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Abstract. Recent research has shown that free-running quantum cascade lasers are capable of producing fre-
quency combs in midinfrared and THz regions of the spectrum. Unlike familiar frequency combs originating from
mode-locked lasers, these do not require any additional optical elements inside the cavity and have temporal
characteristics that are dramatically different from the periodic pulse train of conventional combs. Frequency
combs from quantum cascade lasers are characterized by the absence of sharp pulses and strong frequency
modulation, periodic with the cavity round trip time but lacking any periodicity within that period. To explicate for
this seemingly perplexing behavior, we develop a model of the gain medium using optical Bloch equations that
account for hole burning in spectral, spatial, and temporal domains. With this model, we confirm that the most
efficient mode of operation of a free-running quantum cascade laser is indeed a pseudorandom frequency-
modulated field with nearly constant intensity. We show that the optimum modulation period is commensurate
with the gain recovery time of the laser medium and the optimummodulation amplitude is comparable to the gain
bandwidth, behavior that has been observed in the experiments. © 2017 Society of Photo-Optical Instrumentation Engineers
(SPIE) [DOI: 10.1117/1.OE.57.1.011009]

Keywords: quantum cascade laser; frequency combs; frequency modulation.

Paper 170909SS received Jun. 13, 2017; accepted for publication Aug. 10, 2017; published online Sep. 12, 2017.

1 Introduction
Since their inception in 1994,1 quantum cascade lasers
(QCLs) have quickly become the preferred sources of coher-
ent radiation in the mid- and far-infrared (IR) regions of the
spectrum.2 These lasers are quite versatile and can be engi-
neered to suit specific applications, with spectroscopy being
the most widespread application of QCLs due to the large
number of strong fundamental absorption lines of chemical
compounds in the IR and terahertz (THz) spectral ranges.
THz spectroscopy is of particular interest as many large
and complicated molecules, having broad and obscure
absorption lines at shorter wavelengths, possess strong
and narrow resonances in the THz spectral region. Due to
the ease of tuning the intersubband (ISB) transition fre-
quency, QCLs can be made to be ultrabroadband, covering
spectral ranges 2 to 3 μmwide in the mid-IR and long wave-
IR spectral domains.3 Similarly, broad, almost octave span-
ning gain has been reported in THz QCLs.4,5 Tunable QCL
sources can be versatile, enabling components of many
detection and sensing applications.6–8 However, the tunabil-
ity is usually achieved by placing the QCL gain chip inside
an external cavity with a movable dispersive component
(typically a grating). This fact limits the measurement
speed and affects compactness and ruggedness of all spectro-
scopic instruments employing tunable sources, including
QCLs. Tunable THz radiation is often achieved via nonlinear
frequency generations that often suffer from low conversion
efficiencies and output power. Another approach, using a
broadband source (for example FTIR spectrometry)

also requires moving components to achieve frequency
selectivity.

Recent years have seen the development of an alternative
approach to broadband spectroscopy involving optical fre-
quency combs (FCs).9 In the spectral domain, optical FCs
present a series of sharp spectral lines phase locked to
each other with a constant separation between two adjacent
lines, i.e., the free spectral range (FSR), which is designed to
closely align with the cavity resonances. When two FCs with
slightly different FSRs (FSR1 and FSR2) are combined on a
detector, the resulting radio frequency (RF) spectrum
presents a series of sharp spectral lines (beat nodes) sepa-
rated by the constant distance (FSR2-FSR1). If the intensities
of one of the FCs carry information on the transmission
(absorption) through the medium of spectroscopic interest,
at the detector this information is instantly transferred into
the RF domain. Thus, fast detection is accomplished without
any moving components and using only a single detector
rather than an array of detectors.

Once the advantages of this “dual-comb spectroscopy”
method were fully comprehended, a strong effort was
mounted to develop robust FC sources from UV to far-IR.
While there have been successes in generating FCs using
CW-pumped microresonators,10 the best octave-spanning
FC sources all incorporate mode-locked lasers generating
infinite trains of ultrashort pulses, whose Fourier transform
constitutes FCs. The best examples of mode-locked lasers
are Ti-sapphire lasers producing combs close to the visible
range and various fiber lasers whose wavelengths lie in near-
IR below 2.5 μm.11,12 When it comes to extending the range
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of FCs into the mid- and far-IR spectral regions, one is forced
to rely on nonlinear frequency conversion techniques (differ-
ence frequency generation or optical parametric amplifica-
tion).13 This greatly increases the complexity of the FC
generating apparatus and reduces its efficiency. It would
be far more preferable to obtain FC directly from a mid-
to far-IR source, such as the QCL.

Alas, passive mode-locking has not been achieved in
QCLs because the ISB transitions have inherently short
relaxation (gain recovery) times, on the order of τ2 ∼ 1 ps
when compared to the cavity round trip times that are on
the order of τrt ∼ 100 ps.14 Mode-locking typically requires
a gain medium with gain recovery times that are much longer
than τrt such that the energy can be effectively stored in the
upper laser level (ULL) in between pulses. Indeed in an all
solid state or fiber laser amenable to mode-locking, the gain
recovery time is measured in at least hundreds of microsec-
onds while the cavity round trip times are no longer than tens
of nanoseconds.

Active mode-locking of QCL’s in external cavities have
been reported;15–17 however, both the period and pulse length
achieved were very long and with a very large duty cycle
resulting in a spectrum consisting of very few, broad spectral
lines, making spectroscopic applications unworkable. It is
well known that active mode-locking can never reach the
bandwidth that could be provided by a passive mode-locking
regime of operation. However, in addition to the aforemen-
tioned long gain recovery time, passive mode-locking
requires incorporation of a saturable absorber with a very
short recovery time inside the cavity. Fast saturable absorbers
present lower loss to a train of sharp pulses than to that of
CW radiation. This causes the formation of mode-locked
pulses to arise from noise, as pulses get sharpened with
each successive pass through the absorber until their spectral
bandwidth approaches the width of the gain. QCL gain
media, due to an inherently short gain recovery time,
presents fast saturable gain (rather than loss), which is
exactly the opposite of what is needed for mode-locking.
Therefore, any pulse in the QCL gain media is expected
to flatten with each successive pass until a constant intensity
oscillation is achieved.

