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ABSTRACT
This work presents an approach to solve stochastic optimal

control problems in the application of flow quality management
in reservoir systems. These applications are challenging because
they require real-time decision-making in the presence of uncer-
tainties such as wind velocity. These uncertainties must be ac-
counted for as stochastic variables in the mathematical model.
In addition, computational costs and storage requirements in-
crease rapidly due to the stochastic nature of the simulations and
optimisation formulations. To overcome these challenges, an ap-
proach is developed that uses the combination of a reduced-order
model and an adjoint-based method to compute the optimal so-
lution rapidly. The system is modelled by a system of stochas-
tic partial differential equations. The finite element method to-
gether with collocation in the stochastic space provide an ap-
proximate numerical solution—the “full model”, which cannot
be solved in real-time. The proper orthogonal decomposition and
Galerkin projection technique are applied to obtain a reduced-
order model that approximates the full model. The conjugate-
gradient method with Armijo line-search is then employed to find
the solution of the optimal control problem under the uncertainty
of input parameters. Numerical results show that the stochastic
control yields solutions that are above the bound of the set solu-
tions of the deterministic control. Applying the reduced model to
the stochastic optimal control problem yields a speed-up in com-
putational time by a factor of about 80 with acceptable accuracy

∗Correspondence to: g0801993@nus.edu.sg

in comparison with the full model. Application of the optimal
control strategy shows the potential effectiveness of this compu-
tational modeling approach for managing flow quality.

INTRODUCTION
Finding the solution of optimal flow control problems can

be a computationally expensive undertaking. For simulations to
support real-time decision-making in applications governed by
partial differential equations (PDEs), the discretized models may
have many thousands or even millions degrees of freedom. The
situation is even more challenging for stochastic control prob-
lems because of the presence of uncertainties such as wind ve-
locity. These uncertainties must be accounted for as stochastic
variables in the mathematical model. The computational costs
and storage requirements increase rapidly due to the stochastic
nature of the simulations and optimization formulation. In such
situations, the use of traditional discretization methods, such as
finite element or finite volume methods, to achieve real-time sim-
ulations may be infeasible.

The goal of this work is to present an efficient computational
approach to solve stochastic optimal control problems. The ap-
proach uses the combination of a reduced-order model (ROM)
and an adjoint-based method to compute the optimal solution
rapidly. The system is modelled by a system of stochastic par-
tial differential equations (SPDEs). The adjoint-based method,
also known as the one-shot or Lagrange multiplier method, has

Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis 
ESDA2012 

July 2-4, 2012, Nantes, France 

1 Copyright © 2012 by ASME

ESDA2012-82061

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 04/17/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



been widely used in optimization and optimal control problems
[1]. For stochastic optimal control problems, simulated solutions
need to be evaluated repeatedly over different realizations of the
uncertain input parameters. Our “full model” utilizes the finite
element method [2] together with sparse grid stochastic colloca-
tion to approximate solution of the SPDEs.

In the collocation framework, candidate solutions are com-
puted at sample points in the multi-dimensional stochastic space.
The global solution of the SPDEs is then represented using in-
terpolation functions [3–5]. The Smolyak algorithm provides a
minimal number of collocation points to construct the interpola-
tion functions, which for many problems leads to efficient and ac-
curate representation of the stochastic solutions [3,6]. The sparse
grid collocation method has been widely applied for stochastic
applications, such as natural convection problems [7], source in-
version and flow through porous media [8].

Model order reduction techniques aim to reduce the dimen-
sion of a state-space system, while retaining the characteristic
dynamics of the system and preserving the input-output rela-
tionship [9]. Many large-scale model reduction frameworks are
based on a projection approach. The idea is to approximate any
solution of the PDEs of interest as a linear combination of solu-
tions that have been pre-computed and to project the large-scale
governing equations onto the subspace spanned by a reduced-
space basis, yielding a low-order dynamical system. The most
popular technique to find the basis is the proper orthogonal de-
composition (POD). POD provides an orthogonal basis for a set
of data, which may be theoretical, experimental or computational
data. Sirovich introduced the method of snapshots, where each
snapshot contains spatial data obtained from numerical simula-
tion at a fixed time, as a efficient way for determining the POD
basis vectors for large-scale problems [10].

