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1 Introduction

The standard model (SM) of particle physics describes elementary particles and their inter-

actions successfully. Nevertheless, fine tuning of fundamental physics parameters is needed

to cancel large quantum corrections to the mass term in the Higgs potential [1]. This and

other problems of the SM can be addressed by supersymmetry (SUSY) models [2–8], in

which a SUSY partner particle is predicted for each SM particle. Gauge-mediated SUSY

breaking (GMSB) models [9–15] allow for a natural suppression of flavour violations in the

SUSY sector and can give rise to final states with photons and jets [16].

The conservation of R parity [17, 18] implies that SUSY particles are produced in

pairs and the lightest SUSY particle (LSP) is stable. If the LSP is neutral and only

weakly interacting, it can escape detection, leading to an imbalance of the total observed

transverse momentum. In this analysis, R-parity conservation is assumed and the LSP

is considered to be a nearly massless gravitino G̃. The next-to-lightest-supersymmetric

particle is assumed to be a gaugino χ̃
0/±
1 , which is a mixture of the superpartners of the

electroweak gauge bosons and the Higgs bosons. It decays promptly to a SM boson and a

gravitino. Both bino- and wino-like neutralinos χ̃0
1 can decay to a photon and a gravitino;
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wino-like charginos χ̃±1 decay typically to a W boson and a gravitino [19]. In this analysis,

we assume gauginos are produced in decay chains of primary squarks or gluinos, so the

events also contain jets and thus large transverse event activity.

In this paper, a search for physics beyond the standard model (BSM) in final states

with at least one photon, large missing transverse momentum, and large total transverse

event activity is reported. The data used in this analysis were collected with the CMS de-

tector at the CERN LHC in 2016, and correspond to an integrated luminosity of 35.9 fb−1

of proton-proton collisions at a centre-of-mass energy
√
s = 13 TeV. Similar searches yield-

ing no evidence for BSM physics have been performed at lower centre-of-mass energies by

CMS [20] with similar and alternative selections [21, 22] and by the ATLAS Collabora-

tion [23, 24]. The higher
√
s of this dataset allows us to extend the sensitivity to more

massive SUSY particles.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel

and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass

and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap

sections. The electromagnetic calorimeter consists of 75 848 lead tungstate crystals, which

provide coverage in pseudorapidity |η| < 1.48 in a barrel region (EB) and 1.48 < |η| < 3.0

in two endcap regions (EE). Forward calorimeters extend the pseudorapidity coverage pro-

vided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors

embedded in the steel flux-return yoke outside the solenoid. The jet energy resolution

amounts typically to 15, 8, and 4% at 10, 100, and 1000 GeV, respectively, when combining

information from the entire detector [25]. A more detailed description of the CMS detec-

tor, together with a definition of the coordinate system used and the relevant kinematic

variables, can be found in ref. [26].

3 Event reconstruction

The particle-flow (PF) algorithm reconstructs and identifies each individual particle with

an optimized combination of information from the various elements of the CMS detec-

tor [27]. The energy of photons is directly obtained from the ECAL measurement. The

energy of electrons is determined from a combination of the electron momentum at the

primary interaction vertex as measured by the tracker, the energy of the corresponding

ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible

with originating from the electron track. The momentum of muons is obtained from the

curvature of the corresponding track. The energy of charged hadrons is determined from

a combination of their momentum measured in the tracker and the matching ECAL and

HCAL energy deposits, corrected for zero-suppression effects and for the response function

of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained

from the corresponding corrected ECAL and HCAL energies.
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Loose quality criteria with a selection efficiency close to 90% are applied to photons,

based on the shower shape width in η, the hadronic energy fraction, and the isolation from

other particles. To distinguish photons from electrons, photon candidates are not allowed

to be associated with pixel seeds. Pixel seeds consist of two or three hits in the pixel

detector matching to the hypothetical trajectory from the proton-proton interaction point

to the energy cluster in the ECAL, taking into account positively and negatively charged

electron hypotheses.

