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SUMMARY

The proliferation of large genomic databases offers
the potential to perform increasingly larger-scale
genome-wide association studies (GWASs). Due to
privacy concerns, however, access to these data is
limited, greatly reducing their usefulness for re-
search. Here, we introduce a computational frame-
work for performing GWASs that adapts principles
of differential privacy—a cryptographic theory that
facilitates secure analysis of sensitive data—to
both protect private phenotype information (e.g., dis-
ease status) and correct for population stratification.
This framework enables us to produce privacy-pre-
serving GWAS results based on EIGENSTRAT and
linear mixed model (LMM)-based statistics, both of
which correct for population stratification. We test
our differentially private statistics, PrivSTRAT and
PrivLMM, on simulated and real GWAS datasets
and find they are able to protect privacy while return-
ingmeaningful results. Our framework can be used to
securely query private genomic datasets to discover
which specific genomic alterations may be associ-
ated with a disease, thus increasing the availability
of these valuable datasets.

INTRODUCTION

We are experiencing unprecedented growth in the amount of

personal and clinical genotype data in large repositories (Lowe

et al., 2009). However, accessing this growing pool of data poses

major privacy concerns for individuals (Gymrek et al., 2013; Ma-

lin et al., 2013; Murphy et al., 2011; Nyholt et al., 2009). At the

same time, making this data more widely available could lead

to novel biomedical insights that could inform medical research

(Weber et al., 2009; Lowe et al., 2009). As such, there is hope that

the privacy challenges posed in analyzing such data might not

simply require tighter regulations over who can use the data—

which is often limited to individuals who have gone through a

time-consuming and burdensome application process—but

may instead benefit from the development of cryptographic tools
54 Cell Systems 3, 54–61, July 27, 2016 ª 2016 The Authors. Publish
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that allow secure access while ensuring accurate analyses. In

particular, there has been increased interest in the usefulness

of a cryptographic technique known as differential privacy

(Dwork, 2011). This technique allows researchers access to

genomic data while preserving every patient’s privacy (Jiang

et al., 2014; Johnson and Shmatikov, 2013; Uhlerop et al.,

2013; Yu et al., 2014a, 2014b; Yu and Ji, 2014; Chen et al.,

2014; Zhao et al., 2015; Zhang et al., 2013). Unlike alternative

methods for achieving privacy, differential privacy is able to

provide formal guarantees of privacy while making minimal

assumptions.

Here, we focus on privacy in the context of genome-wide as-

sociation studies (GWASs) (Weber et al., 2009; Lowe et al.,

2009), which are commonly used to identify SNPs associated

with a given disease. Numerous works have shown that aggre-

gate genomic data, including GWAS statistics, can leak private

information about participants (Homer et al., 2008; Lumley and

Rice, 2010; Im et al., 2012; Zhou et al., 2011; Sankararaman

et al., 2009). These findings have led the NIH, among others, to

place much of its aggregate genomic data into repositories

and require researchers to apply for access (Erlich and Nar-

ayanan, 2014). Recent work has also shown that a popular

method for sharing genomic data, genomic data-sharing bea-

cons, leaks potentially private information about participants

(Shringarpure and Bustamante, 2015). These results illustrate

the need for new methods that allow privacy-preserving access

to genomic data.

Differential privacy (Dwork et al., 2006; Dwork, 2011) (Box 1)

has been proposed as one promising solution to the privacy

conundrum (Jiang et al., 2014; Yu et al., 2014a, 2014b; Johnson

and Shmatikov, 2013; Uhlerop et al., 2013; Yu and Ji, 2014; Chen

et al., 2014; Zhao et al., 2015; Zhang et al., 2013; Tramer et al.,

2015). The main advantage of differential privacy is that it gives

amathematical guarantee of privacy to all participants in a study.

