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Abstract

Compositional analysis of atmospheric and laboratory aerosols is often conducted via

single-particle mass spectrometry (SPMS), an in situ and real-time analytical technique

that produces mass spectra on a single particle basis. In this study, machine learning

classification algorithms are created using a dataset of SPMS spectra to automatically

differentiate particles on the basis of chemistry and size. While clustering methods have

been used to group aerosols into broad categories based on similarity, these models do

not incorporate known aerosols labels and are not explicitly formulated for classification.

Furthermore, traditional methods often rely on a smaller set of well-known, important

variables whereas the proposed method is more general and flexible, allowing researchers

to automatically quantify and select important variables from any aerosol subset. In this

work, machine learning algorithms build a predictive model from a training set in which

the aerosol type associated with each mass spectrum is known. Several such classification

models were created to differentiate aerosol types in four broad categories: fertile soils,

mineral/metallic particles, biological, and all other aerosols using -40 common positive

and negative spectral features. For this broad categorization, machine learning resulted in

a classification accuracy of -93%. More complex models were developed to classify

aerosols into specific categories which resulted in a classification accuracy of -87%. The

trained model was then applied to a 'blind' mixture of aerosols with model agreement on

the presence of secondary organic aerosol, coated-and uncoated hbineral dust and fertile

soil. Additionally, the model is used to characterize an 'ambient atmospheric dataset

collected from the free troposphere.
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1. Introduction

The interaction of atmospheric aerosols with clouds and radiation contributes to the

uncertainty in determinations of both anthropogenic and natural climate forcing [Boucher

et al., 2013; Lohmann and Feichter, 2005]. Aerosols directly affect atmospheric radiation

by scattering and absorption of radiation from both solar and terrestrial sources. The

radiative forcing from particulates in the atmosphere depends on optical properties that

vary significantly among different aerosol types [Lesins et al., 2002]. Aerosols also

indirectly affect climate via their role in the development and maintenance of clouds

[Vogelmann et al., 2012; Lubin et al., 2006]. Ultimately, the formation, appearance, and

lifetime of clouds are sensitive to aerosol properties like shape, chemistry, and

morphology [Lohmann and Feichter, 2008]. Characterization of aerosol properties,

therefore, plays a vital role in understanding weather and climate.

The chemical composition and size of aerosols has been analyzed on a single

particle basis in situ and in real-time using single particle mass spectrometry (SPMS;

Murphy [2007]). First developed ~2 decades ago, SPMS permits the analysis of aerosol

particles in the 150 - 3000 nm size range, while differentiating internal and external

aerosol mixtures and characterizing both volatile (e.g. organics and sulfates) and

refractory (e.g. crystalline salts, elemental carbon and mineral dusts) particle components.

Particles are typically desorbed and ionized with a UV laser and resultant ions are

detected using time-of-flight mass spectrometry [Murphy, 2007]. A complete mass



4

spectrum of chemical components is produced from each analyzed aerosol particle [Coe

et al., 2006]. Despite universal detection of components found in atmospheric aerosols,

SPMS is not normally considered quantitative without specific laboratory calibration

[Cziczo et al., 2001].

Aerosols with different properties can appear similar in the context of SPMS. For

example, fly ash spectra and mineral dust contain peaks corresponding to sulfates,

phosphates, metals, and metal oxides despite different origins and emission sources

[Garimella et al., 2017]. This complicates analysis of aerosol populations because their

properties need to be well-defined in order to increase .agreement between models and

observations [Niemand et al., 2012; Hoose and Mbhler, 2012; Welti et al., 2009]. Even

minor compositional changes can be atmospherically important. As one example, mineral

dusts are known to be effective at nucleating ice clouds [Cziczo et al., 2013]. Particles in

the atmosphere undergo chemical and morphological changes as they age and eventually

contain material from several sources [Boucher et at. 2013]. Despite minor addition of

mass, aged mineral dust is less suitable for ice formation [Cziczo et al., 2013], but these

particles then act as cloud condensation nuclei and participate in warm cloud formation

[Andreae et al., 2008]. As a second example, ice nucleation in mixed-phased clouds has

been suggested to be predominantly influenced by feldspar, a single component among

the diverse mineralogy of atmospheric dust [Atkinson et al., 2013].

