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Abstract We present a Model-Order-Reduction approach to Simulation-Based
classification, with particular application to Structural Health Monitoring.
The approach exploits (i) synthetic results obtained by repeated solution of a
parametrized mathematical model for different values of the parameters, (ii)
machine-learning algorithms to generate a classifier that monitors the damage
state of the system, and (iii) a Reduced Basis method to reduce the computa-
tional burden associated with the model evaluations. Furthermore, we propose
a mathematical formulation which integrates the partial differential equation
model within the classification framework and clarifies the influence of model
error on classification performance. We illustrate our approach and we demon-
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strate its effectiveness through the vehicle of a particular physical companion
experiment, a harmonically excited microtruss.

Keywords Classification · model order reduction · parametrized partial
differential equatons · structural health monitoring

1 Introduction

In many engineering applications it is not possible to fully reconstruct the
state of a physical system due to the deficiency of best-knowledge mathemat-
ical models and the limited quantity of experimental observations. However,
it might still be possible to estimate Quantities of Interest (QOIs) on which
we can rely to make engineering decisions. In this paper, we develop a com-
putational approach which combines parametrized mathematical models and
experimental data for the estimation of discrete-valued QOIs associated with
physical systems.

From a mathematical standpoint, our goal is classification. We characterize
our system by a finite number of exhaustive configuration classes. Then, we
seek a function (classifier) g that maps experimental data to one of the antic-
ipated configuration classes. We denote by qexp ∈ RQ the raw data extracted
experimentally, and we denote by zexp ∈ RQ a set of functions (features) of
qexp. Finally, we denote by y ∈ {1, . . . ,K} the (unknown) label associated with
the configuration class of the current system. A classifier g : RQ → {1, . . . ,K}
should map the set of features zexp into the relevant configuration label y.

We shall focus on physical systems in which the crucial physical phenom-
ena are described by Partial Differential Equations (PDEs). More precisely, we
focus here on structural applications modelled by the elasticity equation. We
shall denote by µ ∈ RP the set of parameters (material properties, geometric
parameters) that collectively describe a system configuration. We shall further
denote by ubk(·;µ) the best-knowledge approximation of the state of the sys-
tem based on the PDE model for a given configuration µ (the · anticipates an
additional argument that will be introduced later). Finally, we shall denote by
zbk(µ) the best-knowledge approximation of the experimental features.

Many engineering tasks, including monitoring, detection/identification, and
(quality) control, can be recast as classification problems. There are a broad
range of procedures that map data to class: some are described in terms of
the application (e.g., Structural Health Monitoring, SHM, [26]), others are
described in terms of the experimental approach (e.g., Acoustic Pulse Reflec-
tometry, APR, [1,60]). In this paper, we shall focus on SHM although our
approach is broadly applicable to a wide range of problems.

SHM refers to any automated monitoring procedure designed to assess the
state of damage of a given aerospace, civil, or mechanical structure of interest.
For civil engineering applications, SHM must provide real-time reliable assess-
ment information regarding the integrity of a structure ([21]). In the aerospace
industry, monitoring systems are required to assess the health of aircraft com-
ponents during reconditioning or during the mission. In these contexts, SHM



Simulation-Based Classification; application to SHM 3

is very similar in objective to Operational Loads Monitoring (OLM, [70,63])
and Integrated Vehicle Health Management (IVHM, [8,47]).

Several authors ([55,71]) have formalized the objective of SHM into levels
of increasing difficulty. The first, and perhaps most important, level consists in
assessing whether or not the structure is damaged. The second level consists
in detecting the region of the structure in which damage is located and the
type of damage. As observed independently by Farrar et al. in [25], and by
Hurtado in [35], both these levels can be formulated as classification problems.
In particular, the configuration label y introduced above is here associated with
the state of damage of the structure.

In [25], a general paradigm for an SHM system is defined through the
integration of four sequential procedures: operational evaluation, data acquisi-
tion, feature extraction, and statistical inference. Operational evaluation sets
the limitations on what will be monitored and how the monitoring will be
accomplished. During this stage, a formal definition of the potential states of
damage is given. Data acquisition deals with the implementation of the sens-
ing system. The sensing system can be based on static responses (in terms
of strain ([57]) or displacement ([58,59])) or on dynamic (such as frequency)
responses ([16,56]). Furthermore, sensing systems are referred to as passive
if they rely on the ambient loading environment as an excitation source, and
active if they can provide a local excitation tailored to the damage detec-
tion process (see, e.g., [26, Chapter 4.11]). Feature extraction identifies the
vector-valued functions zexp of the acquired raw data qexp. Modal analysis
([68]) is the most widely-used feature-extraction technique; monitoring sys-
tems that rely on modal features are referred to as vibration-based SHM ([25,
24,26]). Features based on modal properties are used for both passive and ac-
tive sensing systems: Operational Modal Analysis (OMA, [2]) deals with the
identification of modal properties of structures based on vibration data col-
lected when the structure is in operation. Other popular techniques rely on
Principal Component Analysis (PCA,[73]), or equivalently on Proper Orthog-
onal Decomposition (POD,[4,42]). Finally, the inference step deals with the
development of a decision rule which serves to monitor the system.

There are two competing approaches to accomplish the inference step:
the “inverse-problem” or “model-based” approach, and the “data-based” ap-
proach. Both approaches are based on an offline-online decomposition of the
monitoring process: the offline stage is performed before the structure of in-
terest starts to operate, while the online stage corresponds to the normal op-
erations of the structure. In the model-based approach ([29]), a physics-based
model (typically consisting of a set of differential equations) of the structure
of interest is built and properly calibrated during the offline stage. During the
online stage, this model is updated on the basis of the new measured data from
the real structure. The solution to the updated model is then used to assess the
state of damage of the system. Instead of proceeding from a law-based model,
the data-based approach ([25,26]) is based on the collection of a dataset of of-
fline training data from all the possible healthy and damaged states of interest.
The dataset can be collected (i) by performing experiments on the structure
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itself or on similar structures (see, e.g., [26]), or (ii) by performing synthetic
experiments based on a (possibly parametrized) mathematical model of the
structure of interest (see, e.g., [36,35,40]). Given the dataset, machine learn-
ing algorithms are used to train a classifier that assigns measured data from
the monitoring phase to the relevant diagnostic class label. This classifier is
then employed to monitor the structure during the online stage. (Note hence
that models do play a role in the data-based approach. The “model-based” vs
“data-based” taxonomy refers to the online stage of the process.) We denote
by Simulation-Based Classification (SBC) the particular procedural choices
“data-based” and “synthetic experiments”.

The main limitation of the inverse-problem approach is that model up-
dating is typically ill-conditioned, and confounded by many “nuisance” para-
meters, and hence not suitable for real-time computations. For this reason,
most of the current research focuses on the data-based (or simulation-based)
approach.

The main challenge associated with the application of the data-based ap-
proach is the construction of the offline dataset used to train the classifier
g. Since classification performance strongly depends on the amount of offline
training data, the offline dataset should be representative of all possible sys-
tem configurations (characterized by different geometries, and operational and
environmental conditions) that can potentially occur online.

For practical applications, especially in civil SHM, it is extremely difficult
to generate accurate offline datasets based on physical experiments: it is very
rare that structures on the scale of bridges or dams become available for com-
prehensive testing. Furthermore, in most practical cases, data from the dam-
aged condition of the structure are not available. For this reason, we may only
consider outlier detection algorithms (see. e.g., [17]): we can assess whether or
not the online measurements conform to the normal condition, reflected in the
offline data, but we cannot ascertain the cause of any departure.

On the other hand, the use of simulations in the data-based framework
presents two challenges. First, we need to estimate the solution to a para-
metrized PDE, ubk(·;µ) and then zbk(µ), for many values of the parameter
µ ∈ RP (or, equivalently, for many system configurations). If we rely on a
high-fidelity solver based on a Finite Element (FE) discretization the construc-
tion of the offline dataset leads to an unaffordable computational burden. For
this reason, most of the early literature ([32,45]) resort to surrogate models,
while more recent works focus on adaptive sampling schemes ([3,6,5,40]), in
both cases to reduce the number of FE solves. Both these approaches face the
problem of curse-of-dimensionality in the number of features Q and/or in the
number of parameters P , and have been mostly applied to static data. Sec-
ond, mathematical models are inevitably affected by model error. Errors in the
model lead to errors in the construction of the dataset and consequently in the
output of the learning algorithm. This source of error is extremely difficult to
control, especially when we rely on surrogate models to generate the dataset.

As regards the first challenge, we propose a Simulation-Based Classifica-
tion approach that relies on parametric Model Order Reduction (pMOR) to
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reduce the computational burden associated with the construction of the of-
fline dataset without sacrifying the accuracy of the approximation. pMOR is a
mathematical and computational field that aims to reduce the computational
cost of the solution to a parametrized mathematical model in the limit of many
queries. Among the different pMOR approaches proposed in the literature, in
this work we rely on the Reduced Basis (RB) method ([53,51,33]). We briefly
summarize the distinguishing features of this methodology in section 4.3. While
adaptive sampling techniques aim to reduce the number of datapoints required
to train the classifier, our approach aims to reduce the computation cost for
a given number of datapoints. For this reason, it is significantly less sensitive
to the number of features Q. In future work, we propose a strategy based on
component-based pMOR to address the curse-of-dimensionality in the number
of parameters P .

As regards the second challenge, we further develop a rigorous mathemat-
ical formulation which couples the learning problem with the parametrized
differential equation. Provided the availability of error bounds for the model
error, this framework allows us to derive actionable estimates for the perfor-
mance of the classifier based on synthetic data. Furthermore, it allows us to
identify the distinct elements that combine to determine the performance of a
monitoring system.

We can relate several features of our approach to existing methods. First,
in [40], Lecerf, Allaire and Willcox already incorporate important aspects of
model order reduction to accelerate the dataset construction within the data-
based framework for aerospace applications. However, the reduction approach
employed in [40] is based on a reduction of the dimension of the underlying
PDE, and it does not exploit the parametric nature of the mathematical model.
Furthermore, no error analysis is proposed to relate classification performances
to non-parametric error in the mathematical model. Second, our error analysis
takes advantage of tools first appeared in the robust optimization literature
(see, e.g., [7,10,9]). In more detail, we rely on the ε-uncertainty indicator Ebk

to measure the local robustness of a classifier g to data uncertainties; this
quantity is equivalent to the stability radius first proposed in [34,74].

The outline of the paper is as follows. In section 2, we introduce our frame-
work through the vehicle of a particular example, a microtruss; in parallel we
provide the abstraction applicable to a broad range of problems. In section 3,
we describe the computational procedure, and we illustrate the role of pMOR.
In section 4, we apply our approach to the microtruss problem: we present
the classification results for both synthetic test data and real-data, and we
demonstrate the importance of pMOR for the problem at hand. In section 5,
we address questions related to the mathematical analysis of our formulation,
and to the effect of model error. Finally, in section 6, we offer some concluding
remarks and we anticipate a number of future developments.
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2 A working problem: the microtruss example

In this section, we introduce the damage identification problem considered
in this paper. We first introduce the experimental apparatus and procedure
(section 2.1); then, following the general paradigm proposed in [25] and briefly
outlined in the introduction, we provide an actionable definition of damage
(section 2.2), we describe the data acquisition system, and we introduce the
experimental outputs (section 2.3). In section 2.4, we propose a parametrized
mathematical model for the structure of interest which shall serve to estimate
the experimental outputs, and we introduce a mathematical description of the
space of system configurations. In section 2.5, we formalize the problem of
feature extraction. Finally, in section 2.6, we state the classification problem
and we summarize all the key definitions.

