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Unidirectional flow is the simplest phenomenon of fluid mechanics. Its mathematical
description, the Dirichlet problem for Poisson’s equation in two dimensions with constant
forcing, arises in many physical contexts, such as the torsion of elastic beams, first
solved by de Saint-Venant for complex shapes. Here the literature is unified and
extended by identifying 17 physical analogies for unidirectional flow and describing their
common mathematical structure. Besides classical analogies in fluid and solid mechanics,
applications are discussed in stochastic processes (first passage in two dimensions), pattern
formation (river growth by erosion), and electrokinetics (ion transport in nanochannels),
which also involve Poisson’s equation with nonconstant forcing. Methods are given
to construct approximate geometries that admit exact solutions, by adding harmonic
functions to quadratic forms or by truncating eigenfunction expansions. Exact solutions for
given geometries are also derived by conformal mapping. We prove that the remarkable
geometrical interpretation of Poiseuille flow in an equilateral triangular pipe (the product
of the distances from an interior point to the sides) is only shared by parallel plates and
unbounded equilateral wedges (with the third side hidden behind the apex). We also prove
Onsager reciprocity for linear electrokinetic phenomena in straight pores of arbitrary shape
and surface charge, based on the mathematics of unidirectional flow.

DOI: 10.1103/PhysRevFluids.1.024001

I. INTRODUCTION

Precious few exact solutions of the Navier-Stokes equations are known, but they serve to guide
our thinking about fluid mechanics [1–3]. Most students first encounter the parabolic profile of
Poiseuille flow in a circular pipe or between flat plates [4]. Some less familiar examples are shown
in Fig. 1. In these unidirectional flows, inertia plays no role, leading to a simple balance between
viscous stress and the applied pressure gradient.

Poiseuille’s law for the flow rate in a narrow capillary [4,5] was apparently first derived from the
Navier-Stokes equations by Stokes himself [6]. He was uncertain about boundary conditions and
included an unknown slip velocity, later calculated by Butcher [7], building on ideas of Navier [8].
The derivation without slip is normally attributed to Hagenbach [9] and Jacobson [10], although
a decade earlier Stokes had already used the no-slip boundary condition in his famous paper on
viscous drag [11].

In the original paper on viscous flow, Stokes remarked that it is “extremely easy” to derive the
velocity profile in a circular capillary [6], but he surely appreciated the challenges posed by other
geometries. Shape dependence was first analyzed by de Saint-Venant [12] in the seemingly different
context of torsion of elastic beams. Boussinesq [13] recognized that de Saint-Venant’s theory of
torsion is mathematically equivalent to Stokes’s theory of Poiseuille flow. Later Heaviside [14]
noted the equivalence of beam torsion and the magnetic self-induction of an electrical wire, which
was eventually recognized as another analogy for pipe flow [15], along with the membrane analogy
identified by Prandtl [16].
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FIG. 1. Exact solutions for unidirectional (Poiseuille) flow profiles in pipes of different cross sections,
rendered as deformed membranes or soap bubbles. The same solutions are derived and contour plotted below:
(a) ellipse [Fig. 3(a)], (b) equilateral triangle (Fig. 6), (c) rounded pentagon [Fig. 7(a)], (d) seven-pronged star
[Fig. 7(e)], (e) off-center coaxial pipes [Fig. 9(b)], and (f) grooved parallel plates [Fig. 11(c)].

In the 20th century, pipe flows for different cross-sectional shapes were extensively characterized
in the engineering literature, especially for heat transfer in ducts [17], and the number of
physical analogies also grew. The common mathematical problem involves Poisson’s equation
from electrostatics [18]

− ∇2u = k, (1)

typically with constant forcing k and Dirichlet (no-slip) boundary conditions on a two-dimensional
domain. The same problem arises in solid mechanics for beam torsion and bending [19–21]
and myriad exact solutions have been derived. Beginning with the seminal paper of de Saint-
Venant [12], many complex shapes were analyzed by conformal mapping, notably by Morris [22],
Muskhelishvili [19], and Pólya and Szegö [23]. Morris also applied her general solution for beam
torsion to Poiseuille flow [22] and Tao [24,25] later solved related problems in forced convection.
In contrast to the more familiar case of Laplace’s equation, however, conformal mapping cannot be
as easily applied to Poisson’s equation, since it is not conformally invariant [26].

Despite this extensive literature, it is worth revisiting the mathematics of uniform flow in
various modern contexts, such as microfluidics [27,28], transport in porous media [29], stochastic
processes [30,31], chemical reactions [32], biological reactions [33,34], architectural structures [35],
groundwater flow [36], river growth [37], and electrokinetic phenomena [38,39], where approximate
or numerical solutions have been used to treat complicated geometries. The initial motivation for this
work came from theoretical microfluidics [39]. Mortensen et al. [40] used boundary perturbation
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methods to approximate the hydraulic resistance of microchannels with near-circular cross sections
and these approximations closely resemble exact solutions derived by de Saint-Venant [12]. Similarly,
eigenfunction expansions, such as the well-known Fourier series for a rectangular cross section [39],
can also be viewed as a sum of exact solutions, only for slightly different geometries.

In this article we develop the mathematics of unidirectional flow through a variety of examples,
both old and new. Although formal integral solutions can be derived for any geometry, we focus
on the construction of special geometries that approximate domains of interest and admit simple
exact solutions. We begin by reviewing the history of this problem in fluid and solid mechanics and
discussing many additional applications.

II. PHYSICAL ANALOGIES

Poisson’s equation in two dimensions describes a remarkable variety of physical phenomena.
Exact solutions can be traced back (at least) to the seminal paper of de Saint-Venant [12] on the
elastic deformation of straight, prismatic beams under torsion. As noted above, the mathematical
equivalence of beam torsion and pipe flow was first recognized by Boussinesq [13] and later extended
to convective heat transfer [41]. More easily visualized analogies are provided by the deflection of
elastic membranes [16] or soap bubbles [42] and by the potential profile of electrically conducting
sheets [43]. These mathematical insights allowed Poisson’s equation to be solved experimentally,
long before it could be solved numerically on a computer.

In this section we survey the literature and expand the number of physical analogies to 17,
sketched in Fig. 2.

A. Fluid mechanics

The primary motivation of this work is to study unidirectional (i.e., fully developed laminar) flow
in a straight pipe of arbitrary cross section [Fig. 2(a)]. The axial velocity profile uz(x,y) satisfies
Eq. (1) with k = G/μ, where G is (minus) the axial pressure gradient and μ the viscosity. On the
boundary, we assume either no slip u = 0 (Poiseuille flow) or, more generally, a prescribed velocity
distribution uz = U (x,y) for moving walls (Couette flow). The model can also be extended for
hydrodynamic slip b (n̂ · ∇uz) = uz − U or stress-free surfaces n̂ · ∇uz = 0 such as the upper free
surface in simple models of rivers and glaciers, the application for which the cgs viscosity unit
“Poise” was proposed to honor Poiseuille [4,44].

The same mathematical problem also describes the circulating flow in a tube of constant vorticity
ωz = ∇ × u [Fig. 2(b)]. As noted by Greenhill [45], the stream function u = ψ(x,y), which defines
the velocity field u = −∇ × ψẑ, satisfies Eq. (1) with k = ωz. In this case, the boundary has perfect
slip. Circulating flows in acute-angle corners [46] have the same scaling as unidirectional corner
flows [47,48] discussed below.

Here we note another analogy of pipe flow with forced gravity currents in porous media [49],
specifically groundwater flow [36]. In the Dupuit [50] approximation, the height h(x,y) of
groundwater spreading over a flat impermeable rock through a porous soil of hydraulic permeability
κ , fed by a mean precipitation rate P , satisfies Eq. (1) with u(x,y) = h(x,y)2 and k = 2P/κ

[Fig. 2(c)]. Dirichlet boundary conditions u = 0 correspond to free drainage out of the soil, e.g., into
a river network, and Neumann conditions represent impermeable boundaries or symmetry lines [37].

