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Abstract

Large unweighted directed graphs are commonly used to capture relations be-
tween entities. A fundamental problem in the analysis of such networks is to
properly define the similarity or dissimilarity between any two vertices. Despite
the significance of this problem, statistical characterization of the proposed met-
rics has been limited.
We introduce and develop a class of techniques for analyzing random walks on
graphs using stochastic calculus. Using these techniques we generalize results on
the degeneracy of hitting times and analyze a metric based on the Laplace trans-
formed hitting time (LTHT). The metric serves as a natural, provably well-behaved
alternative to the expected hitting time. We establish a general correspondence
between hitting times of the Brownian motion and analogous hitting times on the
graph. We show that the LTHT is consistent with respect to the underlying metric
of a geometric graph, preserves clustering tendency, and remains robust against
random addition of non-geometric edges. Tests on simulated and real-world data
show that the LTHT matches theoretical predictions and outperforms alternatives.

1 Introduction

Many network metrics have been introduced to measure the similarity between any two vertices.
Such metrics can be used for a variety of purposes, including uncovering missing edges or pruning
spurious ones. Since the metrics tacitly assume that vertices lie in a latent (metric) space, one could
expect that they also recover the underlying metric in some well-defined limit. Surprisingly, there
are nearly no known results on this type of consistency. Indeed, it was recently shown [19] that the
expected hitting time degenerates and does not measure any notion of distance.

We analyze an improved hitting-time metric – Laplace transformed hitting time (LTHT) – and rigor-
ously evaluate its consistency, cluster-preservation, and robustness under a general network model
which encapsulates the latent space assumption. This network model, specified in Section 2, posits
that vertices lie in a latent metric space, and edges are drawn between nearby vertices in that space.
To analyze the LTHT, we develop two key technical tools. We establish a correspondence between
functionals of hitting time for random walks on graphs, on the one hand, and limiting Itô processes
(Corollary 4.4) on the other. Moreover, we construct a weighted random walk on the graph whose
limit is a Brownian motion (Corollary 4.1). We apply these tools to obtain three main results.

First, our Theorem 3.5 recapitulates and generalizes the result of [19] pertaining to degeneration
of expected hitting time in the limit. Our proof is direct and demonstrates the broader applicabil-
ity of the techniques to general random walk based algorithms. Second, we analyze the Laplace
transformed hitting time as a one-parameter family of improved distance estimators based on ran-
dom walks on the graph. We prove that there exists a scaling limit for the parameter β such that
the LTHT can become the shortest path distance (Theorem S5.2) or a consistent metric estimator
averaging over many paths (Theorem 4.5). Finally, we prove that the LTHT captures the advantages
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of random-walk based metrics by respecting the cluster structure (Theorem 4.6) and robustly recov-
ering similarity queries when the majority of edges carry no geometric information (Theorem 4.9).
We now discuss the relation of our work to prior work on similarity estimation.

Quasi-walk metrics: There is a growing literature on graph metrics that attempts to correct the
degeneracy of expected hitting time [19] by interpolating between expected hitting time and shortest
path distance. The work closest to ours is the analysis of the phase transition of the p-resistance
metric in [1] which proves that p-resistances are nondegenerate for some p; however, their work did
not address consistency or bias of p-resistances. Other approaches to quasi-walk metrics such as
logarithmic-forest [3], distributed routing distances [16], truncated hitting times [12], and random-
ized shortest paths [8, 21] exist but their statistical properties are unknown. Our paper is the first to
prove consistency properties of a quasi-walk metric.

Nonparametric statistics: In the nonparametric statistics literature, the behavior of k-nearest neigh-
bor and ε-ball graphs has been the focus of extensive study. For undirected graphs, Laplacian-based
techniques have yielded consistency for clusters [18] and shortest paths [2] as well as the degener-
acy of expected hitting time [19]. Algorithms for exactly embedding k-nearest neighbor graphs are
similar and generate metric estimates, but require knowledge of the graph construction method, and
their consistency properties are unknown [13]. Stochastic differential equation techniques similar
to ours were applied to prove Laplacian convergence results in [17], while the process-level con-
vergence was exploited in [6]. Our work advances the techniques of [6] by extracting more robust
estimators from process-level information.

