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Semiclassical theory of the tunneling anomaly in partially spin-polarized
compressible quantum Hall states

Debanjan Chowdhury, Brian Skinner, and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA

(Received 8 December 2017; published 9 May 2018)

Electron tunneling into a system with strong interactions is known to exhibit an anomaly, in which the tunneling
conductance vanishes continuously at low energy due to many-body interactions. Recent measurements have
probed this anomaly in a quantum Hall bilayer of the half-filled Landau level, and shown that the anomaly
apparently gets stronger as the half-filled Landau level is increasingly spin polarized. Motivated by this result, we
construct a semiclassical hydrodynamic theory of the tunneling anomaly in terms of the charge-spreading action
associated with tunneling between two copies of the Halperin-Lee-Read state with partial spin polarization. This
theory is complementary to our recent work (D. Chowdhury, B. Skinner, and P. A. Lee, arXiv:1709.06091) where
the electron spectral function was computed directly using an instanton-based approach. Our results show that
the experimental observation cannot be understood within conventional theories of the tunneling anomaly, in
which the spreading of the injected charge is driven by the mean-field Coulomb energy. However, we identify
a qualitatively new regime, in which the mean-field Coulomb energy is effectively quenched and the tunneling
anomaly is dominated by the finite compressibility of the composite Fermion liquid.

DOI: 10.1103/PhysRevB.97.195114

I. INTRODUCTION

In an interacting two-dimensional electron system, the
amplitude for tunneling an additional electron into the system
is influenced not just by the single-particle density of states
but also by the strength of electron-electron interactions. This
influence is particularly strong when the energy of the injected
electron (relative to the Fermi level) is low compared to the
typical scale of electron-electron interactions. At such low
energies, inserting an electron requires other nearby electrons
to rearrange, clearing out a “correlation hole” into which the
tunneled electron can be placed. For systems with sufficiently
strong interactions and with finite conductivity, this many-body
interaction effect leads to a “tunneling anomaly” (TA), in
which the tunneling conductance vanishes as the bias voltage
is brought to zero [1].

Conceptually, one can think that the tunneling process com-
prises two distinct steps: (i) a fast, single-particle transmission
of an electron across the tunneling barrier and (ii) a slow,
many-body rearrangement of the electron liquid in response to
the transmitted electron. At low bias voltage, the latter process
acts as a bottleneck that determines the tunneling rate. One can
describe step (ii) using the language of “charge spreading.”
In this picture, the additional charge density associated with
the injected electron is effectively spread outward by the
rearrangement [as depicted in Fig. 1(a)], reducing the system
energy closer to that of the ground state. At zero temperature,
the charge spreading can happen only as a virtual process,
and therefore the tunneling rate is proportional to exp(−S/h̄),
where S is the action associated with charge spreading. In
general, the action S grows with decreasing bias voltage V ,
since the charge of the tunneled electron must spread far
enough outward during the virtual process that the change
in the system energy is reduced below eV . (Here, −e is the

electron charge.) A number of system properties are reflected
in the magnitude of the charge spreading action, including
the interaction strength, the conductivity, and the electronic
compressibility, and therefore the tunneling anomaly can
generally be used as a probe of the many-body ground state.

Of particular interest in the study of correlated electron sys-
tems are the compressible states that exist at even-denominator
quantum Hall filling fractions. Such states have been success-
fully described using the framework of composite fermions
(CFs), in which each electron is attached to an even number
φ of flux quanta [2]. For example, the state at filling factor
ν = 1/2 was described by Halperin, Lee, and Read (HLR)
[3] in terms of a low-energy effective theory for the CFs
coupled to an emergent Chern-Simons (CS) gauge field. In
a compressible quantum Hall state, the filling is such that all
of the system’s magnetic field is bound up in the CFs, so that
the CFs effectively see zero magnetic field on average and form
a Fermi surface. When the tunneling anomaly is measured
in such a compressible quantum Hall state, it is this Fermi
liquid of CFs whose properties are probed. That is, the charge-
spreading is accomplished by rearrangement of the CF Fermi
sea, and the charge-spreading action S reflects the conductivity,
the interaction strength, and the finite compressibility of
the CFs.

Tunneling into quantum Hall systems has attracted exper-
imental and theoretical interest for almost thirty years. For
example, experiments have shown clear evidence for a TA in
quantum Hall systems [4–6]. The problem of the tunneling
anomaly in the ν = 1/2 state has received particular theoretical
attention [7,8], with previous authors assuming complete spin
polarization and focusing primarily on the case of a single
layer. A recent experiment [9], however, has re-examined
the problem of tunneling anomaly in the ν = 1/2 state by
measuring the tunneling current between two closely spaced
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FIG. 1. (a) Schematic depiction of the charge-spreading process.
Two parallel two-dimensional electron systems are separated by a
distance d , and subjected to in-plane and out-of-plane magnetic
fields, B‖ and B⊥, respectively. A bias voltage V drives tunneling
of electrons from the top layer to the bottom layer. Such tunneling
processes locally perturb the CF density (indicated by the blue color
of varying intensity). One can describe the rate of electron tunneling
by considering the action associated with the outward spreading of
the positive charge left behind in the top layer (light-colored area,
indicating a lower density of CFs) and the negative charge deposited
in the bottom layer (dark-colored area, indicating a higher density of
CFs). (b) Evolution of the spin composition of the spreading charge.
Immediately after tunneling of a spin-up electron, the top layer has
a local deficit of up-spin CF density, while the bottom layer has
an excess. As the charge density perturbation spreads outward, the
Chern-Simons electric field mixes the two spin components within
each layer, so that after a long time, the ratio of spin-up to spin-down
density in the spreading charge perturbation, ρ↑/ρ↓, is determined
solely by the thermodynamic compressibilities of each spin species,
and is independent of the spin of the tunneled electron.

GaAs quantum wells that are each at half filling. Crucially, this
experiment also examined the role of partial spin polarization
by varying an in-plane magnetic field B‖. Numerous studies
during the past two decades have shown that at low electron
density the ν = 1/2 state in GaAs is not fully polarized
[10–20]. Applying an additional in-plane field allows one to
increase the spin polarization without affecting the orbital state
of the electrons.