B. Solid mechanics

Exact solutions of Poisson’s equation in two dimensions have an even longer history in solid
mechanics [19,21]. de Saint-Venant [12] first formulated and solved the general problem of torsion
of a prismatic beam [Fig. 2(d)]. The beam is clamped on one end and twisted uniformly with angle
θz. The stress function u = φ(x,y) of Prandtl [16] satisfies Eq. (1) with k = −2Gθ , where G is
the shear modulus, and vanishes on the boundary. de Saint-Venant [51] also analyzed a prismatic
beam under pure bending, clamped at one end, with a transverse force F applied at the other end
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FIG. 2. Seventeen analogous physical phenomena from six broad fields, all described by Poisson’s equation
in two dimensions. Fluid mechanics: (a) Poiseuille flow in a pipe, (b) circulating flow in a tube of constant
vorticity, and (c) groundwater flow fed by precipitation. Solid mechanics: (d) torsion or (e) bending of an elastic
beam, and (f) deflection of a membrane, meniscus, or soap bubble. Heat and mass transfer: (g) resistive heating
of an electrical wire, (h) viscous dissipation in pipe flow, and (i) reaction-diffusion process in a catalyst rod.
Stochastic processes: (j) first-passage time in two dimensions, (k) the chain length profile of a grafted polymer
in a tube, and (l) the mean rate of a diffusion-controlled reaction. Electromagnetism: (m) vector potential for
magnetic induction in a shielded electrical wire, and the electrostatic potential in (n) a charged cylinder or (o)
a conducting sheet or porous electrode. Electrokinetic phenomena: (p) electro-osmotic flow and (q) streaming
current in a pore or nanochannel.

[Fig. 2(e)]. The axial normal stress u = τzz(x,y) satisfies Eq. (1) with k = F/I (1 + ν), where I is
the bending moment of inertia and ν is Poisson’s ratio.

Prandtl [16] also introduced the membrane analogy for these problems of beam elasticity
[Fig. 2(f)]. Equation (1) with k = 	p/γ now describes the height of a membrane u = h(x,y)
under small elastic deflection by a uniform pressure difference 	p and resisted by a constant
surface tension γ . The same analogy also applies to the interface between two immiscible fluids, as
discussed in one of the earliest papers of Taylor [42]. In equilibrium, the interface has constant mean
curvature, which describes many situations, such as a liquid meniscus [52], a soap bubble with a
pinned contact line [53], or the Cassie-Baxter state of a textured superhydrophobic surface [54]. For
small deflections |∇h| � 1, the Young-Laplace equation

−	p = γ∇ · n̂ = γ∇ ·
( ∇h√

1 + |∇h|2
)

≈ γ∇2h (2)

again reduces to Eq. (1) with k = 	p/γ .

C. Heat and mass transfer

The same problem also naturally arises in transport phenomena, such as heat transfer in a pipe
heated uniformly by viscous dissipation or another constant heat source [41,55,56]. A peculiarity
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of pipe flow is that the mathematical problem for the fluid velocity is equivalent to that of the
temperature profile u = T (x,y) generated by viscous dissipation [Fig. 2(g)], where k = g/kF in
Eq. (1) and kF is the heat conductivity in Fourier’s law [17,41,57,58].

Another important application is the resistive heating of a straight wire of conductivity σ and
Fourier coefficient kF passing a uniform current density J [59] [Fig. 2(h)]. The steady temperature
u = T (x,y) satisfies Eq. (1) with k = J 2/σkF . Boundary conditions could specify isothermal (T =
const) or insulating (n̂ · ∇T = 0) surfaces. In mass transfer, the same problem could describe the
concentration profile c(x,y) of a chemical of diffusivity D produced by a uniform volumetric reaction
rate Rv in a catalyst rod [Fig. 2(i)] [60].

D. Stochastic processes

Here we identify some further analogies of unidirectional flow in stochastic processes, or random
walks, which provide the microscopic basis for continuum models of heat and mass transfer. The
mean first-passage time u = τ (x,y) of a Wiener process (i.e., a random walk with infinitesimal,
independent, identically distributed displacements with bounded variance) having diffusivity D

from a point in a two-dimensional domain to its boundary satisfies Eq. (1) with k = D−1 and an
absorbing boundary condition u = 0 on the target boundary [30,31] [Fig. 2(j)]. Reflecting boundaries
can also be included, with Neumann boundary conditions. In finance, first-passage processes arise in
the pricing of American options or other derivative securities [61], where a bounded planar domain
would describe the range of two underlying assets values where it is not yet profitable to exercise the
option. There are also analogies in polymer physics [62]. The same random-walk problem describes
the mean length of a polymer, fluctuating inside a tube or disk, from any interior point to a point
where it is attached to the wall [Fig. 2(k)].

E. Diffusion-controlled reactions

The first-passage time (or escape time or survival time) describes many phenomena in science
and engineering, such as the mean reaction time in Smoluchowski’s theory of diffusion-controlled
homogeneous reactions [30,32,63]. The two-dimensional case considered here could describe
adsorbed reactants on a surface as in heterogeneous catalysis [60,64] [Fig. 2(l)]. Many applications
arise in biology, such as ligand binding on cells or ligand accumulation in cell culture assays [33,34].
The connection between Poisson’s equation and the rate of diffusion-controlled reactions was noted
by Reck and Prager [65]. A general statistical homogenization theory based on the first-passage
time was formulated by Rubinstein and Torquato for diffusion-controlled reactions [66] and
viscous flow [67], leading to many mathematical results on reaction-diffusion processes in porous
media [29,68].

Torquato [69] unified stochastic processes with viscous flow in arbitrary three-dimensional
geometries, a sweeping generalization that has not yet been appreciated for many of the other
analogies discussed in this paper. He established a rigorous link between the mean survival time
for diffusion-controlled reactions in a porous medium and the Darcy fluid permeability tensor kD

for Stokes flow in the same porous medium, which relates the mean velocity to the mean pressure
gradient

u = −kD

μ
∇p. (3)

In particular, Torquato proved the general inequality

kD � τφ1DI (4)

(i.e., τφ1DI − kD is positive-semidefinite), where φ1 is the porosity and I is the identity matrix, and
he showed that equality holds, kD = τφ1D, in the limit of unidirectional flow in straight parallel pores
(as also noted above). This analogy was exploited by Hunt et al. [15] for the probabilistic computation
of Poiseuille flow fields by Monte Carlo simulations of random walks, similar to the algorithm
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of Torquato and Kim [70] to calculate the effective conductivity of porous media [71,72]. The
stochastic algorithm enables the efficient approximation of the flow field in pipes with complicated
cross sections, including rough fractal shapes [15].

F. Magnetostatics

Heaviside [14] discovered one of the earliest analogies of beam torsion, to the magnetic self-
induction of a shielded electrical wire [Fig. 2(m)]. In modern terminology [18], Heaviside expressed
the magnetic induction in terms of the vector potential B = ∇ × A, chose the Coulomb gauge
∇ · A = 0, and considered uniform current density J in a wire of constant magnetic permeability
μm, shielded by a perfectly conducting metal sheath. The magnetic induction circulates around the
current in the cross section and the vector potential plays the role of the stream function in a vortex
tube [Fig. 2(b)]. The axial vector potential amplitude u = A(x,y) satisfies Eq. (1) with k = μmJ

and Dirichlet boundary conditions. Heaviside exploited this analogy to apply de Saint-Venant’s
results for torsion to the self-induction of shielded wires of different shapes, but apparently did not
recognize the analogy with Poiseuille flow [14].

G. Electrostatics

Of course, the eponymous application of Poisson’s equation is in electrostatics, e.g., for a two-
dimensional cylinder (wire, cavity, etc.) of constant charge density ρe and permittivity ε [Fig. 2(n)].
The electrostatic potential u = φ(x,y) satisfies Eq. (1) with k = ρe/ε with a prescribed potential
profile on the boundary. Another variation on this problem with k = J/σ is the potential profile of
a conducting sheet of conductivity σ , cut to a certain shape with bus bars at the edges, sustaining
a uniform normal current density J [Fig. 2(o)]. This problem has been used as an analogy to
experimentally visualize the profile of elastic deformation of beams in torsion [43].