These guarantees make it possible to share genomic data

without risking participant privacy. Interest in differential privacy

has inspired development of improved methods for performing

differentially private GWASs (Jiang et al., 2014), as well as

numerous novel applications of differential privacy to other types

of research data, including the Privacy Tools for Sharing

Research Data project at Harvard University and the Enabling

Medical Research with Differential Privacy project at the Univer-

sity of Illinois. Although the initial results of this research have

been encouraging, there remain major limitations on the types
ed by Elsevier Inc.
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Box 1. Phenotypic Differential Privacy

The cryptographic community introduced e-differential privacy as a formal definition of privacy about a decade ago (Dwork et al.,

2006). Intuitively, it ensures that the results of an analysis are almost equally likely regardless of whether any one individual par-

ticipates in the study (more specifically, the probability differs by a factor of%expðeÞ, where e is a positive real number). This helps

ensure that there is negligible private information being leaked.

Here, we introduce phenotypic differential privacy, a formal definition of privacy that attempts to preserve private information about

individuals (in this case, disease status). As with all forms of differential privacy, phenotypic differential privacy requires the choice

of a privacy parameter (also known as the privacy budget). This parameter, denoted by e, controls the level of privacy guaranteed to

all participants in the study: the closer to zero it is, the more privacy is ensured, while the larger it is, the weaker the privacy guar-

antee is. This means we would like to set e as small as possible; unfortunately, this comes at the cost of less accurate outputs

(Dwork, 2011).

It is difficult to reach an intuitive understanding of e. Informally, taking the frequentist’s perspective (Wasserman and Zhou, 2010),

one can think of exp ðeÞ as bounding the power-to-significance ratio of any statistical test the adversary might use to determine a

participant’s disease status based on e-phenotypically differentially private data. More formally, assume there is an adversary who

would like to determine the ith individual’s disease status. This can be thought of as performing a hypothesis test to distinguish

between H0 : yi = 1 and H1 : yi = 0 based on the output of a e-phenotypically differentially private statistic. The power of such a

test (where the power equals the probability of rejectingH0 given thatH1 is true) is bounded above by exp ðeÞ times that significance

level of the test (where the significance level equals the probability of rejecting H0 given that H0 is true).

One can also look at exp ðeÞ from a Bayesian perspective (Hsu et al., 2014). If an individual in the study is worried about some nega-

tive effect due to participating in the study (such as someone concluding they have a certain disease based on the study results),

e-phenotypic differential privacy guarantees the probability of that negative event occurring at most differs by a factor of exp ðeÞ,
based on whether the individual has the disease.

For example, e % 2 implies that, for any participant with the disease under investigation, releasing F(D, y) does not increase the

adversary certainty in the participant’s disease status by more than a (multiplicative) factor of exp(2) < 7.5 compared to the

case in which the participant does not have the disease. In agreement with previous work (Vinterbo et al., 2012), we consider e

% 2 to be a realistic level of privacy, though exact thresholds differ from application to application.

The privacy guarantee decreases as the number of queries increases. If the user makes k queries, where the ith query is ei-pheno-

typically differentially private, the result is ðe1 +/+ ekÞ-phenotypically differentially private.

In practice, anyone who wants privacy-preserving access to a database begins by signing up for an account. Unlike in the

controlled access model, no time-consuming application is necessary. All that is needed is to ensure a given individual has not

previously signed up for an account ( for example, a system could be based on academic email addresses or PubMed author iden-

tifiers). Upon registering, each user is given a privacy budget e. The individual can use that privacy budget to query the database in

a differentially private way until his or her privacy budget is used up (for example, the user maymake k queries, where each query is

ðe=kÞ-differentially private). After the privacy budget is used up, the user must apply for an increase in privacy budget. More details

are given in Supplemental Experimental Procedures.
of genomic analyses that can be performed accurately and effi-

ciently (Fredrikson et al., 2014).

Privacy concerns are not the only hurdles facing modern

GWASs. Such analyses are complicated by systematic differ-

ences among different human populations (Yang et al., 2014).

Biologically meaningful mutations are often inherited jointly

with unrelated mutations, leading to false GWAS associations.

