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INTRODUCTION
Since the early days of ocean science, 
fixed platforms or expeditions with 
vessels have been used to collect var-
ied observations (e.g.,  Stommel, 1989; 
Dickey, 2003; Schofield et  al., 2010). In 
the past decade, adventurous research 
expeditions have been augmented with 
varied robotics-based platforms and 
sensors (e.g.,  Rudnick and Perry, 2003; 
Bellingham and Rajan, 2007; Nicholson 
and Healey, 2008). These include vehi-
cles with a relative speed, such as pro-
pelled autonomous underwater vehicles 
(AUVs), underwater gliders, wave gliders, 
solar-powered vehicles, and surface craft. 
The experiments also involve vehicles 
with no or limited relative speeds such as 
autonomous drifters, floats, hybrid profil-
ers, and semi-drifting surface craft. 

A critical benefit of robotics plat-
forms is that they reduce the undersam-
pling of ocean surveys and augment sat-
ellite data. However, they are significantly 
affected by dynamic ocean motions, such 
as currents and waves. Their ocean mea-
surements are thus a mixture of Eulerian 
(fixed or not affected by currents) and 
Lagrangian (current-following) observa-
tions. These facts are crystallized in the 
name “autonomous and Lagrangian plat-
forms and sensors (ALPS),” introduced by 

pioneering researchers (e.g., Rudnick and 
Perry, 2003; Dickey et al., 2008, and refer-
ences therein). To best account for envi-
ronmental effects, ALPS systems should 
become “expert systems” (e.g.,  Jackson, 
1998) that plan and optimize their 
motions, using and integrating predic-
tive models, control algorithms, uncer-
tainty estimates, and data assimilation. 
Such integration of disciplines was initi-
ated by the Autonomous Ocean Sampling 
Network (e.g.,  Curtin et  al., 1993; 
Rudnick et al., 2004; Leonard et al., 2007, 
2010; Lermusiaux, 2007; Ramp et  al., 
2009; Curtin and Bellingham, 2009), and 
it remains an area of active research.

For a reproducible scientific sampling 
approach, predicting where, when, and 
what to sample (i.e., optimal ocean sam-
pling), and predicting which sampling 
locations can be reached and how to best 
reach them (i.e., reachability and optimal 
path planning), should be done quanti-
tatively and using fundamental princi-
ples. Such principled autonomous sam-
pling then becomes part of the emerging 
discipline of the “Science of Autonomy” 
(Steinberg, 2006; Lermusiaux et al., 2016). 
In simple terms, the Science of Autonomy 
is the systematic development of funda-
mental knowledge and reproducible 
methods about autonomy. This article 

reviews concepts and illustrates some of 
our recent progress using this approach, 
based on real vehicles operating in a large 
open-ocean basin, within the context of 
the Northern Arabian Sea Circulation-
autonomous research (NASCar) pro-
gram. This US Office of Naval Research-
funded program employs a variety of 
ALPS systems to investigate the dynamics 
of the northern Arabian Sea (Centurioni 
et al., 2017, in this issue). One of the goals 
of our NASCar contribution is to apply 
our theory and schemes for optimal 
path planning and optimal ocean sam-
pling with swarms of autonomous vehi-
cles. The collaborative applications that 
we describe are results toward this goal.

Effective predictive models of the rele-
vant ocean dynamics and efficient uncer-
tainty prediction and data assimila-
tion schemes are crucial for quantitative 
optimal path planning and sampling. It 
is the advances in these disciplines that 
allow the present results, especially the 
progress in multiresolution numerical 
ocean modeling (Robinson et  al., 2003; 
Deleersnijder and Lermusiaux, 2008; 
Deleersnijder et  al., 2010; Haley and 
Lermusiaux, 2010; Cushman-Roisin and 
Beckers, 2011; Ringler et al., 2013; Haley 
et  al., 2015; Burchard et  al., 2017) and 
in ensemble uncertainty prediction and 
Bayesian data assimilation (Lermusiaux 
and Robinson, 1999; Lermusiaux et  al., 
2006a,b; Lermusiaux, 2006; Bocquet 
et  al., 2010; Särkkä, 2013; Sondergaard 
and Lermusiaux, 2013a; Reich and 
Cotter, 2015; Lolla and Lermusiaux, 
2017a). These advances will be employed 
next. We refer to the articles cited for the 
necessary details. 

In this article, we first provide defi-
nitions and review fundamental equa-
tion-​based results for reachability, path 
planning, and adaptive sampling. We 
then showcase results of the February–
April 2017 real-time forecasting and 

ABSTRACT. Where, when, and what to sample, and how to optimally reach the 
sampling locations, are critical questions to be answered by autonomous and Lagrangian 
platforms and sensors. For a reproducible scientific sampling approach, answers 
should be quantitative and provided using fundamental principles. This article reviews 
concepts and recent progress toward this principled approach, focusing on reachability, 
path planning, and adaptive sampling, and presents results of a real-time forecasting 
and planning experiment completed during February–April 2017 for the Northern 
Arabian Sea Circulation-autonomous research program. The predictive skill, layered 
fields, and uncertainty estimates obtained using the MIT MSEAS multi-resolution 
ensemble ocean modeling system are first studied. With such inputs, deterministic and 
probabilistic three-dimensional reachability forecasts issued daily for gliders and floats 
are then showcased and validated. Finally, a Bayesian adaptive sampling framework is 
shown to forecast in real time the observations that are most informative for estimating 
classic ocean fields and also secondary variables such as Lagrangian coherent structures.
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planning experiment in the interior 
northern Arabian Sea during which we 
predicted (1) high-resolution ocean fields 
and their probability; (2) reachable sets, 
reachability fronts, and time-optimal 
paths for underwater gliders and floats; 
and (3) the uncertainty of such reach-
ability fields and optimal paths. Finally, 
we illustrate the use of our probabilis-
tic modeling and Bayesian adaptive sam-
pling theory to predict the locations that 
are most informative for estimating ocean 
fields or revealing coherent structures. 