This paper is outlined as follows. In the next two sec-
tions, we briefly introduce the mathematical model, the numeri-
cal method for stochastic optimal control of the problems of in-
terest, and the model reduction techniques. In the subsequent
section, we use the numerical example to demonstrate the solu-
tion of stochastic control problems and the reduced-order model
performance. We provide some concluding remarks in the final
section.

STOCHASTIC OPTIMAL CONTROL PROBLEM SETUP
Suppose that D ⊂ R

d ,d = 1,2,3 is a physical domain with
boundary Γ. Let the diffusivity κ(x, t;ω) be function mapping
the product space D × [t0, t f ]×Ω → R, where x ∈D denotes the
spatial coordinates and t ∈ [t0, t f ] denotes time. The randomness
of the diffusivity is contained in ω ∈ Ω, where Ω is the sample
space. A contaminant concentration which is represented by a
function c :≡ c(x, t;ω) satisfies the stochastic parabolic differen-
tial equation (SPDE), boundary conditions and initial conditions

as follows:

∂c
∂ t +u ·∇c−∇ · (κ(x, t;ω)∇c

)
= f in D × [t0, t f ], (1)

c = g on ΓD × [t0, t f ], (2)
∂c
∂n

= 0 on ΓN × [t0, t f ], (3)

c(x, t0;ω) = c0(x;ω) in D , (4)

where f is the external source and c0 the given initial condition.
The inlet boundary ΓD is subjected to a Dirichlet condition, while
the remainder of the boundary ΓN = Γ \ΓD satisfies Neumann
conditions. The velocity field u ∈ R

d in the convective term is
used as a control parameter. In general, u can be a function of
x and t, although in this work we take it to be constant. For any
given u, one can solve for the solution c(x, t;ω).

The goal of our control problem is to flush the contaminant
out of the domain by controlling the velocity of the fluid pump.
The objective functional is to seek a velocity over an admissible
control set u ∈ Uad that minimizes a weighted combination of
the L2−norm of the expected contaminant field and the velocity
field:

min
u∈Uad

Ĵ =
1
2

∫ t f

t0
E

[
‖c(x, t;ω)‖2

L2

]
dt +

β
2

∫ t f

t0
‖u‖2

L2dt, (5)

subject to the constraints Eqns. (1)–(4). Here, β is a constant
controlling the relative weighting of the components of the ob-
jective function and E[·] denotes the expectation operator.

Stochastic Collocation Method
In the collocation framework, the stochastic problem is

transformed into a parameterized family of deterministic PDEs
using an assumption of finite-dimensional noise [4, 11]. The
approximation of the SPDE solution is then computed based
on a weighted combination of the solutions at each sample in
the collocation space. Under the finite-dimensional noise as-
sumption, the uncertain diffusivity field κ can be re-written as
κ(x, t;ω) = κ

(
x, t;Y(ω)

)
. Here Y(ω) = {Yi(ω)}NY

i=1 are in-
dependent random variables. The multi-dimensional stochastic
space ΘNY is then defined based on vector Y(ω). For more de-
tails, refer to [5]. We then represent κ as

κ(x, t;Y) = E

[
κ
]
(x, t)+

NY

∑
i=1

κi(θ)Yi(ω), (6)

where the κi are now deterministic functions and θ represents the
coordinates in the stochastic space. This expansion in Eqn. (6)
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could be computed for example using the Karhunen-Loève de-
composition [12].

We now define a collocation space P
P−1(Θ) ⊂ L2(ΘNY ) as

the span of tensor product polynomials with degree at most
P− 1. The collocation space has two attributes: the colloca-
tion points

{
θ k = (ξ ,η)

}P
k=1 ⊂ Θ and the collocation weights{

wk}P
k=1. The uncertain diffusivity field κ in Eqn. (6) can now

be considered as a function of variable θ k if the random vec-
tor Y(ω) is fixed. As a result, the stochastic collocation re-
quires evaluation of the solution c(x, t;Y) at each collocation
point

{
θ k = (ξ ,η)

}P
k=1. Hence, the SPDE problem with an un-

certain input parameter is now written as a deterministic param-
eterized PDE where θ is the input parameter. Let ck(x, t;Y) be
the solution of the deterministic PDE at each θ k. The solution of
the SPDE is a global approximation constructed by linear com-
bination of the solution at collocation points.

cF(x, t;Y) =
P
∑
k=1

ck(x, t;Y)Lk(θ), (7)

where Lk(θ) is the Lagrange interpolation function correspond-
ing to the kth collocation point.