Here we show that supervised training and a rule-based probabilistic classification

of a decision tree ensemble can be used for differentiation of SPMS spectra. Various

clustering methods have been used to group aerosol types [Murphy et al., 2003; Gross et

al., 2008] but these algorithms are known to struggle with chemically-similar aerosols as
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they do not incorporate known particle labels in the training process. Such 'unsupervised'

clustering algorithms automatically group unlabeled data points on the basis of a

specified distance metric in feature space, in this case mass spectral features. For the

purposes of setting broad aerosol categories, which are chemically similar and easily

separable in feature space, clustering is the simpler tool and the data easier to interpret.

For identifying new or potentially unexpected atmospheric aerosols, such properties are

desirable; however, the advantages of clustering greatly diminish when considering

similar particles types that overlap in feature space. Fertile soils, for instance, are often

grouped into a single category despite different sources and atmospheric histories.

Clustering algorithms should therefore be considered as a tool to use alongside

supervised classification. The latter may be used to further explore unique aerosol types

or verify manually labeled clusters with higher precision. Furthermore, the ensemble

approach presented here also produces variable rankings and probabilistic predictions that

help address measurement uncertainty.

In this study, we demonstrate the capabilities of machine learning to automatically

differentiate particles on the basis of chemistry and size. The resulting model can capture

minor compositional differences between aerosol mass spectra. By testing predictions

using independent, or 'blind', datasets, we illustrate the feasibility of combining on-line

analysis techniques such as SPMS with machine learning to infer the behavior and origin

of aerosols in the laboratory and atmosphere.

2. Methodologies

2.1 PALMS
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The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument was

employed for these studies. PALMS has been described in detail previously [Cziczo et al.

2006]. Briefly, the instrument samples aerosol particles in the size range from -200 to

-3000 nm using an aerodynamic lens inlet into a differentially-pumped vacuum region.

Particle aerodynamic size (hereafter "deltayagtime") is acquired by measuring particle

transit time between two 532 nm continuous wave neodymium-doped yttrium aluminum

garnet (Nd:YAG) laser beams. A pulsed UV 193 nm excimer laser is used to desorb and

ionize the particles and the resulting ions are extracted using a unipolar time-of-flight

mass spectrometer. The resulting mass spectra correspond to single particles. The UV

ionization extracts both refractory and volatile components and allows analysis of all

chemical components present in atmospheric aerosol particles [Cziczo et al. 2013]. SPMS

is not normally considered quantitative since the ion abundance measured with the mass

spectrometer depends on ionization efficiency by the UV laser rather than an absolute

concentration of chemical species [Cziczo et al. 2013].

2.2 Dataset

A set of 'training data' was acquired by sampling atmospherically-relevant

aerosols. The majority of the dataset was acquired at the Karlsruhe Institute of

Technology (KIT) Aerosol Interactions and Dynamics in the Atmosphere (AIDA) facility

during Fifth Ice Nucleation workshop-part 1 (FIN01) and the remainder at the Aerosol

and Cloud Laboratory at MIT. The FINO1 workshop was an intercomparison effort of

-10 SPMS instruments, including PALMS. The training data correspond to spectra of

known particle types that were aerosolized into KIT's AIDA and an auxiliary chamber
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(NAUA) for sampling by PALMS and the other SPMSs (Table 1). The number of

training spectra acquired varied by particle type, ranging from -250 for secondary

organic aerosol (SOA) to -1500 for potassium-rich feldspar ("K-feldspar"). In total,

-50,000 spectra are considered with each spectrum containing 512 possible mass peaks

and a deltayagtime (Table 2). Additionally, the FINOl workshop included a blind

sampling period, where the NAUA chamber was filled with 3 - 4 types of unknown

aerosol at unknown concentrations for those previously sampled (i.e., for which spectra

had already been acquired).

Figure 1 illustrates the simplistic differentiation of particles using only two mass

peaks in one (negative) polarity. Mass peaks represent fractional ion abundance,

measured as a normalized total ion current. In this example, the normalized areas of

negative mass peaks 24 (C2-) and 16 (0-) are plotted. Distinct aerosol types are

differentiated by color with clusters forming in two-dimensional space. Note that spectra

of the same aerosol type form distinct clusters (e.g. Arizona Test Dust, ATD), as do

similar aerosol classes (e.g., soil dusts). Co-plotted in Figure 1 are data from the blind

experiment. Distinct clusters of spectra from the blind experiment are noticeable in

Figure 1. Described in the next section, machine learning algorithms draw "decision

boundaries" that best separate different groups of data points based on set rules. Machine

learning is not bound by the simplistic two dimensional space shown in Figure 1 and can

instead use all 512 mass peaks and deltayagtime.

