
MIT Open Access Articles

Low-control and robust quantum refrigerator 
and applications with electronic spins in diamond

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Mohammady, M. Hamed et al. "Low-control and robust quantum refrigerator and 
applications with electronic spins in diamond." Physical Review A 97, 4 (April 2018): 042124 © 
2018 American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevA.97.042124

Publisher: American Physical Society

Persistent URL: http://hdl.handle.net/1721.1/115228

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/115228


PHYSICAL REVIEW A 97, 042124 (2018)

Low-control and robust quantum refrigerator and applications with electronic spins in diamond

M. Hamed Mohammady,1,2 Hyeongrak Choi,3 Matthew E. Trusheim,3 Abolfazl Bayat,4,5 Dirk Englund,3 and Yasser Omar1,6

1Physics of Information and Quantum Technologies Group, Instituto de Telecomunicações, Lisbon, Portugal
2Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, United Kingdom

3Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
4Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, PR China

5Department of Physics and Astronomy, University College London, Gower St., London, WC1E 6BT, United Kingdom
6Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

(Received 10 April 2017; revised manuscript received 25 October 2017; published 25 April 2018)

We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can
be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a
network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap
gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe
falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the z di-
rection, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing
and the swap-gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate
of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a
physical implementation using electronic spins in diamond. Here, the probe is constituted of nitrogen vacancy
(NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can
be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such
as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens
up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.

DOI: 10.1103/PhysRevA.97.042124

I. INTRODUCTION

Quantum mechanics and thermodynamics are arguably two
of the most successful physical theories to date. Quantum
thermodynamics [1–3] is the interdisciplinary field that studies
how the two theories influence one another. For example, the
thermodynamic laws of macroscopic physics are thought to
emerge from the laws of quantum mechanics, when the number
of quantum particles in a system grows to be infinitely large [4].
On the other hand, thermodynamic protocols have been shown
to operate differently at the scale of few-particle quantum sys-
tems [5–9]. A central goal of quantum thermodynamics con-
cerns the design of efficient and robust quantum mechanisms to
cool such quantum systems, i.e., the development of “quantum
refrigerators” [10–13]. Cooling is an essential component for
many emerging quantum technologies, including fault-tolerant
quantum computation [14] and quantum metrology at the
Heisenberg limit of sensitivity [15]. This is because many
of the salient features of quantum mechanics only emerge
when the system is in a low-entropy state, and cooling is
the most natural method of entropy reduction. The cooling
mechanisms that have been developed so far can be classified
into three major groups: (i) dissipative cooling, where the
system is cooled by bringing it into thermal equilibrium with a
reservoir of lower temperature, which can be prepared with
an absorption refrigerator [16–18]; (ii) dynamical cooling,
where the dynamics of the system-plus-reservoir composite
is controlled [19–21]; and (iii) measurement-assisted cooling,
where entropy is reduced through projective measurements,

followed by conditional unitary gates that transform the post-
measurement state of the system to, say, the ground state of
its Hamiltonian [22,23]. All of these strategies suffer from
different drawbacks. For example, while dissipative dynamics
with a reservoir requires the least degree of control, it is
normally slow. Moreover, the colder the initial temperature
of a reservoir is, the more time and power is required to
cool it further due to the third law of thermodynamics [24].
Dynamical cooling, on the other hand, can cool at a faster
rate, but generally requires a very high degree of control and
reservoir engineering. Finally, although measurement-assisted
cooling can be fast, measuring one system can disturb others
that are nearby. Furthermore, measurement-assisted cooling
requires single-shot measurements, but these are often difficult
or even impossible to implement experimentally. For example,
although single-shot measurement of spins associated with the
diamond nitrogen vacancy (NV) center were recently achieved
at room [25] and low temperature [26], they are still limited in
fidelity. A cooling strategy that combines the benefits of being
fast, requiring low control, and acting locally on small systems
would therefore be of great use.

Controlling the dynamics of nonequilibrium many-body
systems has been proven to be efficient for information transfer
[27–29], entanglement generation [30], and quantum gate
operations [31,32]. This relies on the unitary evolution of
the system, generated by its Hamiltonian, to perform the
desired state transformation. Consequently, the system must be
initialized in a nonequilibrium state, such as a superposition
of energy eigenstates. The speed of the unitary dynamics is
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FIG. 1. Schematic of the cooling process. The probe (red spheres)
is a network of spin-half systems, coupled through a Heisenberg
interaction. The black spheres are a collection of thermal qubits that
are initially in the state χ (T ), with temperature T > 0. The protocol
cools the kth thermal qubit by (i) first allowing the probe to evolve
freely, for a time τk , so that the target spin is prepared in the state
χ (T (k)), where T (k) � T ; and (ii) subsequently, swapping the target
spin of the probe with the kth thermal qubit, thus cooling it.

determined by the couplings between the particles and can
be engineered to be fast. One may wonder if it is possible to
exploit the coherent dynamics of a nonequilibrium quantum
system, which we call a refrigeration probe, to cool another
system that is in thermal equilibrium. There are three major
questions that need to be addressed: (i) Will the refrigeration
protocol be robust, i.e., will it always cool the thermal system,
or could it possibly heat the system instead? (ii) How much
control is required for the probe to function as a refrigerator?
(iii) What is the maximum amount of entropy that the probe
can extract from the thermal systems?; if the initialization time
of the probe is long, and we may only extract a small quantity
of entropy with it, then this will limit any potential benefits
that fast, coherent dynamics may offer.

This paper addresses these questions. We consider how to
use the coherent dynamics of a probe to cool quantum bits
(qubits) with temperature T . The setup is shown in Fig. 1,
where the probe is a system of interacting spin-half systems
(red spheres), and the black spheres are a system of thermal
qubits. We prove that if the probe is initialized in an appropriate
“cold” state, and that its free evolution is both unital and con-
serves the excitation in the z direction, then it will always cool
the thermal qubits it interacts with. We show that minimal con-
trol is required: one only needs to engineer a time-controlled
interaction Hamiltonian between one spin in the probe and
the qubit to be cooled, which will generate a swap operation
between them. Finally, a probe with multiple “cold” spins
allows more entropy to be extracted from the thermal qubits.
This will reduce the need for constant reinitialization of the
probe. As an additional benefit, we show that the probe can also
act as a thermometer [33–37] to estimate the temperature T .

We note that although this protocol has similarities with
algorithmic cooling [38], it is different in that the system that
absorbs entropy, i.e., the probe, is an interacting many-body
system, and not an ensemble of qubits. This allows for the
protocol to function with low degree of control. Moreover,
due to the reliance on coherent dynamics, the protocol falls
most closely with the class of “dynamical cooling” mentioned
above, except that it does not involve the thermal reservoir.

While this mechanism is very general, we propose a specific
model where the probe is a one-dimensional Heisenberg spin
chain, and investigate the performance of this probe numeri-
cally. Furthermore, we offer an implementation of this model
with electronic spins in diamond, where the probe is composed
of nitrogen vacancy centers (NVs) and the thermal qubits are
dark spins. The probe could allow cooling and sensing of a
photosensitive target molecule if one end of the spin chain is in
proximity to the target molecule, in the dark, and the other end
is cooled by optical pumping. A pulse sequence, consisting of
a modified version of the WAHUHA [39], is proposed to achieve
a Heisenberg spin chain with NVs.

II. THEORETICAL MODEL

A. The setup

Consider a collection of thermal qubits. Each thermal qubit
Q has the Hamiltonian

HQ = ω

2
σ z, (2.1)

where ω > 0 is the spectral gap of the Hamiltonian and σ z :=
|0〉〈0| − |1〉〈1| is the Pauli-Z operator, and is initially in the
state

χ (T ) := e−HQ/kBT

Z
. (2.2)

Here, kB is Boltzmann’s constant, T is the temperature, and
Z := tr[e−HQ/kBT ] is the partition function. Throughout, we
work in units of h̄ = 1.

We wish to cool the thermal qubits by using a refrigeration
probe P , consisting of a network of N spin-half systems. The
composite system of the probe and the kth thermal qubit is
initially in the product state

ρ
(k)
P+Q := ρ

(k−1)
P ⊗ χ (T ). (2.3)

Allowing the probe to evolve freely for a duration of τk , and
then swapping the target spin of the probe with the thermal
qubit, produces the state

ρ
(k)
P+Q(τk) := (SWAP ◦ Eτk

)
[
ρ

(k)
P+Q

]
. (2.4)

Here, Eτk
is the free evolution quantum channel (completely

positive, trace-preserving map) acting on the probe, and SWAP
is a (possibly imperfect) swap operation between the kth
thermal qubit and the target spin of the probe. After the joint
evolution, the probe and thermal qubit have the new states

ρ
(k)
P := trQ

[
ρ

(k)
P+Q(τk)

]
,

(2.5)
ρ

(k)
Q := trP

[
ρ

(k)
P+Q(τk)

]
.