Jets are reconstructed from all PF candidates, clustered by the anti-kT algorithm [28,

29] with a distance parameter of 0.4. To reduce the effect of additional proton-proton

collisions from the same or adjacent beam crossing (pileup) other than the primary hard

scattering process, charged hadrons from vertices not being the primary vertex are ex-

cluded. An offset correction is applied to jet energies to take the contribution from pileup

interactions into account [30]. The jet momentum is determined as the vector sum of

momenta of all PF candidates clustered into the jet. To correct for this, jet energy cor-

rections are applied, derived from simulation and data using multijet, γ+jet, and leptonic

Z+jets events.

The missing transverse momentum ~pmiss
T is defined as the negative vector sum of the

transverse momenta pT of all PF candidates in the event, and its magnitude is denoted

by pmiss
T . In order to improve the momentum resolution, the jet energy corrections are

propagated to pmiss
T . The total transverse momentum Hγ

T is the scalar sum of all jet

momenta and the pT of the leading photon. Only jets with pT > 30 GeV and |η| < 3 are

considered. In addition, if a jet is found within ∆R < 0.4 from the leading photon, it is

assumed that the jet pT originates from the photon and the jet pT is not included in the

calculation of Hγ
T.

4 Signal models and event simulation

Monte Carlo (MC) generated events are used to study the SM backgrounds, develop and

validate the background estimation techniques, and model signal scenarios. To gener-

ate γ+jet, multijet, Z, W, tt, γW, γZ, gluino pair, and squark pair events, the Mad-

Graph5 amc@nlo 2.2.2 [31] generator is used at leading-order (LO) accuracy, while the

next-to-leading-order (NLO) accuracy is used for γtt events. The NNPDF3.0 [32] parton

distribution functions (PDFs) are used in conjunction with pythia 8.205 or 8.212 [33] with

the CUETP8M1 generator tune [34] for simulating parton showering and hadronization.

The LO cross sections are used for γ+jet events and events comprising solely jets produced

through the strong interaction (multijet events). For all other background processes, NLO

cross sections are used. The contribution of pileup events is added to the hard scattering

process such that the probability of pileup events to occur is the same as that in the data,

with on average approximately 23 interactions per bunch crossing.

Gluino and squark pair production cross sections are determined using NLO plus next-

to-leading logarithm (NLL) calculations [35]. Four simplified models [36, 37] are considered.

The T6gg model, where a first- or second-generation squark-antisquark pair is produced,

followed by the (anti)squark decay into an (anti)quark and a neutralino. The neutralino
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decays promptly to a photon and a gravitino, resulting in a final state with two jets, two

photons, and missing transverse momentum from the two gravitinos escaping detection.

The T6Wg model is similar, except the squarks decay with a probability of 50% to a quark

and a neutralino, and a 50% probability to decay to a quark and a chargino. The chargino

further decays to a W boson and a gravitino, resulting in signatures with at least two jets,

two gravitinos, and two bosons. These two bosons can either be two photons, one photon

and one W boson, or two W bosons. The T5gg and T5Wg models consist of gluino pair

production. For these models, the squark masses are assumed to be much larger than the

gluino mass, leading to a three-body decay of the gluino to two jets and a gaugino. For

the T5gg model, the gauginos are neutralinos, while for the T5Wg model, the gluino can

also decay to jets and a chargino. Branching fractions are assumed to be 100%, except the

squark to neutralino branching fraction in the T6Wg model and the gluino to neutralino

decay in the T5Wg model, which are 50% each. Feynman-like diagrams of these processes

are shown in figure 1.

The CMS detector response is simulated using Geant4 [38] for SM processes, while

for signal events we use the CMS fast simulation [39, 40]. In the latter case, scale fac-

tors are applied to account for any differences with respect to the full simulation. Event

reconstruction is performed in the same manner as for collision data.

