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DISCRETE-TIME MARKOVIAMN JUMP LINEAR
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ABSTRACT

This paper i concerned with the ocptimal control of discrete-time
linear systems that possess randomly jumping parameters described by finite
state Markov processzes, For problems having quadratic cests and perfect
observations, the optimal control laws and expected cests-to-go can  be
precomputed from a set of coupled Riccati-like matrix difference equaticns.
Mecessary and sufficient conditions are derived for the existence of
aptimal constant contrvoel laws which stabilize the controlled system as the
time horizon becomes infinite, with finite optimal expected cost.
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1. Introduction and Problem Formulation

Consider the discrete-time jump linear system

Xep1 = Akirk)xk+ Bk(rk)uk, ko= ko""’N' (1)
- i = .. o
Pr{rk+l Jifk i} pk+1(1,3) £2)
where the initial state is
( Y o= { =
x(kg} XO’ rxko) rs

. . . m
Here the x-process is n-dimensional, the contrel u € R, and the form
process trk:k=kg, + « «4NY is & finite-state Markov chain taking wvalues in
M o= {1, 2, « . .y HM¥, with transiticn prebabilities pk(i,j).

The cast criteriogn to be minimized is
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The matrices Rk(j), Qy+1(j), and KT(j) are positive-cemidefinite for each i

and k. In addition, we assume that

—— ——

. ;s -
Rk(J) + B ka) pk+1£3,1)ak+1(1);

!x\ g

The role of this condition will become clear in the <cequel. MNote in
particular that (3) is satisfied if Rk(j} > 0 and Qk(j) 20 for 311 j &8 M
at all times k.,

This kind of preblem formulation can be used to represent the control
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of systems subject to abrupt phenomena cuch as component and

interconnection failures. We call this the jump linear guadratic (JLI

control problem. The continuous-time wversion of this problem was
apparently first formulated and solved by Krasovskii and Lidskii {2]. The
problem was studied later by Wonham [3]. He obtained sufficient conditions
for the existence and unigqueness of sclutions in the JLQ case, and also
derived a separation thecrem under Gaussian noise assumptions for JLO
control problems with Markovian forms and noisy x f(but perfect v}
observations. Sworder [4] obtains similar results wusing & stochastic
maximum principle and has published a number of extensions with his co-
workers, including [41 - [2]. Stogchastic minimum principle formulations
far continucus time problems inveolving Jjump process have also  been
considered by Rishel [10] Kushner [14], and others. Robinson and Sworder
[11,12] have derived the appropriate nonlinear partial differential
equation for continucus-time Jjump p3arameter systems having state and
cantrol-dependent rates., & =imilar result sppears in the work of Kushner
znd an approximation methed for the sclution of such problems has been
developed by Kushner and DiMasi [13].

Discrete-time versziomns of the JLO-contrel problem have not been
thoroughly investigated in  the literature. A special case of the x-
independent JLQ discrete-time problem is considered in Birdwell [15-171,
and the finite-time horizon x-independent problem is sclved in Blair and
Sworder [16]. Minor extencsions are discussed in [17]. In this paper we
develop necessary and sufficient conditions for the existence of steady-
state optimal contrellers for the discrete time JLQ problem. These
conditions are much more complicated than in the usual discrete-time linear

quadratic regqulator problem. Specifically, these conditions must account
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for the difference in the stability properties of the closed loop system
for different values of Ty For example, it is possible for a particular

component of X to diverge when "y takes on & particular value, if Y
takes on this walue vrarely encugh and if this component of % is
stabilized sufficiently when the system is in other structural ferms. Thus

one finds that

. stable closed-loop dynamics in each or 3ll of the structural forms
is neilther necessary nor sufficient

. stabilizability of the dynamics in each form is neither necsssary
nor sufficient

. controllability of the dynamics in each form is neither necessary
nor sufficient

for the existénce of steady-ctate optimal controllers vielding finite
expected cost,

In the next zection we review the basic form of the zolution to the
discrete-time JLQ problem over a finite time horizon and in Section 3 we
present examples that illustrate several qualitative features of the
solution. In Section 4 we present the rather complicated necessary and
sufficient conditione for the existence of & steady-state solution for
time-invariant JLQ problems cver infinite horizons, and in Section 3 we
prezent an example illustrating this conditicon and zeveral cther examples
which serve td show that simpler conditions such as sctabilizabilitv or
controllability are neither necessary nor sufficient. Section & contains
simpler sufficient conditions for the existence of solutions in the

infinite horizon case, and Section 7 contains 3 brief summary.
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2. Problem Solution