Network analysis: The task of predicting missing links in a graph, known as link prediction, is one
of the most popular uses of similarity estimation. The survey [9] compares several common link
prediction methods on synthetic benchmarks. The consistency of some local similarity metrics such
as the number of shared neighbors was analyzed under a single generative model for graphs in [11].
Our results extend this analysis to a global, walk-based metric under weaker model assumptions.

2 Continuum limits of random walks on networks

2.1 Definition of a spatial graph

We take a generative approach to defining similarity between vertices. We suppose that each vertex
i of a graph is associated with a latent coordinate xi ∈ Rd and that the probability of finding an edge
between two vertices depends solely on their latent coordinates. In this model, given only the un-
weighted edge connectivity of a graph, we define natural distances between vertices as the distances
between the latent coordinates xi. Formally, let X = {x1, x2, . . .} ⊂ Rd be an infinite sequence
of points drawn i.i.d. from a differentiable density with bounded log gradient p(x) with compact
support D. A spatial graph is defined by the following:

Definition 2.1 (Spatial graph). Let εn : Xn → R>0 be a local scale function and h : R≥0 → [0, 1]
a piecewise continuous function with h(x) = 0 for x > 1, h(1) > 0, and h left-continuous at 1. The
spatial graph Gn corresponding to εn and h is the random graph with vertex set Xn and a directed
edge from xi to xj with probability pij = h(|xi − xj |εn(xi)

−1).

This graph was proposed in [6] as the generalization of k-nearest neighbors to isotropic kernels. To
make inference tractable, we focus on the large-graph, small-neighborhood limit as n → ∞ and
εn(x) → 0. In particular, we will suppose that there exist scaling constants gn and a deterministic
continuous function ε : D → R>0 so that

gn → 0, gnn
1

d+2 log(n)−
1

d+2 →∞, εn(x)g−1n → ε(x) for x ∈ Xn,

where the final convergence is uniform in x and a.s. in the draw of X . The scaling constant gn
represents a bound on the asymptotic sparsity of the graph.

We give a few concrete examples to make the quantities h, gn, and εn clear.

1. The directed k-nearest neighbor graph is defined by setting h(x) = 1x∈[0,1], the indicator
function of the unit interval, εn(x) the distance to the kth nearest neighbor, and gn =
(k/n)1/d the rate at which εn(x) approaches zero.
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2. A Gaussian kernel graph is approximated by setting h(x) = exp(−x2/σ2)1x∈[0,1]. The
truncation of the Gaussian tails at σ is an analytic convenience rather than a fundamental
limitation, and the bandwidth can be varied by rescaling εn(x).

2.2 Continuum limit of the random walk

Our techniques rely on analysis of the limiting behavior of the simple random walk Xn
t on a spatial

graph Gn, viewed as a discrete-time Markov process with domain D. The increment at step t of
Xn
t is a jump to a random point in Xn which lies within the ball of radius εn(Xn

t ) around Xn
t .

We observe three effects: (A) the random walk jumps more frequently towards regions of high
density; (B) the random walk moves more quickly whenever εn(Xn

t ) is large; (C) for εn small and
a large step count t, the random variable Xn

t −Xn
0 is the sum of many small independent (but not

necessarily identically distributed) increments. In the n → ∞ limit, we may identify Xn
t with a

continuous-time stochastic process satisfying (A), (B), and (C) via the following result, which is a
slight strengthening of [6, Theorem 3.4] obtained by applying [15, Theorem 11.2.3] in place of the
original result of Stroock-Varadhan.
Theorem 2.2. The simple random walk Xn

t converges uniformly in Skorokhod space D([0,∞), D)

after a time scaling t̂ = tg2n to the Itô process Yt̂ valued in the space of continuous functions
C([0,∞), D) with reflecting boundary conditions on D defined by

dYt̂ = ∇ log(p(Yt̂))ε(Yt̂)
2/3dt̂+ ε(Yt̂)/

√
3dWt̂. (1)

