonant cavity defined by N. We focus on these modes.

We can further divide the tide into the equilibrium and dynamical portions. The equilibrium

tide is the quasi-static deformation of the star as a whole and is primarily composed of modes with

natural frequencies much higher than the orbital frequency as well as responses to non-oscillatory

parts of the tidal potential. The dynamical tide is the resonant response of the star and is usually
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composed of a few high order g-modes. [170] found that the dynamical tide dominates the weakly

nonlinear interactions within the star, and therefore we focus only on these modes in 2 [63].

1.2.2 The Tidal Potential

The tidal potential drives the linear modes, and, for low eccentricity orbits, the 1 = 2 spherical

harmonic dominates. This driving is encapsulated by the linear overlap integrals between the tidal

potential (U) and the mode shapes [170]

U 1= d 3 XP* . VU (1.51)U" Eof

MEW1I'mm D t) eim~o (1.52)

where

Iaim = d4 J pd * . V (r'Yim) aim 11/6(1.53)

47r 7r
Wm = 2+Yim 20 , = 0) (1.54)

1a2 2 ~ 2.5. 10-3 for a sun-like star. For forcing dominated by the 1 2, m 2 harmonic

U = 47r2  3 M (OPrb)w-2 WM 11/6 22 (1.55)
10 M + Mp (WO )

We note that the overlap integral decreases for higher order modes but nonetheless these modes

can have sharp enough resonance to be excited to high amplitudes.

Following the phase-space decomposition within [170] (see 2.1), we can immediately solve for

the behavior of each mode amplitude (qa) separately through sets of lt-order ordinary differential

equations

4a + (iwa + 7a) q = iwa Ua(t) (1.56)

This is just a set of damped, driven independent simple harmonic oscillators. 2 explores the

dynamics of these systems when nonlinear couplings between the modes become important.
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1.2.3 Implications for GW Waveforms

Tidal interactions are important for GW sources as well. Generally, the deformability of the con-

stituents modifies the stress-energy tensor and therefore the source term for GWs. This is often

described by the component's love number [121, 174], which measures the linear physical response

of an object to a tidal field. Within a post-Newtonian (PN) expansion [281, these quasi-static defor-

mations enter at a high PN order but with large enough coefficients that they can still be important

during the late inspiral [121].

The tide can also modify the GW signal by dissipating energy. Instead of simply modifying the

stress-energy tensor, dissipation of the dynamical tide within the stars implies faster energy loss

compared to GW radiation alone and therefore faster orbital evolution. Typically, growth rates for

these resonant interactions are small enough that modes cannot absorb large amounts of energy

before GW radiation sweeps the orbit through the resonance [81, 92, 931. This appears to be true

for a variety of possible neutron star equations of state and mode types [175, 176]. In 2.2, we

describe a nonlinear secular instability that can dissipate energy throughout the inspiral, which

may be measurable in astrophysical contexts [62].

1.3 General Problem of GW Detection

Now that we have discussed the basic physics of binaries and how they can source GWs, it is prudent

to consider how we can actually measure them. The basic goal for GW detection is to measure

the small displacements introduced by the metric perturbations sourced by distant objects. By

measuring the separation between a group of neighboring geodesics (called a congruence), we can

determine the GW strain.

Let us consider an observer that is initially stationary (u' = (1,0, 0, 0)). Working in the

transverse-traceless gage, Fj u' = 0 because hT = 0. We obtain uOVu' = Ouo = 0, and

therefore u' is constant for all time. This means that stationary observers remain at the same

coordinate position regardless of the shape of the perturbation; we can measure the proper sep-

aration between neighboring observers within the congruence by measuring the proper distance

between fixed coordinate positions. The proper distance between them can change and is the basis

for interferometric detectors. Fig. 1-3 demonstrates the characteristic pattern introduced by the +

and x polarizations.
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Figure 1-3: The relative change in the proper distance from the origin to a ring
observers under the action of the (top) + polarization and (bottom) x polarization.

of free-falling

1.3.1 Interferometric Detector Response

Interferometric detectors, sometimes called interferometric observatories (IFOs), measure the proper

distance between test particles by recording light's round-trip travel time along null geodesics. To

determine the detector response, we must calculate how this round-trip travel time is affected by

hII [117, 118, 119].

Consider a plane wave propagating in the ni direction

hAV = hly,(t - nir') (1.57)

Furthermore, assume one of the detector's arms is pointed in the ej direction, so that the component

of strain along the arm is given by

h = h,,ene" = h(t - niri) (1.58)

We further consider motion only along the ej direction, so we are interested in

h = h(t - nie'x) = h(t - nex) (1.59)

where x is the distance along the arm and ne = nie. Now, we know light will follow a null geodesic,
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Figure 1-4: Spacetime diagram showing the worldlines of null geodesics along their trips down the
interferometer's arms and back. The strain is greatly exaggerated to demonstrate the effect, and
we depict multiple GW phases with different shades of (x-arm) red and (y-arm) blue. Note, we plot
the coordinate position, not the physical separation between points. Points where all worldlines
cross correspond to complete cycles of the monochromatic GW strain.
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so that dt2 = (1 + h)dx2 . Furthermore, we assume there is a single Fourier component of the GW

strain, h = hoe-i(-nex). Fig. 1-4 demonstrates the null geodesics in coordinate position (not

physical separation) as the light travels down the detector's arms and back.

Consider the outbound trip. In this case, dx/dt > 0 and

dt = 1 + h dx = (1 + h+ O(h2))dx (1.60)

We define dr = dt - dx and note that T denotes the phase of light as it propagates down the arm.

Worldlines of constant T represent worldlines of constant phase. We assume h < 1, and obtain

T+to -(L+xo) L+xoJ eU T  hJ dx e-i(-n)x (1.61)

to-xo xo
iw(to--xo) -i( -ee (-eXoiw(T-L) _ I ho eiw(1n,)Xo e_iw(1-n,)L _ (1.62)

i \2 -iw(1 - ne)

For the return trip, we know dx/dt < 0 and define dT' = dt + dx. Again, T' is the phase of the light

on the return path. This yields

T'+to+xo xo

dT' + - t()dx +XO(T+e (1.63)1 2~
T+to+L+xo L+xo

eiW(to+xo) (e iT' eiw(T+L)) ho ei(1+n)xo (1 e w(lri)L (1.64)

iW/ 2 iw(1 + ne)

We are interested in the change in round-trip time relative to the unperturbed state ((T' - 2L) /2L

ho), and therefore write

eiw(T'-2L) _ eiw(T-L) ho -iw(to+xo+2L) ew(+n)xo i(1+n)L (1.65)
2 1 + n (

eiw(T-L) -ho eiw(tOxO) eiw(1n)xO (1-n)L _
2 1 - n
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which yields

e( -2L) 1 ho e-iw(to-xO+(-n,)xo) 1 - eiw(1-n)L (1.67)
2 1-In,

-e-iw(to+xo+2L-+n.)x e (1.68)
I + n,

=ho ei(tnxo I) (1 - -- 2iwL 1 - iw(l+n,)L (1.69)
2 1-ne 1 +e 

We now assume T' - 2L < 1/w and obtain

T' - 2L hoeiW(tO-n.x) (1 1 - e iw(+nc)L (
2L 4iwL I e -n 1 + ne

We recognize hoe-iw(to-nxO) as the strain projected along the arm at the spacetime coordinates

corresponding to the start of the round-trip, and can therefore express this as

6T 1 1 - eiw(-n)L -e2iwL 1 - eiw(+n)L
-_e-2___e_ hI (1.71)

2L 4iwL 1-e 1- nI + n

This yields the transfer function from the astrophysical signal to the observed fractional change in

round-trip travel time down a single arm of the detector. Furthermore, if we define

1(1 -ei( -n)L 1 - eO Nc)
D(w, n) - e- 2iwL e (1.72)

4iwL I - n. 1 + n,

we can compactly report the output of an interferometer as

6V = (D(w, nae')e ei - D(w, n3ee)e ei) hij (1.73)

= D i hij (1.74)

We note that, while a single arm is sensitive to GW strains, by comparing the difference between

two separate arms we can reject many sources of noise and produce a much more sensitive device.

This is why IFOs contain multiple arms and why our read-out measures the difference between the

x- and y-arms.
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This yields standard expressions for the antenna patterns as follows

F+ = Digej? (1.75)

Fx, = Dij 6 X (1.76)

with e+ and ex defining the polarization tensors for the + and x polarizations, respectively

(Eqn. 1.15). This gives us a coordinate-independent expression for the antenna responses which

includes frequency-dependent effects for a Michelson interferometer.

We note that with some elbow grease, we can massage the expression for D(w, ne) into

D(w, ne) e sinc(wL) - n sinc(wneL) - (cos(wL) - cos(wneL)) (1.77)
2(1 - n) wL

From this, we immediately see that JD(w, ne) = jD(w, -ne)I, as required by time-reversal sym-

metry. We also note that the relevant frequency for these effects corresponds to the unperturbed

round-trip travel time, or the free spectral range (ffsr = c/2L). Fig. 1-5 and Fig. 1-6 show the

antenna response's behavior as a function of frequency and direction.

1.3.2 Pragmatic Issues with Ground-Based Detectors

Although we model our detectors as sets of freely falling observers, in reality our instruments are

fixed to the Earth. This means the observers are not truly free-falling, at least not in the vertical

direction, but instead are suspended from multiple pendula in order to isolate them from ground

motion. These pendula respond as freely-falling obsevers in the horizontal plane as long as the GW

frequencies are larger than the pendulum's natural frequency. In fact, noise mitigation and isolation

from the environment constitute a significant part of the detector's subsystems, including both

active and passive control loops [138, 1431. This also means that, while models of IFO responses

may include only a few degrees of freedom (e.g. the lengths of the arms), in reality there are

hundreds of thousands of degrees of freedom associated with the positions and velocities of all the

suspension systems and surrounding instruments.

However, our isolation is never perfect and environmental disturbances or noise transients within

control loops can couple to the measurement of h(t), generating noise artifacts. The scale of the

detectors can often make it difficult to diagnose the cause of these artifacts by inspection, and
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Figure 1-5: At frequencies small compared to ffsr, we notice little difference in the overall shape of
the antenna response's magnitude, although the phase does change. The predominant change is a
decrease in the magnitude (Fig. 1-6). However, when we approach (and exceed) ffsr, there are large
changes to the directional sensitivity. In particular, the maximum in the detector response directly
overhead (0 = 0) becomes a zero.
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The annotations show the dynamical frequency of a 2M® neutron star with a 12 km radius (fns
1 =M 1972 Hz) normalized by ffsr for LIGO [138] and CE 1139], respectively.

we instead employ statistical tools to find correlations between auxiliary degrees of freedom and

artifacts in h(t). This thesis discusses solutions for measuring robust statistical correlations in the

presence of non-Gaussian, non-stationary noise and how that can be applied to improve a search's

sensitivity ( 3.2).

I also present methods for understanding and characterizing some aspects of parameter estima-

tion for GW signals, particularly source localization ( 3.3). This includes the detector network's

exposure, meaning the parts of the sky to which it was actually sensitive when it recorded science-

quality data ( 3.5.2). These two issues have implications for electromagnetic follow-up of GW

candidates.

Although the results presented here represent general trends applicable to arbitrary networks of

detectors, we focus on networks consisting of the advanced LIGO Livingston (LLO) and Hanford

(LHO) detectors [138], located in Livingston, LA and Hanford, WA, respectively, and advanced

Virgo [153], located near Pisa, Italy. While their technical details differ (e.g. the LIGOs have

4-km arms and Virgo has 3-km arms), they all are km-scale Michelson interferometers with Fabry-

Perot resonating cavities spanning their arm lengths. These machines have reached the greatest

sensitivity to displacements (~ 10-18m) and correspondingly small strains (~ 10-21) ever achieved.

For a 1.4MO-1.4MO binary neutron star system (BNS) this corresponds to sky-averaged detection
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ranges of 200 Mpc and 130 Mpc for LIGO and Virgo, respectively, at design sensitivity [8].
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Chapter 2

Nonlinear Tides

As described in 1.1, binaries containing point particles constitute a wealth of physics. However,

real binaries involve extended bodies and we must consider their tidal interactions as well ( 1.2).

In this chapter, I describe the impact of nonlinear dynamics excited by tidal interactions, focusing

first on ( 2.1) resonant interactions within exoplanet systems involving Jupiter-mass planets in tight

orbits around sun-like stars and ( 2.2) secular instabilities within neutron stars coalescing due to

the emission of GWs. Results presented in 2.1 are primarily taken from [63] while 2.2 is based

primarily on [62].

In many situations, linear tidal theory is insufficient and can be shown to be unstable to small

perturbations. These instabilities are present because the linear equations of motion do not rep-

resent the entire Hamiltonian and there are nonlinear interactions between the eigenmodes within

extended bodies. In particular, it is natural to write the Hamiltonian as a power series in the

time-dependent amplitudes of linear eigenmodes, sometimes called a Galerkin decomposition:

H ( 2 +w2q2)+ Na,qqq+- .+ (2.1)

where each mode's amplitude (qa(t)) is a generalized coordinate [161]. We focus on weakly nonlinear

systems in which only the leading-order nonlinear interactions are important. This means we neglect

all higher-order terms and include only the 3-mode interactions with coupling coefficients KC,3.

Substantial work has been devoted to computing these 3-mode coupling coefficients [164, 168, 169,
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170], and we will assume they are known and only examine the resulting dynamics of networks of

nonlinearly coupled modes. Specifically, we study nonlinear interactions between stellar eigenmodes

driven by tidal potentials in close binaries, focusing on hot Jupiters orbiting main sequence stars

and binary systems of compact stellar remnants, such as neutron stars.

2.1 Hot Jupiters

The term hot Jupiter refers to a gaseous giant planet orbiting very close to its host star [107].

These exoplanets were some of the first to be discovered because their large masses and radii as

well as their short orbital periods generate strong signals in both radial velocity and photometric-

transit measurements [154]. To date, roughly 61 hot Jupiters with Mp sin i > Mj and Porb < 3

days have been discovered [1], and approximately 27 of these planets orbit solar-type stars (0.8-

1.1M0 ). We focus on the latter, specifically modeling the interior g-modes of sun-like hosts and

the couplings between them. We find that resonant nonlinear interactions produce instabilities that

can dramatically affect the orbital dynamics of these systems.

The tide raised by a hot Jupiter excites large amplitude waves within its host star. These

waves transfer energy and angular momentum from the orbit to the star and as a result the planet

gradually spirals inward. The rate of orbital decay is determined by the efficiency of tidal dissipation

and depends on the amplitude of the waves as well as the effectiveness of frictional processes within

the star.

Tidal dissipation is often parametrized by the stellar tidal quality factor Q', where larger Q,
implies less dissipation. Perhaps the best constraints on Q' for solar-type stars come from the

observed circularization rate of solar-type binaries, which yield Q ~ 106 [102]. However, because

Q' is not a fundamental property of the star (it depends on the shape and size of the orbit and the

mass of the perturber), this result does not necessarily imply Q* ~ 106 for hot Jupiter systems.

There have been a number of efforts to measure Q' from statistical modeling of the observed

sample of hot Jupiters (see [107] for a review). [112] finds that the distribution favors Q' > 10 7 for

a specific set of assumptions about the initial conditions. [84] finds 106 < Q' 109 and notes that

it is difficult to obtain tighter constraints because of the limited sample size and uncertainties in the

initial period distribution and stellar age. Although there are no direct observational measurements

of Q' from individual hot Jupiter systems (e.g. from the detection of orbital decay), [83] argues
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that the distribution shows evidence for ongoing removal and destruction by tides. In addition,

[136] proposes that the observed dearth of close-in planets around fast-rotating stars [101] can be

attributed to tidal ingestion of giant planets.

We study the orbital evolution of hot Jupiters due to the excitation and damping of tidally driven

g-modes within solar-type host stars. Linearly resonant g-modes (the dynamical tide) are driven

to such large amplitudes in the stellar core that they excite a sea of other g-modes through weakly

nonlinear interactions ([20, 21]; [170], hereafter WAQB). These secondary waves can have much

shorter wavelengths than the primary wave and, as a result, they can have much larger damping

rates (due to radiative diffusion). Systems in which nonlinear interactions are important may

therefore dissipate tidal energy much more rapidly than the linear theory estimates. By solving the

dynamics of large networks of nonlinearly coupled modes, we show that the nonlinear dissipation

rate of the dynamical tide is several orders of magnitude larger than the linear dissipation rate

(QIi, ~108 - 1010; [74, 108, 137]. We find stellar tidal quality factors Q ~ 105 - 106 for systems

with planet mass MI > 0.5Mj and orbital period P < 2 days, which implies that such systems decay

on timescales that are small compared to the main-sequence lifetime of their hosts. According to

our results, there are ~ 10 currently known exoplanetary systems, including WASP-19b and HAT-

P-36-b, with orbital decay timescales shorter than a Gyr. Rapid, tidally induced orbital decay may

explain the observed paucity of planets with Mp > Mj and P < 2 days around solar-type hosts

and could generate detectable transit-timing variations in the near future.

For a planet with mass Mp 3M (P/day)- 0  orbiting a solar-type star, the primary wave

reaches such large amplitudes near the stellar center that it overturns the background stratifica-

tion and breaks [19, 20]. In this strongly nonlinear regime, the primary wave deposits nearly all

of its energy and angular momentum in a single group travel time through the star. The tidal

dissipation rate therefore equals the energy flux of the initial, linearly driven primary wave. The

three-dimensional numerical simulations of wave breaking by [19] yield Q'. 10 5 (P/1 day)2 8 for

Mp > 3Mj and a solar-type star. This corresponds to an inspiral time of 1 Gyr for a 3Mj planet

in a 2 day orbit.

For a planet with mass 0.5 ,< M/M ,< 3, the primary wave does not break. Nonetheless, it is

sufficiently nonlinear that it excites many secondary waves near the stellar center. In this weakly

nonlinear regime, the primary wave only deposits a fraction of its energy and angular momentum in

a single group travel time. The value of that fraction, which determines the rate of tidal dissipation,
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depends on the detailed interaction between the primary wave and the sea of secondary waves. We

calculate this interaction (and its saturation) in the weakly nonlinear regime. Similar types of

analyses have been carried out in the context of the r-mode instability in spinning neutron stars

[29, 32].

We begin with an example of resonant parametric instability ( 2.1.1) before moving on to our

specific application within main-sequence host stars in hot Jupiter systems.

2.1.1 The Mathieu Equation

The Mathieu equation provides a simple model that demonstrates parametric nonlinear instabili-

ties [100]

I+ _yq + (W2 - ricost) q = 0 (2.2)

Classically, the Mathieu equation does not contain a dissipative term (7y), but we include damping

because of the obvious connection to stellar eigenmodes. We note that as K i 0, the system

becomes a standard damped harmonic oscillator and is well understood; all solutions are stable and

decay exponentially. However, the parametric forcing present when r # 0 can destabilize the system

and cause it to grow without bound. To find what conditions lead to this instability, we make a

few simplifying assumptions: weak parametric driving (K = Ke), weak damping (-y = Fe2 ), near

resonant forcing (w 2 = 1 + W 2E2), and that there are two relevant time-scales related by T ~ e2t.

This allows us to use multi-scale analysis techniques, sometimes called two-timing [23, 133].

In particular, we assume that the solution is a function of two time-scales

Oq 0T1q 2
q = q(t, T ) - + = -+ = qt + c2q-r (2.3)

Ot Ot OT

We furthermore expand q as a power series in e

q q(0) + Cq 2 + -2+ , (2.4)
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insert this ansatz into the Mathieu equation, and group similar powers of 6. This produces

60 :q( + q 0() = 0

El q() + q(1) - q(0)K cost

2 q + q( 2 ) = W2q(0) - 2q() _ ]T(O) + q(1)Kcost

and so on. By iteratively solving these equations, we find

EO : q(0) = Aeit + Be-it

E1 : q(1) = Ceit + De-it + - (A+ B -
2

A2 B
3e2i _ 3 e-
3 3

2t )

which implies the c2 terms demonstrate resonant driving

q 2) + q( 2 ) -2 (iAeit - iBre-") - I (iAeit - iBe-it) + W 2 (Aeit Bet)

+ -(eit + e-it) Ce D+ De- + - A+B

= (-2iA, - iA + W 2 A

+ 2iB, + FiB + W2 B + K
4

+ nonresonant terms

A_ 2t _ B
3 3 ,11

2A)) eit

A + -B)) eit
3

(2.10)

Because resonant driving would cause q( 2) to diverge, we require all resonant forcing to vanish and

obtain

2

3
2A= - PA - i (W2A

2B,= - B +i (W2B

A) ) (2.11)

(2.12)

This is just a linear eigenvalue problem for the coupled evolution of A and B. Assuming A, B 0C eST,

we find
-F k 4jKA -IK

2 W2 -W2

2
(2.13)
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Figure 2-1: (left) Threshold coupling strengths to induce instability as a function of the Mathieu
equation's parameters. (right) Time evolution of similar systems below and above the instability
threshold. We see that both larger damping rates and nonresonant forcing raise the stability
threshold.

We note that when K - 0, we can set W 2 -* 0 without loss of generality and obtain the expected

result s = -1/2; the solution decays exponentially as q(O) Oc e-t/2. However, as K -> oo, we

obtain solutions with s > 0 implying exponential growth of q. Note also that the threshold coupling

necessary for instability is larger further from resonance (larger W 2). To wit, the threshold coupling

is

K
2 hr 7 (W2 + W4 + F2) (2.14)

We therefore conclude that, near resonance, parametric forcing can cause exponential growth.

Fig. 2-1 demonstrates how the instability threshold depends on the system's parameters. A similar

resonant instability manifests in 3-mode interactions between g-modes within sun-like stars.

2.1.2 Resonant 3-mode Parametric Instabilities

We analyze eigenmodes within sun-like stars using a slightly different representation of the am-

plitude equations, sometimes called the phase-space representation (see WAQB). While still based

on a decomposition of the Lagrangian fluid displacements into eigenmodes, we assign a separate

amplitude to the positive and negative frequency components of each mode. Therefore, we refer to

each mode q, via a combination of radial number (n), angular numbers (1 and m), and frequency
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Figure 2-2: Resonance diagrams showing the dissipation within the host star as a function of the
number of generations included in the network for a Jupiter-mass companion in a (left) 1 day and
(right) 3 day orbit around a sun-like host. Grey lines represent the analytic prediction for the linear
response alone.

sign ( ). The fluid motion is then written as a sum over these amplitudes via

[ q (t) [ (2.15)

where the sum over a extends over all n, 1, m, and frequency signs. We note that q, can be complex,

in general.

This representation yields the following coupled set of 1st-order ordinary differential amplitude

equations

qa + (-/c + iwc)qc, = iwOUa(t) + iwa E sceq~q* (2.16)
/3,E

where (*) denotes complex conjugation [63]. We neglect nonlinear tidal forcing (Uap) and 3-mode

couplings between the dynamical tide and the equilibrium tide. These two terms strongly cancel and

therefore are not expected to effect the system's dynamics (see WAQB and [164]). This network of

weakly nonlinear oscillators exhibits resonant instabilities similar to those observed in the Mathieu

equation ( 2.1.1) and we study the dynamics of these networks. We note that U,, represents the

generalized force applied to qa by the tidal potential and y, represents a dissipative interaction.

For g-modes within sun-like stars, the dominant source of damping is believed to be radiative
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diffusion [137].

The coupling coefficients (r,) represent the inner product of three spatial mode shapes integrated

against the background stellar structure (see WAQB). Because we decompose the fluid motion into

spherical harmonics, this imposes angular selection rules. Specifically, we require ma - M3 + , = 0

and 1l - l 1 l, < 1, + l (the triangle rule). What's more, there are radial resonance conditions.

If the modes oscillate rapidly relative to each other, their product will oscillate and the integrand

will not accumulate significantly. However, if the difference of the daughter radial mode numbers is

less than the parent's, the integrand can accumulate through a process similar to beating harmonics

(Appendix B.1 of WAQB). This imposes relatively strict selection rules on which (n, 1, m) couple

strongly.