2.2 Automatic Aerosol Classification

Machine-learned aerosol classification models map a continuous input vector X to

a discreet output value using a set of parameters 'learned' from the data. Figure 2



8

illustrates the mapping of a mass spectrum to vector X space. In contrast to traditional,

hard-coded, rule-based classification methods, machine learning automatically

determines parameters that partition the data set. To form X, mass spectra are converted

to dimensional vectors normalized to the total ion current (i.e., the total of all mass peaks

sum to 1 in each spectra). While 512 mass peaks are available the treatment here uses the

first -210 (i.e., hydrogen through lead). The elements of this vectorized mass spectrum

hold information about the ionization efficiency and relative abundance of chemical

species in each aerosol and serve as the variables for the machine learning model.

Machine learning is conducted in two phases: training and testing. During training,

a model is constructed and iteratively updated based on data (i.e., mass spectra) from the

training set. For this work, a set of known aerosol types sampled by PALMS was

converted to dimensional vectors. These data form the basis set for defining each aerosol

type. An ensemble of decision trees was used to then generate predictions of aerosol type.

A single decision tree is a statistical decision model that performs classification based on

a series of comparisons relating a variable Xi (in this case a normalized mass peak in X)

to a learned threshold value [Breiman, 2001]. Represented as an algorithmic tree, a binary

decision tree consists of a hierarchy of nodes where each node connects via branches to

two other nodes deeper in the tree. At each node, one of the two branches is taken based

on whether a normalized peak X, is greater or less than a threshold value. Each branch

leads to another node where a different test is performed. After a series of tests, one at

each node, a class is assigned to a given sample; this is a so-called 'leaf. Figure 2

illustrates the classification model for a single decision tree.

Each test in the tree narrows the set of reachable output leaves and thus the
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sample space of possible aerosol labels. After h tests in this study, where h ranges from

10 to 3000, the set of reachable leaves and possible labels is 1 and the decision tree

outputs that prediction. Because PALMS is unipolar - either a positive or negative mass

spectrum is produced - simultaneous generation of positive and negative spectra on a

particle-by-particle basis is not possible. Two separate classification models, one for

each polarity, are therefore generated to classify aerosols. These are hereafter referred to

as the 'positive' and 'negative classification algorithms'.

2.3 Decision Tree Ensembles

An ensemble consists of a collection of classifiers where each independently

labels a spectrum vector X. To make a final prediction of aerosol type, decision trees

within an ensemble 'vote' on a classification label. Each vote has equal weight and the

spectrum is assigned to the majority choice. Each tree within an ensemble is

independently grown on a subset of the training data so that a commonly voted label

implies a higher certainty. Adding members to an ensemble increases the robustness of a

classification model by providing alternative hypotheses and is therefore preferable to

single classifiers.

Before an ensemble method is implemented for classification, trees are

independently grown during training. A total of k trees, with k = 1000, were grown using

a bootstrap sample from the training set. In bootstrap sampling, each tree sees an

independent sample set of equal size drawn from the full training set by sampling spectra

with replacement. On average, each tree is built with ~63% of the data. The unsampled
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data, known as 'out-of-bag' observations, provide a means to assess classification error

for each tree during the training process.

Given a bootstrap sample, a binary decision tree is grown by sequentially creating

tests that maximize the separation between classes in parameter space. A test is created

by defining a comparison that minimizes the information entropy of a possible split, thus

minimizing the randomness of prediction labels [Breiman, 1996]. To generate variability

in the model, a best split is chosen among a random set of possible splits at each node on

the basis of entropy [Breiman, 2001]. After iteratively defining thresholds for each new

node, the tree grows in size until a series of tests ending at some node Sq uniquely

characterizes an aerosol as a particle type. A leaf is then appended to node Sq with the

corresponding label. In classification mode, an aerosol spectrum that passes the same tree

will undergo the same series of tests and will end in the same leaf, thus being labeled in

the same way. For the purposes of this study, each tree had ~3,300 nodes.