However, notwithstanding this admittedly pessimistic
outlook for FC generation in QCLs, the stable FC operation
of QCL in the mid-IR has been reported by the ETH Zurich
group18 and later confirmed by numerous other groups19,20

including FC generation in THz QCLs.4 Furthermore, the
stability, narrow linewidth, and equal spacing of QCL
FCs21 have been good enough to enable their application
in dual-comb spectroscopy in both mid-IR22 and THz23 spec-
tral domains. Experimental evidence has shown that FCs are
indeed generated by free-running QCL lasers4,18 as long as
the gain medium is sufficiently broadband and, most criti-
cally, provided that a good dispersion compensation is
achieved. The salient feature of all QCL FCs is that the
time domain intensity looks like anything but the short
pulses generated by the conventional mode-locked laser.
Instead, the intensity varies around some constant value
while the instant frequency varies periodically with the
round trip time.

The key to understanding the genesis of FCs in a gain
media with short τ2 lies in realizing that stable FCs only
require some stable phase relation between the frequency

lines (longitudinal modes) and that conventional mode-lock-
ing, in which all the phases are equal, is only one of an infin-
ite number of phase relations. Some of these combinations
result in constant intensity radiation with periodically modu-
lated instant frequency, commonly known as frequency-
modulated (FM) lasing.24 Now, since the broad gain in a
QCL is usually achieved by variations of the thickness of
quantum wells in different periods of QCL-active layers, a
certain amount of inhomogeneous broadening will cause
spectral hole burning to always be present. In addition, spa-
tial hole burning is bound to occur in a Fabry–Pérot cavity.
This hole burning in spectral and spatial domains favors mul-
timode operation. Indeed, any Fabry–Pérot QCL usually
operates in the multimode regime and single mode operation
is only attainable in the DFB QCL.25 At the same time, a
short gain recovery time in the QCL favors constant intensity
operation. The only way in which nearly constant intensity
can coexist with multimode operation is the FM regime that
has indeed been observed in Refs. 4 and 18.

2 Frequency-Domain Model of Self-FM Operation
This phenomenological rationalization of self-FM operation
of free-running QCLs has been confirmed by a theoretical
model that was developed in Ref. 26 via a perturbative sol-
ution of the set of Maxwell Bloch equations in the frequency
domain (i.e., solving a separate Maxwell equation for each
mode). In this model, the phase relations among the different
modes arise from the four-wave mixing (FWM) between
them. The FWM in QCLs is engendered by the rapid oscil-
lations of the gain at the intermode beat frequency, i.e., it is a
real rather than virtual FWM process that is responsible for
FC formation in dielectric resonators.

Rather unexpectedly, the model also predicted what
we shall call a “pseudorandom” FM signal in a sense that
it is periodic with the round trip time τrt, yet strongly irregu-
lar on shorter time scales, as shown in Fig. 1(a). This figure
shows the oscillations of the instant frequency νðtÞ of the FM
signal EðtÞ ¼ E0 exp½2πi∫ νRðtÞdt�, where jνRðtÞj ≤ AFM

and is normalized to τ−1rt around the central (carrier) fre-
quency ν0. As one can see, within each period the instant
frequency oscillates around some mean value aperiodically
but with a mean oscillation period hTFMi that is commensu-
rate with the gain recovery time τ2 and the amplitude of FM
AFM commensurate with the half-bandwidth of the gain.

At the time of writing,26 the explanation of “pseudoran-
domness” was not given, and it was even thought that the
aperiodicity can simply be traced to the fact that the
phase relation among the modes arises initially from some
random noise; hence, it would be possible to obtain a
more deterministic fully periodic FM signal, especially if
one can “seed” it by modulating the current. However, multi-
ple experimental data accumulated in the last couple of years
indicate that far from being a fluke, the “pseudorandom” FM
is indeed a preferred operating regime of a free-running QCL
with a well-compensated dispersion. What we mean as the
“preferred” operating regime is the regime that has the lowest
threshold, i.e., the regime in which the photons, on average,
experiences the highest net gain as they pass through the
active region. It is the goal of this work to explicate the pseu-
dorandomness of the self-FM regime in QCL FCs, in the
hope that eventually it may allow us to exert some control
over FC characteristics.
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First, let us present some qualitative arguments for pseu-
dorandomness of self-FM in the QCL. Consider an inhomo-
geneously broadened (spectral inhomogeneity has not been
taken into account in Ref. 26) gain profile shown Fig. 1(c),
typical for a broadband THz QCL4 and similar to the gain in
mid-IR QCLs. When lasing occurs at a single mode, the gain
saturates strongly in the middle (a spectral hole is burned)
and the effective gain experienced by the signal is reduced.
When the frequency is modulated, the spectral hole burning
is mitigated and the effective gain increases. Hole burning
mitigation occurs when the instant frequency moves away
from the saturated spectral region and comes back when
the gain has been replenished, i.e., at a time comparable
to the gain recovery time τ2. If the instant frequency does
not sweep the whole gain spectrum within the gain recovery
time, a significant fraction of the pump energy stored on the
ULL will be lost to nonradiative ISB relaxation. Clearly, this
disqualifies the simplest FM signal νðtÞ ¼ AFM sinð2πt∕τrtÞ
with a period τrt ≫ τ2. Since the FM signal is repeated every
round trip time, it appears that a suitable form of it would be
a “nice” FM signal shown in Fig. 1(b) with instant frequency
varying as

EQ-TARGET;temp:intralink-;e001;63;119νRðtÞ ¼ AFM sinð2πmt∕τrtÞ; (1)

where m is an integer number on the scale of m ∼ τrt∕τ2
which can be as large as 50. However, while this signal

looks perfectly acceptable from the point of view of spectral
hole mitigation, it badly fails to address spatial hole burning
because its spectrum contains spectral lines separated by
m∕τrt, indicating that only one out of each m modes
would be lasing. This would greatly exacerbate spatial
hole burning and is rarely seen in experiment at narrow
bias ranges. When the FM is pseudorandom within τrt, as
shown in Fig. 1(a),

EQ-TARGET;temp:intralink-;e002;326;273νRðtÞ ¼ AFM sin½2πνFMðtÞt� (2)

yet periodic with the round trip frequency, i.e.,
νFMðtþ τrtÞ ¼ νFMðtÞ, each mode within the gain bandwidth
is active, which mitigates spatial hole burning. With a modu-
lation signal that is pseudorandom yet periodic with a mean
period commensurate with τ2, the gain can be efficiently and
uniformly saturated while maintaining an FC spaced by the
round trip frequency.

