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Distributed quantum sensing uses quantum correlations between multiple sensors to enhance the measurement
of unknown parameters beyond the limits of unentangled systems. We describe a sensing scheme that uses
continuous-variable multipartite entanglement to enhance distributed sensing of field-quadrature displacement. By
dividing a squeezed-vacuum state between multiple homodyne-sensor nodes using a lossless beam-splitter array,
we obtain a root-mean-square (rms) estimation error that scales inversely with the number of nodes (Heisenberg
scaling), whereas the rms error of a distributed sensor that does not exploit entanglement is inversely proportional
to the square root of the number of nodes (standard quantum limit scaling). Our sensor’s scaling advantage is
destroyed by loss, but it nevertheless retains an rms-error advantage in settings in which there is moderate loss.
Our distributed sensing scheme can be used to calibrate continuous-variable quantum key distribution networks,
to perform multiple-sensor cold-atom temperature measurements, and to do distributed interferometric phase
sensing.
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I. INTRODUCTION

Single-mode squeezed states enable metrology beyond the
standard quantum limit. In particular, they can increase the
sensitivity of the Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1,2] and enable sub-shot-noise biolog-
ical imaging [3]. Entanglement, on the other hand, possesses
nonlocal properties that single-mode squeezing does not offer.
For example, when the bipartite entanglement of two-mode
squeezed states is leveraged in target detection, it provides
a signal-to-noise ratio advantage over that of the optimum
classical scheme [4–8]. Prior work has shown that multipartite
entanglement between distributed sensors could yield signifi-
cant sensitivity enhancement in estimating the weighted sum
of unknown parameters in the sensor network [9,10]. However,
these distributed quantum-sensing protocols rely on photonic
discrete-variable multipartite entanglement, which, to date, can
only be probabilistically generated and is extremely vulnerable
to environmental loss. This scalability disadvantage hinders
discrete-variable distributed quantum-sensing protocols’ ap-
plication in practical situations.

Continuous-variable multipartite (CVMP) entanglement,
in contrast, is highly scalable, because it can be determin-
istically generated, distributed, and detected [11]. What is
equally important is that the quality of CVMP entanglement
degrades gracefully in the presence of loss. As such, CVMP
entanglement opens an attractive path toward scalable and
distributed quantum sensing with robustness to loss. In this
paper, we derive the optimum CVMP entangled state for
distributed sensing of field-quadrature displacement and find
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that the optimum state, produced by dividing a single-mode
squeezed-vacuum state with a lossless beam-splitter array,
achieves Heisenberg-scaling sensitivity [12–18] in the num-
ber of sensing nodes in a network. Moreover, although the
entangled state’s performance loses its Heisenberg scaling
in the presence of loss, it retains a performance advantage
over individually operating sensing nodes in moderate loss.
Furthermore, its implementation only requires the available
technologies of squeezed-vacuum generation, linear optics,
and homodyne detection.

The emergence of quantum networks [19], e.g., with fiber-
optic connections in metropolitan areas [20] or with satellite-
communication connections [21] over longer distances, offers
a variety of application scenarios for distributed sensing. Many
continuous-variable quantum key distribution (CV-QKD) pro-
tocols rely on field-quadrature displacements [22–24], and
our sensing scheme could improve the joint calibration of
systematic errors in displacement operations in such network
settings. Ultrahigh-precision interferometric phase sensing can
be reduced to field-quadrature displacement measurement,
for which quantum enhancement can be valuable. Indeed, as
analyzed in Refs. [17,25,26] for a model of the LIGO and ex-
perimentally demonstrated in Ref. [1], single-mode squeezed-
vacuum injection improves the performance of a single in-
terferometer. For multiple, spatially separated interferometers,
our distributed displacement sensor can offer a further quantum
enhancement by replacing each interferometer’s single-mode
squeezed-vacuum input with its portion of a CVMP entangled
state. Additional, more localized applications of our distributed
field-quadrature sensor arise in cold-atom systems. There,
angular momentum [27] and temperature measurements [28]
can be reduced to field-quadrature displacement measure-
ments, allowing our approach to afford increased sensitivity
in multinode sensing configurations.
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Before proceeding, it is worth contrasting the approach
we take with recent work on distributed quantum sensing
[9,10]. Reference [9]’s distributed phase sensing required twin
Fock-state generation and photon-number resolving detectors
to realize Heisenberg scaling, and Ref. [10]’s contribution
was a general framework for distributed sensing showing
that the measurement precision in estimating the weighted
sum of unknown parameters in the sensor network could
be improved by employing the multipartite entanglement of
Greenberger-Horne-Zeilinger states. Our paper presents an
explicit distributed-sensor design whose CVMP entanglement
generation and distributed quantum measurement can easily
be realized.