2.1 Experimental apparatus

We consider the acryilic microtruss system shown in Figure 1. The microtruss
consists of a 4 by 4 lattice of blocks of size `block × `block, `block = 0.25[in],
linked together by horizontal and vertical joints of size Ljoint × hjoint, Ljoint =
1[in] and hjoint = 0.015[in]. The depth of the microtruss is equal to dmtruss =
1[in]. We state upfront that the actual geometry of the microtruss is to be
considered uncertain due to the (3d-printing) manufacturing process. For this
reason, the values reported above should be interpreted as nominal, and we
shall refer to the configuration described above as the nominal geometry. We
resort to cartesian coordinates; since the geometry is independent of the third
dimension, we use notation

xdim = Ljoint x = Ljoint x1e1 + Ljoint x2e2 = Ljoint

[
x1

x2

]
to indicate a physical point in the microtruss; here e1 and e2 are the canonical
unit vectors, and Ljoint = 1[in] is the non-dimensionalization constant. In what
follows we exclusively refer to non-dimensional quantities unless otherwise in-
dicated. We refer to the blocks using the matrix notation (i, j), i, j = 1, . . . , 4:
the i-index corresponds to the x1 position and is ordered from left to right in
Figure 1(b); the j-index corresponds to the x2 position and is ordered from
bottom to top in Figure 1(b).

Our goal is to detect the presence of added mass on top of block (1, 4) and
of block (4, 4). More precisely, we wish to distinguish between K = 4 states of
damage: no added mass (y = 1), added mass on top of block (1, 4) (y = 2),
added mass on top of block (4, 4) (y = 3), added mass on top of both block
(1, 4) and block (4, 4) (y = 4). Note that state 1 shall correspond to no damage,
and states 2, 3, and 4 shall correspond to different damage configurations. We
refer to the case of no added mass as the undamaged case. Figure 1(c) shows
the detail of the added mass on top of block (1, 4) for a particular experimental
configuration. Added mass is of the same material as the microtruss system.
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(a) (b)

(c)

Fig. 1: Microtruss experiment. Figure (a): experimental apparatus. Figure (b): schematic of
undamaged configuration at rest. Figure (c): detail of the added mass on top of block (1, 4).

2.2 Definition of damage

In view of the definition of damage, we first introduce the non-dimensional
ratios

sL := 1 +
Vleft

Vnom
, sR := 1 +

Vright

Vnom
, (1)

where Vnom = h `block dmtruss, h = 1
2 (dblock− hjoint), is a nominal volume, Vleft

is the volume of the added mass on top of block (1, 4), and Vright is the volume
of the added mass on top of block (4, 4). We observe that the ratios in (1) do
not rely on any model of the structure.

We can now introduce the function f̄dam : [1, 2]2 → {1, 2, 3, 4} such that

f̄dam(sL, sR) =


1 sL, sR ≤ 1.5,
2 sL > 1.5, sR ≤ 1.5,
3 sL ≤ 1.5, sR > 1.5,
4 sL, sR > 1.5.

(2)

The function f̄dam reflects our actionable definition of damage for the struc-
ture of interest; given the system configuration described by the pair (sL, sR),
y = f̄dam(sL, sR) denotes the corresponding state of damage. For this reason,
we refer to f̄dam as the damage function. From an engineering perspective,
equation (2) implies that system configurations should be classified as dam-
aged only if the added mass is “substantial”, in our case of volume larger than
0.5Vnom ≈ 0.37 · 10−3[in3]. We remark that, from a practical perspective, the
proper choice of the threshold is extremely important and should be related
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to appropriate safety factors ([72]). In section 2.6 we shall provide a general
form for the damage function in terms of the system configuration.

2.3 Data acquisition and experimental outputs

We rely on a camera to acquire measurements of the x2 displacement of the
16 respective centers of the blocks as a function of time t associated with Qf

different time-harmonic inputs. The camera is carefully calibrated to permit its
use for precise measurement. A stroboscope flashing at the 10 Hz frame rate of
the camera “freezes” the oscillation of the blocks to yield crisp images suitable
for subsequent processing. Frequencies of excitation are offset by 0.1 Hz from
integer values to ensure that each set of 100 consecutively captured images
corresponds to 100 equally spaced instants in a single period of oscillation.
Excitations are imposed by a linear voice coil actuator attached to the joint
between blocks (2, 1) and (3, 1); Figure 1(b) highlights in red the region of the
microtruss attached to the actuator. A linear flexure bearing is used to ensure
that the excitation is imposed almost exclusively in the x2 direction.

We introduce the system configuration C associated with the particular
specimen considered; we defer the formal definition of C to section 2.4. Then,
we denote by {fq}Qf

q=1 ⊂ If := [20, 80][Hz] the input frequencies and we denote
by {qexp

i,j (t`, fq; C)}L
`=1 the raw time signal for the x2-displacement obtained

experimentally for the block (i, j) and the frequency fq. Finally, we introduce
the fitted amplitude {Aexp

i,j (fq; C)}i,j,q and phase {φexp

i,j (fq; C)}i,j,q such that1

qexp
i,j (t`, fq; C) ≈ A

exp

i,j (fq; C) cos
(
2πfq t` + φ

exp

i,j (fq; C)
)

, i, j = 1, . . . , 4, ` = 1, . . . , L.

(3)

It is convenient to rescale amplitudes and phases as follows:

Aexp
i,j (fq; C) :=

Anom

A
exp

2,1 (fq; C)
A

exp

i,j (fq; C), φexp
i,j (fq; C) = φ

exp

i,j (fq; C)−φ
exp

2,1 (fq; C),

(4)

for Anom = 0.25. Figure 2 demonstrates the accuracy of the time-harmonic
fit for the blocks (1, 4) and (4, 4) in absence of added masses. In section 2.4,
we describe how we shall estimate {Aexp

i,j (fq; C)} and {φexp
i,j (fq; C)} based on

simulations.

2.4 Mathematical model for the experimental outputs

We first provide a mathematical description of the nominal geometry at rest.
With this in mind, we introduce the disjoint domains Ω1, Ω2, Ω3 ⊂ Ω, Ω1∪Ω2∪

1 Amplitudes and phases are estimated using the Matlab function fit ([43]), which relies
on Levenberg-Marquardt algorithm.
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Fig. 2: Microtruss experiment. Time-harmonic x2-displacement of blocks (1, 4) and (4, 4)

in absence of added masses. The shaker input is displacement: Adim cos(2πft)e2, Adim =
0.02[in], f = 35 [Hz].

Ω3 = Ω. The subdomain Ω2 is associated with the region of block (1, 4) subject
to potential damage; similarly, the subdomain Ω3 is associated with the region
of block (4, 4), while Ω1 denotes the remainder of the microtruss. We then
recall the geometric parameters sL, sR ∈ [1, 2] in (1) such that (sL − 1) Vnom

and (sR − 1) Vnom correspond to the volume of the added masses on top of
blocks (1, 4) and (4, 4), respectively. Assuming that the depth of the blocks is
uniformly equal to dmtruss and the width of the block is uniformly equal to
`block, then we have that (sL − 1) h and (sR − 1) h equal the thickness of the
added masses on top of (1, 4) and (4, 4), respectively. Figure 3 shows blocks
(1, 4) and (4, 4) and provides a graphical depiction of the previous definitions.
In what follows, we introduce s := (sL, sR) and we denote by Ωs the domain
Ωs = Ω1 ∪Ω2(sL) ∪Ω3(sR).

Ω1

Ω2(sL)sL h

h

x1,4

(a) block (1, 4)

Ω1

Ω3(sR) sR h

(b) block (4, 4)

Fig. 3: Microtruss experiment. Parametrization of blocks (1, 4) and (4, 4).

We can now introduce the mathematical model of the displacement field in
strong form. With this in mind, we introduce the Young’s modulus E[Pa], the
Poisson’s ratio ν, the density ρ[kg/m3], and the non-dimensional Rayleigh-
damping coefficients α, β. For acrylic, density and Poisson’s ratio are well-
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characterized in the literature2: we therefore set

ρ = 1180 [kg/m3], ν = 0.35.

On the other hand, we consider α, β, E as uncertain parameters. We assume
that the (non-dimensional) displacement field associated with the microtruss
system is of the form Ubk(x, t) = <{ubk(x) eiωf t} where ωf = 2πf and
ubk : Ωs → C2 satisfies (in a distributional sense) the following linear two-
dimensional (plane strain) elastodynamics model with Rayleigh damping:

−ρL2
joint ω2

f ubk + iωf Cdamp
(
ubk

)
+ L

(
ubk
)

= 0 in Ωs,

ubk = udir on Γ dir,

σ(ubk) · n = 0 on ∂Ωs \ Γ dir,

(5a)

where Γ dir refers to the shaker attachment, σ(ubk) is the stress tensor, and n
is the outward normal. Here, the Dirichlet data is

udir = cdir

[
0
1

]
, (5b)

the damping operator is

Cdamp (v ) = αρL2
joint v + β L (v ) , (5c)

and finally the elasticity operator L(v) = div(σ(v)) is

L(v) = div
(

E

1 + ν
sym (∇v) +

Eν

(1 + ν)(1− 2ν)
div(v)I

)
, (5d)

where I is the 2 by 2 identity matrix. Recalling the definition of the experimen-
tal outputs in (4), it is easy to verify that the constant cdir does not influence
the outputs. For this reason, we arbitrarily set cdir = 1.

We now introduce the anticipated configuration µ as

µ = [α, β, E, sL, sR] ∈ Pbk ⊂ R5. (6)

We observe that the solution ubk to (5) depends on the input frequency f and
on µ, which we shall emphasize in the notation ubk = ubk(f ;µ). We further
observe that the pair (sL, sR) is directly related to the definition of damage in
(15), while the triplet (α, β, E) collects material properties that are difficult
to estimate exactly. We thus refer to α, β, E as “nuisance variables”. It is im-
portant to identify an appropriate domain for these variables: too restricted
a domain may confuse normal variations in the nuisance variables as distinc-
tions between different states, too expansive a domain may artificially conflate

2 See, e.g., [30, Chapter 3.6.2] for the Poisson’s ratio and the webpage pubchem.ncbi.nlm.

nih.gov for the density.
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classes and thus degrade classifier performance. We postpone the definition of
the configuration set Pbk to the end of this section.

