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problem, as it requires the detector to be able to detect both filament-like thin and blob-like thick mem-
brane, while suppressing the ambiguous intracellular structure. In this paper, we propose multi-stage
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is biologically-plausible, as it likes a human visual system to compare different possible segmentation
solutions to address the ambiguous boundary issue. Our multi-stage networks are trained end-to-end.
It achieves promising results on two public available EM segmentation datasets, the mouse piriform
cortex dataset and the ISBI 2012 EM dataset.
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Abstract

In the field of connectomics, neuroscientists seek to i-
dentify cortical connectivity comprehensively. Neuronal
boundary detection from the Electron Microscopy (EM) im-
ages is often done to assist the automatic reconstruction of
neuronal circuit. But the segmentation of EM images is a
challenging problem, as it requires the detector to be able
to detect both filament-like thin and blob-like thick mem-
brane, while suppressing the ambiguous intracellular struc-
ture. In this paper, we propose multi-stage multi-recursive-
input fully convolutional networks to address this problem.
The multiple recursive inputs for one stage, i.e., the multi-
ple side outputs with different receptive field sizes learned
from the lower stage, provide multi-scale contextual bound-
ary information for the consecutive learning. This design
is biologically-plausible, as it likes a human visual system
to compare different possible segmentation solutions to ad-
dress the ambiguous boundary issue. Our multi-stage net-
works are trained end-to-end. It achieves promising re-
sults on two public available EM segmentation datasets,
the mouse piriform cortex dataset and the ISBI 2012 EM
dataset.

1. Introduction
A central theme of neuroscience is to understand how a

brain’s functions are related to its neuronal structure [23].
This is difficult because of the small size of neurons and
the extremely high packing density of the neuropil, e.g.,
neurons densely packed axons and dendrites [13]. Recen-
t advances in high-throughput serial section electron mi-
croscopy (EM) have made possible the imaging of large
volumes of neuronal tissue at high resolution, allowing neu-
roscience experts to reconstruct neuronal circuits and study
the interconnections of neurons [38]. However, analysis of
a large number of EM images by expert annotators is labo-
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Figure 1. Neuronal structure segmentation: an EM image (a) and
the ground truths for its neuronal boundary detection result (b) and
segmentation result (c), respectively.

rious and even impractical [13], which drives the demand
for efficient automated neuronal circuit reconstruction ap-
proaches.

Serial section EM produces a stack of 2D images by cut-
ting sections of brain tissue. Due to the anisotropic resolu-
tions of in-plane and out-of-plane, most neuronal circuit re-
construction approaches follow the following pipeline: (1)
neuronal boundary detection on each 2D image, (2) neu-
ronal structure segmentation based on the 2D boundary
map, and (3) linking the neuronal segments across 2D im-
ages into a 3D reconstruction result.

This paper focuses on neuronal boundary detection on
2D images from serial section EM, also called membrane
detection, which is the essential first step of the reconstruc-
tion pipeline. The challenges of this problem, as can be
seen from Fig. 1, mainly lie in the following aspects: (1)
The variation of the membranal thickness is large, as thin as
a filament to as thick as a blob. (2) The noise of EM acquisi-
tion makes the membrane contrast to be low, inducing some
membranal boundaries are even invisible. (3) The presence
of confounding structures, such as mitochondria and vesi-
cles, also increases the difficulty in membrane detection.

Driven by the rapid process of deep neural network-
s, more and more deep learning based methods have been
proposed for neuronal boundary detection on EM images,
achieving considerable progress [8, 5, 11, 28, 21]. Howev-



er, most of them only focus on how to improve detection
performance by using the deep learning strategies shown to
be effective on general computer vision problems, like im-
age classification [17, 37, 12], semantic segmentation [25]
and boundary/symmetry detection [35, 42, 36]. For exam-
ple, using fully convolutional networks enables holistic im-
age training instead of patch-by-patch training [5]; deeply
supervised learning hierarchical representations [5]; using
residual structures rather than plain structures [11, 28]. Al-
though these strategies indeed improve membrane detection
results, they lack an interpretation for this problem, i.e., how
can membranes be detected and intracellular structures be
suppressed meanwhile, even the contrasts of intracellular
structures to context are much higher than those of mem-
branes?