II. DISTRIBUTED FIELD-QUADRATURE SENSING

Consider a network of M sensing nodes each of whose
optical input (with annihilation operator âm, for 1 � m � M)
undergoes an identical real-valued quadrature displacement
α by the unitary transformation Û (α). Our goal is to find
the joint state, ρ̂M,NS

, for the {âm} that (i) contains NS

photons on average and (ii) after distribution to the sensor
nodes through pure-loss channels with transmissivity η, min-
imizes the root-mean-square (rms) error in estimating α from
the ideal-homodyne quadrature measurements, {Re(â′

m) ≡√
η Re(âm) + α + √

1 − η Re(êm): 1 � m � M}, with the
{êm} being vacuum-state modes [29]. (Appendix A shows that
our protocol can be adapted for advantageous sensing of the
weighted sum of different displacements at each node when
the transmissivities to each node are also different but known.)

In the remainder of this section we derive the optimum
entangled and separable ρ̂M,NS

for this distributed sensing
problem and compare their rms estimation errors.

A. Optimum entangled state

The joint state at the inputs to the sensors nodes’
homodyne detectors is ρ̂M,NS,η(α) = Û (α)⊗M [N (η)⊗M

(ρ̂M,NS
)]Û (α)⊗M†, where N (η) denotes a pure-loss channel

with transmissivity 0 < η � 1. The displacement α only
contributes to the the homodyne measurements’ mean values,
{〈Re(â′

m)〉 = α + √
η 〈Re(âm)〉}, so we use

α̃E ≡ 1

M

M∑
m=1

[Re(â′
m − √

η 〈âm〉)] (1)

as our displacement estimator. By introducing b̂1 ≡∑M
m=1 âm/

√
M , we can rewrite α̃E as α̃E = Re(b̂′

1 −√
η 〈b̂1〉)/

√
M , where b̂′

1 ≡ √
η b̂1 + √

M α + √
1 − η ê, with

the ê mode being in its vacuum state. It immediately follows
that α̃E is an unbiased estimator, 〈α̃E〉 = α, whose rms estima-
tion error is

δαE
η =

√
[ηVar[Re(b̂1)] + (1 − η)/4]/M, (2)

where Var(·) denotes variance. So, to make optimum use of
the light available under the {âm}’s average photon-number
constraint, we assume that these modes are obtained from
passing modes {b̂m : 1 � m � M} through a lossless, M × M

balanced beam splitter with the b̂1 mode having average photon
number NS while the other M − 1 inputs, {b̂m : 2 � m � M},

b̂1

|0 0|

â1 â1

âmâmb̂m

Û (α)

Û (α)

b̂M

|0 0|
âM âM

Û (α)

N (η)

N (η)

N (η)

FIG. 1. Distributed quantum sensor for measuring field-
quadrature displacement. SV: squeezed-vacuum state with mean pho-
ton number NS and squeezed noise in its real quadrature. N (η): pure-
loss channel with transmissivity 0 < η � 1. Û (α): field-quadrature
displacement by real-valued α. homo: homodyne measurement of
the real quadrature.

are in their vacuum states. With this beam-splitter arrangement,
each â′

m mode is comprised of a
√

η b̂1/
√

M component plus
vacuum contributions from the {b̂m : 2 � m � M} and êm

modes and the quadrature displacement by α, as shown in
Fig. 1. Well-known properties of single-mode squeezed states
[30] then imply that δαE

η is minimized if the b̂1 mode is in
its squeezed-vacuum state with average photon number NS

whose real quadrature is squeezed. The resulting rms error for
this optimum entangled-state input is

δαE
η = 1

2

(
η

M(
√

NS + 1 + √
NS)2

+ 1 − η

M

)1/2

. (3)

The preceding performance exhibits Heisenberg scaling, in
the lossless case, with respect to the number of sensor nodes.
Specifically, when η = 1 and the average photon number per
node, nS ≡ NS/M � 1, is kept fixed, we have that δαE

1 	
1/4M

√
nS , whereas for the optimum separable-state ρ̂M,NS

,
which we derive below, the rms error when η = 1 and ns �
1 is fixed has standard quantum limit scaling, viz., δαP

1 	
1/4

√
Mns . We postpone further discussion of Eq. (3) until

after we obtain the optimum separable-state ρ̂M,NS
for our

distributed-sensing problem.

