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Article

Transcription factor family-specific DNA shape
readout revealed by quantitative specificity models
Lin Yang1,†, Yaron Orenstein2,†,‡, Arttu Jolma3, Yimeng Yin3, Jussi Taipale3, Ron Shamir2,* &

Remo Rohs1,**

Abstract

Transcription factors (TFs) achieve DNA-binding specificity through
contacts with functional groups of bases (base readout) and read-
out of structural properties of the double helix (shape readout).
Currently, it remains unclear whether DNA shape readout is
utilized by only a few selected TF families, or whether this mecha-
nism is used extensively by most TF families. We resequenced data
from previously published HT-SELEX experiments, the most exten-
sive mammalian TF–DNA binding data available to date. Using
these data, we demonstrated the contributions of DNA shape read-
out across diverse TF families and its importance in core motif-
flanking regions. Statistical machine-learning models combined
with feature-selection techniques helped to reveal the nucleotide
position-dependent DNA shape readout in TF-binding sites and the
TF family-specific position dependence. Based on these results, we
proposed novel DNA shape logos to visualize the DNA shape
preferences of TFs. Overall, this work suggests a way of obtaining
mechanistic insights into TF–DNA binding without relying on
experimentally solved all-atom structures.
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Introduction

Protein–DNA interactions play a central role in gene regulation.

Transcription factors (TFs) are proteins that recognize specific DNA

sequences. They bind to regulatory regions in the genome and

consequently activate or repress transcription of target genes. TFs

can bind various DNA sequences with different DNA-binding affi-

nities or specificities. In the last decade, technologies for measuring

protein DNA-binding specificities have advanced tremendously

(Slattery et al, 2014). Platforms based on microarray technology,

such as protein-binding microarray (PBM; Berger et al, 2006), and

high-throughput sequencing technology, such as high-throughput

SELEX (HT-SELEX; Jolma et al, 2010) or SELEX-seq (Slattery et al,

2011), have enabled measurements of protein binding against thou-

sands or even millions of different DNA sequences. The computa-

tional challenges are to develop accurate and quantitative models of

protein–DNA binding specificities from these massive datasets and

to infer binding mechanisms.

Position weight matrix (PWM) or PWM-like models are widely

used to represent DNA-binding preferences of proteins (Stormo,

2000). In these models, a matrix is used to represent the TF-binding

site (TFBS), with each element representing the contribution to the

overall binding affinity from a nucleotide at the corresponding posi-

tion. An inherent assumption of traditional PWM models is position

independence; that is, the contribution of different nucleotide posi-

tions within a TFBS to the overall binding affinity is assumed to be

additive. Although this approximation is broadly valid, neverthe-

less, it does not hold for several proteins (Man & Stormo, 2001;

Bulyk et al, 2002). To improve quantitative modeling, PWM models

have been extended to include additional parameters, such as k-mer

features, to account for position dependencies within TFBSs (Zhao

et al, 2012; Mathelier & Wasserman, 2013; Mordelet et al, 2013;

Weirauch et al, 2013; Riley et al, 2015). Interdependencies between

nucleotide positions have a structural origin. For example, stacking

interactions between adjacent base pairs form the local three-

dimensional DNA structure. TFs have preferences for sequence-

dependent DNA conformation, which we call DNA shape readout

(Rohs et al, 2009, 2010).

Based on this rationale, an alternative approach to augment

traditional PWM models is the inclusion of DNA structural features.

Models of TF–DNA binding specificity incorporating these DNA

shape features achieved comparable performance levels to models
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incorporating higher-order k-mer features, while requiring a much

smaller number of parameters (Zhou et al, 2015). We previously

revealed the importance of DNA shape readout for members of the

basic helix-loop-helix (bHLH) and homeodomain TF families (Dror

et al, 2014; Yang et al, 2014; Zhou et al, 2015). We were also able,

for Hox TFs, to identify which regions in the TFBSs used DNA shape

readout, demonstrating the power of the approach to reveal mecha-

nistic insights into TF–DNA recognition (Abe et al, 2015). This capa-

bility was extensively shown for only two protein families, due to

the lack of large-scale high-quality TF–DNA binding data. With the

recent abundance of high-throughput measurements of protein–

DNA binding, it is now possible to dissect the role of DNA shape

readout for many TF families.

In this study, we used the most extensive mammalian TF–DNA

binding affinity datasets available to date, derived from HT-SELEX

experiments (Jolma et al, 2013), to inform DNA shape-based bind-

ing models. To improve statistical robustness of the analysis, we

augmented each experiment by increasing the sequencing depth of

existing HT-SELEX data (Jolma et al, 2013). We implemented a

pipeline to derive accurate TF-binding intensities for all possible

DNA M-words (sequences of length M) from HT-SELEX reads. Using

these preprocessed data, we trained machine-learning models of

TF–DNA binding specificities. Finally, using feature selection, we

pinpointed positions in the TFBSs where DNA shape readout is most

likely to occur.

Results

HT-SELEX experimental data provide accurate M-word scores for
diverse TF families

We analyzed HT-SELEX data, including 548 experiments covering

410 human and mouse proteins from 40 different TF families, to

produceM-word binding scores. Increased sequencing depth allowed

us to derive accurate scores for longerM-words. This aspect is partic-

ularly important because DNA shape is affected by the flanking

regions of TFBSs. Therefore, we augmented the original dataset

(Jolma et al, 2013) with additional sequencing to increase the read

depth of the experiments by almost 10-fold (from an average of

~168,000 reads per sequencing file to ~1,656,000 reads). Experimen-

tal data were filtered by rigorous quality control (QC) criteria to iden-

tify cases with sufficient library complexity and read counts to allow

the building of multiparametric models. A total of 218 TFs from 29

families passed the first filter based on high variability and large

sample size of the data, and a total of 215 TFs from 27 different fami-

lies passed the QC step based on regression performance (Fig 1).

For each TF, we selected a core-binding motif, to enable identifi-

cation of the most probable binding site within M-words and filter

out oligonucleotides that are likely to be unbound. The motifs used

were derived from a previous study (Jolma et al, 2013). These

motifs generally contain long flanks in addition to the core consen-

sus sequence, which would prevent us from getting robust M-word

scores due to low read coverage for long sequences. To overcome

this difficulty, we used motifs from the catalogue compiled by

Weirauch and Hughes (Weirauch & Hughes, 2011) to identify and

use only the core positions. We calculated the binding score for each

M-word that included the core motif in the center (allowing for a

few mismatches) and any possible flanking sequences 50 and 30 of
the motif. We sought to avoid the possibility of cooperative TF–DNA

binding, in which multiple copies of the TF occupy different

DNA-binding sites (BSs) on the same sequence, as well as to mini-

mize noise caused by inaccurate alignment of M-words based on the

core motif. Thus, we excluded HT-SELEX reads that contained

multiple instances of the core motifs.