5 Event selection and background prediction strategy

The high-level trigger system [41] selects events containing at least one photon with pT >

90 GeV and |η| < 2.5, and Hγ,HLT
T > 600 GeV, where Hγ,HLT

T is defined as the scalar sum

of the pT for all jets passing the kinematic selection used to select jets for the offline Hγ
T

calculation. The trigger does not distinguish between jets and photons. As a result, photons

in the event, including the leading photon, are reconstructed as jets and thus included in

the calculation of Hγ,HLT
T . The efficiency for both the photon and the Hγ,HLT

T criterion are

measured independently, and their product is estimated to be equal to (96 ± 4)%, where

the uncertainty covers variations of the trigger efficiency versus time and versus photon

identification variables.

Events are selected if they contain at least one photon with pT > 100 GeV in the EB

with |η| < 1.4442. To reliably predict the background, the photon is not allowed to be

parallel or anti-parallel to ~pmiss
T within an azimuthal angle of |∆φ(±~pmiss

T , ~pγT)| < 0.3. Three

high-pmiss
T ranges (350–450, 450–600, and ≥600 GeV) and two Hγ

T selections (700–2000 and

≥2000 GeV) give rise to the definition of six search regions. Additional selection criteria are

applied to remove events with spurious signals from instrumental noise [42]. Background

contributions of multijet, γ+jet, γZ, γW, γtt, W+jets, and tt events are estimated as

described below.

5.1 Background contribution of events with nongenuine pmiss
T

A small fraction of γ+jet events can populate the signal region because of artificial pmiss
T

generated by momentum mismeasurement in the detector. Jets have the largest transverse

momentum uncertainties, and even though the probability of a large mismeasurement is
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Figure 1. Feynman-like diagrams for the T6gg (top left) and the T5gg (bottom left) processes,

and representative Feynman-like diagrams for the T6Wg (top right) and T5Wg (bottom right)

processes. The T6Wg and T5Wg models include also diagrams with either two photons or two W

bosons in the final state.

low, the large cross section of the γ+jet process leads to a nonnegligible contribution to

the search region. Multijet events have an even higher cross section, and contribute to the

signal selection if one of the jets is misidentified as a photon. As in γ+jet events, nonzero

pmiss
T in multijet events is caused by the finite jet momentum resolution.

Estimating these backgrounds from simulation would result in a large uncertainty for

two reasons: the large cross section requires a large number of simulated events to obtain

a small statistical uncertainty; in addition, small differences between the measured and

simulated jet response can lead to large differences at high pmiss
T values between measured

and simulated events. A background estimation method based on control samples in data

was therefore developed to achieve smaller uncertainties without relying on the simulated

jet energy response. We performed this method independently for the low- and high-Hγ
T

selection. The shapes of the pmiss
T distributions in γ+jet and multijet events are found
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to be similar, and their normalizations can be extracted from low-pmiss
T events, where no

significant signal contribution should be present. This is verified using simulated event

samples. We use the shape of the pmiss
T distribution of a multijet event sample as a prediction

for events with nongenuine pmiss
T .

For the background estimate, the photon control region (CR) is defined by requiring

the search selection, but requiring pmiss
T < 100 GeV. A jet CR is defined by selecting events

with the Hγ
T criteria only, based on a trigger with only the Hγ,HLT

T selection. For low pmiss
T

values, the jet CR is dominated by multijet events, but for large pmiss
T values, W(`ν)+jets,

Z(νν)+jets, and tt events can also contribute. These are subtracted using simulation. The

shape of the pmiss
T distribution of γ+jet and multijet events in the photon CR is very similar

to that in the jet CR.