B. Optimum separable state

To begin our derivation of the separable state that minimizes
our distributed displacement sensor’s rms estimation error, it
is convenient to first constrain its input state to be a product
state, ρ̂M,NS

= ⊗M
m=1ρ̂m, with average photon number NS . Our

entangled-state result, with M = 1, tells us that the optimum
single-mode state is the squeezed-vacuum state with average
photon number NS whose real quadrature is squeezed. It
follows, then, that ρ̂M,NS

must be a product of squeezed-
vacuum states with squeezed real quadratures whose average
photon numbers, {Nm}, satisfy

∑M
m=1 Nm = NS . Thus, because

the M = 1 version of δαE
η is a convex function of NS for all

0 < η � 1, the best product state for our sensor employs Nm =
NS/M for 1 � m � M , leading to α̃P ≡ ∑M

m=1 Re(â′
m)/M
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FIG. 2. (a) Plots of the rms estimation errors, δαE
η (solid curves) and δαP

η (dashed curves), versus the number of sensor nodes, M , for
various transmissivity values, from top to bottom, η = 0.95, 0.99, and 1, with nS ≡ NS/M fixed at ns = 1. (b, c) Plots of the sensitivity ratio
(δαP

η /δαE
η )2, in dB, with NS = 10. From bottom to top: η = 0.5, 0.8, 0.9, 0.95, 0.99, and 1 (b); M = 5, 10, 20, 50, 100, and 1000 (c).

being an unbiased estimator with rms error given by

δαP
η = 1

2

(
η

M(
√

NS/M + 1 + √
NS/M)2

+ 1 − η

M

)1/2

. (4)

From this result we have that the optimum separable state with
average photon number NS must be a K-fold mixture of the
preceding best product states whose average photon numbers,
{NSk

: 1 � k � K}, sum to NS . But the rms error in Eq. (4) is
a convex function of NS , hence the optimum separable state
for our problem must be the optimum product state specified
above.

In Appendix B we show that restricting ρ̂M,NS
to be a

Gaussian separable state with average photon number NS , and
placing no restriction on how the {â′

m} modes are measured to
estimate α, then the rms error is minimized by the optimum
product state that we have just found, i.e., that state saturates
the quantum Cramér-Rao bound. That said, a non-Gaussian
product state could have a lower Cramér-Rao bound for this
sensing problem, but it would still have standard quantum limit
scaling in the number of sensor nodes, even when η = 1 [31].

C. Performance comparison

We have already seen that δαE
η /δαP

η 	 1/
√

M when η = 1
and nS ≡ NS/M � 1 is kept fixed. Loss, however, quickly
destroys the entangled state’s Heisenberg scaling, as shown
in Fig. 2(a), which plots log10(δαE

η ) and log10(δαP
η ) versus

log10(M) for nS = 1 and various η values. The transmissivity
required to maintain Heisenberg scaling in the number of
sensor nodes when nS � 1 is quite high: we need 1 − η 	
1/4MnS 
 1 in this case to get δαE

η 	 1/2M
√

2nS . Thus,
absent means to realize a near-lossless CVMP entanglement
distribution (see below for some discussion of this point);
our sensing scheme’s Heisenberg scaling is limited to local
applications in which η 	 1 can be ensured. Nevertheless,
an appreciable performance gain can still be obtained, for
moderate loss, by using CVMP entanglement, as we now show
by examining performance when NS , instead of nS , is fixed.

Increasing M with nS fixed ceases to be practical for
M � 1; e.g., for Fig. 2(a)’s M = 104 points the required initial
squeezing is more than 40 dB, an amount far beyond the
experimental state of the art. So, taking NS = 10, an attainable

value for squeezed-vacuum generation, we plot the sensitivity
ratio, (δαP

η /δαE
η )

2
, in dB, versus M for fixed η in Fig. 2(b) and

versus loss (1/η in dB) for fixed M in Fig. 2(c). Here we see two
trends: (i) for fixed M the advantage enjoyed by entangled-state
operation degrades as the transmissivity decreases; and (ii) for
fixed η the advantage enjoyed by entangled-state operation
increases and asymptotes to a finite value as M increases. The
first behavior is easily understood, i.e., it is the usual vacuum-
noise degradation of nonclassical performance making the
benefit of entanglement less pronounced as the transmissivity
decreases. The second behavior is interesting. For lossless
(η = 1) operation with M → ∞ and NS fixed, the individual
states in the product-state scenario converge to vacuum states
and hence δαP