To confirm this rather simple qualitative explanation, we
developed a rigorous time-domain model that goes beyond
the one used in Ref. 26, which did not take into account spec-
tral hole burning, was perturbative in nature (only third-order
terms were included), and did not take into account the
coherent effects occurring at the time scale commensurate
with the coherence time τcoh. The model developed below
addresses all the shortcomings of the prior work and con-
vincingly shows that the pseudorandom self-FM operating

Fig. 1 (a) Pseudorandom frequency modulation simulated in Ref. 26. (b) Deterministic, single frequency
modulation. (c) Gain profile after lasing with and without frequency modulation. Intracavity power is
25 mW or 30% of the averaged saturation power, P̄sat.
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mode is indeed a natural operating regime of QCL resulting
in stable FC generation.

Given the large number of parameters involved in QCL
modeling and the fact that many of these parameters, such
as lifetimes, tunneling times, transition dipole matrix ele-
ments etc., cannot be independently determined with perfect
precision, one cannot expect our model to accurately predict
all operating characteristics of any actual THz QCL laser
and, therefore, be used as a design tool. The purpose of
this work is less ambitious yet, in our view, more stimulat-
ing—to establish that a typical THz QCL with dispersion
compensation is expected to operate in a pseudorandom
FM regime. In this work, we use parameters in line with the
device reported in Ref. 4, but our conclusions are valid for
the wide range of THz QCL characteristics as long as they
satisfy the requirements of short gain recovery time, broad
gain, and compensated dispersion.

3 Time-Domain Model of Inhomogeneously
Broadened QCL

We can describe the effects of FM by approximating the
gain dynamics with the optical Bloch equations (OBEs)
for an inhomogeneously broadened system. First, as
shown Fig. 2(a), we approximate each period of the QCL-
active region by an effective three-level scheme comprised
of the injection level (level 3), ULL 2, and lower laser
level 1 (LLL), subsequently followed by the next injection
level. As shown in Fig. 2, the lifetime of the ULL is τ2,
depopulation of the LLL is achieved at a rate τ−11 and injec-
tion into the ULL from level 3 occurs at a tunneling rate τ−1t .
While a single period of the QCL is in fact comprised of
more than three levels, it is desirable to reduce the model
to a two-level system in order to decrease computational
requirements. In a typical THz QCL, this approximation
is close to the reality (typical a THz QCL period has four
to five levels) while in a mid-IR QCL there are more injector
layers between levels 1 and 3. It is fairly obvious, however,
that the depopulation time τ1 in our simplified model is the
effective time that includes the relaxation rate of LLL per se
and the transport through the injector to the level 3.

The model’s equations are derived via OBEs, with the
usual rotating wave and slow envelope approximations. The
inhomogeneously broadened three-level system is described
by a set of N density matrices ρðnÞ, with lasing transitions
having resonance frequencies ωðnÞ

21 spread around the
mean transition frequency ω̄21 according to a normalized dis-
tribution function fðnÞ ¼ fðωðnÞ

21 − ω21Þ, the shape of which
can be surmised from Fig. 1(c). Due to charge neutrality, the

populations of the three levels are related to the diagonal den-

sity matrix elements as Ni ¼ N2-D

P
N
n fðnÞρðnÞii whereN2-D is

the two-dimensional (2-D) doping density and
P

3
i¼1: ρ

ðnÞ
ii ¼

1 which allows us to not consider ρðnÞ33 in the rate equations.
For each spectral bin, the 2 × 2 density matrix ρðnÞ evolves as

EQ-TARGET;temp:intralink-;e003;326;686

d
dt

ρðnÞ ¼ −
j
ℏ
½HðnÞ

0 þHðnÞ
filed; ρ

ðnÞ� þ RðnÞ; (3)

where

EQ-TARGET;temp:intralink-;e004;326;634HðnÞ
0 ¼ ℏ

�
ωðnÞ
21 ∕2 0

0 −ωðnÞ
21 ∕2

�
(4)

and interaction with the optical field Hamiltonian is

EQ-TARGET;temp:intralink-;e005;326;579Hfield ¼ ℏ

�
0 Ω cos½ω0tþ ϕFMðtÞ�

−Ω cos½ω0tþ ϕFMðtÞ� 0

�
:

(5)

Here Ω ¼ qz12E0∕ℏ is the Rabi frequency and
z12 ¼ ∫Ψ�

1zΨ2dz is the dipole moment of the transition.
The phenomenologically introduced pumping/scattering

matrix is then

EQ-TARGET;temp:intralink-;e006;326;481RðnÞ ¼
�
ρðnÞ22 τ

−1
2 − ρ11τ

−1
1 −ρðnÞ11 τ

−1
coh

−ρðnÞ21 τ
−1
coh JðnÞ∕qfðnÞN2-D − ρðnÞ22 τ

−1
2

�
;

(6)

where τcoh is the coherence time and JðnÞ ¼ fðnÞJ is the
fraction of the total current density J, carried by the fraction
of 2-D electrons passing through the QW’s with resonant

frequency ωðnÞ
21 . Obviously, this means that in the absence

of lasing, the density matrix for each spectral bin is pumped

to the same initial state ρðnÞ22;0 ¼ Jτ2∕qND; ρ
ðnÞ
11;0 ¼ ρðnÞ22;0τ1∕τ2

with the population inversion ΔρðnÞ0 ¼ Jðτ2 − τ1Þ∕qND. As
the QCL is pumped by a constant current source, we can
write for the total current density

EQ-TARGET;temp:intralink-;e007;326;308

J
qN2-D

¼ ρðnÞ33 − ρðnÞ22

τðnÞt

¼ ρðnÞ11

τðnÞ1

: (7)

This means that once lasing commences both the tunneling
time and the effective depopulation time will change
to assure that the current remains constant (but the voltage
drop on each QCL period will change). BecauseP

3
i¼1: ρ

ðnÞ
ii ¼ 1, one obtains J ¼ qND∕ðτ1 þ 2τ2 þ τtÞ and

the maximum population inversion attainable in the QCL

is ΔρðnÞmax ¼ ðτ2 − τ1Þ∕ðτ1 þ 2τ2 þ τtÞ < 1∕2. With doping
densities in the ∼1 × 1010 cm−2 range and depopulation val-
ues in the few ps range, one can expect current densities on
the order of 500 A∕cm2.