One of the most striking observations of Ref. [9] is that
the tunneling current at low bias decreases with increasing
spin polarization. As we show below, this observation is at
odds with conventional treatments of the tunneling anomaly,
which predict a tunneling current that increases with spin
polarization. This experimental discrepancy prompts us to
revisit the theory of the tunneling anomaly in bilayers of
compressible quantum Hall states. In doing so, we uncover
a new regime of behavior for the tunneling anomaly, in which
the charge-spreading action is dominated not by the mean-field
Coulomb energy of the spreading charge but by the finite
compressibility of the CF liquid. In this regime, the dependence
of the tunneling anomaly on spin polarization depends on the
behavior of the compressibility, which is strongly renormalized
by interactions.

In our description, we focus everywhere on the limit of low
voltages V � e/(ε�B), where ε is the dielectric constant and
�B is the magnetic length. (We use Gaussian units throughout
this paper.) At such low voltages, the current is far below its
maximum value Imax and the physics associated with charge
spreading over distances ��B plays a dominant role. The
behavior of the current peak was explored in Ref. [21]. The
authors found that the evolution of the peak with in-plane field
can be explained in terms of the momentum boost given to
the tunneling electron, which produces a lateral shift in the
position of the electron’s guiding center. At low voltages, this
shift is much smaller in magnitude than the typical radius of
the spreading charge, and is not relevant for the problem we
are considering. We also neglect everywhere the possibility
that electrons and holes in opposite layers couple to form an
exciton condensate (reviewed, for example, in Refs. [22,23]);
in the regime of our interest, there is no experimental evidence
for an excitonic condensate, which produces a zero-bias peak
in the tunneling conductance. Our assumption of no excitonic
coupling between layers is equivalent to assuming that either
the ratio d/�B is larger than the critical value associated with
exciton condensation, or that the temperature is larger than the
condensation temperature.

In the remainder of this paper, we calculate the zero-
temperature charge-spreading action as a function of bias
voltage V and interlayer separation d. In Sec. II, we first define
our model and then provide a semiquantitative derivation of
our main results. In Sec. III, we present a calculation of the
charge-spreading action using a semiclassical hydrodynamic
description, following Ref. [24]. We discuss its implications for
the tunneling anomaly and its polarization dependence across
different regimes of V and d. In Sec. IV, we briefly review
the calculation of the single-electron spectral function, as was
done recently by us in an accompanying paper [25], and we
compare our results to the hydrodynamic approach. The two
descriptions give equivalent results. We conclude in Sec. V
with suggestions for future experiments and a brief theoretical
outlook.

II. PRELIMINARIES
AND SEMI-QUANTITATIVE DISCUSSION

In this paper we consider the situation where two parallel
layers have the same overall electron concentration n and
polarization ζ , defined such that

n↑ + n↓ = n, n↑ − n↓ = ζn, (1)

where n↑ and n↓ denote the overall concentration of up
and down spin electrons, respectively, in each layer. We are
interested in the situation where we attach an even number,
φ, of flux quanta to the electrons such that each resulting
composite Fermion sees an average effective magnetic field
of zero. This is accomplished by attaching flux in such a
way that each CF sees φ flux quanta attached to electrons of
either spin component in the same layer, and no flux quanta
attached to electrons in the opposite layer [26]. Since the
average effective magnetic field for CFs is B⊥ − 2πφn/e = 0,
our description applies to filling factors ν = 2πn�2

B = 1/φ.
Here, �B = √

h̄c/eB⊥ denotes the magnetic length and B⊥ is
the magnetic field perpendicular to the layers.
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Within the language of HLR, at incomplete spin polarization
each layer houses two Fermi surfaces with different Fermi
wave vectors:

kF↑ = √
4πn↑ = kF

√
1 + ζ

2
,

(2)

kF↓ = √
4πn↓ = kF

√
1 − ζ

2
,

where kF = √
2ν/�B is the Fermi wave vector in the limit of

complete spin polarization (ζ = 1).
In describing the charge spreading, we use the symbol

ρσ,s(r,t) to denote the spatially and temporally varying dif-
ferential charge density, defined relative to the uniform back-
ground enσ , associated with CFs having spin σ (= ↑,↓) in
layer s(=1,2). When an electron tunnels from (say) layer
s = 1 to layer s = 2, the charge densities in each layer evolve
dynamically following the charge injection, and at times much
longer than the inverse Fermi energy multiplied by the Planck
constant, and the differential charge density ρσ,s(r,t) is much
smaller in magnitude than enσ . We focus everywhere on such
long-time charge-spreading processes. Equivalently, as we
explain at the end of this section, one can say that we focus
exclusively on bias voltages that are small compared to the
typical interaction scale, e2kF/ε.

At a semiquantitative level, the functional behavior of
the tunneling current can be anticipated using the following
scaling arguments. Consider the semiclassical process in which
the injected charge e of a tunneled electron spreads radially
outward from the site of injection. At some time t after
injection, the charge distribution ρ(r) has a typical radius r

and an associated energy U (r). For example, when Coulomb
interactions are strong and unscreened, U (r) is given by the
Coulomb self-energy of the spreading charge, U (r) ∼ e2/εr .
The spatial gradient of energy dU/dr can be said to drive
the charge spreading. (In the Coulomb-dominated case, this
gradient is precisely the electric field.)

As the charge spreads radially outward, its energy U (r)
declines, and at some r = r∗ its energy becomes equal to the
energy eV associated with the bias voltage. This state with
r = r∗ can be considered the final state of the virtual process
(the “classically allowed state”), with an energy equal to that of
the initial state before the electron tunneling. One can estimate
the charge-spreading action S as the action associated with
spreading of the charge packet from a small size r0, which is
of the order of the Fermi wavelength, to r = r∗. This action
depends in general on the conductivity of the CF liquid, which
determines the growth rate dr/dt of the charge packet.

For a CF liquid, it is important to distinguish between
the physical conductivity σ̂ and the composite Fermion con-
ductivity σ̂CF. The difference between the two arises because
of the electric field e associated with the internal CS gauge
field. (Here we follow the notation of Ref. [27].) Ignoring
the contribution from the different spin components for the
moment, a current density j of flux-carrying CFs gives rise to
a gauge electric field e( j ) that is perpendicular to the current.
The CFs respond to both the physical electric field E and the
CS electric field e( j ), so that in the absence of density gradients

one can define σ̂CF by

j = σ̂CF(E + e( j )), (3)

where

e( j ) = ρ̂CS j , ρ̂CS = α

(
0 1

−1 0

)
, (4)

and α = 2πh̄φ/e2. The corresponding physical conductivity
is defined by

j = σ̂ E, (5)

so that

σ̂ = (
σ̂−1

CF + ρ̂CS
)−1

. (6)

The matrix σ̂CF is diagonal (i.e., [σCF]xy = [σCF]yx = 0).
In our analysis below, we use the usual assumption that
α2[σCF]xx[σCF]yy � 1 [27]. The validity of this inequality is
discussed in detail in Appendix. If the electric potential is
assumed to have a wave vector q � kF in the x direction, then
the physical conductivity in the x direction is

σxx � 1

α2[σCF]yy

. (7)

This equation implies that increasing the CF conductivity
[σCF]yy leads to a reduction in the physical conductivity σxx ,
and therefore to a slower charge spreading and a larger charge-
spreading action. Heuristically, one can think that a large CF
conductivity leads to a large component of current transverse
to the applied electric field, and therefore to a CS field e with
a component that nearly cancels the applied field E.