1 → 1/2
√

M , while δαE
1 	 1/4

√
MNS . In this

regime the δαE
1 /δαP

1 = 1/2
√

NS afforded by entangled-state
operation matches that of lossless single-node squeezed-state
operation versus lossless single-node vacuum-state operation.
Note that quadrature-displacement sensing is possible with
vacuum-state inputs, because Û (α) converts the vacuum state
to the coherent state |α〉. The final point to be drawn from
Fig. 2(b) is that entangled-state operation can offer a perfor-
mance gain over product-state operation for moderate loss
values, e.g., at NS = 10, M = 20, η = 0.9, we get an 8-dB
sensitivity advantage.

III. APPLICATIONS

There is a variety of applications in which field-quadrature
displacement sensing plays a central role. CV-QKD protocols
using coherent states [22–24], for example, rely on precise
displacement operations for their security. Our scheme can thus
enable accurate joint calibration of displacement operations
among multiple nodes in a quantum-secured communication
network. As seen earlier, however, the utility of our distributed
sensor for CV-QKD will be severely limited if the low
transmissivity of long fiber connections cannot be mitigated.
Toward that end, continuous-variable entanglement distillation
[32–35] and quantum repeaters [36,37], once implemented,
can accomplish that mitigation.

While awaiting developments that will permit long-distance
operation of our entanglement-based displacement sensor,
it has local (high-transmissivity) applications in cold-atom
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FIG. 3. Distributed phase-sensing interferometry. SV: squeezed-
vacuum state with mean photon number NS and squeezed noise in its
imaginary quadrature. N (η): pure-loss channel with transmissivity
0 < η � 1.

systems. Quantum nondemolition detection of such systems’
spin degrees of freedom imprints the atoms’ spin angular
momentum on a light beam’s field quadrature [27]. Based on
this effect, measuring the temperature of a cold-atom system
can be reduced to measuring an optical field’s quadrature
displacement [28]. In this scenario our scheme can reduce the
rms estimation error in measuring the average temperature of
a collection of locations within a cold-atom ensemble.

Interferometric phase sensing is arguably the oldest, and
still a widely employed, optics-based sensor. Hence suc-
cessful application of our distributed displacement sensor to
interferometric phase sensing would be of great significance.
Single-mode squeezed-vacuum and coherent state inputs have
been used [17,25] to obtain quantum-enhanced performance
from a phase-sensing interferometer. Figure 3 illustrates how
that arrangement can be extended to a network of Mach-
Zehnder homodyne-detection interferometers that are driven
by a combination of a CVMP entangled state and coherent
states. For now we assume that all interferometers have the
same |�φ| 
 1 phase shift; the CVMP entangled state is
obtained by passing a squeezed-vacuum state—with average
photon number NS with squeezed noise in its imaginary
quadrature—through the same beam splitter as used in Fig. 1;
and the {v̂m} modes are all in their coherent state |√Nv〉m.
Then, to first order, we have that

â′
m = √

η [(1 − i�φ/2)âm + iv̂m�φ/2)] +
√

1 − η êm, (5)

where the {êm} are in their vacuum states, from which
we see that �φ is embedded in a field-quadrature dis-
placement, α = i

√
Nv �φ/2, of the {â′

m}. Thus, �̃φE ≡
2

∑M
m=1 Im(â′

m)/
√

ηNv M is an unbiased estimator of �φ,
whose rms estimation error, δ�φE

η = 2δαE
η /

√
Nv , is

δ�φE
η = 1√

Nv

√
η

M(
√

NS + 1 + √
NS)2

+ 1 − η

M
. (6)

In the absence of loss, with nS ≡ NS/M and Nv fixed, this
system has Heisenberg scaling in the number of interferom-
eters. Loss can kill this Heisenberg scaling, but for moderate
loss an entanglement-based advantage—over a separable state
system—still exists. Once again, continuous-variable entan-

glement distillation or repeaters will be needed to make our
approach suitable for widely separated interferometers. Note
that an individual interferometer from Fig. 3 was considered in
[17,25,26] as a model for improving LIGO [1,2] by squeezed-
vacuum injection. Thus if multiple interferometers located
observe correlated phase shifts—and transmission loss can
be mitigated—our entanglement-based scheme can further
improve the phase-sensing precision, and to do so only re-
quires replacing product-state squeezed-vacuum injection with
CVMP entangled-state injection.