Furthermore, most of the coupling occurs in the stellar core where the mode amplitudes are

geometrically focused to large values. Beyond that, coupling happens near the parent's inner

turning point, where the parent mode shape is evanescent (non-oscillatory) and the product of

the daughter modes' oscillations can produce a slowly varying integrand. We note that a linear

Brunt profile in the region near the stellar core is important for the latter so that lower frequency

daughters still oscillate at the parent's inner turning point.

These networks of modes represent the fluid motion within the host star and model how it is

excited by its companion. Fig. 2-2 shows resonance diagrams for the energy dissipated by networks

of modes within the host (see 2.1.3). Indeed, we see a large increase in dissipation (E) when we

include multiple generations of nonlinearly coupled modes. We now analyze the stability of these

modes and the growth rates of associated instabilities.

3-mode Stability and Growth Rates

We begin by analyzing the stability of the linear solution, focusing particularly on the dynamical

tide ( 1.2). Fig. 2-3 shows the cumulative number of unstable 3-mode pairs in a sun-like host with

a 0.1 Mj companion in a ~ 3 day orbit; there are nearly 10 3 unstable daughter pairs and many

more unstable granddaughters ( 2.1.3).

For simplicity, assume the dynamical tide is composed of a single resonant g-mode. We focus

on circular orbits so that Ua(t) = Uae-im"Qt, where Q = 27r/P is the orbital angular frequency
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and m, is qa's azimuthal number. The steady-state linear solution is then

qiwaU em (2.17)
Ya + i(wa - maQ)

We now examine the stability of this solution assuming a single pair of daughter modes is coupled

to the parent. The daughters' equations of motion, assuming /3 # e, become

4, + (^/0 + iwfl)q = 2iw, , ,3q*q* (2.18)

and analogously for 13 4 c. Here, we've assumed q,3, qE < q, and that qi, is exactly the linear

equilibrium result. We have also neglected the linear forcing for the daughter mode (U,,) because

it will be highly nonresonant and therefore should not contribute to the dynamics meaningfully.

Furthermore, if the daughter mode is self-coupled (0 = e), we can immediately rearrange this to

obtain a modified Mathieu equation. We therefore expect parametric forcing to produce instabilities

near resonance.

Writing each mode amplitude as x = qe-i(W-A)t, we can determine the resonance conditions

and stability of this system. Importantly, we find that the time-dependence drops out of the system

completely if maQ+wl+we = A= +Ac; minimizing A3 +A, turns out to be the resonance condition

for the instability. This yields

s + (y- + iA3)xo = 2iwg3rac( iwaU, X* (2.19)
ya-i(Wa - ma)

and analogously for c - e. Again, we obtain the solution as an eigenvalue assuming xO, x, ~ eSt

(which renders the problem algebraic), where s is implicitly determined by

(s + -yo + iAo)(s + ye - iAe) = 4wWEcr A Ace = (wU 2 (2.20)
7 (Wa -

We note that as Aa -+ oc, the system becomes unstable and R{s} 2,,Iw-K W 3cAal, meaning

that the growth rate of the instability is proportional to the amplitude of the parent. From this,

we can also determine the threshold amplitude for stability.

(A, /2 YO + AA, _ W+3 +WE 2 (2.21)tA)hr -4w,3wr~l -2 4w(3WcIOl -V m O + Yc Ia,3E y0E
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where we've used the vanishing imaginary part from Eqn. 2.20 in the last step to determine Ay-, =

. From this, we clearly see the competition between resonance (AOgA) and damping (-y1e)

which determines stability, similar to what was seen in 2.1.1. We can therefore determine whether

a 3-mode triple will be unstable by comparing the parent's linear amplitude to this threshold.

Collective Stability and Growth Rates

Of course, real stars contain more than three eigenmodes, and those modes are coupled through a

complicated network. For high-order g-modes, there may be many modes with similar properties

(w, -y, etc) corresponding to neighboring radial numbers (n). Therefore, if one of them participates

in an unstable 3-mode triple, it is likely that all of them will participate in an unstable triple.

In general, we should consider the stability of the collection of g-modes rather than restricting

ourselves to the individual 3-mode sets. We investigate various different coupling scenarios, finding

similar behavior for all of them. Larger networks of coupled modes can often have faster growth

rates than 3-mode pairs along with suppressed stability thresholds. Nonetheless, we find that a few

highly resonant 3-mode pairs generally dominate the long-term behavior of the system (Fig. 2-5).

The general behavior of a set of N collectively coupled modes resembles the behavior of a single

unstable self-coupled mode with the coupling coefficient enhanced by a factor of N (lower Athr

and larger growth rate). This is because q ~E rq*q* ~ Nsqq* if all daughters are similar.

Appendix A provides more details on how this behavior can be derived rigorously.

Effects of Multiple Parents

If we linearize around the linear-equilibrium solution involving multiple parents, the equations of

motion for the daughter modes become

&tqfl + (iwo + -yo) = 2iwoq* npeq* (2.22)
p E parents

We can analyze this system as if there is a single parent with complex amplitude

Kq* =Ipeeq*. (2.23)
p E parents
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We note the possibility for parent modes to interfere with one another when driving daughter

modes, possibly rendering daughters stable under multi-parent driving when they were unstable to

any individual parent. Most notably, if the parents are regularly spaced in frequency and driven at

the midpoint between resonance peaks, there can be strong destructive interference. This is because

each parent is paired with a partner on the opposite side of the driving frequency, and each pair

consists of parents oscillating with nearly opposite phase. This narrow trap in the resonance troughs

is readily apparent at orbital periods above 4 days for a solar-mass host of a Jupiter-mass companion.

However, we did not observe significant trapping below ~ 4 day orbital periods, where we focus

our attention for this study. This may be due to the asymmetric spacing of resonances, which

will destroy this near perfect cancellation or the amplitudes being large enough to overcome any

cancellation that was present. In the hot Jupiter context, this issue is probably only of theoretical

interest because the orbital evolution time scales are > 1011 yr for P > 3 day, even for massive

companions.

Nonlinear Equilibria

Now that we have shown how and when sets of modes can become unstable, we consider whether

they approach new steady states. As it turns out, we can solve for the simple 3-mode system's non-

linear equilibrium. Because the intuition gained is useful, we reproduce the solution here beginning

with the equations of motion for our transformed coordinates x = qei(-A)t

- a + (iAa + -ya)xaf =iW0eUaCi(m,,Q-W_+A)t

+ 2iw er0  x "- - (2.24)

,,3 + (iAO + 7y 3)x3 =2iu;3 p9x* x*e (2.25)

e + (iA, + -y)xe =2io Kaex* - - (2.26)

Again, we can remove all time dependence from these equations by setting

m, = Lwa - Aa = AO + A, -WO - we (2.27)
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and assuming constant amplitudes (Ot -s 0 ). This renders the problem algebraic. We summarize

the main results below and refer to Appendix B of [63] for a more complete derivation.

AflyE= ACy7 (2.28)

AA =, (AA) 2h (2.29)

AE -e (2.30)

6 = , + 6, + 6, (2.31)

A,
A, 2wOK,,3,A, sin 6 (2.32)

AEAgA = w aeA cos (5 (2.33)

Ac, A"+ wU2
AOA = A, ACos +-ysin (Aacos6+-yasin6) 2+ A2  - -A2

2wc a3E A2 A2 + 72 0

(2.34)

where x Ae6 and the sign in Eqn. 2.34 depends on the sign of wrcaoc. The key bits of insight

from this are that the parent amplitude drops to the instability threshold and that, although

it is not immediately obvious, the daughter equilibrium amplitudes are typically larger than the

parent's linear amplitude. This means there is an inversion of the mode amplitudes; the parent

decays as it pumps energy into the daughter modes. Furthermore, this fixed point is stable and

perturbations are typically damped out on time-scales set by the linear damping rates (~ -1),

which are long compared to dynamical time-scales set by the 3-mode growth rate ( (- PA) 1 ).

Fig. 2-4 demonstrates these features.

Just as for stability, we should consider what the eventual steady-state will be for a large

collection of unstable modes instead of an isolated 3-mode triple. Generally, if collective modes

are unstable, they will have faster growth rates than 3-mode instabilities. Therefore, collective

instabilities will dominate the dynamics over short time-scales. We expect the parent amplitude to

decrease to the threshold energy of the associated instability that currently dominates the dynamics.

Typically, there are a few extremely resonant 3-mode triples corresponding to very small Athr, much

smaller than the collective modes. This means that the 3-mode instabilities will still be excited even

when the collective mode has suppressed the parent's amplitude; they will slowly grow until they
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Figure 2-5: 3-mode and collective instabilities' evolution toward nonlinear equilibrium. (left) Even
though the collective mode's (grey) growth rate is much faster than the 3-mode (black) growth rate,
the 3-mode equilibrium eventually suppresses the parent (dashed) amplitude enough to render the
collective mode stable, thereby dominating the long-term steady state (right).

eventually surpass the collective mode's amplitude and drive the parent to even lower amplitudes.

At this point, the collective mode becomes stable and will decay. The system's long-term behavior

will therefore be dominated by the lowest threshold 3-mode pair, which is demonstrated in Fig. 2-5.

This intuition holds when there is only one generation of parent-child couplings. As we will see,

the intuition is still valuable but the steady state changes dramatically when more generations are

introduced.

2.1.3 Dynamics of Large Networks

Based on the observation that the 3-mode triple with the lowest Ethr is expected to dominate

the long term dynamics in simple systems, we compose more complicated networks by adding in

couplings in order of increasing Ethr. In this way, we approximate the dynamics of the full star by

simulating only those modes we expect to be most dynamically relevant. Throughout this study, we

ensured our numerical searches for low Ethr triples spanned enough modes that the exact boundary
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of the search did not affect the results.

From Eqn. 2.21, we see there is a natural competition between the detuning and the damping

when minimizing Ethr. Typically, to reduce the detuning we must choose higher I modes. These

have larger damping rates, and therefore some balance must be reached depending on the particular

stellar model. We find that solar-mass hosts support g-modes spaced closely enough that small

detunings are possible even with low 1. However, lower mass stars have coarser mode spacing and

lower damping rates, meaning higher 1 modes can be important (as high as 1 > 10). Nonetheless,

when we reach several generations into the network (grandchildren, great grandchildren, etc), we

find that lower I are again favored, although there remains a larger tail to higher I for low mass

hosts than for solar-mass hosts.

The intuition gained from simple 3-mode systems is relevant for more complicated networks

as well. In particular, the inversion of the parent and daughter amplitudes is key. When the

daughters are driven to large amplitudes, they excite their own children (granddaughters). When

the granddaughters reach large amplitudes, they siphon energy from the daughters, causing the

daughters' amplitudes to collapse. This allows the parent to recover and causes the granddaughters

to decay. When the parent has recovered, the entire cycle restarts and we observe a sawtooth

pattern in the amplitudes of these modes. What's more, adding additional generations does not

significantly affect the global dynamics of the system; they simply cause the granddaughter to

decay more rapidly. This is reminiscent of a turbulent cascade from long wavelength perturbations

to smaller length scales, where global behavior is insensitive to the precise micro-physics of the

smallest length scale. What's more, we find that the global dissipation is insensitive to the linear

damping rates of the youngest generation (as long as those modes remain unstable); it is instead

the nonlinear growth rate that drives the dissipation time-scale.

Networks with several generations quickly establish a steady-state solution, which often appears

chaotic (Fig. 2-6). The individual trajectories of separate modes depend on the initial conditions

and the network's structure, but global properties of the steady state solution are robust. For

instance, E may be the same if we have 100 modes dissipating an equal amount each, or only 10

modes but each dissipating 10 times as much. Fig. 2-7 shows the convergence of E with many

different network structures, numbers of modes, and numbers of generations.

A reasonable question is what sets the scale for the global dissipation and how many generations

are involved in the cascade. A simple estimate of E ~ 2 173modeEbreak gives a reasonable approxima-
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tion for the dissipation, and at least approximately captures the correct scaling (see Appendix B

for more detail). We see that t is independent of the linear damping rates ('3mode ~ 2wnAparent)

and is naturally associated with the cyclic growth and breaking of g-modes. This occurs when the

fluid displacement is of the same size as the wavelength (&k, - 1), and the g-mode overturns the

density stratification within the star. We note that Ebreak depends on the mode's angular number

(1), and with all else equal we observe roughly the correct scaling when lower host mass networks

naturally select larger 1 modes (higher 1 modes penetrate deeper into the stellar core, are more

geometrically focused, and break at lower amplitudes).

We can also estimate how many generations would participate in the cascade based on the

WKB scaling relations for the mode and coupling parameters. For stability thresholds dominated

by the detuning (A ~ w/n), Ethr - w 6 and daughters (with w - Wparent/2) are even more unstable

than their parents. This means that unstable parents will almost certainly excite unstable children.

However, for damping dominated stability (modes are spaced closely enough that the detuning

almost always vanishes); we have Ethr w 2 and daughters are more stable than their parents.

This turn-over typically happens after 5 or more generations for stellar-mass hosts, but we

find we can model the global dissipation with only 3 generations (linear parents, daughters, and

granddaughters).

Because there is no great change between granddaughter networks and larger networks, we define

reference networks with up to granddaughters for computational reasons. We use these throughout

our study to model the dissipation from larger network in a tractable way. Fig. 2-7 shows how our

reference networks compare to others.

2.1.4 Sun-like Hosts

We now focus on the implications of these resonant 3-mode instabilities within sun-like stellar

hosts. Specifically, we study main sequence stars with radiative cores and convective envelopes

(M, C [0.5, 1.1]MO). Because we are interested in the system's long-term orbital evolution, we

compute time-averaged statistics by sampling over several orbital periods spanning at least one

resonance peak.

(X) fdtx - fdP (2.35)
fdt fdP-1
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Although subject to some modeling uncertainties, we observe saturation after only 3 generations,
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Furthermore, we can estimate P from our numerical simulations of large networks. From energy

balance, we expect
d (Eorb + Eint + Erot + Emodes) -2 -y aEa
dt

(2.36)

where Eorb, Eint, Erot, and Emodes are the energies associated with the orbit, the tidal interaction,

rotation of the star/planet, and the stellar eigenmodes, respectively. From this, we can determine

P via

,b-2 (dEorb + dEint + dErot dEmodes
dp dP dP dP

S-2 dEorb - Ea

P
E ZaEa
Eorb

Z aEaE y, c
(2.37)

(2.38)

(2.39)

We recognize that IdEorb/dPI > IdEint/dPI, IdErot/dPI, IdEmodes/dPI because Eorb is so much

larger than any other energy scale that even small changes in it dominates over other effects. From
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this we obtain our estimate

(X) ~ i (2.40)

We use this to determine the time-averaged orbital decay time-scale by marginalizing over the

neighborhood of a resonance peak. Specifically, we compute

(TE) = K Eorb \. (2.41)
\ 2 E,, 7,Ea /

This timescale is often reported in terms of the star's tidal quality factor (Q'), which is defined

as [73, 84]

Q' = 7.5 x 106 (,E)(P -33 242
*Gyr Mi day

Theoretical estimates for Q' range from 105-1012 in the literature.

Analytic Approximations

The linear dissipation rate of individual resonant modes is En ~ 2 7yEiin, where Ein is the linear

equilibrium energy of mode a. After summing over many parents near the resonance, using the

WKB estimates for the damping and forcing coefficients, and time-averaging, we find

M2 - 5/ ( R )112 (MP P p 3
(TE)i . 1.4 x 1012 yr (2.43)

""MO RO Mi day

We can also estimate the nonlinear dissipation rate of networks consisting of only parents and

daughters (but not granddaughters, etc). This is because the dissipation in that case is dominated

by the single daughter pair (#, c) with the lowest instability threshold Ethr. For the parameters of

a typical hot Jupiter system, the nonlinear equilibrium energy of such a daughter pair is E3,, ~

IUa/2o,,OcEo [170]. The total dissipation rate of the system is approximately the dissipation due to

these two daughters Ep-d - 2 x 273,,E,,. There is a small correction to this because the lowest Ethr

daughters have slightly different parameters and therefore do not sit at exactly the same amplitudes.

After accounting for this small correction, we find

(TE)d ~ 2.' (X -11/6

-F~22. 10 M (R)11/2 ( 96yr (.4
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Figure 2-8: Analytic approximations for orbital decay time-scales along with numerical results. The
disagreement between analytic and numeric estimates for Ngens = 1 is due to our assumption that
1 = 1 for all daughter modes, which breaks down at low P.

where A 2 = 1(1 + 1). Here we assumed l, = 1, which is representative of the typical lowest

Ethr daughters for P > 2 days within solar-mass hosts. We find good agreement between parent-

daughter network simulations that include many daughters and this analytic estimate. However, at

these shorter periods, the available daughter modes are spaced further apart in frequency and the

lowest Ethr pair may be pushed to l, > 1. This causes the small discrepancy between the numeric

and analytic estimates seen in Fig. 2-8; large 1 modes dissipate more energy and reduce (TE).

Numerical Results

We use our reference networks to scan large parts of parameters space, averaging over the dissipation

across several resonance peaks near each orbital period. This allows us to numerically determine

(TE), which we show in Fig. 2-9, and we immediately notice a few clear trends. First, there is a

sharp cut-off at low M,, but we see this near Mp ~ 0.5Mj rather than - 3Mj, as was predicted in
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Figure 2-9: Several representations of the measured (rE) and our fitting function for a solar mass
host. The simple power law in Eqn. 2.45 captures the behavior well above Mp ~ 0.5Mj for all
periods considered.

the literature [19, 20, 21]. We also find a relatively simple fitting formula

(TE) = 4.1 x 107 years (2.45)
M day

Q' = 3.0 x 105 (M).5 ( P%) (2.46)
M-) day

which reasonably approximates the numerical results, but should not be trusted beyond a factor

of ~ 2 due to both statistical and systematic modeling uncertainties. We note a relatively weak

dependence on Mp once these instabilities become active and a very strong dependence on P. This

means closer orbits, almost independent of M,, are more promising for detecting tidally driven

orbital decay.

Decay Timescales for Known Systems

Based on the Exoplanet Orbit Database [1], we studied 11 known planets orbiting approximately

solar-type stars (M = 1.0 0.1M0 and Tff ~ 5500 K) with decay times (TE) < 1 Gyr according to

our results. Of these, 7 have expected decay times (TE) < 0.3 Gyr. In order of increasing P, they are

WASP-19b, TrES-3b, HAT-P-36b, WASP-77Ab, WASP-4b, WASP-36b, and WASP-46b. Fig. 2-10

shows these planets on the Mp sin i-P plane, with (rE) labeled for each system and a contour of (TE)

superimposed. These planets all have Mp sin i > Mj, P < 2.0 days, and eccentricities consistent
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Figure 2-10: Known systems orbiting sun-like hosts and our associated predictions of the orbital
decay rates. WASP-19b is a notable outlier, with an extremely short decay time-scale due to it's
extremely short period (< iday).

with or very close to zero. Since these are all transiting systems, Mp sin i ~ Mp and the reported

errors in the measured mass are typically < 0.1Mj.

We note that two of the planets (CoRoT-2b and CoRoT-18b) have masses Mp sin i > 3Mj. This

suggests that they are in the strongly nonlinear regime where the parent wave breaks within the

stellar core [19, 20, 21].

Of the 11 planets with (rE) < 1 Gyr, there are five for which studies report at least some

constraint on the age of the system. In three of these, the age uncertainties are sufficiently large

that the systems might be relatively young, i.e. ~ 1 Gyr (WASP-64b, WASP-5b, CoRoT-2b:

1.2+1.2 5.4 2,7+3 2.7+32-7 respectively). However, WASP-4b and WASP-19b appear to be older

systems: 7.0 2.9 and 10.2+3Gyr, respectively. Assuming that the planets arrived close to their

current orbits when their host stars first formed, old stellar ages seem to be in tension with the small

(TE) we predict, especially in the case of WASP-19b. If our results are correct, then perhaps these

planets were scattered into their current orbits well after the stars formed or they just happened

to initially reside at separations with decay time-scales very close to their current ages.
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Table 2.1: Orbital parameters for known systems and a summary of predictions for the orbital
decay time-scales and change in orbital parameters after 10 years.

WASP-19b HAT-P-36b WASP-36b CoRoT-2b

M[Mo] 0.930 0.02 1.022 0.049 1.020 0.032 0.970 0.06
R[RO] 0.990 0.02 1.096 0.056 0.943 0.019 0.902 0.018

Mp sin i [Mj] 1.114 0.039 1.83 0.1 2.255 0.089 3.27 0.171
P[sec] 68155.776 0.026 114682.78 0.26 132828.36 0.23 150594.64 0.86

eccentricity 0.0046+88 0.063 0.032 0 0.014308 07

age[Gyr] 10.2+3.0 null null 2.7+3
(TE) [Myr] 9.2 0.128 205 3.9 454 15.7 623 27.6

min TE[Myr] 6.3 84.7 214 241
max TE[Myr] 12.4 311. 853 1150

Tshift [sec] 257 3.6 11.5 0.22 5.2 0.18 3.80 0.17
min Tshift [sec] 191 7.6 2.8 2.1
max Tshift [sec] 375 27.9 11. 9.8

Several recent papers consider the prospects for the direct detection of orbital decay of individual

planets by measuring transit timing variations (TTVs) over long time baselines (At > 5 year, see

[25, 70, 160, 167]). In order to evaluate this possibility, we simulated four known systems spanning

a variety of companion masses and orbital periods (but each with a solar-type host1), calculating

their tidally induced TTV (Tshift) as a function of At (see [25] for a derivation)

1n 2 3 2
Tshift - (At) (At)2 . (2.47)

2 Q 4TE

In order of increasing orbital period, we analyze WASP-19b [76, 78, 105], HAT-P-36b [17], WASP-

36b [129], and CoRoT-2b [15, 72].

To calculate the orbital decay rate of these systems, we simulate a small range of orbital periods

centered on each system's measured period. We then compute the time-averaged decay rates. We do

this in order to mitigate any differences between the resonances of our stellar models and the actual

resonances of the stellar hosts. Furthermore, this allows us to compute a minimum and maximum

expected decay rate, corresponding to the troughs and peaks of the resonances, respectively.

Table 2.1 lists (TE) as well as the minimum and maximum TE. The (TE) of the four systems

ranges from about 10 Myr (WASP-19b) to 600 Myr (CoRoT-2b), while the minimum (maximum)

'This requirement is why we do not consider WASP-18b, which was analyzed in [25].
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Figure 2-11: Probabilities of Tshjft being large enough to be detectable after a given baseline.

TE is approximately two times smaller (larger). WASP-19b has by far the shortest decay time owing

to its extremely short orbital period (18.9 hours).

Table 2.1 also lists the systems' average, minimum, and maximum Tshift after ten years of

evolution. These provide an estimate of the magnitude of the tidally induced deviations we would

expect to observe from these systems over the next ten years.

We quantify these effects further in Fig. 2-11, which shows the cumulative probability of

observing tide-induced deviations as a function of time. We choose a detection threshold of

(Tshift)thr = 60 sec based on the expected uncertainties in TTVs 171, 167]; different choices will

scale At through Eqn. 2.47. According to our results, WASP-19b should produce a detectable Tshift

in the very near future, with a ~ 50% chance of observing a deviation now given the current baseline

[781 and a high likelihood of detection after only a few more years. It will take considerably longer

before detections are possible in the other three systems.

We note that even if, for some reason, our calculations overestimate the dissipation rate by an

order of magnitude, the curves in Fig. 2-11 would only shift to the right by a factor of v/10 ~ 3.

Finally, as [167] points out, the Applegate effect2 could produce Tshift values that are comparable

to the tidally induced values and distinguishing the two may not be simple.

2 Long-term cyclic changes in the star's oblateness associated with stellar activity, which modify the gravitational
potential and may induce TTVs of similar magnitude to those predicted here.
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2.2 Neutron Star Binaries

2.1 discussed the impact of resonant nonlinear interactions excited by the tide within sun-like

stars. We now discuss the impact of weakly nonlinear interactions within neutron stars in close

binaries with other compact objects. The dynamics of these systems are dominated by the emission

of GWs, but compact, degenerate stars can support secular instabilities which may be relevant

throughout orbital frequencies to which ground-based GW detectors are sensitive. We now consider

a phenomenological model for these instabilities and estimate how their saturation impacts GW

measurements.

