
MIT Open Access Articles

Transcriptional regulatory dynamics drive coordinated 
metabolic and neural response to social challenge in mice

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Saul, Michael C. et al. “Transcriptional Regulatory Dynamics Drive Coordinated 
Metabolic and Neural Response to Social Challenge in Mice.” Genome Research 27, 6 (March 
2017): 959–972 © 2017 Saul et al

As Published: http://dx.doi.org/10.1101/gr.214221.116

Publisher: Cold Spring Harbor Laboratory Press

Persistent URL: http://hdl.handle.net/1721.1/115148

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution-NonCommercial 4.0 International

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/115148
http://creativecommons.org/licenses/by-nc/4.0/


Transcriptional regulatory dynamics drive
coordinated metabolic and neural response
to social challenge in mice

Michael C. Saul,1,12 Christopher H. Seward,1,2,12 Joseph M. Troy,1,3 Huimin Zhang,1,2

Laura G. Sloofman,1,4 Xiaochen Lu,1,2 Patricia A. Weisner,1,5 Derek Caetano-Anolles,1,2

Hao Sun,1 Sihai Dave Zhao,1,6 Sriram Chandrasekaran,7,8,9 Saurabh Sinha,1,4,10,11

and Lisa Stubbs1,2,5
1Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA; 2Department
of Cell and Developmental Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA; 3Illinois Informatics
Institute, Urbana, Illinois 61801, USA; 4Center for Biophysics and Quantitative Biology, University of Illinois at Urbana–Champaign,
Urbana, Illinois 61801, USA; 5Neuroscience Program, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA;
6Department of Statistics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA; 7Harvard Society of Fellows,
Harvard University, Cambridge, Massachusetts 02138, USA; 8Faculty of Arts and Sciences, Harvard University, Cambridge,
Massachusetts 02138, USA; 9Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA; 10Department of
Computer Science, 11Department of Entomology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, USA

Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is

an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social chal-

lenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling

genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling

this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and

amygdala of socially challengedmice over time. The expression data revealed a complex spatiotemporal patterning of events

starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the

amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The

transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated

TFs. Among these, the conservedmetabolic and developmental regulator ESRRAwas highlighted for an especially early and

important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals

in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both

cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially

expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling

to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.

[Supplemental material is available for this article.]

Agonistic encounters represent challenges to wellbeing and re-
quire a swift, measured response. Animals must learn quickly
from socially threatening situations and adjust their behavior dur-
ing future encounters accordingly; failure to adapt can have seri-
ous consequences. Counterbalancing the necessity for normal
fear reactivity are the physiological costs of a reaction: Repeated ex-
posure to social challenge adversely impacts neurochemistry,
behavior, and health in both recipients and perpetrators of threats
(Hawker and Boulton 2000; Bjorkqvist 2001).

Though social challenges have stronger and more durable
consequenceswhen reinforced, neurochemical and behavioral dif-
ferences are observed after even a single challenge. For instance,
one round of the classic “resident-intruder” territorial challenge

test is sufficient to rapidly raise blood glucose and serum cortico-
sterone in both naïve residents and intruder mice while inducing
alterations in neurochemistry associated with depressive and anx-
ious behaviors (Meehan et al. 1987; Audet et al. 2010). Such a re-
sponse triggers the first steps in fear learning, preparing an
animal for future encounters by tempering subsequent behaviors
(Duvarci and Pare 2014). Normal learning from social challenge
is critical to establishing social rank, a ubiquitous element of social
hierarchies across metazoans (Fernald and Maruska 2012), while
abnormalities in social threat-based learning lead to maladaptive
behaviors, including those associated with human neuropsychiat-
ric disease (for reviews, see Pittenger 2013; Gilmartin et al. 2014).
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Fear learning in response to social challenge is ubiquitous
across metazoans, and our recent study demonstrated deeply con-
servedmolecularmechanisms underlying the early steps in this re-
sponse (Rittschof et al. 2014). These previous results documented
rapid activation of closely related genes and strikingly similar path-
ways in brains of three classic behavioral models—honey bees,
stickleback fish, and laboratory mice—very shortly after challenge
exposure. These data revealed a rapid down-regulation of genes in-
volved in oxidative phosphorylation, correlated with the activa-
tion of a conserved cohort of coexpressed neurodevelopmental
transcription factors (TFs) and signaling pathways. The results sug-
gested that energy metabolism and neurodevelopmental systems
cooperate as central parts of a deeply conserved mechanism in-
volved in coordinating behavioral plasticity and, ultimately, emo-
tional learning after social threat.

While our initial study suggested a link between metabolism
and neural signaling through development, it did not include the
tissue and temporal resolution needed to resolve this link, describe
the downstream transcriptional response, or reveal the factors in-
volved in its regulation. To understand the molecular response
within the animal’s brain as it responded to a salient social chal-
lenge and to identify the factors regulating these neuronal events,
we generated and then computationally integrated data sets re-
flecting gene expression and chromatin states as they changed
across the brain and over time.

Results

Gene expression analysis reveals a complex interplay of metabolic

signaling and developmental regulators

A generalized linear model identifies the systems-wide response

Our previous study (Rittschof et al. 2014) focused on gene expres-
sion in resident and control animals in
the ventral hypothalamus (HYP), sam-
pling gene expression quickly (15 min)
after removal of the intruder mouse. To
further explicate this response and its
downstream consequences, we exam-
ined gene expression at 30, 60, and 120
min after intruder removal in three
interconnected brain regions with key
roles in fear learning and response to ag-
gression: frontal cortex (FCX), whole
HYP, and amygdala (AMY) (for review,
see Takahashi and Miczek 2014). A table
summarizing the gene expression and
other genomics data sets presented in
this article is available as Supplemental
Table S1.

To maximize the utility of this rich
expression data set, we modeled the sys-
tem-wide interplay of the transcriptional
response across these three tissues and
over time. We used a generalized linear
model (GLM)—essentially a three-way
factorial ANOVA, but with different dis-
tributional assumptions—to detect dif-
ferential expression related to four
factors (predictors) of interest: a factor in-
dicatingwhether the sample came froma
challenge or control animal (challenge),

factors representing the interaction between challenge and tissue
assayed (tissue:challenge) or interaction between challenge and
time point (challenge:time), and also the three-way interaction
among all of the previous factors (tissue:challenge:time). Each fac-
tor provides different information about tissue and temporal pat-
terning of response to social challenge, and each yielded many
differentially expressed genes (DEGs) of interest at a false-discovery
rate (FDR) < 0.10 (Supplemental Table S2).