In this paper, we propose multi-stage multi-recursive-
input fully convolutional networks (M2FCN) for neuronal
boundary detection. The architecture of M2FCN is shown
in Fig. 2. The whole net consists of multiple stages, where
each stage generates multiple side outputs by imposing su-
pervision at different levels [20, 42] of the sub-net in this
stage, and all these side outputs are concatenated with the
original image to serve as the inputs for the next stage.

From a neurobiological prospective, this network archi-
tecture is biologically-plausible. First, as explained in [21],
this recursive framework is in accord with the interplay pro-
cess, named “countercurrent disambiguating process” [7],
between the primary and higher visual cortical areas (V1
and V4, respectively) in monkeys’ brains, found by examin-
ing monkeys’ performances on contour detection tasks. The
latter stages of our networks act as V4 to detect the overall
“contour” of neuronal boundaries and feed top-down influ-
ence to the early stages, which acts as V1, to enhance the
activation on neuronal boundaries while suppressing those
on intracellular structures. Second, as pointed out in [13],
the ambiguous neuronal boundaries make segmentation d-
ifficult, and this issue can only be resolved when explicit-
ly comparing the different possible segmentation solutions,
which is what the human visual system may compute when
inspecting this situation. We can roughly think that of the
multiple recursive inputs, computed at the different levels in
the previous stage, provide different possible segmentation
solutions for training of the next stage. We show that using
multiple recursive inputs is very important in our experi-
ments, as it leads to much better results than using a single
recursive input.

From the deep learning view, our networks take several
advantages of the latest deep learning strategies to facili-
tate the learning of a neuronal boundary detection model,
including (1) holistic image training and prediction benefit-
ed from using the architecture of fully convolutional neu-
ral networks, (2) supervised multi-scale feature learning at
each level of each stage and (3) learning multi-stages in an

end-to-end fashion, different from previous recursive ap-
proaches [39, 21, 14, 9] which learn a series of classifiers
stepwise. Using multiple recursive inputs rather than one
is a major difference between our networks and [21]. Note
that, the multiple recursive inputs for one stage are the mul-
tiple side outputs computed at the levels having different
scales (receptive field sizes). In general, a side output with
a small scale has better ability than one with larger scale for
detecting a thin neuronal boundary between cluttered neu-
rons. Conversely, a side output computed at a large scale
can suppresses the false predictions on intracellular struc-
tures by using more image context. Therefore, these multi-
ple recursive inputs provide richer information than one for
the learning of next stage. We show that introducing these
strategies in our networks can improve the performance of
neuronal boundary detection.

We verify our networks on two public available EM seg-
mentation datasets. One is the mouse piroform cortex EM
dataset [21], a sizable and important EM dataset, contains
4 stacks of EM images of mouse piriform cortex, covering
460 images for training and 168 images for testing. We an-
alyze alternative designs in our network architecture on this
dataset and show it outperforms the state-of-the-arts [21].
The other is the dataset used for ISBI 2012 EM segmenta-
tion challenge [29], covering 30 images for training and 30
images for testing. Our networks can achieve a comparable
result to the state-of-the art [28, 10] on this dataset.

In summary, our main contributions includes (1) end-to-
end multi-stage networks architecture, in which each stage
generates multiple side outputs by imposing supervision on
different levels and feeds them into the next stage as the
multiple recursive inputs. (2) using multiple recursive in-
puts rather than single recursive inputs can not only boost
the performance of neuronal boundary detection, but also be
biologically-plausible. (3) our networks achieve promising
results on two public available EM segmentation datasets.