H. Electrochemistry

Here we note that the same mathematical problem also describes some problems in electro-
chemistry. The steady-state electrostatic potential profile φ(x,y) satisfies Eq. (1) in a planar porous
electrode or electrochromic glass [73,74] [Fig. 2(o)], where Dirichlet boundary conditions apply at
the current collectors and Neumann boundary conditions at the separator. This is another variation
on the conducting sheet analogy, where again k = J/σ but now σ is the macroscopic conductivity
of the phase with rate limiting transport (electronic or ionic) and J is the Faradaic reaction rate,
assumed to be uniform for a perfect analogy.

I. Electrokinetics

We also note that Poisson’s equation arises in three different ways in the theory of electrokinetic
phenomena [38,75]. Besides determining the electrostatic potential profile φ(x,y) from the charge
density ρe (i.e., electrostatics, above), it also determines the electro-osmotic flow u = uE(x,y) in
response to an axial electric field with k = ρeE/μ [Fig. 2(p)], as well as the streaming current
u = js(x,y) = ρeup(x,y) in response to a pressure-driven flow [Fig. 2(q)]. A perfect analogy with
uniform flow requires a constant charge density ρe, which approximates the diffuse charge profile
in a nanochannel with uniform surface charge and thick overlapping double layers. In the absence
of flow, the linearized potential profile, satisfying the Debye-Hückel equation for any double-layer
thickness, has been analyzed by Duplantier [76] for different two-dimensional shapes, also taking
advantage of conformal invariance and connections with random-walk theory noted above. At the
end of this article, we will return to the general situation of nonuniform charge density ρe(x,y) in
the full nonlinear problem with electro-osmotic flow.
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FIG. 3. Dimensionless unidirectional flow in (a) an elliptical pipe [ũ = 1 − (x̃/2)2 − ỹ2] and (b) a parabolic
groove (ũ = x̃ − ỹ2).

III. PARTICULAR SOLUTIONS FOR CONIC SECTION DOMAINS

In all of these applications, there is a subtle physical compatibility constraint on the solutions of
Eq. (1),

uk > 0, (5)

which requires that u and k have the same sign at each point in the domain. Here we will assume
k > 0, so that physical solutions are positive, u > 0. In the case of unidirectional flow, the fluid
velocity must be directed down the pressure gradient; for resistive heating, a heat source must lead to
a rise in temperature; in electrokinetics, the drift of positive charge is in the direction of the electric
field; in soap bubbles, the Laplace pressure is larger on the concave side of the interface; etc. Since
the literature has mostly focused on bounded domains, such as pipe cross sections, this constraint
has not been emphasized, but it becomes important when selecting physical solutions in unbounded
domains, such as conic sections.

A particular solution of Eq. (1) is the quadratic form

u(x,y) =
2∑

m=0

2∑
n=0

Amnx
myn, (6)

which satisfies no slip on a conic section defined by u = 0, subject to the constraints

2(A20 + A02) = −k, A22 = A12 = A21 = 0. (7)

The allowable domains satisfying Eq. (5) shed light on the physics of unidirectional flow, as well as
the other applications sketched in Fig. 2.

The most important and well-known case is that of an elliptical cross section (x/a)2 + (y/b)2 < 1,
introduced by de Saint-Venant [12]. The solution is

u(x,y) = K

{
1 −

[(
x

a

)2

+
(

y

b

)2]}
, (8)

where K = k/2(a−2 + b−2). An example is shown in Fig. 3(a). The limit a → ∞ describes pressure-
driven flow between parallel plates (|y| < b)

u(x,y) = k

2
(b2 − y2) (9)

and the case a = b = R corresponds to the Hagen-Poiseuille flow in a circular pipe (r < R)

u(r) = k

4
(R2 − r2). (10)
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FIG. 4. Unidirectional flow in (a) a narrow wedge [ũ = (x̃2 − 4ỹ2)/6] and (b) a hyperbolic constriction
(ũ = 1 − x2 + y2/2).

Unbounded conic section domains are also included in Eq. (6). The simple solution

u = k

2κ
(x − κy2) (11)

satisfies no-slip on a parabola (x = κy2). The flow domain (u > 0) is the region inside the parabola
where the walls provide enough viscous drag to balance the pressure gradient and reach a steady
state, as shown in Fig. 3(b).

Another simple solution

u = A

[(
x

a

)2

−
(

y

b

)2]
+ B, (12)

with A = k/2(a−2 − b−2) and a �= b, satisfies no-slip boundary conditions on a hyperbola (B �= 0)
or wedge (B = 0). For a < b and B = 0 the flow domain lies inside a wedge of acute opening angle
2 tan−1(a/b) < π

2 along the x axis with |x/a| > |y/b|, as shown in Fig. 4(a). For a > b and B = 0,
the flow domain is again in an acute-angle wedge, but now along the y axis with |x/a| < |y/b|.
Physically, there is no allowable solution for an obtuse angle wedge because it cannot exert enough
viscous drag to balance the pressure gradient. Mathematically, the local similarity solution only
exists for an acute corner [47].

For B > 0 in Eq. (12), the flow domain lies between two branches of a hyperbola, as shown in
Fig. 4(b). The velocity profile is a saddle surface, which is a growing parabola along the centerline
between the hyperbolic surfaces, and a decaying parabola along the line of closest approach. This
solution demonstrates the general principle that viscous drag in unidirectional flow is dominated by
the narrowest constriction, where the transverse flow profile is approximately parabolic.

The hyperbolic (or wedge) particular solutions can also be written in polar coordinates [46–48]

u(r,θ ) = kr2

4

(
cos(2θ )

cos(2α)
− 1

)
+ c. (13)

The maximum velocity at each radius is along θ = 0 and scales as u ∼ x2. The larger scaling
exponent than in the case of a parabolic corner, u ∼ x, reflects the weaker geometrical confinement
of the flow in the wedge. The physical constraint (5) implies α < π

4 . In the case of a wedge (c = 0),
we see again that a physical solution is only possible for acute opening angles 2α < π

2 .
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FIG. 5. Geometrical construction of special unidirectional flows, obeying Eq. (14). Famous solutions for
(a) parallel plates and (b) equilateral pipes are proportional to the product of the distances to the boundaries.
The latter solution also holds for (c) equilateral wedges, where the third boundary lies beyond the apex of the
wedge.

IV. EQUILATERAL DOMAINS

A. Geometrical ansatz

As beautifully demonstrated by Needham [77], solutions to Laplace’s equation in two dimensions
have simple geometrical interpretations, inherited from their analytic complex potentials. For
example, the harmonic function in the upper half plane with piecewise constant boundary conditions
is a weighted sum of angles subtended at the discontinuities and its harmonic conjugate is the
logarithm of a product of distances to the discontinuities raised to certain powers. These constructions
are related to the Schwarz-Christoffel mapping of the upper half plane to a polygon. Even more
remarkable is Schwarz’s geometrical interpretation of Poisson’s integral formula, which solves the
Dirichlet problem for Laplace’s equation in a disk, by averaging the boundary data after circular
inversion through an interior point [78].

In contrast, solutions of Poisson’s equation do not seem to have simple geometrical interpretations,
with a notable exception: the case of an equilateral triangular domain. Textbooks on fluid mechanics
leave it as an exercise to show that the velocity at an interior point is proportional to the product of
the distances to the three sides [39,79]. Below we show that the same construction also applies to
an unbounded equilateral wedge. It is interesting to note that Poiseuille flow between flat plates is
also proportional to the product of the distances to the two sides.

These cases, shown in Fig. 5, suggest that the same geometrical ansatz might also apply to other
situations. Consider a polygonal domain of N sides having orientation vectors {n̂i} and distances
{ci > 0} from the origin. Inspired by the cases N = 2,3, let us seek a solution of the form

u = a

N∏
i=1

n̂i · (	x − ci n̂i), (14)

which is proportional to the product of all the distances from the point 	x to the N sides and thus
automatically satisfies the no-slip Dirichlet boundary conditions.