Fig. 2 (a) Drawing of levels in one period of QCL and (b) dissection of
current, recycled through periodic structure.
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With all of the above definitions Eq. (3) becomes
EQ-TARGET;temp:intralink-;e008;63;741

d
dt
ρðnÞ11 ¼jðρðnÞ21 Ω−ρðnÞ12 ΩÞcos½ωotþϕFMðtÞ�þ

ρðnÞ22

τ2
−
ρðnÞ11

τ1
;

d
dt
ρðnÞ22 ¼−jðρðnÞ21 Ω−ρðnÞ12 ΩÞcos½ωotþϕFMðtÞ�þ

J
qNd

−
ρðnÞ22

τ2

d
dt
ρðnÞ21 ¼−jωðnÞ

21 ρ
ðnÞ
21 −jðρðnÞ22 −ρðnÞ11 ÞΩ cos½ωotþϕFMðtÞ�−

ρðnÞ21

τcoh
:

(8)

Introducing the rotating wave approximation ρ21 ¼
σ21e−jωot−ϕFMðtÞ and ρ12 ¼ σ12eþjωotþϕFMðtÞ, we obtain from
Eq. (8)
EQ-TARGET;temp:intralink-;e009;63;581

d
dt

ρðnÞ11 ¼ −Ω ImðσðnÞ21 Þ þ
ρðnÞ22

τ2
−
ρðnÞ11

τ1
;

d
dt

ρðnÞ22 ¼ Ω ImðσðnÞ21 Þ þ
J

qNd
−
ρðnÞ22

τ2
;

d
dt

σðnÞ21 ¼ −jσðnÞ21 ðωðnÞ
21 −ωo − ωFMÞ− jðρðnÞ22 − ρðnÞ11 Þ

Ω
2
−
σðnÞ21

τcoh
:

(9)

Now, expressing the level populations as ρðnÞ11 ¼ Jτ1∕qN2-D

and ρðnÞ22 ¼ Δρþ Jτ1∕qN2-D, we immediately get a result for

the population inversion ΔρðnÞ and polarization σðnÞ21 of the
n’th inhomogeneously broadened transition
EQ-TARGET;temp:intralink-;e010;63;405

d
dt

ΔρðnÞ ¼ 2
J

qNd

�
1 −

τ1
τ2

�
−
2ΔρðnÞ

τ2
þ 2Ω ImðσðnÞ21 Þ;

d
dt

σðnÞ21 ¼ −j½ω21 − ωn þ ωFMðtÞ�σðnÞ21 − jΔρðnÞ
Ω
2
−
σðnÞ21

τcoh
:

(10)

Finally, after we normalize the time and all relevant
frequencies to the coherence time as
EQ-TARGET;temp:intralink-;e011;63;289

τ ¼ t∕τcoh;

Ω 0 ¼ Ωτcoh;

Δω 0
nðtÞ ¼ ½ωðnÞ

21 − ωo þ ωFMðtÞ�τcoh; (11)

we obtain what amounts to be OBEs (splitting the polariza-
tions, σ21, into real and imaginary parts)
EQ-TARGET;temp:intralink-;e012;63;198

d
dτ

ΔρðnÞ ¼ 2ðΔρo − ΔρðnÞÞ
T

þ 2Ω 0 ImðσðnÞ21 Þ;
d
dτ

σðnÞ21 ¼ −jΔω 0
nðτÞσðnÞ21 − jΔρðnÞ

Ω 0

2
− σðnÞ21 ; (12)

where T ¼ τ2∕τcoh. We shall refer to Eq. (12) as the “coher-
ent” equations as it takes into account dynamics of the polari-
zation on a scale comparable to or faster than τcoh. If, on the
other hand, the rate of FM is slower than coherence time, i.e.,
d∕dτ ≪ 1, then the polarization follows the optical field
adiabatically as:

EQ-TARGET;temp:intralink-;e013;326;752σðnÞ21 ðtÞ ¼ −
1

2
jΔρðnÞΩ 0∕½1þ jΔω 0

nðtÞ�; (13)

and one obtains the “incoherent” or “rate equation” approxi-
mation from the dynamics of level populations only.

EQ-TARGET;temp:intralink-;e014;326;698

d
dτ

ΔρðnÞ ¼ 2ðΔρo − ΔρðnÞÞ
T

−
Ω 02ΔρðnÞ

1þ Δω 02
n ðτÞ

: (14)

Now, before we proceed, it makes sense to introduce the
relation between the variables in the rate equation and actual
observable parameters of the QCL. We define the instant
saturation intensity for each “frequency bin” as

EQ-TARGET;temp:intralink-;e015;326;613IðnÞsat ðτÞ ¼
n̄ℏ½1þ Δω 02

n ðτÞ�
τ2τcohz2214παo

; (15)

where α0 is the fine structure constant and n̄ is the back-
ground index, and rewrite (14) as

EQ-TARGET;temp:intralink-;e016;326;545

d
dτ

ΔρðnÞ ¼ 2Δρo
T

−
2ΔρðnÞ

T
½1þ I∕IðnÞsat ðτÞ�: (16)

The mean saturation intensity at which the gain decreases
to half its original value can be found out as

EQ-TARGET;temp:intralink-;e017;326;480Īsat ¼
n̄ℏð1þ Δω̄ 02Þ
τ2τcohz2214παo

; (17)

where the value of Δω̄ 0 is commensurate with Δωgainτcoh, i.
e., the ratio of inhomogeneous and homogeneous broaden-
ing. Using typical values as mentioned earlier and estimating
a dipole moment, z21 of 3 to 6 nm for THz we arrive with a
saturation intensity in the vicinity of 500 MW∕cm2. It is
important that the laser achieve some level of intensity
that is not too much less than Īsat as the effects gained by
FM will not be prevalent otherwise.