IV. CONCLUSIONS

We have shown how the precision of field-quadrature dis-
placement in a quantum network setting can be improved by the
use of CVMP entanglement. Previous work [15] has shown that
a similar improvement can be obtained in a sequential manner
by repeated interaction with a single system. Our scheme,
however, enables all measurements to be performed simultane-
ously, albeit at the cost of having multiple measurement nodes,
and hence is much better suited to sensing transient events.
Immediate applications of our work will likely be confined
to localized sensor networks, for which high transmissivity
entanglement distribution is possible. Applications to sensor
networks that span long distances will require loss-mitigation
technology development to make our scheme practical.
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APPENDIX A: DIFFERENT TRANSMISSIVITIES AND
DIFFERENT DISPLACEMENTS

Here we show how CVMP entanglement can be
used to advantage in a modified Fig. 1 scenario when
known transmissivities, η = (η1,η2, . . . ,ηM ), and unknown
real-valued field-quadrature displacements, {αm}, are different
for each individual sensor. In this scenario the joint state at the
input to the sensor nodes’ homodyne detectors is ρ̂M,NS,η =
[⊗M

m=1Ûm(αm)][⊗M
m=1Nm(ηm)](ρ̂M,NS

)[⊗M
m=1Û

†
m(αm)]. The

goal is to obtain a minimum rms error estimate of
ᾱ ≡ ∑M

m=1 wmαm, where the weights, {wm}, are nonnegative
and sum to 1. Suppose that the balanced beam splitter in Fig. 1
is replaced with an unbalanced beam splitter that, when its
nonvacuum input is a single-mode squeezed-vacuum state
with average photon number NS and squeezed noise in its real
quadrature, results in b̂1 ≡ ∑M

m=1 wm
√

ηm âm/W̄ being in that

same squeezed-vacuum state, where W̄ ≡
√∑M

m=1 w2
mηm.

Then, paralleling the optimality derivation presented earlier,
we have that α̃ ≡ ∑M

m=1 wmRe(â′
m) is an unbiased estimator

of ᾱ with the minimum rms error,

δαE
η = w̄

2

(
η̄

(
√

NS + 1 + √
NS)2

+ 1 − η̄

)1/2

, (A1)
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under the average photon-number constraint, where w̄ ≡√∑M
m=1 w2

m and η̄ ≡ ∑M
m=1 w2

mηm/w̄2.
The optimal Gaussian separable-state scheme, for the sce-

nario under consideration here, again employs a product state,
but its performance,

δαP
η = min∑M

m=1 Nm=NS

×
[

M∑
m=1

w2
m

(
ηm

(
√

Nm + 1 + √
Nm)2

+ 1 − ηm

)
/4

]1/2

,

(A2)

cannot be found in closed form.
For a given transmissivity vector η, with αm = α for all m,

we can further optimize over the {wm} in Eqs. (A1) and (A2)
to obtain minimum rms-error estimates of α.

APPENDIX B: CRAMÉR-RAO BOUND FOR THE
OPTIMUM GAUSSIAN SEPARABLE STATE

Here we obtain the quantum Cramér-Rao (CR) lower bound
on the root-mean-square estimation error δαS

η of the optimum
unbiased estimator for an unknown displacement α in the Fig. 1
setup when the joint input state to the M pure-loss channels
in that figure is a Gaussian separable state with total average
photon number NS , and no restriction is placed on the way in
which the {â′

m} modes are measured. From Refs. [38–40] we
have that

δαS
η � δαCR

η ≡ √
1/IF [ρ̂M,NS,η(α)], (B1)

where

IF [ρ̂M,NS,η(α)]

≡ lim
ε→0

8{1 − √
F[ρ̂M,NS,η(α),ρ̂M,NS,η(α + ε)]}/ε2 (B2)

gives the Fisher information [41] in terms of the Uhlmann

fidelity [42], F(σ̂1,σ̂2) ≡ [Tr(
√√

σ̂1σ̂2
√

σ̂1)]
2
, between state

σ̂1 and state σ̂2. The convexity of Fisher information implies
that δαS

η = δαP
η , where δαP

η is the rms error of the optimum
unbiased estimator of α for a Gaussian product state, under the
same average photon-number constraint.