We observe that our mathematical model does not include some factors
that may affect the experimental outputs. More in detail, we do not take into
account potential inaccuracies in the manufacturing process, which lead to
extremely high-dimensional geometric uncertainties, or to inhomogeneities in
the material properties. Furthermore, we do not prescribe a stochastic model
for experimental noise. In anticipation of the development of a rigorous math-
ematical formulation of the inference problem, we introduce an additional set
of parameters ξ ∈ V ⊂ RD, here referred to as hidden, such that the pair (µ, ξ)
completely identifies a system configuration:

C := (µ, ξ) ∈ Pexp := Pbk × V. (7)

Our best-knowledge model corresponds to ξ = 0.
We can now introduce the best-knowledge representation of the experimen-

tal outputs Aexp
i,j and φexp

i,j . Given the anticipated configuration µ ∈ Pbk, we
define

Abk
i,j(f ;µ) :=

Anom

|ubk
2 (x2,1; f ;µ)|

|ubk
2 (xi,j ; f ;µ)|, Anom = 0.25, (8)

and

φbk
i,j(f ;µ) := arg

(
ubk

2 (xi,j ; f ;µ)
)
− arg

(
ubk

2 (x2,1; f ;µ)
)
, (9)

where xi,j denotes the center of the mass (i, j) and arg(c) denotes the phase
of the complex number c. As stated before, the best-knowledge outputs con-
sidered do not depend on the value of cdir in (5b). Provided that the linear
model (5) captures accurately the physical phenomenon and the influence of
the hidden parameter ξ is limited, we expect that

Aexp
i,j (f ;µ, ξ) ' Abk

i,j(f ;µ), φexp
i,j (f ;µ, ξ) ' φbk

i,j(f ;µ),

for all f ∈ If , µ ∈ Pbk and i, j = 1, . . . , 4.
We rely on a P4 Finite Element (FE) discretization with 14670 degrees of

freedom to estimate the best-knowledge outputs. We observe that experimental
outputs involve pointwise evaluations of the displacement field. In this work,
we do not implement any adaptive strategy to control pointwise error in the
finite element solution; we refer to the finite element literature (see, e.g., [49])
for further details.

We now choose the anticipated configuration set Pbk. Recalling the in-
terpretation of the parameters, we set upper bounds for sL, sR based on the
maximum added mass to be detected, while we choose a confidence region for
α, β, E based on textbook values and on a single preliminary experiment for
the undamaged case (i.e., sL = sR = 1). To take into account experimental
noise, we perform three independent trials of the experiment. In more detail,
we choose Pbk such that for all frequencies and all realizations we obtain

min
µ∈Ξ100

Abk
i,j(f

q;µ) < Aexp
i,j (fq;µexp, ξexp) < max

µ∈Ξ100
Abk

i,j(f
q;µ), (10a)
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and

min
µ∈Ξ100

φbk
i,j(f

q;µ) < φexp
i,j (fq;µexp, ξexp) < max

µ∈Ξ100
φbk

i,j(f
q;µ), (10b)

where Ξ100= {(αm, βm, Em, 1, 1)}M
m=1 ⊂ Pbk is based on uniform random

samples. Following this criterion, we choose

Pbk := [0.25·10−3, 0.8·10−3]×[0.05·10−3, 0.2·10−3]×[2.65·109, 2.85·109]×[1, 2]2.
(11)

Figure 4 shows a comparison between experimental and synthetic displace-
ment amplitudes of block (1, 1) for this single system configuration with no
added masses. In Figure 4(a), we report minµ∈Ξ100 Abk

1,1(f
q;µ), maxµ∈Ξ100

Abk
1,1(f

q;µ), and the amplitude measured experimentally for each of the three
trials. Similarly, in Figure 4(b), we report minµ∈Ξ100 φbk

1,1(f
q;µ), maxµ∈Ξ100

φbk
1,1(f

q;µ) and the phase measured experimentally for each trial. We observe
that our choice (11) satisfies the constraints (10).
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Fig. 4: Microtruss experiment; choice of the parameter space. Comparison between experi-
mental results and synthetic results in absence of added masses.

2.5 The problem of feature extraction

We formalize the problem of feature extraction for the microtruss system:
given the experimental outputs {Aexp

i,j (fq;µ, ξ)}i,j,q and {φexp
i,j (fq;µ, ξ)}i,j,q,

determine the set of Q features zexp such that

zexp(µ, ξ) = F
(
{Aexp

i,j (fq;µ, ξ)}i,j,q, {φexp
i,j (fq;µ, ξ)}i,j,q

)
, (12)

where F : R32Qf → RQ. We observe that, by construction, experimental
features depend on the system configuration C = (µ, ξ). Appropriate features
should be sensitive to the expected damage, and insensitive to noise. In section
4.1, we propose a particular choice of F motivated by a physical reasoning for
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our system and damage classes. We defer automated identification of features
from experimental outputs to a subsequent paper.

Exploiting the best-knowledge representations of the experimental outputs
provided in section 2.4, we can define the best-knowledge features as

zbk(µ) = F
(
{Abk

i,j(f
q;µ)}i,j,q, {φbk

i,j(f
q;µ)}i,j,q

)
. (13)

We observe that, without loss of generality, we can rewrite the experimental
features as

zexp(µ, ξ) = zbk(µ) + δz(µ, ξ), ∀ (µ, ξ) ∈ Pexp; (14)

we can then interpret zbk(µ) as nominal features associated with the con-
figuration C = (µ, ξ), and δz(µ, ξ) as a perturbation. The norm ‖δz(µ, ξ)‖2
reflects the magnitude of the model error for a given configuration. We antic-
ipate that (14) will help us draw a connection between our formulation and
Robust Optimization (RO) statements for classification.

2.6 Inference stage

We summarise key quantities introduced in the previous sections. We first
define the anticipated configuration set Pbk ⊂ RP , and we denote by µ a
generic element of the set. The parameter µ encodes our best-knowledge (bk)
representation of a system configuration and the space Pbk contains the bk
anticipation of each system configuration that can occur during the operations
(online stage). We further introduce the hidden parameter ξ ∈ V ⊂ RD such
that the pair C = (µ, ξ) ∈ Pexp := Pbk × V uniquely identifies the observed
experimental outputs during the online stage. Then, we introduce the damage
function fdam : Pbk → {1, . . . ,K} such that

fdam(µ = [α, β, E, sL, sR]) = f̄dam(sL, sR), (15)

where f̄dam is defined in (2). As already mentioned in section 2.4, the actual
value of the model parameters α, β, E does not influence the state of damage.
We further introduce the bk and experimental features zbk : Pbk → RQ and
zexp : Pexp → RQ, respectively.

In view of the classification statement, we introduce the (unknown) prob-
ability density function (pdf) over V, pξ : V → R+, such that

P (ξ ∈ A) =
∫
V
1A(ξ′) pξ(ξ′) dξ′, A ⊂ V, (16)

where 1A is the indicator function associated to the set A. We use notation
Eξ∼pξ

[·] to indicate expected values with respect to the measure induced by
pξ. We further denote by L(0,1) the 0-1 loss:

L(0,1)(y, t) =
{

0 y = t,
1 y 6= t.

(17)
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Finally, we define the weight wbk, wbk : Pbk → R+, such that

∫
Pbk

wbk(µ) dµ = 1. (18)

We postpone interpretation and actionable definition of the weight wbk until
the end of this section.

We now introduce two classification problem statements.

Monitoring problem: given the damage function fdam : Pbk → {1, . . . ,K},
and the experimental features zexp : Pexp → RQ, find the classifier gopt :
RQ → {1, . . . ,K} that minimizes the experimental risk :

inf
g measurable

Rexp(g) =
∫
Pbk

Eξ∼pξ

[
L(0,1)(g(zexp(µ, ξ)), fdam(µ))

]
wbk(µ) dµ

=
∫
Pexp

L(0,1)(g(zexp(µ, ξ)), fdam(µ))wbk(µ) pξ(ξ) dµ dξ,

(19)

where pξ : V → R+ is defined in (16), L(0,1) in (17), and wbk : Pbk → R+ in
(18).

Best-knowledge monitoring problem: given the damage function fdam :
Pbk → {1, . . . ,K}, and the bk features zbk : Pbk → RQ, find the classifier
gopt,bk : RQ → {1, . . . ,K} that minimizes the bk risk :

inf
g measurable

Rbk(g) =
∫
Pbk

L(0,1)(g(zbk(µ)), fdam(µ))wbk(µ) dµ. (20)

where L(0,1) is defined in (17), and wbk : Pbk → R+ (18).

We interpret the bk monitoring problem as a surrogate for the (actual,
physical) monitoring problem. We observe that while the monitoring state-
ment relies on experimental observations and depends on unknown quantities
(the hidden parameter ξ and the corresponding pdf pξ), the bk statement is
entirely synthetic (except of course implicitly through the definition of Pbk as
described in the previous section) and thus can be tackled even in the absence
of experimental observations. At this stage of the discussion, we have not yet
discussed how the solution to (20) is related to the optimal solution to (19).
This clearly depends on the magnitude of the perturbations δz in (14). In
section 5, we illustrate the connection between these two problems.

We now interpret the function wbk in (19) and (20). In our framework,
the weight wbk reflects the importance (assigned by the user) of classifying
correctly a given configuration and is not related to the (unknown) likelihood
that the bk configuration µ is observed during the online stage. This obser-
vation implies that the bk risk Rbk(g) should be interpreted as a user-defined
measure of the misclassification error rather than an expected loss.
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We introduce our choice of the weight wbk for the microtruss problem. We
consider the weight

wbk(µ) = wbk
1 (α) wbk

2 (β)wbk
3 (E) wbk

4,5(sL, sR), (21a)

where wbk
1 , wbk

2 , wbk
3 correspond to constant weights and

wbk
4,5(sL, sR) =



100 (sL, sR) ∈ S1 := [1, 1.05]2;

10 (sL, sR) ∈ S2 := [1.5, 2]× [1, 1.05];

10 (sL, sR) ∈ S3 := [1, 1.05]× [1.5, 2];

1 (sL, sR) ∈ S4 := [1.5, 2]2.

(21b)

We choose constants such that
∫
Pbk wbk(µ) dµ = 1. We observe that each of

S1, . . . , S4 are assigned equal weight.
Some comments are in order. Our choice of wbk

4,5 in (21b) implies that we
target our SHM classifier to detect added masses in the range [1.5, 2]h, and to
avoid “false damaged” predictions if sL, sR < 1.05. In view of the probabilistic
interpretation of the problem statement and of the numerical procedure, we
observe that our choices of wbk

1 , wbk
2 , wbk

3 correspond to the assumption that
α, β, E are independent uniformly-distributed random variables such that

α ∼ Uniform([0.25 · 10−3, 0.8 · 10−3]),

β ∼ Uniform([0.05 · 10−3, 0.2 · 10−3]),

E ∼ Uniform([2.65 · 109, 2.85 · 109]).

(22a)

On the other hand, our choice of wbk
4,5 corresponds to assume that the random

pair (sL, sR) can be written as a mixture of independent uniform distributions
over S1, . . . , S4:

(sL, sR) =
4∑

k=1

(
1− L(0,1)(S, k)

)
Ek, Ek ∼ Uniform(Sk), S ∼ Uniform({1, 2, 3, 4}).

(22b)

We shall later formally identify wbk with a probability density. Table 1 summa-
rizes the definitions and provides links to their instantiations for the microtruss
problem.