Effects (A), (B), and (C) may be seen in the stochastic differential equation (1) as follows. The
direction of the drift is controlled by ∇ log(p(Yt̂)), the rate of drift is controlled by ε(Yt̂)

2, and the
noise is driven by a Brownian motion Wt̂ with location-dependent scaling ε(Yt̂)/

√
3.1

We view Theorem 2.2 as a method to understand the simple random walk Xn
t through the continu-

ous walk Yt̂. Attributes of stochastic processes such as stationary distribution or hitting time may be
defined for both Yt̂ and Xn

t , and in many cases Theorem 2.2 implies that an appropriately-rescaled
version of the discrete attribute will converge to the continuous one. Because attributes of the con-
tinuous process Yt̂ can reveal information about proximity between points, this provides a general
framework for inference in spatial graphs. We use hitting times of the continuous process to a do-
main E ⊂ D to prove properties of the hitting time of a simple random walk on a graph via the limit
arguments of Theorem 2.2.

3 Degeneracy of expected hitting times in networks

The hitting time, commute time, and resistance distance are popular measures of distance based upon
the random walk which are believed to be robust and capture the cluster structure of the network.
However, it was shown in a surprising result in [19] that on undirected geometric graphs the scaled
expected hitting time from xi to xj converges to inverse of the degree of xj .

In Theorem 3.5, we give an intuitive explanation and generalization of this result by showing that
if the random walk on a graph converges to any limiting Itô process in dimension d ≥ 2, the
scaled expected hitting time to any point converges to the inverse of the stationary distribution. This
answers the open problem in [19] on the degeneracy of hitting times for directed graphs and graphs
with general degree distributions such as directed k-nearest neighbor graphs, lattices, and power-law
graphs with convergent random walks. Our proof can be understood as first extending the transience
or neighborhood recurrence of Brownian motion for d ≥ 2 to more general Itô processes and then
connecting hitting times on graphs to their Itô process equivalents.

3.1 Typical hitting times are large

We will prove the following lemma that hitting a given vertex quickly is unlikely. Let T xi
xj ,n be the

hitting time to xj of Xn
t started at xi and T xi

E be the continuous equivalent for Yt̂ to hit E ⊂ D .

1Both the variance Θ(εn(x)2) and expected value Θ(∇ log(p(x))εn(x)2) of a single step in the simple
random walk are Θ(g2n). The time scaling t̂ = tg2n in Theorem 2.2 was chosen so that as n→ ∞ there are g−2

n

discrete steps taken per unit time, meaning the total drift and variance per unit time tend to a non-trivial limit.
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Lemma 3.1 (Typical hitting times are large). For any d ≥ 2, c > 0, and δ > 0, for large enough n
we have P(T xi

xj ,n > cg−2n ) > 1− δ.

To prove Lemma 3.1, we require the following tail bound following from the Feynman-Kac theorem.
Theorem 3.2 ([10, Exercise 9.12] Feynman-Kac for the Laplace transform). The Laplace transform
of the hitting time (LTHT) u(x) = E[exp(−βT xE)] is the solution to the boundary value problem
with boundary condition u|∂E = 1:

1

2
Tr[σTH(u)σ] + µ(x) · ∇u− βu = 0.

This will allow us to bound the hitting time to the ball B(xj , s) of radius s centered at xj .

Lemma 3.3. For x, y ∈ D, d ≥ 2, and any δ > 0, there exists s > 0 such that E[e−T
x
B(y,s) ] < δ.

Proof. We compare the Laplace transformed hitting time of the general Itô process to that of Brow-
nian motion via Feynman-Kac and handle the latter case directly. Details are in Section S2.1.

We now use Lemma 3.3 to prove Lemma 3.1.