Next, we derivedM-word binding scores based on observed exper-

imental enrichment. Each HT-SELEX experiment included several

rounds of binding site (BS) selection by the TF, with the binding

specificity of selected DNA sequences increasing in each round. We

calculated the M-word score as the ratio of the frequency of the

M-word in round i over its estimated frequency in the initial round,

using a fifth-order Markov model (Slattery et al, 2011). The final

output of this process was the M-word scores of the core sequence

and its flanks for each HT-SELEX experiment (Appendix Fig S1A).

To evaluate the accuracy of our M-word scoring scheme and the

value of deeper sequencing, we compared scores derived by HT-

SELEX to those measured by genomic-context PBMs (gcPBMs). The

gcPBMs use arrays specifically designed with the core sequence in

the center, flanked by a genomic context (Gordân et al, 2013).

These probes are intended to measure the effect of flanking

sequences and, therefore, provide an accurate gold standard for

Original data: 548 HT-SELEX experiments covering 
410 proteins in 40 families

Quality control
Deep read coverage, high M-word variability 

Filtered data: 218 TFs, 29 families

Choosing core-motif for each TF
based on literature (Jolma et al, 2013)

bHLH: CANNTG, GCM: RCCCGNAT, ...

Filtering out infrequent M-words

Filtering data based on regression R2

215 TFs, 27 families

Calculating M-word scores

Figure 1. Pipeline used to generate HT-SELEX M-word scores and filter
datasets.
M-word scores were derived for cycles i ≥ 3. For the calculation of the scores,
freqi(w) is the frequency ofM-word w in cycle i, and est_freq0(w) is its estimated
frequency in cycle 0.
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long M-word (M ≥ 12) binding scores. The only protein for which

both gcPBM and HT-SELEX experimental data exist was the Max

homodimer (Zhou et al, 2015). Appendix Fig S1B shows the good

correlation (r = 0.64) of 12-word scores produced by the two tech-

nologies, demonstrating the accuracy of our process in producing

M-word scores from HT-SELEX data. To test how much we gain

with respect to gcPBM binding scores by using the new data, we

examined three different M-word scores: frequency, ratio compared

with the initial round, and ratio compared with the estimated initial

round. Deeper sequencing improved the correlation of these three

scores to gcPBM 12-word scores, and the ratio-to-estimated score

achieved the highest correlation (Appendix Fig S1C). Notably, when

processing the data previously published in (Jolma et al, 2013) with

the same pipeline, only 22 proteins passed the quality control,

compared with 218 with the higher coverage, showing the advan-

tage of deeper sequencing.

Principal component analysis (PCA) reveals TF family-specific
DNA-binding specificities and heterogeneities within TF families

We performed PCA to visualize TF family-specific DNA-binding

specificities. The DNA-binding preference of each TF was

represented by the DNA M-word with the highest binding affinity

for this TF. We encoded this M-word into numeric feature vectors

that included (i) only mononucleotide (i.e., 1-mer) features, and (ii)

both 1-mer and DNA shape features. DNA shape features include

minor groove width (MGW), Roll, propeller twist (ProT), and helix

twist (HelT) and are predicted with our DNAshape approach (Zhou

et al, 2013). Figure 2A and B shows the first two principal compo-

nents obtained using each feature vector.

Different TF families tended to form distinct clusters in the PCA

scatter plots. To compare the clustering quality in the two plots, we

obtained the two-dimensional Euclidean distances between all pairs

of TFs from Fig 2A and B. Distances were classified as intra- or

inter-family and visualized as boxplots (Fig 2C and D). Inter-family

distances were generally larger than intra-family distances. When

we used both 1-mer and DNA shape features, the difference between

the medians of the inter- and intra-family groups was slightly larger

than the difference obtained when using 1-mer features alone

(Fig 2C and D). This result was consistent with Fig 2A and B, indi-

cating that more variance could be explained by introducing DNA

shape features, in part due to the better separation of the homeo-

domain family (Fig 2B). To test whether such effects were simply

due to the higher dimensionality introduced by the additional DNA

A B

C D

Figure 2. PCA reveals different DNA-binding specificities between TF families.

A PCA using 1-mer features. Each dot represents a TF. Dots of the same color belong to the same TF family. An ellipse was drawn for each TF family. The ellipse is a
contour of a fitted two-variate normal distribution that encloses 0.68 probability (R package default).

B PCA using 1-mer and shape features, annotated in the same way as described in (A).
C Boxplots of inter- and intra-family TF distances derived from (A). Difference between medians of inter- and intra-family distances is 2.02 (red).
D Boxplots of inter- and intra-family TF distances derived from (B). Difference between medians of inter- and intra-family distances is 3.68 (red).
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shape features, we added randomly generated shape features based

on Gaussian distribution with mean and standard deviation of the

original shape features. Both the variance explained and the

distance between intra- and inter-family groups were lower in this

test (Appendix Fig S2).

DNA shape features improve modeling of DNA-binding
specificities across TF families

We tested the importance of the recognition of DNA shape by each

TF through quantitative modeling of DNA-binding specificities and

comparison of model performance in terms of the R2 between

predicted and experimental M-word scores. Similar to the methodol-

ogy in Yang et al (2014) and Zhou et al (2015), we built regression

models that used only DNA mononucleotide features (i.e., 1mer

models) or that combined DNA mononucleotide and shape features

(i.e., 1mer+shape models). A result in which the 1mer+shape model

outperforms the 1mer model indicates that DNA shape readout

might play a role in TF binding.

Based on an analysis of 215 TFs from 27 different families, we

found that 1mer+shape models generally outperformed 1mer models

(Fig 3A), indicating the prevalence of DNA shape readout across dif-

ferent TF families (for a complete list of datasets used in Fig 3, see

Table EV1). With DNA sequence readout playing a dominant role in

TF binding, the importance of DNA shape recognition as additional

contribution varied both between and within TF families. For exam-

ple, model performance for homeodomain TFs was generally more

substantially improved than for C2H2 TFs. Within the homeo-

domain TF family, there was a large variance among individual

members. Homeodomain and bHLH TFs have been previously

observed to be sensitive to DNA shape features (Slattery et al, 2011;

Gordân et al, 2013; Yang et al, 2014; Zhou et al, 2015). Here, we

confirmed and extended this observation to the bZIP, CENPB, CP2,

CUT, ETS, HSF, IRF, MYB, NFAT, nuclear receptor, PAX, POU,

PROX, TBX, and TEA TF families. At least half of the members in

each of these families, covered by our data, showed greater than

10% performance improvement when DNA shape features were

added to the model. However, some families were underrepresented

in the data with only one TF present (Table EV1; for full names and

detailed information of the TF families, see Table EV2).