For example, the lactase gene is responsible for the ability to

digest lactose (such as in milk) and is more common in people

of northern European ancestry than in those of East Asian

ancestry. People from northern Europe are also, on average,

taller than those from East Asia. This observation would lead a

naive statistical method to erroneously suggest that the lactase

gene is related to height. Such confounding effects are a major

problem that can render the results of a GWAS (particularly

one with a large sample size) nearly nonsensical (Marchini

et al., 2004). To avoid this common problem, known as popula-

tion stratification, various methods have been employed,

including EIGENSTRAT (Price et al., 2006), linear mixed models

(LMMs) (Yang et al., 2014), and genomic control (Devlin and

Roeder, 1999). In recent years, there has been a growing interest
in using LMMs for this task because of improved algorithms

(Kang et al., 2010; Lippert et al., 2011; Tucker et al., 2014; Loh

et al., 2015; Furlotte and Eskin, 2015). Still, EIGENSTRAT re-

mains a common approach for correcting for population stratifi-

cation. However, previous works on differentially private GWASs

have not addressed population stratification, greatly limiting their

real-world applicability.

Here, we jointly address the population stratification and pri-

vacy issues that arise when using private data to answer

GWAS queries. We focus on two types of queries: (1) GWAS sta-

tistics at SNPs of interest and (2) lists of SNPs highly associated

with diseases of interest. We develop a differential privacy

framework that can transform GWAS statistics commonly used

to answer these queries into tools for privacy-preserving

GWASs. We demonstrate this approach on two state-of-the-

art statistics, EIGENSTRAT (Price et al., 2006) and LMM-based

statistics (Yang et al., 2014), through our PrivSTRAT and

PrivLMM methods, respectively. We test these methods on

real and synthetic data and show that they perform well in terms

of both accuracy and runtime; their accuracy improves as sam-

ple sizes increase.
Cell Systems 3, 54–61, July 27, 2016 55



Figure 1. Accuracy of Our Mechanisms for Approximating EIGENSTRAT Statistics

(A and B) PrivSTRAT statistic accuracy of (A) real and (B) simulated GWAS data for various privacy parameters e. Median error is over all SNPs, with error bars

representing the 25% and 75% quantiles. As expected, accuracy increases as e increases (i.e., as privacy decreases).
RESULTS

Motivating Scenario
We begin with a massive database consisting of phenotype and

genotype data from a large number of individuals—for example,

from the Database of Genotypes and Phenotypes or electronic

health records (EHRs). The curators of the database would like

to make the data available to as many individuals as possible,

with the hope of supporting new research. At the same time,

the database curator is responsible for protecting the privacy

of the individuals in the database.

Our aim is to allow researchers access to this data while pre-

serving privacy using a technique known as differential privacy.

Because we are focusing on protecting phenotype data, we

introduce a slightly modified definition known as phenotypic dif-

ferential privacy (see Box 1 for an overview and Experimental

Procedures for technical details). Intuitively, phenotypic differen-

tial privacy guarantees that an analysis performed on any data-

set is statistically indistinguishable from the same analysis per-

formed on any dataset that differs in any individual’s disease

status. This helps prevent the use of genotype information to

learn about private phenotype information, and vice versa.

The exact definition of indistinguishability depends on a user-

defined privacy parameter e (see Box 1 for details about this

parameter). The closer to zero this e parameter, the greater the

privacy. This indistinguishability ensures that our database offers

negligible information about the participants’ private phenotype

information. The current work focuses on developingmethods to

return answers to common genomic queries that are phenotyp-

ically differentially private.

Privately Estimating EIGENSTRAT Statistics
Because privacy methods do not produce correct results on

typical GWASs without population stratification (Supplemental

Experimental Procedures), we start by looking at the most basic

queries in GWASs, namely, the calculation of the GWAS statistic

for a given SNP. In particular, we are interested in calculating ac2
56 Cell Systems 3, 54–61, July 27, 2016
distributed statistic, known as the EIGENSTRAT statistic, for a

given SNP in our database while preserving privacy. As detailed

in Experimental Procedures, this is achieved using a modified

version of the Laplacian mechanism (Dwork, 2011).

We studied the trade-off between privacy (the e parameter)

and accuracy on real GWAS data for a rheumatoid arthritis data-

set (Figure 1A) (Plenge et al., 2007), as well as on simulated data

with two subpopulations (Figure 1B) (see Experimental Proce-

dures). As expected, our method quickly increases in accuracy

as privacy decreases (i.e., as e increases). For reasonable values

of e (e around 1 or 2) (Vinterbo et al., 2012), themedian error intro-

duced by our method is around 0.1 or 0.2. This is fairly small, cor-

responding to about a 5%–10% error in the EIGENSTRAT statis-

tic, an amount that is unlikely to affect the final conclusions of an

analysis (see Case Study). We can also calculate a phenotypi-

cally differentially private p value for a given SNP using this re-

turned statistic (Supplemental Experimental Procedures).