Before concluding, we state another definition, and an important remark.

Definition 1 Let us define the partition of the configuration set {Pbk(k)}K
k=1

as
Pbk(k) := {µ ∈ Pbk : fdam(µ) = k}, k = 1, . . . ,K.

Then, we define the type-k error of a classifier g as

Rexp(g; k) :=
∫
Pbk(k)×V

Eξ∼pξ

[
L(0,1)(g(zexp(µ, ξ)), k)

]
wbk(µ) dµ; (23)
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Table 1: Main definitions

symbol name microtruss definition

µ ∈ Pbk anticipated configuration (set) (6) – (11)

(µ, ξ) ∈ Pexp configuration (set) (7)

fdam : Pbk → {1, . . . , K} damage function (15)

zexp : Pexp → RQ experimental features (12)

zbk : Pbk → RQ bk features (13)

wbk : Pbk → R+ bk weight (21)

similarly, we can define the bk-type-k error as

Rbk(g; k) :=
∫
Pbk(k)

L(0,1)(g(zbk(µ)), k)wbk(µ) dµ. (24)

If K = 2, provided that y = 1 is the null hypothesis, our definition of type-
k error coincides with the standard type I and type II errors in Hypothesis
Testing.

It is straightforward to verify that

Rbk(g) =
K∑

k=1

Rbk(g; k), Rexp(g) =
K∑

k=1

Rexp(g; k).

We observe that if we define the bk confusion matrix Cbk(g) ∈ RK,K associated
with the classifier g such that

Cbk
k,k′(g) =

∫
Pbk(k)

L(0,1)(g(zbk(µ)), k′) wbk(µ) dµ,

then, the bk type-k error is the sum of the off-diagonal terms of Cbk(g):

Rbk(g, k) =
∑
k′ 6=k

Cbk
k,k′(g).

An analogous discussion applies to the type-k error. We further observe that
the choice of wbk regulates the importance of the different types of error. More
specifically, for each k, we can interpret the quantity

P bk
k :=

∫
Pbk(k)

wbk(µ) dµ (25)

as a measure of the importance of classifying correctly configurations of class
k. For the microtruss problem, we have

P bk
1 = . . . = P bk

4 =
1
4
.

This implies that it is equally important to classify correctly configurations of
all four classes.
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Remark 1 (The perspective of Robust Optimization) Adopting the in-
terpretation of bk and experimental features provided after equation (14), we
can view (20) as the nominal problem, and (19) as the perturbed problem. This
discussion shows the connection between our formulation and Robust Opti-
mization (RO) statements for classification. To stress this, we observe that we
can restate the experimental risk in (19) as follows:

Rexp(g) =
∫
Pbk

Eδz∼Pδz,µ

[
L(0,1)

(
g(zbk(µ) + δz), fdam(µ)

)]
wbk(µ) dµ, (26)

where the probability distribution Pδz,µ is given by

Pδz,µ(A) =
∫
V
1A(δz(µ, ξ)) pξ(ξ) dξ, (27)

and is defined over (a suitable σ-algebra of) RQ.

3 Methodology

We discuss here how we estimate the solution to (20). We first present the
general computational procedure (section 3.1), and we then discuss the appli-
cation of pMOR (section 3.2).

3.1 Simulation-based classification

In view of the development of the computational approach, we define the
probability measure on Pbk Pwbk such that

Pwbk(A) =
∫
Pbk

1A(µ′) wbk(µ′) dµ′, A ⊂ Pbk. (28)

Then, we denote by µ a random vector distributed according to Pwbk , µ ∼
Pwbk .

We formalize our strategy to generate the classifier g. We generate M in-
dependent samples µ1, . . . , µM from Pwbk , and we generate the dataset Dbk

M :=
{(zbk,m, ym)}M

m=1 where zbk,m = zbk(µm), ym = fdam(µm). Then, we employ a
supervised learning algorithm that takes as input the dataset Dbk

M and returns
the classifier g?

M .
Several techniques are available to generate independent samples from an

arbitrary probability density function wbk. We refer to [54, Chapter 2] and to
[27, Chapter 3] for further details. Here, we resort to identities (22) to generate
samples of the configuration µ.

A supervised learning (SL) algorithm for classification can be interpreted
as a procedure that takes as input a dataset Dbk

M ⊂ RQ × {1, . . . ,K} and
returns a classifier g?

M : RQ → {1, . . . ,K}:

[g?
M ] = SL-algorithm

(
Dbk

M

)
. (29)
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Several different algorithms of the form (29) have been proposed in the litera-
ture; we refer to [31,38,46] for a thorough introduction to supervised learning
algorithms for regression and classification. In our numerical examples, we
apply five different state-of-the-art techniques to the classification problem
considered in this work.

Algorithm 1 summarizes the computational procedure to approximate the
solution to the best-knowledge monitoring problem: both the Offline stage
described above; the Online stage in which, given experimental features, we
wish to classify our system.

Algorithm 1 Simulation-Based Classification for SHM.
Offline stage

1: Generate Pbk
M := {µ1, . . . , µM} ⊂ Pbk, µm

iid︷︸︸︷∼ Pwbk

2: Generate the dataset Dbk
M := {(zbk,m, ym)}M

m=1 where zbk,m = zbk(µm), ym =

fdam(µm).

3: Employ the learning algorithm (29) to generate the classifier g?
M .

Online stage

1: Collect the experimental measurements and extract the features zexp.

2: Return the label g?
M (zexp).

We observe that, unlike in model-based approaches, our procedure does
not — either implicitly or explicitly — provide estimates for the actual value
of µ. We claim that the estimation problem for µ is (unnecessarily) much more
general than the original classification problem of interest, and in particular
the former will typically be ill-posed ([66, Chapter 1.9]). For instance, the
application of model-based approaches to the microtruss problem requires the
estimate of the full vector µ, which includes both quantities related to damage
(the geometric parameters sL, sR) but also nuisance variables (the material
properties α, β, E) of no direct interest to the engineering task at hand. For
more realistic problems with many more parameters the nuisance variables
can easily number in the hundreds and often without any evident correlations.

Another distinguishing feature of Simulation-Based Classification is related
to the possibility of incorporating information related to model error without
the need for fully characterizing the configuration C = (µ, ξ). We can indeed
include estimates of the perturbation δz to inform the learning procedure. The
process of including data uncertainties at training stage is usually referred to
as robustification. We shall consider this in future work.

3.2 Application of pMOR

As already mentioned in the introduction, classification performances strongly
depend on the size M of the dataset. Since each datapoint involves the solution
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to several PDEs (in our case Qf , one for each frequency), the offline computa-
tional burden is extremely large. This explains the importance of model order
reduction.

We briefly discuss the application of pMOR in the context of Simulation-
Based Classification. During a preprocessing stage (typically denoted the of-
fline stage), we generate a Reduced Order Model (ROM) ũbk(f ;µ) ≈ ubk(f ;µ)
such that we may form z̃bk(µ) ≈ zbk(µ) for all µ ∈ Pbk. Then, for each para-
meter µ1, . . . , µM , we estimate zbk(µm) using the ROM z̃bk(µm). We observe
that if M is sufficiently large and computing z̃bk(µm) is significantly less ex-
pensive than computing zbk(µm), then we can amortize and indeed neglect
the cost of the preprocessing stage.

Algorithm 2 summarizes the computational procedure. Note that both the
offline stage and the online stage of the pMOR procedure are effected in the
offline stage of the classification algorithm. We provide further details about
the application of the particular pMOR technique adopted in this paper to
the microtruss problem in section 4.3.

Algorithm 2 Simulation-Based Classification for SHM with pMOR.
Offline stage

1: Generate Pbk
M := {µ1, . . . , µM} ⊂ Pbk, µm

iid︷︸︸︷∼ Pwbk

2: a. MOR: construct the Reduced Order Model;
b. MOR: use the ROM to generate the dataset Dbk

M := {(z̃bk(µm), fdam(µm))}M
m=1

3: Employ the learning algorithm (29) to generate the classifier g?
M .

Online stage

1: Collect the experimental measurements and extract the features zexp.

2: Return the label g?
M (zexp).

4 Application to the microtruss problem

We discuss the application of Simulation-Based Classification to the microtruss
problem. We discuss the choice of the features (section 4.1), we present the
strategy used to generate the classifier (section 4.2), and we describe the ap-
plication of the RB method to speed up the calculations (section 4.3). Finally,
in section 4.4, we present the classification results.

4.1 Feature extraction

Given the frequencies {fq}Qf

q=1, we introduce the set of features

zbk
1 (µ) =

[
zbk
1 (f1;µ), . . . , zbk

1 (fQf ;µ)
]
, zbk

1 (f ;µ) =
Abk

1,4(f ;µ)
Abk

4,4(f ;µ)
. (30)
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Feature zbk
1 (·;µ) measures the asymmetry of the structure between left and

right corners. From symmetry arguments it is easy to verify that

zbk
1 (f ;α, β, E, sL, sR) =

1
zbk
1 (f ;α, β, E, sR, sL)

,

which implies that by exploiting this feature we should be able to discriminate
between the three classes κ = {1, 4}, κ = {2}, κ = {3}. We here use the term
“class” to refer to any subset of the states of damage, κ ⊂ {1, . . . , 4}.

We then introduce the set of features

zbk
2 (µ) =

[
zbk
2 (f1;µ), . . . , zbk

2 (fQf ;µ)
]
, zbk

2 (f ;µ) =
Abk

2,4(f ;µ) + Abk
3,4(f ;µ)

Abk
1,1(f ;µ) + Abk

4,1(f ;µ)
. (31)

It is easy to verify that the amplitudes {Abk
i,j}i,j are monotically decreasing

in α, β (i.e., increases in damping reduce the amplitude of the masses’ dis-
placements) and also in sL, sR (i.e., increases in the total mass reduce the
amplitude). However, while variations in α, β affect all masses, variations in
sL, sR should be mostly confined to the left and right masses (i.e., masses (1, j)
and (4, j) for j = 1, . . . , 4). Therefore, the ratio zbk

2 (·;µ) should reduce the ef-
fect of damping on our feature without affecting the effect of sL, sR, thereby
improving discrimination between κ = {1} and κ = {4}.

We now demonstrate the effectiveness of our choice of the features for
the problem at hand. With this in mind, we introduce a finite-dimensional
discretization Pbk

train of Pbk of cardinality |Pbk
train| = ntrain = 104. Given the

frequencies f1, . . . , fQf , Qf = 16, we define the in-class mean and standard
deviations:

m`,bk
q (κ) =

1
|Pbk

train(κ)|
∑

µ∈Pbk
train(κ)

zbk
` (fq;µ), (32a)

and

std`,bk
q (κ) =

1
|Pbk

train(κ)| − 1

∑
µ∈Pbk

train(κ)

(
zbk
` (fq;µ)−m`,bk

q (κ)
)2

, (32b)

where ` = 1, 2, and Pbk
train(κ) = {µ ∈ Pbk

train : fdam(µ) ∈ κ}, and κ ⊂ {1, 2, 3, 4}.
We further consider experimentally the five different nominal system configu-
rations corresponding to (i) sL = sR = 1, (ii) sL = 1, sR = 2.06, (iii) sL = 1,
sR = 1.53, (iv) sL = sR = 2.06, and (v) sL = sR = 1.53. For each config-
uration, we perform three independent trials for a total of 15 experimental
datapoints. Figures 5 show the behavior of {m`,bk

q (κ)}q for ` = 1, 2. For ` = 1,
we consider classes κ = {1, 4}, κ = {2} and κ = {3}; for ` = 2, we only
consider κ = {1} and κ = {4}. To take into account the variability of the
features due to changes in µ, we report error bars corresponding to twice the
in-class standard deviation std`,bk

q (κ). We further report experimental obser-
vations from the appropriate class to show the agreement between bk and
experimental features.