To test the robustness of the experimental data and our compu-

tational pipeline, we repeated the above analysis on replicate exper-

imental data for three TFs from the bHLH and homeodomain

families. Our results consistently showed contributions of DNA

shape readout for these two families (Appendix Fig S3A). To test

whether the performance gain is simply a result of the increased

number of model parameters due to the added DNA shape features,

we shuffled the query table for DNA shape features. Shape models

based on the shuffled query table generally have poorer perfor-

mance than those based on the original query table (Fig 3B). We

also tested whether the results were robust to the motif seeds used

during data preprocessing. We repeated the above analyses using

the Weirauch and Hughes seeds (Weirauch & Hughes, 2011) as the

final seeds instead of using them for identifying the core positions

of the HT-SELEX-based motifs published by Jolma et al (2013). We

calculated Pearson’s correlation coefficients between the perfor-

mance of models that were based on the Weirauch and Hughes

seeds (Weirauch & Hughes, 2011) and the Jolma et al (2013) seeds.

The high correlation between the two sets of motif seeds indicated

that the results were robust to the choice of motif seeds

(Appendix Fig S3B). We also tested the robustness of the results

under slight changes in the mismatch threshold (see Materials and

Methods) and length of the flanking regions. Both tests showed

high correlation between different parameter settings, demonstrat-

ing sufficient robustness (Appendix Fig S3C and D).

The homeodomain TFs in this study presumably bind DNA as

monomers, whereas our previous studies demonstrated the impor-

tance of DNA shape for Exd–Hox heterodimers (Slattery et al,

2011). X-ray and nuclear magnetic resonance (NMR) structures of

homeodomain DNA-binding domains in complex with DNA repeat-

edly show that the N-terminal tail of the homeodomain DNA-

binding domain interacts with the DNA through minor groove and

backbone contacts, which is a signature of DNA shape readout

(Joshi et al, 2007).

DNA shape features in flanking regions are important for
different TF families

We previously observed that 1mer+2mer+3mer models usually

outperform 1mer+shape models (Zhou et al, 2015). Here, we gained

additional clues for possible explanations of this observation. As

noted previously (Zhou et al, 2015), both 2-mer and 3-mer features

are indirect representations of DNA shape characteristics. The 2-mer

features describe stacking interactions between adjacent base pairs,

whereas 3-mer features describe short structural elements, such as

A-tracts that tend to form narrow minor groove regions. Thus, it is

not surprising that 1mer+2mer+3mer models can capture TF–DNA

binding specificities with high accuracy.

Using our high-quality HT-SELEX data, we observed that, for

most TFs, 1mer+2mer+3mer models outperformed 1mer+shape

models (Fig 3C). As our prediction of local DNA shape features was

based on a sliding window of 5 base pairs (Zhou et al, 2013), we

were unable to predict shape features for the two extreme positions

at the 50 and 30 ends of each DNA sequence. This limitation could

give an edge to 1mer+2mer+3mer models. However, we could

encode 2-mer and 3-mer features for those terminal positions,

which in turn would work as a proxy for DNA shape. To test this

hypothesis, we added 3-mer features from only the two end (E2)

positions (i.e., 3merE2 features) to the 1mer+shape model. Perfor-

mance of the resulting 1mer+shape+3merE2 model was indeed

comparable to that of the 1mer+2mer+3mer model (Fig 3D). As an

additional test, we removed 2-mer and 3-mer features at the end

positions from the 1mer+2mer+3mer model, which resulted in the

1mer+2merNoE2+3merNoE2 model that showed similar perfor-

mance to the 1mer+shape model (Fig 3E).

We also hypothesized that if longer flanking sequences were

available for predicting shape features, then 1mer+shape models

would perform similar to 1mer+2mer+3mer models without adding

3merE2 features. To verify this possibility, we used an independent

dataset generated by the gcPBM platform (Zhou et al, 2015). As

expected, 1mer+shape models performed comparable to 1mer+

2mer+3mer models for the data without additional 3merE2 features

(Appendix Fig S3E). These results imply that DNA shape features in

the flanking regions contribute to TF–DNA binding specificities,

which was previously known for bHLH TFs (Gordân et al, 2013;

Yang et al, 2014; Zhou et al, 2015). Here, we showed for the first
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A B

C D

E F

Figure 3. Performance comparisons between models using different features.

A Comparison between 1mer and 1mer+shape models.
B Comparison between shape models that are based on the original DNAshape method (Zhou et al, 2013) and randomly shuffled pentamer query tables.
C Comparison between 1mer+2mer+3mer and 1mer+shape models.
D Comparison between 1mer+2mer+3mer and 1mer+shape+3merE2 models. The label 3merE2 represents 3mer features from the two end positions at the 5’ and 3’

terminal of each DNA sequence.
E Comparison between 1mer+2merNoE2+3merNoE2 and 1mer+shape models. The labels 2merNoE2 and 3merNoE3 indicate that 2mer and 3mer features, respectively,

were removed from the end positions.
F Comparison between 1mer+shape and 1mer+shape+3merE2 models.

Data information: Each dot represents one dataset. Coordinates of the dot are determined by the performance, measured in R2 based on 10-fold cross-validation, of the
corresponding models indicated in parentheses. Shape and color of the dots indicate the TF family. Dashed lines in (A and F) have a slope of 1.1, indicating 10%
performance increase. Dashed lines in (D) have slopes of 1.1 and 0.9.
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time that this phenomenon is of general nature, as adding 3merE2

features as proxy for missing DNA shape features consistently

improved the model performance for various TF families (Fig 3F).

Beyond better interpretability of shape-augmented models, an

important distinction between the models is the different number of

features required to achieve similar performance. The 1mer+shape

model requires 12 features (including second-order DNA shape

features) per nucleotide position compared with the 84 features

required by the 1mer+2mer+3mer model per nucleotide position

(Zhou et al, 2015). Although we previously included lower-order

1-mers and 2-mers in our 1mer+2mer+3mer models for reasons of

interpretability, nevertheless, the 3-mer features actually contain all

of the information of the 1-mers and 2-mers. Thus, a 3mer model is

equivalent to a 1mer+2mer+3mer model (Materials and Methods

and Appendix Fig S3F). This choice, however, would still leave the

3mer model with 64 required features per nucleotide position

compared with a maximum of only 12 features in the 1mer+shape

model.

Feature selection can provide insights into TF–DNA
readout mechanisms

We performed feature selection to identify BS positions where DNA

shape features contribute to TF-binding specificities. The method is

similar to the one we previously introduced for the analysis of

SELEX-seq data for Hox proteins (Abe et al, 2015). For each TF, we

evaluated the R2 performance of the baseline 1mer model, denoted

R2
1mer . Next, we evaluated models that combined 1-mer features with

DNA shape features individually at single nucleotide positions i,

denoted 1mer+shapei models. We denoted the performance as

R2
1merþshapei

. We calculated the difference in model performance

DR2
i ¼ R2

1merþshapei
� R2

1mer for each nucleotide position i (Fig 4A).