2.3 Dimensionality Reduction and Chemical Feature Selection

Dimensionality reduction involves representing data with fewer variables than

initially present in the dataset, in this case less than the original 512 mass peaks. In

addition to facilitating data visualization and limiting overfitting [Mjolsnes, 2001],

dimensionality reduction in the context of aerosol mass spectra points to the most

important chemical makers for differentiation. Because a majority of the 512 mass peaks

were not significant for classification, it was important to first identify variables with

predictive accuracy. Variable ranking was algorithmically determined by comparing the

performance of trees before and after removing information about peak X. The method is
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that the values of variable Xi is permuted for tree k in the out-of-bag set so that the

variable is irrelevant to the final label. The change in misclassification before and after

the permutation is calculated and then repeated for all trees so that a variable ranking is

obtained [Breimann, 2001]. Table 2 ranks mass peaks by polarity in importance using

this method. The columns at left list variable rankings (i.e., most to least important for

correct classification) for the entire set of aerosol types (labels). The columns at right list

rankings when aerosol types are grouped into broader, chemically similar, categories.

Both the specific aerosol label and broad aerosol category models were retrained using

the subset of the initial variables. The final dimensionality was determined by

sequentially adding variables in order of decreasing rank and observing classification

performance response. All variables preceding two e-foldings in classification error were

maintained in the final model.

3. Results

3.1 Confusion Matrices and Probabilistic Model Performance

A confusion matrix captures misclassification tendencies by pair-wise matching

model prediction with true aerosol labels [Powers, 2007]. Confusion matrices represent

model predictions as columns i and true aerosol labels as rowsj, where class names are

mapped to integers i , j E {1,2, ... , y}. In this study, matrices have been normalized

along each column to show the fraction of aerosols labeled asj that actually belong to i

(Figure 3). For aerosol classification, these matrices can also be interpreted as similarity

measures between particle types. Since the basis of decision tree classification is

mathematical separation of physical quantities, misclassifications result from similarity in
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mass peaks and their ion abundance between aerosol types. This is most easily visualized

as overlapping clusters in the simple two dimensional space in Figure 1.

Because the size of the set is large (~22,300), the general classification behavior

can be quantified in term of conditional probability. If Yi is the set of predicted aerosol

spectra with aerosol label i and Y is the corresponding set of true spectrum-label pairs for

labelj, then the conditional probability of assigning an aerosol to label i given a predicted

labelj is given by:

p(i j) = I Yi (1)

C is the raw confusion matrix of spectrum counts and p (i I j) is the conditional

probability distribution over all true aerosol labels i, conditioned on some model-

generated label j. To obtain matrix P, which encodes p(i I j) for all possible labeling,

columns of C are normalized with respect to the total aerosol counts for each label with

Eq. 1.

Model performance for each aerosol is summarized in the diagonal elements of P,

which represent the fraction of aerosol in colunm j labeled correctly. The classification

accuracy (a) is given by averaging diagonal elements of P. A perfect classification model

produces the identity matrix, as all data points are classified correctly 100% if the time.

For example, in the positive confusion matrix, SOA and Agar growth medium are

correctly labeled in the test set 100% of the time. Barring element truncation, all columns

of P add to 1.

Figures 3 and 4 display confusion matrices as heat maps for the full set of particle

labels and broad grouped particle categories, respectively. Broad grouped categories are

delineated in Figure 3 as fertile soil (Argentinian, Chinese, Ethiopian, Moroccan and two
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German soils), pure mineral dust and fly ash (ATD, illite NX, fly ash, Na-feldspar, K-

feldspar), other (K-feldspar with sulfuric acid (SA) and SOA coatings, soot, and SOA)

and biological (Agar growth medium, P. syringae bacteria, cellulose, Snomax, and

hazelnut pollen). Model confusion exists between fertile soils and coated/uncoated

feldspars which can be explained since soils are mineral dust mixed with organic and

other materials.

Positive mass spectra appear to hold more information with respect to

differentiating aerosols than negative. Label-wise classification accuracy for the negative

algorithm ranges from 3-5% lower. A large part of this performance discrepancy is due to

greater ability of positive spectra to differentiate coated particles within the 'other'

category.

In addition to quantifying misclassification tendencies between classes, the

confusion matrix can be redefined to show confusion for aerosols within classes

themselves. Intraclass misclassification analysis is accomplished by considering smaller

portions of C and using the same probabilistic assumptions highlighted for the full

confusion matrices to form modified probability distributions. The full confusion matrix

is partitioned into submatrices representing confusion in a specific aerosol category and

renormalized with respect to matrix columns. L is the subset of particle labels of a

broader set of aerosols. Integrating the full conditional probability distribution over

labels that are impossible to observe gives the probability distribution over members of

L:

_C(i E L,] e L)
PI(i,j) = p(i E LI] E L) = Ci ELC, GL) (2)

LIaC WJ E L)
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For example, to determine P ( iI j) for fertile soils, a submatrix is formed by

collecting spectrum counts in the first 6 rows and columns of the full confusion matrix

(Figure 3). Column normalization is then applied to derive a probability distribution over

labels in the fertile soil category, conditioned on the aerosol actually being a fertile soil.