The gene with the strongest P-value among challenge factor
DEGs was Ide, encoding insulin degrading enzyme (edgeR FDR =
6.70 × 10−5) (Fig. 1A); mitochondrial tRNA genemt-Tqwas highest
ranked among tissue:challenge DEGs (edgeR FDR = 1.3 × 10−4).
However, functional analysis revealed no significant enrichments
among DEGs in either of these factors (Supplemental Table S3). In
contrast, all DEGs from factors with a temporal component were
very highly enriched for functional terms related to mitochondria
and oxidative phosphorylation, with the tissue:challenge:time
DEGs being most highly enriched in this functional category,
with the geneNdufa7, encoding a mitochondrial NAD dehydroge-
nase, having the smallest P-value (edgeR FDR = 1.2 × 10−5) (Fig. 1B;
Supplemental Table S2). As exemplified by the expression patterns
of Ide and Ndufa7 (Fig. 1) and in agreement with our earlier study
(Rittschof et al. 2014), the GLM analysis thus implies that a hall-
mark of the response to social challenge is the rapid down-regula-
tion of oxidative phosphorylation, accompanied by up-regulation
of insulin signaling, and, more generally, the modulation of ener-
gy metabolism across brain regions and time after challenge.

Pairwise comparisons reveal the spatiotemporal sequence of events

Pairwise post-hoc comparisons of gene expression between chal-
lenged and control animals provide a different perspective, reveal-
ing the specifics of response within each tissue and time point. In

Figure 1. Expression patterns for Ide (A), the top DEG in the challenge factor of the GLM, and Ndufa7
(B), the top DEG in the tissue:challenge:time interaction factor of the GLM. Thin black lines are control
samples, while thick colored lines are experimental samples. Error bars, SEM.
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these comparisons, we found striking variation in the number of
DEGs in different tissues over time (Fig. 2A; Supplemental Table
S4). The transcriptomic response was most dramatic in FCX 30
min after challenge, while the largest responses in AMY and HYP
occurred at 120 min. Though these DEG sets were mostly distinct,
there were some important overlaps between tissues and time
points (Fig. 2B,C). For example, Ide, the top gene associated with
challenge in the factorial analysis (as described above), was consis-
tently up-regulated in the HYP at all time points and up-regulated
in all brain regions 120 min after challenge (Supplemental Table
S4). Furthermore, the pairwise post-hoc comparisons generally
overlappedwith factors that included challenge in themodel anal-
ysis (Supplemental Table S5).

To describe systems responses over time, we tested these pair-
wise post-hoc DEG sets for enrichment of Gene Ontology (GO)
Biological Processes (BPs) and visualized the results using nonmet-
ric multidimensional scaling (MDS) on distances derived fromGO
term semantic dissimilarity (Supek et al. 2011). This approach re-
vealed a complex tissue-specific and temporal patterning of func-
tional response (Fig. 2D; Supplemental Table S6). In FCX, an early
up-regulation of GO BPs related to neurotransmission (a cluster

including a term related to insulin signaling), neuropeptide signal-
ing, and learning was observed, which attenuated over the length
of the experiment. In HYP, we detected a highly dynamic GO BP
response over time, beginning with neuropeptide-related func-
tions such as feeding behavior, followed by neural signaling and
developmental functions. In AMY, few GO BPs were enriched in
early time points, but strong, diverse enrichments were seen
late after challenge. Similar to HYP, these functionally enriched
categories ranged from neural signaling and transmission to
development.

As a confirmation of the conclusions from the RNA-seq exper-
iments, we performed RT-qPCR on a selection of key DEGs focus-
ing on samples taken 120 min after social challenge. For each of
these genes, we confirmed differential expression in the same di-
rection and of the same approximate magnitude as in the RNA-
seq study (Supplemental Fig. S1).

Taken together, the pairwise and system-wide expression
analyses led to the hypothesis that early neuromodulatory signal-
ing in FCX and HYP leads to a rapid shift in energy metabolism,
which prefigures later neuronal plasticity in the amygdalar-hypo-
thalamic axis. We explore this hypothesis further in following

Figure 2. DEGs at FDR < 0.10 in the intruder versus control comparison for each combination of brain region and time point after intruder. (A) Plot of
DEGs by time point after intruder. (B) Plots of overlap between time points after intruder within each brain region. (C ) Plots of overlap betweenbrain regions
within each time point after intruder. (D) Semantic MDS plot projecting the spatial and temporal pattern of enriched GO biological processes (BPs).
Distances represent GO semantic dissimilarity as measured by simRel. Point size represents log-fold-change of a GO BP term. Point color represents direc-
tion of differential expression of a GO BP term.
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sections, but first we sought to associate these different transcrip-
tomic signals to specific cell types across the brain.

Computational deconvolution analysis identifies cell-type–specific functions

Brain tissue is a complexmixture of cell types, complicating the in-
terpretation of expression results. When we examined the overlap
between our data set and genes linked to specific cell types in a pre-
vious RNA-seq experiment involving sorted mouse brain cells
(Zhang et al. 2014), we found an enrichment of neuron-specific
genes for most DEG sets, along with other cell types in specific
brain regions and time points (Supplemental Table S7A).
However, being limited to direct overlaps, this analysis included
a relatively small subset of genes. To permit amore comprehensive
analysis, we used “population-specific expression analysis” (PSEA)
to deconvolve the signals from individual cell types in our data set
(Kuhn et al. 2011). By using the same data set cited above (Zhang
et al. 2014), we constructed reference signals for five different cell
types: astrocytes, neurons, oligodendrocytes, microglia, and endo-
thelial cells. We then classified DEGs from the GLM and from the
pairwise post-hoc results based on these PSEA-defined cell catego-
ries. Because the reference data set utilized cortical tissue, we ex-
pect cell-type deconvolution to perform best on the FCX samples.

PSEA revealed strong overlaps between the pairwise post-hoc
DEGs and genes associated with neurons from the reference data
set (Supplemental Tables S7C, S8). In contrast, we identified signif-
icant overlaps between genes differentially expressed in the chal-

lenge-related GLM factors and genes associated with glia, most
consistently oligodendrocytes, in all brain regions (Supplemental
Tables S7D, S8). From these analyses, we infer that the system-
wide energy metabolism shift detected by the GLM is correlated
most highly with gene expression in oligodendrocytes, while the
signals related to neuronal transmission and developmental path-
ways described in the post-hoc analysis derive primarily from
neurons.

Coexpression reveals the organization of oxidative phosphorylation and

neuronal signaling genes in opposing network clusters

To evaluate the interrelationships between genes and functions
underlying challenge response, we used weighted gene correlation
network analysis (WGCNA) to generate a coexpression network
across tissues and time points (Supplemental Table S9). To visual-
ize the most stable coexpression relationships, we extracted net-
work edges with correlation coefficients ≥0.85 in absolute value
and with the same sign in every tissue. The resulting high-correla-
tion network displayed a topology wherein two distinct gene clus-
ters were bridged by a strong predominance of anticorrelated edges
(Fig. 3A). The opposing “left” (L) and “right” (R) gene clusters were
very highly enriched in functionally related genes; the L cluster
predominates in functions related to oxidative phosphorylation,
while the R cluster is especially enriched in genes related to tran-
scriptional regulation and neuronal signaling (Supplemental
Table S9).