The DR2
i =R

2
1mer ratio indicates the percentage change in performance

due to the availability of DNA shape features at nucleotide position

i, with a positive ratio suggesting performance gain. The ratio at

position i compared with other positions reflects the relative impor-

tance of DNA shape features at different nucleotide positions. We

visualized the DR2
i =R

2
1mer ratio as a function of position i for each TF

in the form of a heat map (Fig 5A and Appendix Fig S4).

To avoid interference from DNA sequence information, we

devised a second feature-selection approach in which we removed

DNA shape features at individual positions from a shape-only

model. The DR2
i =R

2
shape ratio was then used for generating the heat

map (Figs 4B and 5B, and Appendix Fig S4), where DR2
i ¼ R2

shape�
R2
shapei

. These two different approaches can sometimes yield con-

flicting heat maps as discussed below. To address such cases and

facilitate the use of these heat maps, we also generated a combined

heat map based on the cell-by-cell minimum of the two heat maps

(Fig 5C and Appendix Fig S4). Quantitative information about the

importance of the position-dependent DNA shape in TF–DNA recog-

nition at single-base pair resolution provides the means to deter-

mine the structural protein–DNA readout mechanisms based on

sequence data. To achieve this goal, we further expanded our

feature-selection method to test each individual DNA shape feature

category, which enabled us to gauge the importance of each DNA

shape feature, that is, MGW, Roll, ProT, or HelT, at every position

(Appendix Fig S5). To date, obtaining such information required

experimentally solved structures.

Figure 5 shows the position-dependent DNA shape importance

for homeodomain TFs that recognize a TAAT motif. For most of

these TFs, DNA shape was more important at the 30 side of the core

motif, as indicated by the darkness of colors (Fig 5). Homeodomain

TFs that recognize a different motif, for example, TCRTAAA, were

shown to have a different positional DNA shape preference

(Appendix Fig S4F). Positional preferences were also protein-family

specific. For example, for bHLH TFs DNA shape features in both

flanking regions were important, whereas for nuclear receptors that

bind to an ACANNNTGT motif the central motif region was gener-

ally important (Appendix Fig S4A and H). In comparison, bZIP TFs

that bind to a TTRCGC motif and homeodomain TFs were generally

sensitive to DNA shape features at only one flanking side of the core

motif (Appendix Fig S4B and F).

The exact positions where DNA shape features are important

were not unambiguously pinpointed for the bHLH TFs and the

nuclear receptors that bind to an ACANNNTGT motif (Appendix Fig

S4A and H). Both Appendix Fig S4A and H relate to a scenario

where the red heat map shows prominent shape effects in multiple

consecutive positions, whereas the blue heat map shows almost no

effects. We believe that this is due to false positives in the red heat

map, that is, positions that are not important for shape readout but

identified as such, and false negatives in the blue heat map, that is,

positions that are important for shape readout that were not identi-

fied. We conclude in this case that DNA shape is important in some

positions in the consecutively red regions, but we failed to locate it,

even with the help of the blue heat map.

We illustrated the relevance of feature importance heat maps

derived from feature-selection approaches by considering experi-

mental structures of the homeodomain proteins PITX2 (PDB ID

2LKX) and GBX1 (PDB ID 2ME6) in complex with DNA (Fig 6A

and B). These structures provide possible explanations for entries

A

B

Figure 4. Schematic representation of feature-selection process.

A Feature-selection scheme for adding DNA shape features at one individual
position to a sequence-only model.

B Feature-selection scheme for removing DNA shape features from one single
position from a shape-only model.
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representing PITX3 and GBX1 on the heat maps (Fig 5). As no

experimental structure for PITX3 is available, we used an NMR

structure for PITX2 (Chaney et al, 2005), which shares the same

DNA-binding domain as PITX3. In the heat maps, PITX3 has

darker colors at the 30 side of the TAAT motif, indicating a more

important role of DNA shape at these positions. In the PITX2

A B C

Figure 5. Importance of DNA shape features as a function of nucleotide positions revealed by feature selection with machine learning.

A Heat map based on adding DNA shape features to a sequence-only model.
B Heat map based on removing DNA shape features from a shape-only model.
C Combined heat map that takes cell-by-cell minimum of heat maps in (A and B).

Data information: Case of letters in TF names indicates species, with uppercase being human and lowercase being mouse.
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structure, the N-terminal tail of the protein interacts with DNA in

the minor groove of the TAAT motif. The structure contains a

narrow minor groove region near the second A within the TAAT

motif (Fig 6A). In this case, the protein might exploit the DNA

structural characteristics at positions highlighted in the heat maps

to achieve its binding specificity.

We observed similar concurrence between heat map and struc-

tural analyses for the TF GBX1, where the structure has a narrow

minor groove region at the 30 flank (Fig 6B). Although the posi-

tions indicated by the heat maps do not match the positions in

the structure in an exact way, the heat maps successfully high-

lighted those nearby positions. Moreover, the heat maps were

consistent with our conclusion that DNA shape features in

flanking regions are important for TF–DNA binding specificities

(Fig 3D–F). In addition to the homeodomain family, we used a

structure of the human progesterone receptor (PDB ID 2C7A) from

the nuclear receptor family to illustrate how the heat maps can

provide hints to the structural mechanisms of protein–DNA

binding. In the structure (Roemer et al, 2006), MGW, Roll, and

ProT show distinct characteristics in the central region of the DNA-

binding site, which potentially explains the central “red” regions in

the heat maps (Appendix Fig S6).

DNA shape logos represent structural readout mechanisms

To visualize the detailed DNA shape preferences of individual TFs,

we propose a new visualization, DNA shape logos, analogous to

sequence logos for PWMs. In these logos, we used the letters H, M,

P, and R to represent DNA shape features HelT, MGW, ProT, and

Roll, respectively. The height of each letter indicates the importance

derived from the feature-selection analysis for the corresponding

DNA shape feature at a specific position (Fig 6). As an example, we

used DR2, that is, the performance gain due to adding an individual

DNA shape feature to a 1mer model, to generate shape logos for

PITX3 and GBX1 (Fig 6C and D). For PITX3, a prominent M at posi-

tions 7, 8, 9, and 10 overlaps with the narrow minor groove region

A B

C D

Figure 6. Three-dimensional structure and DNA sequence and shape logos for the homeodomain TFs PITX2/PITX3 and GBX1.