2. Related Work
Segmenting EM images of neural tissue is an important

step to understand the circuit structure and the function of
the brain [21, 28]. Early work of this topic needs to im-
pose experts’ knowledge. For example, users need to label
intracellular regions to allow graph cut segmentation, and
also correct segmentation errors afterwards [41]. To reduce
the amount of human labor required [13], automatic neuron
segmentation became an active research direction, which
follows the pipeline that detects neuronal boundaries by ma-
chine learning algorithms [19, 15, 18, 31] and then applies
post-processing algorithms, such as watershed [26, 40, 43],
hierarchical clustering [27, 24] and graph cut [16] algo-
rithms, to boundary maps to obtain neuron segments. But
early methods, which are based on hand-crafted features,
tend to fail when the membrane is ambiguous.
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Figure 2. The architecture of the proposed M2FCN. The multiple side outputs of one stage are concatenated with the original image along
the image channel dimension, and are fed into the next stage. It makes the side outputs learned at the next stage approach ground truth.

With the rapid development of deep networks, segmenta-
tion and classification on medical images have undergone a
vast revolution, from analyzing specific features of neuronal
boundaries to designing fully automatic algorithm without
experts’ knowledge. Recent deep learning based neuron
segmentation methods are well suited to deal with ambigu-
ous neuronal boundaries in EM images. One of the earliest
works made by Ciresan et al. [8] used a succession of max-
pooling convolutional networks as a pixel classifier, which
estimated the probability of a pixel being a membrane. This
method won the ISBI 2012 EM segmentation challenge [1].
Ronneberger et al. [29] presented a U-net structure with
contracting paths, which captures multi-contextual informa-
tion. Compared with the work in [8], the U-net replaces
pooling operations by upsampling operators, which prop-
agates context information from multiple feature channels
to higher resolution layers. Fully convolutional networks
(FCNs) [25] led to a breakthrough on semantic segmenta-
tion. With deep supervision and side outputs on FCN, a
holistically-nested edge detector (HED) [42] was then pro-
posed to solve the ambiguity in edge and object bound-
ary detection. Due to the great success of these methods,
Chen et al. [5] presented a deeply supervised contextu-
al network to fuse the multi-level side-outputs to segment
the membrane. Deep residual network (ResNet) [12] ad-
dresses the degradation (of training accuracy) problem by
optimizing the residual mapping, which ranked the 1st on
ILSVRC 2015 image classification challenge [30]. This
inspired fully residual convolutional neural networks with
nested short and long skip connections for membrane seg-
mentation, proposed by Quan et al. [28] and Fakhry et
al. [11]. Most of the recent deep learning based methods

were motivated by the novel network architectures proposed
in the computer vision community. Although these meth-
ods achieve improvements on membrane detection, they
lack interpretation and comprehensive analysis. Our pro-
posed multi-stage multi-recursive-input fully convolution-
al networks (M2FCN) not only considers the advantages of
the latest deep network architectures but also is biologically
plausible.

The recursive training framework has been applied to
many computer vision tasks, such as image labeling [39],
instance segmentation [22], human pose estimation [34],
and face alignment [9, 3]. However, they trained the recur-
sive framework stepwise and only used one single recursive
input. There are two image segmentation methods [32, 33]
also fed multi-recursive inputs into next stage in the recur-
sive training framework. But, their strategies to generate the
multi-recursive inputs are different from ours. In the first
one [32], the multi-recursive inputs for one stage were ob-
tained by applying a series of Gaussian filters to the single
output of the previous stage, but ours are the multiple out-
puts supervised at different levels in a deep network. The
second one [33] downsampled an original input image in-
to multiple input images with different resolutions and ob-
tained the multi-recursive inputs from these multiple input
images, but ours are computed from the same input image
by using the hierarchy of a deep net. In addition, the multi-
ple stages in their methods were trained in a stepwise man-
ner. On the contrary, we embed the recursive learning in a
deep network and first learn it in an end-to-end fashion.