Figure 3. (A) Coexpression network of plotting the largest connected component with all relationships with correlations of an absolute value of 0.85 or
better. The network topology includes two sides connected by a profusion of negative correlations. Module 7 nodes (green), which are associated with
oxidative phosphorylation, inversely connect to module 14 nodes (yellow), which are associated with ion channels. (B) The gene with the highest be-
tweenness centrality in module 14, Cacna1e, connects to many oxidative phosphorylation genes. Edges connecting out from Cacna1e and the nodes
they connect to are highlighted in orange. (C) The gene with the highest betweenness centrality in module 7, Tceb2, implies a role for transcriptional reg-
ulatory dynamics. Edges connecting out from Tceb2 and the nodes they connect to are highlighted in orange.
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Within this network structure, we
identified two WGCNA modules with
particularly significant relationships to
social challenge, modules 7 and 14,
whose eigenegenes are strongly anticor-
related (r =−0.90). High-stability module
7 genes were highly enriched for oxida-
tive phosphorylation, while high-stabil-
ity module 14 genes were enriched for
ion channel activity. Indeed, the gene
with the highestmeasure of betweenness
centrality (BC; a metric of network
connectivity) from module 14, Cacna1e,
is a DEG in the tissue:challenge:time fac-
tor and in FCX pairwise analysis at 30
min and displays very strong and direct
negative relationships with oxidative
phosphorylation-related nodes (Fig. 3B).
Cacna1e is particularly interesting in
this context, connecting calcium signal-
ing, insulin signaling, and synaptic
plasticity (Pereverzev et al. 2002; Breus-
tedt et al. 2003), and has been implicat-
ed in fear learning (Lee et al. 2002).
The WGCNA network structure thus
identified concrete bridges between the
metabolism-related DEGs described in
the GLM results and the neural signaling
DEGs described in the pairwise post-hoc
results, providing an explicit architec-
ture of an oppositional relationship be-
tween brain oxidative phosphorylation
and the neuronal response to social
challenge.

We further identified the gene with
the highest BC in module 7 and in the
entire network structure as Tceb2, a sub-
unit of the TF B complex that activates
RNA Pol II activity (Fig. 3C). Together,
the central role of Tceb2 in core transcrip-
tion and the enrichment of TFs and chro-
matin modifiers in the L cluster imply
that transcriptional regulation is a core
component of the network, a prediction examined further below.

Transcriptional regulatory dynamics underlie the transcriptomic

response to intruder

Transcriptional regulatory network reconstruction identifies a cohort of TFs

central to intruder response

To identify TFs orchestrating this challenge response, we recon-
structed a transcriptional regulatory network (TRN) across the ex-
pression data set using the ASTRIX approach. ASTRIX is also
based on coexpression but centers on expressed TFs and highly
correlated putative “target genes” (Chandrasekaran et al. 2011).
The analysis yielded a TRN consisting of 4251 interactions be-
tween 253 TFs and 1211 target genes (Supplemental Table S10).
We validated this TRN by comparing TF–gene interactions in our
TRN with those constructed using DNase footprinting from the
ENCODE Project (Stergachis et al. 2014), and found highly signifi-
cant overlap between networks constructed using ENCODE data

from mouse adult and fetal brains (hypergeometric overlap test
P-values <10−11) compared with a random brain TRN with the
same TFs and targets (for further details, see Supplemental
Methods).

To identify the TFs most likely to drive the observed differen-
tial gene expression, we extracted those TFs with predicted target
sets enriched in pairwise and model DEGs (Supplemental Table
S11; pairwise results presented in Fig. 4). The TRN noted above in-
cludes TFs with related functions and outlines a regulatory archi-
tecture linking energy metabolism, developmental signaling,
neuron plasticity, and social behavior (Table 1). Especially note-
worthy is the presence of TFs associated with combinedmetabolic
and behavioral phenotypes including ESRRA, PLAGL1, NR4A1,
and NFATC2.

Significant global chromatin remodeling accompanies intruder response

Gene expression patterns integrate TF activity with chromatin
accessibility, and the magnitude and rapidity of the challenge-

Figure 4. Network of TFs with TF–TF interactions in the TRN highlighting tissue-specific and time-spe-
cific regulators. TFs whose targets were enriched for DEGs in FCX are orange, TFs whose targets were en-
riched for DEGs in HYP are dark gray, and TFs whose targets were enriched for DEGs in AMY are blue. The
times after social challenge where enrichment was found are depicted as shapes: Square nodes are en-
riched at 30 min, circular nodes are enriched at 120 min, and diamond-shaped nodes are enriched at
both 30 min and 120 min after challenge. Multicolored TF modules such as Pparg and Lhx2 were en-
riched for DEG in multiple regions or time points. TFs that were not enriched for any tissue-specific or
time-specific DEG—shown as small nodes—may represent homeostatic processes active across all
conditions.
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associated transcriptional response suggested that shifts in chro-
matin accessibility might underlie this response. Since accessible
chromatin is generally marked by histone H3 acetylated at lysine
27 (H3K27ac) (Hon et al. 2009), we carried out chromatin immu-
noprecipitation followed by deep sequencing (ChIP-seq) with a
validated H3K27ac antibody to map accessible chromatin in
each brain region at different time points after challenge
(Supplemental Table S12). We will refer to H3K27ac peaks shared
by challenged and control animals as “baseline peaks” and peaks
significantly altered in accessibility after challenge as “differential
accessibility peaks” (DAPs).

We identified 23,763 DAPs with at least a twofold difference
in H3K27ac enrichment (at HOMER P < 1 × 10−4) between chal-
lenged and control samples among all comparisons (Supplemental
Table S12). Chromatin near DEGs generally transitioned from an
open to a relatively more closed state after challenge in both
FCX and HYP, while chromatin transitioned to a more open state
in AMY samples over time, a pattern that mirrors the changes
seen in expression (Fig. 5A; Supplemental Table S12). Despite the
apparent match between accessibility and expression profiles,
DAPs did not track pairwise post-hoc differential expression in
matched regions and times after social challenge (Supplemental
Table S13A).

We attribute this mismatch to two general processes. First,
we believe there may be a mismatch in the speed of changes in
accessibility and in changes in expression. For example, the
only brain region in which DAPs significantly predict pairwise
DEGs is the AMY, where genes near DAPs at 30 min after social
challenge predict DEGs at 120 min after challenge (hypergeomet-
ric overlap test, FDR = 1.61 × 10−8). Therefore, DAPs detected at
120 min after challenge—by far the most numerous—may pre-
dict gene expression at later time points. Second, while baseline
H3K27ac peaks generally clustered near promoters (41.2% of
baseline H3K27ac peaks lie within 5 kb upstream of and 2 kb
downstream from transcription start sites), DAPs in every brain
region and time point displayed a highly significant preference
for more distal locations relative to baseline peaks (Fisher’s exact
test P-values <10−76) (Fig. 5B; Supplemental Table S13B).
Therefore, although it is more difficult to assign distal enhancers
to target genes conclusively, correlations limited to promoter-
proximal DAPs are likely to miss many significant regulatory
relationships.