PLANNING FUNDAMENTALS FOR 
EXPERT ALPS SYSTEMS
We now review theories and methods for 
reachability, path planning, and adap-
tive sampling for expert ALPS systems 
operating in dynamic ocean currents. 
As schematized in Figure 1, quantitative 
planning for ALPS takes into account 
ocean currents and platform constraints 
(e.g.,  maximum speed, battery) and 
involves accurate predictions of the loca-
tions or regions that can be reached by the 
autonomous platforms (i.e., the reachable 
set), the optimal launch and recovery, the 
optimal observations to be collected to 
achieve the experiment’s scientific goals, 
and the optimal paths for ocean vehi-
cles to achieve these goals. Some key 

questions are: (1) What are the locations 
that can be reached by an autonomous 
platform (i.e., reachability)? (2) What are 
the most informative locations and times 
at which measurements should be made 
to achieve the scientific goals (i.e., adap-
tive sampling)? (3) What are the optimal 
paths to reach these locations in desired 
times and in a safe fashion (i.e.,  path 
planning)? (4) Are the equations and 
methods answering these questions prac-
tical for real-time expert ALPS systems? 
In what follows, we focus on our own 
progress toward answering these ques-
tions by developing and using fundamen-
tal principles. Our quantitative planning 
utilizes prior knowledge in the form of 
simple fundamental relations, conserva-
tion laws, and mathematical models. This 
knowledge is combined with computa-
tional and decision-making capabilities, 
with the aim of obtaining expert systems 
(Jackson, 1998; Russell and Norvig, 2009). 
For reviews on marine path planning and 
adaptive sampling, we refer readers to 
Leonard et al. (2007), Lermusiaux (2007), 
Roy et  al., (2007), Paley et  al. (2008), 
Lermusiaux et  al. (2016, and in press), 
and Subramani et al. (2017), and the refer-
ences cited therein. Other results that are 
useful for marine autonomy but are not 
covered here include nested autonomy 

(e.g.,  Schmidt et  al., 2016); underwater 
navigation, communication, and motion 
control (e.g.,  Leonard and Bahr, 2016); 
and ocean sensing and underwater net-
works (e.g., Curtin and Bellingham, 2009; 
Venkatesan et al., 2017).

Path Planning
The prediction of paths along which spe-
cific criteria (e.g.,  time, energy, data col-
lected, and/or safety) are optimized is 
called path planning. Traditionally, path 
planning has been developed for robots 
in complex but mostly static environ-
ments. Most planning methods are based 
on graphs and dynamic programming, 
fast marching schemes, wave front expan-
sions, potential fields, nonlinear program-
ming, nonlinear optimization, evolution-
ary algorithms, case-based reasoning, 
or dynamics-based approaches. Some of 
these methods consider uncertainties in 
the ocean estimates, usually by computing 
the deterministic plan for an ensemble of 
realizations. However, because ocean cur-
rents can be both highly dynamic and 
strong when compared to ALPS nomi-
nal speeds, many methods provide inac-
curate solutions or are too expensive 
for real-time use with ALPS systems. 
Consequently, we developed theories and 
schemes that provide exact and practi-
cal solutions. They are reviewed next and 
will be exemplified later in this article 
(Applications section) by novel applica-
tions in the NASCar region.

REACHABILITY
As schematized in Figure  1, we studied 
the problem of path planning through 
the fundamental concept of reachabil-
ity (Lolla et  al., 2014a,b, and references 
therein). The set of locations that can 
be reached is the reachable set, and its 
boundary is called the reachability front. 
The net motion of autonomous vehicles is 
the sum of the forward thrust and advec-
tion by dynamic currents. Based on these 
first principles, we developed a level-set 
partial differential equation (PDE) that 
governs the reachability front of a vehi-
cle moving in strong and dynamic flows. 

Start:
x0, time 0

Ocean
Currents

Target

Sampling
Period

Estimation/
Veri�cation Time

Estimation/
Veri�cation Variables

• State variables
• Model parameters
• Model formulations

• Secondary variables 
  (e.g., energy, 

  coherent
structures)

0

Optimal
Path

Observations
to be collected at

xi
*, time Ti *

Ti * τReachability
Front at time Ti *

FIGURE 1. Schematic of reachability, path planning, and adaptive sampling. Reachability sets are 
predicted for a vehicle operating at nominal speed within dynamic currents. The total vehicle veloc-
ity is the vector sum of currents at that location and the nominal velocity. Optimal most informa-
tive measurements are taken at each optimal position xi* and time Ti*. Predictions can be done in 
two or three dimensions, and for deterministic or stochastic currents. For stochastic currents, we 
employ ensembles or efficient dynamically orthogonal equations to evaluate distributions of reach-
able sets, fronts, and optimal paths. Adaptive sampling aims to predict the location xi* and time Ti* of 
the observations to be collected over the sampling period [0,τ] that are most informative about the 
to-be-estimated/verification variables. Here, only a single future fixed verification time is sketched, 
but the estimation time(s) can be in the past or cover a period of time.
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OPTIMAL LAUNCH, PICK-UP, 
AND INTERCEPTION 
To save time and costs in ocean sam-
pling, the launch, pick-up, and/or inter-
ception of autonomous platforms should 
be efficient. The use of dynamic reach-
able sets (Figure  1) is directly applica-
ble to these problems. They provide exact 
solutions, and their utilization has been 
exemplified for time-optimal intercep-
tions by surface craft, including natural 
and vessel wave effects (Mirabito et al., in 
press) and for pursuit-evasion problems 
(Sun et al., 2017a,b).