The optimal control law can be derived using dynamic programming. Let

Uk(xk,rk} be the expected cost-te-go from state (xp,rk) at the time k

{af ter x’kQ(rk}x is charqed):

k
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Proposition 1t Concider the discrete-time nciseless Markovian-form jump

linear quadratic aptimal centrol problem (1) - (4}. The coptimal control

law is given by

= -~ (1Y% = 1 m M
Ueop T Th O30 % Ferrgp =1etl
ko= kﬁ, kﬂ+1’ . 5N
where for each possible form i3  the optimal gain is given by
L4 = (R .(3) + B @ (5B (17 B, hd iva ()
L LA k-1 k7Bt g DH PR e
where
. M
o 3y = N po (3,1 [Q (1) + K (i)] (72
k ; k k k
i=1

Hence the sequence of sets of positive semi-definite symmetric matrices
{K (jy: i B My satisfies the set of M coupled matrix difference equations
*
Y = a ) . . L . -
Kk_lij, A k_iiz)a k(J) {Ak_1(3} Bk_lsz Lk_1(333 (8)
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with terminal conditions

KN(J) = KT(J)-
The wvalue of the optimal expected cost {3) that ic achieved with this
control law is given by

K

X ko

ERTROE | :
The proof of this result appears in [1] and is sketched in the appendix,
An earlier and essentially identical result was established in [15].

Note that the {K (j): J € M> and optimal gains L tid: 3 € M can be
recursively computed off-line, wusing the M coupled difference equations
(8)y=-(371. The M coupled Riccati-like matrix difference squations cannot be

written as 3 single nM-dimensional Riccati-equation.
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3. Examples

In this section some qualitative aspects of the JLO comtroller given
in Proposition 1 are illustrated via a time-invariant scalar example with
M=z foarms, This example serves to point out issues that arise i{n the

consideration of steadv-state JLGQ controllers in the following sections.,

Xk+1 = alxk + hluk if rk =1
Xk+1 = L + b k if rk =1
pliyil =pij
I T
] N-1 2 5 !
min E | N [ x k+1Q(Tk} +u kR(rk) 1 + f K (r | =)
] / f
f_ |

,';ﬂ"

In this case the cost matrix sequences {Kk(j), i &My may or may not

caonverge as k decreases from N, and furthermore, X, may or may nat be

driven to zerec, as shown in the following.

Example 1: Consider the follewing choice of parameters for (9):

xk+1 = xk + Uk if Yk =1
S =2 2 ; = 2
Ak+1 2xk + “Uk if rk 2
pi,j = .53, KT(j) =0, Qiy =1, Ri{iy =1 for 1 = 1,2

The optimal costs, contrel gains and closed-loop dvynamics are given in
Table 1, for four iteraticns.

Ae the table indicates, in this case the optimal costs and gains

converqge quickly. Furthermore, note that in the "worst case" of T T 2 for
all k,
Lim el 2 lim GV =0,
N==’uoo M=-=’o0

Thus x ig driven to zero by the optimal controller.
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This example demonstrates the "passive hedging® behavior of the
optimal controller. That 1is, possible future form changes and their
associated costs are taken intoc account. To see this, consider the usual
LQ regulator gains and cost parameters {as if p11=p22=1 and p12=p21=ﬂ),
which are listed in Table 2.

Comparing Tables 1 and 2, we note that for k £ N-2 the gains of the
Proposition 1 JLQ controller are medified (relative to LQ controller) to
reflect future form changes and costs, The JLQ controller has higher r=1
gains to compensate for the possibility that the system might shift to the
more expensive form r=2. Similarly, the r=2 qains are lower in the JLU
controller reflecting the likelihood of future shifts to rk=1. i
Example 2: Here we choose the parameters of (9) so that the optimal
closed-loop systems in different forms are pot all stable, although the

expected value of % is driven to zero. Let

Ky 41 Xk + Yy if Yy T 1

Kp=g = 2xk + Yy if T 2

Pip =P 7 7 Prp = Fap = -4

where
KT(j} =0, @iy =1 i=1,2
R(ly = 1, F¢2y = 1060

Thus there is a high penalty on control in form 2.

This system is much more likelv te be in r=1 than in r=2 at any time,
We might expect that the optimal control strategy may tolerate instability
while in the expensive-tc-control form r=2, since the system ic likely to
return soon to the farm r = 1 where control costs are much less.
Computation for four iterations demonstrates this, &s shown in Tables 3

and 4.
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As our analysis in subsequent sections will confirm, these quantities
converge as (N-k)--’oo . Note that the closed-loop system is unstable
while in r=2.

Direct calculation of the expected value of x

given Xg and r shows

k! 0!
that {E (xk)i decreases as k increases. This is shown in Table S. In
four time steps, E{x* is reduced by over 353% if initially the system is in
farm 1 and 68% if it starts in form 2. Note that if the system starts in

the expensive-to-control form r=2, x is allowed to increase for one time

step (until control while in v =1 is likely to reduce it}. i
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Kk(1)=Lk(1) Kk(2?=Lk(2) al-blLk(l) az—szkCZ)
k=h-1 = 3 5 4
k=N-2 623 868 377 263
k=N=-3 636 875 364 231
k=N-4 637 .875 363 249

Table 1: Optimal Cost and Controller Parameters, and closed-loop
dynamics for Example 1.