Proof of Lemma 3.1. Our proof proceeds in two steps. First, we have T xi
xj ,n ≥ T xi

B(xj ,s),n
a.s. for

any s > 0 because xj ∈ B(xj , s), so by Theorem 2.2, we have

lim
n→∞

E[e−T
xi
xj,n

g−2
n ] ≤ lim

n→∞
E[e
−Txi

B(xj,s),n
g−2
n ] = E[e

−Txi
B(xj,s) ]. (2)

Applying Lemma 3.3, we have E[e
−Txi

B(xj,s) ] < 1
2δe
−c for some s > 0. For large enough n, this

combined with (2) implies P(T xi
xj ,n ≤ cg

−2
n )e−c < δe−c and hence P(T xi

xj ,n ≤ cg
−2
n ) < δ.

3.2 Expected hitting times degenerate to the stationary distribution

To translate results from Itô processes to directed graphs, we require a regularity condition. Let
qt(xj , xi) denote the probability that Xn

t = xj conditioned on Xn
0 = xi. We make the following

technical conjecture which we assume holds for all spatial graphs.
(?) For t = Θ(g−2n ), the rescaled marginal nqt(x, xi) is a.s. eventually uniformly equicontinuous.2

Let πXn(x) denote the stationary distribution of Xn
t . The following was shown in [6, Theorem 2.1]

under conditions implied by our condition (?) (Corollary S2.6).
Theorem 3.4. Assuming (?), for a−1 =

∫
p(x)2ε(x)−2dx, we have the a.s. limit

π̂(x) := lim
n→∞

nπXn(x) = a
p(x)

ε(x)2
.

We may now express the limit of expected hitting time in terms of this result.
Theorem 3.5. For d ≥ 2 and any i, j, we have

E[T xi
xj ,n]

n

a.s.→ 1

π̂(xj)
.

Proof. We give a sketch. By Lemma 3.1, the random walk started at xi does not hit xj within cg−2n
steps with high probability. By Theorem S2.5, the simple random walk Xn

t mixes at exponential
rate, implying in Lemma S2.8 that the probability of first hitting at step t > cg−2n is approximately
the stationary distribution at xj . Expected hitting time is then shown to approximate the expectation
of a geometric random variable. See Section S2 for a full proof.

Theorem 3.5 is illustrated in Figures 1A and 1B, which show with only 3000 points, expected hitting
times on a k-nearest neighbor graph degenerates to the stationary distribution. 3

2Assumption (?) is related to smoothing properties of the graph Laplacian and is known to hold for undi-
rected graphs [4]. No directed analogue is known, and [6] conjectured a weaker property for all spatial graphs.
See Section S1 for further details.

3Surprisingly, [19] proved that 1-D hitting times diverge despite convergence of the continuous equivalent.
This occurs because the discrete walk can jump past the target point. In Section S2.4, we consider 1-D hitting
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Figure 1: Estimated distance from orange starting point on a k-nearest neighbor graph constructed
on two clusters. A and B show degeneracy of hitting times (Theorem 3.5). C, D, and E show that
log-LTHT interpolate between hitting time and shortest path.

4 The Laplace transformed hitting time (LTHT)

In Theorem 3.5 we showed that expected hitting time is degenerate because a simple random walk
mixes before hitting its target. To correct this we penalize longer paths. More precisely, consider for
β̂ > 0 and βn = β̂g2n the Laplace transforms E[e−β̂T

x
E ] and E[e−βnT

x
E,n ] of T xE and T xE,n.

These Laplace transformed hitting times (LTHT’s) have three advantages. First, while the expected
hitting time of a Brownian motion to a domain is dominated by long paths, the LTHT is dominated
by direct paths. Second, the LTHT for the Itô process can be derived in closed form via the Feynman-
Kac theorem, allowing us to make use of techniques from continuous stochastic processes to control
the continuum LTHT. Lastly, the LTHT can be computed both by sampling and in closed form as a
matrix inversion (Section S3). Now define the scaled log-LTHT as

− log(E[e−βnT
xi
xj,n ])/

√
2βngn.

Taking different scalings for βn with n interpolates between expected hitting time (βn → 0 on a
fixed graph) and shortest path distance (βn →∞) (Figures 1C, D, and E). In Theorem 4.5, we show
that the intermediate scaling βn = Θ(β̂g2n) yields a consistent distance measure retaining the unique
properties of hitting times. Most of our results on the LTHT are novel for any quasi-walk metric.