We shall also establish a relation between the density
matrix elements in Eqs. (12) and (14) and another observable
parameter, gain. For that we first find the expected value of
the dipole moment for each transition n,
EQ-TARGET;temp:intralink-;e018;326;302

hμðnÞi ¼ TrðρðnÞμÞ ¼ qTr

" 
ρðnÞ11 ρðnÞ12

ρðnÞ21 ρðnÞ22

! 
0 z12
z21 0

!#

¼ qz21σ
ðnÞ
21 e

jωt þ c:c: (18)

The material polarization is then
EQ-TARGET;temp:intralink-;e019;326;219

PðtÞ ¼ N2-D

W

X
N

hfnμðnÞi

¼ 2N2-D

W
q2z221τcoh
ℏΩ 0

X
N

fnσ
ðnÞ
21 ðtÞ

E0

2
ejωt þ c:c:; (19)

where W is the period thickness. Substituting Eq. (19) into
the Helmholtz equation for the slow variable envelope

EQ-TARGET;temp:intralink-;e020;326;1202jk0n̄
dE
dz

¼ −
ω2
0

c2ϵo
P; (20)

we obtain
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EQ-TARGET;temp:intralink-;e021;63;752

dE0

dz
¼ k0

N2-D

W
q2z221τcoh
n̄ϵoℏΩ 0

X
N

fn ImσðnÞ21 ðtÞE0 ¼
γ

2
E0: (21)

Hence, the instant gain coefficient is

EQ-TARGET;temp:intralink-;e022;63;703γðtÞ ¼ Γ
8πα0N2-Dz221

neffW
ωτcoh

X
N

fn
ImσðnÞ21 ðtÞ
Ω 0ðtÞ ; (22)

where the Rabi frequency is in general time-dependent (to
accommodate amplitude-modulated signals), and we intro-
duced the confinement factor of the cavity Γ and the effective
mode index neff . In THz QCLs Γ ∼ 1 due to the confinement
of the metal–metal waveguide, and neff ≈ n̄. For mid-IR
lasers, the confinement factor is somewhat smaller, but
the effective index is not changed much.

With the incoherent approximation Eq. (13), the instant
gain reduces to

EQ-TARGET;temp:intralink-;e023;63;554γðtÞ ¼ Γ
X
n

fðnÞ
4πα0
neff

N2-D

W
z221ωoτcohΔρðnÞ

ð1þ Δω̄ 02Þ : (23)

Now, in order to find out which FM format leads to the
lowest threshold of the QCL in the presence of spatial hole
burning, we will eventually need to solve the equations for
density matrix elements Eqs. (12) or (14) in which the var-
iables depend not only on time and frequency but also on the
spatial coordinate z, where the step of z should be much less
than wavelength. This may present computational difficul-
ties, therefore, prior to going full throttle and incorporating
spatial hole burning, we shall investigate whether the full
coherent model is necessary by considering only spectral
hole burning.

4 Time-Domain Model with Spectral Hole Burning
Now we shall attempt to answer the following question:
given the gain profile of Fig. 1(c) that is both homogeneously
(FWHM ¼ τ−1coh) and inhomogeneously (FWHM ¼ Δωgain)
broadened, and possessing a short gain recovery time τ2,
what type of operating regime will have the lowest possible
threshold? As shown in Fig. 2(b), in each active region the
injected current follows two parallel paths: either via nonra-
diative transitions to the LLL (relaxation current) or via the
stimulated emission. Since it is stimulated transitions that
account for the laser gain while the nonradiative decay
amounts to waste, the regime in which photons experience
the highest gain will be the one that possesses the lowest
threshold and will actually oscillate. The process that forces
the radiation arising from noise to conform to the most effi-
cient regime is FWM and cross-phase modulation inside the
gain medium, and to model it exactly in time domain would
be very time consuming. However, in our prior work, in the
frequency domain,26 we have shown how this is indeed the
case, and FWM causes the laser to operate in the most effi-
cient regime. Thus, in this study, we are interested only in
determining what the parameters of this efficient regime are.

We, therefore, consider periodic FM signals, with instant
frequency varying as νRðtÞ ¼ AFM sinð2πt∕TFMÞ and
monitor two parameters: average gain experienced by pho-
tons γ̄ ¼ T−1

FM∫
tþTFM
t γðtÞdt and the average relaxation cur-

rent J̄rel ¼ qτ−12 T−1
FM

P
nfn∫

tþTFM
t ΔρðnÞðtÞdt.

The device parameters used in our simulation have been
chosen to correspond to a “diagonal transition” THz
QCL that has successfully produced FCs,4,27,28 having a
broad gain with Δνgain ¼ 2 THz centered at the lasing fre-
quency of ν0 ¼ 3 THz, a dipole moment z12 ¼ 5 nm, gain
recovery time τ2 ¼ 4 ps, coherence time τcoh ¼ 0.7 ps,
and LL depopulation time τ1 ¼ 0.5 ps. The active region
of the QCL is doped with 2-D doping density N2-D ¼
3.5 × 1010 cm−2 over an effective thickness of one
period, W ¼ 57 nm.

Injected current density is J ¼ 500 A∕cm2, and the
power inside the cavity is ∼25 mW corresponding to
Ω 0 ¼ 0.78. With these values, we can calculate a saturation
power of ∼83 mW given an absolute value of average detun-
ing Δf̄ ¼ 0.5 THz, hence the intracavity power of 25 mW
amounted to 30% of the saturation intensity and an unsatu-
rated gain around 50 cm−1. This is sufficient to exceed the
laser threshold by a factor approaching 1.5 to 2 and cause
saturation that should make the differences between various
FM regimes tested below discernible. All of these values are
in general agreement with experimental results.4,27–29

The results of modeling using both coherent (OBE) and
incoherent (rate equations) approaches are shown in Fig. 3.
In Fig. 3(a), the value of the average gain γ̄ versus TFM is
shown for the two approaches and compared to the no-
FM case (circles). Clearly, FM does increase the effective
gain experienced by the photons and reduces the wasteful
relaxation current. Both “coherent” and “incoherent”
approaches show the same trend for large FM periods—a
steady decline as TFM increases. This is a predictable trend,
for a large TFM, the instant frequency of the laser would
dwell in the same spectral region for a time longer than
τ2; hence, the spectral hole would have enough time to
develop and γ̄ would decrease. At the same time, population
inversion outside the spectral hole region remains undepleted
by stimulated emission, which causes an increased relaxation
current J̄rel as can be seen from the curves in Fig. 3(b)
[which, as expected, are complimentary to the curves in
Fig. 3(a)].

