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Abstract

A quantum nonlinear optical medium, i.e. a medium where the light propagation
depends on photon number, has been a long-standing goal due to its applications in
quantum information, communication and metrology. When the medium is nonlinear
at single photon level, it can be viewed as strong interactions between individual pho-
tons mediated by the medium. Here, we achieve such strong interactions by coupling
the photons to highly polarizable Rydberg states with a phenomena called electro-
magnetically induced transparency (EIT). The strong van der Waals or dipole-dipole
interactions between Rydberg excitations map to the photons under EIT conditions.

The photons are incident on a cigar-shaped laser-cooled rubidium cloud in free
space. After the photons emerge out of the cloud, we measure the photon correlations
from time-resolved single photon detections, which reveal crucial information about
the quantum states of strongly interacting two or three photons.

In this thesis, I will present four experiments. The first two experiments demon-
strate quantum nonlinearities with a propagating continuous wave (cw) light field via
Rydberg-Rydberg interactions in the dissipative and dispersive regimes, respectively.
In the dissipative regime, strong photon anti-bunching is observed. In the dispersive
regime, we achieve a conditional phase shift ~ 7r/4, together with photon-bunching
driven by attractive force. Moreover, the photons acquire a finite mass and we see ev-
idence for a diphoton molecule. In the third experiment, by measuring higher-order
correlation functions, we observe a three-photon bound state evidenced by tighter
binding in addition to a larger conditional phase shift than the two-photon states.
By comparing with an effective field theory, our results suggest that there might be a
three-photon force on top of the pairwise interactions owing to the saturation of the
interaction. Namely, only one Rydberg excitation can be created within a character-
istic length scale called blockade radius. Finally, we explore the exchange interaction
instead of the widely studied blockade shifts. Under the exchange interactions, a
propagating photon and a stored one experience coherent collisions protected by a
symmetry of the Hamiltonian and pick up a robust 7r/2 phase shift.
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Chapter 1

From classical nonlinearities to

strongly interacting photons

In free space, Gauss's law is

V - (EE) = p (1.1)

where E and pf are the electric field and free charge density, respectively.

In a medium, the role of electric field is replaced by the displacement field D to

account for the response of the medium while keeping the free charge the only source

term.

V - D = pf (1.2)

where D =6(1 + X)E, with x being the susceptibility. If the medium is nonlinear,

then X depends on the electric field. We can expand x as follows:

x = X + X2E+ X(E2 + (1.3)

From Eq. 1.3, we can see that the propagation of a electromagnetic wave in a nonlinear

medium depends on itself and other waves that travel in the medium simultaneously.

Allowing x to be complex will account for both the phase shift (Re[X]) and the

absorption (Im[X]). We can then interpret the nonlinear phase shift or absorption as

interactions between the photons mediated by the medium.
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In conventional nonlinear mediums, such interactions are so weak that a classical

description involving the fields and intensities are sufficient. Such conventional non-

linear mediums have been studied for decades, particularly in the context of nonlinear

optical fibers [1].

The quest of stronger nonlinearities are driven by quantum information and com-

munication [2, 3], as well as other applications of non-classical states of light such

as quantum metrology [4]. How strong is strong? The interactions from individual

photons are significant-one has to count the photons one by one.

Realizing such quantum nonlinearities is challenging. The challenge can be quali-

tatively understood as follows: Imagine a light beam is incident on a single atom. For

simplicity, let's model the atom as a two-level system with a stable ground state g

and an excited state e. The g -+ e transition has a wavelength A. Suppose the atom

is initially in its ground state g. The medium (or the atom) is absorptive to the first

incident photon, because the photon will be absorbed, and consequently, the atom

will go to the excited state e. At that moment, the medium is transparent to the

second photon, since the atom cannot absorb another photon before it decays back to

g. We therefore say the two photons have strong dissipative interactions, due to the

strong modification of the attenuation of the second photon caused by the first pho-

ton. Next, let's estimate how likely such interaction will take place. The size (cross

section) of the atom is a < !, while the size of a diffraction-limited Gaussian beam27r'

is ph - ww 2 > A2, where w denotes the 1 beam waist. Therefore, the probability

of a single photon in the beam interacting with the atom Pt = Ja/Uph, smaller than

unity, even under the optimum conditions. Such interaction between a single atom

and a single photon has been observed [5,6], with probabilities of a few percent.

One way to boost this probability is to put the photons in a box (optical cavity),

and thus the probability is increased by the number of times the photon passes the

atom (or rather, the number of round trips inside the cavity). Massive progress has

been made in recent years [7-10], especially with nanofabrication. Proposals have

been put forward to study Mott-superfluid transition [11] and fractional quantum

hall states [12] using coupled cavity arrays.
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However, in order for two photons to interact by saturating a single atom, they

have to see the atom more or less at the same time. Moreover, Shapiro's no-go

theorem [13] precludes the interactions caused by Kerr nonlinearity from a high-

fidelity phase modulation. In order to get around these limitations, one can take

advantage of a phenomena called electromagnetically induced transparency (EIT)

with an ensemble of atoms [14,15]. Under EIT conditions, the light can be slowed

or even stopped-stored as a spin wave. The no-go theorem does not apply to the

scenario of a propagating photon interacting with a stored one.

An alternative approach to realize quantum nonlinearities is to couple the pho-

tons to strongly interacting Rydberg atoms. Due to the large separation of the ionic

core and the outermost electron, the (induced) dipole moments are very large. Con-

sequently, the van der Waals or dipole-dipole interactions are huge. Those interac-

tions can be mapped to photonic interactions with EIT. This is a rapidly developing

field, with strong interactions between individual photons realized within the past five

years [16-23]. Despite both being successful approaches, there are several distinct dif-

ferences between coupling to a cavity and to a strongly interacting atomic state to en-

hance the photon-photon interaction. First, the Rydberg interactions are long-range

in nature, in contrast to the zero range Kerr nonlinearity. Second, a (finite) effective

mass emerges with Rydberg EIT. This quadratic term in the dispersion relation es-

capes the no-go theorem naturally. Third, the propagation of a wavepacket inside a

medium with Rydberg EIT inevitably involves continuous spatial modes, while the

simplest description of cavity QED only considers a single mode. These distinctions

open up exciting possibilities. For example, the quantum version of solitons-shape-

preseving pulses owing to the cancellation of the group-velocity dispersion and the

nonlinear interaction-arise in our Rydberg EIT system. Such quantum solitons have

been predicted decades ago [24-26], but have never been observed.

The put our discussion into a broader perspective, the emitter (atom) can be re-

placed by molecules [27] and artificial atoms in solid-state systems such as colored

centers in diamond [28] and quantum dots [29]. Furthermore, instead of optical pho-

tons, quantum nonlinearity with microwave photons [30] is another fascinating field,
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usually involving different experimental techniques, opportunities and challenges.

This thesis is structured as follows: First, I will explain in more detail about Ryd-

berg atoms and EIT, which are the two key ingredients in our realization of quantum

nonlinearities. Next, I will introduce the experimental setup used in all four experi-

ments. Then, I will present the experiments, starting from the first demonstrations of

nonlinear interactions mediated by highly polarizable Rydberg atoms in both the dis-

sipative and dispersive regimes. We are among the first three groups [16-18] realizing

quantum nonliearities with this new approach. In the dispersive regime, we achieve a

conditional phase shift - r/4-a then free space record to my best knowledge. Mean-

while, we observe photon-bunching as an indication of a diphoton molecule. The

initial observation of the two-photon bound state inspires us to seek for trimers by

measuring higher-order correlation functions. These correlation measurements reveal

evidence of the three-photon bound state through tighter binding and an additional

phase shift. Finally, we explore the exchange interaction instead of the widely stud-

ied blockade shifts. Under such exchange interactions, when a propagating photon

collides with a stored photon, they pick up a robust -F/2 phase shift insensitive to the

detailed experimental parameters, thanks to a symmetry of the interaction Hamilto-

nian.
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Chapter 2

The intensity correlation function

The second-order coherence, or the intensity correlation function, g(2 ), has proven

to be an incredibly powerful tool for characterizing the quantum states of light. In

this chapter, I will give an overview of its application in both single- and multi-mode

quantum optics, as well as the generalization to the third-order. Most contents in

this chapter can be found in [31].

2.1 General formalism

The electric field operator can be generally written as

ET f)t) =8T+t) + E7(i?,t) (2.1)

where

9T (j, t) = 5 x(hwk/2EoV) / 2& exp[-ix(?, t)](

L'4A

The subscripts k and A denote the wavevector and the polarization of each mode,

respectively. The subscript T refers to transverse-the field that is transverse to the
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light propagation direction. The phase angle X (', t) Wkt - k - -/2. Wk is the

angular frequency of the mode. V is the volume of the region where the electromag-

netic field is quantized.

UA.

ekA is a unit vector denoting the polarization of the mode

The photon number operator is

iik' = et etaUI (2.3)

The intensity correlation function g(2 ) measures the correlation of the light field

at two space-time points.

(2.4)

2.2 Classical limits

For simplicity, we can reduce the problem to one-dimensional, replacing iii, i = 1, 2

to zi. Then g(( 1, ti; r-2, t2 ) = g9 (zi, t1 ; z2 , t 2 ) = g 2 (T), where T = t2 - - 2Z1.

For classical light fields, the operators in the numerator can be exchanged and the

fields can be expressed as intensities

Applying

to the cross terms, it is obvious that

I(t1 ) + I(t2) + - + I(tN) 2

N -
1(tl) 2 + 1(t2) 2 +

N

Imagine I(ti), i = 1, 2, - - -, N is the result of the ith measurement of the intensity.
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- (I(t1 )I(ti + T)) (2.5)

21(t1 )I(t2) ; 1(ti)2 + I(t2 )2 (2.6)

... I(tN)2
(2.7)

(Ej( (*1, ti)Ej((O2, t2) E T2 t2)$T ( 1t))

(ET'( '1, tl)E ('1, t1)) (Ej (T2,i -2ET(2 'r2)
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Then

(2) (T= 0) (2) > 1
S(I)(I)

(2.8)

This is the lower limit of g(2) (0) of classical fields. This result cannot be extended to

-r 0.

There is another important inequality derived from Eq. 2.6

[I(t1)I(t1+T)+- - -+I(tN )I(tN +7]2 <[tl24, ,.4 ItN )2][ l72+_ . 4(tN +)2]

(2.9)

The two summations on the right are equal for a sufficiently long and numerous series

of measurements, and the square root of Eq. 2.9 produces

(I (t) I(t + T)) < (I(t)2)

or

g(2)(r) < g(2)(0)

2.3 Single-mode quantum optics

For a single-mode light field, g(2) is simplified to

E(2)r oprtor

Expressing g (2) with the photon number operator

(2.10)

(2.11)

(2.12)

g (2 )(T) -(n(n - 1)) 1 +
((n))2

(An)2 _ (n)

((n))2

where the photon-number variance (An) 2  (n 2 ) _ (in) 2 > 0. For number states, or

Fock states, where (An) 2 = 0, g(2 )(T) = 1 - i. It obvious goes beyond the classical

limit set by Eq. 2.8.

Another important state of light is the coherent state. It follows the Poisson
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distribution

Ia) = exp(- -o2) n) (2.14)
n=O

Poisson distribution has an rth factorial moment of the simple form

(n(n - 1)(n - 2). .. (n - r + 1)) =- (n)' (2.15)

Therefore,

g (2 (T) - 1 (2.16)

2.4 Hanbury Brown-Twiss intensity interferome-

try

Hanbury Brown-Twiss intensity interferometry was originally developed by Hanbury-

Brown and Twiss in the 1950s [32,33], for studying the light from distant stars. Now

it is a routine technique to measure the intensity correlations. The setup is illustrated

in Fig. 2-1. We would like to measure the second-order intensity correlation function

g(2 ) of the light source, whose state is represented as 4V). The light source is passed

through a 50/50 beamsplitter, and two single-photon detectors are placed at the two

output ports of the beamsplitter. g(2) is then given by the coincidence counts with

proper normalization. &, b, and d denote the annihilation operator of the four input

and output modes of the beamsplitter, as labeled in Fig. 2-1.

The unitary transformation by the beamsplitter is defined by

a =

(2.17)
a - b

The coincidence signal can expressed by

(V), 0 a tdf 0 , 0) (2.18)
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Applying Eq. 2.17 to Eq. 2.18, it is easy to show that Eq. 2.18 is proportional

to (', Ojett&t& 'lo, 0). With proper normalization, this gives g( 2) as in Eq. 2.12. This

is a remarkable result, because without splitting the light source into two modes, as

seen from Eq. 2.13, due to the commutation relation of the creation and annihilation

operator, g(2) cannot be extracted from a simple coincidence measurement.

Coincidence counts

IIP)
50/5 0 BS

dW

b 10)

Figure 2-1: The setup of the Hanbury Brown-Twiss intensity interferometry.

2.5 Multi-mode quantum optics

We now consider continuous modes. First, let us look at the Fock state of photon

number 2.

(2.19)

&t(t) is the creation operator at time t, which satisfies the commutation relations

[&(t), d(t')] = 6(t - t'). The normalization of the wavefunction T

(2.20)

requires the probability amplitude 4'2

1
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TW) = Ifdtidt2P2(tiI t2)dY (ti))LY (t2)10)
,/2

fdti dt2|IV2 (ti, t2) 12 =



((2) )t(T 1)it(T1 + IT)(Ti + )e(T) IF)
g( IF) = (ett(T 1 )e(T1 )IIF)(I IIt(T+ T)a(T1+ T)|4) (2.22)

2hi/2(T, TI + ) 12

(2 f dt,1|02 (T1,i t1) 12)(2 f dtiljV2(ti, T + T) 12)

If there is no correlation dictated by 02-the probability of finding one photon at

T1 , P = f dtil 2 (T1 , t1 )12 , and the probability of finding one photon at Ti + T,

P2 = f dti 1 2(ti, T1 + T) 2 , are independent, then according to the product rule, the

probability of finding two photons at T and T + T, I 2 (T, Ti + _r)1 2 , equals the

product of P and P2 . In this case, we recover the single-mode n = 2 Fock state

result g(2 )(r) = j.

However, 2 can incorporate photon correlations such as bunching (antibunching)-

increased (reduced) probability to have two photon in vicinity, as well as T depen-

dence. This shows the richness of multi-mode quantum optics, and is explored exten-

sively in our experiments.

As can be seen from (2) of Fock states, quantum states of light have access to

a larger range of g(2) compared to their classical counterparts. To summarize, the

two limits of g(2 ) (Eqs. 2.8 and 2.11) do not apply to quantum states of light. In

particular,

g(2 )(T) > g(2)(0) (2.23)

is called antibunched, and

g( 2 )(0) < 1 (2.24)

is called sub-Poissonian.

2.6 The third-order intensity correlation function

The definition and measurement of g(2 ) can be readily extended to the nth order

correlation g(). In particular, the third-order correlation function

S(3)(T1, 2) =(T I W (T1)Wt(T1 + 7_i)at(T1 + T2)et(T1 + T2)et(T1 + Ti)et(T1) IT)
g(( 1 ,T2 ) I W (t(T1)e(T1) IT)(I' It(T + Ti)a(T1 + T1) I q)('FIet(T 1 + T2)a(T1 + T2)I )

(2.25)
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It characterizes the probability of finding three photons separated by T1 and T2 , nor-

malized by three independent photons (Poisson distribution).
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Chapter 3

Properties of Rydberg atoms and

their interactions

There are several review papers readily available owing to the rapid development of

Rydberg quantum optics and Rydberg-coupled atomic systems. For the properties of

the Rydberg atoms and their application in quantum information, see Ref. [42]. For

quantum nonlinear optics, see Ref. [43].

3.1 Decoherence and decay of a Rydberg atom in

a dense cloud

Counterintuitively, the OK radiative lifetimes of Rydberg states are very long due

to the small overlap of the wavefunction of the highly-excited electron with that

of the ground state.

approximated by

The dependence of the principal quantum number n can be

(3.1)

where 61 is a quantum defect of an n1 Rydberg state and a, ~ 3 for all the alkalis.

The scaling coefficients 'r1 " and a, can be found in Ref. [44].

At room temperature (300K), the lifetime is limited by the black-body radiation
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for large n, which is given by (including blackbody induced photoionization)

(bb) 3h(n - 61)2 (3.2)
ni - 4a3 kBT

where a is the fine-structure constant [45]. Taking 100S 11 2 in "7Rb for example,
(0) = 1.3ms and (b = 0.5ms at 300K.

Combining both effects, the lifetime can be calculated as

1 _ 1 1

( (bb)(3.3)Tnl + rn

It is worth noting that the black-body radiation couples mainly to a nearby Ry-

dberg state, in contrast to the OK radiative decay, which couples predominantly to

the ground state. This can lead to complicated dynamics in an experiment with an

ensemble of atoms [46], since the contaminant Rydberg atoms can interact with the

desired Rydberg atoms, and such interaction may be even stronger than the interac-

tion between the desired Rydberg atoms.

to a ground state to a nearby Rydberg state
BB c )2 2 o(r-i)2 x-3 C W2()2 (n-3)2(n2)2  -2

OK c 2 2 )2 - c- W3 (r)2 CX (- 3 3 (n 2) 2  -5

Table 3.1: The scalings of transition probabilities coupled by black-body
radiation and spontaneous emission. The transition frequency from a ground
state to a Rydberg state is roughly the same as the ground state (ionization) energy,
independent of n. The transition frequency between nearby Rydberg states is pro-
portional to n-3 because the (ionization) energy of Rydberg states scales as n-2. The
scaling of the radial matrix elements can be found in Ref. [42]. As can be easily seen,
the black-body radiation predominantly couples to a nearby Rydberg state (n- 2 ),
while the OK radiative decay prefers to couple to a ground state (n- 3).

Besides, due to the large size of the Rydberg atoms, there can be many ground-

state atoms within the orbit of the Rydberg electron. When the principal number

n or the atomic density is not too high, this leads to the formation of Rydberg

molecules [47-50]-an intriguing field that has been explored extensively. As n or the

atomic density increases, the Rydberg electron can catch more and more ground-

state atoms, and the molecular lines can no longer be resolved resulting in a shift and
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broadening of the Rydberg state [51]. Reduced coherence time [52] and lifetime [53]

caused by this mechanism have been reported.

3.2 Rydberg interactions

3.2.1 Interactions between the same Rydberg states

At interatomic distances R > n2ao separating two Rydberg atoms A and B, the

leading electrostatic interaction is the dipole-dipole interaction

2 - -4 4 __'

Vd = ( - 5b-3a'RR-b) (3.4)

where a and b are the positions of the two Rydberg electrons measured from their

respective nuclei. At such large distances, overlap between the atoms can be neglected.

For two identical Rydberg atoms, we consider the long-range interaction between

Rydberg atoms as arising predominantly from two coupled channels nrj + nj and

nalaja + nlr bjbwith an energy difference 6 = E(nalaja) + E(nblbjb) - 2E(nlj ). Rep-

resenting the nrj + nlj components of the wavefunction as p and the nTaja + nblbjb

components as KX), the time-independent Schr6dinger equation describing the dipole-

dipole interaction is

6 - IX Vdd |x) |x )

Vdd ) -I I |) I ))

Here, Ix and I. are indentity matrices on the 2(2ja + 1)(2jb + 1) (or (2ja + 1)2 if

(na, la, ja) = (nb, 1b, jb)) and (2j + 1)2 dimensional Hilbert subspaces of the X) and

Jp) wavefunction components, respectively.

There exists a crossover distance R,: At large distances R > Rc, the energy shift

is of the van der Waals form C6/R; at small distances, R < Rc, the two channels

takes the resonant dipole-dipole form C3/R 3. Although on most occasions we are

interested in the energy shift, it is worth noting that the dipole-dipole interaction

37



is an exchange interaction in nature. Namely, if the system is initially prepared in

nlj + nrj, it will oscillates between nlj + nlj and + aaan blbjb due to the interaction.

Such oscillations have been observed by S. Ravets et al. [54].

It is extremely rare to have the resonant R- 3 interaction at relevant length scales

without external fields. It has been demonstrated that by applying a dc [22,54] or

microwave [55] electric field, the two dipole-coupled pair states can be tuned into

resonance.

3.2.2 Interactions between two different Rydberg states

The interaction between two atoms in distinct levels Rydberg levels R and R' has the

general form

V = Vb(r) Vex(r)

Vex(r) Vb(r)

in the two-atom product basis {IRR'), jR'R)}. Here, r is the distance between the

atoms. For levels R, R' with AL = 1, the dominant interaction will likely to be the

direct dipolar interaction Vex(r) = C3/r3 . Because this interaction is not diagonal

in the product basis, its action is to exchange the states JRR') and JR'R). This

case describes, for example, the interaction between the I100S1 2, mJ = 1/2) and

99P3/2, mJ = 3/2) states. For these states, V6 is negligible at the relevant length

scales (less than 5% of Vex at r = 20pm).

In contrast, for same-parity levels, the direct dipolar interaction is not allowed, so

the dominant interaction is second-order, such that Vb(r) = C6 /r and Vex(r) = X6/r .

For states with widely separated principal quantum numbers, |C61 > IKX|. However, if

the principal quantum numbers of the R, R' states are similar, X6 can be comparable

to C6. When IC61 > JX61, the interaction does not lead to exchange of Rydberg

excitations, but only shifts the combined energy, as is typically assumed for Rydberg

blockade (and must be true when R = R'). In contrast, when C61 _ IX61 state

exchange is also possible.
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Chapter 4

EIT

In this chapter, I will briefly review electromagnetically induced transparency (EIT)

with the emphasis on the key ingredients in our experiments. Numerous papers are

available for a fuller description. Ref. [56] provides a comprehensive review. Ref. [57]
and the Supplemental Material of Ref. [58] beautifully describe the polariton picture.

4.1 Transmission through a medium with EIT

First, consider the probe is coupled to 1g) - le) transition, as illustrated in Fig. 4-1.

On resonance, the probe would be strongly scattered, and off resonance, acquire a

phase shift. Then, consider adding the control field and the third level jr). Due to

the cancellation of the linear response by destructive interference in the laser-dressed

medium, the probe sees a transparent medium on two-photon resonance 6 = 0.

We now turn to quantative analysis. Consider the evolution of the slowly vary-

ing operators $t(z), Pft(z) and $t(z) corresponding to the creation of a photon, an

intermediate-state excitation (je)) and a Rydberg excitation (jr)), respectively, at po-

sition z. These operators satisfy the same-time commutation relations [$(z), t (z')] =

[P (z), Pt (z')] = [$(z), $ft(z')] - 6(z - z'). The Heisenberg equations of motion are
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r)

Ygr Control

flc

le) - -

Ep Probe

1g)

Figure 4-1: Generic system for EIT: probe field of frequency wp and control field
of frequency w,. In an ideal EIT, le) is assumed to be the only decaying state with
decay rate F. Realistically, jr) has a small decay rate Ygr.

given by

4t8(z, t) = -cOZ (z, t) + i-- fp(z)P(z, t)

P V'(z, t ) F Qc
atp(z, ) - i(A + 6))7'(z, t) + i- p(z)8(z, t) + i-$(z, t)

2 ' 2 2

-(Ygr Q
at$(z, t) = - )(Z t) + i-P(z, t) (4.1)

where the peak atom-photon coupling constant gp is defined as 2 = OD the
z

2

Gaussian atomic density p(z) = e 2, normalized by the peak density po, and oa is

the axial rms length of the atomic cloud. The one-photon detuning A = Wre - Wcontrol

and two-photon detuning 6 = Wprobe + Wcontrol - Wrg. Here Wprobe and Wcontrol are

the probe and control frequencies, and Wre and Wrg are the le) -+ r) and Ig) -+ jr)

transition frequencies, respectively. The Langevin noise is omitted since it does not

affect our calculations.

Assume a weak coherent state input of the probe

exp[a dz ( (z) - W(z))]0) (4.2)

a is assumed to be real for simplicity. The single-photon probability amplitude is

defined as E(z) = (01$(z)IT), where IT) is the state of the system.
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The steady-state solution of Eq. 4.1 gives

F (Igr _ g1 yOD z/2

E(z) = aexp[- 2 2 2

(qc)2 + (1: - i(A + 6))(-Yg - 16) -Z22

P (Z) = ZE(z) =2 2

ig, /p(z/2 (c)2 + + 6))(

S (Z) = C. - zE(z)
gp ' _p(Z g ,a / 2 - i 6

_gp Vp_(z)
_QC0

p(z') dz'
v' 2

7TUa

Si)E(z)
2Y91

1
[ +E(z)[1 + (4-iA + 6))('Yg - io6)/(Qc/2)21

Note that these boundary conditions satisfy the ideal dark-polariton relationship Eq.

4.20 when g, = 6 = 0.

At the exit of the medium

E (2 - i) OD
E(z> o-a) = ce exp[- 2 2 2

(gc)2 + (1 - i(A + 2)( o
(4.4)

This formula (divided by a) is used to obtain the blue and gray dashed curves in Fig.