Privately Selecting Highly Associated SNPs
Besides calculating c2 statistics, users may be interested in

determining which SNPs are most highly correlated with a given

disease. A simple way tomake this identification would be to use

the precedingmethod to estimate the EIGENSTRAT statistics for

all SNPs and return the highest-scoring SNPs. However, the

large number of queries required to do this necessitates a small

e parameter for each query, resulting in poor accuracy. More ac-

curate methods have been proposed that identify high-scoring

SNPs while preserving privacy (Uhlerop et al., 2013; Johnson

and Shmatikov, 2013; Yu et al., 2014a). We focus on one of these

methods, known as the distance-based method (Johnson and

Shmatikov, 2013; Simmons and Berger, 2016). We compare

the distance-basedmethod with other methods in Supplemental

Experimental Procedures, showing that it performs the best in

practice, a result that is consistent with previous work (Simmons

and Berger, 2016).

The distance-based method has previously been used with

simple statistics such as Pearson or allelic test statistics. Here,



Figure 2. Accuracy of the PrivSTRAT Algorithms for Selection of Top SNPs

(A and B) Percentage of the top SNPs correctly returned for the PrivSTRAT algorithms, withmret (the number of SNPs being returned) equal to 3 and 5 for (A) the

rheumatoid arthritis GWAS dataset and (B) our simulated dataset and varying values of the privacy parameter e. In all four cases, accuracy increases as privacy

decreases (as e increases). More importantly, in three of the four cases, high accuracy is achieved for a reasonable level of privacy (e around 2), which should

increase with sample size. These results are averaged over 20 iterations.
we show that, with a few algorithmic insights, we are able modify

this approach to work for the more complicated EIGENSTRAT

statistics. This result is notable, given that it was only recently

shown that this approach could be made computationally trac-

table even for relatively simple allelic test statistics (Yu and Ji,

2014; Simmons and Berger, 2016).

Our algorithm for selecting highly associative SNPs takes a

privacy parameter e (see Box 1 for details) and the number of

SNPs to be returned mret. The algorithm returns mret SNPs in

a way that ensures that the returned SNPs are almost equally

likely to have been produced (more specifically, the likelihood

differs by at most a multiplicative factor of expðeÞ) if we changed

an individual’s disease status in our dataset (which we denote as

e-phenotypic differential privacy) (see Box 1 and Experimental

Procedures) while maximizing the number of returned high-

scoring SNPs.

We tested the accuracy of PrivSTRAT for selecting high-

scoring SNPs and foundwe can obtain high accuracy for reason-

able levels of privacy (e around 1 or 2) (Figure 2). More specif-

ically, we used the algorithm to return the top mret SNPs, where

mret ˛ {3, 5} for various values of the privacy parameter e. (This

choice is based on previous work by Yu et al., 2014a. Other

values are explored in Supplemental Experimental Procedures.)

The accuracy of the returned results (averaged over 20 trials)

is measured by the percentage overlap between the returned

results and the true results (Yu et al., 2014a). For both the rheu-

matoid arthritis dataset (Figure 2A) and the simulated dataset

(Figure 2B), accuracy increases as e increases (privacy de-

creases), as expected. Moreover, near perfect accuracy is ob-

tained for realistic values of e (values around 1 or 2) (Vinterbo

et al., 2012) on real GWAS data, which will only increase as

datasets grow (Supplemental Experimental Procedures). We

also performed experiments on datasets with higher levels of

population stratification (Figure S3; Supplemental Experimental

Procedures). In particular, we took data from the HapMap proj-
ect (consisting of 880 individuals of different ancestries) and

simulated corresponding phenotype data. We see that our

method for picking high-scoring SNPs has lower accuracy, but

this is consistent with the decrease in sample size (Supplemental

Experimental Procedures).