This analysis is repeated over all categories in both models. Finally, the relative

performance of both models is isolated and considered with respect to each specific

aerosol category.

The precision score [Powers, 2007] captures the classification behavior for some

subset of aerosol L by averaging fractions of correctly classified aerosols for labels

within that category:

Precision Score(L)= P( i E Lj E L) (3)

When applied to P1, the precision score captures classification performance on a

population with only aerosol labels contained in L. The algorithm is expected to correctly

label an aerosol in such a population with a probability equal to the precision score. The

precision score is valuable when using the classification model as a particle screener,

producing probability distributions over a subset of aerosol labels of interest. The

confusion characteristics are shown in Table 3 for each category in terms of the precision

score and the mean and standard deviation of misclassification within each category.

Although both models perform similarly for biological spectra, discrepancies of 2-5%

appear in the remaining categories. For regimes consisting of only mineral/metallic or

other particles, the positive algorithm shows intraclass performance advantages in terms

of the precision score, but most notably in terms of fewer mislabeling of mineral/metallic

particles. The largest precision discrepancy is observed for fertile soils, where the
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positive ion algorithm has a 5% advantage in precision with approximately half the false

labeling rate.

3.2 Characterization of Blind Data

As part of the FINO1 workshop, 3 - 4 aerosol types from Table 1 were aerosolized

into the NAUA chamber. PALMS, one member of this blind intercomparison effort,

collected ~25,000 spectra.

The presence or absence of particle types in the blind set was initially diagnosed

by choosing particles predicted at or above the 1% level. We note here that this step was

based on the knowledge that (1) a distinct set of particles would be placed in the chamber

and (2) particles present at or below the 1% level were most likely contamination. We

further note that this step is unique to a blind study and would not be applicable to the

atmosphere. Normalized confusion matrices were redefined for the aerosols in the

population (i.e., those above the 1% level), which forms the labels of set L in Eq. 2.

Finally, particle counts are re-computed by reassigning particle labels based on the

modified confusion matrix. For each particle label j, a fraction n' = P( i I j) of particles

labeled as j are reassigned to i. This probabilistic correction accounts for aerosol

mislabeling tendencies observed during testing, producing statistics that better represent

the underlying aerosol population. The expected fraction of particles belonging to label i

(denoted nii) is given by:

w < ning l b P( i t j ) Inpi (4)

where n is a set containing all blind spectra and n; is the set of particles labeled as j.
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Figure 5 illustrates the results after this step, where the bottom charts show

corrected fractional percentages for each aerosol category. Because SOA was nearly

always labeled correctly (Figure 3), the remaining aerosols are considered separately

using the full set of candidate aerosol labels. Both positive and negative models arrived at

similar results, with inconsistencies primarily associated with the presence of trace fertile

soils and mineral dust / fly ash particles. The positive algorithm identifies -2-4% of the

AIDA population as each Argentinean soil, German soil, ATD, and cellulose whereas the

frequency of these aerosols was too low to consider in the negative. Alternatively, the

negative model estimates Na-Feldspar at -8% of the total population, a label not

identified by the positive algorithm. This discrepancy can be explained by the 1%

selection criterion for aerosols present in the population. Fertile soils, ATD, and cellulose

frequently accumulate error along rows in the full positive confusion matrix, indicating

frequent confusion with other categories (Figure 3). Furthermore, with the observed

misclassification rates ranging ~1-4%, it is expected that these aerosol labels are false

positives. The negative model offers an alternative hypothesis, suggesting these

miscellaneous aerosols are Na-feldspar. Since there is significant model agreement on the

percentages of SOA, K-Feldspar, and coated feldspars, this part of the blind mixture

population (-90%) can be characterized with most certainty. For the disputed aerosol

labels, more credence is lent to the negative classification algorithm on the basis of

improved precision for fertile soils.

The aerosols reported in the blind mixture were soot, K-Feldspar, and SOA.

Because the soot aerosols were below the cutoff diameter for PALMS, they were not

measured by the instrument above the 1% level and therefore were not considered by the
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model. Both algorithms robustly labeled SOA with large agreement, consistent with the

100% accuracy observed in the test set. Furthermore, SOA coated K-Feldspar (from

coagulation) was correctly identified. While both models incorrectly identified fertile

soils, these results are largely consistent with the known uncertainties highlighted by the

confusion matrices discussed previously. Given the presence of K-Feldspar, some

confusion with fertile soils, SA coated Feldspar, and Na-Feldspar is expected (Figure 3).