For a CF system with two spin components [27],

[σCF]yy = e2

2πh̄

kF↑ + kF↓
q

= e2kF

2πh̄q
g(ζ ), (8)

where g(ζ ) = √
(1 + ζ )/2 + √

(1 − ζ )/2 is a monotonically
decreasing function of ζ , so that [σCF]yy decreases with
increasing spin polarization and the physical conductivity σxx

increases.
In discussing the scaling behavior of the charge-spreading

action, one can think that the typical value of q is ∼1/r , where
r is the radius of the spreading charge. The typical value of
the physical conductivity is therefore σxx(r) ∼ e2/[h̄kFrg(ζ )].
This conductivity defines the radial current density jr ∼
σxx(r)[(1/e)dU/dr] associated with the spreading charge,
which by continuity is related to the change in the radius by
jr ∼ (e/r2)dr/dt . Thus we arrive at

dr

dt
∼ r2 σxx(r)

e2

dU

dr
∼ r

h̄kFg(ζ )

dU

dr
. (9)

One can now discuss the different regimes for the charge-
spreading action by considering the dominant contributions to
the energy U (r) that drives the charge spreading. When the
interlayer separation d is large (regime I), the energy of the
charge packet in a given layer is dominated by its Coulomb
self-energy and is unaffected by the charge in the opposite
layer. Thus, in this limit, U (r) ∼ e2/εr . Equation (9) then gives
a growth rate dr/dt ∝ 1/r , so that at long times the typical size
of the spreading charge is r(t) ∝ √

t . The classically allowed
radius r∗ is given by U (r∗) ∼ eV , so that r∗ ∼ e/(εV ), and
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the corresponding charge-spreading time is t∗ ∝ (r∗)2. The
magnitude of the charge-spreading action can be estimated as
the typical energy multiplied by the typical charge-spreading
time,

S ∼ U (r∗)t∗. (10)

Making this substitution for regime,I gives a charge spreading
action

SI ∼ h̄
e2kF/ε

eV
g(ζ ). (11)

Thus, in regime I, the tunneling conductance vanishes at
small voltage as I ∼ exp[−V0/V ], with V0 ∼ (ekF/ε)g(ζ ).
This result was first derived for ζ = 1 by He, Platzman, and
Halperin [7]. Importantly, while previous studies considered
the case of full spin polarization, the simple scaling argument
presented here shows that the tunneling current should increase
with increasing spin polarization, due to the rising physical
conductivity σxx .

At sufficiently small interlayer distance d or sufficiently
low voltage V , the radius r∗ becomes larger than the interlayer
separation d (regime II). In this case, the Coulomb energy of
the spreading charge is affected by the attractive interaction
between the opposite-sign spreading charge in the two layers,
and at r � d, one can estimate U (r) as the energy of a
plane capacitor with charge e and area r2, so that U (r) ∼
e2d/(εr2). Equation (9) then gives a radius that grows as
r(t) ∼ t1/3—more slowly than in the case of an unscreened
interaction. Calculating the radius r∗ from U (r∗) ∼ eV and
the corresponding time t∗ gives a charge-spreading action

SII ∼ h̄

√
e2dk2

F/ε

eV
g(ζ ). (12)

The corresponding functional form I ∼ exp[−const./
√

V ] of
the tunneling current was first pointed out in Refs. [7,8]. Below,
we provide a detailed exploration of this regime, including the
effect of finite spin polarization. However, one can see already
from the arguments above that the tunneling current in both
regimes I and II is expected to increase with increasing spin
polarization.

Finally, one can consider the regime where d is so small
that the mean-field Coulomb energy of the spreading charge is
effectively eliminated due to the close proximity of the two
layers (as mentioned above, we still assume that there is
no instability to excitonic condensation). In this regime, the
energy of the spreading charge is dominated by the residual,
short-ranged component of the interactions that give the CF liq-
uid its finite compressibility. In other words, the CF liquid has
a finite thermodynamic density of states χ−1 = dn/dμ, where
μ is the chemical potential, and this finite thermodynamic
density of states produces an outward diffusive current. The
energy associated with the compressibility is U (r) ∼ χ/r2.
For the CF problem, where the compressibility arises from
the short-ranged component of interactions (which are not
quenched even when the interlayer spacing is small), χ is of
order e2/(εkF). The dependence of χ on the spin polarization
ζ cannot be predicted a priori. As we show below, its value
depends on Landau parameters.

interlayer distance, d

voltage,
V

~ kF
-1

intralayer Coulomb-driven 

bilayer 
Coulomb-driven 

compressibility-driven 

~ ekF/Ε

(I)

(II)

(III)

r* d

r* d

r*

log I ~ − ekF ε
V

g ζ( )

log I ~ − edkF
2 ε

V
g ζ( )

log I ~ −
χ ζ( )kF

2

V
g ζ( )

FIG. 2. Schematic map of the three regimes described in this work
(labeled I, II, and III, respectively). The inset in each regime depicts
the typical size r∗ of the spreading charge relative to the interlayer
separation d . In regime I, the charge spreading is driven by the
e2/r∗ Coulomb energy of the charge within each layer. In regime II,
the Coulomb energy is reduced due to attraction of positive and nega-
tive charges in opposite layers, and the Coulomb energy of the spread-
ing charge has the form e2d/(r∗)2. In regime III, the energy associated
with the finite quantum compressibility of the spreading charge,
∼χ/(r∗)2, dominates over the Coulomb energy.