However, at short FM periods, the “coherent” and “inco-
herent” gain curves diverge with incoherent gain exhibiting a
continuing increase while the coherent gain takes a sharp
dive. This decline is entirely predictable as when the period
of modulation becomes first commensurate and then shorter
than the coherence time the two-level system no longer
responds to FM modulation, and hence, all the benefits of
sweeping the instant frequency over the gain bandwidth
get lost. In other words, the coherent model predicts that
there exists the optimum frequency of FM modulation, com-
mensurate with τ2 > τcoh such that on one hand, the fre-
quency sweeps through the entire gain bandwidth at a rate
slightly faster than the gain recovery time and on the
other hand, the sweep is sufficiently slow for the system
to respond to it.

Once the FM period exceeds roughly τ2∕2, both “coher-
ent” and “incoherent” models behave similarly showing
nearly identical slopes of the γ̄ versus TFM curves, hence,
if one restrains TFM to the values commensurate with τ2
one can use the rate equation model to determine the
most efficient QCL operating regime with a high degree
of confidence. We shall use this fact in our work in the fol-
lowing sections.
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The results plotted in Figs. 3(a) and 3(b) have been
obtained for the FM span 2AFM ¼ 1.2 THz, which is opti-
mum as follows from the curves in Figs. 3(c) and 3(d).
The period for Figs. 3(c) and 3(d) is 2.88 ps, which is the
optimum value as shown in Figs. 3(a) and 3(b). Figures 3(c)
and 3(d) show the relation between gain and relaxation cur-
rent with the span of the FM signal, in this case the span is
twice that of AFM in order for a direct comparison to be made
with the gain bandwidth. This result is obviously intuitive
since the FM amplitude should be sufficient enough to
sweep the entire gain bandwidth effectively but should
not be any larger. Note that both coherent and incoherent
approaches yield the same value of optimum FM amplitude
and also that the curves in Figs. 3(c) and 3(d) are complimen-
tary, as expected.

At this point, the model is generally ambivalent in regards
to whether the modulating signal is a single frequency or a
pseudorandom signal. It is not until the introduction of spa-
tial hole burning that the pseudorandom nature of the modu-
lation signal comes into play.

5 Impact of Amplitude Modulation
Before introducing spatial hole burning into our model, it is a
useful exercise to explore the effect of introducing amplitude
modulation in addition to frequency modulation. This is
very likely to occur in QCL devices as a result of cavity

dispersion, and in fact, simultaneous AM and FM is always
seen in real devices.30 In addition to this, one can expect
some level of AM to arise from the process of frequency
modulation itself. As the mode is FM and approaches the
edge of the gain, one would expect a decrease in the gain
seen and thus some modulation of intensity. As expected,
the effect of AM is exactly opposite that of FM, namely
the gain experienced by the light decreases with increasing
AM depth. As we have mentioned already, the medium with
the fast saturable gain always favors the CW amplitude and
ideally (meaning no dispersion and a very broad spectrum)
will keep “flattening” the signal until CW amplitude is
achieved as shown in our frequency domain model.26

This clearly highlights the necessity to avoid FM-to-AM
conversion by designing proper dispersion compensation
techniques. It is also important to note that while AM
will always be present, it is usually not so strong as to
turn the radiation off completely let alone to form short
pulses.

6 Introducing Spatial Hole Burning
We now turn our attention to the main issue facing us,
namely how does spatial hole burning select the most effec-
tive operating regime of the QCL? Obviously, if the laser
operates in a single longitudinal mode, the intensity inside
the cavity will have a pattern of peaks and troughs, and

Fig. 3 Averaged gain and relaxation current versus (a, b) FM signal period and (c, d) modulation ampli-
tude. The data presented here are generated using a purely sinusoidal FM signal without any pseudor-
andom nature. The span of modulation used for (a, b) is 1.2 THz, the optimum as shown in (c, d). The
period of modulation in (c, d) is 2.88 ps, the optimum shown in (a, b).
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the spatial holes will be burned wherever the peaks are. At
this point, the model is developed to be three-dimensional (3-
D) in that it tracks the population for position, time, and
spectral frequency.

Let us examine what will happen if the frequency is
modulated in a deterministic fashion with a constant FM
period, TFM, as discussed above. The forward propagating
FM field as a function of position z inside the cavity can
be written as
EQ-TARGET;temp:intralink-;e024;63;653

Eðz; tÞ ¼ 1

2
E0 exp

�
−j2πν0

�
t − z

neff
c

�

− j
AFM

νFM
cos

�
2πνFM

�
t − z

neff
c

���
þ c:c; (24)

where AFM∕νFM ¼ AFMTFM ¼ AFMτrt∕m is the frequency
modulation index. When two counterpropagating waves
delayed by the delay time Δt ¼ 2zneff∕c interfere inside
the cavity the resulting intensity averaged over TFM ∼ τ2
becomes

EQ-TARGET;temp:intralink-;e025;63;525hE2ðzÞi ¼ E2
0

2

�
1þ J0

�
A

2πνFM
sin mπz∕L

�
cosð8πz∕λÞ

�
(25)

as shown in Fig. 4(a). Now, one can see that when two
counterpropagating FM waves interfere inside the cavity
they usually have different instant frequencies and no stand-
ing wave pattern is created. The time-averaged intensity does
not change significantly compared to the mean value (1/2 in
the normalized units of Fig. 4), However, when z ∼ kL∕m,
where k is an integer less than m, the two interfering waves
are delayed by exactly Δt ∼ kTFM and therefore, have nearly
identical instant frequency, causing a standing wave pattern
to reappear. Therefore, the spatial hole burning is not com-
pletely mitigated, as shown in Fig. 4(a), there are still m
regions in the which spatial hole burning occurs. Since
TFM ∼ τ2, in a typical THz QCL m is on the order of 25
to 30. For mid-IR lasers, this number may be even larger
due to shorter gain recovery times.