6-13.

The amplitude transfer function, according to Eq. 4.4, can be written as

eikLx(l)/2 (4.5)

with the real and imaginary part of the linear susceptibility XM

Re[xI) I =

Im[xM ] =

ODE ((29r )2 + 62)(6 + A) - 6(1)2

2kL (L6 + r (6 + A)) 2 + ( 1: -2(- + A) + (P)2)2

ODE ( )2 + 1:2 + - (c)2
2kL (E6 + (6 + A)) 2 + (- - 6(6 + A) + (f)2)2

where Q, is the control Rabi frequency and OD is the optical depth. With an ideal

EIT (ygr = 0), on resonance 6 = 0, both the real and imaginary part of XM vanish.

Namely, there is no phase shift (Re[xjl)]) or absorption (Im[x()]). With finite deco-

herence ygr, Eq. 4.6 shows that Re[x)] = 0 when 6 - + (ygr). Eq. 4.7 shows

41

(4.3)

(4.6)

(4.7)
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that the peak linear transmission is at 6 = -Ar +0(4_y). When | | > F, the peak

(Raman) absorption is at 6 = g(1- @)(1 + )+0(A-3).

In the experiments, we use 6 = 0 as our nominal EIT resonance. When A = 0, it

coincides with the peak transmission, which is located at the center of the absorption

feature. When A # 0, we move the probe and control laser frequencies by the nominal

amount after we determine the resonance at A = 0.

When A = 0, the transmission (intensity transfer function)

OD
exp [-I + ]Q(.8

1 Pygr

Hence, the condition to see the EIT features is S > OD(> 1).~ygr rl. rl

We now look at the widths of the EIT features. For simplicity, set yg, = 0. Taking

the leading order in 6, the transmission e-kLlm[X 1)] is a Gaussian with rms

Q
2

C (4.9)
2 v2ODF

This is the EIT transparency width. Note, however, when JAI > F, the transmis-

sion peak is highly asymmetric, with one side falling down sharply to the Raman

absorption at 6 = 2 (Fig. 4-2(a)).

When A = 0, Eq. 4.7 have two maximums (minimum transmission) located at

6 = . When OD < l and Qc > F, the absorption peaks are sharp and can be

easily located. Fig. 4-2(b) shows a spectrum in such regime, which can be compared

with Fig. 4-2(d), where Qc < F and thus the spectrum looks more like a transmission

peak sitting on top of an absorption feature with width F. The regime shown in

Fig. 4-2(b), where the two absorption peaks are split, is called Autler-Townes (AT)

splitting. The splitting provides a good measurement of Q, experimentally.

We can define an EIT linewidth as the FWHM of -Im[XM], whose maximum

at 6 = 0 and two minimums at 6= t", resulting in 'TEIT = 7. Compared with

Eq. 4.9, the EIT linewidth is much broader than the EIT transparency window,

when OD 1. The optically thick medium filters the probe in frequency space and
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broadens the pulse in real space, which dictates the width of the anti-bunching feature

in g() (Figs. 6-3 and 6-20). When Al F, YEIT = , defined by the detuning of

the Raman absorption resonance.
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Figure 4-2: Examples of EIT transmission vs the two-photon detuning 6
with various parameter sets {GC, F, OD, ,Ygr, A}.

4.2 Slow light

Consider a monochromatic plane wave Eei(kz- ) of angular frequency w propagating

through a medium of refractive index n, where k = nw/c. We define the phase velocity

v, to be the velocity at which points of constant phase move through the medium.

The phase of this wave is given by # = kz - wt. Points of constant phase move a

distance Az in a time At, which are related by kAz = wAt. Thus, v, - k = =

Next, we look at the propagation of a pulse through a medium. A pulse is nec-

essarily composed of a spread of optical frequencies. At the peak of the pulse, the
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various Fourier components will tend to add up in phase. If this pulse is to prop-

agate without distortion, these components must add in phase for all values of the

propagation distance z. That is,

d- 0  d wz +nz-- 0  (4.10)
dw dw c c

The group velocity
z C dw

= - - (4.11)
t n +w An~ dk

The last equality results from k = nw/c. This description assumes that the pulse

does not undergo significant distortion.

Slow light refers to the situation vg < c. Fast light refers to vg > c or vg < 0. A

negative v9 corresponds to the case when the peak of the pulse transmitted through

a medium emerges before it enters the medium. Slow and fast light invariably make

use of the rapid variation of refractive index (the - term in vg).

Close to EIT resonance J ~ 0 and assuming -yg, = 0,

ODIP6
n= 1 + Re[x()] ~1 + kDF (4.12)

Therefore,
c L

V = L (4.13)

The group delay Td measures how much longer it takes the pulse to propagate through

the medium than travelling the same distance in vacuum.

L L ODE (4.14)

V, C Q2V 9  C

Both slow and fast light have been measured. L. V. Hau et al. [51] observe

group velocities smaller than 17m/s enabled by EIT. L. J. Wang, A. Kuzmich and A.

Dogariu [52] engineer a negative group velocity -c/310 by using two control beams

detuned from each other by 2A, leading to two EIT resonances separated by 2A,

between which L < 0.
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4.3 Polaritons

The interaction of probe and control fields with the three-level atoms can be described

by the atom-light coupling Hamiltonian in a rotating frame

ft = J~r {-At,, (r) - 6t,,(r) + Qj",ieecr + g V$(r)$eg ig,pr + H.a.} (4.15)

where n is the atomic density, g = D with the jg)- e) dipole moment D, Q is the

control Rabi frequency (half width), and qp and q, are the wave vector correspond-

ing the carrier frequency w and wc, respectively. tp,(r) - EejAvbp)jj(vj are

continuous atomic flip operators defined on a small volume AV(r) centered around

position r containing AN > 1 atoms. A = WP - Weg is the one-photon detuning

and 6 = wp + Wc - Wrg is the two-photon detuning. Here wp and w, are the probe

and control frequencies, and weg and Wrg are the 1g) - le) and 1g) -+ jr) transition

frequencies, respectively.

Assuming that all atoms are initially prepared in the ground state 1g) and the

photon density is much less than the atom density, we can treat the light-atom cou-

pling perturbatively. In the lowest order of the atom-field coupling g, the Heisenberg

equations can be written

ag\ - Jiqp.r + (4.16)at ge + e + ig /es + gr- (4.16)

at Egr = i6Egr + iQZge (4.17)

where -y is the natural linewidth of le) (half width). The Langevin noise is omitted.

The slowly varying probe-field envelope 8(r, t) in a one-dimensional problem with

paraxial approximation satisfies the wave equation

[- + c-]$(z, t) = ig VYge (z, t)ei~r (4.18)at az
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eqs. (4.16) to (4.18) yield the following matrix equations

a X = -iHX
(9t

(4.19)

where XT = {S, Zgrei(q+qc)-r, g eiqp-r}, and the Hamiltonian

icoz 0 -g ji

0 -6 -Q
0v~-

Changing the basis to a description in terms of dark- and bright-polaritons yT -

{ ID, I Egeeiqpnr}, where the dark-polariton

F = cos 0& - sin 0$g i(q+qc).r (4.20)

the bright-polariton

) = sin 0$ + cos Ogr 6 i(qp+qc)-r (4.21)

and tan 0 = gjVi/Q, yields the equation of motion AY = -iH'Y with

-6 sin2 0 + ic cos 2 Oz

sin 0 cos 0(6 + icOz)

0

sin 0 cos 0(6 + icoz)

-6 cos 2 0 + ic sin2 0Dz

where Qe = Vg 2n +Q 2 .

Assuming that the time evolution is slow compared to - - i7y, we can adi-

abatically eliminate the optical polarization $ge which yields the coupled equations

for dark- and bright-polaritons

a ( = -iH"(
4) )

46

H'j

0

-Qe

- A - i-Y



with

H" ( 6 sin2 0 + ic cos2 oaz sin 0 cos 0(6 + icaz)
sin 0 cos 0(6 + Zicaz) -6 cos2 0 + ic sinOz + i

In the off-resonant regime AI >> -y, if 16 + icazl < for all relevant momen-

tum, one recognizes that the off-diagonal coupling terms are small compared to the

difference of the diagonal elements. Under this condition, the dynamics of dark- and

bright-polaritons approximately separates and one can treat their cross coupling per-

turbatively. Within this perturbative treatment, the effective equation of motion of

the dark-polariton I up to second order of the off-diagonal coupling is given by

2 0 + iccos2 08 sin 2 0 cos 2 0(6 - icaz)2
-4 = i(6 sin( +c)(snz) + i 2 c,2 T (4.22)at _-_icz) sin - COS2 0) + e

Taking the leading term of the denominator of the second term on the right-hand

side

a - 6Acos 2 0 6A sin2o v9cA sin2  2
(9 = i6 sin2 0(1 ) -'ikg(1 - 2 )$ + i 2 k (4.23)

e e e

where k -_ -iaz and v 9 = c cos 2 0. The first term on the right-hand side describes

an energy offset due to a finite two-photon detuning. The second term accounts for

the propagation with the group velocity vg. The third term describes the quadratic

dispersion with effective mass

Q2Q 2 g2 +Q 2 i 2O- Q2
m - -e nvsin (4.24)

2cv A sin2 0 2v2A g 2n 2Vg2

With the effective mass m, Eq. 4.23 can be written as

(9 k 2
a + ikVg + Z] = 0 (4.25)whe 2m

when 6 = 0.
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From Eq. 4.25, we deduce the dispersion relation

w(k) = Vgk + (4.26)
2m

Thus, the group velocity and mass can be be extracted from the first (vg =

and second derivative ( = ) of the dispersion relation, respectively. It is rather

convenient to look at the spectrum of the real part of the susceptibility Re[X(')]

(related to the momentum (Eq. 4.5)). After swapping the momentum and energy (or

rather, the space and time), the spectrum of Re[X(1)] (see the red curve in Fig. 4-3

for an example) can be interpreted as the dispersion relation.

To recover the usual dimensions in the end, we need to scale the results by vg.

More specifically, the group velocity equals the inverse first derivative, and the second

derivative needs to be multiplied by v3 to get the inverse mass. Furthermore, in the

regime where the medium is lossy, vg can be negative. In that case, the sign of the

mass cannot be solely determined by the second derivative of Re[X( 1)].

a rb. unit
0.20

0.15

0.10

- Relx]
0.05 -Im) ]

-2 -15 -10 -5 5 10

-0.05

V -0.10

Figure 4-3: The real (red) and imaginary (blue) parts of X(M) with the param-
eters {Qc, F, OD, 7r, A}={10MHz, 6.1MHz, 40,0, 18MHz}.
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4.4 Rydberg EIT

In 2001, M. D. Lukin et al. [53] pointed out the possibility to generate non-classical

states of light using Rydberg dipole blockade. Afterwards, the blockade was observed

through ionization [54-56]. In 2005, I. Friedler et al. [57] proposed to use EIT for a

coherent optical detection, which is necessary for light manipulation with Rydberg

blockade. The effect of Rydberg blockade on the optical transmission through an

ensemble of cold atoms was first demonstrated in 2010 [58]. The first experiments

demonstrating single-photon nonlinearity followed in 2012 by Y. 0. Dudin and A.

Kuzmich [16], D. Maxwell et al. [17], as well as our work described in Chap. 6.
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Chapter 5

Experimental setup

Before going into details, I would like to start with an overview of the basic setup

that is shared by all the four experiments (despite their variations). As shown in

Fig. 5-1, the atoms are prepared in the ground state 15S1/2 , F = 2, mF= 2). The

cold 87Rb atoms are loaded from a magneto-optical trap (MOT) to a 1064nm far de-

tuned crossed dipole trap to increase the atomic density. The resulting peak density

is ~ 10 2 cm--3, leading to an optical depth per blockade radius (defined in Secs. 6.1.2

and 6.2.3) larger than unity. The trapping light is off when the probe is incident

on the cloud to avoid the inhomogeneous light shifts. Along the probe propagation

direction, which is also the quantization axis, and the longitudinal axis of the atomic

cloud, the rms width of the cloud is ~ 35pm, which is a few times the blockade

radius, allowing us to study the dynamics of probe propagation with the strong in-

teractions. Throughout the experiments we never create static Rydberg atoms. The

excitation to the Rydberg states is always part of the Rydberg polariton. With two

f = 3cm lenses inside the vacuum chamber, the probe is focused to a Gaussian

waist of 4.5ptm, less than a blockade radius, so that we can restrict ourselves to a

one-dimensional problem, without considering the transverse dynamics. After the

probe photons exit the medium, their correlations are preserved and measured by the

time-resolved single-photon detections.
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Figure 5-1: The basic experimental setup. We load the atoms from MOT into
the 1064nm crossed dipole trap (yellow beams). The atoms are optically pumped in
the dipole trap into 15SI/ 2, F = 2, mF = 2). The probe and control propagate along
the quantization axis and are circularly polarized to address the specific magnetic
sublevels. The atomic density is increased thanks to the dipole trap such that the
optical depth per blockade radius exceeds unity. The two f = 3cm lenses focus
the probe and control at the position of the atomic cloud, where the probe waist is
smaller than the blockade radius, leading to one-dimensional dynamics. After exiting
the atomic cloud, the probe photons are split into single-photon counting modules
for photon correlation measurements.
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5.1 Probe and control laser systems

A TA-SHG Pro System from Toptica is used as the control laser. A diode laser from

Vitaly (Russia) is used as the probe laser.

5.1.1 Pound-Drever-Hall laser locking scheme

We lock both the probe and the control lasers to the transfer cavity (see Sec. 5.1.2

for the details about the transfer cavity). In addition to locking the control whose

frequency is far away from the atomic transition, we also take advantage of the narrow

cavity linewidth to narrow the laser linewidths (see Sec. 5.1.4 for the results of the

laser linewidths). The cavity is temperature-stabilized to 29'C. In order to correct

the resonance frequency drift of the cavity mainly due to humidity since the cavity

is not evacuated, we actively lock the cavity to the reference laser, which is locked to

Rb8 5 (F=3-+2)(F=3-+3) crossover. The scheme is shown in Fig. 5-2.

Transfer
Cavit

Temperature
Controller

Driver

Pound-Drever- AC-coupled APD AC-coupled APD Toptica
Hall Box PD110-Dual

Famodule
P , ,fast feedback input fast feedback

current piezo Toptica input
modulation modulation fast D2 SHG-pro

feedback laser
L ITpiezo current

Laser modulation modulation
controller] Beatnote

beatnote Lock box
^ (ADF4007)

- reference - -
laser

Pl-Board DAVLLFAVLL

Figure 5-2: Scheme of the probe and control laser locking system.
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5.1.2 The transfer cavity

-avity mirror 1

APD2 fl=4.51mm

control

PBS

BS PBS
f2=125mm probe

fl=4.51mm

(a) the side view (b) the top view

Figure 5-3: Transfer cavity setup. Probe and control laser light has orthogonal
polarizations, and therefore can be combined and separated with polarizing beam
splitter (PBS). The transmission through the cavity is detected by APD1. APD2
and APD3 detect the probe and control reflection, respectively. The mode-matching
lenses have focal lengths f1 = 4.51mm and f2 = 125mm. Some mirrors are not shown
for simplicity in (b). One teflon rod is set to be transparent in order not to block the
view of the prism mirror in (a).

The setup of the transfer cavity is sketched in Fig.5-3. The cavity is mounted

vertically to minimize the effect from the vibrations of the optical table. Three

teflon rods and two teflon washers (between the two plates that sandwich the cavity

mirror mount) are used to further damp the vibrations. To gain stability over the

temperature, the container of the cavity is temperature stabilized with polyimide

thermofoil heaters that are taped on the outer wall of the container. The thermistor

(Fenwal 192-103LET-AO1) is glued to the mount to which the two cavity mirrors are

attached.

Infra-red probe and control (before frequency doubling) laser light is coupled

through fiber electro-optic modulators (EOM). The +1st order is used to lock the

laser to the cavity. Thus, by varying the modulation frequency of the fiber EOMs, we

can easily control the frequency of the probe and control beams in the experiment.

The cavity mirrors have a radius of curvature 5cm. They are mounted with a
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distance of about 5.6cm, in order to take the advantage of the near confocal config-

uration for easy alignment but keep the higher order modes separated in frequency

from the fundamental mode. The free spectral range (FSR) is measured by scanning

the modulation frequency of the EOM. When the transmission peaks of the 1st

order sidebands overlap with the carrier, the modulation frequency equals (an integer

multiple of) the FSR. The mirrors are custom coated by ATFilms to achieve transmis-

sion 0.026589% and 0.017434% at the wavelength of 780nm and 958nm, respectively,

according to the datasheet. We measure the finesse of the cavity at 958nm with the

ring-down measurement [64]. A typical curve of the transmitted power after the laser

light is suddenly switched off is shown in Fig.5-4. Assume the power loss is only

caused by imperfect mirror reflectivities and the two mirrors are the same. For the

control laser, the exponential decay time constant r = 531ns of the ring down mea-

surement and the measured FSR= 2.672GHz give finesse F = 27r - -FSR = 8.9 x 103.

Similarly, the finesse for the probe laser is 6.8 x 103.

~ 0.2 ~ fit function: ljep-0-t0)/r)+offset
=0.404ps

* 0

- -S -0.5 0 0.5 1 .5, 2 2.5 3

Time (s)

(a) ring-down measurement with the probe
laser

0.12,-< fit function: 1 x((-O-)ofe

j 0.1 --0 0o T=0.531ps
S.0.06-

0.02
S 0 . 1 1.6 2 2.5

Time (ps)

(b) ring-down measurement with the control
laser

Figure 5-4: ring-down measurement. The light is sent to the transfer cavity
through fiber EOMs. The modulation frequency jumps (see Anton Mazurenko's
Bachelor's thesis [65] for the details about our FPGA based frequency control) by
+10 MHz with a period of 200ps while the cavity resonance is slowly scanned so
that the +1st order sideband can be on resonance at some point. The sudden change
of the modulaton frequency moves the light out of the resonance. The transmitted
light of the cavity afterwards is the stored light inside the cavity. The decay of such
light tells us the information about the finesse. The transmitted light is detected
with a home-built avalanche photodetector (Appx. A. 1.1) whose bandwidth is about
20MHz. We measured the decay time constant T to be as low as 50ns when the
surface of the cavity mirror is dirty, which again proves that the frequency jump and
the detector are fast enough for the ring-down measurement.

Three avalanche photodetectors (APD) are in use. APD1 (Appx. A.1.1) detects

the transmission from the cavity to monitor the lock. The other two APDs (Appx.
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A.1.2) detect the probe and control laser light that is reflected from the cavity, respec-

tively. Two interference filters (LLO1-780-12.5 and LP02-830RS-25 from Semrock) are

placed before the APDs to prevent cross detection. The signal from these two APDs

is used to generate the error signal for the laser lock.

The beat note of the reference laser and the +1st order of the fiber EOM is

divided by a factor of 8, and compared with a local oscillator (direct digital synthesizer

AD9958), whose frequency is divided by a factor of 2. The division and comparison

are done with a high frequency divider ADF4007. The output flips signs depending

on which frequency is higher. Such error signal is sent to the servo controller (Fig.

A-8). A piezoelectric transducer (HPCH 150/15-8/3 from Piezomechanik), which is

glued to the top mirror, provides feedback to the cavity length.

5.1.3 Parameter tuning of the servo loop

We lock the laser with the PI controller, inject noise into the fast feedback path

and measure the gain Mf = v (Fig. 5-5). Then we lock the laser with both the
yin

PI controller and the fast feedback. We inject noise to the PI controller path and

measure the gain Mp1 = K (Fig. 5-6). Mfast and Mp1 are related to the open-loop

gain of the fast feedback and the PI controller path by

Gf Mf ( - MP1 ) (5.1)
1 - MfMpI

My1A - Mf)
G 1-MfMPI (5.2)

All the gains here are complex, including both the amplitude and the phase.

We use the extracted open-loop gain to tune the parameters of the fast-feedback

circuit (see Fig. 5-7 for the final circuit) and the PI-controller. We try to push the

rolling of the phase to as high frequency as possible and meanwhile make sure the

amplitude of the gain goes below zero when the phase slips.

For the control laser, the fast feedback works instantaneously by feeding the error
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Figure 5-5: Test circuit when noise is injected into the fast feedback path.
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Figure 5-6: Test circuit when noise is injected into the PI controller.
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signal to the MOSFET input. However, for the probe laser, a home-made circuit

(Fig.5-7) is necessary to get the fast feedback to work. Below are the results of the

tuning of the probe laser. As shown in Fig. 5-7, the circuit include a derivator and

two phase compensators. The first phase compensator (R1 and C4) is to prevent the

phase slip within 100-500kHz. This phase slip is typically caused due to the limited

bandwidth of the electronics. The second phase compensator (R5 and C5 ) is to push

the phase slip 1MHz to higher frequency. This phase slip is limited by the diode

itself and the improvement from the phase compensator is very limited. The derivator

is to suppress the gain when the significant phase slip happens. The gain with this

circuit is plotted in Fig. 5-8.

To generate the error signal, we use the home-built electronics (Fig. 5-9) for the

probe laser. For the control laser, the electronics is provided by Toptica.

C CD
O 't - L36PO C

3 S1 CD
X1 2 04N

S R2 0 RR2

-2--R5 1K-
BU- iMA V.

0M 00J

C 3

4.7nF

0 GND

Figure 5-7: Fast feedback to the laser diode (LD) of the probe laser.

5.1.4 Estimation of laser linewidths

A standard method to measure laser linewidth is to beat the laser with another laser

which has a narrower linewidth or with the light from the same laser but delayed more

than the coherence time. Here, for convenience, we use the error signal of the lase lock
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Figure 5-8: Gain of the probe laser locking system.
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Figure 5-9: Pound- Drever- Hall error signal generator for the probe laser.
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to estimate the laser linewidth. For the probe laser, we measure the open loop peak-

to-peak value of the error signal Vp = 390 mV. The rms value of the error signal for

the closed loop is Vrms = 47 mV. The slope of the error signal is D =- [66].

6 denotes the amplitude of the error signal, 6f the deviation of the laser frequency

from the locking point and 6v the linewidth of the transfer cavity. Using the finesse

from Sec. 5.1.2, 61 = 6
FSR = 22 G4z 3.9 x 102 kHz. The rms frequency deviation

can be thus calculated Arms = Vrms/D. Usually, the laser linewidth is dominated by

environmental noise due to acoustic vibrations and temperature variations, resulting

in a Gaussian noise spectrum. For Gaussian distribution, FWHM width is related

to rms deviation by AFWHM 2v2lfl2Arms ~- 60 kHz. Similarly, FWHM width of

the 958nm light is estimated to be 130 kHz. The frequency doubling is expected to

double the linewidth and therefore out estimated control laser linewdith is 260 kHz.

All the laser linewidth measurements are taken with the transfer cavity locked to the

reference laser.

Besides the instantaneous linewidth, there is a separate issue of long term drift.

Even when the transfer cavity is locked to the reference laser, the frequency of the

control laser can still drift at a rate of 10kHz/min, resulting probably from the baro-

metric pressure change. We usually manually correct the frequency every ~20min.

5.2 Optical beams into the vacuum chamber

5.2.1 The crossed dipole trap

A crossed optical dipole trap is produced by a Nd:YAG laser operating at 1064 nm.

In the experiments in Chap. 6, the trap is formed by two orthogonally polarized

beams with waists wt = 50pm intersecting at an angle of 32'. The beam is reflected

after a half-wave plate (Fig. 5-10) and the power in the vacuum chamber is 5W. In

order to modulate the dipole trap intensity at the MHz level, we make sure the beams

have orthogonal polarizations so that no lattice is formed. Without a lattice, the trap

frequency is at the kHz level, much lower than the modulation frequency. Unlike all
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the other beams, the dipole trap beams do not go through an optical fiber. The laser

head and the acousto-optic modulator (AOM) that controls the intensity and switch

on/off the beam sits on the optical table where the vacuum chamber is located. The

0th order and the beam getting out of the chamber are absorbed by beam blocks.

HWP

atoms

32

Figure 5-10: Diple trap setup for the experiments in Chap. 6. The blue arrows
show the path of the dipole trap beams. The red marks indicate the polarization of
the beams.

After those experiments, we start implementing Raman sideband cooling. A better

control of magnetic fields is required. The counter-propagating orthogonal linear

polarized dipole trap beams create a polarization gradient [67], which shifts different

sublevels differently, resulting in an effective spatially varying magnetic field. In order

to avoid such magnetic field, we switch to a new 25W trap laser. We split the power

into two paths, each with its own AOM and opposite ( 1st) order.

The trap frequencies are measured by parametric heating. The dipole trap in-

tensity is modulated sinusoidally for 20ms with a depth of 20%, followed by a 10ms

thermalization in the full dipole trap. Figure 5-11 shows the root-mean-square (rms)

axial cloud size as a function of the modulation frequency after ums time of flight.