To identify cases of potentially causative links between differ-
ential accessibility and expression, we examined DAPs within lon-
ger distances (100 kb) of the TSS of the closest pairwise DEGs. We
found 788 DAPs linked to 323 DEGs across brain regions and time

points after social challenge (Supplemental Table S14). Among
these DAPswere known distal enhancers, including an element lo-
cated approximately 10 kb downstream from the immediate early
gene Fos (Fig. 5C). This distal element, called “e5,” interacts with
the Fos promoter through 3D chromatin interactions in response
to neuronal stimulation of various types (Joo et al. 2016).
Together these data suggest that the modulation of distal enhanc-
ers and the three-dimensional chromatin landscape are hallmarks
of the social challenge response.

Motif enrichment within open chromatin regions reveals a role for pioneer

factors and highlights ESRRA activity in intruder response

To explicate the interaction between active TFs and chromatin
components, we asked whether known TF binding motifs
(TFBMs) were enriched in baseline chromatin near DEGs or in
DAP-DEGs. Although we did not find many DAPs near TSS posi-
tions, the highest density of baseline H3K27ac peaks was found
near TSS positions. We examinedmotifs within −5-kb to +2-kb in-
tervals, filtering data to include only motifs present in baseline-ac-
cessible regions within these intervals. By using this filter, we
found significant enrichment of TFBMs, including motifs for TFs
in the TRN (Supplemental Table S15A). For example, DEGs for
HYP and FCX showed enrichment for ESRRA-related motifs, par-
ticularly in DEGs down-regulated at 60 min. Importantly, we did
not detect significant TFBM enrichments without first filtering
for accessibility; limiting motif searches to accessible windows
thus greatly improved the accuracy of TFBM identification.

Focusing next on DAP-DEGs, we identified significant motif
matches (binomial test P-value <0.001) primarily to “pioneer fac-
tors” (for review, see Iwafuchi-Doi and Zaret 2014), including
TFAP2A, CEBPA, POU3F1, and MEIS1. We also identified enrich-
ments for TFBMs associated with chromatin remodeling factors
(HINFP1 [Ng et al. 1999]; ELK1 [Besnard et al. 2011]; EGR1
[Spaapen et al. 2013]) (Supplemental Table S15B). We regard these
statistical associations as evidence that the regulatory response to
challenge includes the action of pioneer and remodeling factors
to reshape the accessibility landscape near target genes.

The combined analysis of gene expression, chromatin accessi-
bility,network reconstruction,andDNAbindingmotifenrichment
revealed several apparentmechanisms throughwhichTFs andoth-
er key proteins participate in the challenge response (Table 2). For
example, while the abundance of some TFs, like Fos and Neurod2,
appearstoberegulated transcriptionally, thedifferentialexpression
mayormaynot be driven through differential accessibility. On the
otherhand, for TFs such as ESRRAwhosenuclear location andDNA

Table 1. Metabolic and neurological functions for TFs in the social challenge TRN

Function TF genes References

Neuropeptide signaling Foxg1, Stat5b, Pparg Buonfiglio et al. (2015); Garretson et al. (2015); Frullanti et al. (2016).
Insulin, glucose homeostasis,

oxidative phosphorylation
Esrra, Pparg, Nfatc2,

Nr4a1, Fhl2, Plagl1,
Pcbd1

Bayle et al. (2002); Savage et al. (2002); Yang et al. (2006); Dufour et al. (2011);
Hoffmann and Spengler (2012); Perez-Sieira et al. (2014); Li et al. (2015).

Wnt pathway Esrra, Pparg, Nfatc2, Fhl2,
Ctbp2, Tbr1

Murphy and Hughes (2002); Valenta et al. (2003); Auld et al. (2012); Papachristou
et al. (2014); Li et al. (2015); Wang et al. (2015).

Neuron differentiation,
neurite outgrowth and
synaptic plasticity

Neurod2, Neurod6, Nr4a1,
Nfatc2, Sall2, Tbr1,
Cux2, Foxg1, Klf9, E2f1,
Zeb2, Rcor2, Plagl1

Schwab et al. (2000); Graef et al. (2003); Pratt et al. (2004); Abrajano et al. (2009);
Pincheira et al. (2009); Scobie et al. (2009); Cubelos et al. (2010); Suzuki et al.
(2011); McKinsey et al. (2013); Chen et al. (2014); Huang et al. (2014); Adnani et al.
(2015).

Social behavior, emotional
learning

Esrra, Neurod2, Tbr1, Gli1 Lin et al. (2005); Huang et al. (2014); Cui et al. (2015); Hung et al. (2015a,b); Notwell
et al. (2016).
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binding activities are regulated post-translationally (Rossi et al.
2011;Husset al. 2015), theircentral action in theTRNappearswith-
out differential expression of the genes themselves.

ESRRA protein binds to promoters of metabolically active genes in FCX

A central hypothesis to emerge from these studies is that the adap-
tive response to social challenge couples the down-regulation of
brain oxidative phosphorylation to the activation of pathways as-
sociated with neuronal plasticity. Our data further indicate that
this transcriptional response is correlated with alterations in the
chromatin landscape coordinated with the activities of specific
TFs. At the nexus of these expression and regulatory dynamics
stands the TF ESRRA, a nuclear receptor known as a key regulator
of metabolism and differentiation (for review, see Villena and
Kralli 2008). Also highlighted in our cross-species study (Rittschof
et al. 2014), ESRRA was implicated in both the TRN and baseline
motif predictions presented here. Of particular interest, ChIP-
chip experiments involving human cell lines (Deblois et al.
2009) and mouse heart and liver (Dufour et al. 2007; Charest-Mar-
cotte et al. 2010) indicate that ESRRA is a direct regulator of energy
metabolism genes. Consistently, ESRRA mutations are associated
with both metabolic defects and social behavior deficits in hu-
mans and mice (Cui et al. 2015), suggesting a central role for
ESRRA in coordinating metabolic and behavioral response.

We tested a key provision of this hypothesis by performing
ESRRA ChIP-seq in FCX chromatin collected 30 min after
challenge, identifying 636 ChIP-seq
peaks (Supplemental Table S16). ChIP
peaks were strongly enriched for the
known ERRE motif shared by ESRRA
and paralogs (HOMER ESRRB motif en-
richment P-value: 1 × 10−356) and includ-
ed a number of previously identified
ESRRA binding targets. Notably, one of
the strongest peaks, mapped near the
Esrra promoter, marks a conservedmulti-
hormone response element that binds
ESRRA and other nuclear receptors
(Laganiere et al. 2004; Liu et al. 2005), in-
dicating auto-regulation.