It is important to note that the compressibility χ does not
depend on the spin of the initially injected electron [as depicted
in Fig. 1(b)]. As the packet of charge density spreads outward,
the resulting CS electric field creates currents of both spin
components, thereby mixing the spin densities spatially. After
a long time, the spin composition of the spreading charge
is determined only by the compressibilities of the two spin
components, and it does not necessarily reflect the spin of the
injected electron or the spin polarization of the unperturbed
ground state. A careful derivation of χ in terms of the com-
pressibilities dn↑/dμ↑, dn↓/dμ↑, and dn↓/dμ↓ is presented
below.

Accepting χ (ζ ) as a phenomenological parameter, one can
use Eq. (9) as before to make an estimate of the charge-
spreading action. This procedure gives

SIII ∼ h̄

√
χ (ζ )k2

F

eV
g(ζ ). (13)

Thus the dependence of the conductivity on spin polarization
is altered by the spin-dependence of the compressibility.

In order to understand the crossover between the three
regimes, one can simply equate U (r∗) for regimes I and II, and
regimes II and III. This gives the two dashed lines V ∼ e/(εd)
and d ∼ k−1

F drawn in Fig. 2. The maximum voltage for
applicability of our semiclassical description can be estimated
by demanding that the typical size r∗ of the spreading charge is
much longer than the Fermi wavelength k−1

F . Since the voltage
is related to r∗ by eV ∼ U (r∗), our description applies only
when eV � U (k−1

F ). For regime I, this inequality amounts
to V � ekF/ε. For regime II, the inequality is equivalent
to V � ek2

Fd/ε, which is automatically satisfied within the
boundaries of regime II. For regime III, our description applies
only when V � χk2

F/e. Since χ is of order e2/(εkF), the

195114-4



SEMICLASSICAL THEORY OF THE TUNNELING ANOMALY … PHYSICAL REVIEW B 97, 195114 (2018)

condition for applicability in regime III is the same as in regime
I, V � ekF/ε. This boundary is marked as the vertical dashed
line in Fig. 2.

III. HYDRODYNAMIC DESCRIPTION
OF CHARGE SPREADING

In the hydrodynamic description, the evolution of the charge
currents jσ,s(r) and the charge densities ρσ,s(r) are described
using semiclassical equations of motion. The charge-spreading
action is the action associated with the evolution of the charge
densities and charge currents in the wake of the tunneling event.
Following Ref. [24], our approach to calculating the charge-
spreading action is to write down the equations of motion, and
then to write the simplest quadratic action that reproduces the
known equations of motion. Once this action is known, we can
solve for j and ρ associated with a “bounce path,” in which a
charge e is inserted at time −τ and removed at a later time τ .

A. Hydrodynamic equations

In the hydrodynamic description, one assumes that there is a
local equilibrium with a well defined electrochemical potential

(r), which varies smoothly with position on the scale of the
Fermi wavelength and slowly with time relative to the inverse
Fermi energy. In our case, the electrochemical potential has
both a spin and layer index, and can be written


σ,s(r) = eϕs(r) + μσ,s(r), (14)

where μσ,s(r) denotes the chemical potential associated with
the compressibility and ϕs(r) is the electric potential at position
r in layer s. In the remainder of this subsection we suppress
the layer index “s” in all equations; the electric potential, the
densities, and the currents are understood to correspond to the
same layer. The CF current is given by

jσ = σ̂CF,σ

(
−1

e
∇
σ + e( j )

)
, (15a)

j =
∑

σ

jσ , (15b)

where σ̂CF,σ and e are the CF conductivity matrix (for spin
component σ ) and the CS electric field, respectively. Let us
write ∇
 as

∇
σ = −eE + 1

e

∑
σ ′

χσσ ′∇ρσ ′ , (16)

where E = −∇ϕ is the physical electric field and we have
defined

χσσ ′ ≡ dμσ

dnσ ′
, (17)

where ρσ = enσ . The coefficients χσσ ′ define the spin-
selective compressibilities of the system, and are related to
Landau parameters in a way that we explain below. For the
moment, we leave them as unspecified parameters.

Let us now assume that the electric field is in the x direction,
which is also assumed to be the direction along which the
density perturbation has a larger density gradient (i.e., |∇xρ| �
|∇yρ|). Under these assumptions, the x component of the

current in Eq. (15a) is given by

jx
↑

[σCF,↑]xx

− α(jy

↑ + j
y

↓ ) = Ex − 1

e2
(χ↑↑∇xρ↑ + χ↑↓∇xρ↓),

j x
↓

[σCF,↓]xx

− α(jy

↑ + j
y

↓ ) = Ex − 1

e2
(χ↓↓∇xρ↓ + χ↓↑∇xρ↑).

(18)

Examining the y component of the current in Eq. (15a) gives
j

y

↑ + j
y

↓ = −ασT
yy(jx

↑ + jx
↓ ), where we have defined

σT
yy = [σCF,↑]yy + [σCF,↓]yy. (19)

We can substitute for j
y

↑ + j
y

↓ in Eq. (18) and apply the in-
equality α2σT

yy � 1/[σCF,σ ]xx to each of the spin components
to arrive at the following set of equations:

α2σT
yy(jx

↑ + jx
↓ ) = Ex − 1

e2
(χ↑↑∇xρ↑ + χ↑↓∇xρ↓),

α2σT
yy(jx

↑ + jx
↓ ) = Ex − 1

e2
(χ↓↓∇xρ↓ + χ↓↑∇xρ↑). (20)

The justification for the inequalities α2σT
yy � 1/[σCF,σ ]xx is

discussed in detail in Appendix. We note here only that the
inequality is fully justified in regimes I and II, while in regime
III it is marginal at worst.

From Eq. (20), one can immediately see that the gradient
terms in the two equations are equal. Thus, the ratio of the up
and down spin densities of the evolving charge perturbation is
given by

(χ↑↑ − χ↓↑)ρ↑ = (χ↓↓ − χ↑↓)ρ↓ (21)

[note that the distributions ρ↑(r) and ρ↓(r) must be normalized
and therefore cannot differ by an additive constant]. Physically,
this relation arises because the CS field mixes the two spin
components until they are in local equilibrium with each other,
which guarantees that their density gradients satisfy Eq. (21).
Thus, even if (say) an up-spin CF is injected into the system, the
CS field quickly induces the evolving density perturbation to
develop a mixture of both up- and down-spin CF components
that reflects their thermodynamic compressibilities. Equiva-
lently, one can say that the electrochemical potential 
σ in
Eq. (14) that governs the current flow becomes independent
of the spin σ . It is then possible to write down a single
hydrodynamic equation, independent of the spin components.