The resulting frequencies are consistent with the measured beam power 8.9W per

beam at full power and a beam waist of 44pm, which predicts trap frequencies 1.8,
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1.9, 0.52kHz.

fa = 0.47kHz

2fa fr= 1.9kHz 2fr
30I
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Figure 5-11: Parametric heating measurement of the dipole trap frequency.
We attribute the four heating peaks to both the radial and axial trap frequencies.
The two radial frequencies are very close. We do not expect to resolve them.

5.2.2 Probe and control

The probe beam is focused to a 1/e2 waist w ~ 4.5pim by a confocal arrangement of

achromatic doublet lenses with focal length 30 mm and diameter 6.25 mm (Edmund

Optics, NT49-308). The same lenses focus the control beam as well. The coupling

lens of the probe is A280TM-B (f=18.4mm) both before and after the chamber to

SPCM. Initially, the probe is coupled to SPCM by polarization-maintaining single-

mode fibers. Before the experiment in Chap. 7, we switch to non-polarization-

maintaining single-mode fibers to achieve higher detection efficiency.

The control field co-propagates with the probe beam in the first experiment

(Sec. 6.1). Later, in order to reduce the Doppler broadening, we switch to counter-

propagating control. The 1/e 2 waist is 12.5 pm. The transmitted control light is

separated from the probe light by a combination of interference and absorption fil-
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ters. The absorption filters are removed before the experiment in Chap. 7. Two

interference filters (LLO1-780-12.5 and LD01-785/10-12.5 from Semrock) are placed

before each couplers to minimize the spurious photons and maximize the coupling

efficiency.

Before the experiment in Chap. 7, we change the control beam waist to increase

the Rabi frequency, or more specifically, the Autler-Townes (AT) splitting (see Sec.

5.5.1.4). The collimation lens is changed from c230TME-A (f=4.51mm) to A397TM-

A (f=1lmm), and the resulting beam waist at the atomic cloud is 7pm. The control

focus position can be optimized by maximizing AT splitting (see Sec. 4.1). All the

beam waists are measured off-site.

The reduced beam waist allows us to have bigger Rabi frequency. However, the

anti-trapping effect from the control beam is much more pronounced. We have sig-

nificant loss of the atoms when the control beam is on. Therefore, we take data with

80% dipole trap duty cycle instead of 50% to minimize the loss of atoms.

We follow careful procedures to make sure the atomic cloud is placed at the

probe focus because the Rayleigh range is very close to the length of the cloud. The

alignment procedure is as follows:

1. We align the probe with the help of a guiding red beam. We overlap the

reflection from the first lens in the chamber to the incoming guiding beam, and

then overlap the probe with the guiding beam. Then the probe beam is never

touched and everything else is aligned to it.

2. We move the MOT to roughly overlap with the probe by looking for the loss of

atoms with a strong resonant probe. Once the loss is maximized, we mark the

pixel on the absorption imaging CCD camera (see Sec. 5.5.2). We can move

the dipole trap to this location and the loss of atoms signal can be easily found

in the dipole trap as well.

3. We roughly find the probe focus in the compressed MOT (cMOT, see Sec. 5.4).

The probe beam with an intensity an order of magnitude below saturation

depopulates atoms from F=2 due to off-resonant excitations. We measure the
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probe transmission as a function of time for each cMOT location and vary the

cMOT location by the bias magnetic field along the probe propagation direction.

The closer to the the focus, the smaller the probe, the higher the intensity and

the faster the atoms are depumped.

4. In order to be more precise, we would like to find the probe focus with the

dipole trap. At this point, we can either move the dipole trap or move the

probe focus by moving its collimation lens. Moving the dipole trap requires a

lot of realignment, but it works just as well with enough patience. Figure 5-13

shows an example of moving the collimation lens. With either the depumping

rate or the initial transmission of the probe, we can locate the probe focus

within ~ 100pm, consistent with the Rayleigh range as well as the length of

the medium.

1.0 00020

0 0.8 0031

0

0.2 o~

500 1000 1500 2000 2. 2 24 2 2 2 2

probing time (,s) cMOT location (arb. unit)

(a) Probe transmission vs probing time (b) Fitted initial slope vs cMOT location

Figure 5-12: Find the probe focus with cMOT. We measure the linear depen-
dence of the cMOT location on the bias magnetic field and move cMOT by the bias
magnetic field. (a) We apply a linear fit to the initial probe transmission vs probing
time. The fitting range is from the beginning to the grey vertical line. The yellow
line has a bigger slope than the blue, and therefore its location is much closer to the
probe focus. (b) The fitted slope is plotted as a function of the cMOT location. We
apply a Gaussian fit, and the peak center is considered the probe focus.
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Figure 5-13: The depumping slope (Left) defined in Fig. 5-12(a) and the
initial transmission (Right) as function of the position of the z-axis trans-
lation mount (SM1Z from Thorlabs) of the coupling lens of the probe.

5.2.3 MOT, repumper and beams for Raman sideband cool-

ing

The magneto-optical trap (MOT) and repumper beams are the same as documented

in [68]. Both are 1.5 inch diameter beams but are clipped by 1 inch diameter optics.

The MOT beam is produced by an external cavity diode laser and a tapered amplifier

(which steadily degrades over the past few years). The total power of the three MOT

beams are - 50mW for the experiments in Chaps. 7 and 8.

The MOT repumper couples F = 1 -+ 2 transition. It is derived from a distributed

feedback laser (Eagleyard). This laser also provides the optical pumping beam. The

pumping beam passes a fiber electro-optic modulator (EOM from EO Space, PM-0K5-

20-PFA-PFA-780), followed by an AOM. The EOM generates a sideband at ~ 7GHz

to address the F = 2 -÷ 2 transition. The pumping beam counter-propagates with

the control beam and is .+-polarized.

After the experiments in Chap. 6, the MOT repumper laser is replaced with a

distributed bragg reflector (DBR, from Photodigm) laser, which also provides the

pumping beams for Raman sideband cooling. The pumping beam intersects the

quantization axis (probe propagation direction) at an angle of - 45'. The o- light

is eliminated to make IF = 1, mF = 1) a dark state. The pumping beam addresses

F = 1 -÷ 0 and F = 2 -÷ 2 transitions during RSC, and F = 2 -+ 1 and F = 1 -+ 2

during the optical pumping afterwards. See Sec. 5.4 for a typical experimental cycle.
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The pumping beam is retro-reflected to minimize the momentum transfer to the

atoms. Most other beams are aligned by scattering (loss) of atoms. However, the

pumping beam can push the whole cloud by a distance on the order of the cloud

size, which is a very clear signal for alignment. First, we block the reflection and

maximize the mechanical displacement. Next, with the reflected beam, the cloud is

ideally pushed back to the original place, after alignment optimization. Initially, this

is not true, we then use this signal to adjust the location of the beam waist, leading

to a balanced incoming and reflected beam.

The lattice for RSC is formed by a free-running DFB laser (from Sacher Lasertech-

nik) red detuned from D2 line by ~10GHz. After an AOM, the beam is fiber-coupled

to the optical table where the vacuum chamber sits. It is then split into three paths

with a total power of ~ 20mW, each with its own half-wave plate to tune the polar-

ization. One of the beams is retro-reflected after a quarter-wave plate. For alignment

convenience, it is chosen be a horizontal beam that goes through a different port from

the pumping beam. The RSC lattice beams and the pumping beam share the same

windows of the vacuum chamber as the MOT and repumper beams, and both have

~1mm beam waist.

5.3 Raman sideband cooling

Raman sideband cooling is implemented after the experiments in Chap. 6 is finished.

We follow the cooling setup in 3D lattice described in refs. [69,70].

First, the transverse fields are zeroed by imaging with F = 2 -+ 2 instead of the

usual F = 2 -÷ 3 transition. The imaging beam is circularly polarized (Fig. 5-14).

The Cartesian coordinates are defined as in Fig. 5-14. With a small B2, if B, and

By are both zero, then the imaging beam will pump the atoms to the dark state and

a minimal amount of atoms can be imaged. Therefore, B, and By can be zeroed by

minimizing the atom number in the absorption image. The smaller the B2, the more

sensitive the signal is. B, is zeroed by maximizing the atom number with a small B,

or By. The repumper is on while imaging to keep the atoms in F=2. This technique
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can be used to zero magnetic field during molasses as well.

CCD camera

z: imaging beam

x: probe propagation direction propagation direction

Y

Figure 5-14: The sketch of the Cartesian coordinates for the F = 2 -+ 2
imaging discussion. The purple arrow marks the polarization of the imaging beam.

Second, the pumping beam polarization is optimized by minimizing the loss of

atoms, with a stronger pumping intensity than usual.

Third, we look for the cooling signal by scanning the magnetic field along the

quantization axis (Fig. 5-15). A reduction and an increase of the cloud size can be

seen around roughly opposite B fields, corresponding to cooling and heating. If the

initial parameters are relatively far from optimum, usually at least the heating peak

is visible.

Once the initial signal is found, further optimization can be achieved by tuning

the polarization, frequency, intensity and its distribution among the three beams of

the lattice light, the frequency and intensity of both transitions of the pumping beam,

as well as the duration of the cooling.

Once RSC is optimized, we add the optical pumping stage to pump the atoms to

IF = 2, mF = 2). Since our goal is mostly to increase the optical depth, we usually

fine tune RSC parameters to maximize OD in the end.

5.4 A typical experimental cycle

An ensemble of ~ 106 laser-cooled atoms is captured in a magneto-optical trap (MOT)

every -300 ms. The trapped cloud is compressed by the combined actions of in-

creasing the magnetic-field gradient to 35 G/cm, red-detuning the MOT trapping
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Figure 5-15: RMS cloud sizes (characterizing the temperature) as a function
of the magnetic field along the quantization axis. The dipole trap is shut off
right before we start to ramp down the lattice, which lasts for 100ps. The rms cloud
sizes are measured after 3ms time of flight with the CCD camera above the vacuum
chamber. The blue and orange represent the radial and axial directions, respectively.

Here, a cooling (heating) signal can be seen with a negative (positive) B field. The
sign of B field is chosen arbitrarily.

frequency by ~30 MHz and reducing the MOT repumper intensity to -10 pW/cm2

The magnetic fields are then rapidly shut off, allowing for 10 ms of molasses cooling to

a temperature of -35 pK. After that, we change the magnetic field and the repumper

frequency to do the Raman sideband cooling for ~ 10ms, resulting in a temperature

of ~ 20pK (- 70pK without RSC) in the dipole trap. The quantization axis is along

the probe propagation direction. RSC leaves the atoms in IF = 1, mF = 1) sublevel.

We ramp up the magnetic field to ~ 3G and change the repumper frequency to pump

the atoms to IF = 2, mF = 2) sublevel. The same magnetic field is maintained during

the probing, and optical pumping with much less intensity is on when dipole trap is

on during the modulation. The dipole trap is always on except during probing. The

crossed dipole trap holds up to 105 atoms at a peak density of ~ 1012 atoms per cm3 .

The radial and axial rms of the medium is -- 10 and ~ 35pm, respectively, and the

optical depth along the probe propagation direction is - 40.
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5.5 Diagnostic tools

5.5.1 Spectra

5.5.1.1 Two-level fitting

We measure optical depth (GD) before each measurement everyday by fitting the

measured photon counts per cycle as a function of the probe frequency. There are

two methods of fitting we use routinely. The first one is to assume a two-level atom

with a linewidth of IF = 6.1MHz. This method has no other fitting parameters and

results in a robust GD.

5.5.1.2 Optical pumping

In order to monitor and optimize the optical pumping, the second method we use is

to simultaneously measure the spectra of both a+ and a- probe. We send in linear

polarized probe light and separate the two polarization after the chamber. The model

defines a quantity called pumping purity P. If there are N atoms in total, then PN

atoms are in mF = 2 sublevel while (1 - P)N atoms in mF = 1 sublevel (Fig. 5-16).

The contribution from all four transitions are included. We first fit the spectra of a+

probe. Then the fitting result, together with P and magnetic field B, is used to fit the

a- spectra. We quote the OD from mF= 2 atoms only as our final result. Usually,

90% pumping purity is achieved. See Fig. 5-17 for some examples of the fitting.

If the purity is low, the optical pumping can be improved by optimizing the power

and frequency of F = 1 - 2 and F = 2 -+ 1 pumping beams. Although usually not

necessary, we can optimize the pumping further by adjusting the polarization of the

pumping beam. A better signal to look at while adjusting the polarization is the loss

of atoms. We increase the pumping intensity and duration so that we lose about half

the atoms from the absorption imaging, and systematically change the polarization

of the pumping beam until the loss is minimized. Last, we make sure all unwanted

beams are not only turned off but also detuned properly during the optical pumping

stage.
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Figure 5-16: The transitions included in the optical pumping purity fitting.

(a) Pumping purity ~0.5 (b) Pumping purity ~0.9

Figure 5-17: Examples of pumping purity fitting. Linear probe light is sent to
the medium. .+ and a- are separately detected.
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5.5.1.3 Multi-mode vs single-mode fibers

We use single-mode fibers (SMF) to couple the probe light to SPCM, because our

dominant background detection is the fluorescence of 479nm control light at 780nm.

This background is huge and hard to filter if multi-mode fibers (MMF) are used.

Even with SMF, this is still the biggest source of spurious photons.

However, After the experiments in Chap. 6, we realize that OD measured with

SMF is systematically larger than with MMF (Fig. 5-18). We attribute this to the

dispersive medium off resonance, which can focus, defocus or refract the beam. After

that, the beam is poorly coupled to SMF, resulting in lower counts off resonantly.

This problem is more severe for larger OD. Since then, we always measure OD with

MMF, and the fiber coupling is optimized and maintained with extreme care. Data

are still taken with SMF to minimize the spurious photons.
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Figure 5-18: Spectra taken with a single-mode fiber (red) and a multi-mode
fiber (blue). The fitted OD with the two-level model are 58 and 40, respectively.
Not only the fitted OD tends to be larger with SMF, the spectrum itself is often
asymmetric as well.

5.5.1.4 EIT spectra

We can take EIT spectra with control beam on, which helps us monitor and optimize

the Rydberg-ground state decoherence. The most common reason for a larger than

usual decoherence is the poor overlap of the probe and control beam, although other

possible causes include stay electric field, poor control or probe locking, poor optical

pumping, etc.
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Operating at largest control intensity and OD ~ 1, we can measure the Autler-

Townes (AT) splitting. We align the control beam by maximizing the splitting. We

monitor the control intensity by a photodiode collecting light from the back side

of a mirror very close to the vacuum chamber. The calibration of the photodiode

reading vs the control Rabi frequency is done daily by fitting the AT splitting. While

taking data, the photodiode reading is maintained manually to keep the control Rabi

frequency constant throughout the measurement.

5.5.2 Absorption imaging

We have a permanent absorption imaging setup above the vacuum chamber, docu-

mented in Ref. [68]. The usages of the absorption imaging are listed below:

1. Measure the atom number. E.g. if OD is low, by measuring the atom number

in MOT, compressed MOT and dipole trap, we can figure out which stage needs

to be optimized.

2. Measure the size of the cloud and temperature by time-of-flight. This is the

essential tool for RSC optimization.

3. Mark the locations. We keep track of the probe and cloud location with the

pixel number of the CCD camera. Once the probe focus is found, everyday we

make sure the atomic cloud is put at the same pixel.

We also set up temporary absorption imaging from the side windows. Two notable

usages are:

1. Align the dipole trap. We first image the cloud from the dipole trap port and

mark the pixel. Then we remove the imaging, set up the dipole trap beam to

go along the same path and hit the same pixel. After that, it is usually very

close to have an initial loading signal.

2. Measure temperature along the direction that cannot be seen from the top

camera for the initial RSC optimization.
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5.5.3 EIT resonance and slow-light group delay measure-

ments

For the experiments operating at one-photon detuning A = 0, the EIT resonance is

unambiguous. We first find the probe resonance, without the control beam, by fitting

the spectra with the two-level model. With the probe frequency fixed, we can scan

the control frequency with very fine steps and fit the peak with a Gaussian lineshape

to determine the center frequency.

For the experiments with large A, the EIT resonance with Rydberg-ground state

decoherence is not located at the peak transmission. To make sure our measurements

are consistent, we use the nominal resonance. Namely, we find the probe and control

resonance frequency as described in the previous paragraph. Then we change the

frequency by the nominal amount and consider that the EIT resonance.

To make sure everything is consistent, we usually measure the slow-light group

delay rd and compare with the theoretical value. The group delay is related to the

group velocity vg introduced in Sec. 4.3 through Td = L, where L denotes the length

of the medium. We also use delay as a convenient way to monitor OD while taking

data. Our standard OD measurements from the spectra require switching fibers from

single-mode to multi-mode, and the delay measurements save us from this hassle. Two

pulse shape measurements are done back to back with a - 2ps Guassian probe pulse

with and without the atoms, respectively. The delay is determined by maximizing

the convolution of the two detected pulses.

5.6 Photon detection

Photons are fiber-coupled to the single photon counting modules (SPCM). We use

AQRH series from Excelitas and their predecessors AQR series from Perkin Elmer.

The correlation functions are the most important detections in our experiments and

many other photonic systems [71-76]. Since vacuum has no dispersion, any amplitude

and phase features formed inside the nonlinear medium are preserved outside, and can
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be detected in the form of photon number and phase correlations. In order to obtain

the arrival time of the photons precisely for the measurements of correlation func-

tions, the counts (TTL pulses) are read by a 4-channel high resolution timing module

(HRMTime from Sensl). For real time monitoring and other diagnostic purposes,

the outputs of SPCM are also split to a 8-channel counter (PCI-6602 from National

Instruments). We gated SPCM on during the dark of the dipole trap modulation.

The AQR series output a TTL pulse the moment they are gated on. The timing of

this pulse is used as time zero for that particular gate and channel. However, AQRH

series do not always have such TTL pulse. Therefore, we mix the output of SPCM-

AQRH with a signal that contains TTL pulses just before each gate as the indicator

of the start of a new gate. All the splitting and combining of the counts are done with

power splitter/combiner ZFRSC-42-S+ from Mini-Circuits. Small mismatches of the

timing between different channels are corrected in the data analysis (Fig. 5-19).

75



1.2- -ch3 -
-ch2

1 chi-

3 0 .3

002

=- 0.6

0.4-

(A 0.2 - zoorn in of the
shut off

0-

3 4 5 6 7 8

time (is)

Figure 5-19: A sharp edge of the pulse is used to synchronize all the channels.
I first subtract the noise (mean value between 7 and 7 .5ps) from all the pulses and
then normalize them (by the mean value between 3 and 5 ps) for comparison. With
the abrupt shut off, the channels can be synchronized within a couple of nanoseconds,
which is an order of magnitude smaller than our typical bin size.
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Chapter 6

Single-photon nonlinearity

The realization of strong nonlinear interactions between individual light quanta (pho-

tons) is a long-standing goal in optical science and engineering, being of both fun-

damental and technological significance. In conventional optical materials, the non-

linearity at light powers corresponding to single photons is negligibly weak. Here

we demonstrate a medium that is nonlinear at the level of individual quanta. In

the dissipative regime, it exhibits strong absorption of photon pairs while remaining

transparent to single photons. In the dispersive regime, the photon pairs acquire a

conditional phase shift exceeding one radian, resulting in polarization entanglement.

The quantum nonlinearity can be viewed as a photon-photon blockade mechanism

that prevents the transmission of any multiphoton state. It arises from the Rydberg

excitation blockade, which precludes the simultaneous excitation of two Rydberg

atoms that are separated by less than a blockade radius. During the optical excitation

under EIT conditions, an incident single photon is converted into a Rydberg polariton

inside the medium. However, owing to the Rydberg blockade, a second polariton

cannot travel within a blockade radius from the first one, and EIT is destroyed.

Accordingly, if the second photon approaches the single Rydberg polariton, it will be

significantly attenuated in the dissipative regime, or acquire an additional phase in

the dispersive regime, provided that the optical depth per blockade radius exceeds

unity and the system is effectively one-dimensional.
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6.1 The dissipative regime

6.1.1 Experimental setup

We demonstrate single-photon nonlinearity first in the dissipative regime A = 0 and

then in the dispersive regime A > F. In the first experiment (dissipative regime),

the probing is done after the dipole trap is shut off for 100ps. The resonant optical

depth (OD) is 50. The probe and control co-propagate. The output of the probe is

split by a 50:50 beamsplitter to two detectors for coincidence measurements.

The 87Rb atoms are optically pumped into the hyperfine (F) and magnetic (mF)

sublevel Ig) = 15S 1/2, F = 2, mF= 2) in the presence of a 3.6G magnetic field along

the probe propagation direction. The probe beam on 1g) - le) = 15P3 / 2 , F = 3, mF =

3) transition and the control beam on the le) -+ r) =nSi/2 , J = 1/2, mj = 1/2)

transition are oppositely circularly polarized. See Fig. 6-1 for the energy diagram.

. Ir) = nSj/2

=c control

|e) = P3/2 fc

A probe
-p Pg

19) = S1/2

Figure 6-1: The energy diagram.

6.1.2 Single-photon nonlinearity: photon anti-bunching

Probe transmission spectra are presented in Fig. 6-2 for large optical depth OD=40

and the control laser tuned to the Rydberg state 1100S 11 2 ). At very low incident pho-

ton rates Ri < 1Is-', the spectrum displays an EIT transparency window with 60%

transmission. The transmission is mainly limited by the finite EIT decoherence rate

7Yr, which for our system is dominated by Doppler broadening and laser linewidth.

The extraordinary nonlinearity of the Rydberg EIT medium becomes apparent as the
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incident photon rate is increased: the probe beam is already strongly attenuated at

a photon rate of Ri ~~ 4ps- 1 .

To demonstrate that we are operating in a quantum nonlinear regime, we show

in Fig. 6-3 the correlation function g(2 )(T) of the transmitted probe light, measured

at Ri = 1.2ps- 1. For the most strongly interacting state we tried l1OGS 11 2) with

rb = 13pm 5L, ~ 2.9w, we observe strong anti-bunching with g( 2)(0) = 0.13(2),

largely limited by background light. The resonant attenuation length La L/OD,

where OD and L denote the resonant optical depth and the length of the medium,

respectively. The resonant blockade radius is defined as rb (2 ) 1/6, where IF

is the decay rate of state le), Rydberg-Rydberg interaction of strength C between

atoms at a distance r is V(r) = , C = 56THz/(pm) 6 for 110051/2), and Q, is

the control field Rabi frequency. The probe beam is focused to a Gaussian waist of

w = 4.5[pm < rb. Subtraction of the independently measured background coincidence

counts yields a corrected gc (0) = 0.04(3). These observations are in sharp contrast to

EIT transmission via a less strongly interacting Rydberg state 146S1/2) with rb= 3pm,

where the photon statistics of the transmitted light are similar to those of the incident

coherent state (see Fig. 6-3 inset).

We note that for 110051/2) the photons are anti-bunched over a length scale VgTr

50pim that exceeds the blockade radius (see top axis of Fig. 6-3). The slow-light

group delay Td through the atomic medium is measured independently in a pulsed

experiment (Sec. 5.5.3), and used to calculate the corresponding minimum group

velocity vg = /Oa, where oa denotes the axial rms length of the atomic cloud.9 Td

Close examination (Fig. 6-5(b)) reveals that the correlation time is of the same

order as, and scales inversely proportionally with, the spectral width B = 2 (Eq.2 /2O-DF (q
4.9) of the EIT transparency window. This observation suggests that propagation

effects play an important role in establishing the g(2) correlation time T, in a medium

of large optical depth. We observe that, under appropriate conditions, two-photon

events are suppressed inside the medium on a length scale that approaches the size

aa ~ 35pm of the entire atomic ensemble, and on a timescale that approaches the

intrinsic coherence time .= 00ns. To summarize, the width of the anti-bunching
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Figure 6-2: Transmission vs probe detuning at various incoming photon
rate Ri = 1, 2, 4, 6ps- 1 (dashed green, solid red, dotted blue and dot-dashed black,
respectively) for |100S11 2 ), EIT (full) linewidth 'YEIT = = 2-r x 23MHz, and
optical depth OD=40, and measured group delay -rd = 250ns. The system is strongly
nonlinear at a power as low as 0.25pW.
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Figure 6-3: Single-photon nonlinearity for 1100S 11 2 ), EIT linewidth '7EIT =

27r x 23MHz and optical depth OD=40. Data pioints show photon-photon cor-
relation function g(2) (r) at EIT resonance with Ri = 1.2ps- 1 . The top axis shows
the spatial sparation VgT of polaritons with vg ~ 400m/s. Spurious detection events
set a lower bound on g(2 ) of 0.09(3) (red dotted line). Inset, g( 2) for the less strongly
interacting state 146S1/ 2) with similar parameters. The solid lines in the main panel
and inset are theoretical calculations as described in Secs. 6.3.1 and 6.3.2. Values

g( 2) > 1 are attributed to classical fluctuations (see Fig. 6-8).
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feature is determined by a competition between the blockade radius, EIT bandwidth

and the coherence time. As OD increases, the blockade radius (in time scaled by vg)

grows linearly with OD, while the EIT bandwidth (converted to time) grows as O0UD.