Our method requires the user to specify the number of re-

turned SNPs ahead of time (the mret parameter). This differs

from the traditional GWAS approach, in which the researcher

sets a p value threshold and returns all SNPs with p values below

that threshold. Our framework can be modified to work in this

way. In particular, it is possible to estimate the number of

SNPs with scores below a certain p value threshold in a pri-

vacy-preserving way using neighbor distance (Supplemental

Experimental Procedures). However, we do not envision this as

the main use of our method—it is meant to return not all possible

hits but only the most promising handful (see Case Study).

By running our algorithm on subsets of the rheumatoid arthritis

dataset (with n = 200, 400, 600, 800, and 1,000 participants), we

see that accuracy increases as sample size increases (Table S2).

This suggests that the utility of our method will increase as

genomic databases become larger.

Runtime
To assess the effects of the privacy-preserving nature of Priv-

STRAT on runtime, we ran PrivSTRAT on the rheumatoid arthritis

(RA) dataset described in Experimental Procedures, with mret =

3, and measured the amount of time taken by each step of the

algorithm: performing the singular value decomposition (SVD)

using either the smartpca algorithm included in EIGENSTRAT

(134.16 s) or an approximate method (14.37 s) (Supplemental

Experimental Procedures), calculating the m vectors (8.6 s),

calculating the neighbor distance (26.23 s), and picking the

SNPs (.25 s). The results are an average over 10 trials. The calcu-

lation of the exact SVD is the slowest of these steps by a factor of

>5, while even the approximate SVD calculation is only a factor of
Cell Systems 3, 54–61, July 27, 2016 57



Figure 3. Accuracy of the PrivLMM Method

for Selection of Top SNPs

Percentage of top SNPs correctly returned for the

PrivLMM method, with mret (the number of SNPs

being returned) equal to 3 and 5 for the rheumatoid

arthritis GWAS dataset and varying values of the

privacy parameter e. In both cases, high accuracy

is achieved for a reasonable level of privacy (e

around 2). These results are averaged over 20

iterations.
2 faster than the slowest step in the privacy-preserving algo-

rithm. Because calculation of the SVD is required by standard

EIGENSTRAT statistics, the overhead required to preserve pri-

vacy is minimal.

Extending to LMMs: PrivLMM
We have thus far focused on performing privacy-preserving

GWASs based on EIGENSTRAT statistics. In recent years, how-

ever, there has been growing interest in using statistics based

on LMMs to perform GWASs. The framework introduced earlier

can be used to perform privacy-preserving LMM-based anal-

ysis, a method we denote PrivLMM (Supplemental Experimental

Procedures).

To demonstrate this application, we tested PrivLMM for re-

turning high-scoring SNPs on the rheumatoid arthritis GWAS da-

taset. We used the same setup that we used for PrivSTRAT. As

expected, privacy decreases as accuracy increases (Figure 3).

High accuracy can be obtained for reasonable levels of privacy

(e around 1 or 2) (Figure 3). We used values for the variance pa-

rameters (se and sg) calculated using FaST-LMM software (Lip-

pert et al., 2011). In theory, it is preferable to use a differentially

private approach to calculate these parameters. A method to

do this, based on previous work (Abowd et al., 2013), is

described in Supplemental Experimental Procedures.

Case Study
Next, we provide a case study to illustrate one possible way

PrivLMM and PrivSTRAT might be used in practice. Consider a

lab with limited resources that wants to run a GWAS on a group

of individuals. The study will result in a list of high-scoring SNPs,

many of which are significant. However, many SNPs may be

close to the threshold of being significant. Some of these close

calls are due to chance, while some may be SNPs weakly asso-

ciatedwith the disease, a particular concern in small studies. The
58 Cell Systems 3, 54–61, July 27, 2016
researchers might be interested in as-

sessing several of these SNPs close to

the significance boundary for significance

on a new, larger dataset as validation. Un-

fortunately, they may not have direct ac-

cess to such datasets due to privacy con-

cerns. Our method could allow these

researchers access to the databases

necessary to validate their results. Such

validation is of particular interest in light

of the large number of false-positive re-

sults that appear in the biomedical litera-

ture (Kohane et al., 2012; Ioannidis, 2005).
To demonstrate this utility on a test dataset, we divided the