Analysis of genes nearest ESRRA
ChIP-seq peaks showed especially high
enrichment for mitochondrial and oxi-
dative phosphorylation-related func-
tions (DAVID annotation cluster scores
= 26.95 and 14.85), as well as terms relat-
ed to glycolysis and gluconeogenesis.
Genes near ESRRA peaks were also highly
enriched in DEGs from the tissue:chal-
lenge:time factor of the GLM results (hy-
pergeometric overlap test P-value =
0.0053). Aside from energy metabolism
genes, ESRRA FCX binding sites were en-
riched near TF loci; these include DEGs
such as the genes encoding known
ESRRA interactor and energymetabolism
regulator GABPA and the TRN compo-
nent and neurodevelopmental TF
NEUROD2 (Supplemental Table S16;
Sakkou et al. 2007). These data suggest
thatEsrra is central to the challenge-relat-

ed response and potentially involved in coordinating the
regulation of energy metabolism genes with expression of neuro-
developmental TFs.

ESRRA is highly expressed in oligodendrocytes and neurons in FCX

Determiningwhere andwhen a gene or protein is expressed is cen-
tral to deciphering its biological function, and ESRRA is a case in
point. A recent study ruled out expression of mouse ESRRA in cor-
tical astrocytes and concluded that the protein was neuronal, but
did not examine markers to test this assumption (Cui et al.
2015). Furthermore, the cell-type–specific expression data upon
which the PSEA model was based showed Esrra gene expression
in multiple cortical cell types (Zhang et al. 2014). Since PSEA anal-
ysis tied the energy metabolism signal primarily to oligodendro-
cytes in the FCX, we hypothesized that ESRRA would also be
expressed in that cell type.

To test this hypothesis, we used an antibody for ESRRA to-
gether with those for two cell-type–specific markers: CNPase (a
marker of oligodendrocyte cytoplasm) andNeuN (amarker of neu-
ronal nuclei) in immunohistochemistry on thick (200-µm)
CLARITY-cleared mouse brain slices. ESRRA protein was expressed
at high levels in the nuclei of cells across the cortex (Fig. 6A). Like
manyTFs andmost nuclear receptors (Rossi et al. 2011), ESRRAwas
also present in the cytoplasm, including cellular processes. High-
magnification images revealed ESRRA protein expression in oligo-
dendrocyte nuclei, identified by being surrounded by thin layers of

Figure 5. (A) H3K27ac DAPs in pairwise comparisons at a threshold of twofold. Solid bars above the x-
axis represent peaks with increased accessibility in experimental samples relative to control. Outlined bars
below the x-axis represent peaks with decreased accessibility in experimental samples. (B) Probability den-
sity of locations of differential accessibility in a 30-kb window around TSS sites. While the highest density
of DAPs still lies within 5 kb upstream of or 2 kb downstream from (gray boxes) the TSS, the majority of
DAPs are distal. Relative to background accessibility (thin black lines), DAPs have lower density near the
TSS and higher density at distal sites. (C) Example distal differential accessibility peak in a known distal
enhancer element for the immediate early gene Fos in FCX at 120 m after challenge.
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CNPase-positive cytoplasm (arrow in Fig. 6B); ESRRA also cos-
tained CNPase+ cytoplasm, including processes extending from
these cells. However, a number of large ESRRA+, CNPase− nuclei
were also found in the same regions (blue arrows in Fig. 6B,C).
These large nuclei correspond to neurons, as evidenced by costain-
ing with neuronal marker NeuN (green arrows in Fig. 6D,E).
Together these data place ESRRA protein in oligodendrocytes as
well as neurons in the cortex, suggesting that the protein serves
regulatory functions in both types of cells.

Discussion

Wedescribe a rich data set documenting gene expression and chro-
matin modulation in the mouse brain as animals respond to a sa-
lient social challenge in the form of a territorial threat. It is well

known that threatened animals adjust their behavior after expo-
sure to such a challenge (Fernald and Maruska 2012), and our
goal was to develop a novel view of sequence of molecular events
that direct this behavioral modulation. To do this, we measured
the changing patterns of gene expression and chromatin profiles
across the brain and over time and integrated these data to develop
new insights to the regulatorymechanisms underlying a very com-
plex biological response.

The completed analysis supports and significantly elaborates
amodel first suggested in our earlier study (Rittschof et al. 2014), in
which social challenge induces a rapid shift in energy metabolism
that is linked to activation of developmental signals driving neural
plasticity in the brain. Here, we demonstrate that the energy shift
is correlated primarily with glia, particularly oligodendrocytes, in
this behavioral context and that themetabolic signal in these cells
prefigures TRN activation, primarily in AMY neurons. Significant

Table 2. Summary of key genomics results for selected genes reveals different modes of activation and participation in the challenge response

Gene

Model DEG Pairwise DEG DAP associationa
TRN:target
enrichment

Promoter/DAP
Motif

enrichmentb

ESRRA
targetFactor FDR Data setc FDR Data setc p Date setc,d FDR Data setc FDR

Esrra – – – – – – HYP30
HYP-All
FCX-All

0.0039
0.0090
0.046

HYP60
FCX30

0.046
0.080

Y

Srf – – – – All-120 0.0018 HYP60 0.0028
Foxg1 – – HYP30 6.2 × 10−6 HYP30 2.1 × 10−9 HYP30 2.0 × 10−4 HYP60 0.046 –

HYP60 7.8 × 10−3 – –

– – HYP120 1.7 × 10−5

Fhl2 – – AMY120 0.089 – – AMY120 8.7 × 10−4 NA – Y

Myt1 Tissue:Challenge:
Time

FCX30 0.068 – – FCX-All
FCX120

0.002
0.003

– – Y

Nr4a1 – – HYP30 0.0011 – – HYP-All 4.6 × 10−4 HYP30 0.005 –

Neurod2 – – – – AMY30 8.0 × 10−7 AMY-All 2.2 × 10−5 – – Y
AMY120 0.0023 AMY120 4.6 × 10−8 AMY120 2.6 × 10−6 – –

Tbr1 – – AMY120 2.5 × 10−4 – – AMY120 0.037 AMY120 0.048 –

Nfatc2 – – AMY120 0.039 AMY120 3.9 × 10−2 AMY120 6.5 × 10−4 AMY120 0.048
Gabpa Challenge:Time 0.084 – – – – – – FCX30∗ 0.077 Y
Rara – – FCX30 0.0372 FCX30 3.05 × 10−7 FCX30 0.080 Y
Egr2 – – FCX120 0.037 FCX120 1.1 × 10−6 – – FCX120∗ 0.011 Y
Fos – – HYP30 2.0 × 10−8 – – – – – – –