Now, consider the case when the FM frequency νFMðtÞ is
no longer constant but a function of time and oscillates

randomly within the bounds ν̄FM � ΔνFM∕2; the only
restraint placed on it being νFMðtþ τrtÞ ¼ νFMðtÞ. The mean
period T̄FM ¼ ν̄−1FM is commensurate with the gain recovery
and the parameter δFM ¼ ΔνFM∕2ν̄FM describes “random-
ness” of the FM. This FM signal is shown in the inset of
Fig. 4(b), which illustrates the spatial pattern created by
its propagating in the cavity. Clearly, the standing wave pat-
tern gets suppressed through the entire length of the cavity
and the spatial hole burning is mitigated.

Before we embark on a rigorous numerical analysis on
how the “randomization” affects the laser threshold and effi-
ciency, we provide a rough semianalytical estimate of the
effect of spatial hole burning. Consider the power density
distribution inside the cavity pðz; tÞ, normalized to the sat-
uration power density. The gain medium acts as an “integra-
tor” with the characteristic time equal to the gain recovery
time, i.e., it responds to the averaged power

EQ-TARGET;temp:intralink-;e026;326;565hpðz; tÞiτ2 ¼
Z

t

−∞
pðz; τÞeτ−t

τ2 dτ ¼ p̄þ δpðz; tÞ; (26)

where the second term describes the spatial variations in
pðz; tÞ, occurring on a time scale longer than the gain recov-
ery time, to which the gain medium can actually react. If the
uniform unsaturated gain in the medium is γ0, it then satu-
rates as γðz; tÞ ¼ γ0∕½1þ pðz; tÞ�. The average gain experi-
enced by the photon is then

EQ-TARGET;temp:intralink-;e027;326;456

γ̄ ¼ hγðz; tÞpðz; tÞiz;t
p̄

¼ γ0
p̄

�
p̄þ δpðz; tÞ

1þ p̄þ δpðz; tÞ
	

z;t

≈
γ0

1þ p̄

�
1 −

hδp2iz;t
p̄ð1þ p̄Þ2

�
≈

γ0
1þ p̄

½1 − p̄σ2p�; (27)

where the variance is defined as

EQ-TARGET;temp:intralink-;e028;326;369σ2p ¼ hδp2ðx; tÞit;z∕p̄2: (28)

Furthermore, the relaxation current itself is proportional
to the gain

Fig. 4 (a) Intensity pattern for a deterministic FM signal in a cavity (b) intensity envelope for a stochas-
tically FM signal. Cavity length is 3 mm with m ¼ 14.
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EQ-TARGET;temp:intralink-;e029;63;551

J̄rel ∼ hγðz; tÞiz;t ¼ γ0

�
1

1þ p̄þ δpðz; tÞ
	

z;t

≈
γ0

1þ p̄

�
1þ hδp2iz;t

ð1þ p̄Þ2
�
≈

γ0
1þ p̄

½1þ p̄2σ2p�; (29)

indicating that, in accordance with expectations, the average
gain and relaxation current behave in a complimentary fash-
ion, just as shown in Figs. 3 and 5. For the single standing

mode, one can estimate σ2p;0 ¼ 1
2π ∫

2π
0 ½2 sin2ðxÞ − 1�2 ¼ 1

2
.

This is the absolute worst-case scenario, and thus, we
look for a variance much smaller than this value to show
a marked improvement on the spatial hole burning of the
FM signal over a nonmodulated signal. To illustrate
how variance is affected by FM we have plotted, in
Fig. 6(a), the variance of the intensity inside the cavity
hδp2ðx; tÞit∕p̄2 (averaged only in time) for both sinusoidal
(deterministic) and pseudorandom FM spectra. In order to

Fig. 5 The effect of amplitude modulation on (a) gain and (b) nonradiative decay.

Fig. 6 (a) The spatial variance and (b) spatial gain profiles of a deterministic and pseudorandom FM
spectra in an 800-μm long cavity, m ¼ 5, and δFM ¼ 0.6 for the pseudorandom data. (c) Averaged vari-
ance as a function of frequency variation δFM.
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more clearly see the peaks in variance, we have increased the
period of modulation such that m ∼ 5. For both signals, the
variance has decreased from σ2p0 ¼ 1∕2 of a nonmodulated
signal. Yet for the deterministic signal, variance still peaks to
a value close to half in the regions where the counter propa-
gating signals have the same frequency. This feature is
entirely suppressed in the plot for the pseudorandom signal.
To show that increasing randomness of FM signal indeed
suppresses spatial hole burning, we show in Fig. 6(b) spatial
distribution of the gain inside the cavity. Clearly, we can see
that peaks in the deterministic data show unused gain corre-
sponding to troughs in the spatial intensity and large spatial
holes that have been periodically burned. These holes are
largely gone for the pseudorandom signal. The data shown
in Fig. 6(c) illustrate how the variance Eq. (28) decreases
with an increase of frequency variation, δFM. It is apparent
that the stochasticity of our modulating signal, i.e., FM fre-
quency variation, prevents the constructive or destructive
interference of the field thus ensuring proper and uniform
use of the gain with respect to spatial distribution.