Finite Element Approximations
The finite element method (FEM) [2] is employed to obtain

a semi-discrete set of equations with the following form

Mċ+
(
C(u)+K(t;θ k)

)
c = F, (8)

c(t0;Y) = c0(Y). (9)

Here, c(t;Y) ∈ R
N is the discretized approximation of c(x, t;Y)

and contains N state unknowns. ċ is the derivative of c with re-
spect to time. M ∈ R

N×N is the mass matrix, C(u) ∈ R
N×N is

the convective matrix, K(t;θ k) ∈ R
N×N is the stiffness matrix,

and F ∈ R
N is the external source. Here, N is the number of grid

points and θ k the kth collocation point.
We now consider optimal control with the cost functional as

given in Eqn. (5). In the collocation framework, the expected
value is approximated via a quadrature rule (such as Clenshaw–
Curtis quadrature [13]) built on the collocation points. Define{

wk}P
k=1 to be the quadrature weights associated with the collo-

cation points,

wk =
∫

Θ
ρ(Y)L2

k(θ)dθ , for k = 1, · · · ,P, (10)

where ρ(Y) is the probability density of the random vector Y.
The cost functional is replaced by the discretized problem as fol-

lows

min
u∈Uad

Ĵ (u) =
1
2

∫ t f

t0

P
∑
k=1

wkcT (t;Y)Mc(t;Y)dt

+
β
2

∫ t f

t0
‖u‖2

L2dt. (11)

Here, the solution c(t;Y),k = 1, · · · ,P, solves the ordinary dif-
ferential equations (ODEs) (8)-(9).

The Optimality System
We introduce the Lagrange multiplier functional with the ad-

joint state p(t;Y) and adjoint initial condition χ ∈ R
N as follows

L (c,u,p,χ) = Ĵ (u)−χT
(

c(t0;Y)− c0(Y)
)

− pT
(

Mċ+
(
C(u)+K(t;θ k)

)
c−F

)
. (12)

The first-order necessary conditions, known as the Karush-Kuhn-
Tucker (KKT) optimality conditions, are determined by taking
variations with respect to c, p, u and χ of Eqn. (12).

Taking variations with respect to p and χ recovers the state
equation and initial condition:

Mċ+
(
C(u)+K(t;θ k)

)
c = F, (13)

c(t0;Y) = c0(Y). (14)

Taking variations with respect to c gives the adjoint equation
with a final time condition:

−MT ṗ+
(
CT (u)+KT (t;θ k)

)
p = Mc, (15)

p(t f ;Y) = 0. (16)

Taking variations with respect to u yields the optimality con-
dition,

δL

δu
= β

∫ t f

t0
udt −

∫ t f

t0

P
∑
k=1

wkcT C(u)pdt = 0. (17)

In summary, the state equation, adjoint equation and optimality
condition form the optimality system, solutions of which provide
the optimal state c, co-state p and control variable u.

To solve the KKT system, the Crank-Nicolson method [14]
is used to discretize the state, adjoint and optimality condition
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equations in time. The conjugate gradient method [15] is em-
ployed to solve the linearized system; the Armijo line-search [16]
is used to ensure convergence. Algorithm 1 summarizes the pro-
cedure to solve the stochastic optimal control problem using the
collocation method.
Algorithm 1

1. Initial work

1a. Given P, D , Θ, initial velocity u0, tolerance ε . Set
j = 0

1b. Given the FEM basis φl for l = 1, ...,N, where N is the
number of grid points

1c. Compute the matrices M,C(u), and vector F
1d. Compute collocation point {θ k = (ξ ,η)}P

k=1 and col-
location weights {wk}P

k=1.

2. Solve the KKT system
For k = 1 : P
2a. Compute the inputs κ(x, t;Y) at each θ k

2b. Compute stiffness matrix K(t;θ k) where K(t;θ k) =∫
D κ(x, t;Y)∇φi(x) ·∇φl(x)dx

2c. Solve the state equation with input u j
2d. Solve the adjoint equation
2e. Store results

end
3. Compute the optimal control

3.a Compute the cost-functional Ĵ (u j) and the gradient
grad(u j)

3.b If ‖grad(u j)‖ < ε → stop.
3.c Perform Armijo line search

Set s j = −grad(u j)
Set α j = 1 then evaluate Ĵ (u j + α js j), and
gtol = 10−4α jsT

j grad(u j)
While Ĵ (u j +α js j) > Ĵ (u j)+gtol
Set α j = α j/2 and evaluate Ĵ (u j +α js j).