TIME- AND ENERGY-OPTIMAL PATHS 
The first time at which the reachability 
front reaches the target end point or opti-
mal sampling location is the fastest travel 
time (Figure 1). The time-optimal head-
ings are normal to the reachability fronts. 
The corresponding time-optimal path 
can then be extracted from the dynamic 
reachability front prediction by solving a 
particle backtracking ordinary differen-
tial equation (ODE; Lolla et  al., 2014b). 
These equations were applied to gliders 
and AUVs for reachability and path plan-
ning, and coordinated path planning of 
swarms, in realistic current simulations 
(Lolla et  al., 2014a, 2015). They were 
theoretically extended to anisotropic 
motions and to fully three-​dimensional 
paths, including planning for floats or 
other vehicles with constrained relative 
motions. They were also used successfully 
with real AUVs at sea (Subramani et al., 
in press; Edwards et  al., in press) and 
extended to uncertain stochastic currents 
(Wei, 2015) and to energy-optimal path 
planning (Subramani and Lermusiaux, 
2016; Subramani et al., 2017).

COMPUTATIONAL COSTS
The computational time for all above 
applications is much shorter than the 
mission time. For example, for reach-
ability and time-optimal planning, the 
computations take seconds to minutes 
to plan missions that last days to weeks, 
and the cost only grows linearly with 
the spatial resolution. Even for large 

stochastic energy-optimal planning run 
on a single CPU, the computational time 
is less than the time required to inte-
grate modern numerical ocean model-
ing systems. Optimal paths can thus be 
recomputed multiple times as new obser-
vations arrive, hence allowing feedback 
and onboard routing.

Adaptive Sampling
Ocean science observation campaigns are 
designed based on hypotheses or ques-
tions to be answered. As schematized in 
Figure 1, observations are to be collected 
over a period of time, often referred to as 
the sampling period. The observational 
data should provide the most informa-
tion about the chosen hypotheses or ques-
tions, at a fixed time or over a period of 
time. These data can be utilized on their 
own, but are in general combined with 
prior knowledge, including conservation 
laws and model equations. Observations 
are then utilized to improve state variable 
estimates or field predictions, to infer 
model parameters, to test model formu-
lations, or to estimate secondary variables 
such as energy, enstrophy, spiciness, or 
coherent structures of the flow (Figure 1). 
Given that platforms and sensors at our 
disposal are limited, the goal of adaptive 
sampling is thus defined here as guiding 
the ALPS system optimally so as to col-
lect the observations that are most infor-
mative about the scientific objectives.

Practical adaptive sampling is directly 
linked to path planning: adaptive sam-
pling requires not only identifying the 
most informative data types, locations, 
and times but also planning feasible 
optimal paths. This latter path planning 
serves two purposes. First, it deter-
mines the reachable regions of the plat-
forms that limit the set of possible can-
didate measurements. Second, after the 
most informative data are determined, 
path planning guides the platforms so 
that they navigate along the optimal paths 
to collect the desired data. Because each 
measurement will change both our ocean 
prediction and the expected information 
content in later candidate observations, 

the planned paths and the computed 
information content should be updated 
as data are collected.

Previous results on ocean adaptive 
sampling include methods that involve 
some linearizations of the system dynam-
ics, such as in the use of adjoint equations 
for sensitivity analysis or of optimal per-
turbations and singular vectors. Other 
methods with limited or no linearizations 
utilize breeding, ensemble subspaces, 
ensemble transforms, mixed-​integer pro-
gramming, potential functions, or genetic 
algorithms. Reviews are provided in 
Lermusiaux (2007) and Lermusiaux et al. 
(in press). Note that in their present usage, 
these methods neglect the non-Gaussian 
properties of the dynamics.

We recently formulated a novel and 
rigorous framework by combining uncer-
tainty quantification, Bayesian data 
assimilation, and information theory. For 
uncertainty predictions, we employ the 
variance-optimal reduced-order stochas-
tic dynamically orthogonal (DO) equa-
tions (Sapsis and Lermusiaux, 2009; 
Ueckermann et  al., 2013; Feppon and 
Lermusiaux, in press). To exploit the 
non-Gaussian statistics, we utilize the 
Gaussian Mixture Model (GMM)-DO 
filter (Sondergaard and Lermusiaux, 
2013a,b) and smoother (Lolla and 
Lermusiaux, 2017a,b). To rigorously 
measure the information content of var-
ied observations in a principled way, we 
employ mutual information (Cover and 
Thomas, 1991). Mutual information quan-
tifies the amount of information a variable 
has about another variable. For reach-
ability computation and optimal naviga-
tion, we utilize the previously mentioned 
path planning equations. Finally, we use 
dynamic programming to solve the infor-
mation content optimization problem 
exactly and so predict the optimal future 
sampling strategies (Lolla, 2016).