A NMR structure of PITX2 in complex with DNA (PDB ID 2LKX) and the CURVES (Lavery & Sklenar, 1989) derived plot for the MGW of the bound DNA.
B NMR structure of GBX1 in complex with DNA (PDB ID 2ME6) and the CURVES (Lavery & Sklenar, 1989) derived plot for the MGW of the bound DNA.
C DNA sequence and shape logos for PITX3.
D DNA sequence and shape logos for GBX1.
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in the structure. Similarly, for GBX1, a prominent M at positions 7

and 8 overlaps with the narrow minor groove in the structure. DNA

shape information was missing for the two nucleotide positions at

each end of the TFBS; thus, no letters are shown at these positions

in the shape logo. DNA shape logos can facilitate the integration of

structural information in motif finding tools. Sequence and shape

logos for all the TFs studied in this work are provided as Datasets

EV1 and EV2, respectively.

Discussion

Protein–DNA binding models have evolved tremendously in the last

decade (Slattery et al, 2014). In the past, binding models were based

on a few high-affinity BSs. These models enabled the identification

and prediction of the most likely BSs in vivo, but missed many

potential low-affinity sites (Stormo, 2000; Tanay, 2006). Weak and

suboptimal TFBSs play important roles in transcriptional regulation

(Crocker et al, 2015; Farley et al, 2015), emphasizing the necessity

of a quantitative understanding of TF–DNA binding specificities.

Structures obtained through X-ray crystallography and NMR

spectroscopy allow us to determine the detailed mechanisms of

protein–DNA binding involving single DNA target sites and have

greatly advanced our perception of protein–DNA recognition (Rohs

et al, 2010). However, it is inherently difficult to apply these insights

at a high-throughput level. Protein crystallization is a time-

consuming process, and deriving distance constraints using NMR

experiments is costly and likewise time-consuming. As a conse-

quence, structural information is limited to a subset of TFs and

individual DNA-binding sites.

In the genomics field, sequencing- and microarray-based high-

throughput methods have made it possible to study systematically

in vitro TF–DNA binding specificities by simultaneously measuring

binding affinities to millions of different DNA sequences. In vitro

platforms such as HT-SELEX and PBM provide effective solutions to

gain quantitative knowledge of TF–DNA binding (Berger et al, 2006;

Zhao et al, 2009; Jolma et al, 2010), as the confounding factors

in vivo are not present. With sequencing depth being further

improved by an average of 10-fold compared with the original data

(Jolma et al, 2013), the HT-SELEX data generated in this study

currently represent the most extensive set of TF–DNA binding

measurements for mammalian TFs. We constructed an analysis pipe-

line that derives binding affinities for different DNA M-words from

these HT-SELEX data, gaining a much more detailed view of the

binding energy landscape than simple PWM models. This approach

enabled us to explore, through statistical machine-learning methods,

how the mechanisms of DNA shape readout are employed by various

TF families. With feature-selection techniques, we revealed TF

family-specific positional DNA shape importance at base pair resolu-

tion. The results concur with available experimental structures.

Overall, this study provides a means to derive binding mechanisms

from sequence data without relying on solved structures.

Despite these methodological advances, we see several limita-

tions in our preprocessing of the data. First, while increasing the

sequencing depth improved statistical robustness of binding affi-

nities derived for the short M-words used here, the amount of

sequencing data may still be insufficient for models using longer

M-words. Although the sequencing depth could be increased further

(Slattery et al, 2011), this endeavor would be expensive, consider-

ing the large number of TFs that were studied. Second, HT-SELEX

technology can be influenced by oligonucleotide synthesis and PCR

bias. In addition, TFs may bind in different binding modes, resulting

in enrichment of a mixture of oligonucleotides containing one or

more binding motifs. To identify features of single binding events,

we based our analysis on known core motifs, allowing only one core

motif within each oligonucleotide, removing PCR duplicates, and

normalizing by the initial round.

Moreover, we note the limitations in the shape readout profiles

and their visualization. First, DNA shape alone is obviously insuffi-

cient to explain TF binding (Zhou et al, 2015). Second, the shape

logos are not equivalent to sequence logos, as they are based on

positional scores that do not represent a probability distribution or

energy parameters. An alternative way for generating DNA shape

logos is to use feature weights derived from models. However, due

to the interdependencies between features, such weights are not

directly interpretable. In our analysis, we gauged the importance of

each individual DNA shape feature by adding it to the 1mer baseline

model and observed its effect on the model performance. We believe

that DNA shape logos based on such extensive computation are

more robust. Although such logos do not yet lead to the prediction

of a protein–DNA structure model, they are a step forward and

provide a general guide for revealing DNA shape preferences. Third,

although the TF–DNA structures supported the heat map results, the

correlation is not at all conclusive. Experimentally solved structures

in the PDB are not available for most of the studied TFs. Both the

“red” and “blue” heat maps aim to summarize the DNA shape

importance at individual positions. However, the red heat maps can

contain false-positive cells, and the blue heat maps can contain both

false-positive and false-negative ones (see definition in Results

section). The DNA shape features at a position essentially reflect the

pentamer context at that position. Shape features of adjacent posi-

tions may contain redundant information. As a result, a position

indicated as important in the red heat map may be due to the fact

that DNA shape features at the position adjacent to it are important,

inducing false positives in the heat map (Appendix Fig S4A and H).

On the other hand, for the same reason, a position may not be indi-

cated as important in the blue heat map due to the fact that its

directly adjacent position is making up for it, inducing false nega-

tives in the heat map (Appendix Fig S4A and H). Moreover, the

DNA shape features used here are derived from sequence, so a posi-

tion indicated as important in the blue heat map may be due to the

loss of sequence information encoded indirectly in the shape

features, inducing false positives in the heat map, for example,

TBX15 in Appendix Fig S4J. The combined version of the heat maps

improves the accuracy to some extent. In addition, the feature-selec-

tion analysis that breaks down the DNA shape contribution into

individual DNA shape features helps locate the effective shape

features. Despite these limitations, we believe that in the future,

such heat map analysis, when combined with TF–DNA binding

measurements of improved quality, will allow us to gain more clues

of TF-binding mechanisms from DNA sequencing data.

Finally, although understanding of in vitro protein–DNA binding

mechanisms is a critical step toward understanding in vivo binding,

the in vivo scenario consists of multiple layers of complexity, such

as the three-dimensional genomic architecture (Rao et al, 2015),

DNA accessibility (Neph et al, 2012), nucleosome competition
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(Barozzi et al, 2014), and TF cooperativity and co-factors (Slattery

et al, 2011; Crocker et al, 2015). Full understanding of gene regula-

tion will require the integration of knowledge obtained in different

fields using various technologies.

In conclusion, while the DNA sequence describes opportunities

to form hydrogen bonds and other direct contacts between amino

acids and bases, DNA shape can provide an important additional

contribution to TF binding (Rohs et al, 2009, 2010). We systemati-

cally explored here, we believe for the first time, the role of DNA

shape readout for many TF families, using high-quality HT-SELEX

data, and obtained results at base pair resolution. We produced a

valuable TF–DNA binding data resource by increasing the sequenc-

ing depth of previous HT-SELEX experiments (Jolma et al, 2013)

and developing tools for deriving TF–DNA binding affinities and

mechanisms from DNA sequencing data.