At sufficient large OD, the blockade radius can go beyond the EIT bandwidth, and

consequently T, could be limited by the blockade radius, coherence time permitting.

34 9 5 3.3 2.5 34 9 5 3.3 2.5

(1 ) 1 EIT=20MHz (b) YEIT=16MHz

0.8 fEIT=27MHz 0.8 1 7EIT=26MHz

77S1 /2 1/-0.6 1/ 0.6 1/

mO.4 I0.4
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Figure 6-4: Equal-time photonphoton correlation g(2) (0) as a function of OD
for 177S1 / 2 ) (a) and 1100S 11 2 ) (b), for a set of single-atom EIT linewidths
(circles, down-triangles, up-triangles, left-triangles) = 27r x (20, 27,16, 26)
MHz. Solid lines are numerical solutions for a probe beam waist w = 6pm, including
detection noise (dotted lines). See Sec. 6.3.4 for an analytical solution of these g(2 )

features.

Figure 6-4 shows that g(2 ) (0) improves with the principal quantum number n of

the Rydberg state, resulting in a more than tenfold suppression of the two-photon

transmission, limited by independently measured background light on the photon

detectors (dotted lines). The blockade radius increases with n as rb oc n 1 1 1 6 . Hence,

larger n renders larger ODb = rb/La and more strict one-dimensional condition rb >

W, resulting in a steep dependence of g(2 )(0) upon n.

We characterize the widths of the g(2 ) anti-bunching feature by the half-width-

at-half-maximum (HWHM) -r of the dip and plot them in Fig. 6-5. Although the

Rydberg blockade only takes place within the blockade radius rb, the finite EIT band-

width does not allow sharp features in real space to propagate through the medium.
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Figure 6-5: Dependence of the g(2 ) widths T, on EIT parameters. (a), -r as
a function of OD for 177S1 / 2 ) and 1100S 11 2 ), for a set of single-atom EIT linewidths

(circles, down-triangles, up-triangles, left-triangles) = 27r x (20, 27,16, 26) MHz. (b),
-r of the anti-bunching feature in g(2)(r) as a function of EIT transparency width

B = 2_r Solid lines in (a) are numerical solutions for a probe beam waist

w = 6pm. The black dashed line in (b) is 1.05/B. See Sec. 6.3.4 for an analytical
solution of these g( 2) features.
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To be specific, a sharp feature in the relative coordinate corresponds to a wide range

of relative momentum. Namely, the frequency difference of the two photons is large,

and there is no way to fit both photons into the EIT transparency width. There-

fore, the blockade acts like a loss and the EIT bandwidth plays the role of diffusion-

smoothening the anti-bunching feature. The propagation of the two-photon amplitude

is governed by a diffusion equation (see Sec. 6.3.4).

6.1.3 Saturation of the output photons

To investigate the transmission characteristics of multiple photons through the medium,

we plot in Fig. 6-6 the output photon rate R0, scaled by the EIT transmission mea-

sured at low probe power, as a function of incident photon rate Ri. At first, R in-

creases linearly with Ri as expected, but then saturates abruptly to a constant value

of R, = 1.3(3)ps 1 . Note that these observations deviate from the simplistic model of

a multiphoton absorber that transmits only the one-photon component from the in-

coming coherent state (black dashed line in Fig. 6-6). At the same time, the observed

output flux corresponds to less than one photon in the medium (R;- > Td = 300ns).

Recently, E. Zeuthen et al. [77] point out that there should be a bump in the

saturation curve around the corner before the output rate settles to the saturated

value. The simple physical picture is as follows: The scattered photon localizes the

Rydberg polariton to within a blockade radius, which is too short (in real space) to

fit into the EIT transparency window (in Fourier space). Therefore, the transmission

is reduced by scattering other photons, and the output rate is slightly higher (the

bump) before the medium is fully saturated. Unfortunately, the existing data are not

sufficient to test this theory, due to the complications in the high rate regime (see

insets of Fig. 6-6).

Figure 6-7 shows the saturated output rate versus the ratio rb/w of blockade

radius and probe beam waist for a wide range of principal quantum numbers, control

field intensities and optical depths. The approximate Ro oc (w/rb) 2 scaling, valid

for w > rb, indicates that the saturated rate for intermediate to strong interactions,

rb > La, is largely determined by the transverse geometrical constraint, that is, by

84



3. Incoming rate: 2/ps Incoming rate: 14/ps Incoming rate: 45/ps Incoming rate: 95/ps

0 10 20 30 40 5% 10 20 30 40 50 10 20 30 400 10 20 30 40 50
t [pS] t [ps] t [pa] t [pS]

2

0.5 -

0-

0.1 1 10 100

Incoming rate R [11s ]

Figure 6-6: Outgoing versus incoming photon rate for 1100S11), -YEIT = 2'F x
15MHz, OD=26, and a measured widthT rc 130ns of the anti-bunching feature in
g 2)(-r). All output rates are scaled by the transmission of 50% at low photon rate
due to linear absorption, and corrected for the finite detection-path efficiency. The
dashed black curve outlines the expected rate if all multi-photon events in a time
range T =320ns are fully blocked, while the green dashed curve assumes that all
multiphoton states within -F=800ns are converted into an outgoing one-photon state.
Although not noticeable at low photon rate Ri < 2ps-', at higher rate, there is a
decay of the transparency over the measurement time, which is likely to be related
to molecular resonances discussed in Sec. 6.1.4. In such cases, we fit an exponential
decay to the transmission curve and obtain the initial instantaneous outgoing rate.
Therefore, at very high rates, error bars are greatly increased.
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the extent to which the Rydberg polaritons can propagate side by side through the

medium.

10

0

0.1 0.4 1 2 3
Blockade to probe ratio, rb/w

Figure 6-7: Saturated rate of outgoing photons Rjte per anti-bunching cor-
relation time -c, scaled by the linear absorption, as a function of the ratio
between the blockade radius rb and the probe beam waist w. The Rydberg
states are lOOSl/ 2 ) (blue, w = 4.5pm, ODb ~ 8; pink, w 4.5pm, ODb 4),
177S,/ 2 ) (black, w = 4.5pm, ODb ~ 3), 146S1/ 2 ) (green, w 4.5pm, ODb 0.7;
red, w = 7pm, ODb ~ 0.7). -c is estimated using the single-atom EIT linewidths
(squares, triangles, circles, diamonds)=27r x (6 - 16,18 - 26, 29 - 36, 50) MHz, and
varies from 60 to 330 ns. The dashed line corresponds to 0.9(w/rb) 2 , indicating the
expected scaling with transverse confinement for w> rb.

6.1.4 The super-Poissonian correlation on a longer time scale

At large atomic densities, the g(2 ) functions exhibit both a local super-Poissonian

feature on a range of ~ 20pts and a global positive offset of 0.08 from the expected

value 1 at large times (Fig. 6-8). We attribute the local feature to the occasional

population of metastable Rydberg levels not resonantly coupled by the control field to

a fast decaying state. This process is relatively rare at the photon flux used in the g(2 )

measurements (At < 2ps-1 , where incoming and outcoming rates are compensated

for detection losses). However, when it does occur, the medium becomes absorptive

until the Rydberg atom has moved a distance larger than the blockade radius away

from the probe beam area, or has decayed to a low-lying state. At high incoming
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probe rate (Ri > 5ps- 1), it results in a strong attenuation of the transmission over

the course of the experiment (Fig. 6-6 insets). As the probe power increases, the

attenuation happens on a shorter timescale and settles to a lower transmission rate.

For Ri = 100ps', the cloud becomes totally opaque in ~ lps. If the control field

is turned off for a moment, the transmission progressively returns to its initial value

in 20ps. The decay shows no dependence on static electric fields up to 10 V/cm,

ruling out the presence of ions in the cloud. The global g(2)(oc) = 1.08 feature is

attributed to slow drifts and classical fluctuations in our system. These include OD

fluctuations, frequency drifts of the spectroscopic reference for the transfer cavity

lock and alterations of the alignment, resulting in slow variations of the observed

transmission on the order of 20%.

1 1 I ItI

100S1/2

1.2

0.8-

0.6-

0.4

0.2-

0
0 10 20 30 40 50 60 70 80

r [ps]

Figure 6-8: Intensity correlation function g(2)(7) up to T=80 ps for Jr) = 100S1/2.
The first two data points are below 1. Outside the anti-bunching window, the light
is super-Poissonian. We attribute this to the excitation of Rydberg atoms in the
medium and, for very large w, experimental drifts.

The exact mechanism of the creation of the contaminant Rydberg atoms has never

been nailed down. One compelling hypothesis is the molecular resonances described

in Ref. [78]. The driving laser field, on resonance with 100S + 100S dissociation

limit, can resonantly excite unwanted Rydberg pairs, inside a shell around a specific

R (Fig. 6-9). Inside the shell, the two excited Rydberg atoms are subjected to a

mechanical force that can be either repulsive or attractive. In this particular scenario,

the laser coupling to an attractive potential is negligible. For a repulsive force, the
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pair of Rydberg atoms will separate into two atoms with a kinetic energy equal to

the dissociation limit. An example is around R - 7pm, the excited pair state would

split into a 99S and a 101S atom. In our experiment, a typical EIT (half) linewidth

is s- - 8MHz with Q, = 10MHz. In Fig. 6-9, the excitation is assumed to have a2r'

half linewidth 10MHz and the corresponding shell has a full width ~ 0.2pm. Hence,

the optical depth per shell is ~ 0.1-quite large!

M10MHz resonance band
S10MHz resonance shell

0.6- -199S /M mJ=1/2)1101S 12,mj=1/2)_

~0.4-

<10.2-

0

-0.2-
I I I I I I

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
R (ym)

Figure 6-9: Qualitative energy diagram of two pair states, which are labeled by
the double-atom states at the dissociation limit, S100S1/ 2 , mJ = 1/2)I110OS1 2 , mJ =

1/2) and j99S1/ 2 ,mj = 1/2)1101S1/2,mJ = 1/2). The energy of 1100S1/2,mJ =

1/2)1100S1/ 2 , mj = 1/2) at the dissociation limit is located at AE = 0. The en-

ergy within the excitation linewidth of the driving fields is highlighted in blue, and
the corresponding distance shell within which the pair state labeled as 199S1/ 2, mJ =
1/2) S101S1 2 , mJ = 1/2) can be resonantly excited is highlighted in green. With such
small separation R as illustrated, densely packed pair states (not shown) are within
the energy window. The exact energies can have kinks and other complicated struc-
tures, and need to be calculated with extreme care. See Appx. B for the calculation
of the diagram.

For n=100, the kinetic energy is ~ 10mK [78] and the corresponding velocity is

lpm/[ps. For a blockade radius ~ 10pm, such contaminant atoms will interact with

the Rydberg polaritons for ~ 10pas before they move away. Those interactions can

significantly modify the transmission of the Rydberg polariton in a similar way as the

interactions between Rydberg polaritons. However, such changes of the transmission
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will not show up as anti-bunching, because the contaminant atoms are not coupled

to the laser fields and will not be registered on the detectors. Instead, they appear

to be variations of the linear transmission similar to classical intensity noise resulting

in g(2) > 1. The time scale for the changes of transmission to go away is the same as

that for the contaminant atom to move out of the interaction range. Therefore, the

super-Poisonian correlations we observe outside the anti-bunching window (Fig. 6-8)

is likely to be related to these molecular resonances, on top of experimental drifts,

which we do not expect to have a - 10ps time scale.

6.2 The dispersive regime

6.2.1 Experimental setup

In the second experiment, the dipole trap is modulated with a 11ps period for 4ms

(50% duty cycle), to increase the measurement time per MOT loading. The OD is

reduced to 22 consequently. Additionally, to minimize the Doppler broadening, the

probe and control counter-propagate.

To determine both the amplitude and the phase of the a+-polarized probe field, we

send in a linearly polarized state, IV) = (Io.+)+I-))//2, and the output is measured

in different polarization bases (Fig. 6-10). The a+ and a- components of the incoming

linearly polarized probe light respectively couple to the le) = 15P3/ 2, F = 3, mF= 3)

and le') = 15P3/2 , F = 3, mF = 1) excited states. For our magnetic field of 3.6G, the

Zeeman splitting between these levels is 27r x 6.7MHz, comparable to their inverse

lifetime F = 27r x 6.1MHz. The coupling dipole matrix element for the a+ transition

is larger than for the a- transition by a factor of V/T5. The a- polarized control field

couples the stretched state le) to the Rydberg state with maximal projections of the

nucleus spin (m) and total electronic angular momentum (MJ), fr) = 100S1/ 2, mI =

3/2,mj = 1/2). In addition, it couples Je') to Ir') = 1100S 112 , m1 = -1/2, mn = 1/2)

and Ir") = 100S 11 2, mI = 1/2, mj = -1/2) with a v/5 times weaker resonant Rabi

frequency. The energies of the levels Jr) and Ir') are equally shifted by the magnetic
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field. Therefore, both u+and a- photons propagate under Rydberg EIT conditions.

The combined effect of the Zeeman shift of the intermediate level and the reduced

dipole coupling strongly suppresses the probability for a- photons to create or be

affected by Rydberg blockade. As the a- probe photons interact only negligibly

between themselves and weakly with .+ photons, they provide a reliable reference for

measuring phase shifts of the .+ photons.

a ba 1r') r) 100SI12

1/5 1 Control

|e) 5P 2

1/15 1
PBS QWP HWP PBS (_

Reference (a-) Probe (a+)

|g) 5S1/ 2

Figure 6-10: The setup and atomic transitions for the quantum state to-
mography. (a) The sketch of the experimental setup. (b) Schematic representation
of the atomic transitions. The numbers next to the transitions are the squares of
Clebsch-Gordan coefficients.

6.2.2 Quantum state tomography

To analyze the properties of photon pairs, we measure two-photon correlation func-

tions, g9,, , in six polarization bases, {q, h}={7r/4, 7r/4}, {0, 0}, {r/8, 7r/8}, {0,

7r/16}, {7r/8, 7r/16} and {7/8, 0}, where q and h are the angles of the quarter- and

half-wave plates, as shown in Fig. 6-11. The duration of the coincidence time bins,

varying between 20 and 80 ns, is chosen to capture the temporal dynamics of the cor-

relation functions with reasonable signal-to-noise ratio. For each (ti,t2 ) time bin, we

numerically optimize a Hermitian, positive-semidefinite two-photon density matrix,
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p(ti ,t2 )

P++,++ P++,s p++,-- 0

Ps,++ Pss Ps,-- 0

p--,++ p--,s p--,-- 0

0 0 0 PAA

and one-photon density matrix, p(1)(t). The two-qubit basis {a+ a+), IS), Io-a- ), A)}

where +S) (la-) + a-a+))/V and JA) = (jor42 ) - ou-o-?))/V. Because the

two photons have the same frequency and spatial mode, there is no coherence be-

tween the 3x3 symmetric and 1 x 1 antisymmetric subspaces [79]. The optimization

follows the maximum-likelihood estimate [80], where all coincidence measurements

are considered.

To extract the nonlinear phase from p(ti,t2), we rescale for the linear dispersion

and loss effects by defining the interaction matrix 15, (t1 , t 2 ) = p, 3 (t1 , t 2 )/[p( 1)(ti) 0

p( 1)(t2 )i,j in the basis {f o-+j ), luf o-), jo--4), joij2 )}. The interaction matrix gen-

eralizes the standard g definition to account for nonlinear phases and decoherence,

and all its elements are equal to 1 in the absence of nonlinearity.

The intensity correlation function of .+ photons and the nonlinear phase can be

extracted from the interaction matrix fi as g(2) = p++,++ and (2) = arg[++,--.

6.2.3 Two-photon nonlinear phase

The origin of the quantum nonlinearity is explained by the following simple model.

The van der Waals interaction between two Rydberg atoms tunes the doubly excited

Rydberg state far off EIT resonance for distances Irl < rB, where rB = (4QC )1/6

is the Rydberg blockade radius. Although the phase shift that would originate from

the bare 1g) -+ le) probe transition is suppressed by EIT for photons with large

separation in the medium (Irl > rB), the light acquires this phase shift for small

photon separations (Irl < rB) (Fig. 6-12). Qualitatively, a substantial two-photon

phase shift arises for 1-- > 1. Using the Rydberg state 1100S1/2), and for Q =

27rxlOMHz, we obtain rB ~ 18pm at detunings of a few IF, La = 4pm at the peak
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Figure 6-11: Normalized photon-photon correlation functions in 6 polariza-
tion bases for A = 1.5F. Each setting of the quarter wave-plate (QWP) at an
angle q and the half wave-plate (HWP) at an angle h (angles specified on the left)
followed by a polarizing beam splitter determines a polarization basis for three g ()
measurements (blue points): for two transmitted photons (T), for two reflected pho-
tons (R), and for one-transmitted-one-reflected (X). The bases are equivalent to those
proposed in Ref. [79]. The 18 pair counts from 6 different bases are used to tomo-
graphically reconstruct the two-photon density matrix using the maximum-likelihood
estimation. Together with the reconstructed one-photon density matrix (obtained
from the single counts), one can calculate the reconstructed g() (T)(red line).
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density, and w = 4.5pum, fulfilling the conditions for strong interactions for JAI <

51'. To get an idea how big the phase shift is expected, we take the spectra with

mA

-rB 0 rB

Figure 6-12: Illustration of the change of refractive index inside and outside
the blockade radius rB-

(representing outside rB) and without (representing inside rB) the control laser (Fig.

6-13). To best see the case of non-interacting photons, we use the lowest possible

input rate so that two photons are rarely in the vicinity of each other. When the

input photon rate is increased, a significant amount of photons are subjected to the

interaction, and consequently the spectra deviate from those of low rate and change

towards those without the control. Under EIT condition (marked by the vertical solid

black line in Fig. 6-13), the differential phase shift with and without control is on

the order of 7r, and the interacting photons are expected to pick up a negative phase

since without control the phase is negative.

The nonlinear phase shift 0()(-r = 0) can reach (-0.32 0.02)7r (Fig. 6-14), at a

detuning A = 27r x 9 MHz and a linear transmission of order 50%. There is a trade-off

between the transmission and the phase. Recently, D. Tiarks et al. [81] realizes a 7r

phase shift imprinted by a stored photon onto propagating photons, with much lower

transmission.

6.2.4 The Schr-dinger equation and effective mass

The simple picture presented in the previous section does not explain why there is

very little nonlinear phase shift when A < 0, as shown in Fig. 6-15. Here, in this
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Figure 6-13: Transmission spectra (top) and the phase shift (bottom) for o+
photons with an incoming rate of R, = 0.5ps- 1 (blue squares) or R, = 5ps'
(green circles), for a control field red-detuned by A = 27r x 15MHz. The blue
line shows the theoretical spectrum. The spectrum at high probe rate approaches that
of the undriven two-level system (dashed grey). The solid vertical line corresponds
to the EIT resonance.
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Figure 6-14: Two-photon nonlinear phase 0(2). (a), The photons are detected at
times t1 and t2 for A = 2.3]F. (b), 0(2) vs Irl for two different detunings (A = 1.51r,
purple, and A = 2.31F, blue). Points are experimental data; lines are full numerical
simulations.
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Figure 6-15: The nonlinear phase 0(2) (0) vs detuning A from the intermediate
state e). Blue lines are full theoretical simulations and black lines are the result of
the Schrddinger equation approximation, assuming a simplified 6-function potential.

section, I will more quantitative analysis to address the asymmetry under the sign

change of A. The propagation of .+-polarized photon pairs can be understood by

first considering an idealized situation with no decoherence between the Rydberg

state and the ground state (Ygr = 0). Then the steady state in a one-dimensional

homogenous medium can be described by a two-photon wavefunction, ?b( 2), whose

evolution is approximately governed by a simple equation (Eq. 6.24) in terms of the

centre-of-mass coordinate r and the relative coordinate r:

Ab(2) 2A Q2 a20(2) V( )- = 4La[i + - V(r)4] + (2 (6.1)
aR IF ]F2 ar2 La

Here, the effective potential V(r) = , approaches inside the block-
rb

aded volume (Irl < rB) and approaches zero outside. The solution relates approx-

imately to our measurements in the time domain for small Irj via V)(2) (R = L, r =

g-r) ~ (r) T"e (r). Far off resonance (JAI > F, Q,), Eq. 6.1 corresponds to a

Schr6dinger equation with R playing the part of effective time. The first term on the

right-hand side is an effective mass term. The photons' effective mass can be positive

or negative depending on the sign of the detuning A. Because the sign of the potential

also changes with A (potential well for A < 0; barrier for A > 0), the effective force

in both cases is attractive and the resulting dynamics similar. However, the potential

for A < 0 also has additional features near the edges of the well, corresponding to
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a Raman resonance for the interaction-shifted Rydberg state at some inter-atomic

distance near Irl = rB. These features are probably responsible for the deviation

from symmetry (or antisymmetry) under the change of the sign of A displayed in

Figs. 6-17(a) and 6-15.

6.2.5 Photon bunching

A particle with negative mass in a potential barrier can be seen as one with positive

mass in a potential well propagating reversely in time, and experiences attractive

force. Therefore, I will refer to both A > 0 as in a potential well. This potential

well does not only induce a nonlinear phase shift, but also causes photon bunching-

Photons are attracted towards each other. To emphasize, unlike the photon anti-

bunching described in Sec. 6.1, the bunching here is driven by force not differential

loss between the one- and two-photon components. As shown in the top panel of Fig.

6-13, under EIT condition, with our parameters, the transmission with and without

the control laser is about the same. This represents the loss outside and inside the

blockade radius is similar.

Figure 6-16(b) shows the intensity correlation in the dissipation-dominated anti-

bunching regime at A = 0 and in the dispersive regime at JAI > F, where there is

bunching. The transition from the dissipative regime to the dispersive is summarized

in Figs. 6-17(a) and 6-15.

It is worth noting that the mass term sets a profound difference between our

nonlinear system and a conventional Kerr medium. P. Bienias and H. P. Biichler [82]

show that when the mass term is dropped, with a delta function potential, Shapiro's

no-go problem is recovered. Additionally, without the mass term, no photon bunching

is induced, although there is a nonlinear phase shift whose value is different from that

with the mass.

Last, the van der Waals interactions of the nS Rydberg states are generally repul-

sive, because the dominant contribution comes from the (n - 1)P states just below nS

states, and consequently the second-order interaction pushes nS states up. At first

glance, it seems anti-intuitive that the repulsive Rydberg-Rydberg interaction leads
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Figure 6-16: Second-order correlation function g (2)of interacting photon

pairs. (a), Measured g7{ for photons are detected at times ti and t 2 and A = 2.317.

(b), g2) as a function of the time difference ITF = ti - t 2 l between the photons,
showing the transition from anti-bunching on resonance (A = 0, green) to bunching at

large detuning (A = 2.31F, blue). Points are experimental data; lines are full numerical

simulations. All g(2 measurements are rescaled by their value at T > 1.5ps.

to an attraction between the photons. However, as can been seen from the simple

picture in Sec. 6.2.3, the sign of the nonlinear phase does not depend on whether

the Rydberg-Rydberg interaction is repulsive or attractive. We merely use the fact

that the interaction shifts the Rydberg level out of resonance. P. Bienias et al. [83]

has shown that in order to change the interaction from attractive to repulsive, we

need to work in a regime where the group velocity of the photon pairs is slower than

the singles, opposite from where we are now. Using a large control Rabi frequency

Qc > JAI will satisfy the group velocity requirement.

6.2.6 Entanglement

we study the quantum coherence and polarization properties of the transmitted pho-

ton pairs. In Fig. 6-18(a), we compare the purity of the two-photon density matrix

p(r), which includes photon interactions, with the purity of the product of one-photon

matrices p(l) 0 p(l) for non-interacting photons. At large photon separation T, the
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Figure 6-17: Dependence of g(2 on detuning. Equal-time two-photon correlation

g+(0) (a) vs detuning A from the intermediate state le). Blue lines are full theo-
retical simulations and black lines are the result of the Schrddinger equation approx-
imation, assuming a simplified 6-function potential. Equal-time correlation function
(b) and spatial extent of the bunching feature (c) versus Raman detuning 6 from the
EIT resonance Ig) -+ r) for A = 31, showing increased photonphoton attraction due
to a deeper potential near Raman resonance. The characteristic bunching timescale
rb is the half-width of the cusp feature of g (, defined at half-height between the
peak value at r = 0 and the local minimum closest to r = 0. Close to the Raman

resonance at 6 = 27r x 1.3MHz~ _, the single-photon component of the probe field
is strongly absorbed. Thus, the theoretical model (solid line) breaks down because it
computes the denominator only from the one-photon component and the numerator
only from the two-photon component.