We omit the τk dependence for simplicity. The probe will then
be moved to the next thermal qubit and the process can begin
anew.
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In general, the only constraints we impose on the probe’s
free evolution quantum channel is that it must be (i) unital and
(ii) σ z excitation conserving. The quantum channel Eτk

is unital
if and only if Eτk

(1) = 1, whereas it is σ z excitation conserving
if and only if

N∑
n=1

tr
[
σ z

nρP
] =

N∑
n=1

tr
[
σ z

nEτk
(ρP )

]
(2.6)

for all probe states ρP . Here, {σ i
n|i ∈ {x,y,z}} are the Pauli

operators acting on the nth spin in P .
In order to numerically investigate the performance of the

probe, we shall study one particular model that satisfies both (i)
and (ii). Here, the probe is modeled as an isotropic Heisenberg
spin chain with the Hamiltonian

HP := J

N−1∑
n=1

σ n · σ n+1, (2.7)

where σ n := (σx
n ,σ

y
n ,σ z

n ) is a vector of Pauli operators on the
nth spin, and J is the interaction strength between each nearest-
neighbor spin. The free evolution quantum channel of the probe
will be Eτk

= eτkL , with

L : ρP �→ i[ρP ,HP ]− + �

N∑
n=1

(
σ z

nρPσ z
n − ρP

)
(2.8)

the Liouville superoperator that generates the evolution, where
� � 0 is the dephasing strength. Although non-Markovian
dephasing would still satisfy the requirements we impose on
the free evolution, we choose the Markovian case because of
its simplicity, and because the absence of coherence revivals
makes it a “worst-case” scenario. Lastly, the validity of this
model for the case of electronic spins in diamond is confirmed
with the pulse sequence applied in Sec. III B.

We now consider two applications that the probe can be
used for: refrigeration and thermometry.

B. Application 1: Cooling

As shown in Appendix A, if the initial state of the probe
can be written as

ρ
(0)
P =

N⊗
n=1

χ (Tn), (2.9)

where χ (T ) is defined in Eq. (2.2), such that for all n, Tn � T ,
and if the free evolution quantum channel Eτk

defined in
Eq. (2.4) is both unital and σ z excitation conserving, then
irrespective of the thermal qubit number k, and the waiting
times {τk}k , we have

ρ
(k)
Q = χ (T (k)), (2.10)

with T (k) � T . In other words, the probe will always either
cool the thermal qubit or leave it the same. Note that Eq. (2.9)
is not a thermal state of the probe. Each spin in the probe,
however, can be thought of as being “colder” than the thermal
qubits in a counterfactual sense, if the probe was also a system
of noninteracting spins, each with Hamiltonian HQ.

To quantify the performance of each cooling process, we
introduce the cooling efficiency, defined as

ηk := T − T (k)

T
. (2.11)

We wish to maximize the cooling efficiency at each stage by
optimizing the waiting times {τk}k . This can be done if we have
prior knowledge of the temperature T ; the qubit Hamiltonian
HQ; the probe’s free evolution quantum channel Eτk

; and the
initial state of the probe. By simulating the dynamics of the
probe, we may find the shortest time τk that maximizes ηk . To
this end, let us consider the specific model where the probe is a
Heisenberg spin chain of length N , whereby we may simulate
the dynamics of the probe by numerically solving Eq. (2.8)
using the Runge-Kutta-Fehlberg method. Here, we limit the
free evolution time to Jτk ∈ [0,N ], so that the excitations of
the probe have enough time to travel from one end of the chain
to the other. The optimal time τk is then chosen by tracking
the reduced state of the first spin of the probe, at all times, and
choosing the shortest time at which it will have the smallest
“temperature,” as defined by Eq. (2.2).

At the kth stage of the cooling protocol, the total entropy of
the thermal qubits is reduced by

	S total
Q (k) :=

k∑
i=1

	S
(i)
Q , (2.12)

where

	S
(k)
Q := ST − ST (k) (2.13)

is the entropy reduction of the kth thermal qubit, and

ST ≡ S(χ (T )) := −tr[χ (T ) ln(χ (T ))] (2.14)

is the von Neumann entropy of the thermal qubit at tem-
perature T . There is a one-to-one correspondence between
the efficiency ηk and the entropy reduction 	S

(k)
Q , where a

higher efficiency translates to a larger entropy reduction and
vice versa. However, these quantities scale differently, as will
become apparent when we discuss the effect of imperfections
on the cooling protocol in Sec. II D. As shown in Appendix C,
the total entropy reduction of the thermal qubits is bounded by
the entropy increase of the probe:

	S total
Q (k) � S

(
ρ

(k)
P

) − S
(
ρ

(0)
P

)
� NST , (2.15)

where a necessary condition for achieving the upper bound is
for the probe to be initially prepared in the state

ρ
(0)
P = |1〉〈1|⊗N . (2.16)

Comparing this with Eq. (2.9) shows that for all n, we have
Tn = 0. Equation (2.15) shows that the more spins are present
in the probe, the more entropy one can extract from the
collection of thermal qubits.

Figure 2 demonstrates the efficiency of a Heisenberg spin
chain of length N for refrigeration. For the moment, we
will consider the optimal scenario where the initial state of
the probe is given by Eq. (2.16); the probe evolves in the
absence of dephasing; and the swap operation is perfect and
instantaneous. In Fig. 2(a), we plot ηk as a function of k

for various N . As can be seen, the efficiencies decrease as
the protocol progresses. However, larger chains will provide
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FIG. 2. The ideal cooling protocol, using a Heisenberg spin chain.
(a), (b) Show, respectively, the dependence of the cooling efficiency of
the kth thermal qubit ηk on the length of the chain N and temperature
of the thermal qubits T . Here, kB is Boltzmann’s constant, and ω is
the spectral gap of the thermal qubit’s Hamiltonian.

higher efficiencies over more iterations. Similarly, in Fig. 2(b)
we plot ηk as a function of k for various temperatures when
the probe length is fixed to N = 10. As before, the efficiencies
decrease as the protocol progresses. The performance of the
protocol improves for hotter qubits. Because of the one-to-one
correspondence between entropy reduction and efficiency, the
behavior of 	S total

Q (k) will be qualitatively identical in this case.

C. Application 2: Thermometry

In Appendix B we prove that, given the dynamics given in
Eq. (2.4),

ρ
(∞)
P = χ (T )⊗N (2.17)

is a stationary state of the probe. Moreover, if the probe has
an XXZ Hamiltonian (of which the Heisenberg spin chain
is a specific example), this is the unique stationary state. We
say this is a pseudothermal state because it is not given as

the Gibbs state of the probe Hamiltonian, but rather as N

copies of the thermal qubits χ (T ). This feature of the probe
allows it to be used for thermometry; we may obtain an
estimate for the temperature of the thermal qubits T from the
measurement statistics of the observable HQ on every spin of
the probe. If the probe is prepared in the steady state ρ

(∞)
P ,

we will have N identical copies of χ (T ) for our measurement
statistics. In practical situations, however, we take the probe
for thermometry just after a finite number of iterations, when
the steady state has not yet been fully achieved.

The trace distance between the state of the probe and the
pseudothermal state D(ρ(k)

P ,χ (T )⊗N ) bounds the accuracy of
our estimation of T . Due to the contractivity of the trace
distance under quantum channels, this will never increase
as we continue to interact with the thermal qubits [40].
How fast this quantity vanishes, which we refer to as the
rate of pseudothermalization, determines the performance of
the probe for thermometry. Furthermore, unlike the case of
cooling, we are by definition ignorant of the temperature T .
Therefore, we cannot simulate the dynamics of the probe, and
have no means of optimizing the waiting times {τk}k between
consecutive swaps. Accordingly, we must make an arbitrary
choice.