Kk(l) = Lk(l) KkCQJ = Lk(2)

{with Pyq = 13 {with Pogy = 1)
k=M-1 .3 .8
k=N-2 & 878
k=N=3 613 . 883
k=N-4 618 . 883

Table 2: Standard LO Selution for Example 1.

K, (1) K, (2) L, (1) L, (2
k= 0 0 - --
k=N-1 .5 3.996 .5 1.398x10"°
k=N-2 .649 7.385 G439 3.672x10°
k=N-3 .699 9.269 .639 4.603x10"°
k=N-4 .719 10.198 .718 5.060x10 7

Tsble 3: QOptimal gains and costs of Example 2.
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k=N-1
k=N-2
k=N-3
k=N-4

Table 4:

Table 5:

Closed-loop optimal dynamics of Example 2.

.043

E{xk} for Example 2.

3z

1.998

1.9%

1.995

1.995

-bng(EJ
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4, The Steady-State Problem

We now consider the control problem in the time-invariant case as the
time horizon (N—kD) becames infinite. Specifically consider the model

(1y,(2) with A (rk) = A(rK), Bk(rk) = kak) and pk+1(1’3) = pij. We wish

k

to determine the feedback control law to minimize

1T Nl | |
N, ’ ’ 1 oz ¢ . P . .
i E: VDU RO XD B R T NKTirm’xN:XO"o g (10
K=k,

(N—ko)--}oo

For future vreference, from Proposition 1 the optimal closed-loap

dvnamices in each form j € M are

kb1 = PO %
where
D 3y = {I—B(j){R(j)+B’ij)Q* .(j)B(jﬁi—iB’(j)Q* (1) ACI) (11}
k k+1 k+1
where Q*k{j) ig defined in (7) (in the time-invariant case, of course,

anly Kk(j} in (7) may vary with kj.

Before <stating the main result of this section, we recall the
following terminclogy pertaining to finite-state Markov chains:

. A state is transient if a return to it is not guaranteed,

. A state 1 is recurrent if an eventual return to 1 is guaranteed.

. State i 1s accecsible from <state j if it is poeesible to begin in
i and arrive in i in some finite number of steps,

. States 1 and j are said to communicate if each is accessible from
the other.

« A communicating clsss is clgsed if there are no possible
transitions from inside the class to any state gutside of it.

. A closed communicating class containing only one  member, j,

Discrete Time Markovian JLOQ Optimal Control Page 11



is an absorbing state. That is, p51= 1.

. A Markov chain state set can be divided into disjoint sets T,
Cl""’C where 311 of the states in T are transient, and each Cj
is a closed communicating class of recurrent states,

. * - .
Define the cover C j of & form Jj EM to he the set of all forms

accessible from j in one time step. That is,

. = {i B M: p(j,i) # 0.

The main result of thic section is the following:

Propocitign 2: For the time-invariant Markovian JLQ problem the conditions

described below are necessary and sufficient for the solution of the set of
coupled matrix difference equaticns (6)-(&) to converge to & constant

steady-state set

z

K3y 2 0: 3 6 M
as {N—ko)-—>oo. In this case the K{j) are given by the M coupled

gquaticns

A S
KGiy = A7C3a0 (3003 (12)
where D{j) is defined as in (11) with § P(}) replaced by O (3. In

*
turn, Q (i) ie defined in (7) with K (j) replsced by K(3i); that is

k

+ M
Qi) = N\ pji[Q(i} + K(i)] (13)

,

/—
i=0

Furthermore the steady gains L{j) in the steady-state optimal control law

I {14)

u(rk,ka = -Lir K

k

.. R S S . .
L, = [R(G) + B ()T (B 8 (0" (5) A (15)
Thus under the conditions described below the optimal infinite horizon cost
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is
U(xo,ro) = X 0 K(ro)x0 .
The conditions to be satisfied are as follows., There exists a set of

constant control laws

u = —F(j)xk b 1,. « .M (16
so that

Condition 1:

For esach glosed communicating class, Cj, the expected cost-to—qo from (xk =
Xy Y =13 E Ci) at time k remains finite as (N-k)--lco. Thiz will be
true if and only if for each closed communicating class Ci, for all forms
j € Ci’ there exists a set of finite positive cemi-definite n X n

matrices { Zl’ 22, ""ZfCii ¥ satisfying the |C.| coupled equations
kY

| t
:T_ Y(a -BF. 17 (0. +F.F RF¥A, - B.FT i
) Pii P35 TR et TR TR L M B |
[ot=0 i

| + |

T.o= | J
T _ _ i
! oo _ I | !
Pos R O s, - B.7.1° x

| y 13 J ] |/ 19 q i ] J ] |
foot=l | g € Ci i {

i g # 1 | ]