98



purity P(T) of the two-photon density matrix is dominated by the one-photon deco-

herence due to partial depolarization of the transmitted light. This depolarization is

attributed to the difference in group delay Td, between the o+ photons and the faster

a- photons (-d+ - r^ =280ns), which is not negligible compared with the coherence

time of the probe laser (650 ns). At the same time, a+ photons bound to each other

travel faster and are more robust against this decoherence mechanism, as evidenced

by the greater purity at small T. Even in the presence of this depolarization, the co-

herent nonlinear interaction in the dispersive medium produces entanglement in the

outgoing polarization state of two photons. We quantify the degree of polarization

entanglement in terms of a time-dependent concurrence C(T) (Fig. 6-18(b)). The

obtained value C(O) = 0.09 0.03 indicates deterministic entanglement of previously

independent photons on passage through the quantum nonlinear medium. The mea-

sured value is in reasonable agreement with the theoretical prediction, C(0) = 0.13,

calculated for a conditional phase 0( 2)(0) = 7r/4, purity P(0) = 0.73 and 50% 7+

linear transmission.

6.3 Theoretical description

6.3.1 Set up the equations

Adding the interaction term to Eq. 4.1 leads to

t$(z, t) -caz$(z, t) + i~- Vp(z)P(z, t)
2

F gQ
a (z, t) = -(- -- i(A + 6))P(z, t) + i- p(z)S(z, t) + i-$(z t)2 2 2

at$(Z, t) = -( r i6)$(z, t) + i f P(z, t) - i dz'V(z - z')S t(z', t)S(z', t)$(z, t)

(6.2)

where the van der Waals interaction V(z) = 6.

We define

SEE(zi , Z2 ) (6.3)
E(zi)E(z 2 )
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Figure 6-18: Quantum coherence and entanglement. (a) Purity P(-r)
Tr[p(T) 2] of the measured two-photon density matrix p for A = 2.317 (blue sym-
bols), which at large photon separation approaches the purity expected from the
measured one-photon density matrix Tr[(pM(g p()) 2] (dotted black line). Interacting

.+0_+ photon pairs near T = 0 exhibit lower decoherence. Error bars are derived from
the uncertainty in the density matrix due to detection shot-noise. (b) Concurrence
C(T) calculated from p, indicating polarization entanglement of proximal photons on
transmission through the quantum nonlinear medium.
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which is unity in the absence of interactions, and

,0(2) (T > 0) = (2 (z1 = ZO + CT, Z2 = zo) (6.4)

where zo is outside the medium, and the two-photon probability amplitude is defined

as EE(zi, z 2) = (01$(zi)$(z 2)jq'), where IT) is the state of the system. With these

definitions, at low rate limit, g(2 (T) -= IV(2(T)2 and 0(() = arg(0(2)(F)). Com-

pared with the standard definition g(2 ) - , we assume the_______- FI Z)(2 )(jt(l Z)IT we assume the
denominator is dominated by the single-photon component and the numerator by the

two-photon component.

We now turn to the two-excitation components. We divide the zI - z2 plane

into nine regions (Fig. 6-19). To obtain the equations governing the two-particle

amplitudes in these regions, we use Eq. 6.2 and identities of the form ES(zi, z 2)

(01$(zl)$(z2) IT) and EP(zi, z 2 ) = (0$(zi)P(z 2 )j'F).

In region 7, neither of the photons has entered the medium, and from Eq. 4.2,

EE(zi, z 2) = a2. This gives a time-independent boundary condition

EE(zi, z2 = 0) = a2  (6.5)

for region 4, where the equations of motion are

&tEE(zi, z2 ) = -c(Z 1 + aZ2)EE(zi, z2 ) + i- p(z2)EP(zi, z2 )2

atEP(zi, Z2) = -(cazi + - i(A + 6))EP(zi, z 2 )+ i -p(z 2)EE(zi, z 2 ) + i ES(zi, z 2 )2 2 2

atES(zi, z2 ) = -(CO,, + - i6)ES(zi, Z2) + i QEP(zi, z2 ) (6.6)
2 2

These equations describe the propagation of the photon component at position z,

outside the medium at the speed of light and the propagation of the Rydberg polariton

at position z2 inside the EIT medium. The time-independent boundary condition Eq.

6.5 gives rise to a steady-state solution of Eq. 6.6, leading to boundary conditions for
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Figure 6-19: The schematic diagram of the two-particle wavefunction. z,
and Z2 are the coordinates of the two particles, and the medium extends from 0 to
L. In regions 1, 3, 7, and 9, both excitations are outside the medium. In regions
2, 4, 6, and 8, one excitation is inside the medium, while the other one is outside.
Finally, in region 5, both excitations are inside the medium. We assume that the
incident wavepacket is much longer than the extent of the medium (even after EIT
compression). Therefore, the two-excitation wavepacket (boundary shown by the
dashed line), which is moving in the top-right direction with c, is much larger than

region 5. The distortion of the wavepackets boundary due to EIT time delay is not
shown. For the ease of presentation, the broadening of the depletion region in region
6 assumes c/vg = 3 (in the experiment, c/V9 is 5 orders of magnitude larger). The

diagram is symmetric across the line z1_ =Z2.
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region 5

EE(zi= 0, z2 ) = aE(z2 )

g/p(7) 1
ES(zi = 0, Z2) = _a E(Z2)QC [1 + (+ - i(A + 6 ))(r - i6)/(Qc/2)2

EP(zi = 0, z 2 ) = a (1 2  2 E(z2)
- i(A + 3))(2 -Y

(6.7)

where E(z 2 ) = aexp[- 2 2_ fZ2/
2  dz' . Intuitively, since one

(1_C )2+(E iA ) Yg1r _i6) _Z2/2 p(Z) .
I ntiieyaic n

photon is outside the medium and therefore there is no interaction between the two

photons, the two-photon components can be written as the products of the one-photon

components. Namely, EE(zi = 0, z2) = E(zi = 0)E(z 2 ), ES(zi = 0, z 2) = E(zi =

0)S(z 2 ) and EP(zi = 0,z 2) = E(zi = 0)P(z 2), where E(zi = 0) = a. The one inside

the medium is governed by Eq. 6.2, without the interaction term. In region 5, both

excitations are inside the medium and are subject to interactions as described by the

following propagation equations:

OtEE(zi, z 2 ) =

&tEP(zi, z2) =

atES(zi, z 2) =

&tPS(zi, z 2) =

atPP(zi, z2) =

- c(&z1 + Z2)EE(zi, z 2 ) + Lgp(V/p(z 2)EP(zi, z2) + fp(zi)EP(z 2, z1))2

- (c(21 + - - i(A + 6))EP(zi, z2 )2

+LP ( p(z2)EE(ziz2) + p(zi)PP(zi, z2)) + iES(ZiZ 2 )

- (c+z1 + - i6)ES(zi, z2) + p(zi)PS(zi, z2) + CEP(Zi z2)
2 22

- (gr - i 6(+) +)PS(zi, z2)

+ zi ES(zi, z 2 ) + (PP(zz2 ) SS(z, z2 ))

2 22
Fig

-2(- -i(A 6))PP(z, z2) + ( p(zi)EP(z,z2)

2 2

iQ
+ -p(z 2)EP(z 2, zi)) + - (PS(i, z2) + PS(z 2, zi))2
?fc(PS(Z1 , z2 ) + PS(z 2, z1)) - (iV(zi - z2) + 2 (Y-r - i6))SS(zi, z2)2 2

(6.8)
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The time-independent boundary conditions Eq. 6.7 allow us to solve Eq. 6.8 in

steady state. The resulting depletion of JEE(zi, z2)12 in region 5 when A = 0 is

shown schematically in Fig. 6-19 and is plotted in Fig. 6-20. This gives a boundary

condition at z = L to region 6, which, together with the boundary condition EE(z >
r(Ygr _ )OD

L, 0) = a2 exp[- 12 U21 ],D yields a steady-state solution in region 6,

where Eq. 6.6 hold. Finally, in region 3, both photons are outside the medium, so

EE(zi, z 2) is constant along constant zI - z 2 -

N

W'

0 zi L 0 zL

Figure 6-20: Numerical simulations showing the spatial evolution of the
probability distribution associated with two photons (a) and two Rydberg
excitations (b) at positions (zi, z2 ) inside the medium, normalized by their
values in the absence of blockade. Two Rydberg excitations are excluded from
the blockaded range, resulting in the formation of an anti-bunching feature in the light
field, whose width increases during the propagation due to the finite EIT transparency
width B = 'EIT/V80D. The plots are made for A = 0. When A > F, there is a
similar broadening of the depletion region of SS(zi, z 2 ), but EE(zi, z2) is not depleted.

6.3.2 The numerical solution

The denominator of ?/(r) can be easily found analytically using Eq. 4.4. To com-

pute g(2) (T) numerically for comparisons to the experiment, we take into account the

transverse extent of the beam by writing V(z) = [ 2 , where rI is the transverse

profile of the probe beam. Neglecting probe-beam diffraction, this amounts to solving

Eq. 6.8 for different r1 . The numerator of g(2 )(r) is then computed by taking an

average over the r1 distribution. We achieve best agreement for a beam waist of

w = 6pm, which is slightly larger than the measured value of 4.5pim, possibly due
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to the imperfect positioning of the cloud relative to the waist and finite diffraction

(Rayleigh range ZR = 82pm) of the beam along the length of the atomic cloud.

In Fig. 6-3, the theoretical curves obtained from the mode are corrected for

independently measured detection noise (grrected(T) = g(2)r) + (1 - Y(2)())(pI +p 2),

where pi denotes the ratio of the noise counts to the signal counts for the jth detector),

and then linearly scaled to approximately account for the super-Poissonian behavior

at large T.

6.3.3 The analytical solution

In order to obtain an approximate single equation describing the steady-state behav-

ior of the two-particle wavefunction, we now analyze the steady state of Eq. 6.8.

We define ES (zi, z 2 ) = (ES(zi, z 2 ) i ES(z 2 , zi))/2, EP (zi, z 2 ) = (EP(zi, z 2 )

EP(z 2, zi))/2 and PS (z1 , z 2) = (PS(z1 , z 2) PS(z2, zi))/2, as well as center-of-

mass and relative coordinates R = (z1 + z2)/2 and r = Z1 - z2 of the two excitations.

To simplify the equations, we approximate the medium as a homogeneous slab

with length L = 4.2a. The factor of 4.2 is chosen such that the analytical solution

agrees with the numerical solution of the full sets of equations. With this approx-

imation, p(z) = 1 in [0, L] and 0 otherwise, and gP = OD. Furthermore, we takerc L

6 ygr 0 so that E(z) = a.
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In steady-state, Eq. 6.8 then become

0 = -COREE + igpEP+

0 = -CaREP+ - 2coEP_ - (F - 2iA)EP+ + igp(EE + PP) + iQcES+

0 = -CaREP_ - 2carEP+ - (F - 2iA)EP_ + iQeES_

0 = -cDRES+ - 2crES_ + igpPS+ + iQEP+

0 = -C8RES_ - 2carES+ + igpPS_ + iQcEP_

0 = -(F - 2iA)PS+ + igpES+ + iQ,(PP + SS)

0 = -(F - 2i/A)PS + igpES_

0 = -(F - 2iA)PP + igpEP+ + iQPS+

0 = iQePS+ - iVSS

We next simplify these equations using a number of approximations.

Eq. 6.16 for EP+ and insert the result into Eq. 6.9.

0 = -C8REE + (F - 2iZA)PP - iQcPS+

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

We solve

(6.18)

We solve Eqs. 6.15 for PS_, insert the result into Eqs. 6.13, and neglect all but two

terms that form the dominant balance.

0 = -2cOES+ - 2 ES_
F - 2iA

(6.19)

We only keep the two dominant terms in Eqs. 6.10 and 6.11.

0 = -2corEP- + igpPP

0 = -(F - 2iA)EP_ + iQcES_

(6.20)

(6.21)

We neglect the last term in Eq. 6.12.

0 = -CORES+ - 2caES- + igpPS+ (6.22)
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Finally, we combine eqs. (6.14) and (6.17) into an expression for PS+ by eliminating

SS.
Q2

0 = -(F - 2iA - i Q)PS+ + igpES+ + iQcPP (6.23)
V

Eliminating EP_ and PP from eqs. (6.18), (6.20) and (6.21), we find that -- gEE

obeys the same equation of motion as ES+ in Eq. 6.22. Since -1EE also has

the same boundary conditions as ES+, EE - - ES+ at all R and r. This means
gp

that ES+ and EE obey the dark-polariton relationship (Eq. 4.20) for all R and r.

This is a surprising result, as one would not naively expect this relationship to hold

within the blockaded region. Eliminating EP-, PP, ES_ and PS+ from eqs. (6.19)

to (6.23), and keeping in mind that EE obeys the same equation as ES+, we find a

Schr6dinger equation for the two-photon probability amplitude EE for zi, z 2 E [0, L]

i&REE(R, r) = [ 1 + U(r)]EE(R, r) (6.24)
2rh(r)

where the spatially dependent mass rii(r) and potential U(r) are given by

S-4L2A + i (Qc)2V(r)) (6.25)
2fh(r) OD F F

OD
U(r) = V(r) (6.26)L

with V(r) = The resonant blockade radius is defined as rb = (2 )1/6. The
Tb

initial condition is EE(zi= 0, z2) = EE(zi, z 2 = 0) = a2 .

By comparing the solutions of Eq. 6.24 with the numerical simulations of the

full dynamics, we find that for A h 0, this equation does not approximate the full

dynamics as well as it does for A = 0, with the error in EE as large as - 20%.

However, it still captures the main qualitative features of the two-photon evolution.

In the regime JAI > F, QC, an excellent agreement with the full dynamics can be

achieved by keeping higher-order derivatives in the effective equation.

In the presence of nonzero A, the blockade radius is increased to YB = rb( 2

1)1/12. In the limit of JAI > F, it corresponds to the off-resonant blockade radius

rB = (4 ILc6)1/6. Outside the blockade region, 6it(r > FB) stems directly from the
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effective mass of a single dark-polariton. In the limit of JAI > F, the mass is given

by Eq. 4.24. Expressing Eq. 4.24 with different quantities and write out h explicitly

(remember Qe is given in half width),

1 c A F h_ 2h
m 16= --- L 2  --V (6.27)

1, g La V 2 g

where the factor of 2 comes from the two-body reduced mass, Aw = 27c, and La

L/OD is the resonant attenuation length. For our parameters, at the center of the

medium, ImIc2 ~ 103hw.

6.3.4 The correlation function in the dissipative regime

Setting A = 0 in Eq. 6.24 leads to

OREE = -i V(r)EE + (L + i( Qc)2V(r)) 2EE (6.28)
L OD IF

with V(r) = r6

g( 2) (7) can be read out from the solution of this equation along the boundary

Z, = L (green line in Fig. 6-19) via

(2) ( EE(zi = L, Z 2 = L - VgT)1 2  (6.29)

It is remarkable that, for the full range of parameters considered in this experiment,

the set of nine equations 6.9 to 6.17 is well-approximated by a single simple diffusion

equation with a local loss term. The second term on the right-hand-side of Eq.

6.28 is the diffusion term, while the first term is the local loss term. Outside of

the blockade radius (V(r) = 0), we have a pure diffusion equation with a 4L/OD

diffusion coefficient and no loss. Inside the blockade radius (V(r) = -i), the diffusion

coefficient is increased to 4(1+ (Qc/F) 2)L/OD. An increase in the diffusion coefficient

increases g(2) (0) and increases the half-width-at-half-maximum (HWHM) Tc of the dip

in g(2)(7).
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In particular, a larger Q, gives a larger g( 2)(0). The local loss term is nonzero on

a strip of width 2rb (or more precisely ~ 2rb/2'/6 ) where it has rate OD/L. This

amplitude OD/L is consistent with physical intuition: |EE12 decays as |EE(R =

L)12 Oc |EE(R = 0)| 2exp[-20D]. The factor of 2 accounts for the fact that either of

the two photons can be absorbed. The physics of this diffusion equation is as follows:

the local loss term tries to deplete a narrow strip of width ~ 2rb, while the diffusion

term competes with the loss, preventing the depleted region from being too narrow.

The diffusion term comes from the fact that the EIT medium cannot support without

loss features narrower than the EIT bandwidth B. Its effect is illustrated by the

following simple situation. Suppose we had no loss term and an incoming boundary

condition EE(0, r) = 6(r). Then EE(L, r) will acquire a width L/ OD. Converting

to time using vg, we would have a width ~ L/(vg /D) = rd/fOD ~ 1/B, in

agreement with the EIT bandwidth limit.

Under the approximation that V(r) is a delta function or a step function and as-

suming the boundary conditions are along R = 0 and r = oo, Eq. 6.28 can be solved

analytically using a Laplace transformation in R. The inverse Laplace transform can

be taken exactly in certain limits.

Specifically, in the case of V(r) ~ -2irO(r), we find that g(2 )(0) depends only on

X = ODbVOD, where ODb = ODrb/L is the blockaded optical depth. In particular,

for x < 1, g(2)(0) ~ 1 - x 12/w, while for x > 1, g(2 )(0) ~ 8/(7rX 2 ). For x > 1, the

HWHM of the dip in IEE(L - r/2, r)12 is given by ~ 4InverseErfc[1 - 2-1/2]/ OD

3/vOD. To get to the time units, one has to multiply by the EIT time delay Td, so

we get the correlation time

Tc ~ 1.05/B (6.30)

as expected from the physical intuition that the EIT medium cannot support without

loss features wider in frequency space than B. Eq. 6.30 is shown as a dashed line

in Fig. 6-5(b). It is remarkable that this simple formula derived by analytically

solving the diffusion equation with delta-function loss term matches extremely well

the experimental results.
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In the case of V(r) being a unit step of length 2 rb [i.e. f(|r| < rb) = -i and

f(Irl > rb) = 0], in the limit of large OD, we find:

(2 )(0) 4(1 + (1C )2) ODb
9 r(_) ( r exp[- (6.31)

rOD ep- 1 + (QC/F)2

While g(2 ) (0) drops exponentially as one increases ODb beyond unity, the reduction

in g(2 )(0) due to an increase in OD (for a fixed ODb) is much slower (~ 1/OD).

We also see from Eq. 6.31, that the condition for the blockade to work used at

the beginning of this chapter (ODb > 1) can be stated more precisely as OD 2 >

1 + (Qc/F) 2 . This condition simply means that the loss term must exceed the diffusion

on the length scale of the blockade radius.

6.4 Summary and outlook

To conclude, we demonstrate strong single-photon nonlinearities in both dissipative

and dispersive regimes by coupling to highly polarizable Rydberg states. In the

dissipative regime, strong photon anti-bunching is observed. In the dispersive regime,

nonlinear phase shifts on the order of 7r, as well as photon bunching, are demonstrated.

The discussion about the dispersive regime will continue in the next chapter to further

reveal the rich features of our unique nonlinear system.

Our observations suggest intriguing prospects for ultimate quantum control of light

quanta. First, by accessing other Rydberg states via, for example, microwave transi-

tions or additional laser fields, it is possible to control the state of multiphoton pulses

with just one quantum of light, thereby realizing a single-photon transistor [20-22] for

applications in quantum networks, and the creation of multiphoton entangled states.

Second, by colliding two counter-propagating photons or storing a photon inside the

medium, it may be possible to imprint a spatially homogeneous phase shift of 7r on

the photon pair, corresponding to a deterministic quantum gate for scalable optical

quantum computation [81,84]. Third, our results may open the door to exploring the

quantum dynamics of strongly interacting photonic many-body systems. For exam-
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ple, it may be possible to create a crystalline state of strongly interacting polaritons.

At the same time, the realization of coherent, dispersive photon-photon interactions

opens up the possibility to explore a novel quantum matter composed from strongly

interacting, massive photons. Measurements of higher-order correlation functions

may give direct experimental access to quantum solitons composed of a few interact-

ing bosons, or to the detection of crystalline states of a photonic gas. Beyond these

specific applications, our work demonstrates that unique quantum nonlinear optical

materials can be created by combining slow-light propagation with strong atom-atom

interactions, an approach which can be potentially extended to realize other material

systems with quantum nonlinearities.
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Chapter 7

Bound states of photons

In the previous chapter, I discussed the nonlinear phase shift and photon bunching

due to the attractive force when operating in the dispersive regime. In this chapter, we

further analyze those features and associate them with an indication of a two-photon

bound state.

Although bound states are ubiquitous for massive particles, such as nuclei, atoms

or molecules, bound states of photons have never been realized owing to their weak

interactions and linear dispersion (no mass term). Nevertheless, bound states of

light quanta have been proposed to exist in specifically engineered media with strong

nonlinearity [85-88]. These can be viewed as quantum solitons [24, 25, 89], a sta-

ble wavepacket enabled by the cancellation of nonlinear and dispersive effects. The

distinguishing feature of the quantum solitons is the nonlinearity so strong that the

wave packet shape should strongly vary with the number of constituting photons.

Extending these studies to create stable, complex bound states is of great interest.

For one thing, it is a novel states of light and is along the lines of fundamental studies

of photonic quantum matter [90,91]. For another, it finds applications in areas such

as quantum information [92,93].
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7.1 The two-photon bound state

In our nonlinear medium, the dynamics of the two-photon probability amplitude is

governed by a Schr6dinger equation with a potential well in ID. In theory, such a

system supports at least one bound state. In the experimentally relevant regime, the

effective potential is weak enough such that it supports only one bound-state 0(2) (r)

(Fig. 7-1).

In our cw experiment, the initial wavefunction ?/12)(R = 0, r) = 1. At the entrance

of the medium (R = 0), the effective potential is suddenly switched on and V)/( 2 ) is

decomposed into a superposition of the bound state )(2) (r) and the continuum of

scattering states (Fig. 7-1). The exit of the medium is a similar quench problem

where the effective potential is suddenly switched off. This is very different from a

usual scattering problem where a particle moves towards a potential, and have some

forward and backward scattering amplitude, but never excite the bound states.

The quench approximation is valid when the variation of the density of the medium

is faster than the length scale of the bound state. The experiments satisfy this

requirement well, as shown in Fig. 7-2. Moreover, close to the edge of the medium,

where the atomic density is lower, the extent of the bound state is even larger owing

to a shallower potential.

From this picture, the photon bunching, or the accumulation of probability near

r = 0, can then be understood as arising from the interference between the bound

and scattering states that evolve at different frequencies, and the observed bunching

feature in g reveals the wavefunction of the two-photon bound state. The strength

of the two-photon interaction potential can be tuned by varying the probe field relative

to the EIT resonance. As the probe detuning approaches the Raman absorptive

resonance, the difference in refractive indices inside and outside the blockade radius

increases and the potential deepens (Fig. 6-13). Consequently, the bound state

becomes more localized and the bunching, quantified by g?)(0), is enhanced (Fig. 6-

17(b), (c)). We note that the size of the two-photon bound state and, correspondingly,

the width of the bunching feature, 2 rbvg ~ 70pm, exceed the width of the potential
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well, 2rB ~ 35prn, as expected for a potential with one weakly bound state.

1.5 output
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0.5
-50 0 50
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B

-initial scattering states (2)

Figure 7-1: Photon bunching and two-photon bound state. Theoretically pre-
dicted photon-photon correlation function in the Schr6dinger equation approximation
(top, blue line) for A = 27 x 14MHz, with a potential well of width 2 rB (bottom,
green line). At the entrance of the medium, the initial wavefunction, 0 =(2) 1 (bot-
tom, dashed blue) is projected onto the bound state (bottom, red) and the super-
position of scattering states (bottom, black). The two-photon bound state results in
the observed bunching in the correlation function, g( ~ + /(2) (top, grey circles),

where time has been converted into distance using the group velocity vg. The bound-
ary effects resulting from the finite extent of the atom cloud become important for
r > 5rB-

To simplify the analysis, we make an additional approximation by assuming that

the boundary conditions are EE(R = 0, r) = EE(R, r = oc) = a2. We find that

this approximation is more forgiving than the approximations used in the derivation

of Eq. 6.24. Dropping the r-dependent term in the effective mass (since it is typi-

cally small) and approximating the potential with a square well, we end up with a

Schr6dinger equation with a complex mass and a square-well potential with a complex

amplitude, which can be solved directly. The analytical solution is further simplified
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if one approximates the square-well potential with a 6 function of the same area.

This is a reasonable approximation because the variations in EE(R, r) occur at a

scale much larger than T B. For JAI >> F, when the mass and the potential are real,

this follows from the fact that there is a single bound state and its extent is much

larger than T B, as we will verify below. The mass and the potential then simplify to

1 4L 2A (7.1)
- = -- ( + i)(.)