As discussed previously [Gallavardin et al., 2008], AIDA and NAUA backgrounds are

not completely particle-free. During FIN01 study, contamination particles from previous

test aerosol were frequently observed as background and they could be the origin of some

particles matching fertile soil chemistry.

3.2 Characterization of FINO3 Data

FINO3 -the latest phase of the FIN campaign - establishes an intercomparison of

sampling methods for ice nucleating particles collected from the atmosphere. The FINO3

dataset used for this study consists of -26,000 negative spectra of aerosols sampled

directly from the ambient troposphere at Storm Peak Observatory in Steamboat, Co

during September, 2015. Unlike the FIN01 experiment, FINO3 contains numerous

particles that are absent from the training set, so care is taken to select for ambient

particles that fall into regions of the subspace that were trained on. The training set

should contain roughly 10% of the atmospheric aerosol types in FIN 03, and any aerosol

type not trained on will just be labeled as a known aerosol.

To account for this, a two-dimensional probability density is estimated for the

training data in a space defined by area 16 ( 0- ) and area 24 (C2-). This is done using

Kernel density estimation - a machine learning method that approximates a
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multidimensional probability density function based on data in a non-parametric manner.

The bandwidth hyperparameter, which sets the scale for smoothing and regularizes the

final distribution, does not significantly affect predictions around the values chosen. For

the purposes of this study, this was chosen to be 0.079 for Peak 16 and 0.1210 for Peak

24. Once defined, the probability density of belonging to the training set is defined as a

non-linear function of area 16 and area 24. To filter FINO3 data, a fixed probability

density threshold of 0.3 is selected, defining a 2D contour that may be used for screening.

This contour contains ~80% of the original training data and filters out 84% of the

original FIN 03 data. Figure 6 shows several probability density contours along with the

training data used for fitting the function

Because of the uncertainties involved, the negative model is used with broad,

four-category classification. FINO3 samples that have a probability density > 0.3 are

selected for, classified, and shown in figure 7 as a pie chart. While the model identifies

significant amounts of fertile soil, mineral/metallic, and other particles, biologicals made

up less than 1% of the identified aerosols. It is here noted that because of the subspace

selection problem described previously, percentage calculations are expected to be less

robust and more qualitative than for FIN 01. Unidentified FINO3 particles are likely

organics, sulfates, and nitrates, which are among the aerosol types not considered in this

study.
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4. Conclusions and Future Work

The machine learning approach described here allows for differentiation of

aerosols within a SPMS dataset, augmenting existing tools and reducing the need for a

qualitative comparison between mass spectra. This study lays out a framework for

training and implementing an ensemble classification model and interpreting results in

the context of laboratory and atmospheric aerosol populations. Across a representative

sample of possible aerosol types, the behavior of each algorithm predictably allows users

to infer the presence or absence of specific aerosols and quantify aerosol abundance.

Machine learning is automated and the output of the model must then be informed by

human knowledge of aerosol chemistry. Machine learning should therefore be considered

as an additional tool to interpret mass spectra to better distinguish aerosols with unique

properties in terms of atmospheric chemistry, biogenic cycles, and population health.

The ensemble decision tree classification framework described here may be

generalized to any instrument, or set of instruments, capable of collecting physical and

chemical information that distinguishes particles. Although the method described here is

applied to a stand-alone SPMS and tested with a set of 'blind' data, ancillary laboratory

or field data can be integrated to expand the data set. The success of these algorithms is

data-dependent, where better performance is expected for instruments that provide more,

and more quantitative, analysis of the aerosol properties. Although the algorithms

implemented in this study were primarily used to categorize SOA, mineral dust, fertile

soil and biological aerosols, these models can adopt an arbitrary large set of aerosol data.
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5. Table and Figure Captions

Table 1: Characterization of aerosol training set.

Table 2: Ensemble chemical features rankings for all particle labels and between broad

aerosol categories in positive and negative ion modes.

Table 3. Intraclass model performance metrics for each aerosol category and ion mode.

Rows characterize classification on a population consisting entirely of aerosols within

that category. Left: Average classification accuracy within each category, where 1.0 =

100% precision (Powers, 2007) Right: mean and standard deviations of misclassification

within each category.