In the coming years, LIGO expects to detect GWs from neutron stars (NSs) in coalescing

binaries. Although a NS can be treated as a point particle (PP) to a first approximation, at some

level tides will modify the rate of inspiral and thus the GW signal. The impact of the tidal effects

are, however, uncertain. In part this is due to uncertainties in the NS equation of state, and indeed

there is hope that GW observations will eventually provide precise constraints on the equation of

state [11, 50, 52, 79, 91, 1201. In addition, there are uncertainties in the tidal fluid dynamics both

near the merger when matter and GR effects are strong [64, 121, 174] and during the long inspiral

phase when the tide is weakly nonlinear [164, 168, 1691.

Many previous studies considered the impact of the linear tide, implicitly assuming that non-

linear effects are negligible at GW frequencies below f zz 400 Hz. These include studies of the

linear equilibrium tide [11, 50, 52, 79, 91, 120] and the linear dynamical tide in non-rotating

NSs [80, 92, 122, 132, 175] and rotating NSs [68, 81, 93]. The equilibrium and dynamical tide

refer, respectively, to the quasi-static and resonant response of a star to a tidal field (see, e.g.

[107]). Typically these studies conclude that linear tidal effects will be difficult to measure with

current instruments without a gold-plated detection (signal-to-noise ratios > 50; [120]) or stacked

data from dozens of marginal events [11, 52, 91]. Moreover, because they find that tidal effects only

become significant during the late inspiral, there are proposals to test vacuum GR using waveforms

from NS systems at f < 400 Hz [10].

Recently, it has been suggested that the tide is subject to a weakly nonlinear fluid instabil-

ity during the early inspiral ([169] WAB, [164] VZH, and [168] W16). The instability involves a

nonresonant coupling between the quasi-static equilibrium tide, pressure supported p-modes, and

buoyancy (i.e. gravity) supported g-modes. Typically, modes first become unstable at f ~ 50 Hz
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and are driven thereafter to potentially large amplitudes. This continuous transfer of energy from

the orbit into the modes increases the rate of inspiral and induces an ever-growing phase shift

relative to the PP waveform. Although there has been disagreement in the literature about the

magnitude of the growth rates, all studies of p-g coupling predict an instability. Furthermore, W16

find that non-static tidal effects (e.g. compressibility) enhance the growth rates, enabling a very

large number of modes to reach significant amplitudes well before the binary merges.

Studies of the p-g instability have mainly focused on calculating the instability threshold and

growth rates; they have not attempted to study its saturation in any detail. As a result, we do not

know the rate at which the instability extracts energy from the orbit and thus we cannot say precisely

how it will impact the GW signal. We construct a parametrized model of the saturation and explore

the instability's impact as a function of the model parameters. It is worth emphasizing, however,

that although we believe our saturation model adequately captures the range of possibilities, without

a proper saturation study we cannot be certain. We find that for plausible assumptions about the

saturation, current gravitational wave detectors might miss > 90% of events if only PP waveforms

are used. Parameters such as the chirp mass, component masses, and luminosity distance might

also be significantly biased. On the other hand, we find that relatively simple modifications to the

point particle waveform can alleviate these problems and enhance the science that emerges from

the detection of binary neutron stars.

2.2.1 Nonresonant p-g Instability

As the NS inspirals and the amplitude of its tidal deformation increases, the tidal flow becomes

susceptible to nonlinear fluid instabilities. These will initially manifest as weakly nonlinear inter-

actions between the tide and internal oscillation modes of the star. WAB applied the formalism

developed in [170] to determine the influence of such nonlinear interactions on the inspiral of NS

binaries. This revealed a new form of nonlinear instability in which the tide excites a high-frequency

p-mode coupled to a low-frequency g-mode. Because the p-mode's (linear eigen-)frequency is much

higher than the tidal frequency, the p-g pair is not resonant with the tide. This form of three-wave

interaction is therefore very different from the well-known resonant parametric instability in which

the tide excites a pair of g-modes whose frequencies approximately sum to the tidal frequency, such
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as those discussed in 2.1.3

In analyzing the growth rates of the p-g instability, WAB considered only three-wave interactions

between the tide, a p-mode, and a g-mode. VZH showed that four-wave interactions between the

tide (twice) and two g-modes enter the analysis at the same order as the three-wave interactions.

They found that the four-wave interactions significantly cancel the three-wave interactions and

concluded that although the m = t2 component of the equilibrium tide can be p-g unstable, the

growth rates are too small to influence the inspiral in a measurable way.

However, the analysis in VZH assumes that the equilibrium tide is incompressible. Although

that is the case for the static equilibrium tide (the m = 0 component), the non-static equilibrium

tide (m + 2) is compressible. W16 accounted for this compressibility and found that it undoes the

cancellation between the three- and four-wave interactions, yielding rapid p-g growth rates even

during the early inspiral. Specifically, W16 found that the instability turns on at gravitational wave

frequencies
1/2

45 ~ 41/2o Hz, (2.48)
(10-4Aw

where wg is the g-mode's linear eigen-frequency, wo = (GM/R3) 1/ 2 is the dynamical frequency of a

NS with radius R and mass M, and A ~ 0.1-1 is a slowly undulating function of binary separation

that depends on how close the (quasi-static) equilibrium tide is to a resonance (see Fig. 9 in W16).

From Eqn. 2.48, we see that low frequency (i.e. high order) g-modes become unstable first.

However, it is not clear what sets the minimum wg. The maximum w9 is determined by the

magnitude of the NS buoyancy frequency w wo/10. W16 showed that, for wg > 10- 4wO (which

corresponds to f = 2 g-modes with radial order n < 103), linear damping of the modes does not

modify the instability threshold nor the growth rates. However, it is possible that other physical

effects will limit the minimum wg (e.g. magnetic fields). As we describe in 2.2.2, our saturation

model therefore includes a parameter that accounts for the uncertainty in fi.
Once unstable, the coupled p-modes and g-modes are continuously driven by the tide and their

energy grows at

F-~ 2Acwo ~ 20A ( Hz, (2.49)
M1 + M2 100 Hz

where c = (M2 /M1 )(R 1/D) 3 is the tidal amplitude parameter due to mass M2 acting on mass M1
3 WAB showed that, although some g-modes are also susceptible to the resonant parametric instability during the

inspiral, their growth rates are too small to influence the GW signal.
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and we assume wo = 104 rad s-' (c.f. Eqn. 112 in W16; here we include an additional factor of 2 to

yield the growth rate of the energy rather than the amplitude). This equation is valid regardless of

the relative size of the objects (i.e. both M, > M 2 and M, < M2 ). Note that F is independent of

Wg, unlike fi. Because the modes have enough time to grow by many tens of e-foldings before the

binary merges (see W16 Section 5.4), eventually they reach such large energies that their growth

saturates due to nonlinear damping (i.e. by exciting secondary waves through nonlinear wave-wave

interactions). At saturation, there is a balance between continuous driving by the tide and decay

through nonlinear damping. This suggests that the excited modes will continuously dissipate orbital

energy at a rate

ENL ~FNEsat, (2.50)

where N is the number of independently unstable modes. The value of N is uncertain, but because

the modes do not need to be resonant, N - 10 3-10 4 is possible based on the modes' typical radial

order and angular degree (n ~ 1000, F ~ few).

Given ENL, we can calculate the cumulative phase shift of the GW signal relative to the point-

particle (PP) signal

Ao(f) 27r fNL Tdf, (2.51)
If EGW

where EGw is the GW luminosity, T = f/f is the inspiral time scale (both of which are dominated

by the leading order quadrupole formula for two point masses [1131), and j is the rate at which the

gravitational-wave frequency increases with time. Note that if the binary contains two NSs, the

instability manifests in each star separately and their individual ENL add to the system's total A0.

In general, Esat will be a complicated function of F, N, the properties of the unstable modes,

the NS structure, and the equation of state. Calculating Esat is therefore challenging. Nonetheless,

we might expect wave breaking to set an approximate upper bound. At wave breaking, a g-

mode overturns the local stratification and a p-mode induces order unity density perturbations.

WAB show that g-modes in a NS break at an energy

Ebreak ~ 10 -8 ( 9 i2) ) 2 Eo, (2.52)
(10-4Agwo \R/

where r is the radial location within the star at which the breaking occurs, A9 = fg(fg + 1), and

Eo = GM 2 /R. This is lower than the energy at which the p-modes break and thus the g-modes
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probably determine Esat for the p-g instability. Although we use Ebreak ~ 10- 8 EO as a reference

value throughout our study, note that if the g-modes break at r < R the actual value will be much

smaller.

These considerations motivate the ansatz Esat = 3Ebreak, where I 1 corresponds to satura-

tion at the g-mode wave breaking energy. Observations of g-mode instabilities in the ocean, the

atmosphere, and laboratory experiments often find that saturation indeed occurs by wave breaking

(see the review by Staquet and Sommeria [131]). Numerical studies of the dynamical tide in hot

Jupiter systems find that g-modes driven by the parametric instability also saturate at energies

Esat ~ Ebreak [19, 20, 63]. This suggests that perhaps /3 - 1 for the p-g instability as well.

To summarize, ENL and therefore A0 are poorly constrained because of uncertainties in the

minimum w., the number of unstable modes N, and the saturation energy Esat (or equivalently, /3).

We note that this instability may be relevant for any degenerate star, including both white dwarfs

and NSs. This is because degenerate stars have nearly constant densities within their large cores

and this supports significant overlap between the regions where p-modes and g-modes propagate,

thereby allowing large coupling coefficients between the linear tide, p-modes, and g-modes. We focus

on NSs because their compactness allows them to reach orbital frequencies relevant for ground-based

GW detectors [8].

2.2.2 Phenomenological Model

While the saturation of the p-g instability is likely to be a complicated process, we construct a

relatively simple model. Given Eqn. 2.49 and 2.50, we model the saturation with three parameters

(A, fo, n) such that

ENL oc Af 2NEsat oc Afn 2 E) (f - fo), (2.53)

where E is the Heaviside function. The model assumes that /3NA oc ffl for f > fo. The parameters

A and n determine the overall amplitude and frequency dependence of ENL while fo is the frequency

at which the modes reach saturation. By allowing A, fo, and n to vary, we can account for the

uncertainties in fi, A, N, and Esat.

We compute the tidal phase shift Ao(f) relative to the non-spinning PP model using a zeroth

order post-Newtonian (PN) expansion. We expect that higher order PN terms will simply add to the

PP result without significantly modifying the effects from nonlinear tidal interactions. Moreover,
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any correction from higher order PN terms will be small compared to the zeroth order term since

the phase shift accumulates predominantly at low frequencies (f < 100 Hz).

We assume a circular, quasi-Keplerian orbit that loses energy due to gravitational radiation and

dissipative tidal interactions (between star 1 and star 2)

$orb = -EGW - F1 - k 2, (2.54)

where
G 2/37r 2/3 M5/3f

Eorb - 3f1/ 3  (2.55)

M = (M1 M2 )3 /5 /(M 1 + M2) 1/ 5 is the chirp mass, f = Q/7r is the GW frequency, Q [G(M1 +

M2 )/a3 ]1/ 2 is the Keplerian frequency, and (see [113])

327riOG/3 G/ 10/3
EGW = C5  10/3. (2.56)

We model the dissipation due to the tide raised in M1 by M2 as

$ i = 1NEsat,i (2.57)

(and similarly for the tide raised in M 2 if both objects are NSs), where 1F is the growth rate of the

instability, N is the number of unstable modes, and Esat is the energy at which the unstable modes

saturate. We have

F1 = 2A 1~ewo,1 = 2A 1 Mwo,1, (2.58)

Esat,- /3=Ebreak,1 = 1 AW_' 2 E0 , 1 , (2.59)

where wo = GM/R3 and Eo = GM2 /R. Thus,

1  27r2 M1M2 (GM[)2/3 -1/3 (Wg,1 )2 l f 2 . (2.60)
M1 + M2 C 'l (Ag,1WO,1 3 ,A11(.0

As the orbit decays, the fraction of the breaking amplitude at which the instability saturates (#)

may increase and there may be more unstable modes (N). Therefore, we expect these parameters
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to vary with frequency and for simplicity we assume

(f \fi

#31N1A1 = [#31N1A1]ref e1, (2.61)
fref

i.e., a power law dependence with a sudden onset of the dissipation at f = fo, as captured by

the Heaviside function 81 = 0 (f - fo,i) and motivated by the rapid growth rates relative to the

inspiral rate as described in 5.4 of W16. We define the magnitude of 31N1 A1 relative to the value

at an arbitrary reference frequency fref. Throughout our study we set fref = 100 Hz (for both star

1 and star 2). Then

1 =(2GMi)2/1 1 M2 (7rfref) 5 3 A, (f) 2 1, (2.62)
MI + M2 fref

where

A 1 = (2rfre) 1/3 W,1 2 [/13NA1]ref
\O 001 / Ay,11WO,1

2

~ 4 x 10- 9  WgI [01N1Al]ref (2.63)
10- 4 Ag, 1WO, 1

is a dimensionless amplitude parameter that depends on the equation of state and how the instability

saturates. The three parameters of our saturation model are therefore A 1 , ni, and fo,i for star 1

and similarly for star 2.

Eqn. 2.54 then implies

= 37r f$x 7/ 3 [Bx4/3 + Cxnl + C2x2] (2.64)

where x = f /fref,

B = -(GArfref) 5 / 3  (2.65)
5 c3

C1 = 2, /3A101, (2.66)
(MI + M2)
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and similarly for C2. The phase of the GW signal do = 27rfdt = 27rf df/f and

#(f) f (2.67)I = Bx4/3 + Cxni + C2xn2

For typical NS parameters, B ~ 10- 4 and B >> C1,2 A1,2 as long as

[/3NA]ref < 105 (1, 4 Agwo )2 (2.68)

which we expect to be satisfied. Thus, the orbital decay due to gravitational radiation always

strongly dominates and we can expand the 0(f) integrand as a power series. The phase shift

relative to the PP waveform is therefore

A#(f) ~ - 2  J dx [C1xn1-4 + C2xn2-4]
0

,4 -10/3 C-2 n3 _ -3-

~ 0.4 ' ( rad, (2.69) -0 1.2MO 10-8 n - 3 _ad

where in the second line xO = fo/fref, and we assumed n < 3 and M1 = M 2 . The phase shift

is negative, which means that the orbit reaches a given frequency in fewer orbits than in the PP

model.

The total phase shift accumulated by the time the NS merges is A#(f > fo) cK Afon 3 . Because

the growth rates are large compared to the inspiral time, fo ~ fi and thus Ao(f > fo) Oc W9

assuming [LNA]ref is independent of Wg. Because we expect n > -1, we see that unstable modes

with larger wg contribute more to A# at merger (as long as Wg is sufficiently small that the modes

reach saturation before the merger). This is because modes with smaller Wg have smaller Ebreak

(Eqn. 2.52) and thus contribute less to the total ENL despite being unstable earlier in the inspiral

(Eqn. 2.48).

The phase shift depends on the component masses as A4 cx (1 + q)- 2/3M- 10/ 3 , where q =

M 2/M1 is the mass ratio.4 Highly asymmetric systems, such as NS-black hole (BH) binaries,

therefore have much smaller A#, all else being equal. This is because NS-BH orbits decay faster
4 Normally, we only consider q < 1 because of a symmetry under the interchange M1 +-+ M2 , but this is not the

case for AO caused by only the tide in M1 raised by M2 . If we included the phase shift induced by both the tide in
Mi raised by M2 and vice versa, as we do later, the symmetry is restored.
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and there is less time for the nonlinear tidal effects to accumulate during the early inspiral. For

example, AO is approximately 100 times smaller for a NS-BH binary with a 1.4M0 NS and a lOMO

BH compared to an NS-NS binary with M1 = M 2 = 1.4M (accounting for the AO due to both

NSs). As we describe below, we expect A < 106 and a NS-BH binary has A0 $ 1 rad. We show

in 2.2.4 that such a phase shift is at the margins of detectability.

In our analysis, we consider values of A in the range 10-' < A < 10-6. From Eqn. 2.63 we

see that A - 10-6 corresponds to, e.g. N - 10 (~ 103) modes with w 9/wo ~ 10-3 (~ 10-4) each

saturating near their wave breaking energy / 0.1-1. These values of N are based on the radial

and angular orders of such modes (n - 100-1000 and f ~ few). We therefore do not expect A to

be much larger than 10-6. Regarding the low end of our A range, we will show that for A < 10-8

the phase shift is too small to be detectable.

Because we do not expect ENL to be a particularly strong function of f, we consider values for

n in the range 0 < n < 2. As the binary separation decreases, higher frequency modes become

unstable (Eqn. 2.48), which suggests that N and perhaps Esat increase with f, implying n > 0.

Finally, the rapid growth rates suggest that fo is close to fi. We therefore consider values in the

range 30 < fo < 80 Hz.

The saturation parameters may depend on the stellar structure and thus the component masses.

We therefore allow each star in a binary NS system to have its own A, n, and fo. Following previous

work [52], we expand all the parameters around a reference mass. To wit,

A(M,) = A 0 + A(1)(Mi - 1.4MO)+ - -- . (2.70)

In our analyses, we keep only the zeroth and first order terms and, although we marginalize over both

orders, we focus on the zeroth order terms throughout this study (dropping the superscript unless

otherwise indicated). For simplicity we consider only the mass dependence; future improvements to

the model might allow for dependencies on other stellar parameters (e.g. spin and magnetic fields).

In Fig. 2-12 we show the time domain waveform, with and without the nonlinear corrections

to the PP solution, assuming a non-spinning 1.4MO-1.4MO binary NS system. Although both

waveforms are identical at early times (f < fo), a phase shift accumulates throughout the inspiral.

For these parameters, the cumulative phase shift at f ~ 200Hz is AO ~ 200'. As we show in 2.2.4,

the nonlinear tidal effects begin to be detectable at such phase shifts.
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Figure 2-12: Time-domain waveforms with (green solid) and without (blue dashed) A# when n = 0,
fo =50 Hz, and A = 4 x 10-8.

In Fig. 2-13 we show Aq(f) for a range of A, fo, and n. Large A implies large total phase shift

A#(f -÷ oo) whereas large fo or n imply the opposite. We also see that although A#(f -4 oo)

depends on all three parameters, the slope is mostly determined by A and n. Moreover, because we

expect n < 3, A accumulates most rapidly at low frequencies and asymptotes to a constant value

at large frequencies. Since the PP models can account for a constant overall phase shift, detecting

the nonlinear tidal effects depends primarily on the low-frequency sensitivity of the detectors.

Assuming a parametrized post-Einsteinian formalism, [43] studies modifications to PP GR

waveforms that are, in some ways, similar to ours. In particular, they assume a power-law form

for the phase shift, A#(f) ~ Afn, and explore a range of power-law amplitudes and exponents.

However, they do not include a turn-on frequency fo. Furthermore, they focus on high frequencies

because they find that solar-system tests are more sensitive to deviations from GR than GW

measurements at low frequencies. Nonetheless, their conclusions are consistent with ours to the

extent that they can be compared.

2.2.3 Bayesian Inference

We use Bayesian methods to assess how our model of the nonlinear tidal effects impacts the GW

data analysis. Specifically, we use Nested Sampling [127, 163] within LALInference [162] to compute

posterior distributions and the evidence. In the most general PP case, the GW signal emitted by a

binary in a circular orbit depends on 15 parameters, including the two component masses, source

location, orientation, distance, and 6 degrees of freedom for the two spins. We collectively refer to

the unknown parameters as 0. In a Bayesian framework, the evidence Z of data d given a model W?
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Figure 2-13: Frequency-domain representation of AO5 as a function of (top) A, (middle) fo, and
(bottom) n.
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is

Z =p(dJR) = dp(dl7, )p(7z), (2.71)

where the first term in the integral is the likelihood and the second is the prior, both of which

depend on the model. The multidimensional posterior distribution for W can be written using

Bayes' theorem as
&Jd, R)p(W|Np(Oldlw) = pON). (2.72)

Furthermore, if two (or more) competing models are available, odds ratios between pairs of models

can be calculated as
A p(-A d) - p(RA)ZA
B P(WB d) P(WB)ZB'

where the ratio of priors reflects the initial relative belief in each model. We assume that no model

is preferred a priori and therefore OA -+ ZA/ZB.

When the gravitational waveform's shape is known a priori, we use templates to represent the

expected signal. These templates are parameterized by W and form a manifold onto which we

project the data. By measuring how well different points on the manifold match the data, we

construct posterior distributions for each signal parameter. This is effectively what is done within

Eqn. 2.71 and 2.72. However, if the manifold does not accurately capture the full range of possible

signals, biases may be introduced. Furthermore, if no point on the manifold represents the data

well, we may not be able to recover the signal at all (small Z). This effect, commonly referred to as

template mismatch, can occur if the phase shift introduced by nonlinear tides is sufficiently large

and neglected.

In what follows, we consider two models: (pp treats the two objects as point particles, whereas

7 NL includes nonlinear tidal effects. The 7-pp model uses a simple inspiral-only analytic approxi-

mant (TaylorF2) [34]. The 7 NL model augments the TaylorF2 phase evolution with a tide-induced

phase evolution given by Eqn. 2.69.

We focus on a single, optimally oriented, non-spinning' binary NS system, analyzed at distances

corresponding to network signal-to-noise ratios (Pnet) near 12, 25 and 50. These roughly correspond

to marginal, confident, and gold-plated detections, respectively. We also neglect linear tides, which

we expect to decouple from the nonlinear tidal effects because the former are significant at high
5 We briefly consider aligned spins in 2.2.4.
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Table 2.2: Prior distributions for nonlinear model parameters.

Parameter Minimum Maximum Distribution

Mi IMO 10M0  dN oc dMI
M 2  1MO lOMO dN cx dM 2
DL 0 Mpc 300 Mpc dN oc D2dDL

cos Oj, -1 1 dN oc d cos Oj,
a 0 2,r dN oc da

cosS -1 1 dN cx dcos6
A(1.4M0 ) 10-W7 10-5 dN oc d log A

ldA/dm(l.4Mo) -1Mj' 1M ' dN cx d(log A/dm)

NL fo(l.4M®) 10 Hz 100 Hz dN oc dfo
dfo/dm(1.4M0 ) -10 Hz/NMI 10 Hz/MN dN cx d(dfo/dm)

n(l.4MO) -1 3 dN oc dn
dn/dm(1.4MO) -1M61  1MLA dN oc d(dn/dm)

frequencies while the latter are most significant at relatively low frequencies (see Fig. 2-13). We

include the LIGO Hanford and Livingston detectors [138] in addition to Virgo [153], assuming

expected sensitivities for the second observing run (02) f8]. While these were not realized exactly,

they should approximate the relative sensitivities of the detectors. Because detections will be

driven by the two LIGO instruments, which are expected to be more sensitive than Virgo, we

place our signal directly overhead North America [8]. Virgo will mostly just improve localization

through triangulation, although it could also help constrain intrinsic parameters for loud, precessing

systems through improved polarization constraints. Finally, we use a zero-noise realization for

our simulations, which is equivalent to taking the expected value of the evidence and posterior

distributions from many noise realizations [157]. Details of our priors on all parameters are provided

in Table 2.2.

2.2.4 Detectability and Biases when Nonlinear Tides are Neglected

We begin by investigating the impact of neglecting nonlinear tidal effects. We do this by injecting

signals that include the tide-induced phase shift but then fit the data using only the PP waveforms.

This causes significant template mismatch if the tidal effects are large, impairing our ability to

detect events and biasing the inferred parameters.

Detectability and bias are related but subtly different [49, 97]. For example, the best fit may
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not be very good but nevertheless remain near the true parameters (i.e. unbiased but impaired

detection). Alternatively, we may be able to find a good fit but only with parameters that are far

from the true values (i.e. biased but unimpaired detection). Depending on the magnitude of AO

and its frequency evolution, we observe one or both effects.