APPLICATIONS
We now illustrate some of the capabili-
ties of the theory and methods reviewed 
in the last section for planning ALPS 
operations in the interior northern 
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Arabian Sea during February–April 2017, 
within the context of the NASCar pro-
gram. We first describe results on pre-
dictive skill, dynamics, and uncertainty 
obtained using our real-time multi-
resolution ensemble ocean modeling. The 
corresponding forecast fields and their 
probabilities were then input to our path 
planning and adaptive sampling stud-
ies (Figure 2). For the path planning, we 
exemplify our deterministic and prob-
abilistic three-dimensional reachabil-
ity forecasts issued daily for gliders and 

floats as they operated in the region (see 
later section on Probabilistic Eulerian-
Lagrangian Reachability for Gliders and 
Floats), using the level-set PDEs intro-
duced in the Path Planning section. For 
the adaptive sampling, we showcase how 
computing machines using our Bayesian 
schemes can forecast in real time the 
observations that are most informative 
for estimating classic ocean fields and also 
secondary variables such as Lagrangian 
coherent structures (Bayesian Adaptive 
Sampling section).

Multiresolution Ensemble Ocean 
Forecasting and Dynamics
The MIT Multidisciplinary Simulation 
Estimation and Assimilation System 
(MSEAS) was utilized for three months 
for real-time multiresolution simulations 
(Lermusiaux et  al., 2017). Capabilities 
employed involved implicit two-way nest-
ing for realistic tidal-to-mesoscale model-
ing with hydrostatic primitive equations 
(PEs) and a nonlinear free surface (Haley 
and Lermusiaux, 2010; Leslie et al., 2010; 
Haley et  al., 2015) and Error Subspace 
Statistical Estimation (ESSE) for stochas-
tic uncertainty predictions (Lermusiaux, 
1999; Lermusiaux et al., 2002).

MODELING SETUP
The NASCar modeling domain (Figure 2a) 
in the northern Arabian Sea had a 
1/60° horizontal resolution and 70 ver-
tical levels with optimized level depths 
(e.g., higher resolution near the surface or 
large vertical derivatives). The bathyme-
try was obtained from the 15 arc-​seconds 
SRMT15 data (Smith and Sandwell, 
1997). Initial conditions were downscaled 
from 1/12° HYCOM (Hybrid Coordinate 
Ocean Model) analyses (Cummings 
and Smedstad, 2013) via optimization 
for our higher-resolution coastlines and 
bathymetry (Haley et  al., 2015). Tidal 
forcing was computed from the high-​
resolution TPXO8-Atlas from Oregon 
State University (Egbert and Erofeeva, 
2002, 2013), again with adjustments to 
our higher-resolution geometry and qua-
dratic bottom drag. For atmospheric forc-
ing, we employed the wind stress and sur-
face freshwater flux from 1/4° NCEP GFS 
(National Centers for Environmental 
Prediction Global Forecast System) 
one-hourly forecasts (Environmental 
Modeling Center, 2003) and the net heat 
flux from 1/2° NAVGEM (Navy Global 
Environmental Model) three-hourly fore-
casts (Hogan et al., 2014). 

DYNAMICS AND FORECAST SKILL 
The MSEAS PE modeling system and 
its physical and numerical parameters 
were calibrated for the regional dynamics 

FIGURE 2. (a) Our multiresolution computational domains in the northern Indian Ocean. The domain 
bounded by the green outer box (53.66°E–69.18°E; 9.38°N–17.83°N) is the main domain used for real-
time forecasts to support Northern Arabian Sea Circulation-autonomous research (NASCar) oper-
ations. (b) Three-day forecast of the vorticity field at 2 m depth, issued by the MIT Multidisciplinary 
Simulation Estimation and Assimilation System primitive-equation (MSEAS PE) modeling system 
for March 7, 2017, 00Z (middle time for the March 5–9, 2017 forecast period for Seaglider SG137). 
A smaller moving domain (green inner box) surrounds the initial position of Seaglider SG137 on 
March 5, 2017, 00Z. The black contours are four days of reachability front forecasts, at 12-hour inter-
vals (12 h to 96 h forecasts). The reachability front is the boundary of the largest set (the reachabil-
ity set) that the glider can reach within that duration. It was forecast by integrating its exact govern-
ing level-set partial differential equation.

a

b



Oceanography  |  June 2017 177

FIGURE 3. Additional processes arising from increased resolution and added dynamics. Simulated salinity is compared in the figure to observed salin-
ity from March 4–7, 2017. No data were assimilated in this comparison. Seaglider SG133 data show salinity layering (e.g., high/low saline waters around 
80 m/200 m) in the upper ocean (c). Over the exact same section location, this layering is largely absent from the initial conditions downscaled from 
a coarser model (a) but is created as the higher-resolution MSEAS-PE forecast proceeds (b). Similar results were observed with Seaglider SG137 (not 
shown). The location of the salinity sections are shown in surface maps of salinity from the initial conditions (d) and five-day forecast (e).

using more than 600 deterministic sim-
ulations and data-model comparisons. 
Once calibrated, three- to four-day fore-
casts were issued daily for three months. 
As we will illustrate, we found that the 
higher resolution and tides in our cali-
brated system resolved additional pro-
cesses and improved the skill of lower-​
resolution ocean fields. This result is 
not direct because increasing resolution 
and adding dynamics can easily increase 
uncertainties and reduce the skill of 
deterministic forecasts. 