3.d Set u j+1 = u j +α js j, and j = j +1. Go to step 2.

Discretization of the KKT system in space yields a high-
dimensional discrete state-space system in the form of ODEs
(Eqns. (13)–(16)). In addition, the collocation method and op-
timal control work require evaluating repeatedly the solutions of
both the state and adjoint equations. Thus, these simulations in
real-time are computationally expensive and may not be feasi-
ble. Model order reduction is applied to obtain a reduced-order
approximation of the large model, which allows efficient simula-
tions.

MODEL ORDER REDUCTION
Reduced-order modeling has been widely used in computa-

tional fluid dynamics for the simulation of large-scale systems.

Applications involving repeated evaluations of the model (such
as inverse problems and control problems) become computation-
ally expensive in the large-scale setting. To reduce the computa-
tional costs and storage requirements, model order reduction can
be used to replace the large-scale models with approximate mod-
els of lower dimensions that capture the essential characteristics
of the full models.

Reduction via Projection
We consider the system of ODEs as they appeared in

Eqns. (13)–(14). We also interest in the output of contaminant
solution at sensor locations in the domain, which is given by

y = Bc, (18)

where matrix B ∈ R
No×N and vector y(t;Y) ∈ R

No contains the
No outputs of the system. A reduced order model of this system
can be derived by approximating the full state vector c as a linear
combination of m basis vectors as follows,

c ≈Vcr, (19)

where cr ∈ R
m is the reduced order state and V = [v1 v2 · · ·vm] ∈

R
N×m is an orthonormal basis, i.e., V TV = I. Projecting the gov-

erning system (13)–(14) onto the reduced space formed by the
column span of basis V yields the lower order model in (20)-(22)

Mr ċr +
(
Cr(u)+Kr(t;θ k)

)
cr = Fr, (20)

cr(t0,Y) = c0r(Y), (21)
yr = Brcr, (22)

where

Mr = V T MV, (23)
Kr(t;θ k) = V T K(t;θ k)V, (24)

Cr(u) = V T C(u)V, (25)
Fr = V T F, (26)
Br = BV, (27)

c0r(Y) = V T c0(Y). (28)

The model reduction task is then to find a suitable basis V so
that m 
 N. In the literature there exist various methods for the
computation of proper basis in the case of large-scale system,
such as balanced truncation, Krylov-subspace and POD methods.
This study will consider POD as the method to compute the basis.
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Proper Orthogonal Decomposition
Proper orthogonal decomposition (POD) provides a method

to compute the reduced-order basis V and construct the low-
order system by projection as described above. Here we briefly
describe the general POD method (more details may be found
in [10]).

Let X = [c1(t1; ·) c1(t2; ·) · · ·c1(tT ; ·) c2(t1; ·) · · · · · ·cS(tT ; ·)]∈
R

N×Q be a collection of a total Q snapshot state solutions
cs(t j; ·), j = 1, · · · ,T, where T is the number of time steps, of the
system in (13) for s = 1, · · · ,S input parameters. The POD basis
is optimal in the sense that vectors V are chosen to maximize the
averaged projection of c(t; ·) onto V , suitably normalized

maxV 〈|c,V |2〉
‖V‖2 , (29)

where | · | is the inner product of basis vector V with the field c,
〈 · 〉 the time averaged operator and ‖ · ‖ the L2 norm.

The POD basis vectors are the m left singular vectors of
X corresponding to the largest singular values (m ≤ Q). Let
σi, i = 1,2, · · · ,Q be the singular values of X in non-increasing
order. We determine the number of POD vectors to retain in the
reduced-order model by choosing m ≤ Q vectors so that

m
∑
i=1

σ2
i /

Q
∑
j=1

σ2
j ≥ εE , (30)

where εE(%) is the required amount of energy, typically taken to
be 99% or higher.

NUMERICAL EXAMPLE
We present the 2D mathematical model to which we ap-

ply stochastic optimal control with the full model using Algo-
rithm 1. Then we apply model reduction to obtain the reduced-
order model. We compare the stochastic optimal control result
using the reduced model and the full model. Finally, we com-
pare the behavior of the stochastic control with a deterministic
control strategy.