{ | | i

(17}

Note that in the cace of an absorbing form j (ie., a singleton
communicating class) Lj reverts to the quantity

o0

t
ed = - s
Z. > [Aj Bij]

r
{Q. + F/ . R.F.>*[A. - B.F.
4, R3Fy30Ry - B4R
=0

fnce we are in an absorbing form our problem reduces to 3 standard LQ
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problem and Condition 1 in effect states that unstable modes in such a form
that lead to nonzero costs must be controllable.
Condition 2:

Far each transient form j ¢ T [ M, the expected cost-to-go is
finite. This is true if and only if scet of finite positiué csemi-definite

nx n matrices { GI’GZ""’ G + satisfying the [Tl coupled equations

ITl

s !
N YA, -BFIT Qv F ORFMA, - BF,

: P PR R R B N L B LT f
[ t=0 !
! + !

G. =

G, ! |
| _ _ |
A o e - BE et e+ T ez ita - BFat
SRREE N E R U B L I B j ! t
o=l lqeT q &M-T | !
% lg#3 q # x !
i a | l

Condition 1 states that it is possible to achieve finite expected cost
after the form process leaves the set of transient states and enters one of
the closed communicating classes. Mote that for abserbing states (i.e.
1Ci| =1), Condition 1 reduces to the usual LG cordition., Condition 2 states
that the expected cost from any transient form is finite. This precludes
the possibility of an unstable mode of Xy qrowing without bound in  mean
square either leading to infinite accrued cost while the form resides in
the transient state set (this cccurs if the Xy mode ie observable through
the cost in transient forms) or to infinite cost once the form jumps into

a closed communicating class (if this mode becomes obszervable after the

transition}. ]
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The proof of the proposition, which is given in [11, 1is quite
straightforward, and we confine ourselves here to sketching the basic idea.
Mecessity is clear, since if conditions 1 and 2 are not satisfied for any
control law of the type (16) then the finite horizon optimal control laws
cannot converge to one with finite cost as {N—kD}-—>oo . Te show
sufficiency, one first shows that if one applies the control law (162,

then, under conditions 1 and 2, the expected cost is finite as (N-k_)1--’oc.

0

In fact it is given by

x’(kO)Z(rikob)x(ko) if Y(ko) EMor ]

x (ko) G(T(ka))x(kg) if r(kﬁ) ET

a

This estaklishes an upper bound on the optimal cost matrices K O(j) for the

k
finite time horvizon problem for the particular case when the terminal costs

KN(j) = 0. Furthermore, in this case the K 0(j) are menotone increasing as

k
(N—ka) increases, and thus they converge, It is then immediate that the
limits

lim KkO(j) = K{j)

(N-ko)--}oo

satisfy (16}, Straightforward adaptaticns of standard LQ arguments then
allow us first to extend the cenvergence result to the case of arbitrary
terminal cost matrices for the finite horizon problem and, secondly, to
show that there is a unique cet of positive definite solutions of (16).
Conditions 1 and 2 of Proposition 2 take into account

. The oprobability of being in forms that have unstable closed leoop
dynamics

. The relative expansion and contraction effects of

Discrete Time Markovian JLO Optimal Control Page 15



unstable and stable form dynamics, and how the closed-loop
eigenvectors of accessible forms are "aligned". That is, it 1is not
necessary or sufficient for all {or even any) of closed-loop dynamics
corvesponding to sufficient forms to be stable, since the interaction of
different form dynamice determines the behavior of E{x’kxk}.

These various characteristics will be illustrated in the examples in
the next section. The Conditiens in Proposition 2 differ from those of the
usual discrete-time linear quadratic regulator problem in that necesesary
and sufficient Conditione 1, 2 replace the sufficient cordition that the
{single form) system is stabilizable. Unfortunately these conditions are
not easily verified., There is no evident algebraic test for (17),(19) like
the controllability and cbeervability tests in the LQ problem. The use of
the conditiens in Proposition 2 will be demonstrated in the examples that
fallow.

It 1=z important to note that even if the conditiens of Proposition 2
are satisfied, we are not guaranteed that xk—--}ﬂ in mean square. One
obviocus reason for this is that Conditions 1 and 2 are trivially satisfied
fwith Fiiy, Z(3)y, G(i) =all zeroy if Q{j} = 0 in &ll forms. Of course, the
same comment applies in the usual linear-quadratic problem. In that case, a
zet of conditions that 4guarantee that xk-—}o in mean square are the
stabilizability condition mentioned previoucsly and the requirement that

(R,Qlfg) be detectable.

Example 3:

One might conjecture, given the LU result, that Conditions 1 and 2
together with the requirement that (A(j),Qlfz(j)) be detectable for each j
might be sufficient for the JLQ problem. This 1is not the case, however, as
one can certainly construct deterministically-jumping systems (i.e. time-

varying linear systems) which are counterexamples,such as the feollowing.
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ally = g 2 ' Q1y = :+ 1 0 : B{i) = 0
: 1/2 { : 0 :

&2y = & g 172 2y = + 0 ¢ H B(2) = ¢
: 2 0 : HE | :

Prg =Py =1 !