2in-(r) ODI F
1

U(r) = cO20DB 2A -(r) (7.2)

where ODB= ODI-B is the optical depth within a blockade radius and co = 2 e [+/
L 21/63

is chosen to keep f drU(r) unchanged under the approximation. For JAI > F,

arg[co] = 0 and wT/6 for A > 0 and A < 0, respectively, accounting for non-negligible

Raman absorption for A < 0 and capturing the asymmetry between positive and

negative A in Figs. 6-17(a) and 6-15. The resulting problem is equivalent to a free-

particle Schr6dinger equation on R E [0, L] and r E [0, oc] with mixed boundary

conditions at r = 0. Using Laplace transformation in R, we find

7)(r = 0) = 4i2 )(R = L, r = 0) = e, erfc[u] (7.3)

where erfc is the complementary error function and

U c ODODB (7.4)
2(1 - ijA)3/2

This formula is used to make the solid black curves in Figs. 6-17(a) and 6-15. At

small u, we have 0(2 )- 1 = _-+ 0-(U 2 ), which, for |Al > F, gives arg[b(2)(0) -1] =

7r/4 + arg[co] for A 5 0.

Within the 3-function approximation and by further assuming that A > F, we

obtain a real (negative) mass and a real (positive) potential. To get insight into the
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role of the bound state, we solve for the dynamics in this case analytically:

= <f(R,r) + f(R, r) (7.5)

where 0(2) and 0(2) are the contributions of the bound state and the scattering states,

respectively.

0()- erleir 2,RLA/(ODFP) - 2eKr~e-i2L(-R) (7.6)
B(R, r) = 2e 2Il-44R f/OU _ sr in(R

0 (b- 2)
1) (eklr + iklrl eik RLA/(ODF) (7)

S R, r) = fodk 2F 1rl+ ble - e 2(7.7)D
'1'k'r 1 -j 2irk

where r, = co(ODF/A)2 TB/(16L 2 ) and bk = (ik + k)/(ik - '). Taking OD = 22,

A = 27 x 14MHz, and Q = 27r x 10 MHz, the condition K T B = cO(ODB F/A) 2/16

1/14 < 1 ensures that the extent of the bound state is indeed much wider than the

blockade radius justifying the 6-function approximation. The last equality of Eq. 7.6

makes use of Eq. 7.1 when A > F. It shows that the bound state would acquire a

negative phase before the phase wraps around.

For the case of a square well, b2)(0, r), (2 (0, r) and I)( 2 )(L, r) 2 are shown as

red, black, and solid blue curves in Fig. 7-1. Within this solution, the observed

bunching can be understood as resulting from the relative phase evolution between

the bound and the scattering states. For the parameters given above, both terms

in Eq. 7.5 contribute to the super-Poissonian feature at r = 0. The bound state

0V2 acquires a phase and becomes the dominant contribution to the imaginary part

of 0(). The superposition of scattering states (2) starts with a dip (because the

bound-state contribution is subtracted), but its phase evolution quickly "fills in"

the dip associated with the real part of ?/(2), while contributing very little to the

imaginary part. A combination of both the real and imaginary parts of 0 (2) results

in the bunching feature of )(2)12. Therefore, consistent with a simple intuition, the

super-Poissonian g (2 )(0) is indeed driven by the bound-state formation (see Fig. 7-2).

In the limit of a very long medium (increasing OD and L proportionally), the

117



2.0

.5

ii0

-. -4~'Kz--...~.. .-Z~2-

-1.0|

-\..-- .

.............

__Re[4p'.2]

- Re S4~

IM[)(2)]

-Re~qp,)J

HL r -IM [4P 2) i

Figure 7-2: The real (solid) and imaginary (dashed) parts of the two-photon

wavefunction 0(2) (blue), 0Q2 (red) and 0Q (black) with parameters OD =

22, QC = 27r x 10MHz and A = 27rxl4MHz, by analytically solving Eq. 6.24
with a square well of width 2rB. The horizontal axis is the relative coordinate r,
in the unit of the medium length L = 4.2aa.
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scattering states will destructively interfere and play very little role in the total wave-

function. As shown in Fig. 7-3, increasing OD and L by a factor of 10 leads to a

wavefunction that resembles the bound state wavefunction until it decays to a very

small value. At larger r, the amplitude of the wavefunction gradually goes to 1,

as expected for two photons separated by more than the length of the medium, or

rather, never in the medium simultaneously. Within the extent of the bound state

wavefunction, the phase is flat, and then reduced to zero, for the same reason as the

amplitude goes to 1. Therefore, in the long medium limit, the width of the phase

feature is the same as the width of the amplitude of the bound state wavefunction

or twice the width of g('). For a finite medium, before /s(R = L, r) vanishes, as the

amplitude of the bound state decreases with increasing photon separation, the scat-

tering states' contribution continuously increases. Hence, the phase gradually drops

to zero without a flat region. It is worth noting that compared to a usual 6-function

well, here we need to be careful that the mass can be varied with the parameters in

addition to the potential, and therefore increasing ODB does not have the same effect

as increasing OD while keeping OD/L constant.

Last, as established in Sec. 6.3, we always work in a low input photon rate regime,

and model the g(2) numerator with the two-photon component and the denominator

with one-photon component. The one-photon probability amplitude is considered a

trivial number. The nontrivial dynamics is only in the two-photon sector where the

strong nonlinear interaction creates new frequencies and correlations. We will use

a similar model for the three-photon correlations. g(') is directly connected to the

three-photon probability amplitude with a trivial denominator determined solely by

the one-photon sector.
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Figure 7-3: The amplitude (blue) and phase (yellow) of the two-photon
wavefunction 0/2) in a medium that is 10 times as long as in the real
experiment, by analytically solving Eq. 6.24 with a square well. OD =
10 x 22, Qc = 27r x 10MHz and A = 27r x14MHz. The horizontal axis is the relative
coordinate r, in the unit of the medium length L = 4.2ua = 4.2 x 36pm.

7.2 Experimental setup for the observation of the

three-photon bound state

The 87Rb atoms are loaded form a 3D magneto-optical trap (MOT) into a 1064nm

crossed dipole trap. The dipole trap is modulated with a period of 40 As and 80%

duty cycle. A ~6ps long probe pulse is sent to the atomic cloud while the dipole

trap is off to avoid inhomogeneous AC Stark shift. The modulation of the trap and

therefore the measurements last for 120ms before a new atomic cloud is loaded. The

average resonant optical depth along the atomic cloud is 39. The root-mean-square

(rms) length of the medium is 32pm. The blockade radius rB defined as (C6 Q2 )6 is 20

pm, where C6 is the van der Waals coefficient. Although the Raman sideband cooling

setup is implemented (and therefore the pumping beam intersects the quantization

axis at an angle of ~45'), the data in this chapter are taken without Raman sideband

cooling.

To investigate the quantum dynamics of three-photon states, we measure the

three-photon correlation function and conditional phase. The three-photon or third-

order correlation function has been measured before for coupled atom-cavity [10]
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or quantum dot-cavity [35, 36] systems, as well as thermal and laser sources. Non-

classical states of three photons such as the Greenberger-Horne-Zeilinger (GHZ) [94],

'NOON' [95] and W [96] state have been constructed via quantum state tomography.

More recently, three-photon interference has been isolated and observed [97,98]. Here,

as sketched in Fig. 7-4, we measure the three-photon correlation function by split-

ting the light onto three single-photon counting modules. Additionally, by mixing a

detuned local oscillator (LO) into the final beamsplitter, we can also perform a hetero-

dyne measurement, conditioned on detecting one or two photons with the other two

detectors. We switch from the polarization reference to a detuned local oscillator, be-

cause the latter approach has the advantage of directly accessing the nonlinear phase

that interests us, without reconstructing the full density matrix. This greatly reduces

the amount of measurements, which is an obstacle when scaling up the number of

particles in the system.

The first two beamsplitters are polarizing beamsplitters (PBS), and the last one

is a 8:92 pellicle beamsplitter to minimize loss of the probe photons. There are

polarization optics before the first PBS to clean up the polarization of the probe,

after which a half-wave plate is placed before each PBS to balance the detection rates

on the three detectors. None of the polarization optics are shown in Fig. 7-4. Since

we only detect one output port of the pellicle beamsplitter, the intensity noise cannot

be cancelled as in a balanced detection. Therefore, we have to make a comprise, and

the counts from the LO is kept about four times of that from the probe on detector

D3.

The 79MHz frequency difference between the local oscillator (LO) and the probe is

generated by an acousto-optic modulator (AOM). The probe is derived from the -1st

order of the AOM, and LO does not pass any AOM. Afterwards, the two beams are

sent through their own optical fibers. In order to take out the decoherence caused by

the fibers, we beat the probe and LO. The beat note of probe and LO is sent to a digital

delay generator (SRS DG645) to produce the trigger for SPCMs, which serves as a

time zero for each probe pulse. We use 79MHz because the delay generator does not

respond to a signal faster than 80MHz. Unlike the probe, the LO does not propagate
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through the atomic cloud, causing a phase drift on a time scale of tens of milliseconds.

The remaining phase drift is taken care of in the data analysis, documented in detail

in Appx C. In short, we keep track of the phase drift by fitting the unconditional

phase for each time interval of - 1OMs. The interpolation of this time-dependent

unconditional phase' is subtracted from each detection event on detector D3 (phase

measurement). In other words, after the subtraction, unconditional phase shift is zero,

and conditional phase shift is referenced to the unconditional phase shift-including

the drift and linear phase shift of the medium. After taking care of the drift, the

conditional phase measurements can be averaged over hours.

a(tj) d(t2 )

Ac D, D2
Ep LO

Figure 7-4: Setup of the three-photon correlation function and conditional
phase measurements. The atoms are optically pumped into the hyperfine (F)
and magnetic (MF) sublevel 1g) = 15S1/ 2 , F = 2, MF = 2) in the presence of a 3G
magnetic field along the quantization axis, which is defined by the common propaga-
tion direction of the probe and control beams along the long axis of the cloud. The
weak coherent probe light is coupled to the Rydberg state, via an intermediate state
Ie) = 15P3/2 ,F = 3 ,mF = 3), of linewidth 1'/27r = 6.1MHz, by means of a control
field that is detuned by A below the resonance frequency of the upper transition,
le) + jr) = O10S 112, J = 1/2, mj = 1/2). Strong interactions between probe pho-
tons are detected via photon correlation functions of the transmitted light, which is
split onto three single-photon detectors with equal intensities by manipulating the
polarization optics before the polarizing beamsplitters. To perform phase measure-
ments, a local oscillator 79 MHz blue detuned from the probe laser is mixed into
detector D3 -

To produce the unconditional phase measurement in Fig. 7-6(a), we turn off the

dipole trap after modulation and allow the atomic cloud to expand for ims. We

measure the unconditional phase after the expansion of the cloud for 4ms and use it

as the reference for the phase during the last 5ms of modulation. The sequence is
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Figure 7-5: The sketch of the probe and LO beam paths. (a) Beam preparation
on a separate table from the vacuum chamber. (b) LO and probe are fiber-coupled
to the optical table where the vacuum chamber sits. LO does not go through the
vacuum chamber. A beat note is derived before the probe is attenuated to the single-
photon level and is used to trigger SPCMs. The probe and LO is combined with a
8:92 pellicle beamsplitter to minimize loss of the probe photons.

adjusted such that during this 5ms, the average optical depth is the same as a usual

sequence.

The rate-dependent #(O) in Fig. 7-6(b) is generated by alternating relatively strong

and weak (input photon rate of 0.5ps-1) pulses. The weak pulse serves as the phase

reference, and a constant offset is applied to all the points such that the linear fit

crosses the origin.

7.3 Evidence of the three-photon bound state: in-

tensity correlation functions

To isolate dispersive (force-induced) from dissipative (loss-induced) effects, we work at

large detuning A > 3F from atomic resonance (F is the population decay of the 5P3 /2

state, and at a two-photon detuning where the transmission through the medium is

the same with and without EIT while the phase differs significantly (Fig. 7-6(a)).
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Consequently, the transmission hardly varies with probe intensity (Fig. 7-6(b) top),

while a strongly nonlinear phase with a slope of 0.40(7) rad-Ps is observed (Fig. 7-6(b)

bottom).

0
frequency (MHz)

(b)
.2

C
E

-
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0.5

0
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-1
50 0 0.5 1 1.5 2

input photon rate (s1 )

Figure 7-6: Transmission and unconditional phase. (a), Transmission (top) and
unconditional phase #(') (bottom) as a function of probe frequency measured at a low
(0.5ps-1 ) input photon rate. The blue and red data are from measurements with and
without control beam, respectively. The blue and red dashed lines in the bottom graph
are theoretical expectation. The vertical yellow dashed line marks EIT resonance.
(b), Rate dependence of transmission (top) and unconditional phase (bottom) on
two-photon resonance Ig) -+ Ir), with a one-photon detuning of A = 30MHz. While
the transmission is rate-independent, the phase is rate dependent (slope is 0.4 rad*ps),
indicating a strong dispersive nonlinearity.

To analyze our observations, we consider the output state in the following form,

we write the output state as follows assuming the state stays pure and ignoring higher

photon number Fock state:

14') = 10) + dti 01(ti) ti) + dtidt2 02(t1, t2)|ti, t2)+fdtidt2dt3 03(ti, t2, t3)|ti, t2, W)

(7.8)

where jt1 ,- , tN) = 1at(ti) ... at(tN)10) and at(t) is the creation operator of the

time bin mode t. The correlation functions can be related to the wavefunctions as

(2) - 1 2 (ti, t2)12_ (ttI t2) = 1 ) 121, (7.9)
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and

g (3) (ti, t2,i t3) =0 61t2it)1 (7.10)
10,(t1)12|101(t2) 1211(63)12

where the last equality in both the two equations is valid in the low rate limit.

The experimentally measured g( 3) function, plotted in Fig. 7-7(a), (b), displays a

clear bunching feature: the probability to detect three photons within a short time of

one another is six times as likely as for non-interacting photons in a laser beam. The

increase at t1 = t2 = t 3 is accompanied by a depletion region for photons arriving

within ~ 0.7ps of one another, particularly visible along the lines of two-photon

correlations t, = tj # tk in Fig. 7-7(a): This depletion region is caused by the inflow

of probability current towards the center ti= t2 = t3 .

Figure 7-7(b) compares the binding between two photons separated by time T

(g(2) (t, t+|T I)) to the binding of one photon to two other coincident photons (g(3) (t, t, t+

ITI)). The trimer feature (fitted decay time r3 =0.1 4 ps) is approximately twice nar-

rower than the dimer feature (fitted decay time -2 = 0.31ps), showing that the

interaction between a photon and a dimer is two times stronger than the interaction

between two single photons.

Figure 7-7(c) illustrates the binding of a third photon to two photons that are

detected with a time separation T. If T exceeds the dimer time scale T2 , then the

third photon binds independently to the other photons, while for T < T2 the two peaks

merge into a single, more tightly bound trimer. This is analogous to the binding of

a particle to a double-well potential as the distance between the wells is varied. For

large T, as shown in (iii), where the two conditioning photons are uncorrelated, we

expect the decay rate of the two peaks to be the same as g(2). This is verified to be

true within the error bars.

To quantitatively model these results, we resort to an effective field theory [99],
which is a lot easier to generalize to N photons than the Schr6dinger equation used

previously for the two-photon bound state. we describe our system by a slow-light
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Figure 7-7: Photon correlation functions measured at one-photon detuning
A = 27r x 30MHz, control Rabi frequency Q, = 27r x 10MHz, input photon rate
of 1ps 1 and on EIT resonance. (a), Two dimensional representation of three-
photon correlation function g(3) (t1 , t2, t3), with tj being the photon detection time at
detector Di. Three-photon bunching corresponds to the central region, two-photon
bunching to the stripes. (b), g(3)(t, t, t + TI) (blue data points) and g(2)(tt + I)
(brown data points). The decay rates of the dashed lines come from an ab-initio
calculation with inputs from independently measured parameters such as the control
Rabi frequency, the optical depth, etc. They are scaled to match the amplitudes
of data. The decay rate of g(3) is a factor of 2 faster than that of g(2 ) from the
calculation, showing that a photon is more strongly bound to two photons than to
one. g( 3) (t, t, t + Ir) is the average of the cuts along the lines where two photons
are within 25ns of each other, with r being the interval of the mean arrival time of
these two conditioning photons and the third photon. The fitted time constants are
T3= 0.14ps and T2 = 0.31ps for g( 3) and g(2), respectively. (c), Three representative
plots of g(3)(ti, t2 , t 3)/9(2)(ti, t2 ) for fixed Iti - t2 | = 01-s (i), tl -t 2 = 0.2ps (ii), and

Iti -t 2 j = 1.8ps (iii), within a 50ns window. As we condition on the two photons being
further and further away, the sharply decaying g( 3) function transitions to a slower
decaying g(2) function. For intermediate time separations (ii), there is interference
between all states including the dimer and trimer. All permutations of the detectors
are used to generate the data in (b),(c).
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Hamiltonian density with a contact interaction,

-=-t (ihvgz + ) - m t2a 2 (7.11)
2m ma

where Vg is the medium group velocity, m = -hQ2/(8Av2) is the effective pho-
25

ton mass, a - 23 ( )2( )2 is the scattering length, Q, is the control laser

Rabi frequency, and A is the one-photon detuning, in a one-dimensional homogenous

medium where the nonlinear phase a photon would pick up is smaller than r. V) is

a quantum field annihilation operator, which corresponds to a photon outside the

medium and a Rydberg polariton inside. W supports both bound states and scatter-

ing states. The bound states can be determined from the Bethe ansatz solution to
lt -2l lt2-tal lt1-t3l

W, resulting in the correlation functions g( 3)(ti, t2 , t3 ) cX e a/(2vg) e a/(
2
vg) e a/(

2
vg) and

Il -t1
g( 2)(ti, t2) c e " /( 2 g)

If we consider t1  t2 = t as before we see that g( 3)(t, t, t + IT) Oc e-2TI/To. In this

case, a telltale sign of a three-photon bound state emerges, namely that the width of

9(3) is half that of g( 2) computed from the same data. We find a/(2vg) = 0.32ps from

an ab-initio calculation and plot it along the data (Fig. 7-7(b), dashed lines). The

three-photon bound state solution, which features a two times smaller time constant

than the two-photon bound state, agrees with the data well for small IT.

The insight about the two-photon bound state in Sec. 7.1 still holds true for

the three-photon bound state. The depletion region T ~ 0.5ps arises from a inward

probability current of photons towards each other. Since the length of the medium is

finite, photons that are never together inside the medium remain uncorrelated, and

g( 3 ) rise would be observed again. If the medium were infinitely long, we would just see

the soliton-like bound state. The initial state is decomposed to the bound state and

the continuum of scattering states [19] following the quantum quench (entry of the

medium). The composite structure observed in the experiment can be interpreted

as a quantum interference between the bound state and scattering states. Due to

the initial decomposition and the destructive interference, the contribution from the

scattering states is small when all photons are detected near to each other, i.e. the
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bound state dominates the g( 3) function near T = 0. The dimer binding energy can

be estimated as - =0.1 MHz, and the trimer binding energy is four times larger.

They are about 1010 times smaller than diatomic molecules such as NaCl and H 2, and

similar to Efimov trimers in refs. [100,101].

7.4 Three-photon conditional phase

The dispersive and distance dependent photon-photon interaction also manifests itself

in the phases of the wavefunctions. We refer the phase of N-photon wavefunction

as N-photon phase, namely, 0( 1)(ti) = arg[4' 1(ti)], 0(2 )(ti, t 2 ) = arg[0 2 (tit 2 )] and

00) = arg[03 (t1 , t 2, t3 )]. We perform the measurement of three-photon phase by

conditioning on detecting probe photons at times t, and t2 on detector D1 and D2

and a heterodyne measurement at time t 3 on detector D 3.

Suppose the LO is a strong classical field and the last beamsplitter in Fig. 7-8

has full transmission of the light from the probe field. Then the conditional phase

measurement can be written as

(0, 0, Olbt(ti)b(t1 )(t 2)tf(t2)P(t3)Kb, 0, 0) (7.12)

where 6(t), d(t) and P(t) are the annihilation operators of the spatial modes labeled

as in Fig. 7-8 at time t. 4', 0, 0) denotes the joint states of the output of the probe

after propagation in the medium and the two vacuum states mixed into the first two

beamsplitters. Applying the unitary transformation of the beamsplitter defined in

Eq. 2.17, Eq. 7.12 is proportional to

(4', 0, 1et(ti)tt (t2)a(t 3)&(t2)&(t1)J4, 0, 0) = 03 (t1, t2, t3 )0*(t1, t2) (7.13)

The phase of this measured quantity is 0( 3 )(ti, t2 , t3 ) - 0( 2)(ti, t 2 ). We can extract

0(2) (t, t 2) from the same data by conditioning on detecting one probe photon, assum-

ing the results are independent of which detector is in use. Then 0(3) and # (2) are refer-

enced to three and two uncorrelated photons, respectively. More specifically, the two-
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photon phase reference is 02 ) #( 2)(ti, t 2 -+ o) = )(t ) + #0()(t2 ), and the three-

photon phase reference = 0(3)(t1, t2, t3 ) Iti-t#-+O ()(ti) + #0()(t2 ) + q0()(t3 ),

for any i # j. 0b(3)(t, t, t + Ir) at large ITI asymptotically goes to 0(2 )(t, t), because

0(3) (t, t, t +|I ) - ( 3 ) (2) (t t) + q$() (t + I _F)-- # 3 ) = # (2)(t, t) - (2) whereref ref ref)

the last equality makes use of the fact that the phase does not depend on the absolute

time. In other words, 0(l) is time independent, and 0(2 ) (0(3 )) only depends on the

time interval(s). The phase references are not explicitly written out elsewhere.

b LO I

IIP)

'10) '10)

Figure 7-8: Conditional phase measurements setup. &(t), b(t), (t) and p(t) are
the annihilation operators at time t of the corresponding input and output ports of
the first two beamsplitters.

We observe a large conditional phase shift 0(3 ) (t, t, t + TI1) for the trimer near

I = 0 (Fig. 7-9(a)) that is significantly larger than the dimer phase shift q$(2 ) (t, t+ TI)

(Fig. 7-9(b)). This confirms the stronger interaction between a photon and a dimer

compared to that between one photon and another. 0(3 ) (t, t, t+ TI) at large |TI carries

the phase of the two simultaneous conditioning photons. Thus, it has the same value

as the initial two photon phase 0(2) (t, t). Qualitatively, the widths of the phase feature

is twice of the corresponding g(N) feature. As the bound state wavefunction amplitude

becomes smaller the contribution of the scattering states sets in, which reduces the

magnitude of the phase. Therefore, the widths of the phase feature roughly reflect

the widths of the wavefunction, which is twice the width of g(N), N = 2,3.

The Hamiltonian of Eq. 7.11 predicts that 0(3) (#0( 2)) equals the product of the

trimer (dimer) binding energy times the propagation time in the medium, for the

contribution from the bound state only. Thus from the bound state contributions

one would expect a ratio 0( 3)/0(2 ) = 4, independent of the atom-light detuning A.

While the observed ratio is approximately constant (Fig. 7-10), it is smaller than
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4 due to two contributions of comparable magnitude. One correction arises from

scattering states, or equivalently, from the fact that our Rydberg medium (~ 80pum)

is of the size as the two-photon bound state (~ 140pm). The other, more intriguing

correction is due to an effective three-photon force that is not the sum of pairwise

interactions. Namely, when all three photons are within one blockade radius of one

another, there can be only one Rydberg excitation and the potential cannot get deeper

compared to two photons [99,102]. This saturation effect appears as an additional

repulsive force that reduces the trimer binding energy. Another small correction

comes from the fact that we make measurements at finite photon rate such that at

finite detection efficiency there are contributions from more than three (two) photons

when we measure 0 )(02).

The EFT in Fig. 7-10 employs the dipolariton field method to find the value

of the effective three-body forces that matches the physical scattering amplitudes in

the microscopic model. It takes into account the finite medium, and compares the

results with and without the repulsive three-photon force. The deviation of the latter

from the ratio 4 reflects the role of the finite medium. In case of a short medium,

compared with the length of the bound state, one expects the ratio to be 3, consistent

with the conventional Kerr medium [82]. Including the three-photon force allows the

ratio to go below 3, resulting in better agreement with the data. This deviation from

3 predominantly arises from the effect of the three-photon force on the interaction

between scattering states in the system. There is an additional correction to the

binding energy of the trimer that contributes to this deviation, but this correction is

suppressed due to the distributed nature of the trimer compared to the microscopic

range of the interactions. The lower bound 2 of the ratio stems from a fully saturated

medium, where the interaction potential does not increase with the photon number.