While considering the Laplace transform of the hitting time is novel to our work, this metric has been
used in the literature in an ad-hoc manner in various forms as a similarity metric for collaboration
networks [20], hidden subgraph detection [14], and robust shortest path distance [21]. However,
these papers only considered the elementary properties of the limits βn → 0 and βn → ∞. Our
consistency proof demonstrates the advantage of the stochastic process approach.

4.1 Consistency

It was shown previously that for n fixed and βn → ∞, − log(E[−βnT xi
xj ,n])/βngn converges to

shortest path distance from xi to xj . We investigate more precise behavior in terms of the scaling of
βn. There are two regimes: if βn = ω(log(gdnn)), then the shortest path dominates and the LTHT
converges to shortest path distance (See Theorem S5.2). If βn = Θ(β̂g2n), the graph log-LTHT
converges to its continuous equivalent, which for large β̂ averages over random walks concentrated
around the geodesic. To show consistency for βn = Θ(β̂g2n), we proceed in three steps: (1) we
reweight the random walk on the graph so the limiting process is Brownian motion; (2) we show
that log-LTHT for Brownian motion recovers latent distance; (3) we show that log-LTHT for the
reweighted walk converges to its continuous limit; (4) we conclude that log-LTHT of the reweighted
walk recovers latent distance.

(1) Reweighting the random walk to converge to Brownian motion: We define weights using the
estimators p̂ and ε̂ for p(x) and ε(x) from [6].

times to small out neighbors which corrects this problem and derive closed form solutions (Theorem S2.12).
This hitting time is non-degenerate but highly biased due to boundary terms (Corollary S2.14).
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Theorem 4.1. Let p̂ and ε̂ be consistent estimators of the density and local scale and A be the
adjacency matrix. Then the random walk X̂n

t defined below converges to a Brownian motion.

P(X̂n
t+1 = xj | X̂n

t = xi) =

{
Ai,j p̂(xj)

−1∑
k Ai,kp̂(xk)−1 ε̂(xi)

−2 i 6= j

1− ε̂(xi)−2 i = j

Proof. Reweighting by p̂ and ε̂ is designed to cancel the drift and diffusion terms in Theorem 2.2 by
ensuring that as n grows large, jumps have means approaching 0 and variances which are asymptot-
ically equal (but decaying with n). See Theorem S4.1. 4

(2) Log-LTHT for a Brownian motion: Let Wt be a Brownian motion with W0 = xi, and let
T
xi

B(xj ,s) be the hitting time of Wt to B(xj , s). We show that log-LTHT converges to distance.

Lemma 4.2. For any α < 0, if β̂ = sα, as s→ 0 we have

− log(E[exp(−β̂T xi

B(xj ,s))])/

√
2β̂ → |xi − xj |.

Proof. We consider hitting time of Brownian motion started at distance |xi − xj | from the origin to
distance s of the origin, which is controlled by a Bessel process. See Subsection S6.1 for details.

(3) Convergence of LTHT for βn = Θ(β̂g2n): To compare continuous and discrete log-LTHT’s, we
will first define the s-neighborhood of a vertex xi onGn as the graph equivalent of the ballB(xi, s).

Definition 4.3 (s-neighborhood). Let ε̂(x) be the consistent estimate of the local scale from [6] so
that ε̂(x) → ε(x) uniformly a.s. as n → ∞. The ε̂-weight of a path xi1 → · · · → xil is the sum∑l−1
m=1 ε̂(xim) of vertex weights ε̂(xi). For s > 0 and x ∈ Gn, the s-neighborhood of x is

NBsn(x) := {y | there is a path x→ y of ε̂-weight ≤ g−1n s}.

For xi, xj ∈ Gn, let T̂ xi

B(xj ,s)
be the hitting time of the transformed walk onGn from xi to NBsn(xj).

We now verify that hitting times to the s-neighborhood on graphs and the s-radius ball coincide.