The following corcllary presents cne sufficient condition that aguarantees

that Xk——>0 in mean square.

[

Corolliary 1: Consider the time-invariant JLOQ problem, and suppose that the

Conditionse 1 and 2 of Proposition 2 are satisfied., Suppose alco that the
closed loop tramsition matrix ACI;-B{JiL{j) is invertible for all 3. Then

E{x", x

‘ k}—-—)ﬂ if the matrix Q033 + L(I)1 R{3¥L{3Y i positive definite

for at least one form in each closed communicating class. 1
Before sketching the proof of the corollary it is worth providing an

example that illustrates the types of situations that motivated the

iﬁclusicn of the assumpticon that A(J)-B(i)L{i) is invertible for all j.

Exammple 4

Consider 3 scalar system with form dynamics illustrated in Figure 1 where
Ally =2 A2y =0 , AF) =1

B(1lD

i
m
—
J
"

[[]
e}
—~
[#X]
~—

H
Lo}

Q1)

i
0
~~
Y]
N
"
Lo}
£
—~
W)
-
L}
oy

In thie case, assuming that the initial form is no

ald

2, it is not difficult
2 } . . P s

to show that E[xk }-=-%eoo, while the cost incurved cver the infinite horizon

is zero, even though Q{3) = 1. The reason for this is that the form process

ig likely to remain in form 1 for teeo long s time, but this large value of
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3/4

1/4 1
1 O~

Figure 1: Form Structure in Example 4.
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the state is not penalized because of the nulling of the state at the time
of the first transition to form 2. Mote also that in this case, although
E{xkal diverges, xk-->co with probability 1. H

For simplicity in our proof of the corellary, let us assume that there
iz a single closed communicating class. The extension to several classes
is etraightforward. First let us denote by j% the form specified in the
Corollary; i.e., j* is in the closed communicating class, and

gmin [QC3%) + L(i*k)/R{J¥IL(I*Y] = X > O (193
where gmin (AY = smallest singular value of A.

Note next that if we apply the optimal steady-state control law as
specified in Proposition 2, and if rk=j, then the cost accrued at time k is

x  [QC3) + L{3)7 R(I)Y LOI)] x

K k

Suppose that {ti} is zny sequence of strictly increasing stopping times so

that Tei = i*., Then under the conditicons of Proposition 2, the optimal cost

ko L. .
J is finite, and in fact:

[a]x]
.) = , wp ¢ - \ P '~\' h ¢
G0 J E : % k[UlTk, + L erJFersL&rk)}xk

k=0

a0

2% N EL x5 (20)

From this we can immediately conclude that

lim E [ thin 1 =0 (21)
i-—>00

Discrete Time Markovian JLG Optimal Control Page 12



What we wish to show is that

1]
L]
s~
ra
X

o’

lim E L 1% 01%
k ==>oo0

and we do this by centradiction. Specifically suppose that (22} is not
true; that is, we can find an € so that for any positive integer m, there
existe another integer K(E,m}> m s¢ that

EL 1] > B (

2
XK(E.M)H ] i

na
(K]
~—

We will show that this supposition centradicts (21) by constructing 3

sequence ¢f stopping time for which (21) does not hold if (23) does. Let

to = The earliest time after K(E,0) that the form process
i in state j%
tk = The earliest time after both K{&,k} and t(&€,k-1)

that the process is in state j*
Lencte by Um the set of form trajectories that begin in state m and end in
state Jjk without any intermediate visits to ix%, For any U E Um, let

fiiu) denote the closed-loop state transition matrix along the trajectory

2
‘ !

FR —
1°1 = EIE L lix,, !

*Kee )t Tk =M

EJE [ [16Cu) x |

2 -
ket T Mkee iy T T
= B D ey ED WU Bluyd b= m oo gy

where Uy denotes the form trajectory from K(e,k) to . Note that the

invertibility assumption immediately implies that

Discrete Time Markovian JLQ Optimal Control Page 20




X =8

= Soin CE L8700 B(u) |1 =m 13 > 0

. Letting

X = min xm
m

we see that (23)and (24) together imply that

E LI xtktlz] > A E
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5. Examples

The following simple =scalar example illustrates the conditions of
Propgsition 2.
Example 5: Consider the form dynamics depicted in Fiqure 2,where the x-
process dynamics are autcnomous in 3ll forms:

b4 = afr

V1 ) r € {1,2,3,4,5,6,7}

K7k k

and Q¢(iy » 0, ¥ i. Here 6 is an absorbing form, <{3,4> is 3 closed
communicating class, and I = {1,2,5,7+ ic the set of transient forms. For
the absorbing form r = 6, condition 1 yields