Figure 1: Aerosol training data plotted as factor area 16 ( 0- ) verses area 24 (C2-). Axes

represent normalized mass-to-charge peak areas obtained from PALMS. Note closing of

aerosol types. Co-plotted are ~500 randomly drawn spectra from the AIDA blind

experiment, which was known to contain a subset of the training data types.

Figure 2. Schematic of decision tree classification for a single aerosol spectrum. From

left to right, mass spectra are normalized with respect to total ion current, forming the

elements of a normalized vector X. A trained decision tree then applies a series of tests to
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a discreet number of peaks in order to arrive at a categorical aerosol prediction.

Figure 3. Column-normalized confusion matrices (P) showing fraction of aerosols labeled

as j that belong to i, where i, j are row and column indices, respectively. Confusion

matrices are computed with out-of-bag test examples, and for the purpose of this study

are used to compute conditional probability distributions given model generated labels j.

Aerosol labels are grouped into the follow broad categories: fertile soil, mineral/metallic,

biological, and other. For all labels, A+= 88% and A- = 86%.

Figure 4. Column-normalized confusion matrices for broad categorization of aerosols (PI).

Classification accuracy, or the average probability of a correct aerosol prediction across

all labels, is computed by averaging diagonal elements of Pl. For all categories,

A+= 94% and A- = 92%.

Figure 5. Maximum likelihood model predictions of ~5000 aerosols sampled from the

AIDA FINOl blind mixture. Bottom: broad aerosol categories. Top: breakout of non-

SOA labels above the 1% level.

Figure 6. Aerosol training data plotted as factor area 16 ( 0- ) verses area 24 (C2-) with

aerosols grouped by category. Also shown are several contours from a probability density

function fit on the training data using kernel density estimation.

Figure 7. Pie chart based on classification of negative FIN 03 data with a probability

density > 0.3. The model identified mostly mineral/metallic particles and fertile soils,

with smaller amounts of the other category and trace amounts of biologicals (< 1%).

Unidentified FINO3 particles are likely organics, sulfates, and nitrates, which are among
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the common, atmospherically-relevant cloud condensation nuclei not included in the

model.



Aerosol Description and/or supplier Generation Location Reference

type method of
sampling

Argentina Soil dust collected in La Pampa province, Dry-dispersed KIT (Steinke et al., 2016)

Argentina
China Soil collected from Xilingele steppe, Dry-dispersed KIT (Steinke et al., 2016)

China/Inner Mongolia
Ethiopian Soil collected in Lake Shala National Park, Dry-dispersed KIT N/A

Ethiopia (collection coordinates: 7.5 N,
38.7 E)

German Arable soil collected near Karlsruhe, Dry-dispersed KIT (Steinke et al., 2016)
Germany

Moroccan Soil collected in a rock desert in Morocco Dry-dispersed KIT N/A
(collection coordinates: 33.2 N, 2.0 W)

Paulinenaue Arable soil collected in Northern Dry-dispersed KIT (Steinke et al., 2016)
Germany (Brandenburg)

ATD Arizona Test Dust, Powder Technology, Dry-dispersed MIT N/A
Inc. (Arden Hills, MN)

Illite Illite NX (Arginotec, Germany) Dry-dispersed KIT (Hiranuma et al., 2015a)

Fly ash Four samples of fly ash from U.S. power Dry-dispersed MIT (Garimella, 2016;
plants: J. Robert Welsh Power Plant Zawadowicz et al., 2016)
(Mount Pleasant, TX), Joppa Power
Station (Joppa, IL), Clifty Creek Power
Plant (Madison, IN) and Miami Fort
Generating Station (Miami Fort, OH) (Fly
Ash Direct, Cincinnati, OH)

Na-Feldspar Sodium and calcium-rich feldspar, Dry-dispersed KIT (Peckhaus et al., 2016)

samples provided by Institute of Applied
Geosciences, Technical University of
Darmstadt (Germany) and University of
Leeds (UK)

K-Feldspar Potassium-rich feldspar, samples Dry-dispersed KIT (Peckhaus et al., 2016)

provided by Institute of Applied
Geosciences, Technical University of
Darmstadt (Germany) and University of
Leeds (UK)

Agar Agar growth medium for bacteria, Wet-generated KIT N/A
Pseudomonas Agar Base (CM0559, Oxoid
Microbiology Products, Hampshire, UK)