Simulation-Based Classification; application to SHM 21

f (Hz)
20 30 40 50 60 70 80

0.5

1

1.5

2

2.5
y=1,4(bk)
y=2(bk)
y=3(bk)
y=1,4(exp)

(a) z1

f (Hz)
20 30 40 50 60 70 80

0.5

1

1.5

2

2.5
y=1,4(bk)
y=2(bk)
y=3(bk)
y=3(exp)

(b) z1

f (Hz)
20 30 40 50 60 70 80

0

0.5

1

1.5
y=1(bk)
y=4(bk)
y=1(exp)

(c) z2

f (Hz)
20 30 40 50 60 70 80

0

0.5

1

1.5
y=1(bk)
y=4(bk)
y=4(exp)

(d) z2

Fig. 5: Microtruss experiment; discrimination capabilities of the features. Figures (a) and

(b): behavior of {m1,bk
q (κ)}q and {std1,bk

q (κ)}q for the three classes κ = {1, 4}, κ = {2},
κ = {3}, and comparison with the experimental data. Figures (c) and (d): behavior of

{m2,bk
q (κ)}q and {std2,bk

q (κ)}q for the two classes κ = {1} and κ = {4}, and comparison
with the experimental data. For each experimental configuration, we report results of three
independent realizations.

4.2 Computation of the classifier

Exploiting the reasoning of the previous section, we now introduce the classifier
used in the numerical tests: given the set of features zexp

1 and zexp
2 ,

– Level 1: distinguish between {1, 4}, {2} and {3} based on zexp
1 ;

– Level 2: if Level 1 returns {1, 4}, distinguish between {1} and {4} based
on zexp

2 .

We observe that the first layer corresponds to a threeway classification
problem, while the second layer corresponds to a binary problem. From a
practical perspective, our proposal requires the training of two classifiers: a
threeway classifier for the first level and a binary classifier for the second level.
We can thus interpret a classifier g as the pair g = (g1, g2) where g1 : RQf →
{0, 2, 3}, g2 : RQf → {1, 4}, and 0 is the label associated to {1, 4} for the first
level.
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In view of the presentation of the numerical results, we define the level-1
and level-2 bk risks:

Rbk,level 1(g) =
∫
Pbk

L(0,1)(g1(zbk
1 (µ)), fdam

1 (µ))wbk(µ) dµ, (33a)

and

Rbk,level 2(g) =
1

P bk
1 + P bk

4

∫
Pbk(1)∪Pbk(4)

L(0,1)(g2(zbk
2 (µ)), fdam(µ))wbk(µ) dµ,

(33b)

where P bk
1 , . . . , P bk

4 are defined in (25), and

fdam
1 (µ) =

0 if fdam(µ) ∈ {1, 4},
2 if fdam(µ) = 2,
3 if fdam(µ) = 3.

(33c)

We observe that 0 ≤ Rbk,level 1(g), Rbk,level 2(g) ≤ 1. Similar definitions can be
given for level-1 and level-2 experimental risks Rexp,level 2(g) and Rexp,level 2(g).

4.3 Reduced-Basis Approximation

In this section, we discuss how we reduce the computational burden associated
with the construction of the dataset Dbk

M for the microtruss system. More
specifically, we wish to speed up computations of the map

(f, µ) 7→ Abk
i,j(f ;µ)

in the limit of many queries using the Reduced Basis (RB) method. With this
in mind, we first present the weak formulation of the bk model (section 4.3.1),
then we present the RB approximation (section 4.3.2), and finally we provide
numerical results to demonstrate the effectiveness of the RB approach (section
4.3.3).

4.3.1 Parametrized microtruss model

We first introduce the weak statement associated with the time-harmonic as-
ymptotic solution to (5) in the configuration-dependent domain Ωs: given the
frequency f , and the bk configuration µ = [α, β, E, sL, sR], find ubk(f ;µ) ∈
Us := H1(Ωs; C2) such that{

(1 + iωfβ) E bΩs(u
bk(f ;µ), v) + (−ω2

f + iωfα) ρL2mΩs(u
bk(f ;µ), v) = 0.

ubk(f ;µ)|Γdir = udir

(34a)
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for all v ∈ Us,0 = H1
0,Γdir(Ωs; C2), where ωf = 2πf ,

mΩs
(u, v) =

∫
Ωs

u · v̄ dx, (34b)

and

bΩs(u, v) =
∫

Ωs

1
1 + ν

sym(∇u) : sym(∇v) +
1

(1 + ν)(1− 2ν)
div(u) div(v) dx.

(34c)

Here, ·̄ refers to the complex conjugate.
We then introduce a geometric mapping between a parameter-independent

domain Ωref and the configuration-dependent domain Ωs. With this in mind,
we introduce the reference domain Ωref := Ωref

1 ∪Ωref
2 ∪Ωref

3 such that Ωref
1 =

Ω1, Ωref
2 = Ω2(sL = 1), Ωref

3 = Ω3(sR = 1), and we define the affine map

T : Ωref×[1, 2]2 → Ωs, T (x, sL, sR) =

x ifx ∈ Ωref
1 ,

x1e1 + sLx2e2 ifx ∈ Ωref
2 ,

x1e1 + sRx2e2 ifx ∈ Ωref
3 ,

(35)

where {e1, e2} is the canonical basis. By tedious but straightforward calcula-
tions, we find that, for any u, v ∈ H1(Ωs; C2),

(1+iωfβ) E bΩs
(u, v) + (−ω2

f +iωfα)mΩs
(u, v) =

10∑
q=1

Θq(f ;µ) aq(û, v̂) (36)

where û(x) = u(T (x, s)), v̂(x) = v(T (x, s)), and the parameter-dependent
coefficients {Θq}10q=1 and the parameter-independent bilinear forms {aq}10q=1 are
reported in Appendix B. Then, we introduce the lift ulift ∈ H1(Ωref ; C2) such
that ulift ≡ 0 outside Ω1, ulift(xi,j) = 0 for all i, j = 1, . . . , 4, and ulift|Γdir =
udir; we observe that ulift(T −1(x, sL, sR)) does not depend on the values of sL

and sR.
We can now introduce the parametrized best-knowledge model for the lifted

field in the reference configuration and we relate the solution to the experi-
mental measurements. Given a frequency f and bk configuration µ in Pbk

f , we
seek the solution ůbk(f ;µ) := ubk(T (·, s), f ;µ)−ulift ∈ U0 = H1

0,Γdir(Ωref ; C2)
to the following variational problem

a(̊ubk(f ;µ), v; f, µ) = `(v; f, µ), ∀ v ∈ U0, (37a)

where

a(w, v; f, µ) =
10∑

q=1

Θq(f, µ) aq(w, v), `(v; f, µ) = −
10∑

q=1

Θq(f, µ) aq(ulift, v),

(37b)
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and

(f, µ) ∈ Pbk
f := If × Pbk. (37c)

Recalling the definition of the map T (such that T −1(xi,j , sL, sR) = xi,j for
all sL, sR), and the definition of ulift, we finally find

Abk
i,j(f ;µ) =

Anom

|̊ubk
2 (x2,1; f, µ)|

|̊ubk
2 (xi,j ; f, µ)|, (38)

where i, j = 1, . . . , 4, and (f, µ) ∈ Pbk
f . Since ubk

2 (xi,j ; f, µ) = ůbk
2 (xi,j ; f, µ) +

ulift(xi,j) = ůbk
2 (xi,j ; f, µ), (37)-(38) is equivalent to (8).

In view of the application of the RB method, we define the norm for U0

‖u‖ :=
√

ErefbΩref (u, u) + ρL2mΩref (u, u), (39)

where Eref = 2.8 · 109[Pa], and mΩref (·, ·) and bΩref (·, ·) are defined in (34b)
and (34c), respectively. We further define the dual norm of the residual

R(u; f, µ) := sup
v∈U0

|a(u, v; f, µ)− `(v; f, µ)|
‖v‖

. (40)

Finally, we introduce the FE discretization UN0 of the space U0 based on P4
polynomials and N = 14670 degrees of freedom. We denote by ůbk

N (f ;µ) ∈ UN0
the FE approximation of the solution to (37).

4.3.2 Application of the Reduced Basis (RB) method

The key idea of RB is to restrict trial and test spaces in (37) to a low-
dimensional space WN ⊂ UN0 with N � N . For a given pair (f, µ), we define
the RB approximation ůbk

N,N (f ;µ) ∈ WN of ůbk
N (f ;µ) as the solution to the

N -dimensional variational problem:

a(̊ubk
N,N (f ;µ), v; f, µ) = `(v; f, µ), ∀ v ∈ WN . (41a)

The RB outputs are then evaluated as

Ãbk
i,j(f ;µ) =

Anom

|
(
ůbk

N,N (x2,1; f, µ)
)

2
|
|
(
ůbk

N,N (xi,j ; f, µ)
)
2
|, (41b)

i, j = 1, . . . , 4, (f, µ) ∈ Pbk
f , which yields features (see (30) and (31)):

z̃bk
1 (µ) =

[
z̃bk
1 (f1;µ), . . . , z̃bk

1 (fQf ;µ)
]
, z̃bk

1 (f ;µ) =
Ãbk

1,4(f ;µ)

Ãbk
4,4(f ;µ)

, (41c)

and

z̃bk
2 (µ) =

[
z̃bk
2 (f1;µ), . . . , z̃bk

2 (fQf ;µ)
]
, z̃bk

2 (f ;µ) =
Ãbk

2,4(f ;µ) + Ãbk
3,4(f ;µ)

Ãbk
1,1(f ;µ) + Ãbk

4,1(f ;µ)
.
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(41d)

We generate the space WN based on snapshots from the bk manifold
Mbk

N = {ůbk
N (f ;µ) : (f, µ) ∈ Pbk

f }. More precisely, we consider a Lagrange
([48]) approximation space WN as the span of N snapshots {ůbk

N (fn;µn)}N
n=1,

where {(fn, µn)}N
n=1 are selected based on the residual-based weak-Greedy al-

gorithm (see, e.g., [53, section 7.2.2]): given {(fn, µn)}N−1
n=1 , set (fN , µN ) equal

to

(fN , µN ) := arg max
(f,µ)∈Pbk

f,train

∆bk
N−1(f, µ) := R(̊ubk

N−1,N (f ;µ); f, µ),

where Pbk
f,train is a suitably finite-dimensional discretization of Pbk

f of cardi-
nality |Pbk

f,train| = ntrain. We recall that this procedure allows us to identify
quasi-optimal reduced spaces WN relative to the Kolmogorov gold standard
(see [11] and [18, section 8]).