Our work is related to the recursively trained network
proposed in [21], which trains a Very Deep 2D (VD2D)
network first, then a Very Deep 2D-3D (VD2D3D) network



initialized with learned 2D representations from VD2D net-
work is trained to generate the boundary map. There are two
important differences between the networks in [21] and our
method. (1). We use multiple recursive inputs with differ-
ent receptive field sizes to incorporate multi-level contex-
tual boundary information learned from the previous stage,
while VD2D3D only uses the single output of VD2D as its
recursive input. (2). We train our network in an end-to-
end fashion to co-enhance the learning ability (e.g., detec-
t membranes while suppress intracellular structure) of all
stages, while [21] sequentially learns deep networks. Bene-
fited from end-to-end training and multiple recursive inputs,
our networks can achieve better performance than VD2D3D
while only using 2D EM images.

3. Multi-stage Multi-recursive-input Fully
Convolutional Networks

3.1. Overview

Fig. 2 illustrates the proposed network architecture. Our
networks consist of multiple sequential stages, where each
stage is a sub-net built based on fully convolutional net-
works with multiple side outputs [42]. Each sub-net con-
sists of multiple levels, each of which is composed of sev-
eral combinations of one convolutional layers followed by
one ReLU layer and a final pooling layer. Each side out-
put layer is connected to the last convolutional layer of each
level, which is composed of a 1× 1 convolutional layer and
a deconvolutional layer to ensure the resolution of each side
output is the same as the input original image. A sigmoid
layer is applied to each side output layer to generate a neu-
ronal boundary map having values belonging to [0, 1].

Note that, the multiple side outputs of one stage are con-
catenated with the original image along the image channel
dimension and fed into the next stage. By feeding multiple
side outputs to the next stage, the side outputs of next stage
can obtain the information from all scales, so that even low
level side outputs in the next stage can capture large object-
s. While in a single stage network, each side output only
corresponds to a certain scale, e.g., low level side outputs
cannot suppress large intracellular structures, and high level
side outputs cannot locate thin membranes accurately. This
is like how a human visual system may compare differen-
t possible segmentation solutions and select the right scale
from them [13]. The multiple stages in our networks can
be trained in an end-to-end fashion, which enable the side
outputs in a previous stage to receive feedback from those
of the next stage, like V4 in the human visual system gives
the top-down influence to V1.

3.1.1 Sub-net Architecture

We adopt the well-known HED network [42] as our default
sub-net, which is converted from VGG-16 net [37], having

5 levels, with strides 1, 2, 4, 8 and 16, respectively, and
receptive field sizes 5, 14, 40, 92, 196, respectively. Each
side output layer is connected to the last convolutional lay-
er of each level, i.e., conv1 2, conv2 2, conv3 3, conv4 3,
conv5 3, respectively.

3.2. M2FCN for Neuronal Boundary Detection

Now we formulate our approach for neuronal bound-
ary detection as a per-pixel classification problem. Giv-
en a raw input EM image X = (xj , j = 1, . . . , |X|),
where index j is over the image spatial dimensions of im-
age X , the goal is to predict the neuronal boundary map
Ŷ = (ŷj , j = 1, . . . , |X|), where ŷj ∈ {0, 1} denotes the
predicted label for each pixel xj , i.e., if xj is predicted as
a boundary pixel, ŷj = 0; otherwise, ŷj = 1. We learn
an M2FCN, which consists of M stages and each stage has
N levels, to address this problem. Next, we introduce the
training and testing phases of our approach respectively.