B. Equilateral pipe

First, let us show that for a bounded domain with N = 3, Eq. (14) only solves Eq. (1) for the case
of an equilateral triangle:

u = k

3c
(x − c)

[
1

2

(
x + 1

2

)
−

√
3

2

(
y −

√
3

2

)][
1

2

(
x + 1

2

)
+

√
3

2

(
y +

√
3

2

)]

= k

12c
(x − c)[(2x + 4c)2 − 12y2].

This well-known solution [24,39,79] is shown in Fig. 6.
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FIG. 6. Exact solution for Poiseuille flow in domains with 60◦ angles between flat no-slip surfaces: center,
closed equilateral triangle; left, unbounded 60◦ wedge. The solution in both cases is given by Eq. (14) for
N = 3 in the domains where u > 0.

Proof. Substituting (14) into (1), we obtain

∇2u = a
∑

i

∑
j �=i

(n̂i · n̂j )
∏
l �=i,j

[(n̂l · 	x) − cl] = −k. (15)

Since k is constant, all terms involving 	x must vanish. For N = 3,

∇2u = 2a(	b · 	x + b0) = −k,

where

b0 = c1(n̂2 · n̂3) + c2(n̂1 · n̂3) + c3(n̂1 · n̂2),

	b = n̂1(n̂2 · n̂3) + n̂2(n̂1 · n̂3) + n̂3(n̂1 · n̂2).

Without loss of generality, let n̂1 = (1,0), n̂2 = (cos θ2, sin θ2), and n̂3 = (cos θ3,− sin θ3). Setting
	b = 	0 yields

sin θ2 cos θ2 = sin θ3 cos θ3,

sin θ2 sin θ3 = cos θ2 cos θ3 + cos2 θ2 + cos2 θ3.

Requiring θ2,θ3 ∈ (0,π ) implies θ2 = θ3 = θ and tan2 θ = 3 and thus θ = π/3 or 2π/3. The only
possible finite domain is an equilateral triangle, which can be centered on the origin by choosing
θ = 2π/3 and c1 = c2 = c3 = c. Finally, b0 = −k/a implies a = k/3c. �

C. Equilateral wedge

As shown in Fig. 6, the same solution (15) also holds with u > 0 in an unbounded 60◦ wedge-
shaped domain. The geometric interpretation is the same (product of distances to three surfaces
of the equilateral triangle) only now the third surface is hidden behind the apex of the wedge, as
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shown in Fig. 5(c). Since it is the product of three distances, the velocity along the centerline of the
equilateral wedge has cubic scaling u ∝ |x|3:

u(x,0) = k

12c
(x − c)(2x + 4c)2 ∼ kx3

3c
as x → −∞. (16)

Below, in Eq. (27), we explain why this scaling differs from that of the hyperbolic wedge solution
u ∼ x2 derived above in Eq. (13).

D. Uniqueness of the equilateral solution

It is clear that the ansatz (14) cannot hold in general. For example, for N = 4, the biparabolic
form u ∝ (a2 − x2)(b2 − y2) violates Eq. (1). The ansatz also fails for parabolic Hagen-Poiseuille
flow for a circular cross section or any other smoothly curved shape, which can be viewed as a limit
of infinitely many infinitesimal sides. In fact, no solutions exist of the form (14) for N > 3.

Proof. In order to satisfy Eq. (15) for all 	x in the domain (where x and y vary independently)
the coefficients of all terms am,nx

myn for m,n = 0,1, . . . ,N − 2 must vanish except for the constant
term, which must satisfy a0,0 = −k. We must therefore satisfy (N − 2)2 equations by choosing
parameters in Eq. (14). There are N coefficients cl and N orientation angles for the unit vectors n̂i ,
which are independent, except for overall rotation and dilation (and rescaling of u). Solvability thus
requires 2N − 2 � (N − 1)2 or N < 1 + √

7 < 4. �
Therefore, while the ansatz (14) holds in general for N = 2, it only works for the equilateral

geometries for N > 2, where the unique solution (up to translation, rotation, or dilation) is given by
Eq. (15). Even isosceles triangular domains have different solutions [80].

V. DOMAINS FOR GIVEN UNIDIRECTIONAL FLOWS

A. General solution of Poisson’s equation

For any geometry and Dirichlet boundary condition u = U (x,y), the solution to Poisson’s
equation (1) for unidirectional flow can be expressed as the sum of a pressure-driven Poiseuille
flow (particular solution) up and a Couette shear flow (homogeneous solution)

u(x,y) = up(x,y) + us(x,y), (17)

where we can choose up to be any of the exact solutions above, such as Hagen-Poiseuille flow (10),
or the general conic section flow (6). The shear flow is a harmonic function, which solves Laplace’s
equation

∇2us = 0 (18)

with a Dirichlet boundary condition

us(x,y) = U (x,y) − up(x,y), (19)

which is generally nonconstant even in the case of no slip, U = 0. As usual, the harmonic function
can be expressed as the real (or imaginary) part of an analytic function, the complex potential
us = Re�(z), where z = x + iy.

In summary, the general solution of Eq. (1) has the form

u(x,y) =
2∑

m=0

2∑
n=0

Amnx
myn + Re�(x + iy). (20)

The basic idea of adding a harmonic function to a quadratic particular solution can be traced
to de Saint-Venant [12] and general formulas were developed by Muskhelishvili [19,21]. Using
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Hagen-Poiseuille flow (10) as the particular solution, we recover the representation of Tao [24],

u(z,z) = −k

4
zz + �(z) + �(z), (21)

where z = x − iy is the complex conjugate and 2� = (k/4)R2 + �. This form of the solution can
also be derived by integrating Poisson’s equation (1) after a change of variables [24,56,58]

− ∂2u

∂z∂z
= k

4
(22)

related to the complex gradient operator [26,77]. This solution may seem less general, but it is
equivalent to Eq. (20). The bilinear terms in the sum are harmonic, and the quadratic terms have the
same form as Eq. (21), since 2x2 = zz + Rez2 and 2y2 = zz + Re(iz2). Nevertheless, as illustrated
below, it is easier to start with other particular solutions up in Eq. (20) when constructing solutions
for domains that do not resemble pipes.

Finding the complex potential �(z) for nonconstant Dirichlet boundary conditions in a given
domain is possible in theory (Sec. VI), but often challenging in practice. However, we can easily
produce new solutions for unidirectional flow by relaxing constraints on the precise shape of the
boundary. By choosing any harmonic function us , we can generate a new exact solution of the
form u = up + us from any of the particular solutions above, where the no-slip boundary is defined
implicitly by u = 0.

B. Deformed pipes

Power-law complex potentials �(z) ∝ zm in Eq. (21) yield de Saint-Venant’s original solutions
for m-sided polygonal domains with rounded edges [21]

ũ = 1 − r̃2 + amr̃m sin(mθ ), (23)

where we use polar coordinates z = reiθ and define r̃ = r/R and ũ = 4u/kR2. For example, the
no-slip boundary in the case m = 5 and a5 = 0.11 resembles a rounded pentagon and the case m = 4
and a4 = −0.21i a rounded square, as shown in Figs. 7(a) and 7(b). By varying am, the pipe cross
section can have more pointed corners, like a star, as shown in Fig. 7(e) for m = 7 and a7 = 0.117.

Interestingly, these exact solutions of de Saint-Venant [12] resemble the approximate solutions for
slightly different geometries obtained by Mortensen et al. [40] using boundary perturbation methods.
Such approximations have a long history in fluid mechanics, also based on conformal mapping in two
dimensions [81,82]. These comparisons suggest that, rather than deriving approximate solutions for a
given geometry [39], it could be advantageous to derive exact solutions for approximate geometries,
guided by the many examples here and in the literature.