To reduce the computational cost in the limit of many queries, we pursue
an offline/online strategy. During the offline stage (step 2.a in Algorithm 2),
we construct the space WN , and we assemble and store suitable parameter-
independent quantities related to the construction of the linear system (41) in
terms of the offline expansion (37b). Then, during the online stage (step 2.b in
Algorithm 2), we compute the coefficients of the RB solution associated with a
suitable basis of WN , and we evaluate the outputs of interest and subsequently
features; the operation count (for a given (f, µ)) depends only on N . The offline
stage is performed once and is parameter-independent, while the online stage
is repeated for each value of (f, µ): since the cost of a single online evaluation
is significantly less expensive than the corresponding FE evaluation, we can
easily amortize the offline computational cost in the limit of many queries.

4.3.3 Numerical results

Figure 6(a) shows the convergence of ∆bk
N−1(f

N , µN ) of the weak-Greedy al-
gorithm (ntrain = 103). We observe that convergence is not monotonic with
N : this is to be expected since the problem is not coercive and we consider
only Galerkin projection; monotonicity could be guaranteed by appealing to
the minimum residual formulation ([41]). We further observe that for N & 15
the residual stagnates: this is due to round-off errors in residual evaluation; a
potential strategy to address this issue is proposed in [15]. Nevertheless, we
observe that for N & 15 we already obtain a sufficient 106 reduction in the
residual value. Furthermore, Figures 6(b)-(c) show that for N = 20 the RB
error prediction in feature evaluation is negligible if compared with intra-class
differences. In what follows, we may thus effectively equate ůbk

N and ůbk
N=20,N .

Finally, we comment on the computational cost. We consider here a P4
FE discretization (N = 14670) and a RB reduced model based on N = 20
snapshots. Simulations are performed on a Mac OS-X Intel Core i7 2.8GHz,
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RAM 16GB. The RB offline cost is roughly 24s, while the cost of a single
input-output evaluation is roughly

0.18s for FE, 4.4 · 10−3s for RB.

Assuming that each datapoint zbk(µ) is based on Qf frequencies, our RB
approach is computationally advantageous if 24s+4.4·10−3s×MQf < 0.18s×
MQf , or

MQf & 180.

Since we consider M ≈ 104, Qf ≈ 10, the cost of the offline stage is negligible.
We also observe that in three space dimensions the RB advantage will further
increase.
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Fig. 6: Microtruss experiment: RB Approximation. Figure (a): convergence of the weak-
Greedy. Figures (b) and (c): comparison between FE and RB feature predictions for α =
5 · 10−4, β = 10−4, E = 2.8 · 109 and three different choices of the geometric parameters.

4.4 Classification results

We consider five distinct classifiers for both levels : one-vs-all Support Vector
Machine with Gaussian kernels (ova-SVM,[52,20,19]), decision trees ([14]), κ =
5-nearest neighbor (kNN, [31, Chapter 13]), artificial neural network with 10
hidden layers (ANN, [12]), and nearest-mean classifier (NMC). We recall that
NMC assigns to observations the label of the class of training samples whose
centroid m(k) is closest to observations in a suitable norm. Two standard
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NMC procedures, which correspond to two different choices of the norm, are

g(z) := arg min
k∈{1,...,K}

Q∑
q=1

(zq −mbk
q (k))2, (42)

and

g(z) := arg min
k∈{1,...,K}

Q∑
q=1

(zq −mbk
q (k))2

stdbk
q (k)

, (43)

where mbk
q (k), stdbk

q (k) are sample mean and sample standard deviations of
the training samples of the class κ = {k} as defined in (32a) and (32b).
We standardize data3 for the second level, whereas we do not standardize
data for the first level: due to the small variations of z1 far from resonance,
standardization of z1 increases sensitivity to model error. For NMC, we apply
(42) for the first level and (43) for the second level.

We appeal to off-the-shelf Matlab implementations ([43]) of ova-SVM, de-
cision trees, kNN and ANN. More precisely, we rely on fitcsvm for binary
SVM, fitctree for decision trees, fitknn for kNN and train for ANN. We
refer to the Matlab documentation and to the above-mentioned references for
further details.

In order to assess performance on experimental data, we consider experi-
mentally the five different nominal system configurations introduced in section
4.1. For each configuration, we consider three independent trials for a total of
15 experimental datapoints. We remark that these experimental datapoints do
not include the datapoint employed to estimate Pbk.

We first study performance on synthetic data. More specifically, we study
the dependence of the bk risk on the number M of training points. We gen-
erate a dataset with Ntrain = 104 datapoints corresponding to the following 9
frequencies:

{fq}Qf

q=1 = {20.1, 25.1, 30.1, 35.1, 40.1, 65.1, 70.1, 75.1}.

We choose to not consider frequencies close to resonance since the noise is
higher. Then, we consider M datapoints for training and Ntrain−M datapoints
for estimating the bk risk. In order to account for the effects of partition, we
average results over 100 random splits of the dataset.

Figure 7 shows the behavior of the bk risk Rbk(g?
M ) with M for the above

mentioned classifiers. We observe that performance strongly depends on the
amount of training data; this demonstrates empirically the importance of
pMOR in the generation of sufficiently large datasets. We further observe
that, unlike the other classifiers, performance of NMC does not improve as M
increases; this is to be expected since NMC is not in general consistent.

3 We recall that standardization of data implies that we train the classifier based on the

modified features ẑq =
zq−mbk

q

stdbk
q

where mbk
q , stdbk

q are respectively the sample mean and the

sample standard deviation of the training set for all classes.
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Fig. 7: Microtruss experiment: behavior of the overall (both levels) bk risk Rbk(g?
M ) with

M for five different Machine Learning algorithms.

We now study performance for real experimental data. Towards this end,
we consider a dataset Dbk

Ntrain
with Ntrain = 104 datapoints based on the same 9

frequencies considered for the previous test. We reserve M = 7 ·103 datapoints
for training and validation, and 3 · 103 for testing. As for the previous test,
we average results over 100 random splits of the dataset. For this test, we
report estimates of the synthetic and experimental risks separately for first
and second level (see (33)).

Table 2: Classification performances, R·,level1(g) and R·,level2(g), for different learning al-
gorithms for 100 random permutations of learning and test synthetic datasets

Level 1

bk-risk Rbk,level 1(g) exp risk (5× 3) Rexp,level 1(g)
ova-SVM 0.0012 0.0107
decision tree 7.3 · 10−4 0.0533
kNN (k = 5) 0.0013 0
ANN (10 layers) 5.9 · 10−4 0.5773
NMC 0.0161 0

Level 2

bk-risk Rbk,level 2(g) exp risk (3× 3) Rexp,level 2(g)
ova-SVM 0.0096 0.3333
decision tree 0.0013 0.6667
kNN (k = 5) 0.0079 0
ANN (10 layers) 0.0017 0.5773
NMC 0.1044 0

Table 2 shows results for both levels and for both synthetic and real data.
We observe that kNN and NMC succeed in classifying all the experimental
data, while decision trees and Neural Networks perform extremely poorly on
experimental data. This demonstrates empirically that SVM, ANN and deci-
sion trees are more sensitive to data uncertainty than kNN and NMC. We fur-
ther observe that, among the choices considered in this work, kNN is the only
option that guarantees accurate synthetic and experimental performances.
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5 Mathematical analysis

We now discuss the mathematical analysis of our formulation. First, in section
5.1, we propose a probabilistic interpretation of the monitoring problems. This
interpretation allows us to address questions related to the well-posedness of
the problems stated in section 2.6, and also allows us to discuss the asymptotic
properties of the learning machines used for classification. Then, in section 5.2,
we propose a general error bound that clarifies the influence of model error
on classification performance. Finally, in section 5.3, we discuss in detail a
special case that provides insights about the connection between model bias
and classification performance.

5.1 Probabilistic interpretation of the monitoring problems

We shall now introduce a probabilistic interpretation of the monitoring prob-
lems. This will help us develop and analyze our computational approach. With
this in mind, we first recall the definition of Pwbk in (28),

Pwbk(A) =
∫
Pbk

1A(µ′) wbk(µ′) dµ′, A ⊂ Pbk,

and we define the probability measure on Pexp, P exp
(µ,ξ), such that

P exp
(µ,ξ)(A×B) =

∫
Pbk×V

1A(µ)1B(ξ) wbk(µ′) pξ(ξ′) dµ′dξ′, A ⊂ Pbk, B ⊂ V.

(44)

Recalling (18) and (16), it is easy to verify that Pwbk is a probability measure
over Pbk, and P exp

(µ,ξ) is a probability measure over Pexp. As in section 3.1, we
denote here by µ a random vector distributed according to Pwbk , µ ∼ Pwbk ;
similarly, we denote by (µ, ξ) a random pair distributed according to P exp

(µ,ξ).
Recalling the definitions of the bk features zbk : Pbk → RQ and of the

damage function fdam : Pbk → {1, . . . ,K}, we define the random pair

(Zbk, Y ) := (zbk(µ), fdam(µ)), µ ∼ Pwbk .

We further denote by P(Zbk,Y ) the corresponding image probability distribu-
tion defined over RQ × {1, . . . ,K}:

P(Zbk,Y )(A× {k}) =
∫

(zbk,fdam)−1(A×{k})
wbk(µ) dµ,

where (zbk, fdam)−1 (A× {k}) := {µ ∈ Pbk : (zbk(µ), fdam(µ)) ∈ A × {k}}
is the pre-image of A × {k}. We observe that P(Zbk,Y ) is uniquely identified
by the weight wbk, the bk features zbk and by the damage function fdam.
Similarly, we can define the random pair

(Zexp, Y ) := (zexp(µ, ξ), fdam(µ)), (µ, ξ) ∼ P exp
(µ,ξ),
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and the corresponding image probability distribution P(Zexp,Y ).
Recalling the change of variable formula, we can restate the problem state-

ments proposed in section 2.6. In more detail, the monitoring problem (19)
can be restated as follows

gopt = arg inf
g measurable

Rexp(g) = E(Zexp,Y )∼P(Zexp,Y )

[
L(0,1) (g(Zexp), Y )

]
,

(45)

while the bk monitoring problem can be restated as follows:

gopt,bk = arg inf
g measurable

Rbk(g) = E(Zbk,Y )∼P(Zbk,Y )

[
L(0,1)

(
g(Zbk), Y

)]
.

(46)

In Appendix A, we rigorously show that if Pwbk is defined on all open sets
of Pbk (i.e., Pwbk is Borel-measurable), the features zbk are continuous with µ
and fdam is Borel-measurable, then P(Zbk,Y ) is Borel-measurable. Similarly, if
P exp

(µ,ξ) is Borel-measurable, the features zexp are continuous with µ and ξ, and
fdam is measurable, then P(Zexp,Y ) is Borel-measurable. This allows us to rig-
orously study the existence and the uniqueness of solutions to the monitoring
problems.