Figure 3 shows the rate of pseudothermalization of the
Heisenberg spin chain of length N . As before, we assume for
the ideal case where the initial state of the probe is given by
Eq. (2.16); the probe evolves in the absence of dephasing; and
the swap operation is perfect and instantaneous. As we have
to make an arbitrary choice for the waiting times between
consecutive swaps, we set Jτk = 1 for all k. In Fig. 3(a),
we show the dependence of pseudothermalization on probe
length N for a fixed temperature of kBT /ω = 5. It is evident
that increasing N slows the rate of pseudothermalization. This
implies a tradeoff between the time required for thermometry
and the accuracy of thermometry; the more spins we have in
the probe, the better our measurement statistics will be, but the
longer we need to wait before making these measurements. In
Fig. 3(b), we show the dependence of pseudothermalization
on the temperature, for a fixed probe length of N = 10. Here,
we cannot conclude that an increase in temperature leads to a
faster, or slower, rate of pseudothermalization. This is because
the lines in Fig. 3(b) cross.

D. Imperfections

There are two imperfections in the system that we study
here: (i) presence of dephasing on the probe, and (ii) an
imperfect swap operation implemented by a time-controlled
Heisenberg interaction of finite strength. As Theorem A.1
and Theorem B.1 still apply in the case of imperfections, the
cooling protocol will still function robustly, and the probe can
still act as a thermometer. Moreover, because Theorem C.1
also applies, we know that the total entropy reduction will
be bounded by the probe size. However, the efficiency of
the protocols may change. To analyze the effect of such
imperfections quantitatively, we will numerically investigate a
probe consisting of a Heisenberg spin chain of N = 10 spins,
initialized to the state given by Eq. (2.16). The thermal qubits
will be fixed to a temperature of kBT /ω = 5, where ω is the
spectral gap of the thermal qubit’s Hamiltonian. Here, the
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FIG. 3. Pseudothermalization of a Heisenberg spin chain as a
result of the time dynamics, where D(ρ(k)

P ,χ (T )⊗N ) is the trace
distance between the state of the probe and the pseudothermal state,
after the kth thermal qubit has been cooled. In all cases, we set Jτk =
1. (a), (b) Show, respectively, the dependence of pseudothermalization
on the chain length N and temperature T , for the ideal case. Here,
kB is Boltzmann’s constant, and ω is the spectral gap of the thermal
qubit’s Hamiltonian.

thermal qubits will be very close to maximally mixed states,
which is a good approximation for, say, dark spins in diamond
at room temperature.

1. Dephasing

It is in general difficult to keep the probe fully isolated and,
thus, the free evolution will not be unitary. To account for the
interaction between the probe and its environment, we consider
local dephasing with � > 0 in Eq. (2.8). The swaps, however,
will continue to be perfect and instantaneous. For the cooling
protocol, the waiting times {τk}k will still be calculated for the
ideal case, i.e., � = 0. This is because, in general, the value of
� is unknown.

In Fig. 4(a) we plot the efficiency ηk versus the step k for
different values of �. As the figure shows, while an increase in
dephasing strength results in a decrease in cooling efficiency

for the first few iterations, this is reversed at later stages.
Figure 4(b) shows that the total entropy reduction of the
qubits, after stage k of the cooling protocol, is reduced by
dephasing. In Fig. 4(c) we show how dephasing affects the
entropy of the probe during the cooling protocol. The probe’s
entropy increases monotonically as the protocol progresses, but
increasing dephasing strength decreases the probe’s entropy at
any stage k. Conforming with Eq. (2.15), the probe entropy is
always larger than the total entropy reduction obtained on the
thermal qubits. In Fig. 4(d) we plot the trace distance between
the state of the probe and the pseudothermal state χ (T )⊗N , as
a function of k. Here, the time between consecutive swaps is
fixed to Jτk = 1. As this figure shows, increasing dephasing
strength slows the rate of pseudothermalization.

2. Partial swaps

We now allow for the swap operation to be imperfect,
corresponding to a finite-duration interaction between the
thermal qubit and probe spin. An imperfect swap may be
realized by the time-dependent Hamiltonian of the compound
system of probe and thermal qubit,

HP+Q(t) := HP + HQ + HI (t), (2.18)

with the interaction Hamiltonian

HI (t) := f (t)JIσQ · σ 1. (2.19)

Here, σQ and σ 1 are vectors of Pauli operators acting on
the thermal qubit and the first spin of the probe, respectively,
and JI is the interaction strength between these systems. In
the absence of HP and HQ, this Hamiltonian would induce a
swap operation (with irrelevant phase factors) if f (t) = 1 for a
period of π/(4JI ), and zero otherwise. To numerically simulate
the imperfect swap, we extend Eq. (2.8) to include the thermal
qubit Q, with the updated Hamiltonian of Eq. (2.18). This can
then and integrated with the Runge-Kutta-Fehlberg method as
before.

To understand the effect of finite time-duration swap gates,
we plot in Fig. 5(a) the cooling efficiency as a function of
the normalized interaction strength JI /J . We set dephasing
to zero and, as before, the waiting times {τk}k are calculated
assuming for the ideal case, i.e., instantaneous and perfect
swaps. Similarly to the case of dephasing, while a decrease
in JI /J results in a decrease in cooling efficiency for the
first few iterations, this is reversed at later stages. However,
as shown in Fig. 5(b), the total entropy reduction of the qubits,
after stage k of the cooling protocol, is always less when JI /J

decreases. This means that decreasing JI /J always decreases
the overall performance of the protocol. To see how the probe
is affected by the strength of JI /J , in Fig. 5(c) we depict
the entropy of the probe after the kth qubit has been cooled.
The probe’s entropy increases monotonically as the protocol
progresses, but decreasing JI /J lowers the probe’s entropy at
any stage k. Again, conforming with Eq. (2.15), the entropy of
the probe always exceeds the total entropy reduction obtained
on the thermal qubits. Finally, in Fig. 5(d) we plot the distance
between the state of the probe and the pseudothermal state
χ (T )⊗N , as a function of k. The time between consecutive
swaps is set to Jτk = 1. As the figure shows, while an increase
in JI /J from unity to five significantly improves the rate of
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FIG. 4. (a)–(c) Show the performance of the cooling protocol with a Heisenberg spin chain probe in the presence of local dephasing of
strength �. All waiting times Jτk ∈ [0,N ] are calculated for the ideal case with N = 10 and kBT /ω = 5. (a) Shows the dependence of the
cooling efficiency of the kth thermal qubit ηk on the dephasing strength. (b), (c) Show, respectively, how the dephasing strength affects the
total entropy reduction of the thermal qubits 	S total

Q (k) and the entropy of the chain S(ρ(k)
P ), after the kth thermal qubit has been cooled. ST is

the entropy of the thermal state χ (T ). (d) Shows the effect of dephasing on pseudothermalization, where D(ρ(k)
P ,χ (T )⊗N ) is the trace distance

between the state of the probe and the pseudothermal state, after the kth thermal qubit has been cooled. Here, we set Jτk = 1.

pseudothermalization for the present case of evolution times,
further increases in JI /J have a much less noticeable effect.

III. DARK SPIN COOLING WITH A NITROGEN VACANCY
SPIN CHAIN

Electronic spins in diamond are promising to realize our
proposal discussed in Sec. II. Here, the thermal qubits we
wish to cool are environmental dark spins [41], and the
probe is a Heisenberg spin chain composed of nitrogen
vacancy (NV) color centers. In the negative charge state,
the NV− ground state constitutes a localized, spin-1 system
with coherence times exceeding milliseconds even at room
temperature [42,43]. Its spin states can be initialized, ma-
nipulated, and measured with optical and microwave fields.
The combined advantages of NVs [long coherence time, easy
manipulation of spin states, and large gyromagnetic ratio
(compared with nuclear spins)] make it a good candidate for
quantum sensing [44–46]. Recent demonstrations on quantum
sensing, such as paramagnetic centers in solids [47], single
protein molecules [48], and a few nuclear spins [46], have
shown the potential. The location of NVs within the diamond

can be controlled in a variety of ways, including localized
delta-doped growth [49], targeted implantation through a
focused ion beam [50], and nanomasked implantation [51,52].
These fabrication techniques have demonstrated the possi-
bility of constructing NV spin chains with spatial precision
on the 10-nm scale, as required for the realization of our
method.