Last, I will show more details about our phase reference. we use the average value

when all photons are far away from each other as the phase reference and interpret

it as the sum of linear phase 0M. Alternatively, the unconditional phase can be

regarded as #M as well. Figure 7-11 presents the same data as in Fig. 7-9, with

unconditional phase as the reference instead. Although at large ITI, both conditional
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Figure 7-9: Nonlinear phase measured at identical conditions as the data in

Fig. 7-7. a, Conditional phase (3) (ti, t 2 , tW), where t1 and t2 correspond to photon

detection events at detectors D1 , D2 , and a heterodyne measurement is performed on

detector D3 at time t3. (b), Diagonal cut 0(
3 )(t, t, t + IT) (blue), with the two condi-

tioning probe photons within 40ns of each other, and #( 2)(t, t+ Tr) (brown) showing a
large photon phase when conditioning on two other near-simultaneous photons (0(3))
than on one near-simultaneous photon (#(2)). 0( 3 ) and 0(

2) are referenced to three

and two uncorrelated photons, respectively. More specifically, the two-photon phase

reference is 02 = (2)(ti, t2 - 00) = #( 1)(t) + 0( 1)(t 2), and the three-photon phase

reference rf #( 3)(tt 2 ,t) #1)(t) + #( 1)(t 2 ) + 4(1)(t3 ), for any i # i.

q( 3) at large IT asymptotically goes to q( 2 (t, t), because q( 3 )(t, t, tref T)- #
0(2 )(t, t) + #( 1)(t + I) - # = #( 2)(t, t) - # where the last equation makes use of

the fact that the phase does not depend on the absolute time. In other words, 0(l)

is time independent, and 0(2) (0(3)) only depends on the time interval(s). The phase

references are not explicitly written out elsewhere.
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Figure 7-10: Measured ratio of (3) (t, t, t)/0(2) (t, t) (blue) and the EFT predic-
tions (with the three-photon force in brown; without in green) as a func-
tion of (ODB)-, where () refers to the average over the Gaussian profile
of the atomic density. The control Rabi frequency Q= {22,18,10,10,8} MHz for
A = {54,42,30,24,18} MHz is chosen such that the transmission is insensitive to the
input photon rate (Fig. 7-6). We also change the input photon rate {0.7, 1,1, 1.3, 2.5}
photons/ps to achieve similar data acquisition rates since the losses are larger at
smaller detunings. Finally, the bin sizes are {75, 75, 40,100, 65}ns. All the three (for

0( 3)) or two (for 0( 2)) detections are within one bin size of each other. From a fully
saturated medium, one expects #(3)/0(2) = 2; for bound states in a long medium and
no three-photon force, one expects 0(3)/0(2) - 4 (see text). EFT is calculated with
parameters from independent measurements, and the two-photon detuning is the only
parameter varied within the experimental uncertainty to fit the two-photon phase.
The inset illustrates the potential the third photon would see induced by the other
two photons. (i) When the two photons are separated by more than a blockade radius,
each of them creates a potential; (ii) When the two photons are within one blockade
radius, since there can be at most one Rydberg excitation, the potential is not deeper
than that created by one photon. Therefore, we overestimate the attractive potential
by considering pairwise interaction only, and a repulsive three-body force is required
to make the correction.
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Figure 7-11: The long range behavior of the conditional phase referenced to
the local unconditioned phase. The blue and brown data represent 0(3) (t, t, t +
T) - (2) (t, t) - () (t+T) and 0(2) (t, t+r) - #(1) (t) - 0(1) (t+T), respectively. The inset
shows the same quantities at a shorter time scale. These data with r much longer the
probe pulse (-- 6ps) are generated by taking detection events from different pulses.
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phases are expected to go to 0, there is nevertheless small disagreement between the

unconditional phase and the conditional phase with well separated photons. The

conditional phases vary at a time scale of a few tens of microseconds, much slower

than the bound state physics. Additionally, the mismatch is only less than 20% of

the phase of the concurrent photons. Therefore, we do not believe the phase offset at

large -r to have significant impact on our main results.

7.5 Control Rabi frequency dependence

At the beginning of Sec. 7.3, I point out we work under the condition that with and

without the control laser, the transmission of the probe is the roughly the same. The

two cases represent the photon pairs outside and inside the potential well, respectively.

By matching the transmission, we minimize the nonlinear absorption.

Here, I will show how the nonlinear absorption affects our result by varying the

control Rabi frequency Q,. With finite decoherence -yr, the transmission with the

control laser increases as Q, increases. Therefore, for large Qc, photon pairs at the

vicinity of each other (small ITr) has lower transmission than single photons, resulting

in antibunching, and vice versa. As shown in Fig. 7-12, g(2) dramatically changes

from bunching to antibunching as Q, gets bigger. Another feature in the figure is

that the width of the g(2) feature decreases with Qc, because the group velocity vg

(Eq. 4.13) increases, and therefore the same distances convert to shorter times.

7.6 Input photon rate dependence

As shown in Fig. 7-6(b), the magnitude of unconditional phase increases as the input

photon rate. The input photon rate is calibrated by the output rate without the atoms

scaled by the detection efficiency and losses through the optics. As the rate increases,

the undetected higher photon number events play a more and more significant role.

Since the nonlinear phases are negative (Fig. 7-9), the "contaminated" one-photon

phase becomes more and more negative.
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g(2) vs control Rabi frequency QC
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Figure 7-12: g(2) (1rT) as a function of the control Rabi frequency Q, for one-
photon detuning A = 18MHz, OD = 45 and an input photon rate of 1.1
photons/ps. Q, for each data is listed in the legend. All g(2) is normalized by
dividing its own mean value when IrI > 2ps.
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The rate dependence of the conditional phase is shown in Fig. 7-13. The magni-

tude of both the initial two- and three-photon phase decreases with the rate. Recall

that both phases are referenced to the one-photon phase (see Sec. 7.4). The pos-

itive slope indicates that impact of the higher photon number events on the phase

reference is larger than on the bare two- and three-photon phase. The fitted slopes

are 0.2(0.2) and 0.6(0.2) (rad - ps) for 0(2)(t, t) and 0(3)(t, t, t), respectively. Hence,

the contamination caused by the probe photon rate largely cancels when we plot

0(3) (t, t, t)/0(2) (t, t) in Fig. 7-10.

0.5

0

-0.5 -

-1.5 -

-2 
h

-2.5 -
S() t,t,t

0 0.5 1 1.5 2 2.5 3 3.5 4
input photon rate (photons/ps)

Figure 7-13: The conditional phases of simultaneous photons as a function
of the input probe rate, for one-photon detuning A = 18MHz, Q, = 8MHz,
OD = 40 and on EIT resonance. The two (three) detections for 0(2 ) (t, t)
(0(3) (t, t, t)) are within 100ns of each other. The dashed lines are a linear fit of
the data. The shaded areas give the lo range of the fitted slopes.

7.7 Summary and outlook

To conclude, we observe two- and three-photon bound states by measuring the inten-

sity correlation functions and the conditional phase. The associated stable two- and

three-photon wavepackets owing to the balance of the dispersion and the attractive
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interaction can be seen as quantum solitons. Inside the medium, the propagation of

the two-photon wavefunction is governed by an effective Shr6dinger equation with

a negative mass and positive potential, which looks like a particle with a positive

mass evolving reversely in time in a potential well. This leads to a negative phase

accumulated by the bound state. The measured g(2) and 0(2) are dominated by the

bound state over the scattering states.

We see photon bunching in both g(2) and g(3), manifesting the wavefunction of the

bound states. The factor of 2 increase in the decay rate of g( 3)(t, t, t + IT) compared

with g(2) (t, t + IrI) is predicted by the Bethe ansatz solution and verified experi-

mentally. This feature is our key evidence of the trimer, and is robust despite the

contribution from the scattering states and experimental imperfections such as the

finite input photon rate. Another robust feature relatively insensitive to the finite

rate is the ratio of the initial phase q#( 3) (t, t, t)/ b( 2 ) (t, t). We measure roughly con-

stant phase ratio for various parameters. The deviation from a universal ratio of 4

predicted by an effective field theory can be partially attributed to a three-photon

force originating from the saturation of the Rydberg interactions.

The results in this work can be extended in a variety of other directions. First,

the strong rate dependence of 0(3), governed by g(4) and 0(4, indicates the possible

existence of four-photon bound states. An improvement in the detection efficiency

and data acquisition rate might allow us to observe larger photonic molecules. Second,

by using an elliptical or larger round probe beam and carefully engineering the mass

along different directions, the system geometry can be changed to two and three

dimensions, possibly permitting the observation of photonic Efimov states. Finally, an

increase in the atomic density by roughly a factor of three, where another bound state

appears, should result in resonant photon-photon scattering and a tunable scattering

length [103].
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Chapter 8

Symmetry-protected collisions

So far, we make use of Rydberg-Rydberg interaction as a mechanism to shift the

Rydberg level out of the resonance, inducing a distance (between the photons) de-

pendent level scheme. Inside the blockade radius, the probe couples to the 1g) -+ le)

transition; Outside the blockade radius, together with a control laser, the probe is on

EIT resonance.

On the other hand, there is another type of interaction when the pair Rydberg

state is in resonance with another pair, which we call exchange interaction, as dis-

cussed in Chap. 3. In that case, it is inappropriate to talk about the shift since the

interaction does not act as a perturbative shift, but mix and split the two resonant

states.

In this chapter, we explore this resonant exchange interaction by colliding a prop-

agating photon with a stored one which is coupled to a different Rydberg level using

a microwave transition. Additionally, we go back to the so called dissipative regime,

where the probe is resonantly coupled to the unstable intermediate state le). In

this regime, with the blockade shift type interaction, we observe photon antibunch-

ing caused by the increased absorption of photon pairs compared with singles, as

documented in Sec. 6.1. Now, with the exchange interaction, in stark contrast, we

demonstrate coherent exchange collisions between two photons that is accompanied

by a r/2 phase shift, with low loss.

The effect is robust in that the value of the phase shift is determined by the
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interaction symmetry rather than the precise experimental parameters, and in that it

occurs under conditions where photon absorption is minimal. This phase is analogous

to that acquired by a spin-1/2 particle undergoing resonant spin rotation. The half-

integer value of the phase shift in units of 7 is protected by the symmetry of the

effective Hamiltonian against variations in the experimental parameters, unlike the

recently demonstrated 7 nonlinear phase shift based on the blockade type interaction

[81] and our work in the previous chapters. The measured phase shift of 0.48(3)r is

in excellent agreement with a theoretical model. These observations open a route to

realizing robust single-photon switches and all-optical quantum logic gates, and to

exploring novel quantum many-body phenomena with strongly interacting photons.

8.1 Experimental setup

The probe field at 780 nm is resonant with the Ig) - 15S1/ 2 , F = 2, mF = 2) to

le) - 15P3/2 , F = 3, mF 3) transition. The control field Q, at 479 nm couples Ie)

to IS) = 100S1/ 2 ,mJ = 1/2). The microwave frequencies are 3.72, 3.67 and 11.4

GHz, respectively, to drive 100S 11 2 to 99P3/2, 99S 1/2 and 97S 1/ 2. Rabi frequency

Q, = 2w x 3 MHz is used to transfer population between Rydberg states, from IS)

to IP) 99P3 / 2 , mj = 3/2). The control Rabi frequency Q, = 2r x 16 MHz. The

magnetic field B = 3G. Each dipole trap beam has a power of 8W. The intehsity is

modulated with a period of 38ps with 7ps off time to probe. The atomic sample is

cooled to 20pK with Raman sideband cooling.

In this experiment, probe and LO are not both on at the beginning of each gate,

and their pulse shapes are very different. Therefore, probe and LO are independently

controlled by their own AOM and their beat note cannot be used as a trigger for

SPCMs. Instead, the SPCMs are triggered by the 79MHz DDS frequency. Mean-

while, the same signal is used to drive both probe and LO's AOM. Probe is derived

from +1st order while LO from the -1st order. Therefore, LO is red detuned by

158MHz compared with probe. They are coupled through the same fiber to the vac-

uum chamber. The setup is sketched in Fig. 8-1. The large detuning and low power
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(on the same order as the probe) ensure that the LO does not interact with the Ry-

dberg levels, so any phase shift in the probe-LO beatnote arises from phase shifts in

the probe field.

Because of the negative detuning of the LO, the positive phase shift of the beatnote

shown in Figs. 8-4(a) and 8-5(a) actually corresponds to a phase lag of the probe,

in agreement with the negative phase shift predicted by the solution to Eq. 8.1 for

C3 > 0.

There can be a very small phase drift due to the different AOM paths. In order

to make fine adjustments, an extra gate is added to the end of each experimental

cycle. The beat note, whose frequency is divided by a factor 64 (ADF4007) and

then converted to TTL by a comparator (EVAL-ADCMP601BKSZ-ND), is read by

HRMTime. The typical drift per cycle is < 102 ps. These counts also help to precisely

determine the frequency of the beat note.

For the two-mode measurements, we switch the AOM in the LO path to +1st order

and use it as the second probe mode, since we do not perform any phase measurement

with the two spatial modes. The two independently coupled probe beams are nearly

overlapped on a beamsplitter before entering the chamber. Their separation (5.4

pum) is measured using a CCD camera that images the focal plane in the center of the

atomic cloud. The output light is directed to two single-mode fibers by a beamsplitter.

One of the fibers is aligned to each mode, allowing them to be separately detected by

independent SPCMs. There is a small amount of crosstalk resulting from imperfect

fiber alignment and finite separation between the modes. About 10% of the light

detected in the mode A photon counter is actually from mode B, and vice versa.

8.2 Experimental sequence

We engineer collisions between polaritons coupled to two Rydberg levels IS) and

IP) (Fig. 8-2(b)) using a combination of EIT and microwave manipulation between

Rydberg states, in a sequence depicted in Fig. 8-3. Initially, a single photon from

a weak optical gate pulse enters the atomic cloud and is slowed and stored in the
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beat note

LO To the vacuum chamber
-1st

probe
+1st 4

Figure 8-1: The sketch of the probe and LO beam paths. In the real setup,
the couplers of the beat note and the beam to the vacuum chamber are very close to
each other.

IS) 1100S1/ 2) state by switching off the control field in the EIT configuration.

A microwave pulse coherently converts the stored, collective IS) excitation to the

Rydberg level JP) 199P3/ 2). Then, a second signal pulse coupled to the IS) state

enters the medium. Since the control laser addresses only IS) (Fig. 8-2(b)), the

polariton in IP) does not propagate, leading to a collision between the propagating

S-state polariton and the stationary excitation in IP). The S-polariton ultimately

leaves the cloud and is detected as a photon. Finally, the excitation stored in the P)

state is converted back to a propagating S-polariton (with another microwave pulse)

and retrieved. The influence of polariton interactions is observed via the correlations

of the transmitted signal and gate photons.

8.3 Collisions between a propagating photon and

a stored photon

To observe the phase shift resulting from the interaction, we analyse the transmitted

signal pulse conditioned on the detection of a retrieved gate photon. The conditioned
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Figure 8-2: Photon collisions mediated by long-range exchange interactions.
(a) Experimental setup. (b) Energy diagram. (c) A collision is realized between a
single, stationary Rydberg excitation in IP) (orange line), and a single, propagating
polariton coupled to IS) (green line). As they approach in the cloud, the dipole-
dipole interaction Vex causes them to switch places and acquire a phase shift of 7r/2.
Without interactions, the polaritons pass through each other with no phase acquired
(grey dashed lines). The Bloch spheres denote the state of each polariton during the
interaction (upwards arrows denote IS); downwards arrows denote IP)).
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Figure 8-3: Experimental sequence and pulse shapes. (a), (b) Illustration

of experimental procedure. (c) Average transmitted intensity through the atomic

cloud (dashed lines), showing the leaked gate pulse (yellow, scaled by a factor of 0.6

for display), the signal pulse (red), and the retrieved gate pulse (blue, scaled by a

factor of 3.75). The average transmitted intensity is representative of the intensity in

the absence of interactions, owing to the low incident photon number. The dark blue

points show the retrieved gate intensity conditioned on the detection of a signal photon

in the same experimental cycle, while the dark red points show the transmitted signal

intensity conditioned on the detection of a retrieved gate photon. All of the features

in the data are quantitatively described by a numerical simulation with independently

measured parameters.
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phase of the transmitted signal is #c = 0.48(3)7 (Fig. 8-4(a)). Without conditioning,

the signal phase # = 0.03-F. This difference confirms that the phase arises from

interaction with a single gate excitation. 4 = 0 is defined by a control experiment

with n i= 0. This phase is slightly different from the phase measured without any

atoms present, and results from the effects of atomic dispersion on the far-detuned

LO, as well as small phase shifts on the probe arising from a minority of atoms not

prepared in IF = 2 ,mF 2).

At the same time, the conditional signal transmission is only reduced by a factor

of 0.77(6) compared to its value without interactions, or rather, (n=n 0.77(6).(ng) (f)

Similarly, the conditional gate retrieval (ffg) 1 0.82(7). Here, h, (fig) denotes
(n.) (i)

the number of detected signal (gate) photons in a control measurement (similar to

the control experiment in Fig. 8-7, but with only one spatial mode) with n in = 0

(nin = 0), while n, and n are the number of detected photons for average input

photon numbers, (np) = 0.25 and (n g) 0.15. The high transmission, together

with the uniformity of the -/2 phase shift across the pulse, establishes that polariton

collisions under dipolar interactions are highly coherent.

We measure the transmission probability for an incident signal (gate) photon

to be 0.56 (0.06) in control experiments where the gate (signal) photon is absent.

The low gate retrieval is attributed to limited coherence time as well as insufficient

optical depth. If we reduce the storage time to 100ns, then the storage and retrieval

efficiency is increased to 0.4. We take into account that the input gate pulse is not fully

compressed into the medium by subtracting the detected leaked pulse (before 0.6ps

in Fig. 8-3(c)) scaled by the linear transmission. The coherence time is limited by

Doppler broadening and collisions between the ground state atoms and the Rydberg

excitations. For our temperature of 20pK, the Doppler rms width is 2wx35kHz,

corresponding to a lifetime of 1.9ps, comparable to our storage time 1.5ps. The

collisional dephasing is evidenced by our density dependent coherence time. It can be

improved by switching to a different Rydberg state and a more homogeneous optical

trap geometry [104,105].

To demonstrate the robustness of the phase shift, we repeat the measurements in
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Fig. 8-4 for a range of atomic densities, as summarized in Fig. 8-5. For each density,

we measure the conditioned phase shift #c of the transmitted signal field, as well as

the joint probability T, = (flfg) of both signal and gate photons being transmitted,Ali) (h9 )

relative to their independent transmission probabilities. The phase shift saturates

at 0, = r/2 at high densities, indicating that it is a robust property of the photon

collision. The transmission probability has a minimum at intermediate densities and

it improves in the high-density limit, in stark contrast to conventional resonant dipole

blockade, where transmission is exponentially suppressed at high densities.

The emergence of the phase shift can be understood from a simple model in-

corporating propagation and interactions. Let 0(r, r') denote the two-body spatial

wavefunction for polaritons at positions r and r' coupled to states IS) and P), respec-

tively. The evolution of the system (in the limit of large atomic density) is governed

by the effective Schr6dinger equation:

i 4(r, r') = -ivg +-/(r, r') + -Vex(r - r')'(r', r) (8.1)
at r h

where vg denotes the S-polariton group velocity, and Ve, (r - r') = -'-- is the dipolar9Ir-r1 3  ar

interaction between the states IS) and IP), whose action on the polaritons at r and r'

is to swap their positions, coupling the state 0(r, r') to ?/(r', r). Eq. 8.1 has a simple

time-independent solution in the continuous-wave limit:

(r, r')= exp[-- )2 2]exp[-i sign[(r - r)C3] (8.2)
2 (r - r 4

Here, r. = 2 is the hopping radius, which is the distance at which the approach-
V
9

ing polaritons exchange their positions and start propagating away from each other.

Correspondingly, there is very little probability of finding the polaritons at distances

1r - r' < r,. The complex transmission coefficient:

lim 0(r, r')
tc =(r-r)--+OO (8.3)

lim ) ) (r, r)
(r-r')--0
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takes the value e i/2, for C 3 > 0.

Remarkably, this robust phase shift can be understood by considering the symme-

tries of the effective Hamiltonian Heff governing Eq. 8.1. In the centre-of-mass frame,

PHeff = -HeffP , under the transformation P : 0 (r, r') - sign[r' - r]J<* (r, r'). P is

analogous to the particle-hole symmetry encountered in fermionic condensed matter

systems, and constrains the structure of the eigenstates of Heff such that t, must be

purely imaginary for low-energy scattering processes, ensuring a phase shift of 7r/2

regardless of the precise parameters in Eq. 8.1.

The model in Eq. 8.1 does not include absorption from interaction-induced

level shifts, which may occur when Vx(r - r') exceeds the linewidth of the EIT

linewidth Q2/F. Absorption will occur when polaritons are within the blockade ra-

dius, rb = (2FC 3/Q2) 1/3 . The blockade radius is related to the hopping radius by

rs = V/ODb/2rb. Importantly, if ODb > 2, then rs > rb, which allows the exchange

interaction to take place before the polaritons are sufficiently close to experience ab-

sorption. Experimentally, the minimum transmission measured in Fig. 8-5(b) occurs

at ODb ~ 2, beyond which the transmission indeed steadily increases. This analysis

validates the use of Eq. 8.1 in the high-density limit ODb > 1. A more detailed

calculation shows that the photon loss decreases asymptotically as ODb-3/ 2 while the
O~b

phase difference from ir/2 decreases as e-ODb. This scaling is more favourable than

that corresponding to off-resonant Rydberg blockade. With off-resonant Rydberg

blockade, interaction with a stored photon (or between two counter-propagating pho-

tons) results in a phase o - ODB, with a transmission eOD ()2 [84]. For a
W2

given phase, the transmission scales as e O- , and therefore the loss scales

as OD-.

Additionally, we perform similar experiments with the state JP) replaced by

197SI/ 2) or 199S 1/2). In contrast to 199P3/2, mF 3/2), 97S1 /2) interacts with IS)

with (almost) pure blockade, while 199S 1/2) leads to competing blockade and ex-

change. The strengths of the interactions and the characteristic length scales are

summarized in Table 8.1.
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Figure 8-4: Observation of coherent collisions between the photons under
dipolar interactions. (a) Phase of the transmitted signal field with (dark points)
and without (light points) conditioning on the detection of a retrieved gate photon.
(b) Normalized retrieval efficiency of the stored gate excitation as a function of av-
erage signal photon number (n,"). The data are fitted to an exponential decay of the

form exp[- f)], where n- 1 = 0.26(5) is the gate polariton destruction probability
per incident signal photon. These measurements are taken with an optical depth
OD=46.

C31h X60h C61h rs rb
Pair states (GHz - pum3 ) (THz . ym 6) (THz pm6) (pm) (pm)

1100S1/ 2, 1/2) + 199P3/2, 3/2) 33.4 19 12

1100S1/ 2, 1/2) + 99S1/ 2, 1/2) 48.7 65.3 12 13
1100S1/ 2, 1/2) +197S 1/ 2, 1/2) -0.6 -114 5 13

Table 8.1: Characterizations of the interactions of the pair states used in
this experiment. The hopping radius r, and blockade radius rb are calculated with
QC = 16MHz, the length of the medium L = V2-7a = Vr x 35pm and OD = 40.
06 > 0 (< 0) indicates a repulsive (attractive) interaction between the Rydberg
states. When the blockade and exchange interactions follow the same power law r-,
the hopping radius can generalized as J JgIVex(z)I dz = 1/2 -> ra = ((- >
The blockade radius can be generalized as rb -- (2F(xI + jC)/1Q2)1/a.
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Figure 8-5: Density dependence and robustness of the scattering phase.
(a) Conditioned phase shift #, over a range of atomic densities, quantified by the
total optical depth OD. Also shown on the top axis is the estimated optical depth
over one blockade radius, for a Rydberg excitation at the centre of the cloud. (b)
Joint probability of the signal and gate photons being transmitted, relative to their
independent transmission without interactions: T, = (nng) The lines show the

result of a numerical simulation of the storage, interaction and retrieval stages of the
experiment, including experimental non-idealities such as dephasing from Rydberg-
ground-state collisions. The confidence bands reflect the contribution of random
atomic positions to the numerical simulations. The density-dependent shifts [51] of
the Rydberg states lead to random local two-photon detunings. The insets show the
results of similar experiments at high optical depths (OD= 55), with the state IP)
replaced by 197S1/2) or 199S1/ 2). These two states have weaker or absent dipole-dipole
interactions with IS), respectively.
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8.4 Collisions between photons in two spatial modes

We demonstrate that the long-range nature of the interaction allows photons to hop

between separated transverse optical modes. We repeat the experimental sequence

in Fig. 8-3, but with the gate and signal fields incident in distinct transverse spatial

modes (Fig. 8-6(a)). Intensity cross-correlation measurements between the transmit-

ted light in the two modes (Fig. 8-6(b)) reveal anti-correlations between signal and

gate photons exiting in their incident modes (g( - 0.18) and positive correlations

between signal and gate photons exiting in swapped modes (gs2 = 5.8). Together,

these show that the interaction causes pairs of photons to hop between modes in the

atomic cloud, such that the signal exits in the mode in which the gate was incident,

and vice versa.