To correct for residual differences between the two CRs, a correction factor is applied

to the pmiss
T values of the jet CR. Studies showed that a constant multiplicative factor leads

to the best agreement between the pmiss
T shapes in the two CRs. The factor is chosen such

that it minimizes the χ2 between the shapes of the pmiss
T distributions in the two CRs for

pmiss
T < 100 GeV, and is about 0.90 (0.84) for the low- (high-) Hγ

T selection. The uncertainty

in this factor is calculated as the quadratic sum of the deviation of the factor from unity and

the statistical uncertainty in the χ2 method. The pmiss
T distribution of the jet CR is then

scaled to the pmiss
T distribution of the photon CR in pmiss

T < 100 GeV to provide an estimate

for the background contribution of nongenuine pmiss
T events in the signal selection. Several

uncertainties are considered. The uncertainty associated to the shift factor is obtained by

multiplying the jet CR by the factor modulated by its uncertainty. The uncertainty in the

normalization is derived from the statistical uncertainty of the photon CR and the jet CR in

the pmiss
T < 100 GeV range. The statistical uncertainty assigned to the prediction due to the

number of events in the jet CR at high pmiss
T is about as large as the systematic uncertainty.

The method is tested on simulated γ+jet and multijet events. The comparison of

direct simulation results and the prediction from simulation, using this method, is shown

in figure 2. In this figure and the following ones, the rightmost bin includes all events with

pmiss
T > 600 GeV. The agreement between the two distributions suggests that the method

is performing as expected. Further validation is discussed in section 5.4.

5.2 Background contribution from events with electrons

Electrons and photons have similar calorimetric response. If no pixel seeds are recon-

structed for an electron, it can be misidentified as a photon. In W+jets or tt processes,

electrons are produced in association with neutrinos, so these events tend to also have large

pmiss
T and enter the search regions. To estimate the contribution of these processes, a CR

with electrons is defined and scaled by the electron-to-photon (e → γ) misreconstruction

probability.

The electron CR is defined similar to the search selection, except that the photon

candidate is required to have pixel seeds, thereby selecting events with electrons. For high

pmiss
T , this CR is dominated by W and tt events.

The electron-to-photon misreconstruction probability is estimated with the tag-and-

probe method using an event sample dominated by Z → ee events, and is 2.7% for data
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Figure 2. Validation of the nongenuine pmiss
T background estimation method with γ+jet and mul-

tijet simulations. The direct simulation results are shown as black dots, while the prediction using

the jet CR is shown as light blue histogram. The total uncertainty of the prediction is presented

as shaded area. The bottom panel shows the ratio of the direct simulation to the prediction. The

low- (high-) Hγ
T selection is shown on the left (right). The number of events corresponds to the

expectation in data for an integrated luminosity of 35.9 fb−1. The rightmost bin includes all events

with pmiss
T > 600 GeV.

and 1.5% for simulation. For the prediction in data, the probability measured with data

is used, while for the validation in simulation, the probability measured with simulated

events is used. To account for differences between the misreconstruction rate determined

from the Z boson resonance and the W boson dominated electron CR with high pmiss
T and

high Hγ
T, a systematic uncertainty of 30% is applied to the misreconstruction rate. The size

of the uncertainty is based on studies of the variation of the misreconstruction probability

versus various kinematic and geometric quantities in data and simulation.

The background estimation method is tested on simulated W+jets and tt events. The

direct simulation of electrons reconstructed as photons is compared to the electron CR,

scaled by the electron-to-photon misreconstruction probability as shown in figure 3, but

including also low pmiss
T events. The agreement in the search regions suggests that the

method is performing as expected.

5.3 Backgrounds estimated from simulation

Also contributing to the search region are the processes γW(`ν), γZ(νν), and γtt, which

are estimated using simulation. Simulated events with electrons reconstructed as photons

passing the event selection are omitted since they are estimated using data. The photon in

the event can be produced in the hard scattering or in the shower, either as initial- (ISR) or

final-state radiation, or as a jet misreconstructed as a photon. Events are simulated with

and without a photon in the hard scattering process, and the overlap between the samples

is removed. The reconstruction and identification efficiencies for photons are measured in
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Figure 3. Validation of the background estimation method for electrons misreconstructed as

photons using W+jets and tt simulation. The low- (high-) Hγ
T selection is shown on the left

(right). The number of events corresponds to the expectation in data for an integrated luminosity

of 35.9 fb−1. The rightmost bin includes all events with pmiss
T > 600 GeV.