Using the constraint in Eq. (21), the hydrodynamic equation
(20) can be simplified to

jx = σxx

[
Ex − χeff

e2
∇xρ

]
, (22)

where jx = jx
↑ + jx

↓ and σxx = 1/(α2σT
yy) is the physical con-

ductivity, as before. We have introduced an effective coefficient

χeff = χ↑↑χ↓↓ − χ↑↓χ↓↑
(χ↑↑ − χ↓↑) + (χ↓↓ − χ↑↓)

. (23)

From now on, we shall assume χ↑↓ = χ↓↑.
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The derivation of Eq. (22) illustrates that, at long wave-
lengths and in the long time limit, one can write the hydrody-
namic equations in terms of the total current and total density,
summed over both spin components. In this way, the spinful
problem is reduced to a spinless problem, written in terms of
the physical conductivity and a renormalized compressibility.
The effective compressibility χeff can be written in terms
of Landau parameters, as we demonstrate below. Further,
we show in Sec. IV (and as in Ref. [25]) that χeff is the
same as the thermodynamic dμ/dn = (2πφ)2χd . It is worth
emphasizing that while it may seem obvious that the effective
compressibility for the total charge is given by χeff = dμ/dn,
its appearance in the hydrodynamic equations is in fact a
nontrivial result that comes from the influence of the CS field.
The usual thermodynamic expression for dμ/dn is obtained by
assuming equilibration between the two spin components, so
that a given perturbation δn of density can be divided between
the two spin sectors in a way that minimizes the total energy. In
our problem, however, there are no processes, which can flip
the CF spin. Instead, mixing of spin densities happens through
the influence of the CS field, even when the chemical potential
of one spin species is independent of the density of the other
and χ↑↓ = 0. Over long length scales, this mixing produces
a ratio of spin densities given by Eq. (21), which leads to an
effective compressibility that is equal to the thermodynamic
one.

The electric field E in our problem should be calculated
self-consistently from the evolving charge distribution,

E(r,t) = −∇r

∫
r ′

ρ(r ′,t)V (|r − r ′|), where

V (|r − r ′|) =
[

1

ε|r − r ′| − 1

ε
√

(r − r ′)2 + d2

]
(24)

and ρ(r) = ∑
σ ρσ (r) is the total charge density. Here we have

exploited the symmetry between the two layers, which have
equal and opposite charge densities ρ(r) at any given time.

We now obtain the various spin-selective compressibilities,
defined in the limit where the mean-field Coulomb energy is
effectively quenched but there is still a residual interaction
on short length scales between the different spin components
of the CFs. We describe the partially spin-polarized composite
Fermi liquid phenomenologically within a Landau Fermi liquid
approach by introducing Landau parameters [28]. Assuming
rotational invariance, we introduce the dimensionless Landau
parameters Fσσ ′

� = √
m∗

σm∗
σ ′f

σσ ′
� /(2π ). We restrict ourselves

to only the � = 0 component, corresponding to the com-
pression mode of the Fermi surfaces. Following Landau’s
expansion to quadratic order, the energy is given by [27]

δE(ρ↑,ρ↓) = π
(1 + F

↑↑
0 )

m∗
↑

ρ2
↑

e2
+ π

(1 + F
↓↓
0 )

m∗
↓

ρ2
↓

e2

+ 2π
F

↑↓
0√

m∗
↑m∗

↓

ρ↑ρ↓
e2

. (25)

(From here onward we set h̄ = 1.)

The individual compressibilities are then given by

χ↑↑ = 2π (1 + F
↑↑
0 )

m∗
↑

, (26)

χ↓↓ = 2π (1 + F
↓↓
0 )

m∗
↓

, (27)

χ↑↓ = 2πF
↑↓
0√

m∗
↑m∗

↓
, (28)

where F
↑↓
0 = F

↓↑
0 . Plugging in the explicit form of these

quantities, the effective coefficient in Eq. (23) is given by

χeff = π

2

⎡
⎢⎣ 2

meff
+ F

s↑
0 + F

s↓
0

2π
−

(
1

m∗
↑

− 1
m∗

↓
+ F

s↑
0 −F

s↓
0

2π

)2

(
2

meff
+ Fa

0
2π

)
⎤
⎥⎦,

(29)

where F
s↑(↓)
0 = F

↑↑(↓↓)
0 + F

↑↓
0 and Fa

0 = F
↑↑
0 + F

↓↓
0 −

2F
↑↓
0 . Here we have introduced a reduced mass,

meff = 2m∗
↑m∗

↓/(m∗
↑ + m∗

↓) (the factor of 2 ensures that
in the limit of identical masses, meff = m∗

↑(↓)). As mentioned
above, χeff = dμ/dn = (2πφ)2χd (see Sec. IV and Eq. (20)
of Ref. [25]). Moreover, in the familiar limit of F

↑↑
0 = F

↓↓
0

and m∗
↑ = m∗

↓, we recover χeff ∼ (1 + F s
0 )/m∗ [28].

In addition to the hydrodynamic equation, Eq. (22), the
current and density are related by the continuity equation

dρ

dt
+ ∇ · j = J(r,t), (30)

where J(r,t) represents a source associated with injection of
an external charge. In our problem,

J(r,t) = eδ(r)[δ(t + τ ) − δ(t − τ )](1 − 2δs,2), (31)

which describes the insertion of a positive (negative) charge
on layer 1 (2) at time t = −τ , and its subsequent removal at
time t = +τ .

Using Eqs. (22) and (30), one can solve for both the density
and the current as a function of frequency and momentum,

ρ(ω,q) = J(ω)

|ω| + q2σxx(q)[V (q) + χeff/e2]
, (32)

and

j (ω,q) = −iqσxx(q)

[
V (q) + χeff

e2

]
ρ(ω,q), (33)

where J(ω) = 2ie sin(ωτ )(1 − 2δs,2).

B. The form of the charge-spreading action

Following Ref. [24], the action associated with this system
can be determined by writing down the simplest quadratic
action in ρ and j that correctly reproduces the hydrodynamic
equations. In Fourier space, this action (per layer) is

Shydro = 1

2

∑
iωn

∫
q
[K−1(q,ω)|j (ω,q)|2+M(q,ω)|ρ(ω,q)|2],

(34)
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where K−1(q,ω) and M(ω,q) are as yet undetermined func-
tions and iωn are Bosonic Matsubara frequencies. The above
action is to be supplemented with the continuity equation,
Eq. (30).