HYP120 0.028 HYP120 9.6 × 10−5

AMY30 0.0016 AMY30 4.5 × 10−11

AMY120 1.2 × 10−6

Tcf7l2 – – HYP30 1.4 × 10−9 HYP30 2.2 × 10−8 – – – – –

HYP120 6.3 × 10−16 HYP120 2.8 × 10−8

AMY120 6.3 × 10−7 AMY120 6.5 × 10−9

FCX120 1.3 × 10−7 – –

Ide Challenge 0.039 HYP30 5.5 × 10−5 – – NA NA NA NA –

HYP60 5.0 × 10−5 – –

HYP120 8.2 × 10−6 – –
AMY30 0.0031 AMY30 1.1 × 10−5

AMY120 3.5 × 10−8

– – FCX30 2.5 × 10−7

FCX120 0.011 FCX20 1.2 × 10−6

Pomc Tissue:Challenge:
Time

6.8 × 10−4 HYP30 1.4 × 10−9 – – NA NA NA NA Y

Tissue:Challenge 7.2 × 10−4 HYP60 8.8 × 10−5 – –

HYP120 0.0071 HYP120 8.9 × 10−5

For each genomics data source and analysis—differentially expressed genes (DEGs), differential accessibility peaks (DAPs), transcriptional regulatory
network (TRN) target enrichment, and motif enrichment analysis—significant results and P-values are reported.
aFor genes associated with multiple DAPs in a particular brain region and time point, the lowest P-value is shown.
bEnrichment in DEG promoter-associated regions (−5 kb, +2 kb) except entries marked by asterisk, which are enriched in DAP-DEG regions.
cAbbreviation for brain region, followed by time (in minutes) after challenge; NA = not applicable.
d“All” identifies enrichment across all time points or across brain regions at a time point (for details, see Supplemental Table S11).
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shifts in chromatin accessibility over time and across the brain,
particularly affecting regulatory elements that are far distal from
the TSS of nearest genes, are correlated with these events. TRN re-
construction and motif enrichment highlight the underlying net-
work of interacting TFs, including many with known functions in
energy homeostasis and neurodevelopment, and estrogen-related
receptor alpha is highlighted for an early, central role. We show
that ESRRA, which is expressed in both cortical oligodendrocytes
and neurons, binds to energy homeostasis-related and TF genes
in the FCX of challenged resident mice. Since ESRRA was also im-
plicated in our cross-species analysis of the response to territorial
threat (Rittschof et al. 2014), we propose ESRRA as a central node
in a gene network coupling metabolic signaling with neuronal
and behavioral plasticity in the context of social threat across a
diverse array of animal species.

More specifically, these data provide new information about
the traverse of these events across the brain over time. The deeply
conserved metabolic signal observed rapidly after challenge
(Rittschof et al. 2014) is known in honey bees to represent a shift
in the balance of glucose metabolism away from oxidative phos-
phorylation and toward aerobic glycolysis, better known as the
Warburg effect (Chandrasekaran et al. 2015).Warburgmetabolism
has been linked to learning in other contexts, including adaptive
motor learning in mice (Shannon et al. 2016). An interesting
corollary to this linkage is that glycolytic “hotspots” in the adult
human brain—which are also hotspots of plasticity—display
“transcriptional neoteny,” or gene expression patterns characteris-
tic of the developing brain (Goyal et al. 2014). Thus, Warburg me-
tabolism correlates with reawakening of genes associated with
neuron differentiation and plasticity both spatially and temporal-
ly. Although astrocytes are a primary source of glycolytic activity in
mammalian brains, other cell types, including neurons and oligo-
dendrocytes, are sensitive to blood glucose levels and respond to
other signals of metabolic state (Gundersen et al. 2015). Our study
points to oligodendrocytes as the site of a Warburg-like metabolic
shift and suggests that this shift is translated throughmetabolical-
ly-sensitive signaling pathways and TFs to neurons, activating the
neotenous, plastic state.

Outlining themechanism in further detail, our data reveal an
earlyburstof neuropeptide signaling, very likely responsible for the
metabolic shift, which is accompanied by calcium channel and
neurotransmitter-related activity in the HYP and FCX. This initial
phase is followed temporally by significant up-regulation of “neo-

tenous” neurodevelopmental signaling
genes, particularly in the AMY.
Underlying this entire sequence of
events, the modeling results revealed
the persistent modulation of oxidative
phosphorylation as the most robust sys-
tem-wide transcriptional response.
Therefore, we conclude that the down-
regulation of oxidative phosphoryla-
tion-related genes we detected at an early
time point (Rittschof et al. 2014), driven
rapidly after challenge by neural signal-
ing and neuropeptide release, has an en-
during effect in the form of plasticity
that follows social challenge response
across the brain.

Second, we present new informa-
tion regarding the cis- and trans-acting
components that regulate these process-

es. The response to challenge is marked by a substantial level of
global chromatin reorganization, with chromatin dynamics corre-
lating strongly with overall patterns of gene expression across the
brain. Unlike an earlier study focused on response to foot shock
(Halder et al. 2016), we detected a global reorganization of chroma-
tin in response to social challenge, even at the earliest time point.
Although chromatin structure is generally thought to be stable in
adult cells (Whitney et al. 2014), recent work shows that activity-
dependent chromatin remodeling happens in neurons within an
hour (Yang et al. 2016). Our data suggest that the chromatin land-
scape is altered very quickly in the adult brain after a salient emo-
tional experience. Based upon data from AMY, where early
differential accessibility appears to predict late differential expres-
sion, we conclude that differential chromatin accessibility may
prefigure differential expression. The differentially accessible
peaks we identified were enriched in motifs associated with pio-
neer factors and chromatin modifiers, suggesting an important
role for these factors in determining social response; the fact that
most DAPs were located far from TSS suggests the importance of
three-dimensional chromatin architecture in this epigenetic pro-
cess. In addition to known enhancers, these DAPs comprise a
rich resource of novel candidate regulatory elements that are
linked to social behavior by this study for the first time.