Z→ ee and Z→ µµγ data and simulation. The ratio of these efficiencies is consistent with

unity and has an uncertainty of about 3%. Simulated events are weighted by the ratio

of the efficiencies, and the uncertainty is propagated to the event yield. The NLO cross

sections are used, and several uncertainties are considered, with their relative uncertainties

given here in parentheses: factorization and renormalization scales (16–27%), PDFs (5–

10%) [43], contribution of pileup events (0.2–6%), trigger efficiency (4%), jet resolution

and energy scales (2–20%), integrated luminosity (2.5%) [44], and statistical uncertainty

of the simulated samples (4–47%). For the study of the renormalization and factorization

scale uncertainties, variations up and down by a factor of two with respect to the nominal

values of the scales are considered. The maximum difference in the yields with respect

to the nominal case is used as the uncertainty. The pileup uncertainty corresponds to the

variation of the number of predicted events if the total inelastic proton-proton cross section

is shifted by ±5%.

5.4 Validation of the background estimation methods

In addition to the validation of the background estimation methods with simulated events,

the methods are also validated using data from two mutually exclusive event selections.

The first validation region is defined with noncentral photons. Instead of the photon being

reconstructed in the EB, the leading photon must be reconstructed in the range 1.6 < |η| <
2.5. This is not the full range of the EE, but in this range the background contribution

from electrons reconstructed as photons is similar to the one in the EB search region. High-

mass gluinos and squarks tend to decay more centrally, leaving the EE validation region

essentially free of potential signal events. The same methods as for the EB search regions
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Figure 4. Validation of the background estimation methods with photons reconstructed in the

EE. The expectation for the T5Wg signal scenario with a gluino mass of 1600 GeV and a gaugino

mass of 100 GeV and the T6gg signal scenario with a squark mass of 1750 GeV and a neutralino

mass of 1650 GeV are shown. The low- (high-) Hγ
T selection is shown on the left (right). Below the

pmiss
T distributions, the data divided by the background prediction are shown as black dots, and the

relative background components are shown as coloured areas. The rightmost bin includes all events

with pmiss
T > 600 GeV.

are applied, and the resulting distributions are shown in figure 4. The pmiss
T distributions

of two signal models are displayed as well. In the low-Hγ
T region and for large pmiss

T of the

high-Hγ
T region, the observed number of events agrees with the prediction. The second

validation region is similar to the search regions with photons reconstructed in the EB,

with 100 < pmiss
T < 350 GeV, which is orthogonal to both the region used to normalize the

multijet background (pmiss
T < 100 GeV) as well as the signal regions (pmiss

T > 350 GeV), and

is shown in figure 5. Good agreement is observed in this validation region as well.

6 Results

The predicted number of SM background events, the expected signal yield for two signal

scenarios and the number of observed events in data are shown in figure 5 and table 1.

The uncertainties (including the uncertainties for the signal models) are presented in ta-

ble 2. The low-Hγ
T search regions are dominated by γW events and are sensitive to signal

models with low squark or gluino masses. The high-Hγ
T search regions are dominated by

background with nongenuine pmiss
T and have larger sensitivity to models with high gluino

or squark masses and low gaugino masses. Overall, the number of observed events is in

agreement with the prediction. The second search bin in both the low- and high-Hγ
T regions

shows an excess with local significance of 1.9 and 2.7 standard deviations (σ), respectively.

In the highest pmiss
T bins, which are more sensitive for most signal scenarios, the number of

observed events is compatible with the background expectation.
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Figure 5. Observed data compared to the background prediction. The expectation for the T5Wg

signal scenario with a gluino mass of 1600 GeV and a gaugino mass of 100 GeV and the T6gg signal

scenario with a squark mass of 1750 GeV and a neutralino mass of 1650 GeV are shown. The low-

(high-) Hγ
T selection is shown on the left (right). Below the pmiss

T distributions, the data divided by

the background prediction are shown as black dots, and the relative background components are

shown as coloured areas. The last three bins in each plot correspond to the search regions. The

rightmost bin includes all events with pmiss
T > 600 GeV.