Corollary 4.4. For s > 0, we have g2nT̂
xi

NBs
n(xj),n

d→ T
xi

B(xj ,s).

Proof. We verify that the ball and the neighborhood have nearly identical sets of points and apply
Theorem 2.2. See Subsection S6.2 for details.

(4) Proving consistency of log-LTHT: Properly accounting for boundary effects, we obtain a con-
sistency result for the log-LTHT for small neighborhood hitting times.

Theorem 4.5. Let xi, xj ∈ Gn be connected by a geodesic not intersecting ∂D. For any δ > 0,
there exists a choice of β̂ and s > 0 so that if βn = β̂g2n, for large n we have with high probability∣∣∣∣− log(E[exp(−βnT̂ xi

NBs
n(xj),n

)])/

√
2β̂ − |xi − xj |

∣∣∣∣ < δ.

Proof of Theorem 4.5. The proof has three steps. First, we convert to the continuous setting via
Corollary 4.4. Second, we show the contribution of the boundary is negligible. The conclusion
follows from the explicit computation of Lemma S6.1. Full details are in Section S6.

The stochastic process limit based proof of Theorem 4.5 implies that the log-LTHT is consistent and
robust to small perturbations to the graph which preserve the same limit (Supp. Section S8).

4This is a special case of a more general theorem for transforming limits of graph random walks (Theorem
S4.1). Figure S1 shows that this modification is highly effective in practice.
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4.2 Bias

Random walk based metrics are often motivated as recovering a cluster preserving metric. We now
show that the log-LTHT of the un-weighted simple random walk preserves the underlying cluster
structure. In the 1-D case, we provide a complete characterization.
Theorem 4.6. Suppose the spatial graph has d = 1 and h(x) = 1x∈[0,1]. Let T xi

NB
ε̂(xj)gn
n (xj),n

be

the hitting time of a simple random walk from xi to the out-neighborhood of xj . It converges to

− log(E[−βT xi

NB
ε̂(xj)gn
n (xj),n

])/
√

8β →
∫ xj

xi

√
m(x)dx+ o

(
log(1 + e−

√
2β)/

√
2β
)
,

where m(x) = 2
ε(x)2 + 1

β
∂ log(p(x))

∂x2 + 1
β

(
∂ log(p(x))

∂x

)2
defines a density-sensitive metric.

Proof. Apply the WKBJ approximation for Schrodinger equations to the Feynman-Kac PDE from
Theorem 3.2. See Corollary S7.2 and Corollary S2.13 for a full proof.

The leading order terms of the density-sensitive metric appropriately penalize crossing regions of
large changes to the log density; this is not the case for the expected hitting time (Theorem S2.12).

4.3 Robustness

While shortest path distance is a consistent measure of the underlying metric, it breaks down catas-
trophically with the addition of a single non-geometric edge and does not meaningfully rank vertices
that share an edge. In contrast, we show that LTHT breaks ties between vertices via the resource
allocation (RA) index, a robust local similarity metric under Erdős-Rényi-type noise. 5

Definition 4.7. The noisy spatial graph Gn over Xn with noise terms q1(n), . . ., qn(n) is con-
structed by drawing an edge from xi to xj with probability

pij = h(|xi − xj |εn(xi)
−1)(1− qj(n)) + qj(n).

Define the directed RA index in terms of the out-neighborhood set NBn(xi) and the in-neighborhood
set NBin

n (xi) as Rij :=
∑
xk∈NBn(xi)∩NBin

n(xj)
|NBn(xk)|−1 and two step log-LTHT by M ts

ij :=

− log(E[exp(−βT xi
xj ,n) | T xi

xj ,n > 1]). 6 We show two step log-LTHT and RA index give equivalent
methods for testing if vertices are within distance εn(x).
Theorem 4.8. If β = ω(log(gdnn)) and xi and xj have at least one common neighbor, then

M ts
ij − 2β → − log(Rij) + log(|NBn(xi)|).