Detectability

As AO increases, the template mismatch worsens. We generally find that when A > 10-8 nonlinear

tidal effects begin to be noticeable for current detector sensitivities. From Fig. 2-13, we see that

this corresponds to A4 > 1 rad, which is similar to other estimates of the minimum measurable

AO [18, 48]. In terms of the saturation model (see Eqn. 2.63), A ~ 10-8 corresponds to, e.g.,

N - 10 unstable modes with w9 ~ 10- 4 o saturating at Esat ~ Ebreak or equivalently N ~ 103

such modes saturating at Esat ~ O.OlEbreak-

We illustrate this result in Fig. 2-14 for signals that include nonlinear tidal effects injected with

signal-to-noise ratio Pnet ~ 25. We show the odds ratio Opp of a PP waveform model relative to

pure Gaussian noise as a function of A for different values of n and fo. For small A, O'P plateaus

at large values because the PP signal model matches the data well. However, as A increases, the

PP model matches the data less and less, thereby decreasing the evidence for the existence of a

signal. Op can be mapped into the recovered Pnet (called Prec), and we see that for A - 106

more than half of the signal is lost (Prec < pnet/ 2 ). In that case, the horizon distance is halved and

we miss approximately 1 - (1/2)3 ~ 90% of NS merger events. For pnet ~ 12, extreme values of

A can produce Op < 1, which implies that Gaussian noise alone is preferred over the PP signal

model even though we use a zero-noise realization.

We injected similar signals with three different pnet (12, 25, and 50). We only show the results

for pnet ~ 25 because we find that all pnet yield very similar results modulo the usual broadening of

posteriors associated with lower Pnet signals. For example, all Pnet produce nearly identically shaped

Op curves and simply scale Op up or down. Signal loss due to template mismatch produces this

behavior because we lose a fixed fraction of the inner product between the template and the data

regardless of the overall amplitude.

As Fig. 2-14 shows, the decrease of Op with increasing A depends only mildly on n and fo.

We can see this in more detail in Fig. 2-14(b), which shows Op as a function of n and fo for two

values of A. Typically, small n imply more rapid accumulation of phase shift and small fo imply
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Figure 2-14: In Op for a variety of NL parameters when Pnet 25. Although the details depend
on n and fo, there is a clear trend to lower In Op with larger A.

more total phase shift, both of which produce larger template mismatch and lower Op. We also

see that Op depends more strongly on A for high fo injections than for low fo injections.

Effects of spin

We also briefly investigated the effects of spins with TaylorF2 approximants. These signals allow the

components to spin either aligned or anti-aligned with the orbital angular momentum, and therefore

do not include precession effects. Spins can change the waveform's duration, which may be confused

with the analogous effect from nonlinear tidal interactions. Searches often use TaylorF2 for low-

mass systems involving NSs and restrict themselves to only relatively small spins (dimensionless spin

parameters IX1,21 < 0.05; [144]). We performed a grid-based calculation to determine the possible

improvements in detectability provided by spins up to Xi,21 < 0.1. We find that including spins
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only marginally increases Prec/Pnet (e.g. from 0.30 to 0.34 for A = 10-6). The slight improvement

is likely due to spins compensating somewhat at high frequencies for the biases in chirp mass (see

2.2.4) induced at low frequencies by the NL effects. Although we did not fully explore the effect

of spins, our analysis suggests that measurements of the spin may be biased, which could have

implications for population synthesis inferences [142].

Full spinning waveforms may increase the match further, but it is unlikely that they will recover

a significant fraction of the lost Pnet. We conclude that spin may be important for studies of

populations of marginally detectable sources with marginally relevant values of A. When A is

large, we see a dramatic reduction in our ability to recover signals even when using spinning PP

waveforms.

Biases

When A is small, PP models fit the true waveform well and the posterior distributions are centered

on the true values. At A - 10-8 we begin to observe biases in the recovered parameters even

though Opp has decreased by only a few percent. This is sometimes called a stealth bias [43, 159].

Fig. 2-15 shows the joint and marginal posterior distributions of the chirp mass M and the mass

ratio (q = M2/M 1) as a function of A for n = 0, fo = 50 Hz with Pnet ~ 25. Here and throughout

the rest of this study, we follow the standard convention M, > M2 so that 0 < q < 1, reflecting a

symmetry under the interchange Mi -+ M2 . M is measured particularly well because it dominates

the frequency evolution of inspirals [113]. We observe a clear bias in M as A increases. This is

because larger A imply faster orbital decay, which can be confused with heavier systems. Even at

A 10- 8 , we observe a statistically significant bias in M even though Op is essentially identical

to the A = 0 result. Therefore, nonlinear tidal effects can bias parameter estimation even before

they impact detection. However, we note that although the bias in M can be much larger than the

statistical uncertainty, in absolute terms it remains small (, 1%) even for large values of A.

Nonlinear tides also introduce biases in the mass ratio q, particularly when the impact on

detectability is marginal. For A < 5 x 10-8, q is biased toward more asymmetric component

masses. This is because asymmetric systems also decay faster. In fact, for large fo, q is biased so

much that M is inferred to be smaller than it really is. For our 1.4MO-1.4MO system, we find

that at A ~ few x 10-8 the larger mass may be inferred to be as much as 1.8MO and the smaller

mass as little as 1.1M0 . For different values of n, the bias in q can be even more extreme than
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this. Although we are not likely to mis-classify a NS-NS binary as a NS-BH system for canonical

l.4MO-1.4M0 systems, there might be some confusion for masses near the maximal NS mass.

As Fig. 2-15 shows, the bias in q is large for intermediate values of A ~ 10-8 but small for

A < 10-8 and A > 10-8. By contrast, we find that the bias in M increases nearly monotonically

with A. Apparently, for A < 10-8, which corresponds to AO $ 1 radian, the PP model can still

approximate the data reasonably well, but only with a substantially biased q. We find that this

trend holds for all values of fo and n. However, for A > 10-8, O1 P decreases significantly and

even though no set of PP parameters captures the data well, the true parameter values again offer

the best fit (with the exception of M, which remains biased at large A).

Despite the potential for biases, the posteriors for the component masses M1 and M2 almost

always have some support near the true value, even if it corresponds to a long tail relative to

the mode of the distribution. We also find that heavier systems with larger M (including NS-BH

systems) are less biased by NL effects because A o M 10 /3 . Such systems have smaller AO

because they decay faster and spend less time in the slow inspiral phase where nonlinear tides make

their greatest impact. Therefore, for the same A, the posteriors and odds ratios of NS-BH systems

more closely resemble the PP model.

Nonlinear tides can also bias the luminosity distance (DL). In Fig. 2-16 we show the posterior

distributions of DL and orbital inclination (0jr; the angle between the system's total angular

momentum and the line of sight to the source). As we showed above, the PP model compensates

for larger A by increasing M. However, systems with larger M are intrinsically more luminous

and therefore are inferred to come from larger DL. Despite the bias, we find that the posterior

distribution of DL is broad enough to cover the true value for our injections.

The other extrinsic parameters, such as Oj, and source position, are unbiased by nonlinear

tides. This is because the phase shift affects both polarizations equally and these other extrinsic

parameters depend primarily on the ratio of the two polarizations. Although not biased, the

decrease in Opp with increasing A does broaden the posteriors of all extrinsic parameters.

2.2.5 Measurability and Model Selection with Nonlinear Tides

Having quantified the impact of neglecting nonlinear tidal effects, we now consider how well they

can be measured. We evaluate the statistical evidence for their existence and assess how well we

can constrain the nonlinear tide parameters from the data. To do this, we repeat the simulations
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in 2.2.4 but now use a model that does include the nonlinear effects when recovering the signal.

We thereby obtain posterior distributions for A, n, and fo as well as odds ratios ONL comparing

the nonlinear tide model to Gaussian noise.

Model Selection

By computing both Op and ONL, we obtain an odds ratio comparing the two signal models

In ONL= InONL - n P. This provides a statistical measure of the evidence for each model. If

OP is large, the nonlinear (NL) model is favored.

In Fig. 2-17 we show ON as a function of A. For A < 10-8, we find ONL < 1 which implies that

the model neglecting nonlinear tides is favored. This is due to Occam's razor, which penalizes the

more complicated models that include nonlinear tides because they do not match the data signifi-

cantly better than the simpler models that ignore them. Typically, the Occam factor corresponds

to In ONj ~ -0.1 and is not strongly dependent on PNet. This agrees with our intuition from the

Laplace approximation, valid in the limit of large PNet. In this limit, we assume the likelihood is

well modeled by a Gaussian in the model parameters and the prior is nearly constant over the

Gaussian's support.

Z J dD (O-MAP)T F(O-MAP)

~ AT P(OMAP)(27r)Ddet - 1  (2.75)

max det ICov (2.76)
Vprior

We expect det|Covj to be independent of the NL model parameters when they are too small to mea-

sure, meaning the odds ratio is dominated by the ratio of the prior volumes (OP prior P ro

1). Because the NL model has a larger prior volume (more parameters), the PP model is preferred

over it.6 For PNet ~ 25, In ONL - -0.1 corresponds to less than 0.05% of ln OgP. However,

when A > 10 8 , the NL models are strongly favored. Comparing with Fig. 2-17, we see that

A - 10- 8 is also where Op begins to decrease. This is not a coincidence. The NL models are

able to reconstruct the signal equally well regardless of A and thus ONL constant. Therefore,

ln ON ~ constant - In Op and the critical values of A for detectability and model selection are
6 Note, the assumption that detiCov is independent of the NL parameters can break down when the NL parameters

are measurable.
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Figure 2-17: In ONL for various NL parameters when pnet ~ 25. We note that In OpN < 0 but
In OpNLI < In Opp when A -> 0, meaning we lose some evidence by expanding the model when

NL effects are unmeasurable, but it is a small effect.

the same. Fig. 2-17(b) shows that the trend continues as a function of n and fo as well; Fig. 2-

14(b) and 2-17(b) are inverses. Therefore, the regions of parameter space where the PP models fail

correspond to the regions where the models with nonlinear tides are most favored. It also means

that we can recover all of the Pnet that is lost when nonlinear tides are neglected by using a more

complete model.

Tests of GR

While it is clear that we can distinguish NL models from PP models for large A, it is also interesting

to consider whether we can detect deviations from the PP model without the correct alternative

model. Test Infrastructure for GEneral Relativity (TIGER.) [10, 94, 951 is designed to answer exactly

this question and computes odds ratios between the PP model and generic deviations from vacuum
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GR (01"). It does so by allowing the PN coefficients to vary away from their GR predictions

and computing the evidence for the modified models. Furthermore, TIGER is agnostic about the

effects of linear tides and only considers f < 400Hz [11]. In this way, it focuses on the early inspiral

alone, during which the PP model is expected to be correct. We used TIGER to analyze a single

injection (A = 1.6 x 10-7, fo = 50 Hz, n = 2) and observed large evidence for models allowing the

first four PN coefficients to vary. They correspond to ln O&P 45 when Pnet 25 and there is

strong evidence in favor of the alternative hypothesis. By comparison, when we use the NL model

rather than TIGER to recover the same injection we find ln ON ~ 53. We also note that n = 2

corresponds to some of the smaller ONJ observed; other parameters are likely to produce even

larger evidence in favor of TIGER's alternative hypothesis.

Various studies have shown TIGER to be insensitive to most uncertainties associated with

compact binary coalescences and interferometric observatories (e.g. linear tides and calibration

uncertainties; [12, 10]). However, we find that nonlinear tide effects, if large and ignored, can fool

the TIGER machinery and suggest that GR is not the correct theory of gravity when, in fact, we

have simply neglected relevant physics within the NSs. To our knowledge, this is the first example

of an effect that, if ignored, could fool TIGER. This therefore emphasizes the implicit assumption

within the TIGER analysis that all relevant physics has already been included in the model.

Measurability

We found that neglecting nonlinear tides when A /> 10-8 can significantly hamper detection and

bias parameter estimation. Conversely, we found that if A > 10-', there will be strong statistical

evidence for nonlinear tides. We now consider how well we can measure the nonlinear parameters

with data from a single event.

We first evaluate what upper bound on A is achieved when nonlinear effects are extremely small

(i.e. for injected signals with A - 0). In Fig. 2-18 we show the posterior distributions of A for

different values of pnet assuming a uniform prior for log A. We find that the upper bound is near

A ~ 10-, with a slight decrease with increasing Pnet. This is not surprising given that at this A

the tidal effects begin to be noticeable.

In Fig. 2-19 we show the marginal posterior distributions for A, n, and fo for injections at

Pnet ~ 25. When A < 10-8, we cannot measure n or fo. However, for A > 10-', we can measure

both n and fo to relatively high precision even at Pnet ~ 12. Typically, we measure A and fo
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comparably, based on a comparison of the Kullback-Leibler divergence [90, 1091 from the prior to

the posterior and the entropy of the posteriors. Measuring n, however, requires either larger A or

Pnet.

There are also degeneracies among many of the parameters in our model. The strongest degen-

eracy is between A and M, which we show in Fig. 2-21. When A ~ 10-8 and nonlinear tides are

marginally detectable we find a negative correlation between M and A (larger M favor smaller A

and vice versa). This is because a bias toward larger M shortens the inspiral and thereby mimics

the effects of the nonlinear tide. When A > 10-, the degeneracy between M and A is present

but truncated because A < 10-8 is ruled out. However, the trends are somewhat different when

n = 2; the correlations can change their behavior depending on the values of the injected param-

eters. Fig. 2-15(b) shows the joint and marginal distributions for M and q for injections with

n = 2, fo = 50 Hz, and Pnet ~ 50. Unlike in Fig. 2-15(a) where M is biased to larger values as A

increases, here we see that M is biased to smaller values as A increases. This is because the bias

in q is much stronger and pushes the posterior backward along the degeneracy between M and
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q [16]. Fig. 2-21(b) shows the correlation between M and A when n = 2. We see that it is reversed

relative to the n = 0 case shown in Fig. 2-21(a). In particular, larger A imply larger M. This is

because at smaller A, the model compensates with a more asymmetric q and a decrease in M.

We also find degeneracies between the nonlinear tidal parameters. A has a strong positive

correlation with n because A# oc A/(n - 3). Interestingly, this forces A to have a weak negative

correlation with fo because larger A imply larger n, which then requires a smaller fo to maintain

roughly the same A0. However, this correlation breaks down for large fo, because AO then depends

more strongly on fo, weakening the correlation between n and A and strengthening the correlation

between fo and A.

So far, we have focused on only the leading order terms in our Taylor expansions of A, fo,

and n (see Eqn. 2.70). However, our reconstructions also sampled the first order terms. We do

not find any strong correlations between the zeroth and first order terms. Nonetheless, while most

marginal posterior distributions for the first order terms are completely unconstrained, occasion-

ally we observe weak constraints on dfo/dm near the boundary of its prior. If this result holds

more generally and we are able to measure fo as a function of component mass from a series of

detections, we may be able to use fo to make cosmological measurements using GWs alone. This is

because fo provides an intrinsic frequency scale that gives a handle on the redshift of the otherwise

conformal inspiral [99, 104]. Indeed, if we can measure fo as a function of mass, we may extract
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both the redshift and the luminosity distance directly from the GW signal without recourse to an

electromagnetic counterpart. Similar approaches already exist in the literature including when one

knows the NS equation of state [53, 1041, when the post-merger signal is observed [1031, when the

shape of the NS mass distribution is known [134, 1351, and when no electromagnetic counterpart

is found but there is a reliable galaxy catalog [51]. Further studies will be needed, however, to test

the usefulness of fo and to evaluate the robustness of our saturation model.

We also carried out analyses in which we allow each body to have independent values of A,

fo, and n as an alternative to the Taylor series expansions in component mass. Because there is a

relatively weak dependence on mass ratio q in the phase shift and because binary NS systems should

have q - 1, we find a strong degeneracy between A 1 and A 2 . Generally, the posterior supports large

A for one mass and small A for the other, disfavoring nearly equal A for both masses (even if the

masses are similar). The Taylor expansion approach, by contrast, ensures similar values of A for

similar mass NSs. We therefore consider it a better method. Most important, the weak constraints

placed on the first order terms suggests that we capture most of the nonlinear tidal effects with just

the zeroth order terms.

93



Chapter 3

Detection of Gravitational-Wave

Transients

Having considered the effects of nonlinear interactions within tidal systems in 2, including the

possible impact on GWs observed from binary neutron star coalescences ( 2.2), it behooves us

to consider GW detection itself in greater detail. This chapter focuses on many, but not all,

aspects of GW transient detection using ground-based laser interferometers and is largely based

on [22, 27, 40, 59, 60, 165], among other work. We apply the conclusions from these studies to

actual detections in 4.

Ground-based GW detectors are complex machines with hundreds of thousands of degrees of

freedom. While basic interferometric readout may be described by only a handful of these, the

supporting subsystems introduce many more associated with the position and movement of the

device as well as diagnostic monitors of the surrounding environment. The basic idea, however, is

to isolate test masses by suspending them from several pendula, which leaves them free to move over

small distances in the horizontal plane. These test masses then approximate freely falling observers

and we measure the separation between elements of this congruence with light, replicating the

theoretical set-up introduced in 1.3.

In general, GW detectors output a lot of information beyond just calibrated strain time-series

(h(t)). Using all available information, analysts then try to answer three basic questions: which

bits of data are likely to contain GWs, which bits of data are valid and/or unlikely to contain noise
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artifacts from terrestrial sources, and, assuming there is a GW in the data, what is the spectral

structure of that GW. I will refer to these as trigger generation, data quality, and parameter

estimation, respectively.

Fig. 3-1 shows a simplified schematic of the entire GW detection process, from data acquisition

to completed inference and dissemination to the outside world. We discuss trigger generation in

3.1, data quality and vetting in 3.2, parameter estimation with emphasis on source localization in

3.3, and general aspects of monitoring and infrastructure in 3.6. We also describe a few pragmatic

issues with IFOs in 3.4 and 3.5, frequency dependence of the antenna responses and the impact

of diurnal cycles within the detectors, respectively.

3.1 Trigger Generation

There are many approaches to detecting gravitational waves, but I will focus on two of the most

common for short duration transients. These algorithms statistically determine when GWs are likely

to be present in a data stream. Matched filtering (also called Wiener filtering [156, 172]) assumes
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the signal's frequency evolution is known and uses this prediction to reject noise. A coherent

likelihood approach can use multiple detectors to look for correlated excess power inconsistent with

the background, independent of the signal's (unknown) spectral features. Both attempt to compress

the full data stream into sufficient statistics that maximize a likelihood ratio comparing a model

with GWs and a model with pure Gaussian noise.

3.1.1 Matched Filtering

Matched filtering produces an optimal search statistic for known signal waveforms in pure Gaussian

noise. It is ubiquitous within GW searches for compact binary coalescences, where theoretical

models of the waveform are believed to be reliable.

We begin by modeling the noise in our detectors as colored Gaussian noise. By this we mean

that frequency bins in the Fourier domain are independently drawn from a set of separate Gaussian

distributions. Usually, we measure the standard deviation of the amplitude and assume a random

phase for each bin. This means we can write the probability of a particular noise realization ni in

the frequency domain as

In p(n) =n 12 ~2 df (3.1)In1 _2_____

2 o Sn (f)
0

where the explicit sum over discrete frequencies extends over both positive and negative frequencies

and S, is the one-sided power spectral density (PSD).

Now, we assume that the noise is additive so that, in the presence of a signal, the detector

output is d = Ah + n, meaning we can write the probability of observing a signal of known shape

(h) with amplitude A as

In p(A) = In p(d - Ah) = -2 df Id -Ah (3.2)

S fd1 2 + |A1 2 |h1 2 - d*Ah - dA*h*
-- 2df Sn(3.3)
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We can then maximize this with respect to A and obtain

1 ( fdfh*d+d*h)
Amax = - s71 (3.4)

2 f df lh2

In p(Amax) - In p(A = 0) = 2 (3.5)

where

Sdf h*da+d*h 
2

2 S 2

p fdf Jh (3.6)
f df!i

is the matched filter signal-to-noise ratio.1 We note that this is a sufficient statistic in pure Gaussian

noise, and all searches that use predicted waveforms implement some form of matched filtering.

Weiner filters [156, 172] also provide a way to compute p in the time domain, allowing analysts to

filter the data optimally in real time (p is linear in the signal amplitude). Fig. 3-2 demonstrates this

for a simple chirping sine-Gaussian signal buried in white noise. We see that there is a clear peak

in p(t) corresponding to the location of the hidden signal, even though the signal's time-domain

amplitude is much less than the noise.

We should note that GW detectors do not exhibit pure Gaussian noise, but instead also contain

non-Gaussian noise artifacts (glitches). This fact motivates most searches to include other detection

statistics, usually some form of signal consistency check or x 2 statistic that compares the predicted

waveform's distribution of power with what was observed in the data [35, 116, 155]. We will not

discuss signal consistency checks of this kind in any great depth, but we will discuss non-Gaussian

artifacts in detail in 3.2.

3.1.2 Coherent Likelihood

While matched filtering techniques are often used to examine a single data stream at a time, we

can use multiple detectors to reject noise. In this way, we can perform a coherent search for GWs

in multiple strain measurements simultaneously. Typically, these searches are used to identify un-

modeled GW signals that may otherwise appear as excess noise, commonly referred to as bursts. 2

We begin with the antenna patterns for a detector ( 1.3.1), which are transfer functions from

1 The value of the denominator is somewhat arbitrary and is usually normalized to unity.
2 One can conduct a single-interferometer burst search as well, but we focus on searches using at least two detectors

in order to reduce the non-Gaussian noise background through coincidence requirements.
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the astrophysical strain into the detector output. Again, assuming additive noise and antenna

responses Fj, we write

da - n. + ZFajhj (3.7)

where a indexes the detectors and j indexes the polarizations (for GR, j E {+, x}). We can then

write the probability that there is a signal in the data from multiple detectors as

(da Fohs)(da- Fcyjhj)
In p = -2 df ( - *, (3.8)

aS

|1d1 2 Id F*- h + d* Fcj hj hk Fak F* h*
= -2f d - a(3.9)

a e, a,j,k

= -2 df 2 - d0 Bc h* + d* B* hj + > hkAgkh* (3.10)
a a,j j,k

where

Ak3 = e ca3 (3.11)

F*.
Bcg = j (3.12)

Now, for un-modeled signals we maximize this over each strain component hj(f), which yields an

estimator for the strain and a corresponding likelihood 3

hj = ) (A- 1 )k Bakda (3.13)
a,k

In p(h) - In p(h = 0) = 2 df d* B*j (A-) Bokd, (3.14)

and we note that the likelihood is again quadratic in the data.

This result simultaneously fits the signal in multiple detectors as a function of the location on

the sky. We note that these solutions involve an inversion of the antenna patterns, which can lead to

singularities and degeneracies. In general, if we have equal numbers of detectors and polarizations

there is a degeneracy across the entire sky (no source location is preferred over another). Additional

3 We can also marginalize over all hj with a suitable prior to compute the Bayesian evidence for a GW being
present.
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assumptions must be made, and we will discuss a few in more detail in 3.3. A common one is

motivated by the near alignment of the Livingston and Hanford detectors. Throughout most of

the sky, the combination of these detectors is effectively sensitive to only a single polarization, and

therefore we often assume there is only one polarization present [86, 87].

For two interferometers and a single effective polarization, the location on the sky maps into a

time-delay between when the signal arrives at each detector. We can then search for the optimal

time-delay by sliding data from one interferometer past data from the others, as is depicted in

Fig. 3-3. When the time-delay cancels the physical one introduced by the direction to the source

relative to the detectors, we see a strong peak in the coherent likelihood. Again, this constitutes a

sufficient statistic in pure Gaussian noise.

Although a coherent likelihood search is typically less sensitive than an analogous matched

filter search, it is generally more robust against modeling uncertainties. Therefore, burst searches

typically target poorly modeled or unanticipated signals. Furthermore, like matched filtering, burst

searches typically include other search statistics to handle non-Gaussian noise artifacts. Generally,

searches produce something like a signal-to-noise ratio (or coherent likelihood, sometimes called the

correlated energy) and a measure of how similar the waveforms are within each detector. Because

they search for signals with unknown waveforms, they cannot use signal consistency checks (with

few exceptions).