One such example of additional 
dynamics is the formation of layering in 
upper-ocean salinity in the form of inter-
leaving subsurface layers of high and low 
salinity, as observed by Seaglider SG133 
during March 4–7 (Figure 3c). This layer-
ing was largely absent in the initial condi-
tions from HYCOM (Figure 3a); however, 

it was created within the higher-resolution 
MSEAS PE as the forecast simulation pro-
gressed (Figure 3b). Similar findings were 
also obtained by comparisons of model 
forecasts to another Seaglider (SG137; 
not shown in figure). This indicates 
that the MSEAS-PE additional dynam-
ics and increased resolution (1/60° and 
70 optimized levels) were likely needed to 
develop and maintain the complex layered 
features observed in the region. The addi-
tion of tidal forcing also generated inter-
nal tides and waves in the western part of 
the domain at Socotra Island, as well as on 
nearby ridges (not shown).

To evaluate the effect of model reso-
lution on the forecast skill, Figure  4a–c 
compares the salinity profiles from the 
initial conditions for March 11 (Figure 4a) 
and the MSEAS PE three-day forecast 
for March 14 (without data assimilation; 

Figure  4b) against in situ Argo profiles 
collected during March 14 in the region 
(Figure  4c). With the increased MSEAS 
PE resolution, the salinity forecast bias is 
reduced by 50% and the root mean square 
error (RMSE) by 25% when compared to 
the lower-​resolution initial conditions. 
A significant improvement in the salin-
ity is seen in the 100–300 m depth range 
(driven in part by the formation of the 
layering). Overall, forecasts showed that 
high resolution in the model was needed 
to develop and maintain such layered fea-
tures. The assimilation of observations 
further improved the higher-​resolution 
forecasts. Figure 4d–f shows this impact 
of assimilating the Argo profile data 
for one week prior to issuing forecasts. 
Specifically, we compare two higher-​
resolution MSEAS PE three-day salin-
ity forecasts for March 10, one without 
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(Figure 4d) and one with (Figure 4e) 
Argo data assimilation, against the same 
independent verification Argo profile 
data of March 10. In the simulation with 
data assimilation (Figure 4e), we assim-
ilated the Argo profiles from March 1–7 
prior to the start of the forecast period. 
The assimilation corrected salinity fea-
tures in the upper ocean and other ocean 
fields during that March 1–7 period, 
which led to a reduction of both the bias 
and the RMSE in the salinity forecast 
for March 10.

ESSE ENSEMBLE FOR UNCERTAINTY 
FORECASTING 
Once the deterministic modeling sys-
tem was calibrated, uncertainties were 
forecast. The ESSE uncertainty fore-
casts consisted of an ensemble of numer-
ical simulations that were each set up 
by perturbing the initial and bound-
ary conditions in accord with their 

dominant uncertainties, and by adding 
stochastic forcing to the external forc-
ing (i.e., uncertainties in the times/phases 
and amplitudes of the atmospheric fluxes 
and tides) and to the deterministic equa-
tions so as to represent modeling errors 
occurring during the time and space inte-
grations of the MSEAS PE ocean mod-
eling system. The result is an ensem-
ble of forecasts from which statistics can 
be computed, including not only classic 
ensemble standard deviations but also 
histograms or probability density func-
tions. In the present NASCar experiment, 
50-member ensemble forecasts were 
issued daily using ESSE from mid-March 
to April. To initialize multiscale ensem-
bles (Lermusiaux et al., 2000; Lermusiaux, 
2002, 2007), historical CTD synoptic data 
for January, February, and March were 
used to create joint vertical EOFs (empir-
ical orthogonal functions) for tempera-
ture (T) and salinity (S). To construct the 

three-dimensional T and S perturbations, 
the joint EOFs were combined with an 
eigendecomposition of a horizontal cor-
relation matrix defined by a Mexican hat 
correlation function of 25 km decay-scale 
and 75 km zero-​crossing (these num-
bers were obtained from the calibration 
PE runs and the literature). These T and 
S perturbations were used to generate 
velocity perturbations in accordance with 
close-​to-​geostrophic PE balance. The 
MSEAS-PE model was integrated for four 
days for each ensemble member’s ini-
tial conditions, including also novel sto-
chastic error models for tides and atmo-
spheric fields (Lermusiaux et al., 2017). 

Figure  5 illustrates one of these ESSE 
uncertainty forecasts for March 27, at two 
days into the four-day forecast. The fore-
cast shows significant uncertainties: at the 
surface, the average ensemble standard 
deviation forecasts for velocity, salinity, 
and temperature are about 18 cm s–1, 0.14, 