Proof. Let Pij(t) be the probability of going from xi to xj in t steps, and Hij(t) the probability of
not hitting before time t. Factoring the two-step hitting time yields

M ts
ij = 2β − log(Pij(2))− log

(
1 +

∞∑
t=3

Pij(t)

Pij(2)
Hij(t)e

−β(t−2)
)
.

Let kmax be the maximal out-degree in Gn. The contribution of paths of length greater than 2
vanishes because Hij(t) ≤ 1 and Pij(t)/Pij(2) ≤ k2max, which is dominated by e−β for β =

ω(log(gnn)). Noting that Pij(2) =
Rij

|NBn(xi)| concludes. For full details see Theorem S9.1.

For edge identification within distance εn(x), the RA index is robust even at noise level q = o(g
d/2
n ).

5Modifying the graph by changing fewer than g2n/n edges does not affect the continuum limit of the random
graph, and therefore preserve the LTHT with parameter β = Θ(g2n). While this weak bound allows on average
o(1) noise edges per vertex, it does show that the LTHT is substantially more robust than shortest paths without
modification. See Section S8 for proofs.

6The conditioning T xi
xj ,n > 1 is natural in link-prediction tasks where only pairs of disconnected vertices

are queried. Empirically, we observe it is critical to performance (Figure 3).

7



Figure 2: The LTHT recovered deleted edges
most consistently on a citation network

Figure 3: The two-step LTHT (defined above
Theorem 4.8) outperforms others at word simi-
larity estimation including the basic log-LTHT.

Theorem 4.9. If qi = q = o(g
d/2
n ) for all i, for any δ > 0 there are c1, c2 and hn so that for any

i, j, with probability at least 1− δ we have

• |xi − xj | < min{εn(xi), εn(xj)} if Rijhn < c1;
• |xi − xj | > 2 max{εn(xi), εn(xj)} if Rijhn > c2.

Proof. The minimal RA index follows from standard concentration arguments (see S9.2).

5 Link prediction tasks

We compare the LTHT against other baseline measures of vertex similarity: shortest path distance,
expected hitting time, number of common neighbors, and the RA index. A comprehensive evaluation
of these quasi-walk metrics was performed in [8] who showed that a metric equivalent to the LTHT
performed best. We consider two separate link prediction tasks on the largest connected component
of vertices of degree at least five, fixing β = 0.2.7 The degree constraint is to ensure that local
methods using number of common neighbors such as the resource allocation index do not have an
excessive number of ties. Code to generate figures in this paper are contained in the supplement.

Citation network: The KDD 2003 challenge dataset [5] includes a directed, unweighted network
of e-print arXiv citations whose dense connected component has 11,042 vertices and 222,027 edges.
We use the same benchmark method as [9] where we delete a single edge and compare the similarity
of the deleted edge against the set of control pair of vertices i, j which do not share an edge. We
count the fraction of pairs on which each method rank the deleted edge higher than all other methods.
We find that LTHT is consistently best at this task (Figure 2). 8

Associative Thesaurus network: The Edinburgh associative thesaurus [7] is a network with a dense
connected component of 7754 vertices and 246,609 edges in which subjects were shown a set of ten
words and for each word was asked to respond with the first word to occur to them. Each vertex
represents a word and each edge is a weighted, directed edge where the weight from xi to xj is the
number of subjects who responded with word xj given word xi.

We measure performance by whether strong associations with more than ten responses can be dis-
tinguished from weak ones with only one response. We find that the LTHT performs best and that
preventing one-step jumps is critical to performance as predicted by Theorem 4.8 (Figure 3).

6 Conclusion

Our work has developed an asymptotic equivalence between hitting times for random walks on
graphs and those for diffusion processes. Using this, we have provided a short extension of the
proof for the divergence of expected hitting times, and derived a new consistent graph metric that
is theoretically principled, computationally tractable, and empirically successful at well-established
link prediction benchmarks. These results open the way for the development of other principled
quasi-walk metrics that can provably recover underlying latent similarities for spatial graphs.

7Results are qualitatively identical when varying β from 0.1 to 1; see supplement for details.
8The two-step LTHT is not shown since it is equivalent to the LTHT in missing link prediction.
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