Statements (45) and (46) help us interpret the effect of model error from
the perspective of learning. Model error introduces a shift of the statistical
properties of the predictors (features). This shows the connection with the
notion of concept drift ([69,65]) and dataset shift ([44]) studied in machine
learning. It is possible to show that this shift can be completely characterized
by the probability distribution of δz. In this paper, we omit this proof.

We observe that if µ1, . . . , µM are independent identically distributed (iid)

samples from Pwbk , µ
iid︷︸︸︷∼ Pwbk , then the dataset Dbk

M consists of M indepen-
dent samples from the joint distribution P(Zbk,Y ). This has two important
implications. First, for a wide class of classifiers (e.g., kernel methods, [64] ),
we can exploit standard results in learning theory to study the consistency of
the classifier g?

M for the best-knowledge monitoring problem, that is (see, e.g.,
[66])

p lim
M→∞

Rbk(g?
M ) = inf

g measurable
Rbk(g),

where p lim denotes the limit in probability. Second, we can formalize questions
related to the Design Of Experiment (DOE) such as frequency selection and
sensor placement in a rigorous mathematical fashion, as (grouped-) variable
selection problems. In this paper, we do not address the connection between
DOE and variable selection, which is the topic of ongoing research.
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5.2 Error analysis

We first present two definitions.

Definition 2 Given the classifier g : RQ → {1, . . . ,K}, we define the k-
acceptance region

Z(g, k) := {z ∈ RQ : g(z) = k}, (47)

where k = 1, . . . ,K.

Definition 3 Given the classifier g : RQ → {0, 1} and the constant ε > 0, we
define the ε-uncertainty indicator Ebk as

Ebk(g, ε, µ) :=

{
0 if Bε(zbk(µ)) ⊂⊂ Z(g, k), for some (unique) k ∈ {1, . . . ,K};

1 otherwise;
(48)

where Bε(z) is the Q-dimensional ball of radius ε centered in z ∈ RQ, and
Z(g, k) is defined in (47).

The ε-uncertainty indicator Ebk is equal to zero if zbk(µ) is sufficiently far
from the separating hyper-planes associated with the classifier g. Furthermore,
Ebk is monotonic increasing in ε, and Ebk(g, ε = 0, µ) = 0 unless zbk(µ) lies
on a separating hyper-plane. Therefore, it can be interpreted as a measure of
local robustness to data uncertainties. We further observe that Ebk(g, ε, µ) = 0
if and only if

g(zbk(µ)) = g(zbk(µ) + δz) ∀ δz ∈ Bε(0).

Recalling the definition of 0− 1 loss, we thus find

L(0,1)
(
g(zbk(µ)), g(zbk(µ) + δz)

)
≤ Ebk(g, ε, µ) ∀ δz ∈ Bε(0). (49)

We formally relate the ε-uncertainty indicator (48) to other measures of
local robustness that have been proposed in the literature. Given the parameter
µ ∈ Pbk and the classifier g, we define

rbk(µ, g) := inf
z∈Z?(g,g(zbk(µ)))

‖z− zbk(µ)‖2, (50)

where Z?(g, k) =
⋃

k′ 6=k Z(g, k′) and Z(g, k′) is defined in (47). It is possible
to show that we can rewrite the ε-uncertainty indicator Ebk as

Ebk(g, ε, µ) =

{
0 if rbk(µ, g) > ε;

1 otherwise.

The quantity rbk(µ, g) in (50) is known as stability radius, and it is widely used
in control theory ([34]), and optimization ([74]) as measure of local robustness.
It can be shown (see [62]) that the stability radius is also an instance of Wald’s
maximin model ([67]), which is employed in statistics and decision theory.

We now present the main result of this section.
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Proposition 1 Let the classifier g : RQ → {1, . . . ,K} and the damage func-
tion fdam : Pbk → {1, . . . ,K} be measurable functions. Let us further define
εbk > 0 as

εbk := ‖δz‖L∞(Pexp;RQ), δz(µ, ξ) = zexp(µ, ξ)− zbk(µ). (51)

Then, the following hold:

Rexp(g) ≤ Rbk(g) +
∫
Pbk

Ebk(g, εbk, µ) wbk(µ) dµ =: Rexp
UB (g, εbk), (52)

and

Rexp(g; k) ≤ Rbk(g; k) +
∫
Pbk(k)

Ebk(g, εbk, µ)wbk(µ) dµ =: Rexp
UB (g, εbk, k),

(53)

for k = 1, . . . ,K and for any choice of pξ : V → R+ in (19).

Proof We show only (52), as the proof of (53) is analogous. Applying the
triangle inequality, we find

Rexp(g) ≤
∫
Pexp

L(0,1)(g(zbk(µ)), fdam(µ))wbk(µ) pξ(ξ) dµ dξ︸ ︷︷ ︸
=(I)

+
∫
Pexp

L(0,1)(g(zbk(µ)), g(zexp(µ, ξ))wbk(µ) pξ(ξ) dµ dξ︸ ︷︷ ︸
=(II)

Then, recalling the definition of wbk in (18), we observe that

(I) =
∫
Pbk

L(0,1)(g(zbk(µ)), fdam(µ))wbk(µ)
∫
V

pξ(ξ) dξ︸ ︷︷ ︸
=1

dµ = Rbk(g).

On the other hand, recalling (49), we find

(II) ≤
∫
Pbk

Ebk(g, εbk, µ) wbk(µ)
∫
V

pξ(ξ) dξ︸ ︷︷ ︸
=1

dµ =
∫
Pbk

Ebk(g, εbk, µ) wbk(µ) dµ.

Thesis follows. ut

Our error analysis clarifies that the online performance of a classifier g
depend on two distinct factors: (i) the best-knowledge risk Rbk(g), and (ii)
the integral involving the ε-uncertainty indicator Ebk. The best-knowledge
risk Rbk(g) accounts for the nominal performance of the classifier; the integral
involving Ebk accounts for the robustness of g to data uncertainties and de-
pends on the roughness of the separating hyperplane(s). As observed in section
3, traditional machine learning algorithms aim to minimise the nominal risk
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(here Rbk(g)). If model error is moderate, estimate (52) shows that minimising
the nominal risk leads to accurate online performance. On the other hand, if
model error is sufficiently large, then this choice does not necessarily lead to
accurate decision rules for the online stage.

Before concluding this section, we state a remark.

Remark 2 (The separable case) We discuss the special case in which con-
figuration classes are separable and the classifier g separates them over Pbk,
that is

Rbk(g) = 0.

In this case, provided that the model error is sufficiently small, we can guar-
antee perfect separation even in presence of model error. Let us define the
quantity

δk = inf
µ∈Pbk: g(zbk(µ))=k

inf
z∈Z?(g,k)

‖zbk(µ)− z‖2.

where Z?(g, k) =
⋃

k′ 6=k Z(g, k′) and Z(g, k′) is defined in (47). Then, if εbk <
mink δk, we find that

Ebk(g, εbk, µ) ≡ 0, ∀µ ∈ Pbk

and exploiting Proposition 1 we find that

Rexp(g) = 0;

this implies that the classifier g is a solution to problem (19).

5.3 Model bias and experimental risk

We now wish to relate model bias to classification performance for a special
case. This will provide insights about the connection between the modelling
stage and the inference stage. Let us assume that experimental features can
be written as4

zexp(µ, ξ) = F̂ (uexp(µ, ξ)) ,

where uexp(µ, ξ) ∈ U is the system state associated with (µ, ξ), U = U(Ω)
is a suitable Hilbert space defined over a domain Ω ⊂ Rd, and F̂ is a linear
continuous functional over U , F̂ ∈ U ′, with continuity constant CF . Let us
further assume that the best-knowledge features are given by

zbk(µ) = F̂(ubk(µ)),

where ubk(µ) is the solution to the variational problem

Gbk(ubk(µ);µ) = `(µ), in U ′.

Here, we assume that Gbk(·;µ) is an inf-sup stable linear operator with stability
constant βbk(µ) and `(µ) ∈ U ′ for any µ ∈ Pbk.

4 We consider here the case of static data to not deal with the dependence on frequency.
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If we define the model bias fbias : Pexp → U ′ as

fbias(µ, ξ) := Gbk(uexp(µ, ξ);µ)− `(µ), ∀ (µ, ξ) ∈ Pexp,

we obtain

‖δz(µ, ξ)‖2 = ‖F̂(uexp(µ, ξ)− ubk(µ))‖2 ≤
CF

βbk(µ)
‖fbias(µ, ξ)‖U ′ ,

which implies that

εbk = sup
(µ,ξ)∈Pexp

‖δz(µ, ξ)‖2 ≤ sup
(µ,ξ)∈Pexp

CF

βbk(µ)
‖fbias(µ, ξ)‖U ′ . (54)

Combining estimates (54) with (52), we obtain that the performance of our
monitoring system depends on four distinct factors: (i) the nominal perfor-
mance through the best-knowledge risk Rbk(g), (ii) the robustness of g to
data uncertainties throught the ε-uncertainty indicator Ebk, (iii) the stability
of the PDE through the stability constant βbk(µ), and (iv) the uncertainty
in the model through the bias fbias. We observe that a direct consequence of
estimates (52) and (54) is the accomodation of the inevitable, even if small,
departure of the physical system from our idealization. However, we observe
that (54) is not fully actionable since ‖fbias(µ, ξ)‖U ′ is typically unknown.

6 Conclusions and perspectives

In this paper, we propose a Simulation-Based approach for classification, and
we discuss its application to Structural Health Monitoring. We consider a mi-
crotruss problem in both a synthetic but also an experimental framework. We
exploit recent advances in parametric Model Order Reduction to reduce the
computational burden associated with the construction of the offline dataset.
Furthermore, we rely on a rigorous mathematical formulation of the classifica-
tion problem to develop an a priori error analysis that links nominal perfor-
mance on synthetic data to experimental performance. Numerical results show
that for certain choices of the classifiers we are able to predict the correct state
of damage associated with experimental configurations.

We now identify a number of potential next steps that we wish to pursue
in the future.

– Automatic feature identification: we wish to exploit the connection between
Design Of Experiment (DOE, [28,50]) and (grouped-) variable selection to
automatically identify informative features for classification. By addressing
problems of sensor and frequency selection within the context of classifica-
tion, we can design strategies that are directly informed by the objective
function associated to the monitoring problem. We observe that, in the con-
text of regression, similar ideas for sensor placement have been proposed
in the experiment design literature (see [39], [13, Section 7.5], [50]).
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– Extension to large-scale structures/high-dimensional configuration spaces:
we wish to consider more realistic engineering situations where definition of
damage leads to very high-dimensional configuration spaces. In this respect,
we envision that component-based pMOR approaches – and in particular
the static-condensation Reduced Basis Element method (scRBE, [37,23,
61]) – might be naturally suited for this problem due to the local nature
of damage generation.

– Connection with robust optimization: we wish to explore the connection
with Robust Optimization (RO, [10,9]) to design classification algorithms
that are robust to data uncertainty. As discussed in section 5 and empir-
ically shown in section 4.4, robustness to data uncertainties is absolutely
crucial to deal with physical problems. We envision that recent advances in
RO can help understand and improve the performance of Machine Learning
algorithms.