By using network-based and motif-enrichment tools, we pre-
dicted a cohort of coordinated TFs to interact with these novel
regulatory elements to drive the transcriptional response. The
TRN comprises TFs known to integrate metabolic and neurobio-
logical functions, including the estrogen-related receptor ESRRA.
ESRRA itself was not differentially expressed in this study, and
the ESRRA motif was enriched near baseline but not differential
accessibility peaks. Yet, Esrra expression, ESRRA motif enrich-
ment, and ESRRA ChIP-seq peaks strongly predict the differential
expression of other genes. These facts pose a puzzle on first con-
sideration, but they are reconciled by the nature of this TF protein
and its known modes of action. In particular, ESRRA is a nuclear
receptor, the activity of which is regulated through ligand binding
and post-translational modifications that impact nuclear localiza-
tion and DNA binding properties (Ozcan et al. 2010). Indeed,
many TFs, including some of those in our network, are known
to be regulated by post-translational events that affect their local-
ization, DNA binding, protein–protein interactions, and more
(e.g., Reich and Liu 2006; Ivanova et al. 2007; Ozcan et al.
2010; Boldingh Debernard et al. 2012; Dayalan Naidu and

Figure 6. Localization of ESRRA. (A) Sagittal overview showing FCX distribution of ESRRA protein (red)
with nuclei counterstained by Hoechst 33342 (blue). Blue and green boxes show approximate positions
of panels B,C and D,E, respectively. (B,C) Fine detail in the FCX showing colocalization of ESRRA (red) and
CNPase (green) in individual oligodendrocytes (blue arrow) without (B) and with (C) nuclear counter-
stain (blue). (D,E) Fine detail in the FCX showing costaining of ESRRA (red) and NeuN (green) in individ-
ual neurons (green arrow) without (D) and with (E) nuclear counterstain (blue).
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Dinkova-Kostova 2017); TFs of this type thus need not to be sig-
nificantly differentially expressed, or permitted de novo access
to differentially accessible chromatin sites, to carry out differential
regulatory roles.

Consistent with ChIP results in other tissues (Dufour et al.
2007; Charest-Marcotte et al. 2010), ESRRA binds primarily near
genes involved in energy metabolism in cortical cells and is en-
riched near challenge-related DEGs. However, ESRRA binding sites
are also enriched near TF genes, including key neurodevelopmen-
tal regulators, suggesting one possible mechanism through which
metabolic and neurodevelopmental components of social chal-
lenge response might be transcriptionally coordinated. Known
functions of ESRRA are consistent with this proposed role.
Specifically, mouse Esrra mutations are associated with defects in
insulin and glucose homeostasis as well as behavioral rigidity
and social deficits (Luo et al. 2003; Dufour et al. 2011; Cui et al.
2015), and in human patients, ESRRA is linked to the combined
metabolic and behavioral symptoms of eating disorders (Cui
et al. 2013). On the cellular level, ESRRA regulates Warburg-like
metabolic shifts in cancer cells and during cellular differentiation
in mammals (Nie and Wong 2009; Charest-Marcotte et al. 2010)
and coordinates a Warburg shift that is essential to Drosophila de-
velopment (Tennessen et al. 2011). Together these data argue that
ESRRA is an essential component in coordinating Warburg-like
metabolism, developmental functions, and behavioral plasticity
across the evolutionary spectrum.

It is not known how Warburg metabolism interfaces with
neural plasticity, but two general hypotheses have been advanced.
First, the redeployment of glycolysis characteristic of the Warburg
response increases synthesis of raw materials like lipids, amino ac-
ids, and nucleotides. In cancer and development, these materials
are essential to the rapid generation of new cells (for review, see
VanderHeiden et al. 2009; Tech et al. 2015). In the brain, thesema-
terials would be directed toward neurite outgrowth, dendritic
branching, synaptogenesis, synaptic remodeling, andmyelination
(Goyal et al. 2014). Alternatively or additionally, byproducts of aer-
obic glycolysis are shuttled between glia and neurons, interfacing
with a range of signaling pathways (Yang et al. 2014; Gundersen
et al. 2015; DiNuzzo 2016), which possibly include signaling cas-
cades required to organize the rawmaterials into new neural struc-
tures (Agathocleous and Harris 2013).

These signaling pathways may, in turn, activate neuronal
gene expression. For instance, the activities of some TFs, including
ESRRA regulator and coactivator PPARGC1A, are regulated directly
by metabolites and metabolic signaling (Scarpulla 2006). Beyond
its role in energy homeostasis, ESRRA is known as an upstream reg-
ulator ofWnt (Auld et al. 2012), andWnt intersects with ESRRAon
both metabolic and behavioral axes. Notably, mutations in the
Wnt effector, Tcf7l2, are associatedwith abnormal insulin and glu-
cose homeostasis as well as deficits in fear learning (for review, see
Nobrega 2013). Tcf7l2 is one of a small number of genes signifi-
cantly up-regulated across the brain 120 min after challenge, sug-
gesting an important late role in challenge response. Together
these data suggest a model in which Wnt and neural plasticity
downstream from Tcf7l2 is metabolically regulated through
ESRRA in socially responsive regions of the brain.

We close by pointing to a clear limitation of this study: Our
experiments were conducted in tissue homogenates, limiting our
ability to assign expression or chromatin signals to any specific
cell type. Our data, together with results of previous studies (Cui
et al., 2015), assign ESRRA regulatory function primarily to neu-
rons and oligodendrocytes in the cortex, suggesting these cells as

the locus of the metabolic shift in this specific context. However,
cell-type–specific methods of discovery will be required to address
this hypothesis and add further depth to the discussion. Never-
theless, we provide a novel view of the brain’s response to social
challenge, including a large collection of novel challenge-associat-
ed enhancers and networked TFs with predicted metabolic and
neurobehavioral roles. The data build support for a deeply con-
served, fundamental, andmechanistic link between shifts in brain
energymetabolismand subsequent redeployment of developmen-
tal factors for behavioral plasticity in the context of emotional
learning.

Methods

Animals

All protocols were approved by the UIUC IACUC (protocol no.
15245) and undertaken in compliance with the NIH Guide for
the Care and Use of Laboratory Animals. All reasonable efforts
were undertaken to minimize animal suffering. Briefly, after a pe-
riod of habituation to our animal room and cohousing with fe-
males to establish a territory, animals were confronted with an
unfamiliar intruder for 5 min and then kept in a quiet, dark
place for 30, 60, or 120 min until they were euthanized by cervi-
cal dislocation. Immediately after euthanasia we extracted FCX,
HYP, and AMY. A schematic of the dissection is included as Sup-
plemental Figure S1, and detailed methods for animal husband-
ry, behavior, and dissections are included in Supplemental
Methods.

RNA extraction and library preparation and RNA sequencing

Dissected tissue was immediately flash-frozen in liquid nitrogen
and held at −80°C. Total RNAwas prepared and analyzed for qual-
ity as previously described (Bolt et al. 2016). RNA-seq libraries were
prepared robotically from total RNA and then sequenced on an
Illumina HiSeq 2500 sequencer. Detailed methods for RNA extrac-
tion, library preparation, and RNA-seq are included in Supplemen-
tal Methods.

RNA-seq bioinformatics, functional enrichment, and WGCNA

analysis

FASTQ files were aligned to the Ensembl (Flicek et al. 2012) anno-
tation of the NCBIM37 version of the mouse genome using
TopHat2 (Kim et al. 2013) and counted using HTSeq (Anders
et al. 2015), and differential expression analyses were done using
the Bioconductor package edgeR (Robinson et al. 2010).

To enrich for biological systems and visualize the results of
the pairwise comparisons, we used enrichment and visualization
techniques similar to the online tool REVIGO (Supek et al.
2011). Other systems enrichments utilized DAVID (Huang da
et al. 2009a,b).