Aside from NV centers, diamond is host to many different
dark spins [41]: dark in the sense that they are not fluorescent.
In particular, the low conversion efficiency from implanted (or
native) nitrogen atoms in the diamond lattice to NV centers
(∼5% [53]) results in a large number of single-substitutional
nitrogen defect centers (P1 centers) in the vicinity of NVs.
These dark spins generally act as a spin bath, decohering the
NV centers [54]. However, some proximal spins can coherently
interact with the NV centers [53,55,56]. If these proximal dark
spins can be cooled down (initialized) efficiently, the coherence
time is extended and, even more, they can serve as a quantum
resource in environment-assisted sensing [57,58]. Through this
method, one can gain improved sensitivity from both coherence
time (∼1/

√
T2) and the number of spins (∼1/

√
N for standard

quantum limit or 1/N for Heisenberg limit depending on the
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FIG. 5. (a)–(c) Show the performance of the cooling protocol with a Heisenberg spin chain probe, with the swaps effected by a time-dependent
Heisenberg interaction of strength JI . All waiting times τk are calculated for the ideal case with N = 10 and kBT = 5. (a) Shows the dependence
of the cooling efficiency of the kth thermal qubit ηk on JI . (b), (c) Show, respectively, how JI affects the total entropy reduction of the thermal
qubits 	S total

Q (k) and the entropy of the chain S(ρ(k)
P ), after the kth thermal qubit has been cooled. ST is the entropy of the thermal state χ (T ).

(d) Shows the effect of JI on the rate of pseudothermalization, where D(ρ(k)
P ,χ (T )⊗N ) is the trace distance between the state of the probe and

the pseudothermal state, after the kth thermal qubit has been cooled. Here, we set Jτk = 1.

sensing scheme [57,58]). There have been many attempts for
dark spin cooling, but the polarization has been much lower
than that of the NV so far [55,59].

Here, we propose an efficient method for dark spin cooling,
which uses an NV center spin chain as a probe. The NV center
that is closest to the dark spins takes the role of the first spin
in the probe in Sec. II. The benefit of the spin chain is that
it provides a cold reservoir and cooling conduit that can be
cooled in one region. One exemplary application is magnetic
resonance detection of photosensitive molecules, as illustrated
in Fig. 6(a). In such circumstances, while nearby NV centers
are able to interact with the dark spins and target molecules,
they cannot be initialized constantly with a strong optical field.
A possible solution is to use a chain of NVs to initialize the NVs
far from the molecule, and let the chain transfer polarization
to the dark spins.

From the cooling point of view, this can achieve much colder
temperatures than can be realized with dissipative cooling.
Even at 3 K, the thermal energy corresponds to ∼0.25 meV,
or 60 GHz, requiring a large static magnetic field. Also in this
regime, dynamical control with pulse sequences is infeasible
because it requires electronics with a high precision. Thus,
these points necessitate additional cooling with a quantum

probe (e.g., NV spin chain) that can be initialized faster and
colder.

Although we do not address specific sensing schemes,
as an example, the one proposed in [57,58] can be directly
used in this setting. The NV interacting with dark spins
is not accessible by optical fields by assumption. Because
information is encoded as spin polarization in this case, one
can transfer the polarization to the other end of the spin chain
with the Heisenberg interaction used in cooling.

This spin chain cooling must meet several requirements: (i)
initially, the NV spin chain should be cooled down, i.e., each
NV must be cooled down with respect to its bare Hamiltonian;
(ii) the dark spins should be decoupled from each other; (iii) a
SWAP gate between the first NV and each individual dark
spin should be applied when needed; and (iv) the spins in
the chain should have a nearest-neighbor Heisenberg inter-
action. NVs can be optically initialized (polarized) with high
fidelity [60]. A doughnut beam initializes NVs far from the
photosensitive molecules, and the Heisenberg interaction dis-
tributes the polarization to the whole chain before transferring
it to the dark spins. This automatically satisfies condition
(i). In subsequent subsections, we will investigate a way to
implement (ii)–(iv).
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FIG. 6. (a) Dark spin cooling with an NV spin chain for single-molecule NMR. Black spheres represent dark spins while red ones do NVs.
(b) Orientation of NVs in the spin chain. To obtain a uniform interaction strength with optimal yield, (110)-cut diamond is presented. The
magnetic field is aligned into the [1̄11̄] direction (marked as black arrows), and the NV should be oriented into one of the other three directions:
[111], [11̄1̄], or [1̄1̄1] (marked as blue arrows). Nearest-neighbor spins should have different directions. (c) Pulse sequences for the NV–dark
spin interaction. For the dark spin, all five rf transitions are driven. For the spin-1 14N hyperfine axis parallel with magnetic field, the hyperfine
splitting is A‖ = 114 MHz, while for the other three axes, A∦ = 90 MHz. (d) Bloch sphere representation of NV spin during pulse sequence.
After ( π

2 )x pulse, the spin is locked into the y direction (marked as a gray dotted arrow). (e) Dressed-state resonant coupling. In the laboratory
frame, energy difference between two spins prohibits energy exchange (spin flip-flop). In the double-rotating frame with dressed states, energy
can be exchanged between the two.

A. Probe NV: Dark spin interaction

Several types of dark spins in diamond have been exten-
sively studied [41]. Here, we focus on the P1 centers closely
related with the NV center implantation process [56], but the
physics is the same for other spin species in diamond or even
in the molecule to be sensed.

The magnetic dipolar interaction between NV and P1
centers is captured by the interaction Hamiltonian [61]

Hdip = DNV,P1S
z
NV ⊗ Sz

P1

ms=1,0−−−−→ DNV,P1σ
z
NV ⊗ σ z

P1

HH−→ DNV,P1

4
(σ+

NV ⊗ σ−
P1 + σ−

NV ⊗ σ+
P1), (3.1)

where Sz
NV and Sz

P1 are the electronic spin operators of NV cen-
ters and P1 centers, respectively; σα with α ∈ {x,y,z} are Pauli
operators on a pseudo-spin- 1

2 subspace spanned by |ms = 1〉
and |ms = 0〉, for the case of NVs; σ+,− are spin ladder oper-
ators; HH represents the Hartmann-Hahn condition [62]; and
DNV,P1 = q

μ0γ1γ2 h̄
2

4π
(Appendix D). Because of the energetic

detuning between NV and P1 centers, terms related to spin flip-
flops are suppressed in the secular approximation, resulting
in an Ising interaction [63] as in the first line. However, by
locking the NV and P1 centers in the transverse direction
with the same Rabi frequency (Hartmann-Hahn matching), a

flip-flop interaction, written as σ+
NV ⊗ σ−

P1 + σ−
NV ⊗ σ+

P1, can be
generated. In the σ z basis, this flip-flop operation is equivalent
to the SWAP gate up to an irrelevant phase factor.

This flip-flop interaction is referred to as the Hartmann-
Hahn cross polarization (HHCP), and has been studied in the
NMR context [64]. Recently, HHCP has also been demon-
strated with NV centers and P1 centers in diamond [61].
Figure 6(c) shows the pulse sequence for HHCP of the probe
NV–dark spin coupling. The probe NV is locked in the y

direction [Fig. 6(d)], while each dark spin (thermal qubit) is
driven at the same time with the same Rabi frequency for all
hyperfine levels. In the dressed-state double-rotating frame,
NV centers and dark spins have the same energy splitting,
making polarization transfer possible without violating energy
conservation, as would be the case in the bare frame [Fig. 6(e)].

More quantitatively, Ising interaction is converted to σx
NV ⊗

σx
P1 in the toggling frame. Symmetrization and antisymmetriza-

tion reexpress it as (σx
NV ⊗ σx

P1 + σ
y

NV ⊗ σ
y

P1)/2 + (σx
NV ⊗

σx
P1 − σ

y

NV ⊗ σ
y

P1)/2 (Appendix E). The second term involves
non-energy-conserving terms that can be eliminated by the
rotating-wave approximation [65]. As a result, the effective
Hamiltonian of the NV-P1 center interaction has the form of
Eq. (3.1).

Dressed-state resonant coupling has an advantage in that
it is not sensitive to the intrinsic spin level energy. At first,
all hyperfine levels of different species of dark spins can
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be driven, without regard to their associated nuclear spin
state. In addition, the interaction can be easily switched on
or off by locking or not locking spins. Demonstrated coupling
strength (13 MHz) [53] is more than 1000 times larger than the
dephasing rate of NVs(∼1 kHz), implying that the dephasing
of the probe qubit is negligible during this SWAP operation.