We demand that the above action reproduce the equations
of motion (i.e., the hydrodynamic equation) in Eq. (22), which
fixes

K(q,ω) = σxx(q)|ω|, (35)

M(q,ω) = V (q) + χeff

e2
. (36)

An equivalent way of arriving at the same conclusion is as
follows: for the action defined in Eq. (34), the current-current
correlation function 〈 j (ω,q) j (−ω,−q)〉 = K(q,ω), which is
by definition given by σxx(q)|ω|. On the other hand, the
coefficient of |ρ(ω,q)|2 in the action contains the contribution
from the Coulomb energy and the finite compressibility, which
are represented by the two terms in M(q,ω).

Inserting the solutions for ρ(ω,q) and j (ω,q) derived above
[Eqs. (32) and (33)] for the specific boundary condition J(ω)
into Eq. (34), one arrives at the following expression for the
action in each layer:

Shydro(τ ) = 1

2

∑
iωn

∫
q

|J(ω)|2
|ω|

V (q) + χeff/e
2

|ω|+q2σxx(q)[V (q)+χeff/e2]
.

(37)

(See Eq. (50) for the analogous action obtained using the
instanton-based approach [8,25].)

The total action, after subtracting the action associated with
the work done by the voltage source, is given by

Stot = Shydro(τ ) − 2eV τ. (38)

The charge-spreading time τ∗ associated with a particular
voltage is found by minimizing the action with respect to τ . The
tunneling conductivity is then of the form ∼exp[−Stot(τ∗(V ))].
Below we evaluate this expression for different limiting cases
of the Coulomb interaction potential V , corresponding to
regimes I, II, and III outlined above.

1. Regime I: Coulomb-driven charge spreading
at large layer separation

In the limit of large layer separation and relatively small
voltage, such that qd � 1, the Coulomb interaction V (q) �
2π/(εq) dominates over the term χeff/e

2 associated with the
compressibility in the limit of q → 0. Thus one can ignore the
corrections due to a finite χeff in the action of Eq. (37).

As before, the tunneling conductivity is proportional to
exp[−S(τ∗(V ))], where τ∗(V ) is the characteristic charge
spreading time. In regime I, this is

S(τ∗(V )) = 2Ag(ζ )
e2/εlB

2eV
, (39)

where A = 4π and the extra numerical prefactor of 2 is for the
contribution from the two layers and we have set φ = 2.

2. Regime II: Coulomb-driven charge spreading
at small layer separation

In the limit where the layer separation is small enough and
the typical size of the spreading charge is large enough that
qd � 1, the Coulomb interaction saturates to a constant value
V (q) � 2πd/ε. In this limit, one can take the term M(q,ω) =
V (q) + χeff/e

2 in Eq. (37) to be a constant independent of q
and ω; we simply denote it as M . One then arrives at a total
action

S(τ∗(V )) = 2CkFg(ζ )

√
Me2

2eV
, (40)

where C = (−26�3(−1/3)/37π )1/2 and the extra numerical
prefactor of 2 corresponds to the contribution from the two
layers.

If the interlayer spacing remains large enough that e2d/ε �
χeff/e

2, then Eq. (40) reduces to

S(τ∗(V )) = 2CkFg(ζ )

√
2πe2d/ε

2eV
. (41)

3. Regime III: Compressibility-driven charge spreading

Finally, if d is so small that χeff/e
2 � e2d/ε, then the charge-

spreading action is dominated by the compressibility. In this
limit, the final result for the charge-spreading action becomes

S(τ∗(V )) = 2CkFg(ζ )

√
χeff

2eV
. (42)

In this regime, the dependence of the tunneling current
on the spin polarization ζ depends on the way in which the
Landau parameters in χeff [see Eq. (29)] vary with ζ . This
dependence is of course not known a priori. As we describe
in Sec. V, however, this dependence can be deduced from
experiments. In principle, it is possible that our description of
the charge spreading action in this regime can correctly explain
the experimental results of Ref. [9] when this ζ dependence is
taken into account.

IV. ELECTRONIC SPECTRAL FUNCTION

In this section, we briefly review the computation of
the electron Green’s function in the partially spin-polarized
quantum Hall bilayers at total filling ν = 1/2 in each layer,
which we presented in an accompanying paper [25]. We
compare the corresponding results with those obtained from
our semiclassical analysis in the previous two sections. As
mentioned in Sec. II, generalizing from the result for a spin-
polarized system [26] we attach flux to electrons (of either spin
orientation) such that a CF of any given spin orientation sees
φ flux quanta attached to electrons of both spin components
only in the same layer. This amounts to the transformation

ψs,σ (r) = ψe,s,σ (r)exp

[
iφ

∫
r ′

arg(r − r ′)ns(r ′)
]
, (43)

where ψe,s,σ (r) and ψs,σ (r) represent the electron and CF
annihilation operators, respectively, at position r in layer s with
spin quantum number σ . As before, ns(r) is the total density
of electrons (or, equivalently, CFs within the HLR theory) in
layer s. For φ = 2, the filling ν = ν↑ + ν↓ = 1/2 in each layer
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and the CFs of either spin orientation do not see any magnetic
field on average. The resulting Fermi surfaces of the CF have
Fermi wave vectors kF↑(↓), as denoted in Eq. (2) [29].

The low-energy field theory for the CF Fermi surfaces
minimally coupled to the gauge field is then given by [3,26]

L = L0 +Lint +LCS,

L0 =
∑
s,σ

{
ψ†

s,σ (r,τ )
[
∂τ + ias

0(r,τ )
]
ψs,σ (r,τ )

+ 1

2m∗
σ

ψ†
s,σ (r,τ )[−i∇ + �as(r,τ )]2ψs,σ (r,t)

}
,

Lint =
∑
s,s ′

1

2

∫
r

∫
r ′

e2Vs,s ′ (r − r ′) : ns(r)ns ′ (r ′) : , (44)

where m∗
↑(↓) denote the effective masses for the different

spin-components, �a denotes the gauge field minus eA,
with A being the external vector potential, and “::” de-
notes normal ordering. The Coulomb interaction, Vs,s ′ (r) =
2π/(ε

√
r2 + d2(1 − δs,s ′ )), is insensitive to the spin label. The

Chern-Simons term is given by

LCS = − i

2π

∑
ss ′

∫
r
K−1

ss ′ a
s
0(r,τ )ẑ · [∇ × as ′

(r,τ )], (45)

where Kss ′ is diagonal with respect to the layer index: Kss ′ =
φδss ′ .