We used WGCNA (Langfelder and Horvath 2007) in signed
mode to find modules of coexpressed genes across the entire
data set. To visualize only the coexpression edges representing
the most stable relationships, we extracted only the edges where
the absolute value of correlation coefficients was >0.85 and was
the same sign in every tissue. We visualized these relationships,
calculated betweenness centrality, and plotted modules using
Cytoscape (Shannon et al. 2003).

Detailed methods for RNA-seq bioinformatics, functional en-
richment, and WGCNA analyses are included in Supplemental
Methods.
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RT-qPCR confirmation

RT-qPCR confirmation was performed for seven genes: Dnajb1I,
Ide, Igf2, Oxt, Pmch, Tcf7l2, and Zic1. Primer sequences, run condi-
tions, and results are presented in Supplemental Table S17. A com-
parison of results to RNA-seq is presented in Supplemental Figure
S1, and complete RT-qPCR methods are included in
Supplemental Methods.

Cell-type deconvolution analysis

Because brain tissue is a heterogeneous mixture of multiple dis-
tinct cell types, we used a modification of PSEA to deconvolve
our samples and identify genes associated with some of the
many cellular components of brain tissue (Kuhn et al. 2011). We
used reference signals from astrocytes, neurons, oligodendrocytes,
microglia, and endothelial cells generated in a previous RNA-seq
experiment on sorted cells from adult mouse FCX (Zhang et al.
2014). Briefly, after regressing expression values on these reference
signals, we used high-throughput model selection to find the best
model or models, a good indicator of cell-type specificity. Details
of the best models are reported in Supplemental Table S8, and de-
tailed methods for cell-type deconvolution are included in
Supplemental Methods.

TRN reconstruction

ASTRIX (Analyzing Subsets of Transcriptional Regulators Influ-
encing eXpression) was applied to infer a TRN as previously de-
scribed (Chandrasekaran et al. 2011). The predicted targets of TFs
were defined as those genes that share very high mutual informa-
tion with a TF and can be predicted quantitatively with high accu-
racy. We identified the TFs with predicted target genes most
significantly enriched in DEGs at specific time points, tissues, or
a combination of those parameters to identify a cohort of the
TFs most predictive of challenge-associated DEG sets (Fig. 3; Sup-
plemental Table S10). Further, we validated these TFs and targets
against references TRNs from ENCODE (Stergachis et al. 2014). De-
tails of the methods used to reconstruct the TRN are provided in
Supplemental Methods.

ChIP tissue preparation, chromatin immunoprecipitation,

and library preparation

After husbandry, challenge, and dissection as in the RNA-seq ex-
periment for 30- and 120-min samples, tissue samples dissected
from five animals were pooled for ChIP-seq. Briefly, nuclei were
isolated, chromatin was fragmented, and a rabbit polyclonal anti-
body raised against acetylated histone H3 lysine 27 (Abcam
ab4729) or ESRRA (Santa Cruz sc-66882) was used to precipitate
chromatin. After ChIP, immunoprecipitated DNA was checked
for quality and then used to prepare libraries that were sequenced
with an IlluminaHiSeq 2500 sequencer. Detailedmethods used for
ChIP-seq tissue preparation, library preparation, and sequencing
are included in Supplemental Methods.

ChIP-seq bioinformatics

Sequence data were mapped with Bowtie 2 (Langmead and
Salzberg 2012) to the UCSC Mus musculus mm9 genome and
then analyzed for peaks using HOMER (Hypergeometric Optimi-
zation of Motif EnRichment, Heinz et al. 2010). Differential
chromatin peaks were identified as any peaks that changed at
least twofold between conditions with a significance cutoff of
1 × 10−4.

To identify differential accessibility peaks associated with dif-
ferential expression (DAP-DEGs), a chromatin domainwas defined

for each gene in the mouse mm9 genome. First, for each Ensembl-
annotated splice variant arising from the gene, a window was de-
fined that began 100 kb upstream of the transcription start site
and ended 100 kb downstream from the transcription end site.
Next, this window was truncated so that it did not intersect with
any transcript of any other gene. A DAP that overlaps with any
window of any transcript of a gene, along with that corresponding
gene, constitutes a DAP-DEG.

Detailed methods used for ChIP-seq bioinformatics and sta-
tistics used for DAP calling are reported in Supplemental Methods.

Cis motif analysis

We used the Stubb algorithm (Sinha et al. 2003) to identify se-
quence segments with significant presence of a TF binding motif
(position weight matrix), scanning the genome with 500-bp win-
dowswith a 250-bp shift size. To incorporate accessibility informa-
tion (captured by H3K27ac ChIP-seq data), we required that the
motif score of a 500-bp window be considered only if the window
is deemed “accessible”; i.e., the windows either overlapped with
identified H3K27ac ChIP peaks or were proximal to such peaks
and had read count above input control. All suchwindowswere as-
signed scores equaling their average read count, and the resulting
profile of genome-wide scores was smoothed as previously de-
scribed (Kazemian et al. 2013). Finally, windows scoring in the
top three percentile were considered accessible. Detailed methods
used for cis motif analysis are reported in Supplemental Methods.

Identification of motifs in DAP-DEGs

To test for cis motif enrichment in DAP-DEGs, we adapted the
method above as follows: For each motif, the Stubb score P-value
corresponding to the best-scoring 500-bp window that overlapped
each DAP-DEG was assigned as the score of that DAP-DEG. The
number of DAP-DEGswith scores <0.05 were counted and subject-
ed to a binomial test where the success probability parameter was
learned from the frequency of such motif scores in size-matched
background sequences that were sampled from gene deserts and
did not contain the H3K27ac mark.

Thick-slice CLARITY immunohistochemistry

To assess the cellular and subcellular localization of specific TFs, we
used a CLARITY protocol modified to work on 200-µM-thick slices
of brain (Chung et al. 2013). Briefly, male animals were transcar-
dially perfused, and then brains were extracted and fixed in the
perfusion solution before being sectioned in 200-µm slices on a vi-
bratingmicrotome. Sections were embedded in hydrogel and then
cleared overnight using electrophoretic tissue clearing. After wash-
ing, tissue was incubated with primary antibodies (ERR-alpha:
Santa Cruz sc-66882; CNPase: Millipore no. MAB326) for 3 d.
After three more washes, cleared tissues were incubated with fluo-
rescent secondary for 3 d before being washed. The final wash in-
cluded the nuclear counterstain Hoechst 33342. The tissue slices
were then cleared in RIMS made from 70% Histodenz (Sigma no.
D2158) in PBS with Triton-X100 and mounted on lifter slides be-
fore being imaged on a Zeiss LSM 710 confocal microscope.
Detailed methods used for thick slice CLARITY are reported in
Supplemental Methods.

Data access

The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE80345.
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