B. NV Heisenberg spin chain

The interaction between NVs in the spin chain depends
on the external magnetic field and the orientation of NVs
within the chain, with many possibilities available [66]. In
contrast, the required interaction for our method is the spin- 1

2
Heisenberg interaction. We propose a way to form a Heisenberg
interaction between NVs in the subspace spanned by |ms = 1〉
and |ms = 0〉. Here, we consider the situation where NVs are
oriented in at most three different crystal orientations of (110)
diamond, and that we can make the |ms = 1〉 ground-state
energies of all NVs degenerate while splitting |ms = 1〉 from
the |ms = −1〉 state. This can be achieved by the Zeeman
effect by applying a uniform magnetic field in the fourth, [1̄11̄]
direction [Fig. 6(b)]. As we will see later on in this section, this
configuration is not a necessary condition because one could
achieve an effective Heisenberg interaction only with an Ising
interaction under the proposed pulse sequence. However, this
configuration produces larger interaction strengths between
NVs and needs less microwave electronics because all the NVs
in the chain are degenerate.

The nearest-neighbor NV-NV interaction Hamiltonian after
removing the non-energy-conserving terms (Appendix E) is

Hint = −J0

r3

[
2g+(

σx
1 ⊗ σx

2 + σ
y

1 ⊗ σ
y

2

)
+ 2ih−(σx

1 ⊗ σ
y

2 − σ
y

1 ⊗ σx
2 ) + qσ z

1 ⊗ σ z
2

]
. (3.2)

First, we ignore the (σx
1 ⊗ σ

y

2 − σ
y

1 ⊗ σx
2 ) term, and focus on

the terms σα
1 ⊗ σα

2 for α = x,y,z. Except in rare accidental
configuration of NVs, which can be avoided in an implantation
process, 4g+ + q �= 0. As a result, globally rotating spins
will feel an averaged isotropic interaction that is not canceled
out. However, since σx

1 ⊗ σx
2 , σ

y

1 ⊗ σ
y

2 , and σ z
1 ⊗ σ z

2 are not
mutually commuting, simply rotating spins will not result in
the desired Heisenberg interaction. We can use Trotter-Suzuki
decomposition [67] to approximate the Heisenberg Hamilto-
nian, and to minimize errors in the given order. First-order
Trotterization results in the WAHUHA pulse sequence [39] in
effective Hamiltonian theory, widely used to nullify homonu-
clear interactions in solid-state NMR. However, in the case
of NVs, the application of the WAHUHA sequence results
in an effective Heisenberg chain. This discrepancy comes
from the difference of interaction Hamiltonians. NVs have
a different Hamiltonian with homonuclear dipolar interaction
(∝ σx

1 ⊗ σx
2 + σ

y

1 ⊗ σ
y

2 − 2σ z
1 ⊗ σ z

2 ) because we only use a
two-dimensional subspace of the spin-1 Hilbert space (which
is three dimensional) and express the interaction with pseudo-
spin- 1

2 Pauli operators. The resulting effective Hamiltonian
(Appendix E) has the form of

Heff = − J0

3r3
(4g+ + q)

∑
α∈{x,y,z}

σα
1 ⊗ σα

2 + O(τ 2). (3.3)

The previously ignored term 2ih−(σx
1 ⊗ σ

y

2 − σ
y

1 ⊗ σx
2 )

can be canceled in the context of WAHUHA. Adding a π pulse
in any direction does not change the Heisenberg interaction
terms because two spins are flipped together. However, when
a π pulse is applied in one of the transversal directions to
the spin, the h−(σx

1 ⊗ σ
y

2 − σ
y

1 ⊗ σx
2 ) terms change the sign.

Therefore, when the evolution times of the two interactions
are matched, they cancel each other. This π pulse also serves
to dynamically decouple NVs from any slow-moving bath
spins, reducing dephasing. These bath spins can be treated
as classical noise sources with mean-field approach [68].
Furthermore, it has been shown that a reasonable number
of decoupling pulses (n = 256) can increase coherence time
approaching the phononic relaxation time (T2 ∼ 0.5T1), even
at room temperature [69]. Thus, in this limit, the system can be
treated as experiencing a Markovian noise process justifying
the model in the Sec. II A. Experimentally, high-fidelity gates
have been demonstrated such that a 190-ns interpulse delay
with more than 1000 pulses does not heat up the spins
in an isotopically purified diamond sample with P1 center
density of ∼5 ppb [48]. The resulting pulse sequence with
dark spin cooling is described in Fig. 7. Here, the original
version of the WAHUHA is also applied to dark spins to prevent
mutual interaction, resulting in a central-spin model. This was
thoroughly studied in [58] with numerical simulations, and it
was shown that WAHUHA can efficiently change the dynamics
of NVs and dark spins. Especially, increased coherence times
of an NV center are observed, which is desirable in our cooling
protocol as shown in Sec. II D 1.

Note that the NVs in the chain are interacting with a
Heisenberg interaction regardless of their orientations and
distance between them. Because our protocol relies on the
population transfer between spins in the chain, a chain with
randomly oriented and separated NVs can work as a quantum
probe. One possible concern can be a slow thermalization
in disordered spin systems (many-body localization) [70,71].
However, cooling one end and transferring polarization to the
other end are possible even in the case of medium localization,
due to the small size of the system (N = 6).

In spite of the robustness of the protocol, we give an
example configuration that can achieve an NV spin chain
with a uniform Heisenberg interaction strength [Fig. 6(b)],
that has been assumed in Sec. II. Here, we assume (110)-cut
diamond with a static magnetic field in the [1̄11̄] direction.
The other three orientations of NVs, [111], [11̄1̄], [1̄1̄1], are
equivalent to each other in the sense that alternated NV
orientations result in equal coupling strengths. The probability
of creating a chain of N spins satisfying these properties is
P (N ) = 3

4 ( 1
2 )N−1 assuming randomly oriented NVs resulting

from implantation process. Considering a separation of 25 nm
between NVs, N = 6 gives a spin chain of 150-nm length
with ∼2.3% yield, which could allow enough isolation to
the doughnut beam [72,73]. Recent improvements in creating
long 1D spin chains [74] and dark spin–NV coupling [66,75]
show the proposed system is feasible. The T1 time of NVs
can be long, ∼7.5 ms, even at room temperature [76], while
the coupling strength of this configuration reaches ∼12.4 kHz.
This allows for ∼90 repetitive population transfers between
nearest-neighbor NVs before relaxation. Large-T1 time of P1
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FIG. 7. Variant-WAHUHA sequence for Heisenberg interaction and the whole pulse sequence. Cooling dark spins and thermalizing spin
chains are alternated multiple times. Environment-assisted sensing can be applied after this cooling step. Note that variant-WAHUHA is not in a
toggling frame, while WAHUHA is in a toggling frame.

centers has been demonstrated at low temperature (∼8.3 s at
2 K [77]), implying that many cycles of cooling NVs and
transferring polarizations are possible.

IV. CONCLUSIONS

We proposed a method of refrigeration and thermometry
of a collection of thermal qubits, each at temperature T ,
with a quantum many-body probe composed of a network of
interacting spins. We showed that minimal control is required;
the protocol will succeed with just an imperfect swap gate
between the target spin of the probe and the thermal qubit we
wish to cool. Moreover, we analytically proved that the probe is
a robust refrigerator if it is initialized in an appropriate state; the
thermal qubits will be cooled, or left at the same temperature,
even in the presence of dephasing or with imperfect swap
gates. Additionally, we showed that this many-body probe
can also be used as a quantum thermometer, providing an
estimate of the absolute temperature of the thermal qubits.
We numerically investigated a simple example of the probe,
a Heisenberg spin chain, and quantitatively analyzed how
the cooling efficiency is affected by the size of the probe,
presence of dephasing, and the fidelity of the swap gate
between the probe and the thermal qubit. As the simulation
with dephasing demonstrates, coherent dynamics improves the
efficiency of the probe, serving a critical role in extracting
entropy.

We considered an exemplary implementation using solid-
state spin qubits, specifically nitrogen vacancy (NV) centers in
diamond. Here, the probe can be constructed as a spin chain
of NV centers, which can be used to efficiently cool down
dark spins using a quantum refrigeration scheme based on a
novel pulse sequence. Here, the intra-NV interaction strengths
are typically J ≈ 10 kHz, while the NV–dark spin interaction
strengths are JI ≈ 1 MHz. Consequently, as suggested by

Fig. 5, such values are a good approximation for the ideal
protocol, where the swap gates are perfect and instantaneous.

This system is useful for environment-assisted quantum
sensing, especially when the target is a photosensitive molecule
such as a protein. Overall, our proposal for a low-control
and robust quantum refrigerator opens new possibilities for
low-entropy quantum-state preparation, useful for quantum
metrology, quantum computation, and for studying many-body
quantum thermodynamics.
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APPENDIX A: SUFFICIENT CONDITIONS ENSURING
THAT THE THERMAL QUBITS ARE ALWAYS COOLED

Here, we demonstrate the conditions that need to be satisfied
by the initial state of the probe, and its free evolution dynamics,
so as to ensure that it will always cool the thermal qubits. To
this end, we first give some useful definitions.