rheumatoid arthritis dataset into two subsets of 450 cases and

450 controls (dataset 1) and the remaining 435 cases and 780

controls (dataset 2). We ran a GWAS on dataset 1 to obtain

several significant SNPs below the p value cutoff of 10�6 (corre-

sponding to a Bonferroni corrected p value of 0.05). Two addi-

tional SNPs, rs498422 (p = 2:10310�6) and rs9419011 (p =

1:19310�6), do not quite reach the p value cutoff. Because

they are close to reaching statistical significance, we would

like to test them on dataset 2 to see whether follow-up studies

might be worthwhile. Due to privacy concerns, we are not given

direct access to this database. However, we can apply Priv-

STRAT with a total privacy budget of e = 2. This gives us an es-

timate of the EIGENSTRAT statistics for both SNPs, with scores

of 25.79 and 1.66 (estimated 95% confidence intervals of 4.21–

95.60 and 0–13.75, corresponding to p values of �5310�7 and

�0.19, respectively).

Because we are only testing two SNPs, even after correcting

for multiple-hypothesis testing, this is enough to suggest

that rs498422 might be worth further investigation. This result

is consistent with previous findings on rheumatoid arthritis:

rs498422 is close to the human leukocyte antigen locus in the hu-

man genome, a region known to be highly associated with rheu-

matoid arthritis risk. However, this result does not support further

study of rs9419011, saving us time and effort. In both cases, the

PrivSTRAT statistics are close to the actual EIGENSTRAT statis-

tics (which equal 26.18 and 1.69, respectively). We obtain similar

accuracy when repeating this experiment (Supplemental Exper-

imental Procedures).

DISCUSSION

Here, we introduce three advances that make differential privacy

useful for real-world GWAS statistics. First, we offer a modified



yet practical form of differential privacy, termed phenotypic dif-

ferential privacy (Box 1), with the aim of efficiently protecting pri-

vate disease status information from being leaked while accu-

rately answering various common queries on genomic data.

This definition does not guarantee that information about

whether someone participated in our study is hidden (though it

also does not guarantee that such information will be leaked).

Instead, it prevents the release of private information that can

be used to compromise a patient’s disease status using geno-

type information or can be used to compromise a patient’s geno-

type data using disease information.With EHRs or large genomic

databases (such as 23andMe), knowing that someone partici-

pated is equivalent to knowing they have their genotype on re-

cord, a fact that is unlikely to be private. As such, it makes sense

to use phenotypic differential privacy in such settings.

Second, we introduce decompositions of EIGENSTRAT and

LMM-based statistics that allow us to use a tool from differential

privacy, the Laplacian mechanism (Dwork, 2011), to obtain ac-

curate and fast estimations of the statistical significance of spe-

cific SNPs while preserving patient privacy.

Third, we develop a greedy algorithm that allows us to return

lists of SNPs highly associated with a disease while ensuring

high levels of both accuracy and privacy. This result is particu-

larly noteworthy, because analogous methods for simpler statis-

tics have been devised only recently (Johnson and Shmatikov,

2013; Simmons and Berger, 2016). Combined, our tools demon-

strate that it is possible to correct for population stratification

while preserving privacy in GWAS results, thus offering the pos-

sibility of applying a differentially private framework to large,

genetically diverse groups of individuals and patients, such as

those present in large genomic databases.

The major computational bottleneck in our methods comes

not from the privacy-preserving component but from the original

statistics (calculating the eigenvectors in EIGENSTRAT or calcu-

lating the variance parameters in LMM-based statistics). As

such, our methods are well positioned to exploit computational

advances in GWAS analysis. In particular, we are interested in

modifying our method to take advantage of computational ad-

vances recently introduced for LMM-based association (Loh

et al., 2015). (See Supplemental Experimental Procedures for

other potential directions.)

We are advocating privacy-preserving methods not for all sit-

uations in which one might want to conduct a GWAS but rather

for only situations in which privacy concerns would make alter-

native approaches cumbersome or impossible. It is our hope

that our Priv suite of tools will be used to improve access to pri-

vate genomics data. This access will offer researchers new tools

that can be used to produce novel hypotheses or validate previ-

ous findings inways that are not currently possible due to privacy

concerns.