We are interested in computing the single-electron Green’s
function that corresponds to tunneling an electron with spin
σ into layer s at r = 0 and time t = 0 and then removing
an electron at r = 0 with the same spin and from the same
layer at a later time t = 2τ ,1 which is given by Gs,σ (τ ) =
〈ψe,s,σ (0,2τ )ψ†

e,s,σ (0,0)〉,

Gs,σ (τ ) =
∫
D[ψa]ψs,σ (2τ )ψ†

s,σ (0)δ(MM)

× exp(−S[ψ†,ψ,aμ]). (46)

Here, S[ψ†,ψ,aμ] is the imaginary-time action corresponding
to the field theory introduced in Eq. (44). For the fully spin-
polarized case, this calculation was done in Ref. [8]. It is clear
that the electron Green’s function is different from the CF
Green’s function, and δ(MM) denotes precisely the boundary
condition in space-time on the gauge field, which involves
creating and annihilating two flux quanta. The path integral
measureD[ψa] ≡ ∏

s ′,σ ′ Dψ
†
s ′,σ ′Dψs ′,σ ′Das ′

μ .
Formally, we can integrate out the CFs and obtain an

effective action purely in terms of the gauge fields, Seff[aμ]. It
is then reasonable to assume that the low-energy suppression
of the spectral function is dominated by the exponential saddle
point contribution of this Maxwell-Chern-Simons action, with
momentum- and frequency-dependent dielectric/permeability
functions (inherited from the gapless CF Fermi surfaces), in
the presence of the above boundary condition.

1The interval is chosen to be 2τ such that it agrees with the setup in
the hydrodynamic description in Sec. III.

For the bilayer problem, the boundary condition translates
to the creation of a monopole in the top and an antimonopole
in the bottom layer at time t = 0, both of which are removed
at a later time 2τ at the same position r = 0. In the limit of
times much longer than the inverse Fermi energy, this process
couples only to the low-energy diffusive mode [3,26] with ω ∼
V (q)q3, where V (q) = 2π (1 − e−qd )/(εq). However, as we
discussed in Ref. [25], the inserted monopole/antimonopole
does not have a spin quantum number and the magnetization
associated with the spreading charge may quickly evolve to
contain a mixture of both components that may not reflect the
magnetization ζ of the background. When the charge spreading
is driven purely by the Coulomb energy of the perturbation, the
magnetization of the perturbation is irrelevant for the charge
spreading, since the Coulomb interaction is independent of
spin. However, this is not the case in the regime where the
dominant energy scale driving the charge spreading is provided
by the finite compressibility of the CF fluid. In this case, as was
discussed also in the previous section, in the long-time limit,
the magnetization of the perturbation is determined by the ratio
of the different spin compressibilities.

Within a random phase approximation (RPA) treatment of
the effective action [3] in Eq. (44), we obtain Seff[a] = Sem +
SCS, where

Sem = 1

2

∑
iωn

∫
q
[ε(q,ω)|eq,ω|2 + β(q,ω)|bq,ω|2], (47)

where eα = ∂0aα − ∂αa0 is the electric field and bs = (∂xa
s
y −

∂ya
s
x) is the magnetic field associated with the internal gauge

field in layer s. The coefficients are given by

ε(q,ω) = 2(kF↑ + kF↓)

4π |ωn|q = 2kF

4π |ωn|q g(ζ ), (48)

β(q,ω) = χd + e2

(2πφ)2
V (q), (49)

where g(ζ ) = √
(1 + ζ )/2 + √

(1 − ζ )/2 and, as described in
Eq. (29), χd = (∂μ/∂n)/(2πφ)2 = χeff/(2πφ)2, where μ is
the chemical potential.

It is worth emphasizing that the action written in Eq. (34)
is equivalent to the “electromagnetic” action, Sem, in Eq. (47).
The | j |2 term in Eq. (34) indicates the action associated with
the current, which is equivalently represented in terms of the
gauge electric field |e|2, such that the conductivity is associated
with the effective dielectric function ε(q,ω). Similarly, the
|ρ|2 term in Eq. (34) is associated with the density, which
is equivalent to the |b|2 term in the electromagnetic action
above, with the effective inverse magnetic permeability β(q,ω)
playing the role of the M(q,ω) term in Eq. (36).

Following Refs. [8,25,30] and for the boundary conditions
described above, the action is given by

Seff(τ ) =
∫

ω

∫
q

(1 − cos(2ωτ ))

|ω|

× V (q) + (2πφ)2χd/e
2

|ω| + q2
[

q

2πφ2kFg(ζ )

]
(V (q) + (2πφ)2χd/e2)

.

(50)
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Remarkably, this action is identical to the hydrodynamic
action,Shydro(τ ), obtained in Eq. (37), even though it is obtained
using a completely different approach. All of the regimes that
we discussed in our hydrodynamic analysis can therefore be
recovered in a straightforward fashion from the above action.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a derivation of the
action associated with tunneling of electrons between
quantum Hall bilayers in situations where each layer is at
a compressible filling. In an accompanying paper [25], we
explicitly computed the electron Green’s function using an
instanton-based approach. In the present paper, we have
focused primarily on describing the same action within a
hydrodynamic formulation, where the specific form of the
conductivity at long wavelengths serves as an input. Our main
interest was understanding the functional dependence of the
tunneling current on voltage, interlayer separation, and spin
polarization. Our results are summarized in Fig. 2, and in
Eqs. (39), (41), and (42). We find that both the hydrodynamic
and instanton-based approaches give identical results.

In light of the recent experiment [9], one of our most
striking results is that previous descriptions where the mean-
field Coulomb energy is responsible for the charge spreading
(as in Refs. [7,8,24]) cannot account for the experimental
observations of Ref. [9]. In particular, such descriptions yield
a tunneling current that increases with increasing spin po-
larization, while the experiment observed the opposite trend.
This discrepancy has led us to identify a new regime of
behavior, denoted regime III, in which the two layers are
sufficiently closely spaced that the mean-field Coulomb energy
is quenched, and the charge spreading is driven instead by the
finite compressibility of the CF liquid. Within this regime, the
dependence of the TA on the spin polarization is indirectly gov-
erned by the dependence of the Landau parameters (which de-
termine the compressibility) on the polarization [see Eq. (29)].
Future experiments can check this dependence explicitly by
measuring the inverse compressibility as a function of spin po-
larization using capacitance or field penetration measurements
[31], which allow one to extract χd ∼ χeff. Moreover, if our
proposed explanation for the observation of Ref. [9] is correct,
the tunneling current should have the functional form ln I ∝
−1/

√
V at small d/�B . In the future, it may also be interesting

to study how the TA evolves into the zero-bias conductance
peak associated with the onset of exciton condensation [22] as
one crosses below the critical value of d/�B .