Definition A.1. If a qubit is diagonal with respect to the
eigenbasis of σ z, we refer to it as σ z diagonal.

Definition A.2. If every eigenstate of a quantum state ρ has
a Schmidt decomposition with respect to the eigenbasis of σ z,
i.e., {|0〉,|1〉}, we refer to it as σ z Schmidt decomposable.

Definition A.3. If a quantum channel (completely positive,
trace-preserving map) describing the time evolution of a
system composed of N spin-half systems for a period of τ > 0,
Eτ , satisfies

N∑
n=1

tr
[
σ z

nρ
] =

N∑
n=1

tr
[
σ z

nEτ (ρ)
]

(A1)

for all states ρ, we refer to it as σ z excitation conserving.
Now, we prove the conditions under which the reduced state

of every spin in an N -partite system will be σ z diagonal, which
is a necessary condition for them to be thermal with respect to
the σ z Hamiltonian.

Lemma A.1. Let a quantum system composed of N spin-
half systems be prepared in a state

ρ =
N⊕

l=0

ρ̃l , (A2)

where each ρ̃l is a subnormalized state on the subspace
containing l excitations of σ z, i.e., Hl . Let every ρ̃l be σ z

Schmidt decomposable, and let the system evolve according
to a quantum channel Eτ that is σ z excitation conserving.
Then, the reduced state of every spin, at all times τ > 0, will
be σ z diagonal. Furthermore, the only components of ρ that
contribute to the reduced state of any given spin are the diagonal
elements with respect to the {|0〉,|1〉}⊗N basis.

Proof. At initial time, we may write every eigenvector of ρ̃l

as

|ψ〉 =
∑
m

αm

∣∣ψl
m

〉
, (A3)

where |ψl
m〉 = ⊗N

n=1 |an
m〉, with an

m ∈ {0,1}. Each |ψl
m〉 has

an
m = 0 for l spins and an

m = 1 for N − l spins. In other words,
|ψl

m〉 ∈ Hl . By construction, 〈ψl
m|ψl

k〉 = 0 if m �= k. As such,
the contribution of |ψ〉 to the reduced state of the first spin will
be

∑
m |αm|2|a1

m〉〈a1
m|, which is clearly σ z diagonal, and only

involves the elements of ρ̃l that are diagonal with respect to
the {|0〉,|1〉}⊗N basis. As a convex combination of σ z diagonal
states are also σ z diagonal, then the reduced state of the first
spin will also be σ z diagonal. The same argument will hold,
mutatis mutandis, for all other spins. To show that this will hold
true for all times, given a σ z excitation conserving quantum
channel Eτ , it is sufficient to show that the state Eτ (|ψ〉〈ψ |) is
itself σ z Schmidt decomposable. This is evidently true, as

Eτ (|ψ〉〈ψ |) =
∑

i

Li |ψ〉〈ψ |L†
i , (A4)

with Li |ψ〉 = ∑
m α′

m|ψl
m〉. �

Now, we prove a sufficient condition under which the
reduced state of every spin in an N -partite system will be
thermal with respect to the Hamiltonian HQ := ω

2 σ z, with a
temperature less than or equal to T . For the proof it will be
simpler to use the ratio of probabilities of thermal states instead
of temperature. We therefore use the following equivalence:

〈1|χ (T ′)|1〉
〈0|χ (T ′)|0〉 � q ⇐⇒ T ′ � T , (A5)

where χ (T ) is defined as in Eq. (2.2), and q,T ,T ′ are all non-
negative numbers.

Lemma A.2. Let a quantum system composed of N spin-
half systems be prepared in a state

ρ =
N⊕

l=0

ρ̃l , (A6)

where each ρ̃l is a subnormalized state on the subspace
containing l excitations of σz, i.e., Hl . Furthermore, let ρ be
diagonal with respect to the basis {|0〉,|1〉}⊗N , with r l a vector
composed of these diagonal elements. In this case, r l is the
spectrum of ρ̃l , i.e., r l = λ(ρ̃l). Finally, let the probe evolve
according to a σ z excitation conserving quantum channel Eτ

that is also unital, i.e., Eτ (1) = 1. If for all i,j,l, the condition

r l (i)

r l+1(j )
� q (A7)

is satisfied, where r l (i) signifies the ith element of the vector
r l , and q > 0, then the reduced state of every spin for all times
τ > 0, ρn(τ ), will be thermal with respect to the Hamiltonian
σ z, and with a temperature less than or equal to T .

Proof. Due to Lemma A.1, the reduced state of every spin
will be σ z diagonal at all times, which is a necessary condition
for it to be assigned a temperature. Moreover, the only elements
of ρ contributing to the elements of the reduced state of any
spin are given by the vectors r l . By ordering each of these
vectors appropriately, we can show that

〈1|ρn|1〉
〈0|ρn|0〉 =

∑N−1
l=0

∑Kl

i=1 r l (i)∑N
l=1

∑K ′
l

i=1 r ′
l (i)

. (A8)

We note that r l and r ′
l have the same elements, but with

a different ordering. Also, for each l, Kl + K ′
l equals the

dimension of the l excitation subspace, given as

dim(Hl) =
(

N

l

)
:= N !

l!(N − l)!
, (A9)

with

Kl =
(

N − 1
l

)
, K ′

l =
(

N − 1
l − 1

)
. (A10)

We note that KN = K ′
0 = 0. From this observation, it will

be simple to deduce that for all l ∈ {0, . . . ,N − 1}, we have
Kl = K ′

l+1. As a consequence of Eq. (A7), and the above
observations, it therefore follows that for each l ∈ {0, . . . ,

N − 1},
Kl∑
i=1

r l (i) � q

K ′
l+1∑

i=1

r ′
l+1(i). (A11)
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As such, Eq. (A8) will obey the inequality

〈1|ρn|1〉
〈0|ρn|0〉 � q

∑N
l=1

∑K ′
l

i=1 r ′
l (i)∑N

l=1

∑K ′
l

i=1 r ′
l (i)

= q. (A12)

Therefore, given the stated conditions on the initial state of the
system, the reduced state of every spin will be thermal with
respect to the Hamiltonian σ z, with a temperature less than or
equal to T . To show that this will be true at all later times, we
note that the state of the probe, at time τ > 0, will be given as

Eτ (ρ) =
N⊕

l=0

Eτ (ρ̃l)

=
N⊕

l=0

ρ̃l(τ ). (A13)

The fact that the direct sum structure is preserved by Eτ follows
from the fact that it is σ z excitation conserving. As Eτ is unital,
by Uhlmann’s theorem [78] we know that the vector composed
of the spectrum of ρ̃l majorizes that of ρ̃l(τ ), i.e.,

λ(ρ̃l) � λ(ρ̃l(τ )). (A14)

Furthermore, it is trivial that the vector composed of the
diagonal elements in any basis is majorized by that of the
spectrum, i.e.,

λ(ρ̃l(τ )) � r l (τ ). (A15)

As r l = λ(ρ̃l), it follows therefore that for all l and τ > 0,

r l � r l (τ ). (A16)

Furthermore, since the above equation implies that

r l (τ ) = Qr l , (A17)

where Q is a doubly stochastic matrix [79], then every element
of r l (τ ) is given as a convex combination of those in r l .
Consequently, Eq. (A7) is satisfied at all times and, hence,
the reduced state of every spin in the system will be thermal
with respect to σ z, with a temperature less than or equal to T ,
at all times. �

Now, we determine the sufficient conditions for the cooling
protocol to always cool the thermal qubits, or leave them the
same.

Theorem A.1. Let the probe be initially prepared in the state

ρ
(0)
P =

N⊗
n=1

χ (Tn), (A18)

such that for all n, Tn � T . Furthermore, let Eτk
in Eq. (2.4) be

unital and σ z excitation conserving. It follows that the cooling
protocol will always cool a collection of K thermal qubits
of temperature T , or leave them the same, irrespective of the
waiting times {τk}k and number of thermal qubits K .