– Application to other engineering applications: we wish to apply Simulation-
Based Classification to engineering problems other than SHM. More specif-
ically, we wish to consider the application of Simulation-Based Classifica-
tion to Acoustic Pulse Reflectometry (APR, [1,60]): as SHM, APR can be
recast as a classification problem, and the corresponding underlying phys-
ical phenomenon is well-described by a parametrized Partial Differential
Equation.

Acknowledgements The authors thank Prof. Bernard Haasdonk (University of Stuttgart)
for fruitful discussions.

A Existence and uniqueness of the solutions to the monitoring
problems

In this appendix, we discuss existence and uniqueness of solutions to the monitoring problems
and indeed we develop an explicit — through not readily evaluated — expression for gopt,bk.
For the sake of clarity, we recap the definition of Pwbk in (28),

Pwbk (A) =

∫
Pbk

1A(µ′) wbk(µ′) dµ′, A ⊂ Pbk,

and of P exp
(µ,ξ)

in (44),

P exp
(µ,ξ)

(A×B) =

∫
Pbk×V

1A(µ)1B(ξ) wbk(µ′) pξ(ξ′) dµ′, dξ′. A ⊂ Pbk, B ⊂ V.

We assume here that Pwbk and P exp
(µ,ξ)

are Borel-measurable, that is they are defined on all

open sets of Pbk and Pexp, respectively. A sufficient condition for which Pwbk and P exp
(µ,ξ)

are Borel-measurable is that wbk ∈ L1(Pbk) and pξ ∈ L1(V). We further recall the random
pair

(Zbk, Y ) := (zbk(µ), fdam(µ)), µ ∼ Pwbk ,

with probability distribution P(Zbk,Y ), and

(Zexp, Y ) := (zexp(µ, ξ), fdam(µ)), (µ, ξ) ∼ P exp
(µ,ξ)

,
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with probability distribution P(Zexp,Y ).

Next Lemma shows that if zbk and zexp are continuous, fdam is Borel-measurable,
and Pwbk and P exp

(µ,ξ)
are Borel-measurable, then P(Zbk,Y ) and P(Zexp,Y ) are also Borel-

measurable.

Lemma 1 Suppose that

1. the probability measures Pwbk in (28) and P exp
(µ,ξ)

in (44) are Borel-measurable;

2. the bk features zbk : Pbk → RQ and the experimental features zexp : Pexp → RQ are
continuous;

3. the discrete function fdam : Pbk → {1, . . . , K} is Borel-measurable.

Then, the probability measures P(Zbk,Y ) and P(Zexp,Y ) are Borel-measurable on RQ ×
{1, . . . , K}.

Proof We only prove that P(Zbk,Y ) is Borel-measurable. The proof of the measurability of

P(Zexp,Y ) is analogous. Let A ⊂ RQ be an open set and let k ∈ {1, . . . , K}. We must show
that P(Zbk,Y )(A× {k}) is well-defined. By construction, we have that

P(Zbk,Y )(A× {k}) =

∫
(Zbk,Y )−1(A×{k})

wbk(µ) dµ.

As a result, we must show that

(Zbk, Y )−1 (A× {k}) = {µ ∈ Pbk : zbk(µ) ∈ A, fdam(µ) = k}

=
(
zbk

)−1
(A) ∩

(
fdam

)−1
(k)

is a Borel set. Since zbk is continuous and A is open,
(
zbk

)−1
(A) is also open. On the other

hand, by assumption,
(
fdam

)−1
(k) is Borel. Thesis follows by recalling that the intersection

of Borel sets is also Borel. ut

Lemma 1 can be used to prove the following important result related to the existence
and uniqueness of solutions to (20) and to (19). We state here only the result for (20). An
analogous discussion applies also to the monitoring problem (19).

Proposition 2 The optimal solution gopt,bk to (20) is given by

gopt,bk(z) = arg max
k=1,...,K

P(Zbk,Y )(Y = k|Zbk = z). (55)

Here, P(Zbk,Y )(Y = k|Zbk = z) denotes the conditional probability of the event {Y = k}
given {Zbk = z}.

Furthermore, if there exists ε > 0 such that

PZbk

(
P(Zbk,Y )(Y = gopt,bk(z)|Zbk = z) ≥ max

k 6=gopt,bk(z)
P(Zbk,Y )(Y = k|Zbk = z) + ε

)
= 1,

(56)

then any solution g to (20) satisfies gopt,bk(z) = g(z) for PZbk -almost every z ∈ RQ.

Proof We first show that (55) is measurable. Recalling [22, Theorem A.24 page 586], since
P(Zbk,Y ) is Borel-measurable, if we denote by PZbk the corresponding marginal distribution,

there exists for PZbk - almost-every z ∈ RQ and for k = 1, . . . , K a measurable function
ξbk
k : RQ → R such that ξbk

k (z) = P(Zbk,Y )(Y = k|Zbk = z). Recalling that the pointwise
maximum of measurable functions is also measurable, this implies that, under the hypotheses
of Lemma 1, the function gopt,bk in (55) is measurable.
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We now observe that

Rbk(g) =
∫

RQ×{1,...,K} L
(0,1)(g(z), y) dP(Zbk,Y )(z), y) =

∫
RQ

∑
k 6=g(z) P(Zbk,Y )(Y = k|Zbk = z)) dPZbk (z)

= 1−
∫

RQ P(Zbk,Y )(Y = g(z)|Zbk = z)) dPZbk (z)

≥ 1−
∫

RQ maxk P(Zbk,Y )(Y = k|Zbk = z)) dPZbk (z) = Rbk(gopt,bk).

Since gopt,bk is measurable, this implies that gopt,bk is a solution to (20).

Let g be a classifier such that Rbk(gopt,bk) = Rbk(g). Using the same reasoning as
before, it is possible to verify that

Rbk(g) = Rbk(gopt,bk)+

∫
RQ

(
P(Zbk,Y )(Y = gopt,bk(z)|Zbk = z)− P(Zbk,Y )(Y = g(z)|Zbk = z)

)
dPZbk (z).

Recalling (56), we find

Rbk(g) ≥ Rbk(gopt,bk) + ε

∫
RQ

L(0,1)(g(z), gopt,bk(z)) d PZbk (z).

Then, we must have

∫
RQ

L(0,1)(g(z), gopt,bk(z)) d PZbk (z) = 0,

which implies that g(z) = gopt,bk(z) for PZbk -almost every z ∈ RQ. ut

B Parametric-affine expansion for the microtruss problem

Below, we report the parameter-dependent coefficients {Θq}10q=1 and the parameter-independent

bilinear forms {aq}10q=1 associated with the microtruss problem considered in this work.

Θq(f, µ = [α, β, E, sL, sR]) =


(1 + iωf β)E q = 1,
(−ω2

f + iωf α)ρL2 q = 2,

(1 + iωf β)sL E q = 3,
(1 + iωf β)E q = 4,

(1 + iωf β)s−1
L E q = 5,


(−ω2

f + iωf α)ρL2sL q = 6,

(1 + iωf β)sR E q = 7,
(1 + iωf β) E q = 8,

(1 + iωf β)s−1
R E q = 9,

(−ω2
f + iωf α)ρL2sR q = 10,

(57a)
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and

aq(u, v) =



b
Ω

ref
1

(u, v) q = 1

m
Ω

ref
1

(u, v) q = 2,∫
Ω

ref
2

1− ν

(1 + ν)(1− 2ν)

∂u1

∂x1

∂v1

∂x1
+

1

2(1 + ν)

∂u2

∂x1

∂v2

∂x1
dx q = 3,∫

Ω
ref
2

ν

(1 + ν)(1− 2ν)

(
∂u1

∂x1

∂v2

∂x2
+

∂u2

∂x2

∂v1

∂x1

)
+

1

2(1 + ν)

(
∂u1

∂x2

∂v2

∂x1
+

∂u2

∂x1

∂v1

∂x2

)
dx q = 4,∫

Ω
ref
2

1− ν

(1 + ν)(1− 2ν)

∂u2

∂x2

∂v2

∂x2
+

1

2(1 + ν)

∂u1

∂x2

∂v1

∂x2
dx q = 5,

m
Ω

ref
2

(u, v) q = 6,∫
Ω

ref
3

1− ν

2(1 + ν)(1− 2ν)

∂u1

∂x1

∂v1

∂x1
+

1

2(1 + ν)

∂u2

∂x1

∂v2

∂x1
dx q = 7,∫

Ω
ref
3

ν

(1 + ν)(1− 2ν)

(
∂u1

∂x1

∂v2

∂x2
+

∂u2

∂x2

∂v1

∂x1

)
+

1

2(1 + ν)

(
∂u1

∂x2

∂v2

∂x1
+

∂u2

∂x1

∂v1

∂x2

)
dx q = 8,∫

Ω
ref
3

1− ν

(1 + ν)(1− 2ν)

∂u2

∂x2

∂v2

∂x2
+

1

2(1 + ν)

∂u1

∂x2

∂v1

∂x2
dx q = 9,

m
Ω

ref
3

(u, v) q = 10,

(57b)

Compliance with Ethical Standards: this work was supported by OSD/AFOSR/MURI
Grant FA9550-09-1-0613, ONR Grant N00014-11-1-0713, and the MIT-Singapore
International Design Center.

Conflict of Interest: the authors declare that they have no conflict of interest.

References

1. Amir, N., Barzelay, O., Yefet, A., Pechter, T.: Condenser tube examination using
acoustic pulse reflectometry. Journal of Engineering for Gas Turbines and Power 132(1),
014,501 (2010)

2. Au, S.K., Zhang, F.L., Ni, Y.C.: Bayesian operational modal analysis: theory, compu-
tation, practice. Computers & Structures 126, 3–14 (2013)

3. Basudhar, A., Missoum, S.: Adaptive explicit decision functions for probabilistic design
and optimization using support vector machines. Computers & Structures 86(19),
1904–1917 (2008)

4. Basudhar, A., Missoum, S.: A sampling-based approach for probabilistic design with
random fields. Computer Methods in Applied Mechanics and Engineering 198(47),
3647–3655 (2009)

5. Basudhar, A., Missoum, S.: An improved adaptive sampling scheme for the construction
of explicit boundaries. Structural and Multidisciplinary Optimization 42(4), 517–529
(2010)

6. Basudhar, A., Missoum, S., Sanchez, A.H.: Limit state function identification using sup-
port vector machines for discontinuous responses and disjoint failure domains. Proba-
bilistic Engineering Mechanics 23(1), 1–11 (2008)

7. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University
Press (2009)

8. Benedettini, O., Baines, T., Lightfoot, H., Greenough, R.: State-of-the-art in integrated
vehicle health management. Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering 223(2), 157–170 (2009)

9. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM review 53(3), 464–501 (2011)



Simulation-Based Classification; application to SHM 39

10. Bertsimas, D., Sim, M.: The price of robustness. Operations research 52(1), 35–53
(2004)

11. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Conver-
gence rates for greedy algorithms in reduced basis methods. SIAM Journal on Mathe-
matical Analysis 43(3), 1457–1472 (2011)

12. Bishop, C.M.: Neural networks for pattern recognition. Oxford university press (1995)
13. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge university press (2004)
14. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees.

CRC press (1984)
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