Hγ
T (GeV) <2000 >2000

pmiss
T (GeV) (350, 450) (450, 600) >600 (350, 450) (450, 600) >600

Nongenuine pmiss
T 9.6 + 11.1

− 9.6 2.2 + 5.5
− 2.2 < 0.1 2.83± 2.51 1.31± 0.74 0.73 + 0.86

− 0.73

γW 51.3± 9.7 29.1± 5.5 11.6± 2.5 1.58± 0.58 0.70± 0.37 1.23± 0.43

γtt 17.1± 5.4 5.6± 2.6 1.9± 0.4 0.97± 0.38 0.45± 0.29 0.40± 0.22

γZ 11.5± 2.4 9.7± 1.8 7.1± 1.4 0.12± 0.07 0.25± 0.11 0.21± 0.10

e→ γ 15.1± 4.6 6.3± 1.9 1.4± 0.5 0.21± 0.10 0.13± 0.07 0.05± 0.04

Total bkg. 104.6± 16.5 53.0± 8.6 22.0± 3.0 5.72± 2.60 2.84± 0.89 2.62± 0.99

Data 103 82 21 6 10 4

T5Wg 1600 100 0.4± 0.1 0.8± 0.1 0.7± 0.1 3.66± 0.40 3.09± 0.40 2.41± 0.32

T6gg 1750 1650 0.5± 0.1 0.8± 0.1 4.9± 0.4 0.31± 0.04 0.46± 0.07 4.12± 0.32

Table 1. Observed data compared to the background prediction and the expected signal yields for

two signal scenarios. The expectations are given for the T5Wg signal scenario with a gluino mass

of 1600 GeV and a gaugino mass of 100 GeV and the T6gg signal scenario with a squark mass of

1750 GeV and a neutralino mass of 1650 GeV. The quadratic sum of statistical and systematical

uncertainties is given. Only experimental uncertainties for the signal model are stated.
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Relative uncertainty (%)

Source background signal

Nongenuine pmiss
T 14–250

e→ γ 30

Integrated luminosity 2.5 2.5

Photon scale factors 2 2

Trigger 4 4

PDFs 5–10

Renormalization/factorization scales 16–27 0–1

Jet energy scale and resolution 2–20 1–6

Pileup 0.2–6 0.2–10

ISR 0–10

Fast simulation pmiss
T modelling 0.5–6

Table 2. Systematic uncertainties for background determined from control samples in data (first

two rows) and simulation (all other rows). If two values are given, the first one is for simulated

SM backgrounds, while the latter is for simulated signal. The PDF and scale uncertainties for the

signal simulation affect the shape only, as the uncertainty in the rate is already considered in the

overall cross section uncertainty [35].

7 Interpretation

The systematic uncertainties of the nongenuine pmiss
T background are fully correlated within

the high- and low-Hγ
T selections, and are described in section 5.1. The systematic uncer-

tainty in the electron misidentification background is fully correlated for all search regions,

as are most uncertainties in the simulated backgrounds described in section 5.3.

To improve on the signal simulation of the multiplicity of additional jets from ISR,

simulated signal events are reweighted based on the number of ISR jets (N ISR
J ) so as to make

the jet multiplicity in simulated tt samples agree with that in data. The reweighting factors

vary between 0.92 and 0.51 for N ISR
J between 1 and 6. We take one half of the deviation

from unity as the systematic uncertainty in these reweighting factors, correlated between

all search regions. The renormalization and factorization scales, and PDF uncertainties in

the cross sections for signal simulation are taken from ref. [35]. To estimate the influence

of pileup in signal events, the selection is done with a high and a low number of additional

interactions. The difference in selection efficiency is taken as a systematic uncertainty.