(i) at(er<t,

and in this case

For the closed communicating class {3,4, (17) gives the coupled equations

3
Q3 + 37 (Zi4)

2(3) =
Z(4y = Q(4) + a“(43Z(3)
Consegquently
7(3) = -mmmez e [0(3) + a~(4) Q(4)]

1
2(4) = =mmgm-——-mgmmmmmmmme (s + (3w
1-a7(3) a“(4)
Thus for 23, Z94 to be positive {as in LCondition 1) we must have

{i.e. the two-step dynamics corresponding to the form transitions 3-4-3 or
4-3-4 must be ctable). Feor the transient forms {1,2,3,7r, (18) vields

2
G(ly = Q1) + a7(1) G(2)
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Figure 2: Form 5Structure for Example I,
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6(2) = Q(2) + a°(2) [pyB(1)] + pyg Z(3) + o Z(6)
00
- —_ t-1 2t .
6(9) = A+ ST pggth ) ASIngg 4 pg 2D )
t=1
_oo -
57 = a7+ S 0,5 0 BN T UPIp,, + po0(2) ]

From the equations for G(1) and G(2},

2 2
QLY + 851002 + [pyZ(H) + pyg Z(8) ) a%(1)

B(1) = mmmmmgmmmmmg—mmemmc2o L 28 LD
1 - a1y 872 py
Q(2) + a2 (D (LIpy, + pygZ(3) + py Z(E)

G(2) = —mmmmzmmmmmzmmm—m St _C L B
1 - a%(1) a°(2) p,

So for 0 ¢ G(l), G(2) { oo we have

2 2
(iii) a (1Y a7i2) Py < 1.

From the expression for G(3) we see that for 0 ( G(3) < oo we have

(5 ¢ 1

(iv] o 3)
(iv) Feg {

with the resulting
- 2
] 3
oesy + Py 3 (3) Z(3)

From the expression for G(7) we see that for 0 < G(7) < oo we have

{w) p?7a‘<?3 {1

with
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The con

ditions (i)-(v} above result from the necessary and sufficient

conditions of Proposition 2, applied to this problem. For this example we

zee that

in

The shsorbing form (r=6) must have stable dynamics; (i)

gne of the forms in the closed communicating class 43,47
can be unstable as long as the other form’s dynamics make
up for the instability; (ii)

tranzient forms r = 5,7 can have unstable dynamice 35 long
as the probability of staying in them for any length of
time is low encughy (iii),(v)

some instability of the dynamics of forms r = 1,2 ic okay

so long 3¢ the probability of repeating a 2--31-->2 cycle
is low enoughj(iv).

i

the proof of the LO problem, the existence ¢f an upper bound can be

guaranteed by assuming the stabilizability of the system. This dees not

here (except for scalar x}, as shown in the following example.

B Stabilizability not sufficient for finite cost

suffice
Example
et M =
él =
A, =
with p12
Both fan

triviall

k+2

2 where
: 172 in : 81 = 140
: ] 172 0
H 172 { : 82 = 0
: 10 172 + 0

pql =1 and p, =0 (g "flip-flop system as in Figqure 3).

2 P11 ~ Pag
rins  have stable dvnamics (eigenvalues i/2, 1/2) 2and hence are

vy stzbilizable. Howewver

100.25
3 .

ae wm
(A1
TS

[
]
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Figure 3: From Structure for Examples 6,7 and €.
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25 3

Wiz - 5 100.25 Xy if rk =2

au  uw
CEET)

which is clearly unstable. Thus Xy and the expected cost-rto-go become

infinite as (N - k_J gues to infinity. i

0

In fact, controllability in each form is not sufficient for finite

cost, as demonstrated below.

Example 7: Controllability not sufficient for finite cost

Let M = 2 where

HERY 2 : : 0
él = 0 ] : B1 = 11 1
HI ] g : 1 s
A = 12 { : B, = 1 0

"
[N

Thus in each form (r = 1,2) the system is controllable, and the closed-loop

systeme have dynamics

where Tkl ) D(rk) xk
R AR
D1y = ; fl f2 ; D¢2)y = ; 2 0 ;
where fl’ fz, fB’ f4 are determined by the feedback laws chosen. Now

suppose that we have a "flip-flop® system as in Figure 3. Then

T2 o1y 1« ifr =1
— 0 il
Xop = | K
z [D(1) D(2) 3 Xg if Tq T 2
where
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HE 0

Di2)D(l)= D(LYD(2)=

: f, f_ + 2f f, f

Both D(13D(2) and D(2)D(1) have 4 zs an eigenvalue. Thus X, grows without

bound for Xg 20 as k increases, Controllability in each form allows us

to place the eigenvalues of each form’s closed loop dynamics matrix D(1) as

we choose, but we cannct place the eigenvectors arbitrarily., In this

example there is no choice of feedback laws that can align the

eigenstructures of each of the closed loop systems so that the overall

dvnamics are cstable. I
The following example demonstrates that (for n > 2) stabilizability of

even one form’s dvnamics i1s not necessary for the costs to be bounded.