3.1.3 Statistical Decision Theory

Both matched filtering and coherent likelihood techniques provide a set of detection statistics and an

intuitive way of ranking events. However, we can more generally determine the optimal way to rank

events given an arbitrary number of statistics. The likelihood ratio provides such a ranking. The

likelihood ratio compares the probabilities of the data being due to one of two models. Assuming

we know the distributions over detection statistics for each model (p(datalsignal) and p(datalnoise),

respectively), the Neyman-Pearson lemma [106] proves the optimality of the likelihood ratio, defined

as
p(datalsignal)
p(datalnoise)

A naturally ranks signal-like events higher than noise-like events, and tells us which parts of param-

eter space to search first for signals. In this way, we naturally define the optimal detection efficiency
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and false alarm probability (FAP) of the search as integrals over the D-dimensional parameter space

defined by a set of statistics (0) (see, for example [2, 26, 36, 98])

detection efficiency : P(A > alsignal) J dDop(Olsignal) (3.16)

A>a

false alarm probability: P(A > alnoise) = dDop(0lnoise) (3.17)

Aga

Fig. 3-4 shows a 2-dimensional example. In particular, Fig. 3-4 shows the Receiver Operating

Characteristic (ROC) curve generated by plotting P(A > alsignal) against P(A > alnoise) for all

a. ROC curves define what fraction of signals can be detected at each FAP; different detection

schemes can produce different ROC curves. Ranking by the likelihood ratio maximizes the area

under the ROC curve, and generally ROC curves which are further toward the "top left" corner are

better. Fig. 3-4 shows that, if we are willing to accept a 1% FAP, we can detect - 25% of signals

for these particular distributions.

We note that the odds ratio (In O) and Bayes factors discussed in 2.2 are essentially forms of

the likelihood ratio. These include the application of priors, which do not depend on the data, and

therefore do not affect the ordinal ranking assigned to a set of candidates. Therefore, both A and

In 0 are affine parameters for the same optimal ROC curve.

3.2 Data Quality and Vetting

While our example trigger generation statistics are sufficient in Gaussian noise, real detectors do not

produce pure Gaussian noise. Instead, they also produce non-Gaussian noise transients (glitches).

Significant effort has been invested in search algorithms to determine search statistics that are ro-

bust against non-Gaussian backgrounds. Similarly, significant effort has been invested in identifying

glitches based off auxiliary data which is insensitive to GWs but nominally more sensitive to the

glitches' source. Historically, analysts have often sought one-to-one deterministic mappings from

cause to effect based primarily on their expertise with the detectors. While this has been successful

in some cases, 4 real interferometers are complicated enough that these efforts are far from com-

prehensive. Instead, we often rely on algorithmic approaches to determine correlations between
4 An example is described in the appendix of [143].
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auxiliary degrees of freedom and glitches. In this sense, data quality becomes another instance of

statistical decision theory with a different target: glitches and other noise artifacts instead of GWs.

The statistical approach immediately runs into problems associated with scale. We record

200,000 auxiliary degrees of freedom associated with the detector's state at a variety of sample

rates. Within each of these channels, there may be several populations of artifacts characterized by

different distributions over amplitude, frequency, duration, etc, some of which may be correlated

with h(t) and some of which may not. To further complicate matters, the correlations are often

non-stationary. A good witness channel yesterday is not guaranteed to be a good witness today.

These issues strongly motivate the need for reliable, scalable correlation machines which can be

run repeatedly to track non-stationarity. In a broad sense, we utilize machine learning to infer

important correlations from vectorized representations of the auxiliary state surrounding glitches.

3.2.1 discusses several algorithms used to infer robust statistical correlations between auxiliary

witnesses and h(t) noise artifacts. Their performance is characterized in offline/acausal applications

before being applied to low-latency searches in 3.2.2.

3.2.1 Algorithmic Development

Interferometric detectors record their physical environment and detailed interferometry status

through thousands of auxiliary channels that present no or negligible coupling to GWs. Information

from these channels presents an important handle for understanding (and fixing) the sources of noise

in the instruments, reducing the background and ultimately establishing confidence in detections.

The problem of identifying and automating the use of information from auxiliary channels is long

standing within the GW data analysis community [41, 42, 46].

A number of statistical quantities have been developed [1281 in order to help characterize the

performance of a particular auxiliary channel or veto strategy, such as glitch detection efficiency:

the fraction of h(t) glitches removed, use percentage: the fraction of auxiliary glitches which can be

associated with a h(t) glitch [46, 82], deadtime: the effective fraction of analysis livetime removed

when applying the veto strategy, and Poisson significance: the statistical significance of a measured

correlation between auxiliary and h(t) glitches assuming random coincidence [85]. These veto

metrics are most appropriate for a simple veto strategy, such as a coincidence between an auxiliary

and h(t) glitch within a short specified time window. Expansions on this approach include making

use of our knowledge of the instrument to anticipate when noise coupling between the auxiliary
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and h(t) channels is strongest and/or consistent with observation [13, 141. The use of machine

learning algorithms to digest the large amounts of auxiliary channel information and predict h(t)

glitches is also an active area of study [271. Accidental transient noise coincidence across multiple

instruments is still a dominant source of background in astrophysical searches, especially in searches

for un-modeled transients.

All our algorithms assume some level of stationarity within the data. This assumption, even if

implicit, allows us to measure correlations using samples from relatively long time periods (much

longer than the typical duration between noise transients). What's more, we typically assume there

are several populations of transients in each auxiliary channel, some of which are correlated with

h(t) and some of which are not. However, we often assume that these populations can be reasonably

well separated with a few thresholds on transient parameters.

Because of the classification problem's scale, a major task is the automatic rejection of irrel-

evant or redundant information. One such approach, commonly referred to as Ordered Veto List

(OVL) [591, does this by hierarchically considering pair-wise correlations between h(t) and a single

auxiliary channel. Similar approaches are also implemented in [130] and [821; OVL supports those

algorithms through a choice of ranking statistic. The basic concept is illustrated in Fig. 3-5. We

define a set of veto configurations, or recipes for how to reject transients in h(t) based on auxiliary

glitches. OVL uses a threshold on the auxiliary glitch's amplitude (technically, a measure of the

significance of the glitch in white Gaussian noise) and a time window surrounding the auxiliary

glitch's central time. For a single auxiliary channel, OVL constructs segments based on the union

of all time windows surrounding sufficiently loud auxiliary triggers and vetoes any h(t) transients

that fall within those segments. This procedure is carried out hierarchically through a list of veto

configurations with only data that has not already been vetoed available to subsequent configura-

tions. The algorithm proceeds iteratively, ranking each veto configuration based on its performance

and then re-ordering the configurations before the next iteration. This process is repeated several

times until the list settles into a reasonable state that does not change much from iteration to

iteration.

OVL supports three ranking metrics when ordering veto configurations: efficiency over deadtime

(c/f), use-percentage (%use), and Poisson significance (Ppoisson). 6/f is the fraction of remaining

h(t) transients removed by this configuration divided by the fraction of remaining time removed by

this configuration. We note that this is similar to a likelihood ratio with the efficiency approximating
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Figure 3-6: By analyzing multiple auxiliary channels simultaneously, Machine Learning Algorithms
may detect higher-order correlations such as triple coincidences (blue). These can be removed
separately from pair-wise correlations (green and red), thereby increasing classification accuracy
and robustness.

p(datalsignal) and the deadtime representing p(datalnoise). This similarity often leads to better

ROC curves for E/f compared to other metrics (Fig. 3-7). %use is the ratio of the number of

h(t) transients removed by this configuration to the number of auxiliary glitches used to construct

the segments. High %use favors one-to-one mappings between auxiliary and h(t) glitches. Ppoisson

measures the probability of finding at least as many h(t) transients within this configuration's

segments given the observed rate of h(t) transients, assuming they are Poisson distributed.

Ppoisson = e (At)k t : total time contained within segments (3.18)
k=nc

= e fE (fcf/)k (3.19)
k=n,

where nc is the number of coincident h(t) glitches. We note that, for a fixed E/f, Ppoisson favors

configurations with larger nc because we order configurations by increasing Ppoisson.
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While OVL is able to determine many pair-wise correlations, it is fundamentally incapable of

determining higher order correlations between multiple auxiliary channels and h(t) glitches. An

alternative approach is to vectorize the full auxiliary state of the detector and make use of Machine

Learning Algorithms [27]. Fig. 3-6 demonstrates how we may be able to determine correlations

between multiple auxiliary channels instead of only the pair-wise combinations shown in Fig. 3-5.

We investigated Random Forests [30, 31], Analytic Neural Networks [75, 77], and Support Vector

Machines [38, 45, 47]. Random Forests average over the predictions of many decision trees, each

with access to only a subset of the total set of features and optimized over that subset. Neural

Networks use collections of connected nodes (neurons) that are activated by weighted sums of

their inputs, resulting in a single output node which combines the results passed through multiple

layers into a single prediction. Support Vector Machines attempt to partition the feature space

using hyper-planes separating regions dominated by a single type of sample. All these algorithms

constitute supervised learning.

We vectorize the auxiliary state into 5 features per auxiliary channel: amplitude, time between

auxiliary glitch and h(t) glitch, central frequency of the auxiliary glitch, the duration of the auxiliary

glitch, and the number of wavelet pixels included in the auxiliary glitch. These features are taken

from the loudest auxiliary glitch within 100ms of the target time; if no auxiliary glitch exists, all

values are set to zero. With historical data, we find that Random Forests typically perform best,

although they performed only comparably to OVL [27].

Fig. 3-7 shows the performance of OVL's three metrics on a week of data surrounding GW151226

( 4.2). This week corresponds to excellent classification at LHO and above average performance

at LLO, although not remarkably so. The ROC curves also show the expected ordering, with e/f

performing slightly better than %use. For this data, Ppoisson seems to perform comparably to the

other metrics, although this is usually only true in the limit of large FAP or deadtime. The LHO

panel of Fig. 3-7 suggests this somewhat in that the Ppoisson ROC curve starts at higher deadtimes

than the other metrics, a consequence of the preference for veto configurations which remove a large

number of glitches and correspondingly large amounts of time.

Both OVL and all the MLAs were originally designed for offline analysis, where latency is not

an issue. They have been adapted to run in an online, low-latency mode ( 3.2.2). Before discussing

this approach, there is another offline analysis worth mentioning.
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Figure 3-7: ROC curves from OVL for the week surrounding GW151226 (00:00:00 UTC on Decem-
ber 17, 2015 to 00:00:00 UTC on December 27, 2015) from (left) LHO and (right) LLO, analogous
to Fig. 3-14. This corresponds to 168.61 and 129.17 hours of livetime and 65,323 and 505 glitches
at LHO and LLO, respectively. We note that the error bars in the LHO data are too small to see
(typically < 10-3) given the large number of glitches.

Pointed Poisson Analysis

OVL is basically a counting experiment; we count how many h(t) glitches fall within a set of

segments defined by an auxiliary channel. However, to capture an important aspect of coincidences,

namely how much time separates the participating glitches, we must include many different windows

in the algorithm. Motivated by this, we can reformulate the problem of measuring the significance

of a coincidence in terms of the proximity of the events directly. In this formulation, we assume the

auxiliary glitches are Poisson distributed5 and measure the significance of observing a coincidence

at least as close to a particular time. This, in its essence, is a null test for the hypothesis that the

time is not correlated with the triggers in the auxiliary channel.

We assume we can measure the rate of auxiliary glitches above some amplitude threshold (A,)

and then compute the p-value for the nearest such trigger (At, away from the time of interest) as

p = 1 - e- A A,, At, are functions of the amplitude threshold (p) (3.20)

Now, we expect loud triggers to be rarer than quiet ones. Therefore, a loud but distant glitch may

5 We assume Poisson distributed triggers because it models most channels well. However, the process could be
repeated with other distributions, even empirically measured distributions.
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be more significant than a quieter but closer glitch. It is the product of APAtP that matters. For

this reason, we take the minimum p-value6 over all p

pmin = min {1 - e- APAti} (3.21)P

For a given time, we compute pmin for each channel. We can then measure the expected acciden-

tal coincidence distribution by measuring Pmin for randomly chosen times. Fig. 3-8 demonstrates

just such a distribution. We note that the tail of the distribution is linear (prob(pmin < q) oc q),

meaning Pmin is a legitimate p-value in this regime, as desired. The distribution's overall normaliza-

tion reflects the number of channels used. We note that, by normalizing At by A for each channel

separately, we are able to put each channel on an equal footing. Accidental coincidences from any

channel are drawn from the same background distribution.

We also note that, for times characteristic of a single type of event (e.g. a single h(t) glitch

family), we can repeat this experiment and stack the measurements. This is because each measure-

ment is individually identically distributed and the joint probability is the product of the individual

probabilities.

This pointed null test for uncorrelated, Poisson-distributed auxiliary glitches has been used

to confirm the lack of terrestrial noise sources for all confirmed GW detections to date ( 4, [145,

146, 151]). What's more, it has been used to study populations of troublesome noise within the

detectors, a good example of which are blip glitches. These broad-band, short duration signals

currently limit the background of all transient searches. Upon investigation of - 600 blips identified

in the 01 Coherent WaveBurst ([86, 87]) background, we found several populations of blips using

these techniques. Fig. 3-9 shows the behavior of LHO blips under the assumption of a single

population and multiple populations. For a single population, we simply stack all measurements;

for multiple populations, we stack all measurements for which a particular channel was found to be

coincident (minf{Atp} < 1 sec). This should mitigate the washing-out effects of stacking unrelated

measurements at the cost of a larger tail. Compared to Fig. 3-8, which shows the equivalent

distributions for random times, there is a clear excess in the multi-population distributions. This

excess is associated with very loud glitches that are witnessed in magnetometers and microphones

6A more careful analysis would include marginalization over the measurement uncertainty of Ap and a more
careful accounting of the trials factor incurred by the minimization over p. We find these to be unnecessary for our
immediate goals.
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Figure 3-8: Pointed Poisson stacked p-values for random times for many different auxiliary channels.
(top) All times are stacked together for each channel separately assuming independently identically
distributed events. (bottom) Only times with which a particular channel is coincident (At ; isec)
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distributions is associated with the number of channels.
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Figure 3-9: Pointed histograms for blippy times from LHO, analogous to Fig. 3-8. Although we
see clear outliers in the unsafe distributions assuming a single population and multiple populations,
there is a clear excess of safe outliers only in the multiple populations distribution.
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Figure 3-10: Pointed histograms for (top) blips that are witnessed in magnetometers (53 times)
and (bottom) blips that have no auxiliary witness except for unsafe channels (554 times), which
strongly resembles the bottom panel of Fig. 3-8.
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(top panel of Fig. 3-10). However, the vast majority of blips (~ 91%) have no auxiliary witness

(bottom panel of Fig. 3-10). Importantly, the only channels that correlate with blips are within the

differential-arm motion control loop or otherwise unsafe; that is, they can be sensitive to real GW

signals. This study conclusively shows that our current set of safe auxiliary witnesses is insufficient

for blip glitches.

3.2.2 Online Infrastructure for Low-Latency Vetting

The online detection of glitches in h(t) provides additional constraints. While computational cost

and efficiency are important for offline analyses, they are vital for online predictions for which

latency is a factor. Here I describe an online architecture used to robustly identify h(t) glitches based

on auxiliary channel information alone, often with lower latency than GW searches themselves: iDQ.

iDQ ingests triggers from a rapid dyadic wavelet transform based on the Haar wavelet decom-

position (KleineWelle [39]). While the precise source of triggers is unimportant algorithmically, the

speed of the Haar transform makes these triggers extremely useful. KleineWelle is able to process

32 seconds of several thousand channels, each sampled at several kHz, on a single core in approx-

imately 30 x real time. The main latency for iDQ is KleineWelle trigger generation and the main

latency for KleineWelle is associated with waiting for enough data to whiten the wavelet transform.

The problem of glitch classification is compounded by non-stationarity. For this reason, we

divide the classification problem into separate, asynchronous steps that mesh to provide low la-

tency predictions while automatically updating the trained classifiers and calibrating their output.

Specifically, a low latency evaluation loop searches for new auxiliary triggers and uses pre-trained

classifiers to predict the existence of glitches in h(t). The classifiers' output, which by itself has little

physical meaning, is then automatically calibrated into probabilistic statements such as the FAP,

glitch detection efficiency, and even the likelihood ratio ( 3.1.3). These are reported as stream-

ing time-series. Periodically, training and calibration jobs are separately launched to account for

non-stationarity. These jobs update the trained classifiers and calibrated mappings from classifier

output to probabilities based on historical data, usually up to a week's worth. The training jobs

perform the offline OVL and/or MLA analyses while the calibration job performs a simple counting

experiment using the results of the online predictions.

A crucial aspect of this process is the cross-validation performed by the calibration step. The low

latency evaluation, in addition to generating time-series, reports predictions for a few discrete times.
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Figure 3-11: iDQ time-series from LLO for G272601 (a clear radio-frequency whistle from 21:44:40
UTC on February 4, 2017); blue shaded regions correspond to the 90% upper limit on the estimated
FAP based on the counting statistics within iDQ's calibration job. Note that the classifier's rank
increases when the FAP decreases. A spectrogram of h(t) for this event is provided in Fig. 3-31.

These are chosen to represent both glitchy and clean times based on the actual h(t) signal. Glitchy

times are defined by the presence of a loud trigger in h(t) and cleans are drawn from a Poisson

process and are required to be at least 100ms away from glitchy times. Because the classifiers make

their predictions without knowledge of the glitch/clean label and are causally trained (using only

historical data), this procedure allows us to automatically measure both the FAP and detection

efficiency in an unbiased way.

Another important aspect of iDQ is its automatic, low-latency response to candidate events

reported by search pipelines (Fig. 3-11, 3-12, 3-13, and 3-1). Whenever a new candidate is reported,

iDQ generates a full report of its predictions, the features relevant to those predictions, and measures

of how well the classification as a whole is performing in the neighborhood of that event. Specifically,

each instance of iDQ (one per detector) reports the time-series along with the raw classifier output

(called rank). Over the same time-window, OVL reports which veto configurations were active

and their associated ranks. This immediately allows analysts to identify the auxiliary channel
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Figure 3-12: Auxiliary channels identified by iDQ to be correlated with h(t) and when the corre-
sponding veto segments are active for each configuration from LLO for G272601. Note, the rank
reported here corresponds to the rank reported in Fig. 3-11. Fig. 3-31 shows spectrograms for the
key witness channels along with h(t) for this event.
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Figure 3-13: iDQ (left) ROC and (right) calibration coverage plots from LLO for G272601. The
observed FAP is higher than the nominal FAP for this event, which is likely due to large numbers
of whistles in the local neighborhood. iDQ assumes that glitches are relatively rare and therefore
calibrates the FAP using segments generated from its time-series. However, if glitches are not rare,
or suddenly become more common, they can make our calibration estimates misleading at times.

responsible for the veto should one occur. In addition to this, iDQ summarizes its local performance

in both an ROC curve and a coverage plot, the latter of which shows how well the FAP time-

series is calibrated 7 . Fig. 3-11, 3-12, and 3-13 demonstrates these annotations for a radio-frequency

whistle at the Livingston detector during the second observing run. Although iDQ can run multiple

classifiers simultaneously within a single process, we typically only upload information from OVL

using e/f.

iDQ can combine the output of multiple classifiers in an attempt to boost their joint perfor-

mance; we call these combiners. Using basic assumptions about the form of the joint probability

distributions over classifier output, we model the likelihood ratio to generate a new ranking. Typ-

ically, we take Pjoint = max {pi (ranki)} when we expect the classifier to be highly correlated (e.g.

glitchy times) and pjoint = H p (ranki) when they are independent (e.g. clean times). Furthermore,

because we are limited by relatively small sample sizes for the glitchy distributions and cannot

easily generate more glitchy times from historical data because of non-stationarity, we often find

better performance by replacing the probability distributions in the above expressions with their
7 Properly calibrated FAP time-series should produce deadtimes commensurate with the numerical value of any

threshold applied to the time-series to create segments.
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associated cumulative distributions so that

max{p(rank > ranki glitch)}
Ajoint = (3.22)Ajn p(rank > rankilclean)

While we do not see dramatic improvement over individual algorithms, we do find that the

combiner often follows the maximum ROC curve from a selection of single algorithms. While this

can complicate the interpretability of the algorithms' predictions with regards to which auxiliary

channel is responsible, it does allow us to automatically select the best features from each OVL

ranking metric. The combiner tends to follow E/f and %use at low FAP where they dominate and

smoothly transitions to Ppoisson at high FAP where E/f and %use can often stop reporting useful

information.

Fig. 3-14 shows iDQ's performance over the same week surrounding GW151226 as Fig. 3-7. In

general, we see comparable shapes for the ROC curves with excellent classification at LHO and

above average at LLO. Importantly, Fig. 3-14 shows the FAP instead of the dead-ime, meaning it

excludes times flagged that actually did contain a glitch. The difference is usually negligible (e.g. at

LLO), but if there is a high glitch rate, it can be important. This is why the ordinates are different

for the LHO curves in Fig. 3-7 and Fig. 3-14. We also note that the offline OVL runs typically

reach higher detection efficiencies eventually, as expected, but the low FAP classification is often

comparable. In particular, the general ordering of OVL's ranking statistics is mostly preserved in

the online data.

We might ask how these ROC curves actually impact searches. At a basic level, searches per-

form coincidence measurements between detectors and, assuming uncorrelated Poisson distributed

background in each detector, we expect the rate of accidentals to be Aacc = 2AtALHOALLO, where

At - 10ms corresponds to the time-of-flight between detectors. Although all classifiers give slightly

different results, c/f provides a decent benchmark. Within the week surrounding GW151226 (Fig. 3-

14), iDQ's predictions using E/f reduce the rate of glitches in LLO (LHO) to 47.6% (4.14%) of its

original rate, requiring FAP < 10-2. This means the rate of accidental coincidences is reduced to

only 1.97% of its original value, over a 50-fold reduction in background. 8

We also note that Ajoi0 t under-performs compared to the individual algorithms at times. This is

associated primarily with detector non-stationarity and typically Ajont either follows the individual
8 1n reality, the impact will be somewhat less for searches because individual search algorithms can reject some of

this background themselves.
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Figure 3-14: ROC curve from online iDQ runs in the week surrounding GW151226 (00:00:00 UTC
on December 17, 2015 to 00:00:00 UTC on December 27, 2015) from (left) LHO and (right) LLO,
analogous to Fig. 3-7. This corresponds to 168.61 and 129.17 hours of live-time at LHO and LLO,
respectively, containing 65,320 and 496 glitches, respectively. We note that the FAP reported here
are lower than the deadtimes reported in Fig. 3-7 for LHO because the deadtime includes glitchy
times, while the FAP specifically excludes 100ms surrounding each glitch. The difference is usually
unimportant (e.g. the LLO results) unless there are many glitches in the data. For this training
set, LHO has a glitch every - 9.3 seconds whereas LLO has a glitch every ~ 15 minutes. The error
bars at LHO are also dominated by the estimation of FAP rather than glitch detection efficiency.

ROC curves much closer or outperforms them. Fig. 3-15 demonstrates this in a subset of Fig. 3-14's

data at LHO.

We note that MLA algorithms are also supported under iDQ but due to computational limits

associated with the I/O required for these particular implementations, we found they often struggled

to keep up with real-time. OVL operates strictly in memory during the prediction step and is much

faster.

3.3 Parameter Estimation and Localization

Now that we have discussed both trigger generation and data quality, we can consider parameter

estimation assuming that there is certainly a signal within the data and that it is not polluted by

noise artifacts. The basic goal of parameter estimation is to reconstruct the GW strain recorded by

a network of detectors in the presence of noisy measurements. When there are well trusted source

models, we can parametrize the GW strain with quantities like the component masses and spins for
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Figure 3-15: The general performance of Ajoi0 t relative to single ranking metrics using subsets of
Fig. 3-14's LHO data from December (left) 2 2nd and (right) 2 3 rd, 2015.