A wide variety of other shapes can be created from the general Laurent series �(z) = ∑∞
n=−∞ anz

n

to arbitrary perturbations of the circular geometry

ũ = 1 − r̃2 +
∞∑

n=−∞
anr̃

n cos(nθ ). (24)

The Laurent coefficients {an} can in principle be systematically fitted to approximate a given
geometry of interest, using the general solution method below.

Let us first consider some simple examples plotted in Fig. 7. The choice a2 = 0.93i and a4 =
−0.3i (with other an = 0) yields a slitlike cross section that closely resembles parallel plates with
rounded circular ends, as shown in Fig. 7(c). The choice an = −a−(n+1) for all n � 0 distorts the
circular pipe from one side

ũ = 1 − r̃2 − a − r̃ cos θ

a2 − 2ar̃ cos θ + r̃2
(25)
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FIG. 7. Exact solutions for unidirectional flow in deformed pipes: (a) a pentagonal pipe; (b) a square pipe
given by Eq. (23); (c) a rounded slit given by Eq. (24); (d) an asymmetric flattened pipe, given by Eq. (25); and
(e) a seven-pointed star pipe, as well as seven smoothed wedge domains, given by Eq. (23), with parameters in
the main text.

by introducing a simple pole in the complex potential

�(z) = 1

z − a
= −1

a

∞∑
n=0

(
z

a

)n

. (26)
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If the pole lies just outside the circular domain of unperturbed Hagen-Poiseuille flow, the pipe
appears to be flattened against a planar surface, as shown in Fig. 7(c) for a = 1.05.

The Laurent series (24) corresponds to an implicit parametrization of the boundary (u = 0) in
polar coordinates. Wang [83] showed that exact solutions can also be constructed for a class of
symmetric bipolar shapes, albeit in the context of torsion of a compound bar.

C. Corners

Figure 7(e) also illustrates how these solutions for bounded starlike domains also describe
(multiple) unbounded wedgelike domains with smoothed corners, farther from the origin. The
asymptotic scaling of the velocity along the center of each wedge is u ∼ rm, where 2α = π/m

is the opening angle of the wedge. For m = 3, we recover the asymptotic scaling u ∼ r3, derived
above for the equilateral wedge. The constraint for a positive solution m > 2 implies that the wedge
angle must be acute, 2α < π/2, as noted above.

The different asymptotic scalings for the hyperbolic and equilateral wedge solutions above can
be reconciled by constructing the general solution for a wedge

u(r,θ ) = k r2

4

(
cos(2θ )

cos(2α)
− 1

)
+ Krπ/2α cos

(
πθ

2α

)
, (27)

where the physical constraint (5) requires an acute opening angle 2α < π/2. The first term is the
hyperbolic particular solution (13) scaling as u ∼ x2 along the centerline. The second term is the
homogeneous solution, which always dominates the asymptotic scaling u ∼ xπ/2α as x → ∞ as a
result of the physical constraint. Since the homogenous solution must be included to satisfy any
additional boundary conditions, this scaling dominates in bounded wedge domains, such as the
isosceles triangle, where it appears as the leading term in an eigenfunction series solution [80]. The
equilateral wedge solution (16) is a special case of Eq. (27), where u ∼ x3 for 2α = π/3.

The asymptotic scalings of corner flows are summarized in Fig. 8. Particular solutions grow
faster with decreasing confinement, as u ∼ xp with p = 0 for parallel plates, p = 1 for a parabolic
corner, and p = 2 for all wedges with acute opening angles (2α < π

2 ). In contrast, homogeneous
solutions grow faster with increasing confinement, as for wedges of decreasing α, where u ∼ xπ/2α .
For wedges with obtuse opening angles, neither particular nor homogeneous solutions exist.

Moffatt and Duffy [47] were the first to recognize the significance of right angle corners for
Poiseuille flows in bounded ducts, related to the discussion above. For acute angles, the dominant
flow near the corner is a locally determined similarity solution (13) with subdominant terms affected
by the global geometry. For obtuse angles, a local similarity solution does not exist and the dominant
flow is a nonuniversal eigenfunction expansion, determined globally by the shape of the duct.
Physically, an obtuse-angle corner does not exert enough drag on the fluid to control the flow profile.

D. Deformed coaxial cylinders

The domain for the general solution (20) need not be simply connected. For example, by adding
shear flow between moving coaxial cylinders �(z) ∝ log z to Hagen-Poiseuille flow in a circular
pipe, we obtain the general solution for unidirectional flow between no-slip coaxial circular cylinders

ũ = 1 − r̃2 + β ln r̃ , (28)

shown in Fig. 9(a) for β = 1. Once again, we can add a Laurent series �(z) = ∑
n anz

n to represent
general perturbations of the coaxial geometry

ũ = 1 − axx̃
2 − ayỹ

2 + β ln r̃ +
∞∑

n=−∞
anr̃

n cos(nθ ). (29)

The case ax = ay = β = 1 and a−1 = 0.06 (with an = 0 for n �= −1), shown in Fig. 9(b),
approximates the important case of a misaligned inner cylinder, causing increased hydraulic
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u ~ x2u ~ x1

u ~ x4

u ~ x0

u ~ x3u ~ x2

No solution 

Particular solutions 

Homogeneous solutions 

(a) (b) (c) 

(d) (e) (f) (g) 

FIG. 8. Geometry dependence of the centerline velocity scaling u ∼ xp near a corner in unidirectional
flow. Particular solutions grow faster (larger p) with decreasing confinement, as illustrated by (a) parallel plates
with p = 0, (b) parabolic corners with p = 1, and (c) acute-angle wedges with p = 2. No solutions exist for
(d) obtuse angle wedges. For acute-angle wedges, homogeneous solutions instead grow faster with increasing
confinement, as shown for opening angles (e) π/2 with p = 2, (f) π/3 with p = 3, and (g) π/4 with p = 4.

resistance on the right and faster flow on the left [84]. The inner pipe can also be distorted
into symmetric shapes of n-fold symmetry via higher-order poles in the Laurent series. The case
ax = ay = β = 1 and a−4 = 0.001, shown in Fig. 9(c), corresponds to a rounded square inner pipe
with four velocity maxima along the widest sections centered on the faces. By breaking symmetry
in the particular solution ax �= ay , the outer pipe can be more strongly distorted or connected to the
inner pipe. The case ax = 1.1, ay = β = 1, and a−1 = 0.1, shown in Fig. 9(d), creates a single pipe
with an asymmetric C-shaped cross section.

E. Deformed plates

Another class of solutions of the general form (20) corresponds to geometrical perturbations of
Poiseuille flow between flat plates

ũ(x̃,ỹ) = 1 − ỹ2 + Re�(x̃ + iỹ), (30)

where first we consider placing symmetric pairs of simple poles just outside the plates using the
function

F (z̃) = 1

z − ia
− 1

z + ia
= 2ia

z2 + a2
. (31)

With an imaginary coefficient �(z̃) = −iγ F (z̃), the solution

ũ(x̃,ỹ) = 1 − ỹ2 + 2aγ (x̃2 − ỹ2 + a2)

(x̃2 + ỹ2)2 + 2a2(x̃2 − ỹ2) + a4
(32)
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FIG. 9. Exact solutions for (a) coaxial circular pipes [Eq. (28)] as well as (b) off-center near-circular pipes,
(c) a rounded square inside a circle, and (d) a single C-shaped single pipe, given by various cases of Eq. (29)
described in the text.

describes a symmetric bulge in the plates, as shown in Fig. 10. The idea of warping a platelike
geometry by placing poles away from the axis has also been used to construct exact solutions to the
Navier-Stokes equations having steady vortex structures [3].