As with any set of tools, it is important to understand the lim-

itations of the Priv suite. Although our tools are useful for

answering questions about large databases while preserving pri-

vacy, they are less accurate on small databases (discussed in

Experimental Procedures). Even on large databases, while our

approach performs well in many circumstances, greater accu-

racy is desirable. Understanding exactly where our method is

most useful will require tests on a large variety of datasets in

numerous application domains. Moreover, our use of phenotypic
differential privacy cannot guarantee privacy in databases with

large levels of case ascertainment (that is, when the percentage

of individuals with the disease in the study is larger than the per-

centage in the background population) but is instead focused on

databases that are representative of the background population

(such as in 23andMe or similar databases). It is our hope that

future work will build upon our results to overcome these

limitations.

In the long term, it is possible that differential privacy tech-

niques will no longer be needed as we come to understand

exactly how much privacy is lost after releasing aggregate

genomic data (Simmons and Berger, 2015). Currently, we are

far from this understanding. Thus, differential privacy provides

us with the possibility of granting wider access to genomic

data now, with immediate benefits for the research community.
Availability
An implementation of our results and simulated data is available

on our website, http://groups.csail.mit.edu/cb/PrivGWAS, and

on the Cell Systems website (Data S1).
EXPERIMENTAL PROCEDURES

Notation

In the following sections, we use jv j to denote the length of the vector v. More-

over, for vectors u and v, we let u,v denote the dot product of u with v.

GWASs Revisited

The aim of GWASs is to link SNPs in a study cohort to a phenotype (e.g., dis-

ease) of interest. In a GWAS, the researcher begins with a group of n individ-

uals genotyped at m SNPs. Let D be an n by m genotype matrix, where the

ith entry in the jth row of D is equal to the number of times theminor allele occurs

in the jth individual at the ith SNP (for autosomal SNPs, this number is equal to 0,

1, or 2). Details on how to handle missing genotypes are provided in Supple-

mental Experimental Procedures. Let X be the n by m matrix obtained by

mean centering and variance normalizing each column of the genotype matrix

D. Let xi be the column of X corresponding to SNP i. Similarly, let y = ðy1;.; ynÞ
˛ f0; 1gn be a vector of phenotypes, where yj = 1 if the jth individual has the dis-

ease and yj = 0 otherwise.

Given X and y, we would like to determine which SNPs are associated with

the disease phenotype. We focus on two statistics that allow us to test for

these associations: EIGENSTRAT (Price et al., 2006) and LMM-based associ-

ation statistics (Kang et al., 2010).

Phenotypic Differential Privacy

Here, we give a formal definition of phenotypic differential privacy. See Box 1

for a more informal discussion.

Definition 1. Let F be a random function that takes an n by m genotype ma-

trix, D, and an n dimensional phenotype vector, y, and outputs F(D, y), where

the output is in some set U. We say that F is e-phenotypic differential privacy

for some privacy parameter e > 0 if, for all genotype matrices D, all phenotype

vectors y, y0 ˛ {0, 1}, such that y and y0 differ in exactly one coordinate, and for

all sets S 3 U, we have

PðFðD; yÞ˛SÞ%expðEÞPðFðD; y0Þ˛SÞ:
This definition of privacy can be viewed as a specific instantiation of both

induced differential privacy (Kifer andMachanavajjhala, 2011) and the Blowfish

framework (Kifer and Machanavajjhala, 2014; Hi et al., 2014).

PrivSTRAT: Privacy-Preserving EIGENSTRAT

The differentially private GWAS literature has largely focused on three tasks:

identifying highly associated SNPs, estimating association statistics, and esti-

mating the number of significantly associated SNPs in a study. We consider all
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three tasks, focusing on the first two (the third is addressed in Supplemental

Experimental Procedures).