Model Setup
In order to implement the contaminant transport problem,

we consider the computational domain as in Figure 1. The do-
main is rectangular with D = [0,1]× [0,0.5]. The inflow bound-
ary, which is defined on x = 0,0 ≤ y ≤ 0.5, satisfies a homo-
geneous Dirichlet condition, ΓD; the remaining boundaries sat-
isfy homogeneous Neumann conditions, ΓN . The velocity vec-
tor with x and y-component is chosen as uniform and constant
in time, given by u = [u v]T . A velocity of u = [1 0]T is used

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

x

y

Computational domain and sensor locations

1
2
3
4
5
6
7
8
9

FIGURE 1. THE COMPUTATIONAL DOMAIN WITH No = 9
SENSORS.

as an initial guess for finding an optimal velocity. In this ex-
ample, we discretize the KKT system on a nx × ny = 61× 31
grid, where nx and ny are the number of grid points in x and
y-direction, respectively. This results in N = 1891 spatially dis-
crete unknowns using the standard finite element method. The
Crank-Nicolson method is employed to discretize the system in
time, where t ∈ [t0, t f ] with t0 = 0, t f = 1.4 and the time-step size
Δt = 0.02 or T = 70 time steps.

The input is a random diffusivity field κ . To generate the dif-
fusivity coefficients under the finite dimensional noise assump-
tion, we use the formulation similar to that in [5]. The random
diffusivity coefficient is a nonlinear function of the random vec-
tor Y , namely

κ(x, t;Y) = κ0 + exp
{[

Y1(ω)cos(πη)+Y3(ω)sin(πη)
]
e− 1

8

+
[
Y2(ω)cos(πξ )+Y4(ω)sin(πξ )

]
e− 1

8
}

/σY .(31)

Here, θ = (ξ ,η) ∈ P are the coordinates of the collocation
points. We choose κ0 = 1/125,σY = 200. The initial Péclet
number Pe0 = ‖u‖L

κ0
= 125, where the length of the domain is

used as the characteristic length L = 1. The real random vari-
ables Yn,n = 1, · · · ,4 are independent and identically distributed
with zero mean value and unit variance.

The source function f (x, t) is described as a Gaussian distri-
bution as follows

f (x, t) =
ns

∑
k=1

hk
2πσ2

sk
exp

(
− |x̄k −x|2

2σ2
sk

)
δ (t − t0k). (32)

Here, we choose the number of sources to be ns = 1, located at
x̄1 = (xc,yc) = (0.3,0.25), with the strength h1 = 1 and width
σs1 = 0.05. The active time of the source is t01 ∈ [t0, to f f ] with
to f f = 0.4.

Figure 2 shows the contaminant solution c(x, t;κ0) of the
full model at specific times. The contaminant field increases in
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FIGURE 2. CONTAMINANT FIELD OF FULL MODEL AT SPE-
CIFIC TIMES.

magnitude while the source is active. After the shutoff time of
the source, the contaminant moves away and spreads out due to
convection and diffusion until it flows out of the domain.

Full Stochastic Control Model
The stochastic optimal control now can be solved by follow-

ing Algorithm 1 as described above. To illustrate the behavior
of the collocation, we simulate the unbounded random variables
Yn via the Gaussian density distribution function. We employ
the Smolyak algorithm [4–6] to determine the collocation points
and collocation weights. We evaluate the optimal solution with
Smolyak nodes which represent exactly polynomials of total de-
gree 5 (P = 29), degree 7 (P = 65), degree 9 (P = 145) and de-
gree 11 (P = 321) as shown in Figure 3. To estimate the relative
error of the solution, we choose the solution corresponding to the
finest collocation scheme (P = 321) as a “truth” solution. The
relative error of the estimated optimal velocity is given as:

εerror =
‖utruth −u‖2

2
‖utruth‖2

2
. (33)

We then set the control parameter β = 0.1. Table 1 shows the
results of the optimal control with different numbers of collo-
cation points. Figure 4 shows the relative error of the stochas-
tic optimal control solutions based on the finest solution. When
the number of collocation points increases, the relative error in
the estimated optimal solution decreases. However the computa-
tional time also increases when the number of collocation points
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(a) P = 29
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(b) P = 65
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(c) P = 145

−1 −0.5 0 0.5 1
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0

0.5

1
Smolyak nodes

ξ

η

(d) P = 321

FIGURE 3. THE SMOLYAK QUADRATURE NODES.

TABLE 1. ESTIMATED OPTIMAL CONTROL FOR DIFFERENT
NUMBERS OF COLLOCATION POINTS.