CBC sources. 2.2 gives an example of this for binary NS systems. Two important parameters that

are present regardless of whether we have a confident signal model are the Equatorial coordinates

of the GW point source; the Right Ascension (a) and Declination (6).' Determining the sources'

location on the sky is critical for multi-messenger follow-up observations, but it poses some inter-

esting challenges. I will describe the basic physical mechanisms used to localize sources in 3.3.1 as

well as comprehensive methods to characterize and compare localization estimates from different

algorithmic approaches in 3.3.2.

3.3.1 Basics of Triangulation

GW detectors are nearly omni-directional instruments; their antenna responses are dominated by

the 1 = 2 spherical harmonic and therefore vary slowly over the sky (Fig. 1-5). This means they

are sensitive to many possible source locations but also means a single IFO cannot determine the

source location accurately.' 0 Instead, GW localizations rely on the time-of-flight between distant

detectors via triangulation. According to GR, GWs travel at the speed of light and therefore

time-delays correspond to extra distance traversed. As a toy example, let us consider localizing

an un-modeled signal with a network of idealized all-sky instruments sensitive to a single GW
9 We could also consider extended sources, but typically our expected sources are nearly point sources, e.g. binary

stars.
1 0If a signal's spectral shape is known a priori, and the signal has large enough pnet, single IFO localizations may

be reduced. However, the necessary Pnet is much larger than we expect from realistic source distributions.
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polarization. In this case, the maximum likelihood estimate (Eqn. 3.14) yields

in p = 2 df : d* B *i (A--. Bbj db (3.23)
a,b

= 2 df Z da Fe -27rif (z 2 Fe 2 ifAtb db (3.24)
a,b Sa d Sd Sb

= 2 df Ida12 2( ) 2 df d*dbF2 e( i(t-At") (3.25)
2a a

where I have explicitly included the time-delays at each IFO as part of the antenna response

(Atd n rd where the wave propagates in the direction defined by ni and the detector is located

at r'). We recognize the second term in the final line as a measurement of the time-delay between

detectors (Ata - Atb), which is the basis of triangulation. If we further consider this term and

assume the data recorded by each detector is da Fe--2 if(At)h, we obtain

ln p D 2 z df Ih12 2 y-F2 e 2if t,1 (3.26)

2R fdf |h 12F-11e2it
27Z a~bSa Sb (Si 2idh5(.7

where 6tab = - 6 tba = (Atb - Ata) - ((Atb)o - (Ata)o). Therefore, we see that the posterior is

the product of individual posteriors on the time-delay between pairs of detectors. What's more,

the individual posteriors are the real parts of the Fourier transform of the noise weighted signal

power in the frequency domain, with the time-delay as the Fourier conjugate to frequency. This

means that broadband signals produce narrow posteriors on the time-delay and narrow band signals

produce broad posteriors on the time-delay. Furthermore, high-frequency narrow band signals can

produce oscillatory posteriors on the time-delay, which we call fringe peaks. When we have only two

detectors, fringe peaks produce concentric triangulation rings. If there are fringe peaks from each

pair of three detectors, we can obtain a checker-board pattern. Interestingly, because detectors can

have different sensitivities at different frequencies, we could have some baselines with fringe peaks (at

least one narrow band detector) and other baselines without fringe peaks (broadband sensitivity).

This would produce a single triangulation ring between the broadband detectors modulated by the
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fringe peaks from baselines involving the narrow band detector, reminiscent of a string of beads.

Fig. 3-16 demonstrates exactly this analytic beading behavior using our toy model of idealized

all-sky instruments with two broadband detectors located at the LIGO sites and a narrow-band

detector at Virgo, with an approximate binary black hole coalescence. The exact morphology

depends on the relative sensitivity and number of detectors.

It is worthwhile to note that there can be strong degeneracies across the sky when we only

have a few detectors. In particular, the likelihood vanishes unless there are more GW detectors

than polarizations (in GR, this means NIFO < 2). That is because we are trying to reconstruct

two functions with two measurements, and without prior knowledge of the waveform's shape we

can infer strain signals from any direction that match the data equally well." This degeneracy is

typically broken by the application of prior knowledge, such as the signal's spectral shape [162], the

distribution of the distance to sources, or by additional constraints such as reconstructing only one

polarization [86].

It may not be immediately clear how knowledge of sources' distance distributions can improve

localization, particularly if the detectors are nearly omni-directional. However, the argument is

rather straightforward. For locations far from the true source location's triangulation ring, the

reconstructed strain must contain a careful balance of multiple polarizations to reproduce the

observed strain. This balance usually involves more signal energy than the true location because of

cancellations between the projected strain from each polarization. Therefore, the inferred fluence

from the GW signal is larger away from the correct triangulation ring because the GW polarizations

add in quadrature within the fluence. If we assume all sources have similar energy distributions

independent of their distance, then the observation of a higher fluence implies a closer distance.

Thus, a priori knowledge that distant sources are more likely than close ones informs the posterior

for source location, even when the likelihood is degenerate across the entire sky. Of course, if the

IFOs also have directional sensitivity, the basic logic remains unchanged but the details become more

complicated. For example, the antenna response prior derived therefrom modulates the posterior

along triangulation rings [60].

Triangulation also provides sanity checks of localizations. For example, an ensemble of localiza-

11 To be precise, whenever the rank of Aij from Eqn. 3.14 is > NIFO, this problem exists. Perfectly aligned
detectors produce rank-deficient Aij, as do an arbitrary number of truly all-sky instruments (F(9, <) = constant).
These networks are effectively sensitive to fewer polarizations, allowing for non-trivial localizations even with only
two detectors.
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tions for the same two IFOs cannot cross in Geographic coordinates because they are all determined

by time-delays relative to the same line-of-sight. It also provides a natural coordinate system in

which the localization posteriors are nearly separable: p(Olos, Ojos) ~ P(Oios)p(#1is). Therefore,

sensible localizations in the line-of-sight frame should have small Mutual Information Distances

(MIDs)12

M I D -I ( io s , io s ) ( i ) InMID E(Oi0 sqOjos) p(Oi,(0) c [0, 1] (3.28)
H (Ojos, Ojos) -Ep(Oi, Oi) In p(Oi, 0i)

This turns out to be an effective way to reject certain classes of noise. For the LHO-LLO network,

large p imbalances in the detectors are often localized to dots that correspond to - 9ms time-delays

between the detectors (Fig. 3-17). These locations are associated with poles in the LLO antenna

response,13 meaning the p imbalance can be compensated by the antenna response alone. Differences

in the responses to separate polarizations can compound this for certain orbital inclinations and

polarization angles. If there is a loud non-Gaussian noise artifact in one IFO and pure Gaussian

noise in the other, the posterior will find roughly equivalent support at both +9ms and -9ms

time-delays because the Gaussian noise is roughly equivalent at both time shifts. This produces

localizations with dots at nearly antipodal points in the LHO-LLO line-of-sight frame (Fig. 3-17),

importantly with different OIos. These localizations produce large MID and are distinguishable from

true signals (Fig. 3-18).

3.3.2 Comparison and Characterization of Localizations

With a basic understanding of how localizations are produced from GW strain measurements, we

can now characterize typical localizations from various algorithms and compare their estimates.

Localization estimates are probability distributions defined on a 2-sphere. As such, information

theoretic metrics are immediately applicable.

We focus on comparisons of localizations from algorithms targeting un-modeled transients

(bursts), specifically Coherent WaveBurst [86, 87], LALInferenceBurst [98, 162], and BayesWave [44].

However, our techniques are applicable to maps from any algorithm. We use an ensemble of simu-

lated signals injected into simulated Gaussian noise characteristic of projected noise budgets for the
12We define MID for discretized localizations in terms of a series of pixels centered at (0i, ).13 The corresponding poles in the LHO response are less problematic because they occur along triangulation rings

that span regions of higher network sensitivity, and are therefore rarely favored over the higher sensitivity regions.
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Figure 3-17: 'Two example Iocalizations from (top) G273538 (22:43:34 UTC February 11, 2017) and
(bottom) G272474 (23:40:34 UTC February 3, 2017), both of which are associated with glitches.
G272474 shows support at both +9ms and --9ms whereas G273538 shows the charactenistic dot
behavior near only a single pole. Note that the dots for G273538 lie on different triangulation rings.
For both events, the localization's shapes are driven by the poles of the antenna response rather
than the data, which should produce a ring.
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Figure 3-18: MID for two separate algorithms using campaigns of simulated injections and all
localization estimates uploaded to GraceDb [140] during 01. We note that ~ 8% of all localization
estimates can be vetoed based on the MID alone without losing a single injection.

early advanced detector era [22, 60, 61]. This includes a 2-detector network composed of the LIGO

Livingston and Hanford sites as well as a 3-detector network containing the two LIGOs and Virgo.

We investigate four signal morphologies: sine-Gaussians (SG), Gaussians (G, the limit of SG as

f -+ 0), White-Noise Bursts (WNB), and binary black hole (BBH) coalescences with (anti-)aligned

spins.

Single-Algorithm Statistics

When analyzing a single localization estimate, it is natural to consider both the accuracy and the

precision of the map. We consider several statistics that quantify both.

Accuracy can clearly be approximated by the angle separating the maximum a posteriori (MAP)

location and the true location (60). Fig. 3-19 shows this for 2- and 3-detector networks. We note

that the general behavior is similar for both networks; this is because the LIGOs are more sensitive

than Virgo and therefore dominate. Furthermore, we also see a symmetry in JO, with local maxima

in p(JO) near 0' and 1800. This is due to a degeneracy in the LLO-LHO network, which has maxima
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in the network sensitivity above both North America and the Indian Ocean. Therefore, occasionally

the MAP estimate picks the wrong side of the sky.

Another measure of accuracy that is commonly used is the searched area, defined as the amount

of sky assigned a probability greater than or equal to the probability assigned to the source's

true location. If follow-up is conducted according to the posterior's ranking of locations, this

approximates the amount of area observed before the true location is surveyed. Unlike 50, we see a

marked improvement in the searched area between 2- and 3-detector networks, although the details

depend on the algorithm and signal morphology. This is because, even though Virgo is less sensitive

than either LIGO, it can rule out certain parts of the sky and greatly reduce the posterior's support

along triangulation rings. We also note that the searched areas achievable for burst signals are

only a factor of 2-3 larger than what is expected for broadband BNS signals recovered with perfect

templates [24, 126]. This is consistent with what was observed for GW150914, which was first

detected and localized by burst searches ( 4.1). Tables 3.1 and 3.2 list some characteristics of the

measured distributions of 60 and searched area for cWB and LIB, respectively.
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Table 3.1: Summary of cWB localization. Statistical error is on the order a few percent.

year 2015 2016
network HL HLV

morphology BBH SG G WNB BBH SG G WNB

fraction (in 5 deg2  3.1 3.4 3.1 6.2 6.7 9.3 12.0 17.2
%) i 20 deg 2  11.5 12.7 10.9 17.8 18.9 22.2 28.8 32.5%) with 100 deg 2  35.3 37.2 37.1 51.8 47.3 52.3 54.9 61.3
searched 200 deg 2  51.6 52.2 49.2 69.7 62.3 66.9 69.1 75.8area less 500 deg 2  75.9 69.2 73.8 86.5 82.2 85.8 84.9 91.2
than 1000 deg 2  89.2 82.2 87.1 95.6 93.1 94.8 95.0 98.0

10 1.3 1.4 0.8 2.7 3.6 2.8 9.8 10.0
S50 12.9 8.5 11.7 13.0 22.6 13.0 29.3 19.0f act (n 150 37.2 27.1 33.2 34.1 37.6 26.4 45.8 32.6

less than 450 73.1 61.4 66.0 70.9 61.3 57.3 67.9 59.2
600 79.5 68.4 71.1 74.9 66.7 62.2 71.7 64.7
900 83.1 74.0 75.8 77.9 71.4 67.1 74.3 70.0

median searched area 184.6 deg2  181.6 deg2  209.9 deg2  93.0 deg2  112.5 deg2  91.7 deg2  71.3 deg2  61.3 deg2

median 60 23.10 31.60 25.70 23.90 27.50 36.70 18.60 33.9
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Table 3.2: Summary of LIB localization. Statistical error is on the order of a few percent.

year 2015 2016
network HL HLV

morphology BBH SG J G WNB BBH SG G WNB

fraction (in 5 deg2  1.8 4.0 2.3 4.7 8.6 25.5 18.5 10.4

%) with 20 deg 2  9.4 14.3 7.0 14.2 23.1 47.4 43.0 23.9

searched 100 deg2  31.8 39.0 34.8 35.2 53.8 75.8 73.6 46.8
les 200 deg2  46.8 52.9 49.2 51.2 65.7 84.6 84.4 59.2

area less 500 deg2  70.2 71.7 72.7 65.1 82.9 92.6 93.3 69.8
than 1000 deg2  88.2 82.6 89.1 74.9 93.0 94.9 97.4 76.0

10 1.0 2.1 1.2 2.1 6.2 11.4 12.0 5.5

fraction (in 50 8.6 8.8 11.7 9.5 34.5 31.9 51.4 17.2
rt in 150 32.2 25.8 30.1 28.6 54.6 53.8 66.8 31.3

%) with 60 450 66.8 63.7 63.7 61.9 77.1 78.3 83.7 63.6
less than 600 72.8 71.0 68.8 67.2 81.3 81.8 85.8 70.1

900 77.4 75.9 74.2 70.4 83.7 84.6 86.5 76.2
median searched area 238.5 deg2  171.0 deg2  208.4 deg2  180.9 deg2  82.5 deg 2  22.2 deg2  31.3 deg2  121.3 deg2

median 60 26.60 29.40 27.10 30.40 11.10 13.30 4.90 27.50



The searched area also estimates the precision of a localization estimate. More precise (unbiased)

estimates will produce smaller searched areas. We often use the size of confidence regions as well.

These are immediately interpretable as the uncertainty in the localization. However, instead of

choosing a few somewhat arbitrary confidence levels, we often consider the Shannon entropy of the

discretized map normalized to a fraction of the sky

-- T, pi In pi
R = Apixe P (3.29)

This correlates strongly with the size of individual confidence regions but includes information

from all of them. Fig. 3-19 shows the entropy of typical maps. Again, we tend to see more precise

localizations for 3-IFO networks. 14

Comparisons of cWB, LIB, BW, and LALInference

In addition to comparing statistics from ensembles of localization estimates separately, we can also

compare estimates on an event-by-event basis. This better captures the relevant information for

practical situations when we have multiple estimates for a single event and must choose which to

believe.

A natural metric is the Kullback-Leibler (KL) divergence [90]

DKL (pq) pi ln ( (3.30)

which is a measure of the information gained when refining an estimate of a probability distribution

from an initial guess (q) to the true distribution (p). However, we often find this is unstable for

our localization estimates because if there is even a single pixel that is assigned non-zero posterior

support by one algorithm and zero support by another, the KL divergence diverges. This renders

it extremely sensitive to numeric noise in the distributions' tails. Instead, we focus on the Fidelity

(F) between two distributions p and q

F(p, q) = Vp -qi E [0, 1] (3.31)

1 4 Entropy is really only meaningful when the posteriors are correctly calibrated and produce diagonal coverage
plots. Nonetheless, it provides a useful heuristic in all cases.
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where the square root guarantees the range for F because the individual distributions are L'

normalized. This is much less sensitive to noise in our localization estimates.

For BBH signals, we have reliable signal models and can also reconstruct these signals with the

full template using LALInference [162]. Fig. 3-20 shows the Fidelities for cWB, LIB, and LAL-

Inference for these simulations [165]. We find that the burst algorithms are much more similar

to each other than they are to LALInference and that differences are dominated by the selection

of different triangulation rings. The latter is apparent by comparing the Fidelity using the full

localization estimate with the Fidelity computed using the time-delay marginals. We also note the

strong correlation between the two, which is driven by the fact that large full-localization Fidelities

are only possible when there are large Fidelities between the time-delay marginals. However, dif-

ferences in the distribution around the ring could produce small all-sky Fidelities even with large

time-delay Fidelities. For the most part, we do not see this, meaning different algorithms primarily

select the same neighborhoods of nearby rings even if they do pick separate rings.

We also find that the full LALInference maps can be significantly more accurate than burst

maps. Therefore, if the follow-up is not time critical, it is almost certainly better to wait for the

few days required to produce a LALInference map.

The situation can be more complicated for 3-detector networks, but this is mostly due to LAL-

Inference's ability to localize the signal significantly better than burst algorithms by making use

of the known waveform and Virgo's data. The general trends observed in the 2-detector data are

simply exaggerated.

Model Averaging Localizations

We have seen that, while individual algorithms can differ in their localization estimates, they

generally tend to broadly agree. Nonetheless, the differences can be non-trivial at times (e.g.

triangulation rings separated by > 10) and it can be difficult to determine which map to use. In

particular, burst algorithms adopt different signal models when reconstructing the source location

and it is not always clear which set of assumptions are more appropriate. An alternative to choosing

a single localization is to average all estimates together. This is equivalent to marginalizing over the

unknown signal model with equal priors for each model, in some sense. We investigate the effects

of this procedure for our ensemble of maps.

Surprisingly, the searched area for averaged maps seems to select the best searched area of
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Figure 3-20: Fidelities of the full-localization and the time-delay marginals along with the angular
offset between triangulation rings for massive BBH simulations with the LHO-LLO network. We
see a clear correlation between both Fidelities and AO, showing that localization estimates differ
primarily in which triangulation rings they select.
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any constituent map both when the performances of the individual maps are similar and when

they are very different. This is likely because the smallest constituent map places high posterior

weight near the correct location and, even when this is averaged with other maps, there is still

significant support nearby. The intuition may also work the other way. A less accurate but more

concentrated map may not hurt the better constituent map much when averaged because the

inaccurate concentrated region will be exhausted quickly and the tails of the distribution will be

dominated by the better constituent. We even see strict improvement over any individual algorithm

for some sets of averaged maps (e.g. the LIB+BW averaged map for WNB with 2-detectors out-

performs either individual algorithm, Fig. 3-21). Therefore, model averaging appears very robust

when accounting for modeling uncertainty between different algorithms.

Beyond the searched area, we also expect model averaging to affect the coverage plots. Different

algorithms produce different coverage plots and not all algorithms are always correctly calibrated.

We find that averaged maps always produce over-covered maps, meaning a larger fraction of events

are contained in confidence regions than is expected based on the nominal confidence. This behavior

is also apparent in the entropy distributions; all averaged maps produce entropy distributions similar

to the least well-calibrated individual algorithms included in the average. This appears to be

true regardless of the individual algorithm's behavior, even if one of the algorithms systematically

produces under-covered localizations. Interestingly, averaging perfectly calibrated algorithms also

produces over-coverage (Fig. 3-21c, d). While this can complicate the interpretation of confidence

regions for averaged maps, we can be confident that we err on the side of caution with this procedure.

For this reason, and the robust nature of averaged maps' searched areas, model averaging has

been adopted as the procedure for handling multiple localization estimates when there is no clear

preference for one estimate over another.

3.4 Importance of Frequency Dependent Response for 3G De-

tectors

Determining where sources come from depends on knowledge of how the detectors respond. As

described in 1.3.1, GW detectors' response to GW signals depends on the frequency of the signal;

the round-trip light travel time corresponds to the key frequency. For aLIGO, this free spectral

range is ffsr = c/2L = 37.2kHz, which is much larger than GW frequencies of interest. This
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motivates the common approximation that the detector's response is independent of frequency

and is a purely geometrical effect of projecting strain onto the detector arms. However, proposed

3 rd generation detectors may have much longer arms. Cosmic Explorer [139] may have arms in

excess of 40-km, corresponding to ffsr < 3.7kHz. Assuming a 1.4M0 , 12km-radius neutron star,

the dynamical frequency of internal modes will be approximately f = VGM/R 3 /27r ~ 1.65kHz,

which is an appreciable fraction of ffsr. It is not unreasonable to question whether the frequency

dependence of the antenna response is important for such signals.

While the change in the relative directional sensitivity can be dramatic, the main impact involves

the additional phase introduced by the detector response. Indeed, at low frequencies this phase is

nearly linear in frequency (Fig. 1-6), with a mild dependence on the source direction relative to

the detector arms. This phase acts exactly like a time-of-arrival delay, and therefore differences in

this phase between detectors can easily be confused with time-delays associated with triangulation,

thereby biasing localization estimates. These biases should be on the order of 10" for current 4-km

detectors, which is much smaller than even the most optimistic statistical uncertainties. However,

they can be as large as - 0.50 for networks of 3G detectors with arms as long as 40-km. What's

more, for systems close enough to make electromagnetic follow-up interesting (DL < 500 Mpc),

the statistical uncertainty (the triangulation ring's width) will be considerably smaller (Fig. 3-22).

In fact, we find that these systematics remain comparable to or larger than statistical uncertainty

even for sources at several Gpc. Importantly, the systematic bias does not depend on the signal

and will apply equally to all detections if not taken into account.

I have focused on CBC sources, which are dominated by their low frequency inspiral components.

Higher frequency signals may be impacted differently, although the bias in localization will apply

equally as long as f < ffsr.

3.5 Impact of Diurnal Cycles on the Exposure of GW Detec-

tor Networks

A vital aspect of determining where detected signals come from is determining where you looked.

This is quantified by the detector responses, but those are only fixed in Geographic coordinates

that rotate with the Earth. A more natural coordinate system is fixed to the distant stars. Naively,

one would expect the Earth's rotation to average out any dependence on the Right Ascension (a),
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leaving only a gentle modulation with Declination (6). However, that is only the case if the IFOs

operate uniformly through time. In reality, ground-based IFOs show a strong preference for locking

during their local night [40]. Fig. 3-23 shows histograms for S5 [3, 6], S6 [4, 5], and 01 [7, 149, 150]

wrapped with a 24-hour period. All of these recent runs, which represent very different detectors,

show strong preferences toward locking at night.

Because the two LIGOs are both located within the continental United States, their local nights

coincide and their joint-locks display the same behavior. This modulates when the detectors record

data and therefore when they are actually sensitive to astrophysical signals, introducing a depen-

dence on a to the network exposure [40].

3.5.1 Model of the Diurnal Cycle

We posit two states of a network of detectors: up (u) and down (d), with science-quality data

available only in the up state. Furthermore, we posit two possible causes for detectors being in

the down state: random causes (r) that are uncorrelated with time and cyclic causes (c) which are

correlated with time, usually through a diurnal cycle. We note that the random and cyclic models

are not necessarily mutually exclusive and the detector could be down for multiple reasons at the

same time. Therefore, we have

p(d~t) = p(dc, t)p(clt) + p(d~r, t)p(r t) - p(dlc n r, t)p(c n r~t) (3.32)

Furthermore, because the up and down states are mutually exclusive and span the space of possible

detector states at any single time, we have

p(ult) = 1 - p(d~t) - p(u) = 1 - p(d) (3.33)

and Bayes theorem yields

p(t~u)~ =p(ult)p(t) (1 - p(dlt)) p(t) (3.34)
p(u) 1 - p(d)

We measure p(u) and p(tlu) in a straightforward manner from the data used in Fig. 3-23.15

1 5Typically, we assume some periodicity in p(tlu) to generate a histogram with enough samples to be statistically
meaningful, but we expect to be able to identify the periodic elements of p(tlu) through Fourier analysis as well.
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However, we are also interested in slightly different probabilities. To wit, we would like to know

p(cld, t) = p(d t) (3.35)
p(djt)

p(rld,t) = p(d t) (3.36)
p(djt)

p(c n rjd, t) = p(dlc n r, t)p(c n rjt) (3.37)
p(dlt)

which express the probabilities that the detector is down due to a particular cause at a specific

time. If we only care about long-term averages (over time-scales much longer than the cyclic

model's periodicity), then we can marginalize away the time dependence:

p(c~d) = dtp(t) p(djc, t)p(clt) (3.38)
f p(djt)

p(r~d) = dtp(t) pdr rt) (3.39)

f p(dt)

These equations should hold regardless of the specific form of the cyclic and random models.