Exammple 8: Stasbilizasbility not necescsary for finite cost

Let M = 2 with

A1y = ¢+ 1 -1 B(iy = : 0
: 0 172 0
Al2y = ¢+ 1/2 1 B{zy = : &
N 1 (R

Both forms are unstable, uncontrollable systems so neither is
stabilizable. We again take the form dynamics as in Figure 3.
Then

Bann® ifro=1

) ’ 0 0

(é(l)A(Z))k Xq if r, =2

4
I

ro
=

|
!
!
!
I
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where
172 0

ACLYA(Z) = A(2)A(LY = H
0D /2

"

Thus x

it and hence the cost is finite. e next show that this
(=

example does satisfy Condition 1 of Proposition 2. From (17) with F{(l) =
F(z2) = 0 we have

Zely = Q1) + ALY Z(21AC1)

22y = Q2Y + A(2) 21 A0
Suppose, for convenience, that Q1) = @(2) = 1. Then we obtain from the

first equation above that

f 211{2) lefEt f ) f i+ 211{2) -211(2) +(1E23212(2) i
s 2., (2 Z.12) ! -2, (Y HLS2YE L (2) ] 2)- 2y 1
: 21( ) s : ; Llli (1723 51( l+211(ai 221( '
: : : (1f4)2ﬁ2(2} :
and plugging this inte the second squation:
: Z, (2 Z, 5 HEE : 4 (17432, (2) 172 +(1/4)2Z, (2 :
: 11{ ) lefg,‘ ' ‘ S5/4 +(1743 11{ / 2 +(1/4 ‘-12( ) .
: Z (2 Z . 12) 1 P 12 HA/YZ (2 3 H(I/4Z (2] :
21( ) 25 =y +{1/4) 1 ) +{1/4; zgkd;

This yields four equations in four unknowns. Selving we find

f‘ 2,1 Zy (L .f = f' 6 1473 'f

: Z, (1) Z,,(1) , | . -14/3 132 1
and

3. Zli(LB 212(2) : . 3 2/3 .f

: Z,() L@ 1= i 23 4 :
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which are both positive definite. Thus Z1 and 22 satisfy condition (2) of

Froposition 2. 0
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5, Sufficient Conditions for Finite Expected Cost

In this section we examine sufficient conditions for the existence of
finite expected costs—-to-go that replace the necessary and csufficient
Conditione 1-3 in Propocsition 2, and are somewhat easier to compute, in
terms of the spectral norms of certain matrices. Recall that for any

matrix A, the spectral norm of A is

{1lAaul iy = [max eigenualue(ﬁ’ﬁ)jl/2
ftull = u'u =1 (25}

f1all

]
2
1]
=

Corollary 2: Sufficient conditions for the existence of the steady-state
contrel law {and finite expected costs-toe-go) for the time-—invariant JLO
problem are that there exist a3 set of feedback control laws
= - Cx
uk(vk,xk) F(YK} "
such that

(1) for each absorbing form i (aii = 1), the pair

(ACiy,B(iY) is stabilizable.

{21 for each recurrent nonabsorbing form i and for each

trancient form i € T that is accessible from

) . Lx . .
a3 form j € C i in ite cover (3 #i):

ag
E ™ p.,t !
) ii

£

HAGH-BODFG T 112 ¢ e <1 (26)

t=1

{3) for each trancient foerm 1 € T that is not accessible from

- . t. SR . . .
any form j € C ; i ite cover (except itself):

ag

o U pacn-BanFGH Y 11T ¢ oo (27)

LA

The proof of this Corollary is immediate. A similar result for continuous-

time systems is obtained by bonham [3;Thm 5.1], except that stabilizability
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and observability of each form is required, and a condition like (26) is
required for all nonabsorbing forms.
Condition (2) is motivated as follows. The cost incurred while in a

particular transient form is finite with probability one since, eventually,

the form process leaves the transient class T and enters a3 closed
communicating class., If a particular transient form i € T can be repeatedly
re-entered, however, the expected cost incurred while in 1 may be infinite;
(26) excludes such cases. Note that the sufficient conditions of Corollary
2 are viclated in Example 3 (in both forms). Thic demonstrates that they
are restrictive, in that they ignore the relative "directions" of x growth
in the different forms {(i.e. the eigenvector structure). MWe concider next
a sufficient condition that is easier to verify than Corollary 2, but is
2Uen more conservative,

Corgllary 3: Sufficient conditions (1)-{(2) 1in Cerollary 2 can be replaced

by the following: There exists a set of feedback control laws

¥ = ~F{r
U('k’xk) F,rk;xk
such that
(1 (ACD-BCIXFCIY I < e ¢ 1. {28)
The proof of this corollary i3 also immediate. il

Note that if (28) holds then conditions (13)-(3) of Proposition 2 hold.
Note also that we are guaranteed that {!xkil—-}ﬂ with probability one, if
(28) holds only for recurvent forms. However this is not enough to have

finite expected cost, 3s demcnstrated in the following examples.