Alternatively, with a real coefficient �(z̃) = γF (z̃), the solution

ũ(x̃,ỹ) = 1 − ỹ2 + 4aγ x̃ỹ

(x̃2 + ỹ2)2 + 2a2(x̃2 − ỹ2) + a4
(33)

describes a twist in the plates, as shown in Fig. 11(a) for a = 4 and γ = 10. The plates can then be
deformed into a snakelike pattern by adding alternating twists at periodic locations

�(z̃) = γ (F (z̃) − F (z̃ − b) − F (z̃ + b) + F (z̃ − 2b) + F (z̃ + 2b) − F (z̃ − 3b) + · · · ), (34)

as shown in Fig. 11 for a = 4, b = 5, and γ = 10.
Periodic deformations of parallel plates can be achieved by adding complex sinusoidal

perturbations. For example, the exact solution

ũ(x̃,ỹ) = 1 − ỹ2 + Reσ cosh(iz̃) = 1 − ỹ2 + σ cosh(ỹ) cos(x̃) (35)
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FIG. 10. Exact solutions for flow between deformed parallel plates with a central bulge, given by Eq. (32)
with a = 4 and (a) γ = 2 and (b) γ = 6.

is shown in Fig. 12. The case σ = 0.3 in Fig. 12(a) describes smooth grooves along the plates, while
the case σ = 0.84 in Fig. 12(b) describes a sawtooth surface with diamondlike ribs.

F. Flat-bottom microchannels, troughs, and glaciers

A useful observation is that every isovelocity contour (u = const) in our solutions above could
also serve as the no-slip boundary of the domain. This follows from the simple fact that the
solution to Eq. (1) is invariant to shifting by a constant, which is a solution to the homogeneous
equation.

Some examples are shown in Fig. 13 with relevance for microfluidic devices [27,28,39]. By
subtracting 1 from the solution in Fig. 11(c), we obtain the solution in Fig. 13(a) for a microchannel

-10 -5 0 5 10 15

-10 -5 0 5 10 15

-10 -5 0 5 10 15

3

-10 -5 0 5 10 15

(c) 

(a) 

(b) 

(d) 

FIG. 11. Exact solutions for flow between deformed parallel plates with a sequence of twists, given by
Eq. (33) with a = 4, b = 4, and γ = 10 for (a) one, (b) two, (c) four, and (d) six terms in Eq. (34).
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FIG. 12. Exact solutions for flows between periodically grooved plates, given by (35) with (a) σ = 0.3 and
(b) σ = 0.84. These solutions in the lower half plane could also represent the free-surface flow of a river over
a grooved bottom, or of a glacial ice cap over a mountain range.

with a flat floor and a curved ceiling, similar to what can be made by various soft lithography
methods. This solution also resembles the case of a parabolic microchannel analyzed by Bruus [39]
using perturbation methods.

As noted above, the same mathematical methods could be applied not only to Poiseuille flows in
channels with no-slip walls, but also to unidirectional Couette flows with moving walls or to mixed
Couette-Poiseuille flows with both slipping and nonslipping surfaces. In order to illustrate the latter
case, we subtract 0.5 from the solution in Fig. 12(b) to obtain the flow in Fig. 13(b) for a triangular
channel with a no-slip ceiling and a perfect-slip (stress-free) floor, e.g., due to a superhydrophobic
coating. Turned upside down, this is also an example of drainage flow with a free surface in a
trough [17], which could also describe an advancing glacier in a wedge-shaped valley of constant
cross section [44]. The examples in Fig. 12, if restricted to the lower half plane, could likewise
describe a continental ice cap with a flat upper surface, slowly flowing over periodic mountain ranges.

G. Nearly rectangular domains

Next we consider rectangular domains, which have well-known series solutions [39], such as a
rectangular corner (semi-infinite strip) 0 < ỹ < iπ and x > 0, with no slip U = 0. In this case, the
solution can be represented as a Fourier series

ũ = 4

π

∞∑
n>0 odd

(1 − e−nx̃) sin(nỹ)

n3
, (36)

where ũ = kL2, x̃ = x/L, and ỹ = y/L for a given length scale L. This series cannot be
differentiated term by term, e.g., to calculate the viscous stress along the end, but it can be made

0 5

1

(a) (b) 

FIG. 13. Exact solutions for flows in microchannels with (a) slipping or (b) no-slip lower walls, obtained
by adding constants to the solutions in (a) Fig. 11(c) and (b) Fig. 12(b).
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FIG. 14. Exact solutions for nearly rectangular corners with M terms in Eq. (41).

uniformly convergent (and thus differentiable) by subtracting the particular solution for parallel
plates

ũp = ỹ(π − ỹ)

2
= ũ − ũs , (37)

ũs = − 4

π

∞∑
n>0 odd

e−nx̃ sin(nỹ)

n3
= 4

π
Im �(z̃). (38)

In this case, we can sum the series to obtain simple formulas for higher derivatives of the complex
potential

�(z̃) =
∞∑

n>0 odd

e−nz̃

n3
, (39)

�′′′(z̃) = −
∞∑

n>0 odd

e−nz̃ = − e−z̃

1 − e−2z̃
= − 1

2 sinh z̃
(Rez̃ > 0),

�′′(z̃) = −1

2
ln tanh

z̃

2
, (40)

but it does not seem possible to integrate two more times to obtain a closed-form solution. Below
we will encounter similar problems in evaluating the Schwarz integral formula for �(z̃).

Because the terms in the expansion are harmonic, however, we can construct exact solutions for
nearly rectangular corners by simply truncating the series

ũ = ỹ(π − ỹ)

2
− 4

π

M∑
m=1

e−(2m−1)x̃ sin[(2m − 1)ỹ]

(2m − 1)3
(41)

since each term in the Fourier series is also harmonic,

Ime−n(x̃+iỹ) = −e−nx̃ sin(nỹ).

As shown in Figs. 14(a)–14(c) for M = 1, 2, and 6, respectively, the domains corresponding to exact
solutions with a few terms are half strips with only slightly warped ends and the domain with six
terms is almost indistinguishable from the rectangular corner. In the same way, we can derive exact
solutions for finite, nearly rectangular pipes

ũ = 1

2
ỹ(π − ỹ) − 4

π

M∑
m=1

cosh[(2m − 1)x̃] sin[(2m − 1)ỹ]

(2m − 1)3 cosh[(2m − 1)L̃]
, (42)
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FIG. 15. Exact solutions for near rectangles with M terms in Eq. (42).

with dimensionless height π and width 2L̃. The Fourier series solution [39] is again broken into the
parabolic Poiseuille flow between flat plates (first term) and a truncated series (second terms) of M

harmonic terms, since

Im sinh[n(x̃ + iỹ)] = cosh(nx̃) sin(nỹ).

Some examples are shown in Fig. 15 for near squares (2L̃ = π ) and a near rectangle (2L̃ = 4π ).
More generally, we can truncate any eigenfunction expansion, or finite Fourier transform [59],
solving Poisson’s equation (with homogeneous Robin boundary conditions), since each term must
satisfy the homogeneous Laplace’s equation.

VI. UNIDIRECTIONAL FLOWS FOR GIVEN DOMAINS

A. General integral solution

We have seen that it is easy to generate exact solutions of the form (20), but only if we are allowed
to choose the boundary geometry. The difficulty lies in working backward: Given a boundary and
a convenient choice of the Poiseuille-flow particular solution up, what is the harmonic function
(shear flow) us satisfying the Dirichlet boundary condition (19) that is required to complete the
solution (17)?

Using complex analysis, a formal exact solution can be obtained in integral form for any simply
connected domain as follows, adapting the arguments of Tao [25]. Let w = f (z) be a conformal map
from the given z domain to the upper half w plane, whose existence is guaranteed by the Riemann
mapping theorem. The complex potential for the shear flow in the w plane is then given by the
Schwarz integral formula

�(w) = 1

πi

∫ ∞

−∞

us(f −1(ξ ))
ξ − w

dξ, (43)
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where us(z) = U (z) − up(z) is the Dirichlet boundary condition in the z domain. We thus arrive at
the general solution

u(x,y) = up(x,y) + Re�(f (x + iy)), (44)

which applies to all physically relevant problems, as in all of our examples, where the flow is bounded
by a polynomial function. The reason is that the Schwarz integral (43) provides the unique solution
to the Dirichlet problem provided only that �(w) is holomorphic and |wα�(w)| bounded for some
α > 0 in the closed upper half plane.