On the other hand, as the parameter d/�B is increased,
the system moves away from the compressibility dominated
regime and into the Coulomb-dominated regimes. If the
behavior of χeff(ζ ) within the compressibility-dominated
regime is indeed consistent with the experimentally observed
decrease in tunneling current with increasing spin polarization,
then the magnitude of this decrease must weaken as the value
of d/�B is increased. Indeed, within the Coulomb-dominated
regimes at d/�B � 1 the dependence of the TA on the spin-
polarization must go in the opposite direction as observed in
the experiments of Ref. [9]. One can therefore use our theory
to predict that as a function of increasing d/�B the dependence
of tunneling current on ζ should reverse sign. While studying

a wide range of d/�B can be challenging experimentally, we
note that one can also access the compressibility-dominated
regime by placing a metallic layer in close proximity to a
single compressible quantum Hall layer. In this situation,
the metallic layer can effectively screen out the long-range
Coulomb interactions, leaving only the compressibility of the
quantum Hall system to drive the charge spreading.

Finally, it is worth noting that while the HLR theory of
the spin-polarized ν = 1/2 state has been remarkably well
supported by many experiments [32–34], recent years have
seen a surge of interest in alternate theoretical descriptions of
the ν = 1/2 state. In particular, a well known concern with the
HLR formulation of the theory is the absence of particle-hole
symmetry, which should exist in the lowest Landau level in
the limit of large magnetic field. A recent proposal attempts
to resolve this concern by postulating that the CFs are Dirac
fermions [35], such that the physical action of particle-hole
transformation acts as time-reversal symmetry on the Dirac
fermions. While a microscopic derivation of this proposal is
currently lacking, a number of works have contributed to the
ongoing efforts to resolve this puzzle [36–38]. However, it has
also been recently pointed out in Ref. [39] that when response
functions are properly evaluated within HLR theory, there is
an emergent particle-hole symmetry.

So far, the many experiments that were seen to be in
agreement with the predictions of the original formulation of
the HLR theory are also consistent with the revised formulation
in terms of the Dirac-CF theory. Therefore new experiments
are necessary to clearly distinguish between the two scenarios.
Unfortunately, the low bias TA that we are considering here is
unlikely to be able to distinguish between the two scenarios.
Since the TA is determined only by the low-energy properties
near the CF Fermi surface, which are identical within the
two scenarios, we expect that results for the charge-spreading
action are also identical within the two formulations.
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APPENDIX: VALIDITY OF THE INEQUALITY
α2[σCF]xx[σCF] yy � 1

For a compressible CF system, the conductivity σ̂CF(q,ω)
at finite frequency ω can be calculated within RPA [3,27]. At
low enough frequency that ω/(qvF) � 1, and in the absence
of impurity scattering, this conductivity to leading order in
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ω/(qvF ) is given by [27]

[σCF]xx � −ie2kFω

2πh̄vFq2
, (A1)

[σCF]yy � e2kF

2πh̄q
. (A2)

Here, vF = h̄kF/m∗ denotes the Fermi velocity, and the wave
vector q is taken to be in the x direction, as above. In the typical
experimental situation, one can usually assume the strong
inequality α2[σCF]xx[σCF]yy � 1, where α = 2πh̄φ/e2, for
the typical magnitudes of the corresponding conductivities.
This inequality implies that the CFs respond primarily to the
CS electric field, rather than the physical electric field. In our
problem, where the typical frequency ω and wave vector q are
determined by the process of charge spreading, the use of this
inequality should be justified carefully. For simplicity, in this
Appendix we discuss the spinless case (ζ = 1), while in the
main text we adapt the inequality to the case of partial spin
polarization.

We first note that, since the effective mass of the CFs
arises from their short-ranged interactions, the typical mass
scale is such that e2kF/ε ∼ h̄2k2

F/m∗. This implies that m∗ ∼
εh̄2kF/e

2, or vF ∼ e2/(εh̄). Making this substitution into
[σCF]xx implies that the inequality α2[σCF]xx[σCF]yy � 1 is
equivalent to

εh̄φ2k2
Fω

e2q3
� 1.

In our problem, the typical wave vector associated with the
charge spreading is 1/r∗, and the typical frequency is 1/t∗. So

the necessary inequality is

εh̄φ2k2
F(r∗)3

e2t∗
� 1. (A3)

We now consider whether this inequality is satisfied in each of
the three regimes summarized in Fig. 2.

In regime I, where the energy scale that drives the charge
spreading is U (r) ∼ e2/(εr), the size of the spreading charge
follows r2 ∼ e2t/(εh̄kF) [see Eq. (9)]. So Eq. (A3) becomes
φ2kFr

∗ � 1. Since we are considering charge spreading pro-
cesses over length scales much longer than the Fermi wave-
length k−1

F , the inequality is satisfied.
In regime II, the mean-field Coulomb energy is U (r) ∼

e2d/(εr2), and consequently the size of the spreading charge
evolves according to r3 ∼ de2t/(εh̄kF). Thus Eq. (A3) be-
comes φ2kFd � 1. Since the condition d � k−1

F is already part
of the definition of regime II, the inequality is again satisfied.

Finally, in regime III, the charge spreading is driven by the
energy scale χ/r2 associated with the finite compressibility,
and r3 ∼ χt/(h̄kF). The inequality of Eq. (A3) therefore
becomes φ2εχkF/e

2 � 1. The magnitude of the compress-
ibility is of order χ ∼ h̄2/m∗ ∼ e2/(εkF), multiplied by a
combination of Landau parameters (as discussed in Sec. III)
that may be numerically large. Even in the worst-case scenario
where we set all the Landau parameters to zero, the inequality
we are considering becomes equivalent to φ2 � 1. When
the number φ of attached fluxes is not too large, such as in
the half-filled Landau level where φ = 2, this inequality is
marginal. Nonetheless, even in the worst-case scenario where
the inequality is only marginally satisfied, our primary results
for regime III are unaltered. In particular, the charge spreading
is still driven by the finite compressibility at d � k−1

F , with
a functional dependence log I ∝ −1/

√
V and with a spin

polarization dependence that is affected by Landau parameters.
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