Since all physics objects are included in the computation of pmiss
T , it can be difficult to

describe accurately within the CMS fast simulation. The pmiss
T of the models considered,

however, is dominated by the missing momentum carried away by the gravitons and not

by the modelling of resolution effects. An additional systematic uncertainty of between

0.5 and 6% is assigned by calculating the mean difference between the reconstructed and

generated pmiss
T . A summary of the uncertainties can be found in table 2.

The results are interpreted in terms of the simplified models introduced in section 4.

The 95% confidence level (CL) upper limits on the SUSY cross section are calculated with
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the CLs criterion [45, 46] using the LHC-style profile likelihood ratio as test statistic [47]

evaluated in the asymptotic approximation [48]. Log-normal nuisance parameters are used

to describe the systematic uncertainties. The observed upper limits on cross sections,

exclusion contours, and expected exclusion contours are shown in figure 6. More stringent

limits can be set on models with two photons, since the probability that at least one photon

is reconstructed is higher. In this case, for high gaugino masses, squarks up to 1650 GeV and

gluinos up to 2000 GeV can be excluded, while for the T6Wg and T5Wg scenarios, squarks

up to 1550 GeV and gluinos up to 1900 GeV can be excluded for high gaugino masses.

The acceptance drops for low neutralino masses, since more energy is transferred to jets,

leaving less energy available for the photon and the gravitinos, and therefore resulting in a

lower value of pmiss
T . If the chargino mass is close to the W boson mass, less momentum is

transferred to the gravitino, leading to smaller pmiss
T values and, therefore, lower sensitivity.

This yields a squark mass exclusion of 1500 and 1300 GeV for the T6gg and T6Wg model,

respectively, and a gluino mass exclusion of 1750 and 1500 GeV for the T5gg and T5Wg

model, respectively. For squark pair production, the mass exclusion is determined assuming

eight mass-degenerate squark states, corresponding to the SUSY partners of the left- and

right-handed u, d, s, and c quarks.

8 Summary

A search for physics beyond the standard model (SM) in final states with at least one

photon, large missing transverse momentum, and large total transverse event activity has

been presented using data corresponding to an integrated luminosity of 35.9 fb−1 of proton-

proton collisions at
√
s = 13 TeV recorded by the CMS experiment at the LHC in 2016. The

SM background is estimated from data and simulation, and is validated in several control

regions. No significant signs of new physics beyond the SM are found, and the data are

interpreted in simplified models motivated by gauge-mediated supersymmetry breaking.

Gluino masses up to 1.50–2.00 TeV and squark masses up to 1.30–1.65 TeV are excluded at

95% confidence level, depending on the neutralino mass and mixture.
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Figure 6. Exclusion limits at 95% CL for the T6gg (top left), T6Wg (top right), T5gg (bottom

left) and T5Wg (bottom right) models. The solid black curve represents the observed exclusion

contour and the uncertainty due to the signal cross section. The red dashed curves represent the

expected exclusion contours and the experimental uncertainties.
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A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique

des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat
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W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann16, R. Mankel, I.-

A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari,

D. Pitzl, R. Placakyte, A. Raspereza, B. Roland, M. Savitskyi, P. Saxena, R. Shevchenko,

S. Spannagel, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing,

O. Zenaiev

University of Hamburg, Hamburg, Germany

S. Bein, V. Blobel, M. Centis Vignali, A.R. Draeger, T. Dreyer, E. Garutti, D. Gonzalez,

J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,

S. Kurz, T. Lapsien, I. Marchesini, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin,

F. Pantaleo13, T. Peiffer, A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann,

J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen,
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University, Budapest, Hungary

19: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary

20: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India

21: Also at Institute of Physics, Bhubaneswar, India

22: Also at University of Visva-Bharati, Santiniketan, India

23: Also at University of Ruhuna, Matara, Sri Lanka

24: Also at Isfahan University of Technology, Isfahan, Iran

25: Also at Yazd University, Yazd, Iran

26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad

University, Tehran, Iran
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