3.2.1 Training Phase

Since our networks use holistic image training, we consid-
er each training image independently. Suppose that we are
given a training batch with one 2D EM image X and it-
s corresponding ground truth neuronal boundary map Y ,
our goal is to supervise the multiple side outputs at d-
ifferent level to approach the ground truth map Y . Let
Sm,n = (sm,n

j , j = 1, . . . , |X|) be the side output at the
n-th level of the m-th stage. Since the side outputs of one
stage will be fed to the next stage as the inputs, we express
the input to the m-stage by

X(m) = X ⊕ Sm−1,1 ⊕ . . .⊕ Sm−1,n (1)

where ⊕ is the the concatenation operation along the image
channel dimension and we define X(1) = X . Let Wm be
the network parameters for the sub-net in them-th stage and
wm,n be the parameters for the n-th side output in the m-th
stage, we define a cross-entropy loss function for this side
output by

`m,n(Wm,wm,n;X(m), Y ) =

−β
∑

j∈|B| log(1− σ(s
m,n
j ))

−(1− β)
∑

j∈|B̄| log(σ(s
m,n
j )). (2)

This loss function (Eqn.2) is computed over all pixels in
the training image X , where |B| and |B̄| denote the bound-
ary and non-boundary ground truth label sets respectively,
σ(·) is the sigmoid function and β = |B̄|/|B| is a pos-
itive/negative class-balancing weight [42] to eliminate the
bias between boundary and non-boundary ground truths in
training (in a typical 2D EM image, most of the ground truth
is non-boundary). To supervise all the side outputs in our
network, we define a loss function by

Ls(W,w;X,Y ) =

M∑
m=1

N∑
n=1

αm,n`
m,n(Wm,wm,n;X(m), Y ), (3)



where W = (Wm,m = 1, . . . ,M), w = (wm,n,m =
1, . . . ,M, n = 1 . . . , N) and αm,n is a loss weight for each
side output.

To obtain a fused output Sf,m for m-stage , we use a
1× 1 convolutional layer to fuse its side outputs:

Sf,m =

N∑
n=1

hm,nS
m,n, (4)

where h = (hm,n,m = 1, . . . ,M, n = 1 . . . , N) is the
fusion weight. Similar to Eqn. 2, a class-balanced cross-
entropy loss function is defined for the fused output of m-
stage:

`f,m(Wm,wm;X(m), Y ) =

−β
∑
j∈|B|

log(1− σ(sf,mj ))− (1− β)
∑
j∈|B̄|

log(σ(sf,mj )). (5)

where wm = (wm,n, n = 1 . . . , N). The loss function for
all the fused outputs is

Lf (W,w,h;X,Y ) =

M∑
m=1

αf,m`
f,m(Wm,wm;X(m), Y ), (6)

where αf,m is a loss weight for each stage.
All these parameters, W,w,h, are optimized simultane-

ously by standard back-propagation:

(W,w,h)∗ = argmin(Ls(W,w;X,Y )

+Lf (W,w,h;X,Y )). (7)

3.2.2 Testing Phase

In the testing stage, given an image X , by considering the
m-th sub-net as a function Fm, we sequentially obtain the
side outputs of the m-th sub-net by

(Sm,n, n = 1 . . . , N) = Fm(X(m),

(W1)∗, . . . , (Wm)∗, (wm,1)∗, . . . , (wm,N )∗). (8)

The fusion output of m-stage is obtained by

Sf,m =

N∑
n=1

h∗m,nS
m,n. (9)

We use the fused output of the last stage Sf,M as the final
output of our network, then the unified boundary probability
map is given by Ŷ = σ(Sf,M ).

3.2.3 Initialization for Multi-stage Training

The proposed network is very deep (our 3-stage network
with 5 levels has totally 48 layers). It is known that, train-
ing such a deep network from scratch is not easy. Here, we
adopt a simple strategy to initialize the multi-stage network.
First, we train a single stage network. Then, this network is

used to initialize the first stage of our network, while the rest
of the network is randomly initialized. The initialization for
the first stage provides high-confidence recursive inputs to
the consecutive stage, which facilitates the training proce-
dure.

4. Experimental Results

In this section, we discuss our designs for network ar-
chitectures and training strategies, and compare our perfor-
mance with other competitors.