B. Rectangular corner

Let us illustrate the Schwarz integral solution for the case of a rectangular corner considered
above. The particular solution in Eq. (44) is again the Poiseuille flow between parallel plates (37),
which prescribes a parabolic flow profile on the end of the rectangle (x = 0). This nonuniform
Dirichlet boundary condition makes analytical progress difficult.

In order to obtain the complex potential for the shear flow, we conformally map the half strip
(0 < ỹ < iπ and x̃ > 0) using w̃ = cosh(z̃) to the upper half plane, where the following Schwarz
integral solves the Dirichlet problem:

�(w̃) = 1

2πi

∫ 1

−1

(cos−1 ξ )(π − cos−1 ξ )

ξ − w̃
dξ, (45)

which can then be mapped back to the z plane to obtain the solution

�(f (z̃)) = 1

2πi

∫ π

0

s(π − s) sin s

cos s − cosh z̃
ds. (46)

Unfortunately, this integral cannot be expressed in terms of elementary functions, but it can be used
as a basis for further analysis, such as asymptotic expansions near the corners where the Fourier
series (38) loses accuracy.

C. Symmetric boundaries: River growth

The preceding examples illustrate the difficulty of finding exact solutions for given geometries,
since the harmonic homogeneous solution usually has nonconstant boundary data in order to cancel
the particular solution on the boundary. In some cases, however, the symmetry of the geometry leads
at least to piecewise constant boundary data, which is easier to handle. This is the case when all
no-slip (u = 0) boundaries are isovelocity contours of the same quadratic-form particular solution
in Eq. (20), i.e., conic sections.

Let us consider the following example, which could describe groundwater flow [Fig. 2(c)] for
the case of river growth in a channel geometry (Fig. 16). Recent work has relied on either numerical
solutions or the approximation of Poisson’s equation by Laplace’s equation, thus enabling the more
straightforward application of (time-dependent) conformal maps [37,85]. Here we formulate a river
growth problem that has a simple exact solution for the full model, based on Poisson’s equation.

We solve ∇2ũ = −1 for ũ = κh2/2P , where h is the height of the water table, P is the
precipitation rate, and κ is the soil permeability. We impose Dirichlet boundary conditions ũ = 0 at
ỹ = ±1 to model a strip of land between two parallel rivers or lakes and also at ỹ = 0 for x̃ < 0 to
model a river growing along the center of the strip by erosion. The key simplifying feature is that
the central river lies along an isovelocity line of the particular solution for the height profile in the
absence of the river, which is analogous to the Poiseuille flow between parallel plates.

The solution has the form

ũ(x̃,ỹ) = 1 − ỹ2

2
+ φ(x̃,ỹ), (47)
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FIG. 16. (a) Exact solution to Poisson’s equation for unidirectional flow between flat plates with a parallel
half plate inserted at the center [Eqs. (47) and (48)]. (b) Taking a square root, the same solution also describes
the height of the water table in a strip of land between two rivers or lakes, where another river grows by erosion
down the center of the strip.

where the harmonic function φ(x̃,ỹ) satisfies φ(x̃,±1) = 0 and φ(x̃ < 0,0) = −1. The complex
potential �(x̃ + iỹ) can be obtained by conformal mapping

�(z) = 1

π
log

(√
1 − eπz + 1√
1 − eπz − 1

)
, (48)

where φ = Im�(z). The solution is shown in Fig. 16.
The river will grow by erosion along the x axis, according to the principle of local symmetry, at a

constant velocity, as a result of translational invariance. The speed of river growth can be calculated
from the solution as

v ∼ |∇u|η ∼
∣∣∣∣∂ũ

∂x̃
(0,0)

∣∣∣∣
η

= 2|�′(0)|η (49)

in the case of a power-law growth model with exponent η. As noted by Cohen et al. [37], only
the harmonic part of the solution determines the gradient at the river tip, leading to growth in the
direction of local symmetry. However, we see that the harmonic function is related to the particular
solution of Poisson’s equation, which determines its boundary conditions. Therefore, the rate of
growth down the centerline, as well as the shape of the river as it approaches the centerline (if it
were initially displaced to one side), depends on the full solutions of Poisson’s equation, including
the forcing term.

In this way, the global patterns formed by Poissonian growth will differ from their approximations
by Laplacian growth (Loewner evolution in two dimensions) [85], in spite of satisfying the same the
principle of local symmetry for the tip velocity. The effect of the forcing term in Poissonian growth
is analogous to that of the drift term in transport limited growth: Local properties, such as the fractal
dimension of advection-diffusion-limited aggregation [86], are universal, determined by diffusive
Laplacian growth, while the global shape of the pattern is determined by the boundary conditions
and the non-Laplacian forcing or drift terms [87]. In both cases, diffusion dominates at small length
scales because it appears as the highest derivative in the governing transport equation.

D. General series solution

In this article we have focused on closed-form exact solutions for the flow profile, which provide
many insights, but they are not convenient for analytically evaluating integrals of the solution, such
as the total flow rate or hydraulic resistance, as a result of either implicit boundary representations
(Sec. V) or intractability of the Schwarz integral (43). On the other hand, it is possible to derive
general series solutions for the flow profile and hydraulic resistance in terms of the Maclaurin
series coefficients of the conformal map from the unit disk to the domain, as first discovered by
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Morris [22]. The reader is referred to the book of Pólya and Szegö [23] for a discussion of complex
series expansions, as well as rigorous bounds, for the torsional rigidity of a prismatic beam, which
is analogous to the hydraulic conductance of a pipe. This connection has recently been exploited by
Kacimov and Kayumov [88] to calculate the permeability of cylinder packings, but otherwise the
general solution has largely escaped notice in hydrodynamics. Other analogies from Fig. 2 include
the average temperature of an electrical wire, the mean escape time from a cylinder, and the average
height of a soap bubble or draining aquifer.

VII. UNIDIRECTIONAL FLOW WITH NONCONSTANT FORCING

A. General solution of Poisson’s equation in two dimensions

The same mathematical methods above can be extended to solve the general Poisson equation

−∇2u = ρ (50)

for a nonconstant forcing term ρ(x,y) (charge density). Although this situation no longer describes
unidirectional flow or soap bubbles, it is relevant for the many other physical problems sketched
in Fig. 2. Besides electrostatics in a nonuniformly charged cylinder, important applications include
resistive heating in a wire with nonuniform current density, the reaction-diffusion process in a catalyst
rod with nonuniform reaction rates, and electrokinetic phenomena in a typical pore or microchannel
with nonuniform diffuse charge density.

As long as a particular solution up can be derived for a given ρ, then families of exact solutions
can be generated by simply adding harmonic functions us , which solve the homogeneous (Laplace)
equation. This idea can be exploited in any number of dimensions, but it is easiest to generate
harmonic functions in two dimensions as the real parts of analytic functions, yielding the general
solution (44). For a given geometry and particular solution, the harmonic function is uniquely
determined by the Schwarz integral (43) in terms of the conformal map w = f (z) of the domain to
the upper half plane.

For example, in the case of a general N th-order polynomial charge density in two dimensions

ρ(x,y) =
N∑

m=0

N∑
n=0

ρm,nx
myn, (51)

the particular solutions of Eq. (50) are (N + 2)-order polynomials

up(x,y) =
N+2∑
m=0

N+2∑
n=0

Am,nx
myn (52)

whose coefficients are subject to the constraints

(m + 2)(m + 1)Am+2,n + (n + 2)(n + 1)Am,n+2 = −ρm,n (53)

and

Am+2,N+1 = Am+2,N+2 = AN+1,n+2 = AN+2,n+2 = 0 (54)

for all m,n ∈ {0,1, . . . ,N}. In the case of constant charge density N = 0, this general polynomial
solution reduces to the quadratic-form solution for a conic section domain (6) and (7).