By definition, we assume that the random causes are uncorrelated with time so that p(djr, t) =

p(djr). Furthermore, we assume some periodic function for the cyclic model so that p(djc, t) =

p(dic, t + T) for some r. Specifically, we expand the periodic function in terms of the oscillating

(AC) and constant (DC) components

p(djc, t) = pDc(dlc) + PAC(djc, t) (3.41)

such that

PDC dt p(d c, t) (3.42)
0

Clearly, we require pDc(djc) > -|pAC(djc, t)I Vt. We also assume the priors for the causes do not

depend on time (p(rlt) = p(r) and p(c~t) = p(c)) and that the priors are equal for the two causes

(p(r) = p(c) = p).16

1 6 By measuring p(d), we only extract the combination ofpDC(dlc)+p(dlr) and cannot separate these terms further.
However, by measuring p(tju) as well, we are able to determine pAc(dlc, t) from which we can determine pDc(dc)
by requiring that mint {p(djc, t)} = 0. Any other DC component to the cyclic model is indistinguishable from the
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If we allow the cause models to overlap but require them to be independent, we obtain p(dlc n

r, t) = p(dic, t)p(dlr, t). This implies

p(r) + p(c) - p(r)p(c) 1 -> p(r) = p(c) = p 1 (3.43)

and

p(cId, t) = PAc(d c, t) + PDC(dc )
(pAc(dlc, t) + pDC(dlc)) (1 - p(dlr)p) + p(d r)

p(r ld, t) = p~~)(3.45)
(PAc(d c, t) + pDC(dlc)) (1 - p(dlr)p) + p(d r)

p(c n r d, t) = (pAc(d c,t) - PDC(dc)) p(d r)p
(PAC(d c, t) + PDC(dlc)) (1 - p(dlr)p) + p(d r)

A reasonable ansatz is p(d~c, t) = B (1 + sin (2 - <)),in which case we obtain

p(d) = p(dlr)p + Bp(1 - p(dlr)p) (3.47)

p(tlu) = p(t) 1 + (1 - p(d r)p)pB sin V)1 - p(d)

= p(t) (1 + A sin 0) (3.48)

We also see that a low duty cycle (small p(u) = 1 -p(d)) can amplify the amplitude of the day/night

bias.

If we are interested in just the probability associated with the cyclic model regardless of the

random model, we obtain

p(c~d) =- p(d) ~ jpd) A 0.49
p~cd) 1p(d) 1 - p(d) + (I - p(d))A ~~ 4

which implies that nearly half the time cyclic causes were at least partly responsible for bringing

down the detector network during 01. If we restrict ourselves to times when the cyclic causes were

the sole cause of the downtime, we obtain

p(cd) - p(c n rd) =(- p(d))A 0.29
p(d)

random model.
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which suggests that we could reduce the downtime by 30% if we completely removed cyclic causes

of downtime.

3.5.2 Network Exposure Including the Diurnal Cycle

Fig. 3-27 demonstrates how the exposure swings through the celestial sphere as the Earth orbits

the Sun. In the Northern hemisphere's summer, the exposure lines up nicely with the galactic

plane, making it a good time to search for events within our galaxy. However, extinction can make

electromagnetic follow-up of such events difficult, and the vast majority of detectable compact

binaries are expected to be extra-galactic. This means that follow-up targeting binaries is better

suited to the North's winter months, when the exposure is primarily directed away from the galactic

plane.

The diurnal cycle also has implications for ground-based follow-up facilities; not all locations will

have equal opportunity to follow-up GW candidates. While EM follow-up is a complex problem,

we simplify it to three main features: the amount of posterior probability observable from a site,

the minimum angle from an observatory's zenith through which the observations will be made, and

the amount of time an observatory must wait before it can begin to observe. These represent the

fraction of accessible sources, the quality of observations possible, and, if the sources' counterparts

decay quickly, the apparent magnitude of the source when it becomes observable.

We simulate events by bootstrapping our library of localizations [61] to represent a collection

of events drawn according to the network exposure. We focus on localizations using the two LIGO

detectors only. For the foreseeable future, these IFOs will dominate the detection of GWs because

of their higher sensitivity and therefore we expect the distribution of detected events to follow their

antenna responses. Additional detectors may reduce the localization error areas, but this will just

add more variance to our estimators, defined as

Pobs (latsite) N d pNdNds liie OPky,ieobs(Q, ti, latsit) (3.49)

1
Dzen (latsite) = Nd Pobs dQ Psky,ieobs,iDzen (Q, ti, latsite) (3.50)

Nd

Ddel(Qsite) Nd Pobs Jd Psky,ieobs,iDdel (, ti, Qsite) (3.51)
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where Psky,i is the localization probability for the ith detection, E8bs,i is a window function on what

is observable from that site, and Pobs in Eqn. 3.50 and 3.51 is computed using the same set of

localization estimates as the explicit sum. Dzen and Ddel measure the minimum zenith distance

of that location from that observatory and the time-delay before an observatory can first start

observing a location, respectively.

We note that using the antenna response yields the mean of these statistics when simulating

many detections. To wit, if we calculate x using the antenna response and k using sets of simulated

maps, we expect

x= lim i
Nd -* oc

1NA
=lim N d psky,iX(ti) (3.52)
Nd--oo Nd =

We note that X(ti) only depends on the time the event occurs through the position of the Sun; the

dependence will be the same for all detections that occur at the same time. If we break the sum

into small segments of time, we can write

X = lim Nt' J dQPsky,ix(ti) (3.53)

j=t4E[tj t+At)

where j, Ndj = Nd. Now, when Nd - oc, we can make the segments as small as we like while

maintaining a large number of detections in each bin. We then obtain

N1 Nd

x lim L Nd Z JdQPsky,ix(ti)

N oo N , Ij- N(

lim lim Ndi dQ 1 Psy,i x(ti)Nt -oo Nd, J 4 Nd Nd Psk
N,,EAt=T[t t +t)

N,

= lim (p(tIoperating)At) dQ (pGW(Q, tj)) X(tj)
N, -oo

NAt=T j 1

J dt p(t Ioperating) J dQ PGw (W t) X(t) (3.54)
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where T is the length of the observing season. We assumed tj -+ tj for all events within each bin

and used the fact that many localization posteriors stacked on top of one another will average to the

network antenna response in Equatorial coordinates (pGW(t1 )), which depends on the bin's time.

We have also used the fact that the fraction of events occurring in each bin is equal to the probability

that the detectors are operating throughout that bin (p(tIoperating)At). By approximating these

integrals, we obtain the limits of the means much more efficiently than through direct simulation.

This procedure, or an equivalent, is used in Fig. 3-24, 3-25, and 3-26.17

We see that equatorial locations can access more probability on average (Fig. 3-25). This

is because they can see both the Northern and Southern antenna response maxima. There is

also a seasonal variation which favors whichever hemisphere is currently in winter, which can be

comparable to the modulation due to observatory longitude. Fig. 3-25 shows the minimum angle

from zenith through which observations can be made. The asymmetry between the North and South

is associated with the Sun's statistical likelihood to be above the Southern hemisphere's antenna

response maximum when detections occur. This means Southern observatories are more likely to

observe near twilight and therefore must look through a higher airmass (larger Dzen). We also note

that there is a moderately longer time-delay over Southern Africa (Fig. 3-26). This is because it is

likely to be dawn there when detections are made, and observatories must wait nearly a full day

before observing. We note that this distribution of Ddel is very skew right for small numbers of

detections.

It is also informative to examine these statistics when there are only a few events. This is

particularly important when considering how an observatory could be impacted for any individual

event, rather than for a collection of events. We also consider these distributions in the limit

of extremely well localized sources: Psky,i -4 6(Q - Qj). This point source limit describes the

distributions obtained when only observing the location of the true source. 18

Of all the statistics we consider, Pobs is the most Gaussian for small Nd for year-long averages.

However, because it is bounded from above and below, the distribution does deviate at times.

Fig. 3-28 shows the distributions for a few latitudes and a few values of Nd. We note that, in the

limit Nd - 00, Pobs is the fraction of true counterparts that an observatory can observe. When
1 7 We also note that we normalize by the total observable probability in Eqn. 3.50 and 3.51. This is because we

restrict ourselves to only the fraction of the probability that is actually observable. The particular form of our
normalization (dividing by Pobs for a set of events rather than each event separately) guarantees that we sample the
antenna response in the limit.

181t also allows us to estimate the possible impact of more detectors and the associated improvements in localization.
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considering extremely well localized sources, the observatory will either be able to observe the true

source or not, and each trial will have nearly the same probability of success, modulo variations

caused by the Sun's declination. Fig. 3-28 plots the point-source limit of these distributions as well

13(pt src)) again with several values of Nd.

Dzen(Nd = 1) is also fairly Gaussian for some latitudes, but there can often be non-trivial

deviations therefrom. In particular, mid-latitudes may show interesting skew right distributional

shapes. Fig. 3-29 shows these distributions for a few latitudes as a function of Nd. We note that

these distributions are much narrower than the point source limit in which all events are well

localized (bzisrc)), also shown in Fig. 3-29. There is more shot noise for bzesrc), which broadens

the distributions, but the general distributional shapes are similar for both bzen and bzf src)

Fig. 3-30 demonstrates the skew right nature of Ddel. Typically, there is an extremely large

lobe near zero, corresponding to events that are immediately observable, and a long tail comprised

of events that require waiting. When we consider the point source limit of well localized events,

this behavior is enhanced, also shown in Fig. 3-30. When we integrate over typical localizations,

instead of point sources, we find that the peak is smeared out to longer delay times. This is because

different parts of the localization estimate may become observable at different times, and that fuzz
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tends to smooth the distribution.

3.6 GW-EM Infrastructure

The previous work on both data quality and localization is immediately relevant to GW searches,

particularly in low-latency when we must decide if a candidate is promising enough to be re-

leased to electromagnetic observers. To this end, several automated follow-up processes summarize

relevant information to aid in the decision making process. Fig. 3-1 depicts a simplified work-

flow for low-latency searches; pipelines process h(t) and report candidates to a remote server

(GraceDb 1140]). Through an automated messaging service (LVAlert [141]), actions within and

annotations to GraceDb trigger a variety of follow-up processes, including automated data quality

and localization. GraceDb also notifies analysts for human vetting. Fig. 3-1 sketches this process.

3.6.1 Data Quality Reports

In addition to iDQ's automated response (see 3.2.2), there are several other data quality flags

that are automatically produced within minutes of real-time. These typically do not correspond to

statistical inferences based on machine learning and instead represent well studied mechanisms by

which noise is introduced into the detector. For example, when photo-diodes in the control loop

saturate, the associated nonlinearity introduces very large glitches in h(t). These saturations are

relatively easy to track and processes at each site automatically identify these events. An automated

query examines a set of data quality flags and reports the results to GraceDb [571. Analysts then

check these reports for obvious issues with the detectors, or, if it is allowed, the query itself can

reject candidates automatically.

If automated inference about data quality are important for analysts, visualization of the actual

data streams is even more so. Much confidence in data quality issues associated with artifacts in h(t)

comes from lining up spectrograms from auxiliary channels with similar features in h(t). For this

reason, automatically generated spectrograms are extremely useful. The GW community often uses

the Q-transform [33, 69], specifically the transform implemented in the Q-pipeline (Q-scans, [39]).

Fig. 3-31 shows an example Q-scan for a radio-frequency whistle at the Livingston detector in

h(t) as well as the two auxiliary witnesses identified by iDQ (Fig. 3-12). With few exceptions, 19 all

19 Some burst events are rejected based on iDQ information alone without human intervention, such as the event
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vetting is still conducted by analysts. This currently dominates the latency for releasing candidates.

Although the exact process depends somewhat on the data present, typically analysis first inspect

the h(t) Q-scan to determine if it is consistent with any known glitch families [114, 115, 177]. This

is then compared against the summaries from iDQ and other data quality flags for confirmation. If

there is a clear auxiliary witness, the event is rejected. This is the case for G272601, depicted in

Fig. 3-11, 3-12, and 3-31. Otherwise, it is released pending a reasonable localization. Future work

will both automate the vetting process and tailor it for specific pipelines.

3.6.2 Localization Characterization and Comparison

Rapid characterization of localization estimates also aids in low-latency vetting. As such, an auto-

mated process [58] responds to any new localization estimates inserted into GraceDb. This process

summarizes each estimate separately, calculating all the metrics discussed in @3.3.2 as well as sev-

eral others (Fig. 3-32 and 3-33 show examples produced automatically). In particular, the MID is

automatically computed for all IFO pairs which participated in the detection. The maps are also

compared automatically, including overlays of confidence regions and Fidelities. This is particularly

useful if multiple estimates are available before data quality vetting has been completed. For burst

events, we use the Fidelities between maps to determine whether to model average before releasing

localization estimates.

3.6.3 Monitoring

Monitoring is crucial to ensure any automated process behaves as expected. To this end, and

given the scale and scope of automated responses triggered by annotations within GraceDb, Event

Supervisor [55] proves a unified monitor of all expected responses and annotations within GraceDb.

By listening to LVAlert messages automatically distributed by GraceDb, it is able to determine

whether follow-up proceeded correctly, notifying analysts to possible problems in real-time. This

task's complexity is compounded by the asynchronous, distributed nature of the collaboration's

computing infrastructure. What's more, the number of processes that need to be monitored is

dynamic. This forces our monitoring to validate follow-up results posted to GraceDb rather than

ensuring each process itself is working separately. This results-first paradigm has proven to scale

in Fig. 3-31.
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well and adapt quickly to changes deployed during observation runs.

Monitoring follow-up processes themselves is also worthwhile when possible. This can be coin-

plicated due to the distributed nature of our network, but all processes interact with LVAlert in

order to respond to GraceDb annotations. Even if the listener forks many processes (e.g. one for

each of many candidates), there should be a static number of listening processes at any time. We

can ensure they respond to LVAlert announcements by pinging them through the LVAlert infras-

tructure and listening for a response. This heartbeat [56] process-first monitoring has also been

deployed throughout the network and is used to alert developers to issues before their processes fail

to produce results, which would trigger warnings from Event Supervisor. In this way, we prevent

failures before they have a chance to actually impact searches while still catching them in case they

do.
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Chapter 4

Confirmed Detections

To much fanfare, the advanced LIGO interferometers directly detected the first GWs in September

2015. At the time of writing, this is the first of three confirmed detections during the first and second

observing runs (01 and 02, respectively) [7, 145, 146, 151] spanning a total of more than 70 days

of joint observation with both the LIGO Livingston and Hanford instruments [138]. While both

instruments have undergone commissioning upgrades since the beginning of 01 to improve their

sensitivity, their sky-averaged detection range for 1.4-1.4MO BNS sources has typically ranged

between 60-80 Mpc. Of course, the LIGOs can (and do) observe BBH systems at much larger

distances, depending on their masses, because they are intrinsically more luminous and because the

loudest part of the BBH signal is in LIGO's most sensitive band [65, 66].

I will discuss the broad characteristics of each confident detection published at the time of

writing, along with the less confident LVT151012. In addition, I will detail specific applications of

my work described in 3 to each. I also provide a few general observations about the population of

signals observed so far in 4.5.

4.1 GW150914

The first direct observation of GWs, GW150914 [146, 1581, passed through the LIGO detectors at

09:05:45 UTC on September 14, 2015. The signal is consistent with the coalescence of two black

holes, 36+5Mo and 29 4MO in the source frame, respectively. This system was 41016Mpc away
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from Earth (z = 0.098_3) and produced a single 62IMO Kerr black hole with dimensionless spin

of 0.67405. The final black hole's spin is dominated by the angular momentum of the system

before merger and there is no strong evidence for large spins for either component prior to merger.

This signal was loud enough to be seen by eye in band-passed data (Fig. 4-1), with slightly larger

amplitude in LHO than LLO. The difference in amplitudes is due to the IFOs antenna responses,

corresponding to a time delay of 6.9+8-ms between LLO and LHO (Fig. 4-2).

GW150914 was first detected by online burst searches and later confirmed by matched filter

techniques. The most sensitive search for signals like GW150914 bounds the FAP to above a 5.1 c

deviation from background.

4.1.1 Data Quality

Offline OVL and pointed Poisson analyses ( 3.2.1) showed no auxiliary couplings that could have

been responsible for GW150914 11431. This includes an analysis of 198,086 and 200,426 auxiliary

channels at LLO and LHO, respectively, although we focus primarily on the 6,319 and 6,378 channels

sampled faster than 16 Hz. While the OVL analysis did not find any couplings within 180 seconds

of GW150914 at LLO or within 11 seconds at LHO, the pointed analysis found one clear outlier. A

single auxiliary channel that was significant enough that we expected only 0.075 events with smaller

p-values after accounting for the trials factor associated with the large number of channels. Indeed,

upon repeated identical analyses of random times, it appears that this level of accidental coincidence

does occur once in every - 10 events. Upon further investigation, this accidental coincidence was

confirmed to be causally unrelated to GW150914, to possess a different spectral structure than

GW150914, and could not have been responsible for the signal in h(t).

At the time of GW150914, iDQ was running and reported predictions to GraceDb within 18

seconds. However, it's output was corrupted by a miscommunication about the set of auxiliary

channels used within the analysis. Because the offline analyses were more comprehensive, we did

not re-analyze GW150914 with the corrected online iDQ configuration, which was deployed less

than 24 hours after the event.

To be clear, there is no evidence for any terrestrial source for GW150914. This includes ex-

haustive checks of physical environmental monitors at each site (magnetometers, seismometers,

etc), even including lightning strikes and cosmic ray events. For example, coincident electromag-

netic disturbances could not have been responsible for more than 1 part in 108 of GW150914's
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Figure 4-1: Band-passed data for GW150914 along with theoretical predictions, residuals, and

Q-scans [146].
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amplitude [143].

4.1.2 Localization Characterization

GW150914 arrived at LLO ~ 7ms before arriving at LHO. Both cWB and LIB produced localization

estimates which were released to EM observing partners within a few days [152]. These estimates

had rather low Fidelity (0.53), cause by their selection of slightly different triangulation rings,

corresponding to the < 10% quantile based on simulations of similar BBH systems [165]. Two other

localization estimates were released several months later, including the definitive LALInference

analysis which included the effects of calibration uncertainty, the main effect of which is to widen

the ring due to uncertainty in the phase within each IFO. Fig. 4-2 shows several representations of

these estimates.

Notably, cWB's map shows a large Northern island, which is near a pole in the network antenna

response. Because of the degeneracy in coherent likelihood localizations when there are two detec-

tors and two polarizations ( 3.3.1), cWB reconstructs a single polarization throughout most of the

sky. However, near the pole, the analysis believes it can distinguish between multiple polarizations

because of the comparable size of the (small) antenna response for each polarization, and therefore

relaxes its constraint. Effectively, this is an artifact of cWB's rather complicated priors and as-

sumptions, which is why the shape of the Northern island is dominated by the antenna response's

pole (a blob) instead of the data (a triangulation ring).

Both LIB and LALInference show some support for Northern arcs as well. These correspond

to slightly different triangulation rings compared to the more Southern parts of their localizations,

and the difference appears to be associated with the handedness of the circularly polarized signal.

4.2 GW151226

GW151226, commonly referred to as the Boxing Day event [145, 1581, was recorded on December 26,

2015 at 03:38:53 UTC, still Christmas day in the United States. This system was both lower mass

and slightly more distant than GW150914, although there is significant overlap in their distance

posteriors. Because of this, GW151226 had lower pnet than GW150914 and is not clearly distin-

guishable by eye. However, its lower mass means it spent more time within the LIGOs' sensitive

band and matched filter analyses were able to identify it above the 5.3- level. Burst searches were
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Figure 4-2: Overlay of 90% confidence regions for all published localization estimates for GW150914
in Equatorial coordinates along with time-delay marginals [1581.

not able to confidently detect GW151226 due to its relatively long duration and lower amplitude.

This system was composed of a 14. 2tiM® BH and a 7.5ti~M0 BH, and there is evidence for

small (but non-zero) spin aligned with the orbital angular momentum. The final BH was 20.8...M

with a spin of 0.74t8:2, again dominated by the orbital angular momentum. GW151226 was located

440t$8Mpc from Earth (z= 0. 09ii:8%) and came from nearly directly overhead the LIGO detectors,

near the maximum of their network sensitivity, arriving at LLO i.it8:ms before LHO [7].

4.2.1 Data Quality

Similar to GW150914, offline OVL and pointed Poisson analyses found no evidence for auxiliary

couplings to h(t) in the immediate neighborhood of GW151226. There were no significant outliers

in the pointed analysis, and OVL's offline behavior was consistent with the low latency predictions

produced by iDQ (see Fig. 3-7 and 3-14).

iDQ found no conclusive evidence for auxiliary couplings coincident with GW151226, and re-

ported FAPs for misclassifying clean data as glitchy /> 4. -i04 at LHO and 1.0 at LLO within ~82

sec. This glitch FAP is completely consistent with expectations from background given the amount

of time searched surrounding the event (searching through 45 seconds with a 25 ms veto window

corresponds to an approximate trials factor of 1800). In contrast, Fig. 3-11 shows a confident

identification of a glitch with FAP,< 10-5 within a smaller time window.

The data from several hours preceding GW151226 did contain a large amount of radio-frequency
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regions from published maps for

noise (see Appendix A of [1431). However, these artifacts were witnessed extremely well by auxiliary

channels and flagged by iDQ, often reaching glitch detection efficiencies in excess of 90% with FAP

$ i0- (see 3.2, in particular Fig. 3-7 and 3-14). These artifacts are not present in the data

immediately surrounding or overlapping GW151226, supported by iDQ's null result.

4.2.2 Localization Characterization

Several localization estimates were released for GW151226 (Fig. 4-4). They are broader than the

estimates for GW150914 because of the lower Pnet and also the location on the sky; GW151226

came from nearly directly overhead the LIGO's, meaning its triangulation ring nearly follows a

great circle with a much larger diameter than the ring for GW150914. All estimates are consistent

with one another, to a much greater degree than GW150914 (Fidelities > 0.9 for low-latency and

definitive estimates). Generally, the localization estimate for GW151226 is characteristic of what

we would expect from a typical event detected by the LLO-LHO network.

4.3 GW170104

LIGO's third confirmed detection occurred on January 4, 2017 at 10:11:58 UTC and was inconsistent

with background at higher than the 5o- level [151, 158]. GW170104 came from the coalescence of

a 31.2- Me BH with a 19.4t.MO BH approximately 880t45Mpc from Earth (z = 0.18tg.,),
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resulting in a 48.7t MO BH with dimensionless spin 0.64 0.09 The data is consistent with

non-spinning constituents, although there is a small preference for at least one of the spins to

be anti-aligned with the orbital angular momentum. Similar to GW150914 and GW151226, the

posteriors for the in-plane spin components are consistent with the prior, implying the data does

not constrain them [7, 151].

4.3.1 Data Quality

Pointed Poisson analyses shows a single outlier at LLO, corresponding to an extremely high fre-

quency trigger (- 5, 335Hz compared to GW170104's peak frequency of ~ 150Hz) that is near the

minimum threshold for events to be recorded (low amplitude). Upon further investigation, it was

determined that this single auxiliary trigger was not actually causally related to GW170104 and

is merely an accidental coincidence. This was motivated by the extreme frequency mismatch, the

lack of any morphological similarity in the time-frequency structure, and the fact that the coinci-

dence was not robust against different whitening procedures (i.e. it was not recovered when longer

stretches of data were used to whiten the auxiliary channel). Offline OVL analyses similarly found

no auxiliary couplings within - 9 seconds of the event, and even the nearest couplings were associ-

ated with FAP> 10-3. Nonetheless, OVL was able to identify ~ 20% of glitches at FAP- 10-3 and

40% at FAP~ 10-2. This is roughly 400-2000 times the expected efficiency from chance alone.

Due to peculiarities with the online analyses surrounding GW170104, iDQ's predictions are

uninformative. While iDQ found no evidence for auxiliary couplings to h(t) in either detector, it

had not received any new data for training in several weeks. GW170104 occurred shortly after a

holiday break during which there was scant new data. Detector non-stationarity would suggest that

offline studies are more reliable than the online iDQ inference in this case, mostly because offline

analyses can examine data acausally. Regardless, both the online iDQ and offline OVL analyses

agreed that there are no auxiliary couplings that could be responsible for GW170104.