4.1. Experiment Setting

The hyper parameters of our networks include: the mini-
batch size (1), the loss weight for each side-output (1), the
momentum (0.9), and the weight decay (2× 10−4). We set
the base learning rate to 1e-8 and pre-train a single stage
network by 20,000 iterations. Then we use this pre-trained
single stage network to initialize the first stage of our multi-
stage network, and reduce the base learning rate to 1e-9 and
train it by 10,000 iterations.

4.2. Mouse Piriform Cortex Dataset

The images of mouse piriform cortex dataset [21] were
collected from the piriform cortex of an adult mouse, which
contains 4 stacks of EM images. We use the same training-
testing split in [21], i.e., stack2, stack3 and stack4 are for
training and stack1 is for testing.

4.2.1 Evaluation Metric

To evaluate membrane segmentation performances, we fol-
low the protocol used in [21], where the segmented mem-
brane is measured by the Rand F-score:

V Rand
Fscore =

2V Rand
mergeV

Rand
split

V Rand
merge + V Rand

split

, (10)

where V Rand
merge and V Rand

split are Rand merge score and Rand
split score respectively, and defined by:

V Rand
merge =

∑
ij n

2
ij∑

i(
∑

j nij)2
, V Rand

split =

∑
ij n

2
ij∑

j(
∑

i nij)2
, (11)

where nij denote the number of voxels in the i-th seg-
ment of the proposal segmentation and j-th segment of the
ground truth segmentation. V Rand

merge and V Rand
split are close

to 1 when there are fewer merge and split errors, respec-
tively. To calculate the Rand score, we obtain the neuronal
segmentation based on the boundary map by applying the
same modified graph-based watershed algorithm [43] as in
[21]. We use the default setting in [21] and report our best
Rand F-score V Rand

Fscore.



4.2.2 Data Augmentation

Data augmentation is a standard way to generate sufficient
training data for learning a “good” deep network. We rotate
the images to 4 different angles (0◦, 90◦, 180◦, 270◦) and
flip them with different axis (up-down, left-right, no flip),
then resize images to 3 different scales (0.8, 1.0, 1.2), totally
leading to an augmentation factor of 36.

4.2.3 Alternative Design Discussion

We use the pre-trained single stage network as the baseline
and discuss some possible alternative designs for network
architectures and training strategies. The results of these
alternative designs are summarized in Table. 1. To simplify
description, we denote each alternative design by “AD” plus
an index.

The role of multiple stages. Since our networks consist
of multiple stages, it’s necessary to see whether the perfor-
mance can be improved by adding stage by stage. Due to
the limitation of GPU memory, the deepest network we can
train is a 3-stage network with sub-nets of 5 levels (Sec.
3.1.1). We compare the performance between a 1-stage net-
work (AD I), a 2-stage network (AD VI) and a 3-stage net-
work (AD VII). Note that, the AD I has the same archi-
tecture as the pre-trained single stage network. As shown
in Table. 1, the performance of AD I is almost the same
as that of the pre-trained single stage network, which in-
dicates that training a single stage network by more iter-
ations cannot improve the performance considerably. The
AD VI and the AD VII achieve 1.39% and 1.86% perfor-
mance improvements compared with the baseline, respec-
tively, which shows that our multi-stage training is effec-
tive for neuronal boundary detection. A qualitative compar-
ison between these three networks, i.e, 1-stage (AD I), 2-
stage (AD VI) and 3-stage (AD VII) networks, is given in
Fig. 3. Observed that, the false detections on intracellular
structures such as mitochondria and vesicles can be reduced
(indicated by red arrows) by training a network with more
stages.