B. Unidirectional linear electrokinetic phenomena

Consider a long straight pore or microchannel of arbitrary cross section, filled with a liquid
electrolyte, having an arbitrary surface charge distribution qs(x,y) that does not vary with axial
position. In equilibrium, there is a nonuniform diffuse charge density ρeq(φ), resulting from
imbalances in ionic concentrations, which depends on the electrostatic potential φ(x,y), determined
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self-consistently by Poisson’s equation

−ε∇2φ = ρeq(φ) (55)

and the electrostatic boundary condition −ε n̂ · ∇φ = qs . The zeta potential ζ (x,y) is defined as the
value of φ(x,y) at the surface.

In linear response to a small axial electric field E there is a unidirectional electro-osmotic flow
with axial velocity ue(x,y) given by the balance of viscous stress and electrostatic body force
(Maxwell stress) on the fluid

−μ∇2ue = ρeq(φ)E. (56)

There can also be a unidirectional pressure-driven flow ug(x,y) in response to an axial pressure
gradient G,

−μ∇2ug = G, (57)

which results in an axial streaming current (advection of diffuse charge). Each of the flow fields
satisfies no-slip conditions on the boundary ue = ug = 0.

These linear electrokinetic phenomena, sketched in Figs. 2(p)–2(q), are thus described by three
Poisson equations (55)–(57), two of which have nonconstant (and nonlinear) forcing terms, related
to the nonuniform distribution of diffuse charge. The general solution above could be applied to
obtain the flow and current for a given distribution ρeq(x,y) or it could be used as the basis for
a numerical solution scheme. Fortuitously, we do not need to solve the equations to obtain some
useful relationships by taking advantage of the fact that each unknown function can be expressed
as the sum of a particular solution and a harmonic homogeneous solution. By combining Eqs. (55)
and (56), the electro-osmotic flow can be expressed as

ue = ε(φ − ψ)E

μ
, (58)

where the first term is a particular solution and the second is the homogeneous solution, satisfying
Laplace’s equation

∇2ψ = 0. (59)

The no-slip condition implies that ψ(x,y) = ζ (x,y) on the boundary. In the limits of uniform zeta
potential and thin double layers, where ρe → 0 and φ → 0 over the central region of the pore, we
recover the classical Helmholtz-Smoluchowski slip formula

ue → −εζE

η
(60)

for electro-osmotic plug flow.

C. Proof of Onsager reciprocity

Onsager [89,90] argued that the linear-response matrix, which relates thermodynamic forces and
fluxes near equilibrium, must be symmetric, based on the reversibility of the microscopic equations
of motion. Onsager reciprocity is widely accepted, even in situations where it has not been rigorously
proved from the equations of motion, and has become a fundamental postulate of nonequilibrium
thermodynamics [91]. In particular, the linear-response matrix for electrokinetic phenomena is
always assumed to be symmetric [38], even for anisotropic particles [92], channels [93], and
surfaces [94]. In the case of a circular cylindrical capillary, reciprocal relations have been derived
from the fundamental transport equations by Gross and Osterle [95] and Peters et al. [96], also
allowing for linear response to salt concentration gradients. For general porous media, formal proofs
of Onsager reciprocity for linear electrokinetics are also available, based on the assumptions of
homogenization theory [97,98]. Here we simply exploit the mathematics of unidirectional flow.
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FIG. 17. Unidirectional electrokinetic phenomena for a liquid electrolyte in a straight nanochannel or pore
having irregular cross section and nonuniform surface charge density. In the absence of applied concentration
gradients, the Onsager linear-response matrix in Eq. (61) relates two fluxes, the flow rate Q and electrical
current I , to two forces, the axial pressure gradient G and electric field E.

The preceding results can be used to derive electrokinetic reciprocal relations for a straight pore
of arbitrary cross-sectional shape and nonuniform surface charge around its perimeter, sketched in
Fig. 17. There is no constraint on the topology of the cross section. A non-simply-connected domain
would describe a medium with parallel pores, where the fluxes and flows are unidirectional.

Neglecting salt concentration gradients, the total flow rate Q and total current I are linearly
related to the applied electric field and pressure gradient via the electrokinetic conductance matrix(

Q

I

)
=

(
LH LEO

LSC LE

)(
G

E

)
, (61)

where LH , LE , LEO , and LSC are the hydraulic (Darcy), electrical (Ohmic), electro-osmotic, and
streaming-current conductances, respectively. We are now ready to establish Onsager symmetry.

Proof.

LSC = 1

G

∫∫
ρeugdx dy

= − ε

G

∫∫
(∇2φ)ugdx dy [Eq. (55)]

= − ε

G

∫∫
(∇2(φ − ψ))ugdx dy [Eq. (59)]

= − ε

G

∫∫
(φ − ψ)∇2ugdx dy [Eq. (62)]

= ε

μ

∫∫
(φ − ψ)dx dy [Eq. (57)]

= 1

E

∫∫
uedx dy [Eq. (58)]

= LEO.

In the key step above, we perform two integrations by parts (Green’s second identity)∫∫
(∇2f1)f2dx dy =

∮
n̂ · (f2∇f1 − f1∇f2) +

∫∫
f1(∇2f2)dx dy, (62)

where the line integral vanishes since f1 = φ − ψ = 0 and f2 = ug = 0 on the surface. �

VIII. CONCLUSION

This paper provides an overview of exact solutions and physical analogies for unidirectional flow.
Through a variety of examples, we have shown how to construct approximate geometries that admit
simple exact solutions by manipulating the harmonic homogeneous solution to Poisson’s equation.
We have identified 17 physical analogies for unidirectional flow in geological flows, electrokinetics,
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electrochemistry, and stochastic processes. In these fields, the classical mathematics of unidirectional
flow may find some new applications.

Here we have focused on exact solutions for the flow profile, but applications often require
only its area integral, the hydraulic conductance, or analogous quantities. There is a vast body of
mathematical results from the theory of elasticity that could be exploited, not only from complex
analysis but also from geometry, based on so-called isoperimetric inequalities [23,99]. It is beyond
the scope of this paper to apply these ideas to Poiseuille flow and its many analogies, so this
task will be left for future work. For now, we close with an isoperimetric inequality proposed by
Acrivos: “A circular pipe has the least hydraulic resistance for a given cross-sectional perimeter.” This
theorem has apparently not been stated in the literature, although its proof follows from the general
theory [23]. In his seminal paper, de Saint-Venant [12] made a similar conjecture, that a circular
beam has the greatest torsional rigidity for a given cross-sectional area. Almost a century passed
before a geometrical proof was provided by Pólya [100], who laid the groundwork to understand the
shape dependence of solutions to Poisson’s equation.

ACKNOWLEDGMENTS

This work was partially supported by the Global Climate and Energy Project at Stanford University
and by the US Department of Energy, Basic Energy Sciences through the SUNCAT Center for
Interface Science and Catalysis.

[1] C. Y. Wang, Exact solutions of the steady-state Navier-Stokes equations, Annu. Rev. Fluid Mech. 23,
159 (1991).

[2] C. Y. Wang, Exact solutions of the unsteady Navier-Stokes equations, Appl. Mech. Rev. 42, S269 (1989).
[3] M. Z. Bazant and H. K. Moffatt, Exact solutions of the Navier-Stokes equations having steady vortex

structures, J. Fluid Mech. 541, 55 (2005).
[4] S. P. Sutera and R. Skalak, The history of Poiseuille’s law, Annu. Rev. Fluid Mech. 25, 1 (1993).
[5] J. L. M. Poiseuille, Sur le mouvement des liquides de nature differente dans les tubes de tres petits

diametres, Ann. Chim. Phys. 21, 76 (1847).
[6] G. G. Stokes, On the theories of the internal friction of fluids in motion, and of the equilibrium and motion

of elastic solids, Trans. Cambridge Philos. Soc. 8, 287 (1845) [reprint: G. G. Stokes, Mathematical and
Physical Papers (Johnson Reprint Corp., New York, 1966), Vol. 1, pp. 75–129].

[7] J. G. Butcher, On viscous fluids in motion, Proc. London Math. Soc. 8, 103 (1876).
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