Proof. We may write the composition of K thermal qubits
and the probe as

ρ =
K+N⊗
n=1

χ (Tn), (A19)

such that for all n ∈ {1, . . . ,K}, Tn = T , whereas for all n ∈
{K + 1, . . . ,K + N}, Tn � T . Clearly, the eigenvectors of ρ

are product vectors from the basis {|0〉,|1〉}⊗N+K and, as such,
it can be decomposed into a direct sum of subnormalized states
in different excitation subspaces, as in Eq. (A6). Furthermore,
the vectors of the spectrum satisfy Eq. (A7). Therefore, as a
consequence of Lemma A.2, if the total system of probe plus
thermal qubits evolves according to a unital quantum channel
that is σ z excitation conserving, then the reduced state of every
thermal qubit will be thermal with respect to the Hamiltonian
HQ := ω

2 σ z, with a temperature less than or equal to T . Every
stage of the cooling protocol, of course, is determined by the
quantum channel defined in Eq. (2.4) acting on the compound
system of thermal qubit k and the probe. As a (possibly
imperfect) swap operation is both unital and σ z excitation
conserving, then we arrive at the statement of the theorem. �

APPENDIX B: UNIQUE STATIONARY STATE
OF THE PROBE

We wish to show that the only stationary state of the probe,
given the dynamics it undergoes with the thermal qubits, is
χ (T )⊗N . We first introduce some notation. We take the probe
P to be a collection of spins labeled by the integers {1, . . . ,N}.
As such, the reduced state of any subset of spins X is defined
as ρX := trP\X[ρP ], where P\X is the complement of X in the
set P .

Lemma B.1. Consider the composition of a thermal qubitQ
and the probeP , in the state ρ = χ (T ) ⊗ ρP . Let the evolution
of the system be determined by the quantum channelVτ defined
in Eq. (2.4) as

Vτ = SWAP ◦ Eτ , (B1)

where SWAP is a possibly imperfect swap operation between
the thermal qubit and the first spin of the probe, while Eτ is a
unital and σ z excitation conserving quantum channel. If ρP =
χ (T )⊗N , then Vτ (ρ) = ρ.

Proof. If ρ = χ (T )⊗N+1, it can be written as

ρ =
N+1⊕
l=0

ρ̃l , (B2)

such that the diagonal vectors, in the {|0〉,|1〉} basis, for each
of the l excitation subspaces Hl will be uniform. In other
words, r l (i) = r l (j ) for all i,j . As SWAP is a unital and σ z

excitation conserving quantum channel, then so is Vτ . Due to
Uhlmann’s theorem, given that r l , which is the spectrum of ρ

within the subspace Hl , is already maximally mixed, it follows
that r l (τ ) = r l . Moreover, all the off-diagonal elements of ρ

remain zero. As such, Vτ (ρ) = ρ. �
Theorem B.1. If both SWAP and Eτ are generated by an

XXZ spin Hamiltonian, possibly in the presence of dephasing,
then ρ = χ (T ) ⊗ ρP will be the stationary state of Vτ if and
only if ρP = χ (T )⊗N .

Proof. In the absence of dephasing, ρ is stationary with
respect to Vτ if and only if it commutes with the XXZ spin
network Hamiltonian that governs the total compound system.
Let us denote this total Hamiltonian as

HP : =
N∑

n=0,m>n

Jn,m

(
	n,mσ z

n ⊗ σ z
m

+ σx
n ⊗ σx

m + σy
n ⊗ σy

m

)
. (B3)
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Here, we label Q as spin n = 0, Jn,m is the interaction strength
between the nth and mth spins, and 	n,m is the anisotropy pa-
rameter in the z direction. By defining P + Q := {0, . . . ,N},
we may expand ρ in the Pauli basis as

ρ :=
3∑

a=0

ra
nσ a

n ⊗ Oa
P+Q\n, (B4)

for any spin n ∈ P + Q. Here, σ 0 = 1, σ 1 = σx , σ 2 = σy ,
and σ 3 = σ z. Here,

∑3
a=0 ra

0 σa
0 = χ (T ). As such, we have

[ρ,H ]− =
N∑

n=0,m>n

Jn,m

3∑
a,b=0

3∑
c=1

[1 + δc,3(	n,m − 1)]ra
n rb

m

× [
σa

n ⊗ σb
m,σ c

n ⊗ σ c
m

]
− ⊗ Ob

P+Q\{n,m}. (B5)

The entire expression vanishes only if the summands vanish
individually for each n and m. We now introduce the identity

[A ⊗ B,C ⊗ D]− = 1
2 ([A,C]− ⊗ [B,D]+)

+ 1
2 ([A,C]+ ⊗ [B,D]−), (B6)

where [·,·]+ is the anticommutator, and the relations

[σa,σ b]− = 2iεabcσ
c, (B7)

[σa,σ b]+ = 2δab1. (B8)

Here, εabc = 1 (respectively −1) with {a,b,c} a cyclic (respec-
tively anticyclic) permutation of {x,y,z}, and δab = 1 if a = b

and 0 otherwise. Using the above identities, we see that the
summand in the first line of Eq. (B5), for n = 0 and m = 1, is

2i
3∑

a,b=1

ra
0 rb

1 εabc

(
10 ⊗ σ c

1 − σ c
0 ⊗ 11

) ⊗ Ob
P+Q\{0,1}. (B9)

We only consider this term for the case of n = 0, as the only
nonvanishing value of J0,m is when m = 1 by construction. The
summands with a = b clearly vanish, as in such cases we have
εaac = 0. The remaining summands cannot vanish if Ob

P\{0,1}
are not the same for all values of b. If Ob

P\{0,1} are the same for
all values of b, however, then

ρP =
3∑

b=0

rb
1 σb

1 ⊗ ρP\1, (B10)

with
∑3

b=0 rb
1 σb

1 = ρ1 describing a quantum state that could
be different from χ (T ). In such cases, however, ra

0 rb
1 are all

positive numbers, and the only way for Eq. (B9) to vanish is if
ra

0 = ra
1 for all a. When this is satisfied, the summands with the

values of a and b interchanged differ only by a sign change, and
therefore cancel out. But, this means that ρ1 = χ (T ). Hence,
for the state to commute with the Hamiltonian, we must have

ρP = χ (T )1 ⊗ ρP\1. (B11)

Carrying out the same argument recursively for all n ∈
{1, . . . ,N}, we prove that the only state ρP , such that χ (T ) ⊗
ρP commutes with the total XXZ Hamiltonian H , is

ρP = χ (T )⊗N. (B12)

To including dephasing, the dissipator term of the Liouville
superoperator in Eq. (2.8) must also vanish, i.e., we must show
that

N∑
n=0

σ z
nρσ z

n − ρ = O. (B13)

If ρ = χ (T )⊗N+1, with χ (T ) = 1
21 + rzσ z, then for each n we

have

σ z
nρσ z

n = (σ z
nχ (T )σ z

n ) ⊗
⎛
⎝ ⊗

m∈P+Q\n
χ (T )m

⎞
⎠

= ρ. (B14)

�

APPENDIX C: ENTROPIC INEQUALITIES

The von Neumann entropy of a system in state ρ is defined
as

S(ρ) := −tr[ρ ln(ρ)], (C1)

where ln(·) is the natural logarithm. The increase in entropy of
the probe at the kth stage of the protocol is defined as

	S
(k)
P := S

(
ρ

(k)
P

) − S
(
ρ

(k−1)
P

)
, (C2)

whereas the decrease in entropy of the kth thermal qubit is

	S
(k)
Q := ST − S

(
ρ

(k)
Q

)
, (C3)

where we use ST := S(χ (T )) as the von Neumann entropy
of the thermal qubit at temperature T . We now show that the
increase in entropy of probe is at least as great as the decrease
in entropy of the thermal qubit.