Example 3: Let

® O . * s .

A(ly = @ a3 0 AllY = ¢+ 0 0 B¢l = :+ 0 : = B(2)
HIR a : 0 o HER U

where a > 1, and with (1) = I, Q2) = 0, Also, let
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where a > 1, and with Q1) =1, Q(2) = 0, Also, let
Pig =P Paa =1

[>4

= 1-p p21 = g

P12

In this case

M 1
min PIACLY-B(LFCYIL = 1 ¢+ & 0 1} = a2l
F{1} I 0 a it

I . «
min |1 A(2)-B(2)F(2)l] =0

and for rD=1
I._og i
I ™ _ . |
El /__ x " Q(rk)xk +u K R(rk)uk} }
| k=0 ]
| _ A
- _00
= 1ixgl1% S (a°m"
k=0
If aaa £ 1, then the expected cost is
, 2
i:xgi! )
------ - St oG
& - a‘_p

. 2 s . e .
However, if & p 21 then the expected cost-to-qe is infinite. This

demonstrates that (28) helding only for nontransient forme is nat
sufficient for finite expected cost-to-go. Specifically, as this example
demonstrates, the cost-to-go will be infinite if one is likely te remain

sufficiently long in transient forms that are unstable encugh. g

Example 10: Let

X, 4 = HE 1 x ifr =1,3

k+1 e -1 -1 g k k

X 41 = T a a4 xk if rp =2
HERY a

where the form transition dynamics sre given in Figure 4. We also assume
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12

Figure 4: Form Transition for Example 10.
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o, >0, i =1,2,3,

If the system is in form 1 or 2 for three successive times (rk = T4

1Y, then Xepn = (0 0) for any xk. In form r = 2, the expected cost

= Tee2 T

incurred until the system leaves (at time t) given that the state at time

| o0 R
| (b a2’ ix
B ; f
I =0 |

k

For this cost to be finite we must have

oa o0

N i—- )

/e twareent wmat = ww s p,,tatt ¢ oo

— 22 22

t=0 t=0}

which is true if and only if

2
a pﬁg ¢ 1. {29)

Thus we would expect that the optimal expected costs-to-go in Proposition 2
will be finite if and anly if (23) holds. We next verify that the necessary
and sufficient conditions of Proposition 2 say this.

The matriy

A3y = i 1
HEESY -1

is nilpotent; hence the shserbing form v = 3 is stabilizable (so condition
2 of Proposition 2 iz met). For tramsient forms {1,2% we must have

0 ¢ G(l)y, G&(1) { oo where

[*] 1] 0g
N h¢ t t N t-1 t t
G(L) = /__pyy AL W ALY+ /ey ATCLY py ,B(20ACL)
t=0 t=1
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[w]

O
Q
(=]

t 2t _ T

_ t o, ,at t -
G(e) = A(2) Q(2) A2 2} Pop @ 3

-+ N

P
= "e2

R
ﬂl
]
(=)
|
s
[\
n
[11]

Thus for G(2) tc be positive definite we have the cendition (23). Finally

since ﬁ(l)t =0 for t » 2, we have

6(1) = Q(1) + A7(1) [py,0(1) + py,6(2)] A1)
Py 20(2)
= QML) + AL [ py 01 + —====FFemmmpees ] A(D)
1_
Paz®

which is positive-definite since Q(1), Q{2) > 0. Thus the nececsary and
sufficient conditiens of Proposition 2 here reduce to (29). Note that he
sufficient condition (28) of Corollary 3 is never met for r =1 and r = 3,
since {A(LYIl = [1A(3)I] = 2, and to meet (28) for r = 2 requires jal ¢ 1.
On the other hand, the sufficient conditions for Corocllary 2 are met if
(29) holds because forms {1,2* are ‘non-re-enterable’ trancient forms

satisfying (27). i
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7. Summary

In this paper we have formulated and solved the discrete-time linear
gquadratic control problem with perfect observations when the system and
cost parameters jump randomly according to a finite Markov oprocess. The
optimal contrel law is linear in K at each time k, and is different (in
general) for each possible set of parameter values. Proposition 2 provides
necessary and sufficient conditions for existence of the optimal steady-
state JLQ controller. These conditione are not easily tested, however,
since they vrequire the simultaneous solution of coupled matrix equations
containing infinite sums . In Corollaries 2 and 3, sufficient conditions
are presented that are more easily tested.

Perhaps the most important contribution of this paper is the set of
examples that explore the ressons for the complexity of the conditions of
Proposition 2. For example we have shown that <stabilizability of the
syetem in each form 15 neither necessary nor sufficient for the existence
of 3 stable steady-state clased-loop system, Iscues such 3¢ the amount of
time <spent in unstable forme, and the differences among the stable and

unstable subspaces in different forms have been illustrated.
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