FIGURE 4. Effects of resolution and assimilation on the MSEAS-PE forecasts. (a–c) Impact of higher spatial resolution. Salinity profiles from the initial 
conditions for March 11 (a) and from the three-day higher-resolution forecast for March 14 (b) are compared to Argo profiles of March 14 (data not assim-
ilated). Locations of the March 14 Argo profiles overlaid on the surface salinity forecast for March 14 00Z are shown in (c). Higher resolution enhanced 
the forecast skill. (d–f) Impact of data assimilation (DA). Salinity profiles from two three-day forecasts without (d) and with (e) DA compared to Argo pro-
files collected on March 10. The simulation with DA assimilates March 1–7 Argo data, prior to starting the forecast. This DA corrects the salinity features in 
the upper layers. Locations of the March 1–7 and March 10 Argo profiles overlaid on the surface salinity forecast for March 10 00Z are again shown in (f). 
For comparison with initial conditions, all profiles of the considered day are compared with the initial conditions regardless of the observation time. For 
forecast comparison, the Argo profiles are compared with the forecast profile at the data time and location.
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and 0.4°C, respectively (not shown). As 
shown in Figure 5, at 100 m depth, these 
same average ensemble standard devia-
tion forecasts are about 13 cm s–1, 0.2, and 
0.6°C, respectively. The uncertainties in T 
and S follow distinct features at different 
depths (due to layering) and are less uni-
form in space at 100 m, while the density 
(not shown) and velocity uncertainties at 
100 m are much more uniform over the 
domain. In accord with the initialization, 
in the upper layers, this reflects an uncer-
tain multiscale eddy field that is not far 
from geostrophic balance with density 
uncertainties, while T and S variabilities 
mostly compensate each other. The T and 
S uncertainties were higher on the east-
ern and southeastern sides (Figure 5a) of 
the modeling domain because of the pres-
ence of a tighter thermocline/halocline to 
the east. This is in part because the west-
ern side experienced higher vertical mix-
ing due to past strong atmospheric forc-
ing and internal tides. The uncertainty 
due to the multiscale eddy field dynamics 
(Figure 5b) is clearly more uniform, with 
standard deviations generally between 
11 cm s–1 and 16 cm s–1 everywhere. The 
formation of distinct quasi-horizontal 
layers (e.g., isopycnals) led to a demarca-
tion in the uncertainty contained in the 
upper layers (e.g., four layers in the upper 
200 m in Figure 5c) with significant salin-
ity uncertainty visible within the main 
halocline from about 150 m to 400 m. All 
of this is logical because unsampled vari-
ability is a strong contributor to uncer-
tainty, especially when the variability is 
growing in time and space. As the simu-
lations progress to the four-day forecast, 
advective stirring, instabilities, and verti-
cal mixing spread the salinity uncertainty 
between the upper layers in about 60% 
of the domain (not shown). There was 
also significant growth in the uncertainty 
near the base of the main pycnocline 
(200–350  m) and near Socotra Island 
where internal tides were generated (not 
shown). Below 200 m depth, the T and S 
variations were compensated, leading to 
relatively smaller potential density uncer-
tainties (not shown).

FIGURE 5. Real-time two-day Error Subspace Statistical Estimation (ESSE) ensemble forecast for 
March 27, 2017, from an ensemble of 50 members. (a) Forecast standard deviation in tempera-
ture at 100 m depth. At that depth, temperature (T) and salinity (S) uncertainties are higher on the 
eastern-​southeastern sides of the Arabian Sea because of the presence of a tighter thermocline/
halocline to the east. This is in part because the western side experiences higher vertical mixing 
due to past strong atmospheric forcing and recurring internal tides. (b) Magnitude of the forecast 
standard deviation in velocity at 100 m depth. (c) East-west vertical section of forecast standard 
deviation in salinity. The formation of distinct vertical layers leads to a demarcation in the uncer-
tainty contained in the layers.
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GLIDER REACHABILITY FORECASTS
To assist the Seaglider operations, daily 
four-day glider reachability forecasts 
for SG133 and SG137 were issued using 
our ocean forecasts. Gliders were piloted 
in a yo-yo pattern (1,000 m dives in 
four to five hours) and their reachabil-
ity was computed accordingly (e.g., Lolla 
et  al., 2014a). Figure  2b illustrates such 
a glider reachability forecast overlaid on 
a 2 m mesoscale vorticity forecast. In 
Figure  6, we study four such forecasts. 
Columns 1 and 2 correspond to Seaglider 
SG133, and columns 3 and 4 to SG137. 

In each Figure 6 panel, the actual location 
of the glider at the beginning of the fore-
cast window is shown as a gray point. The 
reachability fronts at every 12 hours are 
shown by black contour lines overlaid on 
a forecast of the 2 m vorticity (columns 1 
and 3), and depth-averaged currents (col-
umns 2 and 4) are at the midpoint of the 
forecast time window. As defined pre-
viously, the area within the reachability 
front can be visited by the gliders while 
the area outside cannot. 

Overall, the growth and shape of the 
reachability fronts are set by the local 

FIGURE 6. Reachability front forecasts for Seagliders SG133 (columns 1 and 2) and SG137 (columns 3 and 4) for March 5–9 
(1st row), March 14–18 (2nd row), March 22–26 (3rd row), and March 27–31 (4th row) 2017. The actual locations of the gliders 
at the beginnings of the forecast windows are shown as gray points. The reachability fronts forecast at 12-hour intervals 
(12 h–96 h) are shown by black contour lines. The 48-hour forecasts of 2 m mesoscale vorticity (columns 1 and 3) and the 
0–1,000 m depth-averaged flow magnitude overlaid with velocity vectors (columns 2 and 4) are shown in the backgrounds. 
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Probabilistic Eulerian-Lagrangian 
Reachability for Gliders and Floats
During February–April 2017, we fore-
casted the reachability fronts of Seagliders 
SG133 and SG137 and the dynamic proba-
bility of reachable points of ALAMO (Air-
Launched Autonomous Micro-Observer) 
profiling float 9103. The Seagliders were 
navigating in a bow-tie pattern to track 
the ALAMO float (Centurioni et  al., 
2017, in this issue). The Seagliders dove 
to 1,000 m depth every four to five hours, 
and the float was profiling to roughly  
300 m depth every two hours. 
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circulation and by the glider’s propulsion 
(itself affected by buoyancy fields). For 
the period March 5 to March 9 (Figure 6, 
row  1), the integrated flows near both 
gliders are forecast to be predominantly to 
the south, and hence the reachability front 
grows farther to the south (where currents 
aid motion) than to the north (where cur-
rents oppose motion). The forecast meso-
scale vorticity field (Figure  6a1,b1) is 
positive to the east of the gliders and neg-
ative to the west. As a result, the reach-
ability forecasts develop a kidney bean-
shaped pattern, with a bit more growth 
on the northeast and northwest extremes 
compared to the immediate north. For 
the period March 14 to 18 (Figure  6, 
row 2), the forecast flows around SG133 
(Figure 6c2) are southwest in the north, 
east, and southeast, westward in the west, 
and northwest in the south. The maxi-
mum flow is to the east with magnitude 
of ~15 cm s–1. The flows around SG137 