Further measurement is performed to estimate the probability of photons hopping

between spatially separated modes. This involves alternating between the pulse se-

quence shown in (Fig. 8-6 and pink shaded area in Fig. 8-7) and another sequence

where the signal pulse is sent after the gate pulse is retrieved (grey shaded area in

Fig. 8-7). In the latter sequence, the signal and gate fields experience the same loss,

but do not interact with each other as they are never present in the cloud at the same

time. The difference between these measurements allows the influence of interactions

to be isolated. Figure 8-8(a) shows the measured pulse shapes at each detector. The

gate (signal) pulse is incident in mode A (B). The majority of the light in the "wrong"

detector (e.g., signal light in detector A) results from a slight mixing of the modes at

the detectors (approximately 10%), since the modes are not perfectly orthogonal. To

see the role of interactions above this background, we look at photon pair events as

shown in Fig. 8-8(b). Without interactions, approximately 1.7% of all transmitted

pairs are in swapped modes. With interactions, 58% of pairs exit in swapped modes,

although the overall transmission is much lower. In analogy to T, defined in Fig. 8-5,

we isolate the role of interactions over single-particle loss by computing the ratio of

the number of pairs exiting in swapped modes (with interactions) to the total number

of transmitted pairs in the absence of interactions. This yields 9%, which we take as
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Detector B

Detector A

b

1 -trep 1 .5-trep
Si

-1

0.5 1 1.5 2
gnal photon arrival time (p

- -

1+trep 1.5+trep
s)

Figure 8-6: Polariton exchange between separated transverse modes. (a)
The gate and signal pulses are now incident in distinct transverse spatial modes A
and B, respectively, separated by 1.2w = 5.4pm. The control beam addresses both
modes. (b) The intensity cross-correlation between signal and gate photons exiting
in their incident modes (red points, g2 ) and in swapped modes (blue points, g ()

shows that polaritons switch modes in the cloud. g(2 )(t) = ,n(t)nA) where n B(t)

denotes the number of signal photons detected at time t in mode B, and n is the
total number of gate photons detected in mode A. The definition for gsw (t) is the
same, with the modes A and B reversed. The correlations are absent for photons
separated by the repetition time of the pulse sequence trep. These measurements are
taken with an optical depth OD=41.
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an estimate of the probability for a photon pair to switch modes as a result of the

interaction. This value is significantly lower than T, reported in Fig. 8-5 for photons

in the same mode. We attribute this to increased separation between the photons,

as well as losses resulting from multiple signal and gate photons being present during

the same pulse, since this measurement was performed with (n ") ( 1.

Mode A (gate)

Mode B (signal)

0 trep 2 trep

Figure 8-7: The experimental sequence of the photon hopping probability
measurement. Here, only the probe pulses are shown. The control beam and the
microwave sequences are the same as in Fig. 8-3(b), and are omitted. The control
experiment representing the scenario without the interaction is shaded in grey.
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[OAnn b

165
231
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Figure 8-8: Pulse shapes and detected pairs. (a) Pulse shapes measured by the
detectors with the interaction (pink shaded area in Fig. 8-7 and Fig. 8-6). The full
data record is averaged to produce these curves. (b) Photon pair detection events.
The parallel (crossed) arrows denote the number of signal and gate pairs detected in
their incident (swapped) modes. The left two bars show the result of the alternate
pulse sequence without interactions, while the right two bars show the result of the
pulse sequence in (a), where interactions are expected to be present. From left to
right, the y-axis values are 2499, 42, 165, and 231.
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8.5 Summary and outlook

To conclude, we conduct series of experiments where a propagating photon collides

with a stored photon. The exchange interaction that has rarely been explored pre-

viously manifests itself as high transmission of the propagating photon in the dissi-

pative regime, high retrieval efficiency compared with similar experiments based on

blockade interaction [22], and above all a robust conditional -r/2 phase shift. We

demonstrate the competing effects of the exchange and blockade interaction by re-

peating the experiments with different Rydberg states. In case of dominant blockade,

the propagating photon exhibits no measurable phase shift, and the joint transmis-

sion is greatly reduced. Further, the long range nature of the interaction is verified

by a similar experiment with the propagating photon and the stored photon in two

different spatial modes.

Our results open up new possibilities for realizing robust quantum gates and many-

body phenomena with strongly interacting photons. A modest extension of this work

should allow for a controlled 7r phase shift quantum gate between two photons, by

using microwave control to pass the polaritons through each other a second time be-

fore they exit the cloud. The demonstrated interaction between polaritons is also a

powerful tool for studying the quantum many-body dynamics of photons. In partic-

ular, the symmetries that result in the robust phase shifts observed in this work are

identical to those that result in Majorana fermions in one-dimensional wires, which

are expected to feature similarly robust phase shifts under braiding operations. Al-

though the present two-particle scattering process has important distinctions, in that

the low-energy mode is not protected by an energy gap, the latter could potentially be

engineered (for example, via polariton interactions). Likewise, extensions along the

lines of recent proposals [106,107] could be explored to realize topological photonic

systems.
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Chapter 9

Summary and Outlook

We demonstrate strong nonlinear interactions between propagating photons both in

the dissipative and dispersive regimes. In the latter regime, we observe two- and three-

photon bound states by measuring the correlation functions and conditional phase of

the outgoing photons. Besides, the van der Waals level shifting interaction that have

been widely explored in recent years, we also study the exchange interactions between

a propagating and a stored photon. A robust 7r/2 phase shift is observed under the

exchange interaction dictated by a symmetry of the Hamiltonian.

Strongly interacting photons generally find application in quantum information

[108]. Optical photons are promising flying qubits and important parts of hybrid

systems [109,110] in the effort of scaling up. And quantum nonlinearity is an indis-

pensable part of deterministic photonic quantum logic. In particular, our work on

the symmetry-protected collisions with exchange interactions sheds light on realizing

topologically encoded qubits-a crucial recent development in quantum computation.

In topological quantum computing, the information is stored in a non-local manner,

and is therefore intrinsically robust against interactions with the environment and

details of operations. Topological quantum computation takes advantage of a quasi-

particle called non-Abelian anyon, which arises in a system with degenerate ground

states that are separated from the excited part of the energy spectrum. Exchanging

two identical non-Abelian anyons results in a unitary rotation of the wavefunction

into a different ground state, instead of simply picking up a phase as for fermions,
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bosons and Abelian anyons. A set of the spacetime trajectories of the anyons that

can smoothly deform to each other without cutting is called a "braid". The universal

gates are implemented by braiding (see Fig. 9-1 for examples of braiding). Strong

indications of the existence of a simplest non-Abelian anyon called the Majorana zero

mode or Majorana bound state [111,112] have been observed but braiding has yet to

be achieved.

(a) (b)

time time

(C)

qubit

qubit

Figure 9-1: Examples of braiding. Anyons exist in lower dimensions where rotating
clockwise and counter-clockwise are not topologically equivalent. In other words, a
trajectory, also called worldline, being above or below another forms different braids,
as in (a) and (b). (c) shows an example of manipulation of the MZM pair qubits.
In the end, the states of the qubits are measured, and the outcome only depends
on the topology (braid), not the exact trajectory. Therefore, topological quantum
computation is immune to small perturbations.

In addition, the experimental success in realizing quantum nonlinearity has sparked

a lot of interest into many-body problems of photonic matter-strongly interacting

massive photons [113]. This represents a remarkable new venue for quantum nonlin-

ear optics. It can be used to simulate, for example, strongly interacting condensed
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matter systems. However, it has a number of unique aspects when compared with

condensed matter systems or other quantum simulators such as ultracold atoms in

optical lattices: They are intrinsically driven and open. Light must be injected and

can leak out. They are generally not coupled to a thermal bath. The correlations,

phase transitions and the non-equilibrium quantum dynamics of strongly interacting

photons have yet to be studied.
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Appendix A

Useful circuits

A.1 Avalanche photodectors

We use Si avalanche photodiodes from Hamamatsu (S3884).

A.1.1 DC coupled avalanche photodector

The circuit of the DC coupled avlanche photodector features two stages: (1) the

current signal is tranformed into the voltage signal; (2) the voltage signal is amplified.

R1, R2 and R3 can be changed to optimize the gain and bandwidth as needed. For

the set of values shown in Fig. A-1, the measured bandwidth is 20MHz (Fig. A-2).

A.1.2 AC coupled avalanche photodector

To increase the bandwidth of the APDs we use commercial RF-amplifiers instead of

our self-built amplification boards. The APDs still need to biased with a high DC

voltage (~130V), which can be done in various ways (Fig. A-3):

1. The simplest solution is to couple a positive bias voltage via a bias-Tee on the

cathode side of the APD. This can be done with commercial bias-tees or a

simple HV-compatible components. In this case, the same positive HV sources

that we use for the amplified APDs can be used.
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Figure A-1: DC coupled Avalanche photodector.
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Figure A-2: The tranfer function of the DC coupled Avalanche photodector.
The top line is the gain, the bottom phase.
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2. Due to the way the APDs are made, the cathode side has a higher residual

capacitance. To gain extra bandwidth, the AC output to the amplifier should

be on the anode side. This can be done by simply turning the diode around

and biasing with negative voltage on the anode side with the same bias-tee.

3. Instead of a bias tee, one can apply the DC bias on the cathode side and get

the AC output from the anode side. Again, HV-capable resistor and capacitor

must be used. On the output side, the capacitor should be chosen with the

impedance of the amplifier in mind.

We currently use the scheme as shown in Fig. A-3(1) with a bias tee from Pi-

cosecond Pulse Labs (Model 5530B-104) and low noise amplifiers from Mini-Circuits

(ZFL-500LN). The measured bandwidth is above 100MHz (Fig. A-4).

DC bias
input (pos. V)

APD

p(H 1 AAC output
to amplifier

DC bias
input (neg. V)

APD

(2) AC output
to amplifier

(3) APD
DC bias
input -4AC output
(pos. V) 2 ..n L k to amplifier

Figure A-3: Various ways to bias APD.

A.2 Bipolar bias coil controllers

The sketch of the bias coils is shown in Fig. A-5. Initially, all the coils have - 100

turns and are 5ohm each (including wires). The resulting magnetic field is 2.1, 1.7

and 4.3 Gauss/A for x, y and z directions, respectively. Ideally, we would like to put
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Figure A-4: The transfer function of the AC coupled avalanche
including an amplifier from Mini-Circuits (ZFL-500LN). The
gain, the bottom phase.

photodector
top line is the
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the coil pair in series so that the same current runs through the pair. On the other

hand, as the output voltage (Fig. A-6) is capped below 12V (maximum gate voltage

15V minus the gate-source threshold voltage of the MOSFETs 3V), the maximum

current on a ~ 10ohm load is ~ 1A. This is not quite enough for us. Therefore, all the

six coils are controlled independently. Before the experiment in Chap. 7, we re-wired

the x bias coils with thicker wires, resulting in a -1ohm resistance. Additionally, a

small coil with 50 turns is added. These changes allow us to apply a much larger

magnetic field along the quantization axis.

On top of the current feedback, the circuit includes a positive voltage feedback.

It takes care of the increasing resistance of the coil as the temperature increases.

Last, big capacitors (X1-1,2,3 in Fig. A-6) are added to the power supply of the

MOSFET. Without those capacitors, the MOSFETs could be damaged when the

circuit is powered on/off.

X Z
x

diecio ... ... ......

Figure A-5: The sketch of the bias coils around the vacuum chamber. There

are two z coils, above and below the chamber, not drawn here. The coils are high-

lighted in orange.
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Figure A-6: The schematic of the bipolar bias coil controllers.
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A.3 AOM drivers

AOMs are crucial in our experiments as they switch and adjust the intensity of all

the optical beams. The schematic of the home-built drivers are shown in Fig A-7.

-

switch A: analog
switch 8: TTL int/

Agilent 33500B switch B
waveform generator Red components

are outside the box.

1

2 sum
control s00

TT wth terminator

pulse shaping t switchA

3-way splitter
(other 2 arms 1! potentiometer
are identical) 

PART NUMBERS

3-way splitter: Mini-C ZFSC-3-1-S-B

control int/ext attenuator: Mini-C ZMAS-3-BR

ext TL switch: Mini-C ZASWA-2-50DR+
amplifier: Mini-C ZHL-3A-S
combiner: Mini-c ZFRSC-42-S+
transistor: 2n-2222a

frequency source: temperature compensated crystal oscillator
LM11TCS 80.000M H z

Figure A-7: The schematic of the AOM drivers. A transistor is added in the
analog input arm to avoid the attenuator drawing too much current from the control
voltage source (analog channel). The frequency source is replaced with a direct dig-
ital synthesizer (DDS) AD9958 whenever a different frequency other than 80MHz is
needed. The maximum power output is 1W. When more power is required (such as
driving the AOM in the dipole trap beams), more powerful amplifiers (ZHL-1-2W-S)
are used. The parts in the green box are used for pulse shaping, particularly useful
for the probe light.

A.4 Laser lockbox

Figure A-8 shows the schematic of our home-built laser servo controller. This type

of lockbox is used to lock virtually all our lasers, as well as the transfer cavity, in the

lab.

The schematics shown in Figs. A-9 and A-10 are used to lock the MOT cooling

laser and the repumper laser, respectively.
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Appendix B

Rydberg pair interactions

The Rydberg pair interactions in this thesis are generated by a MATLAB program

first written by Ofer Firstenberg and then further developed by Jeff D. Thompson.

Alternatively, one can use the free software provided by the authors of the tutorial

Ref. [114]. Here, I highlight the key steps about how the parameters are set and how

the calculations are done.

The calculation is done with zero fields and zero angle (0 = 0 in Fig. B-1) between

the quantization axis and the internuclear separation vector R. Assuming the two

atomic states in the initial pair state are Inil1 jimi) and In212 j2m 2), where n is the

principal quantum number, 1 is the orbital angular momentum quantum number,

and j and m are the quantum numbers for total electron angular momentum and

its component along the quantization axis, respectively. In order for an atomic state

lnljm) to be included, it has to satisfy the following conditions:

1. min(ni, n2) - 5 < n < max(ni, n2) + 5, where min (max) denotes the smallest

(largest) number among those in the following parenthesis.

2. l < max(11 , 12 )+3

Finally, the pair states whose energy is outside the 1GHz window centered

around the initial pair state (at the double-atom dissociation limit) are excluded.
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We then write the Hamiltonian in the basis formed by all the included pair states.

H = HO+ Hint (B.1)

where HO includes the energies of the pair states (at the double-atom dissociation

limit) and shifts in external fields,. and Hint = (-3 (n is a unit vector

in the direction of R) is the dipole-dipole coupling between the pair states. Hint is

decomposed in the Cartesian coordinates as in Ref. [115]. The radial dipole matrix

elements for nili -+ n212 = 1 1 transistions are calculated by analytical formulae

adapted from refs. [116,117]:

5

R "21= (-1),"n_ c D, (ec, s) (B.2)

An = (n2 - ni) -(12 - li) + 1 + M (B.3)

(n *)-2 - (n*)-2 (n*)-2 + (n*)- 2 -3/2 -mn = [_ (n2 - n*)](B42 21

where [] denotes the nearest integer and n* = ni - 6 is the effective principal quantum

number of the i = 1, 2 state (61 is the quantum defect).

((n*)-2 (n*)-2)/2) (B.5)

s rn-1- n* - n* (B.6)

11+ 12 + 1 (B.7)

c = I / -r/2 (B.8)

D,(ec, s) = Dp(ec, s) + 1e" sin(7rs) (B.9)
11s

Dp(ec, s) = (-J'(-eCs) (12 - 17 (JS(-ecs) - ))/s (B.10)
ic 7S
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where J and J' denote the Bessel function and its derivative.

9

At

Atom 1

0
Atom 2

Figure B-1: Illustration of two interacting Rydberg atoms. P1 and P2 denote
the individual electric dipole moments that are aligned with the quantization axis z.
R is the internulcear separation of the two atoms and it has a angle 0 relative to the
quantization axis.

The Hamiltonian H is diagonalized and the eigenvector that has the maximum

overlap with the double-atom state we are interested in is plotted.
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Appendix C

Data analysis for the conditional

three-photon phase

The correlation functions and the conditional phases are calculated with a MATLAB

program. The two analyses have a lot in common. Although I will focus on the

conditional phase analysis, information of both analyses will be presented to help

people who are interested in doing similar analysis or further developing the MATLAB

program.

The raw data contains a list of photons. Each is tagged with the cycle number, the

gate number, the detector number and the time of arrival relative to the beginning of

the gate. "Cycle" refers to the experimental cycle that starts with loading the MOT

and finishes with the EIT experiment. Within each cycle, the SPCM can be turned

on and off many times, and each time is considered a "gate". Whenever, they are

turned on, a TTL pulse is generated (the same as the ones caused by real photons)

and its arrival time at the counter is considered as "time" zero for that "gate". The

counter has four channels, and each SPCM is connected to its own channel. The

channel ("detector") number is also registered for each photon.

First, I check the total photons per cycle as a function of the cycle number and

remove erroneous data if necessary. Monitoring this in real time also helps us identify

problems while taking data. For example, if the repumper laser gets unlocked at

some point, there will be very few atoms and a lot more photons will be detected. In
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that case, we will see a sudden increase in the total photons per cycle. We can then

remove all the data after the jump, relock the laser and continue the measurement.

After the post-selection, the selected data are used to plot the pulse shape-photon

number as a function of time relative to the beginning of the gates. This is where

we extract the count rates and total counts within a given time window (for each

channel). For the conditional phase measurements, channel 3 has both the probe and

LO, while channel 1&2 only have the probe.

Next, I find the phase drift information from channel 3 data. The data is divided

by - 10ms segments. For example, if a measurement contains a total of 2 cycles,

and each cycle has a total measurement duration 120ms (time elapse between the

first and last probe pulses in the cycle including the time when the dipole trap is on

and probe is off), then there are in total 120,2 = 24 segments for this data set. The

duration of segments is adjusted for each data set to optimize the visibility. Within

each segment, all photons from channel 3 are collected to draw a histogram as a

function of the remainder of "time" divided by the oscillation period. The histogram

is fitted with the function: A + B cos(27rfot + #o), where fo is the nominal oscillation

frequency 79MHz and B is restricted to be positive. Some examples of 0 fitting are

shown in Fig. C-1. The After wrapped into [-ir,r], a list of 0 tagged with the cycle

number and segment is saved.

With this list, I go through all the photons from channel 3 again. This time,

each "time" is corrected by qo/(27rfo) with #o from the same segment. With this

correction, photons from different segments can be plotted in the same histogram,

because the drift is already taken care of. Now, we can group data by "time" with a

bin size, say 0.25ps. Within each bin, we can draw a histogram and fit and phase 0'.

If the oscillation frequency is exact, then 0' is expected to be constantly zero. On the

other hand, if the true oscillation frequency f is not exactly the nominal frequency

fo, then #' will be linear with time and f can be extracted from the slope (Fig. C-2).

Once f is determined, I use the new f to determine the phase drift and generate the

new 0 list.

Then I generate the list of photon "pairs" for the conditional two-photon phase.
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Figure C-1: Examples of #o fitting from cycle 1, 501, 1001 and 1501 in one
data set (0 in blue and visibility in red).
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-0.2
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Figure C-2: Examples of #'5 fitting (Left: with oscillation frequency 79MHz.
Right: with oscillation frequency 79.012MHz). The blue data are the fitted 0'0
from the histograms and the red line is a linear fit. For this data set, the oscillation
frequency is determined to be 79.012MHz by minimizing the slope. The fitted oscil-
lation frequency is not the same for different data sets. All of them are larger than
the nominal 79MHz and are different on the order of 10- 3 MHz.

Within the same gate, a channel 3 photon can be paired with either channel 1 or

channel 2 probe photons. In addition to the phase detection time (channel 3) and

probe detection time (channel 1 or 2), each pair is also tagged with phase drift cor-

rection (interpolation of 0). An example of the interpolation is shown in Fig. C-3. I

keep both the raw "time" and the phase correction because the relative time between

photons are calculated with the raw time.

1 %o conditioned phase of 2 photons

2 timediff=abs ( pairs (: ,1)-pairs (: ,2) ) ;%relative time between

the phase and probe detection

3 phi0=pairs (: ,3) ;%phase correction

4 raw-time=pairs (: ,2) ;%phase detection time

5 for ipair=1: length( time-diff)

6 if timediff ( ipair )<g2_tau-axis (end)

7 tau=ceil(time-diff(ipair)/g2_bin);%determine which

bin this pair goes to
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Figure C-3: An example of the interpolation of q 0. For photon pairs in gate
2378 in this particular cycle, the phase correction is 1.166 rad.

8 if tau== ;tau=1;end

9 cond-photon-est {tau } (iph (tau) )=mod(raw-time ( ip air )+

phiO ( ipair ) /(2*pi*oscfreq ) , oscperiod ) ;%calculate

the remainder with the phase correction for the

histogram

10 iph (tau)=iph (tau) +1;

11 end

12 end

I loop through all the photon pairs. If the relative time falls within a certain

bin tau, then that pair contributes to the cell array element cond-photon-est{tau}.

Afterwards, for each bin, a histogram is created and a phase is fitted. That phase is

labeled as 0( 2)(ti, t 2 ) - #( 1)(t), where t1 and t2 are the probe and phase measurement

time, respectively. Or if we drop the dependence of the absolute time, the phase

is #( 2 ) (T) - 0(1. The phase is referenced to its own average value when T is large

)(2, = (2) - o ) - 0(1) = (O(1) + 0()) - = 0(1). The second last step uses

the fact that when the two photons are very far apart, they cannot be correlated and

hence the two-photon phase cannot be anything other than the sum of the single-

photon phase. The final result from the two-photon conditional phase analysis is
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then 0(2 ) (- #0) - 0 = 0()(T)- 2#0). Physically, it tells us what the additional

phase the photon pair acquires compared with two uncorrelated photons.

The three-photon conditional phase is determined similarly. Each photon triplet is

tagged with two probe detection times, one phase measurement time and a phase drift

correction. For each data set, two different triplet lists are generated-one with the

two probe photons from two different detectors and the other with two probe photons

regardless of which detector they come from. The first list is used to generate 2D

three-photon phase plots, while the second list is for ID plots after I confirm the

result is statistically the same as from the first list, especially when all three photons

are close by.

For each bin, the phase fitted from the histogram is labeled as ) (ti, t 2, t3 ) -

0( 2)(ti, t 2), where t1 and t2 are probe detection times, and t3 is the phase measurement

time. This phase is referenced to three uncorrelated photons-subtract the average

value when all three photons are far from each other. 0( 3)(ti, t 2, t3 ) - ( 2 )(t1 , t2) -

ref (t t2, t3) -9(tt2) -((#N'(ti)+#N )(t2)+#N1(t3)) -(#N )(ti)+#N (t2)))=

0( 3 )(ti, t 2 , t3) - 0( 2 ) (t, t2 ) - #( 1)(t). I did not explicitly drop the absolute time de-

pendence, because there are multiple ways to define the relative times and it could be

confusing. However, none of the phases should depend on the absolute time. In most

occasions, we are interested in the three-photon phase relative to three uncorrelated

photons. Therefore, we would like to remove 02) from the directly measured three-

photon phase. The way to do this is to take the processed 0(2) (T)- 20(l) from the same

data set and add it to the three-photon phase 0( 3 )(t1 , t 2 , t3 ) - #( 2)(tI t 2 ) - #1)(t) +

(0(2)(T)-20(1)) -= (3) (t1, t2, t3) - (#1) (t)+# 0)(t2)+#0( 1)(t)), for Iti - t21 = T within

the bin size. Again, the dependence on the absolute time is put back for consistency

in the notations. The phases only depend on the relative times.

One last comment on the pairs and triplets is that all possible combinations are

included. For example, if within a gate, probe is detected at t1 and t2 , and the phase

measurements happen at t3 and t'. Then the pairs are {ti, t3 }, {t2, t3}, {t1 , t'} and

{t2, t'3}. The triplets are {t1 , t2 , t3 } and {t1 , t2, ts}. With low detection efficiency,

excluding photons will not be able to remove the "contamination" from higher photon
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number events.

The correlation functions are calculated from similar lists without the hassle of

dealing with phase corrections. g( 2)(ti, t 2 ) = , where i 7 J are all pos-

sible combinations of the detectors. Three g(2 ) curves are obtained with three de-

tectors. There is no observable difference between the three since we carefully opti-

mize the fiber coupling to the detectors before each measurement. g(3)(t1 , t 2, t3 )
(ni(ti))(n2 (W) (n3 ,(t3  wh

(n 1(t1) n2 (W2 n3 (t3 )) I were 1,2,3 refers to the three detectors.
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