Let ρ̂M,NS
= ⊗M

m=1ρ̂Nm
be the Gaussian product-state input

to the pure-loss channels in Fig. 1, where ρ̂Nm
, the Gaussian

state sent to the mth sensor node, has average photon number
Nm and

∑M
m=1 Nm = NS . The joint state at the inputs to the

sensors nodes’ quantum measurements is thus ρ̂M,NS,η(α) =
⊗M

m=1ρ̂Nm,η(α), with ρ̂Nm,η(α) ≡ Û (α)[N (η)(ρ̂Nm
)]Û †(α),

which is also a Gaussian product state.
For product states we have that IF [ρ̂M,NS,η(α)] =∑M
m=1 IF [ρ̂Nm,η(α)], so the optimum product state’s rms error

satisfies

δαP
η � δαCR

η = min
ρ̂M,NS

√√√√1
/ M∑

m=1

IF [ρ̂Nm,η(α)]. (B3)

To evaluate this minimum we first find maxρ̂Nm
IF [(ρ̂Nm,η(α)],

when ρ̂Nm
is a single-mode Gaussian state with average photon

number Nm.

The single-mode Gaussian state ρ̂Nm
is completely charac-

terized [43] by its quadratures’ mean vector am and covariance
matrix Vm, where we take those quadratures to be Re(âm) and
Im(âm). Then, writing ρ̂Nm

as the Gaussian state ρ̂G(am,Vm),
we get ρ̂G(

√
η am + α,ηVm + (1 − η)I/4) for the Gaussian

state ρ̂Nm,η(α), where α ≡ [α,0] and I is the 2 × 2 identity
matrix, and we get ρ̂G(

√
η am + α + ε,ηVm + (1 − η)I/4)

for the Gaussian state ρ̂Nm,η(α + ε), where ε ≡ [ε,0]. The
quadrature covariance matrix of an arbitrary ρ̂G(am,Vm) can
always be written in the form Vm = RθVdiagRT

θ , where Vdiag =
Diag[(2nm + 1)e−rm/4,(2nm + 1)erm/4] with rm � 0, nm �
0, and

Rθ =
[

cos(θ ) sin(θ )

− sin(θ ) cos(θ )

]
. (B4)

With this Vm representation we can use Ref. [44] to evaluate the
Uhlmann fidelity between ρ̂G(

√
η am + α,ηVm + (1 − η)I/4)

and ρ̂G(
√

η am + α + ε,ηVm + (1 − η)I/4). Using the result
of that evaluation in Eq. (B2) gives us

IF [ρ̂Nm,η(α)]

= 4{erm (1 − η) + (2nm + 1)η[e2rm cos2(θ ) + sin2(θ )]}
(erm (1 − η) + (2nm + 1)η)[(2nm + 1)ηerm + 1 − η]

.

(B5)

This expression’s maximum over θ and nm occurs when
θ = nm = 0, in which case we get maxθ,nm

IF [ρ̂Nm,η(α)] =
4/(ηe−rm + 1 − η) with Nm = aT

mam + [cosh(rm) − 1]/2.
From this result it is clear that am = 0 is optimum, and we
find that

max
ρ̂Nm

IF [ρ̂Nm,η(α)] =
(

η

4(
√

Nm + 1 + √
Nm)2

+ 1 − η

4

)−1

.

(B6)

At this point we have that

δαS
η = δαP

η � δαCR
η = min∑M

m=1 Nm=NS

×1

2

⎡⎣
√√√√ M∑

m=1

(
η

(
√

Nm + 1 + √
Nm)2

+1−η

)−1
⎤⎦−1

. (B7)

Because maxρ̂Nm
IF (ρ̂Nm,η(α)) is a concave function of Nm,

the preceding minimum is achieved by Nm = NS/M for 1 �
m � M , hence we have the quantum CR bound for Gaussian
separable states:

δαS
η = δαP

η � δαCR
η

= 1

2

(
η

M
(√

NS/M + 1 + √
NS/M

)2 + 1−η

M

)1/2

. (B8)

We have shown in Sec. II B that this CR bound performance
is achieved by modal homodyne detection using the estima-
tor α̃P = ∑M

m=1 Re(â′
m)/M when ρ̂NS,M is an M-fold tensor

product of squeezed-vacuum states each with average photon
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number NS/M and squeezed noise in their real quadratures,
i.e., an M-fold tensor product of zero-mean Gaussian states

with covariance matrix V = Diag[e−r/4,er/4] and cosh(r) =
2NS/M + 1, as found above.
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