4.3.2 Localization Characterization

Two localizations were made available for GW170104, and they are extremely consistent with one

another (Fidelity > 0.85). Like GW151226, GW170104 came from nearly overhead the LIGOs,

although GW170104 was located more directly overhead LHO and arrived at LLO 3.0+0A ms af-
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ter reaching LHO. Also like GW151226, the localization is broader than GW150914's due to the

lower Pnet and larger diameter of the triangulation ring. GW170104 is another typical 2-detector

localization.

4.4 LVT151012

Although not significant enough to be claimed as another detection, LVT151012 is nonetheless

interesting. It corresponds to a < 2- deviation from background and, including estimates of the

rate of signals in our detectors based on confirmed detections [147], it is more likely to be a signal

than noise [7]. LVT151012 is consistent with the merger of a 23+i18Me BH with a 13+4MG BH at a

distance of 1.00. Gpc, and arrived at the LIGO detectors on October 12, 2015 at 09:54:43 UTC.

Marginal candidates like LVT151012 are expected from astrophysical distributions, particularly

given the observed rate of more confident detections.

Similar data quality studies to those performed for GW150914, GW151226, and GW170104

showed no evidence for auxiliary couplings to h(t) surrounding LVT151012. The localization es-

timate is again very broad due to the low Pnet and location, corresponding to arrival at LHO

0.6+ -ms before LLO.
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4.5 A Population of Binary Black Hole Systems

One detection is vindication. A second is confirmation. The third detection begs us to consider the

population.1 Indeed, even with this small number of sources we can already infer some properties

of the source population. An obvious first question is the rate of coalescences. Although the precise

bounds are somewhat model dependent, these three events constrain the rate of BBH coalescences

to between 12-213 Gpc- 3year- 1 [151], consistent with the broad uncertainties predicted before the

first detection [8]. Additionally, the distribution of Pnet is roughly consistent with expectations from

the predicted distance distribution, with Pnet= 23. 7, 13.0, 13.0, and 9.7 for GW150914, GW151226,

GW170104, and LVT151012, respectively. Because sources should be distributed uniformly within

co-moving volumes on large scales, we expect p(DL) = dV/dDL oc Di, which implies P(Pnet) Oc p-4

because Pnet oc D- 1 . This implies that signals with pnet > 10 should be 8 times more plentiful

than sources with pnet > 20. Although we have too few signals to conclusively demonstrate this

(yet), the general trend agrees. In fact, if we assume 3 detections with Pnet > 13, we should expect

0.5 detections with Pnet > 23.7, corresponding to a > 30% chance of observing a single detection

at least as loud as GW150914. Furthermore, the distribution of source locations appears roughly

consistent with expectations. Fig. 4-7 shows the 50% and 90% confidence regions for all our events

in Equatorial coordinates, and this distribution qualitatively resembles Fig. 3-27a. What's more,

the localization estimates in Geographic coordinates clearly favor the antenna responses' maxima

(Fig. 4-8). In fact, all triangulation rings span both maxima for both LHO and LLO, with the

exception of GW150914, which falls slightly West of LLO's Southern maximum. This is, again,

exactly what we expect from a population of BBH coalescences.

The observed events also span an interesting mass range, from ~ 5MO to as much as - 40MO

(Fig. 4-9). These massive BH are approximately what is predicted to form within the cores of

Globular Clusters [124] and typically are expected to form in low-metallicity environments [142],

although the data is still consistent with formation through common envelop evolution. Addi-

tionally, the spins observed for each component, while not tightly constrained, suggest that large,

aligned spins are not common. One might expect large, aligned spins to develop during the common-

envelop phase of a BBH systems that forms from the main-sequence evolution of a pair of massive

stars. However, dynamical capture within Globular Clusters would suggest a nearly isotropic spin
1Nonetheless, astronomers often begin to consider populations of sources with only a single (or fewer) detections

(see, e.g. [142, 1471).
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LVT151012.

distribution. Thus, the evidence seems to suggest that the BBH coalescences observed so far are

likely to have formed through dynamical processes in distant Globular Clusters [142] roughly evenly

distributed through co-moving volume.

We note that the non-detection of BNS and NSBH systems is currently expected from astro-

physical models, in conflict with only the most optimistic rate estimates [1491. To wit, estimates

made before 01 predicted between 0.0005-4 BNS detections 18], and the observed data are entirely

consistent with these predictions [149]. What's more, detector sensitivity during 02 is comparable

to 01, meaning the expected number of detections is only increased by the additional live-time (a

factor of 0(1)). These expected rates are low enough that we have no reason to suspect we are

missing signals due to template mismatch caused by neglected nonlinear tidal interactions ( 2.2.4),

although this may change over the next few years [8, 149].
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Chapter 5

Conclusions

Binary systems have always provided a testing ground for theories of gravity and orbital evolution,

and they will continue to do so, from tests of strong-field General Relativity [148, 151] to nonlinear

tidal interactions [62, 63, 168, 169, 170]. Exploiting the opportunities thereby provided will require

firm theoretical understanding of the underlying physics along with robust statistical techniques to

extract as much information as possible from noisy measurements.

In this thesis, I have shown how weakly nonlinear interactions between g-modes in the cores

of sun-like main-sequence stars can be excited by Jupiter-mass companions. These interactions

excite a cascade of modes, from long wavelengths that couple linearly to the tidal potential to short

wavelengths that dissipate energy near the stellar core. We find that these networks of nonlinearly

coupled modes can dissipate significant amounts of energy, producing orbital decay time-scales

much shorter than their hosts' main-sequence lifetimes. In this sense, hot Jupiters really do just

fall into their hosts. Work is ongoing to investigate similar behavior in other stellar hosts, including

a variety of stellar masses and ages as well as evolved stars entering the horizontal and Red Giant

branches [111].

Nonlinear interactions can also be important in GW sources. These systems primarily decay due

to the emission of GWs, and resonant interactions do not have enough time to grow appreciably

as the orbit spirals to ever increasing frequencies. Nonetheless, a nonresonant coupling between

p-modes, g-modes, and the linear tide can grow throughout the inspiral and introduce a large phase

shift in the GW waveform relative to a point-particle model. Although theoretical constraints are
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still loose, this nonlinear tidal interaction could bias inferred binary parameters as well as reduce

detection rates by > 90% if ignored. These effects should be well measured when taken into account,

introducing yet another possible mechanism for measuring both redshift and luminosity distance

directly from GWs alone. Furthermore, studies are ongoing to determine the impact of nonlinear

tidal effects on signal consistency checks within actual detection pipelines as well as our ability to

further constrain or detect these parameters using a population of marginal events.

Regardless of the presence of nonlinear tidal interactions, GWs from compact binaries offer

a unique opportunity to study dynamics within strong-field GR as well as the formation mecha-

nisms and distributions of compact objects that may not be observable in any other way. The

three confirmed detections (GW150914, GW151226, GW170104) along with the weaker candidate

(LVT151012) already show this to be true. Observations of more systems will constitute far more

than butterfly collection; they will allow us to constrain cosmological models, stellar evolution, and

even the basic dynamics of gravitating systems with ever increasing precision. However, to do so we

must carefully analyze our observations to extract as much information as possible. Naturally, syn-

thesizing information from all aspects of multi-messenger astronomy can improve our understanding

of these sources and better place them in astrophysical context.

This includes rapid and robust identification of non-Gaussian noise artifacts within our detectors

as well as comprehensive offline analyses to firmly rule out any terrestrial sources of noise. I have

developed and described several such tools, demonstrating their importance in vetting all GW

detections to date. We continue to study ways to improve our classification of noise artifacts,

including novel machine learning techniques, feature space representations, and parametrizations

of the classification problem to explicitly include multiple populations of h(t) artifacts. This also

extends to a thorough understanding of our detectors' responses and exposure. I have shown

how inaccurate assumptions about the detector responses can bias triangulation and therefore

localization estimates for 3 rd generation detectors. I have also shown how diurnal cycles within

detectors can modulate the parts of the sky to which we are sensitive. In particular, future study will

enable more stringent distributional tests for the sources' locations based on the network exposure.

These facts, coupled with intensive characterization and comparisons of localization estimates, will

help disentangle the complex problem of multi-messenger astronomy in the coming years.

There remain open questions in GW detection and tidal interactions within close binaries.

However, this thesis has addressed several and provides the tools necessary to close others. Nature
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will certainly produce many surprises in the coming years, and we are now better prepared to

understand and exploit them as much as possible.
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Appendix A

Collective Instabilties

2.1 provided a heuristic motivation for the scaling of collective parametric instabilities. Here we

provide more rigorous derivations for a variety of coupling scenarios. While these examples are

still somewhat artificial, they show that our intuition from the heuristic derivation holds in many

situations.

We begin by analyzing the stability of a set of identical modes which are completely inter-

coupled (each mode is coupled to every other mode). Because we are interested in the stability of

linear solutions, we assume the parent behaves as

qa = Aae- (at- 6-o,). (A.1)

Each daughter then obeys

q + (iwo + 7fl)qfl =iw, A (A.2)

(A.3)=iWa rU , O Ane~i~wo n )q* + 2iwo E NAne q
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Defining a new set of variables q = xe-i(-A)t, we re-write these as

d~ +(i~ + ~3)xl ~~~I'Q{~A 7~+i(m, Q+2w/ 3 -2A/4)t-i6_

+ 2iw 3 Z ~ x e~("Qwj+,- r ,ti
Ef

2wrCOOgA ~~ 2w3~

=iw,3~z,,33A~x~- 0, 2iwoE ,3,Ax -

(A.4)

(A.5)

(A.6)

where in the last step we demanded that the time dependence cancels

mjl + wO + w, - A[ - A, = 0 V {3, E}. (A.7)

We then separate x into real and imaginary parts x = R + i1,

R3 -- y,3 + wflAaHra, sin 6, A'3 + wAc, acos o l R,8[9 ~J-6 + wpAasacp cos 5Q - -wpAarcagp sin oj Ij

2w A, Ka3, sin 6, 2wo AarKO cos [ R .
(A.8)

0g 2w13Axagc06oso -2LjAa3ESin6' -I,-

If we assume [R,3, I] oc est V #, then this equation becomes

-y3 + s)+w3Ar,0 cosin
-A0 + w,3A,,K,0 Cos 6c,

Al + w A,,cos01o R

-(y + s) -w, Acy3a, sin I [i3

2wo Aorc so sin 6. 2w,3 A, A o, cos 6" R,

00 2w0AK0g3cos 8 -2w0A0ran,3sin, [Ij

The general solution of this large eigenvalue problem typically must be obtained numerically. How-

ever, if we make several approximations, the problem becomes analytically tractable. Specifically,

if we assume

W/3 = W
na/3 -s

V 0, K"3' = r, V c 0, (A.10)
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then we can define

Ms ( + s) + wAw K sin 6,

LA + wAr. cos 6,

M, =[2wA, K sin 6,

2wAoyr cos 6,

A + wAarc8 cos 6, 1
-(+ s) - wAms, sin 6,

2wAar cos 6 ,

-2w Ar sin 6,_

where A,3 = A V 3 since w,3 = w V /. Writing this as a single matrix and requiring non-trivial

mode amplitudes, we obtain

0 = det

Mls

M,

MA/[

MA/I

M4r

by adding and

identity

MI

M1

Ms

= det IMs - M 1jN-1 det IMs + (N - 1)MiI.

(A.13)

subtracting columns and rows to make this lower-triangular and the applying the

A B AO0
det = det = detIAldetIDI

0 D C D
(A.14)

repeatedly. We obtain N - 1 repeated pairs of roots and one additional pair. The corresponding

eigenvalues are

det IMs - Mil =(j + s)2 + A2  
2- 0

s =- + w2A2(2r, - ,c)2
- A 2 (A.15)

and

det IMs + (N - 1)MII =(_y + s) 2 + A 2 _ W22A(2(N - 1)K + K,)2 = 0

-> s = - y+ ~w2A2(2(N - 1)K + K,) 2
- A 2 .
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(A.11)

(A.12)

. A/ 11r

- .M,

- .M,

--- M,
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In particular, we are interested in the values of A, for which R{s} -+ 0. These are

2 2A- A2

A hr 1(A-17)
4w2(s - !,)2

and

2 + A 2  
(A.18)

'tr-4Cj2((N -- 1)r, + }1r,)21

respectively. We see that there are N - 1 modes that resemble standard 3-mode instabilities and

one collective mode, with a threshold amplitude threshold suppressed by a factor of ~ (N - 1).

Because of the assumptions in Eqn. A.10, the actual value of Athr will differ somewhat from

this expression. Nonetheless, we expect it to generalize to the requirement that

(N - 1)2(A > 1+ ( V modes a, 3 E collective set of N modes, (A.19)

where A,3 + A, = mQ + wo + w,. Similarly, we expect the growth rate to be enhanced by a factor

of ~ N over the 3-mode result. This is because the collective mode effectively sees - N copies of

the same coupling and K appears ~ N times larger (s oc K, Athr CK 1/ic)-

Now, let us consider two overlapping sets of collectively unstable modes, a coupling topology

where there are three types of modes. A modes couple to other A modes and to C modes. B modes

couple to other B modes and to C modes. C modes couple to all other modes. Furthermore, we

assume that all A, B, and C modes couple to the same parent modes. The associated eigenvalue
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problem yields the following characteristic equation

0= det

MAI

MIA

MIA

MIA

AIJA

MIA

MtA

MtA

0

0

0

0

MA

Mt

Mt

Mt
MIA

MIA
MIA

MIA

0
0

0
0

... Mt

... MtA

... MIA

... MIA

... MIA

... MIA

... MIA

-- 0

- - 0

- - 0

0

MIA

MtA

_AIIA

MIA

MIA

0

0

0

0

Mt

Mt

Mf

Mt

ME

ME

ME
MEA

MIA

MSC

ME

M

Mt

Mt

ME

ME

ME

ME

ME

ME
MIA

MIA

MI

--- Mf'

--- Mt

--- ME

..- ME

-. ME

--- ME
... MIA

.-- MIA

M CI

... MEB

... MIB

... MIB

MIA

MIA

MEA

ME

ME

ME

MS

MEB

MEB

MEB

mB

0

0

0

0

MEB

MEB

MEB

MEB

MEB

MEB

MEB

MEB

We again note the high degree of symmetry and reduce the determinant to

0 = (det IMA - MIA )NA -1 (det IME -- M 1)NN -1 (det MS - ME )Nc-1

x det IMl + (NA - 1)MI det IMS + (NB - 1)M I

x det MS + (No - i)ME - NcZj, (A.21)

where

Z = NAMt (MS + (NA - 1)MI) Mt + NBM (MS + (NB _ 1)ME)- ME. (A.22)

We recognize this as NA -I independent A modes, NB-1 independent B modes, NC -1 independent

C modes, one mode corresponding to the collective motion without the coupling to C modes for

each of the A and B sets, and a collective set for the C modes with a modification due to the
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couplings to A and B (through Z). We further note that when N, -* 0, the instabilities reduce to

two separate collective sets, as expected.

The interesting eigenvalue is associated with the interaction between the C modes' collective

set and the couplings to A and B modes. If we assume that all mode parameters are the same for

all sets of modes, and further assume N, = Nb N , we obtain

(y + S)2 + A 2 
- W 2 A2 ((k, + 2(N - 1)k) 2 + 8N2 k 2) = 0 (A.23)

and the threshold amplitude

A 2 = (A.24a)
thr 4w 2 (3k 2N2 + k(k, - 2k)N + k(k - k,) + k2/4)

3N2 4x2k2 N, + N(+N, A2k (A.24b)

where we assumed N > 1. We note that this is very similar to the case of a single collective set,

except N2 
_4 N2+N2 +N. If we stitch together many separate collective sets by overlapping them,

we only expect the effective number of modes to sum in quadrature. This was tested numerically

without assuming equal numbers of modes, and found to be in reasonable agreement with this

scaling.

Furthermore, let us consider sets of modes which are not self-coupled. This means that all modes

in set A couple to all modes in set B but do not couple to other modes in set A. This is expected

to be the most common case in which, e.g., all modes in set A have natural frequencies near 40%

of the parent's and all modes in set B have frequencies near 60% of the parent's. Alternatively,

if the parent azimuthal order (m) is odd, then the daughter modes must have different m even if

they have identical w and -y. If we consider two sets of modes, one with N daughters and one with

n daughters, we find collective sets with characteristic equations like (capital letters correspond to
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the N-mode set and lower case letters correspond to the n-mode set)

Ms 0 ... 0 0 M1  M1  .. M1  M1

0 Ms .-. 0 0 M1  M1  .- M1  M1

0 0 ... Ms 0 M1  M1  -. M1  M,

0 det 0 0 ... 0 Ms M1  M1  ... M1  M1  (A.25)
Mi Mi ... M M Ms 0 ... 0 0

M ... M M 0 MS ... 0 0

M, M ... Mi M 0 0 ... M, 0

M M ... M M 0 0 0 MS

We can simplify this to

0 = (det IMs|)N-1 (det |M,|)n- det Ms nMI (A.26)
NM, M,

which, again, resembles two sets of independent modes and a collective mode. In general, the

determinant must be solved numerically. However, if we again assume identical mode parameters

and that N = n, we see that this reduces to

det Ms NM1  (A.27)
NM1 Ms

which looks just like the three-mode instability equations with k -a Nk even though the coupling

topology is completely different from previous cases.

An immediate question is how the presence of small differences in modes affects these collective

instabilities; they would not be interesting physically if they required all modes to be precisely

identical. We therefore consider the stability of a collective set of identical modes upon the addition

a new mode with different parameters (w', ', etc.). Consider the following characteristic equation,
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with N identical modes and one slightly different mode indicated by 6M

0 = det

M

M,

Ms + 6M

We can reduce this to

0 = (det |Ms - M1|)N-1det MS - M, -6M

NM- Ms + 6M

A 

(det Ms- Mi)N- det IMs + (N -1)Mj det

(detNM Ms Ms- [,SNAI
NM1 (Ms + (N - 1)M1 ) M + 6M.

(A.29)

As 6M -+ 0, this reduces to a single collective set with N - N + 1. We also note that this appears

to be a normal collective set with N modes and a new mode associated with 6M. Furthermore,

if 6M dominates the new mode, then we see that it will decouple from the other modes. Clearly,

there will be some threshold for how large 6M needs to be before the different mode decouples, and

that threshold will depend on the parent's amplitude in a non-trivial way. We expect that larger

parent amplitudes will support larger 6M before the mode decouples. This is equivalent to larger

parent amplitudes exciting modes with larger detunings, for example.
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Appendix B

Energy Scales within Sun-like Stars

There are several important energy scales for g-modes within sun-like stars. Specifically, we focus

on the linear energy (Einn), the 3-mode stability threshold (Ethr), and the breaking energy when

the modes begin to overturn the background stellar stratification (Ebreak). Eiun and Ebreak are

properties of individual modes, while each mode may have several Ethr corresponding to different

3-mode couplings. We note that when Ein ~ min{Ethr}, we are in a weakly nonlinear regime with

only a few modes excited. When Ein ~ Ebreak, we are in a strongly nonlinear regime. What's more,

we will show that, in some sense, the average 3-mode coupling corresponds to Ethr ~ Ebreak and

therefore most 3-mode triples become unstable as we enter the strongly nonlinear regime. Because

we intentionally examine the weakly nonlinear regime, we expect Ethr < Eun < Ebreak.

We begin with Eln, which we write as

(wU)2

Elin/EO = W) (B. 1)72 + (W - mQ) 2

w2 U2

2 u(B.2)
(Aw/2) 2

(2 5 ..3 .75 
222 -11/3) 2 (WOP -4 W5/ 3  (B.3)

where we have assumed that the detuning is approximately half the mode spacing (Aw ~ w/n

w2 /al) and inserted Eqn. 1.55. If we assume a linearly resonant 1 = 2 mode (w 2 Qorb = 47r/P)

182



and a sun-like host (a ~ 4 - 10-3, i,2 2 ~ 2.5 - 10-3), we obtain'

Eln ~ (2.31 . 1035 ergs) (j4p) (p) (B.4)
Mi day

Similarly, if we assume the detuning dominates the stability criterion (Eqn. 2.21), we find

Ethr/EO ( 1 + (maQ + W + 2) (B.5)
4W2 OwE w 7, + -Y E

~ Ew22led) (B.6)

where Id is the angular degree of the daughter mode, E is a measure of how much better the actual

detuning is than the maximum expected, and w still refers to the natural frequency of the linearly

resonant parent. Remembering that K ~(w - day/27r) 2 , we obtain

Ethr ~ (1.96 -1033 ergs) ( E)2 1-2 (p(B.7)
\0.01/d day

This is the approximate scaling of min{Ethr}, often corresponding to E ~ 10-2. We note that the

scaling with P for both Ethr and Einn is very similar, whereas the scaling with Mp is quite different.

MP ~ 0.2Mj implies Ethr ~ Eli, which corresponds to the sharp turn-off we observe numerically

(Fig. 2-9).

Ebreak is more complicated to express analytically, but using the WKB approximations in Ap-

pendix A of [170] we find

AN
kr r = A sin b (B.8)

Wv

N WO
N W (B.9)
r R

A 2 = E = E (B.10)
27r 2pNr3  27r2po(M/R 3)(N/r)r4

in the stellar core. Furthermore, the supremum of this should occur near the inner turning point

1This is slightly different than the estimate obtained in [63] because of slightly different assumed values of 1a2 2.
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when w ~ N, which yields

sup{krr} = 5 A . (B.11)
2p Eo

Equating this with one and assuming stellar values yields

Ebreak = (4.37 lo 36 ergs) ( ( (B.12)

We immediately note that both Ebreak and Ethr scale with the same power of P and similar powers

of 1, at least for large 1, suggesting that Ethr and Ebreak are related in some way. Indeed, we expect

breaking to occur through energy transfer into shorter wavelength modes, which must involve the

3-mode couplings in a fundamental way. When Ebreak ~ Ethr, our scaling relation suggests E ~ 0.47.

To say this another way, breaking occurs when 3-mode couplings which are not particularly resonant

become unstable.

It is also worth comparing the 3-mode equilibrium energy for daughters in a unstable triple with

the daughter's breaking energy. Assuming the parent obeys Eun > Ethr, we expect the daughters

to be driven toward equilibrium energies (Edaughter)3md ~ Uparent/2K. This corresponds to

(Edaughter)3md 82.9 (A 2 (M' ) (P) 1/6 (B.13)
(Edaughter) break 2 Mj day}

and we see that the daughters are excited to large enough energies to break whenever they are unsta-

ble (MAn > 0.2Mj), with a very weak dependence on the orbital period. Nonetheless, granddaughter

modes become unstable before the daughters actually reach their breaking energy.

Our prediction for the relative size of all three energy scales is also validated; for linearly resonant

modes, Ethr < Emn < Ebreak. We also recover the predicted threshold of Mp > 3.3Mj for linearly

resonant g-modes to break in a P - 3 day orbit by comparing Ebreak and Elin [20, 211. Furthermore,

using the limit of Eqn. 2.20 with parent energy E and E > Ethr, we expect the mode amplitude

growth rate to be s ~ 2(w/2)scE/E0 - 0.145Hz(P/day)/E/Eo. If we assume the parent sits

near Eln, a simple estimate of the energy dissipation is

1 
2  ) 3  7 5

2 (wr,,En1/Eo) Ein ~ (1.66. - 2erg/s) Mj Pa (B.14)
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which is similar to, but smaller than, our numerical result (Eqn. 2.45)

E (3.5 - 1029erg/s) ( .5)l. p (P 7.4  (B.15)
( MP- day

While the scaling with P is similar, we note the difference in the dependence on AIM along with

the overall difference in energy scale. This is likely because the our simple estimate assumes only

a single daughter pair is unstable, while in reality there are several that contribute; it is perhaps

unsurprising that the complex dynamics observed in our numerical simulations are not perfectly

captured by this back-of-the-envelop calculation.
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