Estimating c2

We would like to estimate the c2 statistic from EIGENSTRAT (Supplemental

Experimental Procedures). In particular, assume we want an estimate of the

EIGENSTRAT statistic c2
i for a given SNP i. To do this, if we let mi = x�i =

��x�i
�� , then

c2
i =

ðn� k � 1Þðmi,y
�Þ2

jy� j 2 =
ðn� k � 1Þðmi,yÞ2

jy� j 2 :

Therefore, it suffices to get estimates of both mi,y and jy� j that are

ðe=2Þ-phenotypic differential privacy and combine the results (mi,y =mi,y
� fol-

lows, because y� is the projection of y onto a linear subspace containing mi ).

This can be done easily using the Laplacian mechanism (Dwork, 2011).

More details are in Supplemental Experimental Procedures.

Selecting High-Scoring SNPs

Another task we consider is returning a list of the top mret-scoring SNPs for

some user-defined parametermret while achieving e-phenotypic differential pri-

vacy—in other words, we want to return the locations of themret SNPs with the

largest c2 values. This is equivalent to picking the mret SNPs with the largest

jmi/y j values. To do this in a privacy-preserving way, we use a modified

version of the approach known as the distance-based method (Johnson and

Shmatikov, 2013). This works as follows: the user chooses a threshold c > 0.

The ith SNP is considered significant if jmi,y j > c and not significant otherwise.

(For example, c might correspond to a p value of 0.05 or 10�8. In practice,

instead of having the user choose c, we use a previous approach to automati-

cally choose c [Simmons and Berger, 2016]. Details are given in Supplemental

Experimental Procedures.) The neighbor distance for the ith SNP, denoted bi , is

the minimum number of individuals whose phenotypes need to be changed to

change SNP i from significant to not, or vice versa. Formally,

bi =biðcÞ=miny0˛½0;1�n ; c= jmi,y0 j jy � y0 j 0;

where jv j 0 denotes the number of nonzero entries in the vector v, and

bi =minfdiðcÞ;dið�cÞg, where

diðcÞ=miny0˛½0;1�n ; c=mi,y0 jy � y0 j 0:
To use this neighbor distance to select high-scoring SNPs, we let d�

i =bi for

significant SNPs and d�
i = 1� bi for all other SNPs. The distance-based

method picks mret SNPs without repetition, where the probability of picking

the ith SNP is proportional to exp ðd�
i =2emretÞ. It is easy to see from previous

work (Johnson and Shmatikov, 2013) that this mechanism is e-phenotypic dif-

ferential privacy. The difficult part is calculating diðcÞ. Our significant algo-

rithmic development is to show that this can be done using the greedy algo-

rithm presented in Algorithm 1.

Data

We test PrivSTRAT and PrivLMM on a rheumatoid arthritis dataset, NARAC-1

(Plenge et al., 2007). After quality control filtering, the dataset contained 893

cases, 1,243 controls, and 67,623 SNPs. This dataset includes some closely

related individuals. Although LMM can handle such cryptic relatedness,

EIGENSTRAT is not designed to do so. Therefore, before applying PrivSTRAT

to this dataset, we used PLINK to remove relatives with an estimated identity

by descent greater than 0.2. Thus, the final dataset contained 885 cases and

1,230 controls. Because this dataset has relatively little population stratifica-

tion, we also used PrivSTRAT on a simulated dataset with two subpopulations.

This dataset and the associated code (based on PLINK tools) (Purcell et al.,

2007) are available online.

Algorithm 1: Calculates the Neighbor Distance

Require: y; mi ; c.

Ensure: Returns the neighbor distance diðcÞ.
Let i1;.; in be a permutation on 1;.; n such that, if

ur =max
�
mi;ir

�
1� yir

�
;mi;ir

�
0� yir

��
;

then u1Ru2R/Run.

Let j1;.; jn be a permutation on 1;.; n such that, if
60 Cell Systems 3, 54–61, July 27, 2016
lr =min
n
mi;jr

�
1� yjr

�
;mi;jr

�
0� yjr

�o
;

then l1%l2%.%ln.

Let Ur =Sk
j= 1uj and Lr =Sk

j =1 lj for k = 1;/; n.

Return r such that c� mi,y˛½Lr +1; LrÞWðUr ;Ur +1�.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, two tables, and one data file and can be found with this article

online at http://dx.doi.org/10.1016/j.cels.2016.04.013.
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