The role of multiple recursive inputs. As we stated in
the Sec. 1, using multiple recursive inputs for the multiple
stage training is crucial for our framework. To evaluate this,
we test two alternative network architectures, which only
uses the side output of the 5-th level (AD III) and the 4-th
level (AD IV) in each stage as the recursive input for the
next stage respectively. As shown in Table. 1, only using
single recursive input results in a significant performance
drop, 4.56% decrease for AD III and 2.1% decrease for
AD IV. We illustrate the side outputs of the second stages of
AD III and AD VI in Fig. 4, where we see that the side out-
puts of the former one only response to large scale objects,

while even the side outputs of the latter one can capture
objects of different scales, thanks to the multiple recursive
inputs.
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Figure 4. The side outputs of the second stages learned by single
recursive input (AD III) and multiple recursive inputs (AD VI).

Stepwise or end-to-end training. One difference be-
tween our multi-stage training framework to others [39,
21, 14, 9] is we train these multiple stages in an end-to-
end fashion, not stepwise. To verify which way is better,
we also train a 2-stage network stepwise, by simply fix-
ing the parameters of the first stage in this 2-stage network
(AD V). As can be seen from Table. 1, training the 2-stage
network stepwise leads to a considerable performance de-
crease (0.9819 → 0.9762). During end-to-end training,
previous stages are influenced by next stages. We visual-
ize the fused outputs (after watershed) of the first stages of
(AD V) and (AD VI), respectively, in Fig. 5, where we see
the latter one leads to better segmentation results (indicated
by red arrows). Therefore, we conclude that training in an
end-to-end way is better.

The range of the receptive field sizes in each sub-net.
The receptive field sizes of the 5 levels in each sub-net range
from 5 to 196. Such a wide range of receptive field sizes
ensure the side outputs to be able to capture small neuronal
boundaries while suppress relative big intracellular struc-
tures. To show this wide range of receptive field sizes is
important for neuronal boundary detection, we use an alter-
native network architecture for each sub-net, which is ob-
tained by removing the last level from the default sub-net,
i.e., a 2-stage network with 4-level sub-net (AD II). As we
expected, as shown in Table. 1, removing the last level in
each sub-net leads to performance decrease.



Figure 3. Qualitative comparison between 1-stage (AD I), 2-stage (AD VI) and 3-stage (AD VII) networks. Red arrows indicate sup-
pressed false detections by training more stages.

Figure 5. The comparison between the fused outputs (after water-
shed [43]) of the first stages of a 2-stage network trained stepwise
(AD V) and end-to-end (AD VI). The latter one leads to better
segmenting results (indicated by red arrows).

4.2.4 Performance Comparison

Now we compare our networks (3-stage with 5 levels) with
other competitors on the mouse piriform cortex dataset. The
quantitative results are summarized in Table 2 and the pre-
cision (rand merge)-recall (rand split) curves are illustrat-
ed in Fig. 6. As can be seen, our method can maintain a
high precision even when it achieves a high recall, thanks to
the multi-stage training which suppresses false detections of
boundaries on intracellular structures while enhancing neu-
ronal boundaries. The current state-of-the-art method on
the mouse piriform cortex dataset is VD2D3D [21], which
is also a recursive training framework. But it trains two
stages stepwise, i.e., train the first one, a 2D convolutional
network, then uses its output as the recursive input for the

Table 1. Performance of alternative designs for network architec-
tures and training strategies.

Alternative Design V Rand
Fscore

pre-trained single stage, 5-level (baseline) 0.9680
AD I: 1-stage, 5-level 0.9688
AD II: 2-stage, 4-level, end-to-end, 0.9739multi-recursive-input
AD III: 2-stage, 5-level, end-to-end, 0.9410single-recursive-input (level 5)
AD IV: 2-stage, 5-level, end-to-end, 0.9656single-recursive-input (level 4)
AD V: 2-stage, 5-level, stepwise, 0.9762multi-recursive-input
AD VI: 2-stage, 5-level, end-to-end, 0.9819multi-recursive-input
AD VII: 3-stage, 5-level, end-to-end, 0.9866multi-recursive-input

second one, a 3D convolutional networks. The experimen-
tal results show that with the end-to-end multi-stage train-
ing and multi-recursive-inputs, our 2D 2-stage network can
achieve better performance than a 2D-3D network. Note
that, as VD2D3D already obtained a high Rand F-score, our
method achieves around 1.5% improvement on it, which is
meaningful. Such a low error obtained on a large EM im-
age dataset is important for neuron reconstruction. Some
neuron segmentation results obtained by applying the wa-
tershed algorithm [43] to our boundary maps are shown in
Fig. 7.