Materials and Methods

HT-SELEX binding data

HT-SELEX experiments were comprised of previously published

data (Jolma et al, 2013) complemented by new sequencing data.

The new data were produced by repooling existing PCR-amplified

SELEX ligands into new Illumina sequencing libraries, where

samples were multiplexed to a lesser extent (~55× vs. ~800×) than

in the previous study. Libraries were sequenced using the Illumina

Hiseq2 platform, as in the previous study (Jolma et al, 2013). The

additional sequencing coverage used in the analysis has been

submitted in the European Nucleotide Archive (ENA; http://

www.ebi.ac.uk/ena) under study identifier PRJEB14744. The

complete dataset comprises 548 experiments covering 410 different

TFs, including mouse/human full-length protein–DNA binding

domain differences. Forty protein families were represented. Protein

family membership can be found in Jolma et al (2013). For the three

TFs in the validation set, new HT-SELEX experiments were

performed essentially as described in (Nitta et al, 2015).

The gcPBM data were downloaded from GEO accession number

GSE59845 (Zhou et al, 2015). Max protein 12-word scores were the

average log-normalized fluorescence intensities of probe sequences

that included these 12-words.

Choosing core motifs

For each TF, we defined a core-binding sequence to enable identifi-

cation of the most likely binding site and filter out unbound oligonu-

cleotides. We used the seeds published in Jolma et al (2013) as the

core motifs, but removed their flanks. To pinpoint the core positions

as opposed to the flanks, we used motifs compiled in Weirauch and

Hughes (2011), which are consensus sequences for only the core

motifs collected for different TF families. Substring positions that

have the most agreement to any of the corresponding Weirauch and

Hughes motifs (Weirauch & Hughes, 2011) were chosen as the core

positions. We used the IUPAC character representation for nucleotide

sequence. It was sufficient for positions to agree if they represented

the same nucleotide. When using the Weirauch and Hughes

(Weirauch & Hughes, 2011) motifs as core seeds, most TF families

had only one core motif, which would be the assigned motif for TFs

from the family. For TF families having several motifs, we compared

the Weirauch and Hughes motifs (Weirauch & Hughes, 2011) to the

published consensus seeds (Jolma et al, 2013) and calculated score1,

the portion of matched nucleotides. The core motif with the highest

score1 was assigned to a TF, respectively. If multiple options

remained after this step, then we calculated score2, a stricter similar-

ity score such that the IUPAC symbols matched exactly (e.g., R

matches R but not A). The core motif with the highest score2 was

then selected. This process ensured that almost all TFs were assigned

only one motif. In some rare cases, two motifs survived. For both

Jolma et al seeds and Weirauch and Hughes motifs, when multiple

seeds were selected, a dataset for the TF was derived according to

each selected seed, but only the dataset with highest R2 was included

in the analysis in Fig 3. For a complete list of datasets, see Table EV1.

A few TF families were not covered by Weirauch and Hughes

(2011). For C2H2 TFs, we used the seeds published in Jolma et al

(2013) without removing the flanks, as zinc fingers bind different

sequences based on the specificity of each finger (noted in Weirauch

and Hughes, 2011). For six TF families not covered by (Weirauch &

Hughes, 2011), we used other published resources for the seed of

each family, as specified here: RRM (Fernandez-Miranda & Mendez,

2012), NFI (Whittle et al, 2009), NRF (http://AtlasGeneticsOncol

ogy.org), TFAP (http://AtlasGeneticsOncology.org), and znf_BED

(http://www.genecards.org). For the complete list of core consen-

sus motifs, see Table EV3.

M-word scores

We derived M-word binding scores based on observed experimental

enrichment counts. HT-SELEX experiments included several rounds

of enrichment of bound DNA sequences by a specific protein. Initi-

ally, the experiment began from a pseudo-random DNA oligonu-

cleotide library. The protein was allowed to bind to DNA sequences

in the randomized pool. Next, bound (“selected”) sequences were

isolated and amplified for sequencing and reiteration of the process.

The frequency of DNA sequences that have higher binding affinities

increased exponentially. It is possible to derive the binding affinity

for DNA sequences based on their change in frequencies throughout

the rounds (Levine & Nilsen-Hamilton, 2007). In the HT-SELEX

experiments, the oligonucleotide length (excluding constant ends)

was 14, 20, 30, or 40 base pairs.

M-word scores were produced for each core motif, with the

following parameters: number of core-flanking positions to derive,

selected round, and number of core mismatches that were allowed.

For each HT-SELEX oligonucleotide, at most one BS was accounted

for. An M-word with a number of matches to the core motif above

the threshold was chosen as the BS (if there were several, the

oligonucleotide was discarded to avoid multiple modes of binding).

Only for occurrences in which the M-word had sufficiently long

flanks to include, the required side positions were used. The reverse

complement strand was also considered and, in cases of hits on both

strands, the one with the larger number of matches was used. If no

M-word matched the core motif given the allowed number of

mismatches, the oligonucleotide was discarded.

To produce accurate M-word ratio scores, counts were divided

by estimated frequencies in the initial pool, as previously described

(Slattery et al, 2011). Estimated frequencies were generated using a

fifth-order Markov model of observed frequencies in the initial pool,
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following the SELEX-seq protocol (Slattery et al, 2011). The score

was the ith root of the ratio, where i was the round of selection.

This approach was based on the assumption that M-word frequen-

cies increased by the same factor between two consecutive selection

cycles (Slattery et al, 2011). To compare different alternative scores,

we considered the frequency at round i and the ratio of the

frequency at round i over the (observed) frequency in the initial

round. In all cases, an oligonucleotide was only counted once to

avoid PCR duplication bias.

Length of core-motif and flanking regions, number of
mismatches allowed, and selected rounds

For each experiment, M-word scores were derived per round for

round 3 and later rounds. As the first few rounds did not show a

profound enrichment, we did not consider them. Later rounds

showed enrichment and varied in quality and read depth. Thus,

data were collected per round from round 3 onwards, and selection

of the round was deferred to a later stage.

Similarly, we generated datasets for different values of M. There is

an inherent tradeoff between increasing M and reducing the accuracy

of the scores. While greater M values provide information on binding

to longer flanks, counts of M-words decrease as M grows, leading to

less accurate binding scores. Keeping this tradeoff in mind, we consid-

ered the initial length and the maximum length of flanking regions. The

initial length was set to bð10 � core lengthÞ=2c so thatM is at least 10,

allowing DNA shape prediction for at least 6 positions (the two posi-

tions at each flank are not available due to the pentamer model). For

example, for core TAAATTA of length 7, the initial flank length was 1.