(Figure  6d2) are similar except they are 
nearly zero in the southeast. The growth 
of the reachability fronts is aided to the 
east but opposition in other directions is 
not as strong as from March 5 to March 9. 
The local shape of the reachability fronts 
is governed by the mesoscale flows and 
vorticity. For the periods March 22 to 
March 26 (Figure 6, row 3) and March 27 
to March 31 (Figure 6, row 4), the flows 
are to the southeast, with stronger flows 
in the vicinity of the gliders for the lat-
ter period when compared to the former. 
The effect of the anticyclonic eddy in set-
ting the shape of the reachability front 
during the March 27 to March 31 period 
is clearly visible in the last two forecasts. 

ALAMO FLOAT POSITION 
PROBABILISTIC FORECASTS 
Daily forecasts of four-day future float 
positions were also issued, with good 
accuracy. To account for uncertainties in 

the initial float positions and initial flows 
around them, we first advected a dynamic 
set of possible reachable positions, start-
ing from a small circle around the latest 
known position of each float. This reach-
able set then estimates the region of likely 
future locations (i.e.,  the regions out-
side of which the likelihood of finding 
the float is small). It is conceptually dif-
ferent than the reachable set of a glider 
because a float is assumed horizontally 
passive while a glider is not; the govern-
ing equation is nonetheless the same, up 
to the propulsion term. These sets were 
forecast from the latest known position 
of each float and issued in 12-hour inter-
vals. Figure 7a1–a6 shows three examples 
of such forecasts issued on March 18, 21, 
and 26. They are overlaid on the 0–300 m 
averaged velocity forecast magnitude and 
vectors, again at the midpoint of the fore-
cast time window. A plot of the real track 
of the float accompanies each forecast 

FIGURE 7. ALAMO float 
position probabilistic fore-
casts. (a1–a3) Reachability 
sets forecast from the lat-
est known positions of each 
float and issued in 12-hour 
intervals, overlaid on the 
0–300 m averaged veloc-
ity forecast magnitude and 
vectors, at the midpoint of 
the forecast time window. 
(a4–a6) Plots of the real 
float tracks during the fore-
cast horizon. The real tracks 
(a4–a6) overall confirm their 
corresponding forecasts 
(a1–a3). (b1–b4) Probabilistic 
reachable set field fore-
cast for the ALAMO float 
issued on March 26, 2017, 
00Z for the four-day period 
March 26–30. Overlaid on 
the probability map are 
0–300 m averaged cur-
rent vectors from the cen-
tral MSEAS PE forecast 
and the real track of the 
float from March 26 00Z to 
the time of the forecast of 
each panel. The Lagrangian 
probabilistic reachabil-
ity planning system shows 
predictive skill for long 
periods of time.
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during the forecast horizon. 
On March 18 (Figure 7a1), the float is 

in a region of low velocity with east-west 
shears from adjacent stronger currents. 
The forecast reachable set initially advects 
westward but then elongates (due to the 
shear) both eastward and westward. This 
pattern was consistent with the actual 
float, which initially moved westward but 
then reversed and advected eastward. On 
March 21 (Figure 7a2), the float is posi-
tioned between weak and strong south-
east flows. Hence, the eastern edge of the 
reachable set grows farther south than the 
western edge. In the above two sets, the 
shear in the forecast flows stretches the 
reachable set, thereby elongating the ini-
tial circle to ellipse shapes. The real float 
track (Figure  7a4,a5) is consistent with 
forecasts and improves with the strength 
of the flow near the float. In the March 26 
forecast (Figure  7a3), the float is in the 
strong flow proper. It is thus predicted to 
move faster, which again agrees with the 
real float tracks (Figure 7a6). 

The skill of the float’s reachable set 
forecast was mostly governed and lim-
ited by the accuracy of the larger time-​
dependent mesoscale flow. To account 
for its complete dynamic uncertainty, 
we employed ESSE ensembles to predict 
the dynamic set of reachable positions 
for each ensemble member. A rigorous 
probability field of reachable float posi-
tions is then obtained through normaliz-
ing by area the union of each ensemble’s 
set of reachable positions. Figure 7b1–b4 
depicts such a probabilistic reachable set 
field forecast for the ALAMO float. It 
was issued on March 26, 2017, 00Z for 
the four-day period March 26–30. The 
four panels show the forecasts every 
24 hours from day 1 to day 4 of the fore-
cast (March 27 00Z to March 30 00Z). 
The color represents the quantitative 
probability that a location on the map is 
in the reachable set for the float. Overlaid 
on the probability map are 0–300 m aver-
aged current vectors from the central 
MSEAS PE forecast and the real track of 
the float from the March 26 00Z to the 
time of the forecast of each panel. This 

Lagrangian probabilistic reachability 
planning system shows predictive skill for 
long periods of time. 