Bacteria Two different cultures of Pseudomonas Cultures grown KIT (Zawadowicz et al., 2016)
syringae. on the agar

growth medium
(as above),
suspended in
nanopure water
and wet-

generated



Cellulose Microcrystalline and fibrous cellulose Wet-generated KIT (Hiranuma et al., 2015b)
(Sigma Aldrich, St. Louis, MO)

Hazelnut Natural hazelnut pollen (GREER, Lenoir, Wet-generated KIT (Zawadowicz et al., 2016)
NC) wash water

Snomax Snomax, (Snomax International, Denver, Wet-generated KIT (Zawadowicz et al., 2016)
CO) irradiated, desiccated and ground
Pseudomonas syringae

PSL Polystyrene latex spheres (Polysciences, Wet-generated MIT N/A
Inc. Warrington, PA), various sizes

Soot CAST soot miniCAST flame KIT (Henning et al., 2012)
soot generator

SOA Secondary organic aerosol Ozonolysis of a- KIT (Saathoff et al., 2003)
pinene

K-Feldspar Potassium-rich feldspar (as above) Small amounts of KIT (Saathoff et al., 2003)
cSA coated with sulfuric acid (SA). sulfuric acid were

incrementally
added to the
chamber filled
with K-feldspar to
achieve thin
coatings, as
judged from
PALMS spectra

K-Feldspar Potassium-rich feldspar (as above) Small amounts of KIT (Saathoff et al., 2003)
cSOA coated with secondary organic aerosol a-pinene were

(SOA, as above). incrementally
added to the
chamber filled
with K-feldspar to
achieve thin
coatings, as
judged from
PALMS spectra

Table 1.



Between labels Between categories

Negative Positive Negative Positive

ion label ion label ion label ion label
35 "Cl~ 23 Na4  35 35CF 23 Na4

25 C 2H~ 59 Co+ /CaF 4/ 26 CN/C 2H2~ 59 Co /CaF/ C 2H200H4

C 2H200H4

24 C2~ 39 39K 46 NO2~ 44 SiO4/COO/44 Ca/AOH4

57 C200H~ 12 C+ 1 H~ 39 K9+
59 C2H2 00H- 24 C 2+ 57 C 200H~ 28 Si4/CO

/AIO24
43 HCN~/AIO 41 41K/C 3H5  59 C 2H 200H~/AI0 2  41 K
1 H~ 204- Pb region (204Pb, 45 COOH~ 54 54F+

208 2Pb, 202Pb and
208Pb)

26 CN/C 2H2  27 Al /C 2H3
4  42 CNO/C 2H2O 56 Fe4/CaO 4

46 NO 2~ 44 SiO /COO/"Ca/Al 43 HCN/AIO~ 27 Al/C2H3
OH+

16 0~ 57 5 Fe/CaOH4/C 3H40 16 0~ 45 SiOH4/COOH+
H+

17 0H~ N/A aerodynamic 73 C 203H~/ 66 Zn+
diameter C 3H200H 3

61 Si02H /I2 83 H3SO3/C4H 200H4  63 P02- 57 Fe/CaOH4/C 3H4OH*
/C 5H~/CHO 3  -

63 P02~ 87 8 Rb/CaPO4  60 Si0 2/C~/C0 3 / 87 8 Rb 4/CaPO 4

A10 2H
19 F/H 30~ 13 CH+ 15 NH~/CH3~ 85 Rb+
76 SiO3 66 Zn+ 24 C 2~ 83 H3SO34/C 4H 200H
77 Si03H-/"SiO, 28 Si4/CO 76 SiO 3  24 C2+

79 P0 3~ 85 Rb+ 32 02~ 204- Pb region ( Pb, Pb,
208 202Pb and 211Pb)

60 SiO2~/Cs~/CO3 72 FeO4/CaO 2
4  N/A aerodynamic 40 Ca+

/ A10252H~ diameter
45 COOH- 54 54Fe+ 71 C3H200H 153 'BaO 4

N/A aerodynamic 82 ZnO+ 50 C4H 2~ N/A aerodynamic diameter
diameter

()Conitamination

Table 2.



Category Negative Postive

Fertile Soil 0.89 0.84

Mineral/Metallic 0.93 0.97
Biological 1.00 1.00

Other 0.93 0.96

Category Negative Postive

Fertile Soil 0.022 0.021 0.032 0.031
Mineral/Metallic 0.017 0.031 0.006 0.013

Biological 0.000 0.001 0.003
Other 0.025 0.075 0.010 0.029

Table 3.
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