We called an M-word reliable if its count was > 8. M was set to be the

largest value for which the number of reliable M-words was ≥ 1,000,

and the maximum M-word count was ≥ 100. When all M-word counts

are < 100, the scores may be inaccurate, and samples with less than

1,000 reliable M-words are considered small and excluded from our

analysis. For example, for the same core of TAAATTA, if GAGTAAAT-

TACTC was the most frequent 13-word and it appeared only 89 times,

whereas the 11-word AGTAAATTACT appeared 1,540 times, assuming

there are more than 1,000 reliable M-words in both, the maximum

length would be 3 (the core is of length 7, leaving 3 flanking positions

on each side). Datasets were created for all flanking region lengths,

starting at the initial and up to the maximum length.

Another tradeoff exists in the number of mismatches: up to a

point, allowed mismatches increase the variability of M-words, and

thus add useful information. Too many mismatches would lead to the

introduction of M-words that do not represent BSs, resulting in added

noise. With this tradeoff in mind, we set the number of mismatches

allowed to depend on the length of the core motif. Generally, the

number was bðcore length � 4Þ=2c þ 1. In case the core motif

contains degenerate characters, that is, those that represent multiple

nucleotides, we counted these characters differently in the core

length. The weight of a character in this count was 1/nucleotides_

it_represents, and the length of a core was the sum of its characters’

weights. For example, for ATAAAA, we allowed two mismatches as

there are six characters of weight 1. For CANNTG, we allowed only

one mismatch (in addition to the two central fully degenerate posi-

tions), because its total weight is 4*1+2*0.25 = 4.5. By applying this

threshold, on average, 74 � 25% of the oligonucleotides were

retained, which suggests that it can detect probable BSs while

removing oligonucleotides that are less likely to be bound. The above

threshold was used as a first step in order to exclude unbound

oligonucleotides. In the second step, a stricter threshold allowing one

less mismatch was used to filter out oligonucleotides that have multi-

ple motif occurrences, in order to exclude cooperative binding events

from our analysis. The stricter threshold ensures that not too many

oligonucleotides are filtered out in the second step. Finally, the

oligonucleotides were aligned according to the core motif.

Dataset filtering

In large-scale experimental data, it is inherently difficult to ensure

that every dataset has equivalent diversity and enrichment level.

Although PWM models can be constructed from low-quality experi-

mental data, complex models require high levels of enrichment and

sequence diversity. To reach reliable conclusions, we used multiple

data filtering procedures to discard datasets of insufficient quality.

We performed two stages of QC for these datasets. In the first stage,

we used four QC criteria to ensure high counts for accurate score

estimates, large sample size, and score variability.

1 All M-words with count ≤ 8 were discarded because low

counts lead to inaccurate estimates of binding scores.

2 If the number of different M-words after step 1 was < 1,000,

then the dataset was filtered out, to ensure that datasets have

sufficient numbers of samples for the learning algorithm.

3 Datasets were tested for variable scores. The score of the 90th

percentile had to be at least 0.2 greater than the score of the

10th percentile.

4 The maximum M-word had to appear at least 100 times; other-

wise, counts would be too small and estimates inaccurate for

most of the M-words.

We filtered out datasets based on R2 performance criteria. We

ran L2-regularized multiple linear regression (MLR) on each of the

remaining datasets using different combinations of features. Due to

their linearity, we would expect that, for MLR models, model A

would perform at least as well as model B, given that B uses a

subset of features used by A. We defined a dataset as invalid only

when the performance of model A was smaller than that of model B

by more than 3%, given that B uses a subset of features used by A.

This process reduced the number of valid datasets to 533. Datasets

for which even the best model had R2 < 0.5 were excluded from the

analyses. Finally, 512 datasets covering 215 human/mouse TFs

belonging to 27 different TF families passed our QC procedure.

For TFs covered by multiple datasets, only the dataset with the

highest R2 was included in downstream analyses (see Table EV1 for

the complete list). As PCA requires only one representative BS

sequence for each TF, we separately generated 12-word data using

reads from the last round of HT-SELEX, as the last round is expected

to be the most specific. We used the top 12-word as the representa-

tive BS for each TF. In doing so, as many as 294 TFs were covered

in the PCA (Fig 2; see Table EV4 for a complete list of 12-words for

the 294 TFs in the PCA).

PCA and linear regression analysis

For each DNA sequence s, the 1-mer, 2-mer, and 3-mer features

were encoded into feature vectors /1mer, /2mer, and /3mer, respec-

tively, in a similar way to those used in Zhou et al (2015). The ith
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nucleotide in s was denoted si. Elements of vectors /1mer, /2mer, and

/3mer were formulated as follows. For nucleotide position i:

/1mer
4�ði�1Þþ1ðsÞ ¼

0; if si 6¼ A

1; if si ¼ A

�
; i ¼ 1; . . .; l

/1mer
4�ði�1Þþ2ðsÞ ¼

0; if si 6¼ C

1; if si ¼ C

�
; i ¼ 1; . . .; l

/1mer
4�ði�1Þþ3ðsÞ ¼

0; if si 6¼ G

1; if si ¼ G

�
; i ¼ 1; . . .; l

/1mer
4�i ðsÞ ¼ 0; if si 6¼ T

1; if si ¼ T

�
; i ¼ 1; . . .; l

/2mer
16�ði�1Þþ1ðsÞ ¼

0; if sisiþ1 6¼ AA

1; if sisiþ1 ¼ AA

�
; i ¼ 1; . . .; l� 1

/2mer
16�ði�1Þþ2ðsÞ ¼

0; if sisiþ1 6¼ AC

1; if sisiþ1 ¼ AC

�
; i ¼ 1; . . .; l� 1

/2mer
16�ði�1Þþ3ðsÞ ¼

0; if sisiþ1 6¼ AG

1; if sisiþ1 ¼ AG

�
; i ¼ 1; . . .; l� 1

. . .

/2mer
16�i ðsÞ ¼

0; if sisiþ1 6¼ TT

1; if sisiþ1 ¼ TT

�
; i ¼ 1; . . .; l� 1

/3mer
64�ði�1Þþ1ðsÞ ¼

0; if sisiþ1siþ2 6¼ AAA

1; if sisiþ1siþ2 ¼ AAA

�
; i ¼ 1; . . .; l� 2

/3mer
64�ði�1Þþ2ðsÞ ¼

0; if sisiþ1siþ2 6¼ AAC

1; if sisiþ1siþ2 ¼ AAC

�
; i ¼ 1; . . .; l� 2

/3mer
64�ði�1Þþ3ðsÞ ¼

0; if sisiþ1siþ2 6¼ AAG

1; if sisiþ1siþ2 ¼ AAG

�
; i ¼ 1; . . .; l� 2

. . .