4.3. ISBI 2012 EM segmentation dataset

Most of current neuronal boundary detection methods
are evaluated on the public dataset of ISBI 2012 EM seg-
mentation challenge [29]. The training data of this dataset
is a set of 30 consecutive images (512 × 512 pixels) from a



Table 2. Neuronal boundary detection performance comparison
between different methods. The values of V Rand

merge and V Rand
split cor-

respond to the best Rand F-score V Rand
Fscore.

Method V Rand
merge V Rand

split V Rand
Fscore

N4 [8] 0.9619 0.9010 0.9304
VD2D [21] 0.9771 0.9174 0.9463

VD2D3D [21] 0.9891 0.9555 0.9720
M2FCN (1 stage) 0.9576 0.9802 0.9688
M2FCN (2 stage) 0.9759 0.9880 0.9819
M2FCN (3 stage) 0.9917 0.9815 0.9866
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Figure 6. Evaluation of neuronal boundary detection methods by
precision (rand merge)-recall (rand split) curves.

Figure 7. Neuron segmentation examples. From left to right: the
original image, the ground truth segmentation, our boundary map
and the segmentations obtain by applying the watershed algorith-
m [43] to our boundary maps.

serial section Transmission Electron Microscopy (ssTEM)
dataset of the Drosophila first instar larva ventral nerve
cord [4]. The testing data of this dataset also contains 30
consecutive EM images of the same resolution. The ground
truth boundary maps of the training images are made pub-
licly available to enable participants to develop their algo-
rithm, while the ground truth boundary maps of the test

images are kept by the organizers. Although this chal-
lenge is over, it is still open for submissions. The perfor-
mance of the new submissions will be reported on the lead-
er board of this challenge. There are over 70 results list-
ed on the leader board, but not all of them have published
papers. We summarized some leading quantitative results
reported in published papers in Table 3. Note that, many
state-of-the-art methods apply post-processing or average
multiple trained models to boost the performance, such as
PolyMtl [10], FusionNet [28] and CUMedVision [5]. Our
method, a two-stage network using a single trained model
without post-processing, can achieve 0.9780 Rand F-score,
which is comparable with the state-of-the-art methods and
better than CUMedVision [5], a one-stage HED. But, C-
UMedVision used post-processing and averaged 6 trained
models to improve the result. This comparison shows the
effectiveness of our multi-stage learning. IAL IC [2] is a
post-processing method, which can be applied to our result
to improve our performance. Besides, as both FusionNet
and PolyMtl are built on ResNet [12], we can also replace
the sub-net in our model by such a powerful network to gain
improvement.

Table 3. Comparison to published entries on the ISBI 2012 EM
dataset [29]. For full ranking of all submitted methods, please re-
fer to the challenge website: http://brainiac2.mit.edu/
isbi_challenge/leaders-board-new.

Method V Rand
Fscore

PolyMtl [10] 0.9806
M2FCN (ours) 0.9780
FusionNet [28] 0.9780

IAL IC [2] 0.9773
CUMedVision [5] 0.9768
FCN+LSTM [6] 0.9754

Unet [29] 0.9727

5. Conclusion
We present multi-stage multi-recursive-input fully con-

volutional networks for neuronal boundary detection. In the
proposed architecture, the multiple side outputs learned at
different scales in one stage, are fed into the next stage. This
provides the ability to detect neuronal boundaries while
suppressing false predictions on intracellular structures. Ex-
tensive analysis on two public EM segmentation datasets,
the mouse piriform cortex dataset and the ISBI 2012 EM
dataset, verifies the advantages of our network architecture.
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