7 QCL in the “Pseudorandom FM” Regime in the
Presence of Spatial and Spectral Hole Burning

Now, we perform the full numerical analysis of the QCL
performance for the pseudorandom FM signal. Both the
effective gain γ̄ and relaxation current J̄rel will be evaluated
as functions of FM amplitude, AFM, and the “randomness,”

δFM, with the average FM period T̄FM ¼ 2.5 ps. The random
character of FM demands that for each value of δFM, a num-
ber of pseudorandom FM signals

EQ-TARGET;temp:intralink-;e030;326;719

Eðz; tÞ ¼ E0 exp

�
2πi
Z

νRðt 0Þdt 0
�
;

νRðtÞ ¼ AFM sin½2πνFMðtÞtð1þ RδFMÞ� (30)

are generated, where the retarded time is t 0 ¼ t∓neffz∕c with
different random νRðtÞ must be generated and used for the
calculations, with R being a random number from −1 to 1
and δFM scaling the randomness. These calculations can
be time consuming, however, because we have already deter-
mined that within the time scale at which the FM changes the
incoherent (rate equation model) is adequate our task is sim-
plified. The initial incoherent model [Eq. (14)] is now modi-
fied to include dependencies on three dimensionalities:
spectral, spatial, and temporal. Before solving the rate equa-
tion, we must first prepare an intracavity intensity that is FM
and spatially dependent. This was achieved in a matter sim-
ilar to Figs. 4(a) and 4(b) in which the two counterpropagat-
ing waves [Eq. (30)] are numerically superimposed upon
each other, in this manner we are able to obtain a Rabi fre-
quency that is both spatially and temporally dependent.
Equation Eq. (14) is then modified as such

Fig. 7 (a) Average gain and (b) relaxation current versus frequency variation. (c) Average gain and
(d) relaxation current versus the span of modulation, 2AFM.
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d
dτ

ΔρðnÞðz; τÞ ¼ 2ðΔρo − ΔρðnÞÞ
T

−
Ω 0ðz; τÞ2ΔρðnÞ
1þ Δω 02

n ðz; τÞ
: (31)

The gain and relaxation current can then be calculated
similarly by averaging over both space and time as

EQ-TARGET;temp:intralink-;e032;63;693γ̄ ¼ hγðz; τÞΩ 02ðz; τÞiz;τ
hΩ 02ðz; τÞiz;τ

(32)

and

EQ-TARGET;temp:intralink-;e033;63;635J̄rel ∼ qτ−12 N2-DhΔρðz; τÞiz;τ: (33)

Note that in previous sections with a constant Rabi-
frequency the Ω 02 terms in Eq. (32) cancel, however, now
with a spatially dependent Rabi frequency one must be care-
ful to include this to preserve the complimentary nature of
the gain and relaxation current.

The results are shown in Fig. 7. The first two complimen-
tary curves (a) and (b) show the effective gain and relaxation
current versus the randomness parameter δFM. With many
data points obtained, it is clear that the average gain reaches
it maximum (and relaxation current reaches its minimum) at
an optimum value of “randomness” δFM ≈ 0.6, in accordance
with our expectations outlined above. The optimum value of
FM amplitude 2AFM ¼ 1.8 THz used in these calculations is
obtained from curves (c) and (d) showing the gain and relax-
ation current dependence on FM amplitude. These two
curves are not significantly different from the ones in Fig. 4
where the spatial hole burning was not included but the opti-
mum value of AFM is increased—apparently dealing with
spatial hole burning requires stronger frequency modulation.

The cavity length used for this calculation was 800 μm,
which is a few times shorter than the 5-mm cavity length in a
real THz QCL. As there is now data generated for spectral,
spatial, and temporal domains, a more realistic cavity length
would require too high a level of computing power. In the
data presented here, there are 41 spectral bins, z-based cal-
culations are done every λ∕60, and temporal calculations are
performed every τrt∕1000, giving very large 3-D arrays.
However, as one can see from Figs. 6(a) and 6(b), the differ-
ence in the spatial patterns of hole burning is already well
established with a shorter cavity length and one should
not expect that further enlarging the number of spatial points
in our calculations will change neither the trend nor the con-
clusions of this paper.

Due to the random nature of our model as well as the
subtle scale upon which the variables δFM and AFM affect the
laser, much averaging must be performed. Even so, there is a
very clear trend that as spatial variance decreases with the
increasingly stochastic nature of our modulating signal, so
does spatial hole burning. This stochastic frequency modu-
lation in turn reduces both spatial and spectral hole burning
to a much shallower and broader regime, offering a more
efficient use of the gain and lower threshold.

8 Conclusion
In conclusion, we have addressed the origin of FC formation
in free-running QCLs. The QCL naturally frequency modu-
lates its spectra in order to suppress spatial, spectral, and tem-
poral hole burning. The frequency modulation itself
mitigates spectral hole burning and produces a CW intensity,

favorable to the fast saturable gain medium. The nature of the
FM signal mismatches modal frequencies in space to prevent
spatial and temporal hole burning. This natural mitigating
behavior has been observed in various gain media and optical
configurations. For example, in order to maximize coherent
radiation, light sent through a ring resonator with optical gain
tends to propagate only in one direction to avoid spatial hole
burning. Another example is multiple pulses circulating a
cavity will “choose” to collide in the saturable absorber
rather than in the gain medium showing a preference for mit-
igating gain saturation.31 We have thus shown here that a
pseudorandom self-FM is a “natural” mode of operation
as has now been proven by both time-domain (here) and fre-
quency-domain26 models. The time-domain model presented
here is 3-D (time, frequency, and space) and has been devel-
oped and then simplified, which made modeling feasible.
The results presented show that when an optical field is pseu-
dorandomly FM (as suggested by the experimental data4,18),
the QCL operates in the most efficient regime with a larger
fraction of the pump power converted into optical radiation
rather than diverted into nonradiative relaxation. Therefore,
this is a completely “natural” regime of operation that can be
explained by three factors: a wide inhomogeneously broad-
ened gain favoring multimode operation; a short gain recov-
ery time favoring fast frequency modulation (on the scaled of
τ2); spatial hole mitigation favoring a “randomized” FM sig-
nal to avoid formation of standing waves inside the cavity.

In the end, we want to stress that goal of this work was not
to develop an exact model predicting the QCL performance,
as we only set out to demonstrate that the observed “pseu-
dorandom” FM does indeed have its origin in the underlying
QCL physics. That being said, we have used realistic QCL
parameters and obtained values of gain and laser power in an
agreement with typical values obtained in the experiment.
Therefore, we believe that while our model can hardly be
qualified as a “design tool” for QCL development, it is never-
theless helpful to the FC community as it explains this “natu-
ral” FC formation without any external perturbations. It is
worth mentioning that although we used values typical for
a THz QCL, this explanation is also relevant to mid-IR lasers
with some potential differences as will be further investi-
gated in our ongoing work aimed at a better understanding
of the fascinating dynamics in QCL’s.
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