P u v Ĵ time (s)

29 1.35012 0.00434 0.31215 3.2638e+3

65 1.35089 0.00483 0.31188 8.1935e+3

145 1.35121 0.00489 0.31197 1.8046e+4

321 1.35124 0.00489 0.31198 3.5432e+4

increases. We observe that the computational time is approxi-
mately 6 hours when P = 321 Smolyak nodes.

Reduced Stochastic Control Model
To generate the snapshots needed for the POD basis, we

choose Nk evenly-spaced samples, κt , on the interval [κmin κmax].
In this example, Nk = 10. To determine an appropriate num-
ber of POD modes we use the energy capture as in Eqn. (30).
Table 2 shows the relative error of the approximation (for a ran-
domly chosen value of κ not in the snapshot set) for different
sizes of the reduced-order model. In practice, we need both the
dimensions of the reduced-order model and the relative error to
be small. Here, we choose the case with εE = 99.99% yielding a
POD basis of size m = 46. The outputs of interest are the values
of contaminant solution c at selected sensor locations. The out-
puts of the full model, y, and reduced model of order m = 46, yr,
are shown in Figure 5 at four different sensor locations. These lo-
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FIGURE 4. RELATIVE ERROR OF THE ESTIMATED STOCHAS-
TIC CONTROL SOLUTION WITH NUMBER OF COLLOCATION
POINTS.

TABLE 2. PROPERTIES OF VARIOUS MOR MODELS.
εE(%) POD εstate εad joint

99.0 18 5.48143e-3 1.10702e-2

99.5 21 3.45869e-3 5.28466e-3

99.9 30 6.28582e-4 8.11021e-4

99.99 46 1.13589e-4 1.80933e-4

99.999 65 2.05810e-5 6.68017e-5

99.9999 86 6.85014e-6 2.39363e-5

cations correspond to sensors 4, 5, 6, and 8 in Figure 1. It can be
seen that the magnitude of the sensor reading varies depending
on the location of the sensor relative to the source. In all cases
the reduced-order model is able to capture well the behavior of
the full model at the sensor locations.

Applying Algorithm 1 for the reduced-order model, we ob-
tain the optimal result as in Table 3. The comparison of accu-
racy and computational time between the full model and reduced
model are given in Table 4. The reduced model of order m = 46
has a relative error around 10−5. The computational time is re-
duced by approximately 80 times in comparison with full control
model.

Stochastic Control vs. Deterministic Control
To make the comparison between the stochastic control and

deterministic control, we choose the solution of the stochastic
control at the degree of polynomial 9 or P = 145 Smolyak nodes.
We then choose a subset of Smolyak nodes in the collocation
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FIGURE 5. A COMPARISON OF THE FULL MODEL (N = 1891)
AND REDUCED MODEL (m = 46) OUTPUT OF INTEREST AT
SENSOR LOCATIONS.

TABLE 3. OPTIMAL CONTROL OF REDUCED MODEL.
P u v Ĵ time (s)

29 1.35019 0.00513 0.31212 40

65 1.35087 0.00512 0.31185 98

145 1.35124 0.00510 0.31196 214

321 1.35122 0.00510 0.31196 460

TABLE 4. FULL MODEL VS. REDUCED ORDER MODEL.
P εu

timeFull
timeMOR

29 5.3899e-5 81

65 1.4014e-5 83

145 2.2777e-5 84

321 1.4227e-5 76

space P, for example we choose PS ∈P such that −1≤ ξ ≤ 1 and
η = −1. For each pair θ k = (ξ ,η) we compute the diffusivity
coefficient κ(x, t;Y). We then compute the deterministic optimal
control for the mean value of κ to find the optimal velocity and
estimate its cost functional. Figure 6 shows that the stochastic
optimal control always has the value above the average of the set
of deterministic control.
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CONCLUSION
This study has applied the combination of model order re-

duction techniques based on POD and an adjoint-based method
to solve a stochastic optimal control problem. The reduced
model with order m = 46 decreases the computational time of
solution by a factor of about 80 while retaining acceptable ac-
curacy with a relative error around 10−5 as compared to the full
model with size N = 1891. This speed up is important in real-
time decision-making applications because it provides a rapid so-
lution and reduces time cost and storage requirements. Applica-
tion of the optimal control strategy shows the potential effective-
ness of this computational modeling approach for managing flow
quality.
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