Bayesian Adaptive Sampling
We extended the Bayesian GMM-DO 
data assimilation for simultaneous esti-
mation of Eulerian variables (e.g., veloc-
ity, temperature, salinity) and Lagrangian 
variables (e.g.,  drifter/float positions) 
and features derived from these variables 
(e.g.,  waves, fronts, eddies, and other 
coherent structures). Lagrangian coher-
ent structures, or the most influential 
and persistent material surfaces in a flow 
(Haller, 2015), have gained prominence 
as a tool for studying fluid flow transport 
and particularly advection of hazardous 
material in environmental flows. A com-
mon approach to identifying Lagrangian 
coherent structures relies on finite-time 
Lyapunov exponent (FTLE). 

In Figure  8, we illustrate how mutual 
information fields forecasts can be used 
to identify the locations for observing dif-
ferent types of data that would be most 
informative about the velocity field or 
Lagrangian coherent structures. A par-
ticular realization of the ensemble fore-
cast of the forward-time FTLE field over 
an interval of three days (March 27 to 
March 30, 2017) is shown (Figure 8a). The 
ridges of the forward-time FTLE field cor-
respond to repelling Lagrangian coherent 
structures (i.e., material lines from which 
parcel trajectories separate the most). The 
white box marks the region for which the 
zoomed-in FTLE field is shown on the 
right. Winds and upper-ocean dynam-
ics lead to rapid variability in the sur-
face velocity field (not shown). When the 
velocity field is rapidly varying, the fea-
tures in the FTLE field cannot be iden-
tified with the velocity field at one par-
ticular time instance. In Figure  8c,d we 
show forecast mutual information fields 
between candidate observations of salin-
ity anywhere in the small domain (white 
box in Figure 8a), and the verification 
variable, which is a field defined over the 
whole small domain. The mutual infor-
mation field between salinity and the 

scalar field of zonal velocity over the small 
domain indicates that the most informa-
tive salinity data locations are around 
12.6°N, 58.2°E. The mutual informa-
tion field between salinity and the FTLE 
field over the small domain (from which 
coherent structures can be estimated) 
indicates the most informative salinity 
data locations are around 12.5°N, 58.7°E. 
The informative locations in this field lie 
on the edge of a high-salinity intrusion 
(not shown here). We also note the differ-
ences in the locations of the most infor-
mative data in the two fields, confirming 
that observation data locations that are 
highly informative for one verification 
variable may not be so for another. 

In Figure 8e–g we show forecast mutual 
information fields between velocity and 
the forward-time FTLE field. The mutual 
information field between zonal veloc-
ity and forward-time FTLE field indi-
cates that the most informative locations 
are around 12.5°N, 58.8°E. In contrast, 
when meridional velocity is measured, 
the most informative data locations lie 
near 11.6°N, 59.2°E. Also, there are more 
candidate observation locations that are 
highly informative about coherent struc-
tures when measuring either velocity 
component than when measuring salin-
ity. Furthermore, if we were to observe 
both zonal and meridional velocity, the 
mutual information about the coherent 
structures is logically higher than when 
we measure only one of the components. 
This full velocity mutual information is, 
however, maximized when the observa-
tion locations are around 12.3°N, 58.8°E 
and 11.7°N, 59.6°E.

CONCLUSIONS
Recent fundamental theories and meth-
ods for optimal planning and sampling 
predictions were reviewed and illustrated 
in real-time forecasting conditions in the 
northern Arabian Sea. The emphasis was 
on the concepts of reachability, path plan-
ning, and adaptive sampling. Reachability 
and path planning equations provide 
exact and practical solutions for time 
and energy optimal solutions, naturally 
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including coordination, obstacle avoid-
ance, anisotropic motions, and uncer-
tain flows. A novel and rigorous frame-
work for adaptive sampling was also 
outlined, integrating uncertainty quanti-
fication, Bayesian data assimilation, and 
information theory. 

For the real-time forecasting and 
planning experiment completed during 
February–April 2017 in the northern 
Arabian Sea, the predictive skill, layered 
fields, and uncertainty estimates obtained 
using our MIT MSEAS multiresolution 
ensemble ocean modeling system were 
studied and validated against indepen-
dent in situ data. The higher resolution 
and inclusion of tides in our calibrated 
system resolved additional processes and 
improved the skill of lower-resolution 

ocean fields. The ensemble ocean fore-
casts enabled probabilistic prediction of 
the reachable sets, reachability fronts, and 
time-optimal paths of underwater gliders 
and floats. These reachable sets and paths 
were verified by comparison to subse-
quent vehicle tracks, showing predic-
tive skill for several weeks. The Bayesian 
adaptive sampling framework was shown 
to be capable of forecasting the infor-
mation content of specific observation 
about different state or secondary vari-
able fields. Specifically, it determined the 
future surface salinity and velocity obser-
vations that would be most informative 
about the surface velocity field and sur-
face FTLE field (from which Lagrangian 
coherent structures are estimated). 

We expect that the transfer of humans’ 

scientific predictive knowledge and 
decision-​making capabilities to auton-
omous ocean sampling and comput-
ing machines will continue to increase, 
leading to expert ALPS systems and col-
laborative human-machine networks 
for ocean science. 
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