Lemma C.1. Let the compound system of probe P and kth
thermal qubit Q be

ρ
(k)
P+Q := χ (T ) ⊗ ρ

(k−1)
P . (C4)

Let this system evolve according to the quantum channel
defined in Eq. (2.4). The SWAP operation need not be perfect.
Furthermore, let the initial state of the probe be

ρ
(0)
P :=

N⊗
n=1

χ (Tn), (C5)

such that for all n, Tn � T . It follows that

	S
(k)
P � 	S

(k)
Q � 0. (C6)

Proof. We denote the state of the compound system after
the action of the quantum channel as ρ

(k)
P+Q(τk). Due to the

unitality of this quantum channel, which does not decrease the
von Neumann entropy [80], and the subadditivity of the von
Neumann entropy [14], it follows that

S
(
ρ

(k)
P+Q(τk)

)
� S

(
ρ

(k)
P+Q

)
= S

(
ρ

(k−1)
P

)
+ ST . (C7)

Furthermore, given the partial traces of the time-evolved
compound system as given by Eq. (2.5), we can further use
the subadditivity of the von Neumann entropy to show that

S
(
ρ

(k)
P

)
+ S

(
ρ

(k)
Q

)
� S

(
ρ

(k)
P+Q(τk)

)
. (C8)
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By combining the above equations, we arrive at

	S
(k)
P � 	S

(k)
Q . (C9)

Finally, given the initial state of the probe and the dynamics
in question, due to Theorem A.1 we know that 	S

(k)
Q is never

negative. �
Moreover, the total entropy increase of the probe poses an

upper bound on the total entropy reduction of the system of
thermal qubits, for a cooling process of any length k. The total
entropy reduction of the thermal qubits, up to stage k, is defined
as

	S total
Q (k) :=

k∑
i=1

	S
(i)
Q . (C10)

Theorem C.1. Consider the setup of Lemma C.1. If the
probe has an XXZ spin Hamiltonian, then the total entropy
reduction of the thermal qubits obeys the inequality

	S total
Q (k) � NST , (C11)

the upper bound being realizable only if the probe is initially
in the pure state ρ

(0)
P = |1〉〈1|⊗N .

Proof. It follows from Lemma C.1 that for any k,

k∑
i=1

	S
(i)
P = S

(
ρ

(k)
P

) − S
(
ρ

(0)
P

)
� 	S total

Q (k). (C12)

As shown in Theorem B.1 the probe will pseudo-thermalize
to a state with entropy NST . It therefore follows that the total
entropy reduction of the thermal qubits obeys the inequality

	S total
Q (k) � NST . (C13)

The upper limit is achievable only if the probe is initially in a
pure state. If this pure state is to satisfy the conditions required
for always cooling, it has to be in the pure state |1〉⊗N. �

APPENDIX D: NV-P1 INTERACTION HAMILTONIAN

The quantization axis of P1 centers is the direction of mag-
netic field, while that of NVs is their orientation. The dipolar
interaction between two spins after secular approximation has
only an Ising interaction [61]

Hint = −J0

r3

[
3(r̂ · ẑ1)(r̂ · ẑ2) − ẑ1 · ẑ2]Sz

NV ⊗ Sz
P1

= −J0

r3
qSz

NV ⊗ Sz
P1, (D1)

where J0 = μ0γ1γ2 h̄
2

4π
� (2π )52 MHz nm3, ẑ1 and ẑ2 are quanti-

zation axis of NV and P1 centers, respectively, r̂ is a unit vector
directing from a NV to a P1 center, and q = 3(r̂ · ẑ1)(r̂ · ẑ2) −
ẑ1 · ẑ2 (Appendix E).

APPENDIX E: NV-NV INTERACTION HAMILTONIAN

We start with the universal dipolar interaction Hamiltonian
with two spins labeled as 1 and 2 [63]:

Hint = −J0

r3
[3( �S1 · r̂)( �S2 · r̂) − �S1 · �S2], (E1)

where J0 = μ0γ1γ2 h̄
2

4π
� (2π )52 MHz nm3 and r̂ is a unit vec-

tor directing from spin 1 to spin 2. Since the crystal field
of diamond gives zero-field splitting between |ms = 0〉 and
|ms = ±1〉, a natural quantization axis of an NV is its own
orientation. Therefore, we adopt the dual coordinate system
(x̂1,ŷ1,ẑ1),(x̂2,ŷ2,ẑ2) which corresponds to orientations of each
NV. The interaction Hamiltonian can then be expanded with
these vectors:

Hint = −J0

r3
�S1

T ·
⎡
⎣3(r̂ · x̂1)(r̂ · x̂2) − x̂1 · x̂2 3(r̂ · x̂1)(r̂ · ŷ2) − x̂1 · ŷ2 3(r̂ · x̂1)(r̂ · ẑ2) − x̂1 · ẑ2

3(r̂ · ŷ1)(r̂ · x̂2) − ŷ1 · x̂2 3(r̂ · ŷ1)(r̂ · ŷ2) − ŷ1 · ŷ2 3(r̂ · ŷ1)(r̂ · ẑ2) − ŷ1 · ẑ2

3(r̂ · ẑ1)(r̂ · x̂2) − ẑ1 · x̂2 3(r̂ · ẑ1)(r̂ · ŷ2) − ẑ1 · ŷ2 3(r̂ · ẑ1)(r̂ · ẑ2) − ẑ1 · ẑ2

⎤
⎦ · �S2

� −J0

r3
�S1

T ·
⎡
⎣3(r̂ · x̂1)(r̂ · x̂2) − x̂1 · x̂2 3(r̂ · x̂1)(r̂ · ŷ2) − x̂1 · ŷ2 0

3(r̂ · ŷ1)(r̂ · x̂2) − ŷ1 · x̂2 3(r̂ · ŷ1)(r̂ · ŷ2) − ŷ1 · ŷ2 0
0 0 3(r̂ · ẑ1)(r̂ · ẑ2) − ẑ1 · ẑ2

⎤
⎦ · �S2.

(E2)

The second line of (E2) is justified by the rotating-wave approximation (RWA) [65]. The NV coupling strength is on the order of
a few tens of kHz while zero-field splitting (ZFS) of an NV is 2.88 GHz. Thus, the product of a fast rotating term (Sx,Sy) and a
nonrotating term (Sz) is averaged out in the time evolution, which is consistent with the energy conservation.

To simplify further, terms in the Hamiltonian can be decomposed into symmetrical and antisymmetrical combination of terms
by introducing new variables g+,g−,h+,h−,q [66]:

Hint = −J0

r3

[
(g+ + g−)Sx

1 ⊗ Sx
2 + (g+ − g−)Sy

1 ⊗ S
y

2 + (h+ + h−)Sx
1 ⊗ S

y

2 + (h+ − h−)Sy

1 ⊗ Sx
2 + qSz

1 ⊗ Sz
2

]
, (E3)

g+ = 1
2 [3(r̂ · x̂1)(r̂ · x̂2) − x̂1 · x̂2 + 3(r̂ · ŷ1)(r̂ · ŷ2) − ŷ1 · ŷ2],

g− = 1
2 [3(r̂ · x̂1)(r̂ · x̂2) − x̂1 · x̂2 − 3(r̂ · ŷ1)(r̂ · ŷ2) + ŷ1 · ŷ2],

h+ = 1
2 [3(r̂ · x̂1)(r̂ · ŷ2) − x̂1 · ŷ2 + 3(r̂ · ŷ1)(r̂ · x̂2) − ŷ1 · x̂2],

h− = 1
2 [3(r̂ · x̂1)(r̂ · ŷ2) − x̂1 · ŷ2 − 3(r̂ · ŷ1)(r̂ · x̂2) + ŷ1 · x̂2],

q = 3(r̂ · ẑ1)(r̂ · ẑ2) − ẑ1 · ẑ2. (E4)
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Out of these, g−(Sx
1 ⊗ Sx

2 − S
y

1 ⊗ S
y

2 ) and h+(Sx
1 ⊗ S

y

2 + S
y

1 ⊗ Sx
2 ) are non-energy-conserving terms that can be eliminated by

RWA. The other two terms can also be simplified in our situation, where we restrict the dynamics to a two-dimensional subspace
spanned by |ms = 0〉 and |ms = 1〉:

Sx
1 ⊗ Sx

2 + S
y

1 ⊗ S
y

2 = (|01〉〈10| + |10〉〈01|),
Sx

1 ⊗ S
y

2 − S
y

1 ⊗ Sx
2 = i(|01〉〈10| − |10〉〈01|).

(E5)

The resulting Hamiltonian has the form of

Hint = −J0

r3
[g+(|01〉〈10| + |10〉〈01|) + ih−(|01〉〈10| − |10〉〈01|) + q|11〉〈11|]. (E6)

Note that the strengths of Sx
1 ⊗ Sx

2 and S
y

1 ⊗ S
y

2 are the same because the spin is rotating with the ZFS in the laboratory frame.
This interaction Hamiltonian can be expressed in terms of pseudo-spin- 1

2 Pauli operators for |ms = 0〉 and |ms = 1〉 states:

Hint = −J0

r3

[
2g+(

σx
1 ⊗ σx

2 + σ
y

1 ⊗ σ
y

2

) + 2ih−(
σx

1 ⊗ σ
y

2 − σ
y

1 ⊗ σx
2

) + qσ z
1 ⊗ σ z

2

] + (noninteracting terms). (E7)
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