/3mer
64�i ðsÞ ¼

0; if sisiþ1siþ2 6¼ TTT

1; if sisiþ1siþ2 ¼ TTT

�
; i ¼ 1; . . .; l� 2

First-order DNA shape features MGW, ProT, Roll, and HelT,

denoted /MGW, /ProT, /Roll, and /HelT, respectively, were generated

by our DNAshape prediction method (Zhou et al, 2013; Chiu et al,

2016). For these DNA shape features, the following normalization

was performed:

/MGW
i ¼ ðMGWi �MGWminÞ=MGWsd

where MGWi is the predicted MGW, MGWmin is the minimum

MGW over all possible pentamers, and MGWsd is the standard

deviation of MGW in the data. Similarly:

/ProT
i ¼ ðProTi � ProTminÞ=ProTsd;

/Roll
i ¼ ðRolli � RollminÞ=Rollsd;

/HelT
i ¼ ðHelTi � HelTminÞ=HelTsd:

Second-order DNA shape features were derived from the first-

order features and denoted /MGW2

;/ProT2

;/Roll2 ; and /HelT2

. These

second-order shape features were the product terms of adjacent

first-order DNA shape features, normalized by the standard devia-

tion. MGW and ProT were defined for each base pair, and Roll and

HelT were defined for each base pair step. Thus, in the feature-selec-

tion analysis, DNA shape features at nucleotide position i, denoted

as shapei, consisted of /MGW
i ;/ProT

i ;/Roll
i ;/Roll

iþ1 ;/
HelT
i ;/HelT

iþ1 ;/MGW2

i ;

/MGW2

iþ1 ;/ProT2

i ;/ProT2

iþ1 ;/Roll2

i ; and /HelT2

i . If the core-motif sequence

was palindromic, then the last step in the feature encoding was to

symmetrize the feature vector by averaging it with the feature vector

encoding the reverse complementary stand. The DNAshape method

predicts shape features based on a pentamer query table that is

derived from all-atom Monte Carlo simulations (Zhou et al, 2013).

As a control, we shuffled the pentamer query table and tested its

effects on shape models.

After the feature encoding, L2-regularized MLR and 10-fold

cross-validation were performed for each dataset to gauge model

performance (Yang et al, 2014; Abe et al, 2015). L2-regularized

MLR was chosen for its simplicity and interpretability. In PCA, the

feature vector encoded for the sequence of highest DNA-binding

affinity of a TF was used to represent that TF.

3mer and 1mer+2mer+3mer model equivalence in linear
regression

The 3mer models and 1mer+2mer+3mer models are equivalently

“powerful” in MLR, where the power of a model refers to its

descriptive capability. This equivalency can be demonstrated by

showing that any solution of a 1mer+2mer+3mer model could be

mapped into a 3mer model solution that gives exactly the same

prediction of binding affinity for any input DNA sequence, and vice

versa. Proof for the reverse direction is trivial. We could just keep

the learned coefficients, or weights, of the 3-mer features, and

set all weights for 1-mer and 2-mer features to be zero. This

process results in a 1mer+2mer+3mer model that gives exactly the

same prediction of binding affinity for any input DNA sequence as

the original 3mer model. Mapping for the other direction is as

follows.

Denote a solution to a 1mer+2mer+3mer model as:

S1 ¼ ðw1
A;w

1
C ;w

1
G;w

1
T ;w

2
A;w

2
C ;w

2
G;w

2
T ; . . .;

wN�1
A ;wN�1

C ;wN�1
G ;wN�1

T ;wN
A ;w

N
C ;w

N
G ;w

N
T ;

w1
AA;w

1
AC ;w

1
AG;w

1
AT ;w

1
CA;w

1
CC ;w

1
CG;w

1
CT ; . . .;

wN�1
GA ;wN�1

GC ;wN�1
GG ;wN�1

GT ;wN�1
TA ;wN�1

TC ;wN�1
TG ;wN�1

TT ;

w1
AAA;w

1
AAC ;w

1
AAG;w

1
AAT ;w

1
ACA;w

1
ACC ;w

1
ACG;w

1
ACT ; . . .;

wN�2
TGA ;w

N�2
TGC ;w

N�2
TGG ;w

N�2
TGT ;w

N�2
TTA ;w

N�2
TTC ;w

N�2
TTG ;w

N�2
TTT Þ:

Denote a solution to the 3mer model as:

S2 ¼ ðm1
AAA;m

1
AAC ;m

1
AAG;m

1
AAT ;m

1
ACA;m

1
ACC ;m

1
ACG;m

1
ACT ; . . .;

mN�2
TGA ;m

N�2
TGC ;m

N�2
TGG ;m

N�2
TGT ;m

N�2
TTA ;m

N�2
TTC ;m

N�2
TTG ;m

N�2
TTT Þ:

Superscript numbers denote nucleotide positions in the DNA

sequences. Subscript letters denote what features at those positions

the learned weights are for. For any x; y; z 2 fA;C;G;Tg, map the

weights as follows:

mi
xyz ¼ wi

xyz þwi
xy þwi

x; i ¼ 1; . . .;N � 3

mN�2
xyz ¼ wN�2

xyz þwN�2
xy þ wN�2

x þwN�1
yz þ wN�1

y þ wN
z :

The resulting S2 will assign the same predicted binding affinity

as S1 to any input DNA sequence.

The equivalency between 3mer and 1mer+2mer+3mer models no

longer holds strictly when regularization is added. It is only true if

we assume that the training process always ensures that the learned
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model has the highest generalization accuracy under the MLR

framework, that is, the optimal solution. In practice, the solution is

not necessarily the optimal one, despite being the goal of the regu-

larization. Thus, 1mer+2mer+3mer models and 3mer models are

approximately equivalent in the L2-regularized MLR used here. For

this reason, we see that the data points drifted slightly off the diago-

nal in Appendix Fig S3F.

Generating DNA shape logos

DNA shape logos were generated using the seq2logo program with

the PSSM-logo option (Thomsen & Nielsen, 2012). We gauged the

importance of each DNA shape feature at each nucleotide position

by adding this feature to the baseline 1mer model. We then calcu-

lated the DR2 value upon adding this particular feature. These DR2

values were used to construct a position-specific scoring matrix

(PSSM), which served as input to the seq2logo program. DNA

sequence logos were generated based on PSSMs that were calculated

from top 200 M-words for each TF.

Data availability

The raw sequencing data from the HT-SELEX experiments are avail-

able at ENA (http://www.ebi.ac.uk/ena) under study identifier

PRJEB14744. All MLR models and PSSMs are available at BioStudies

(https://www.ebi.ac.uk/biostudies) under accession number

S-BSST6 or at http://rohslab.cmb.usc.edu/MSB2017.

Expanded View for this article is available online.
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