
MIT Open Access Articles

How to Compute in the Presence of Leakage

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Goldwasser, Shafi and Guy N. Rothblum. “How to Compute in the Presence of
Leakage.” SIAM Journal on Computing 44, 5 (January 2015): 1480–1549 © 2015 Society for
Industrial and Applied Mathematics

As Published: http://dx.doi.org/10.1137/130931461

Publisher: Society for Industrial & Applied Mathematics (SIAM)

Persistent URL: http://hdl.handle.net/1721.1/115437

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/115437

SIAM J. COMPUT. c© 2015 Shafi Goldwasser & Guy Rothblum
Vol. 44, No. 5, pp. 1480–1549

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE∗

SHAFI GOLDWASSER† AND GUY N. ROTHBLUM‡

Abstract. We address the following problem: how to execute any algorithm P , for an unbounded
number of executions, in the presence of an adversary who observes partial information on the internal
state of the computation during executions. The security guarantee is that the adversary learns
nothing, beyond P ’s input-output behavior. Our main result is a compiler, which takes as input an
algorithm P and a security parameter κ and produces a functionally equivalent algorithm P ′. The
running time of P ′ is a factor of poly(κ) slower than P . P ′ will be composed of a series of calls
to poly(κ)-time computable subalgorithms. During the executions of P ′, an adversary algorithm A,
which can choose the inputs of P ′, can learn the results of adaptively chosen leakage functions—each
of bounded output size Θ̃(κ)—on the subalgorithms of P ′ and the randomness they use. We prove
that any computationally unbounded A observing the results of computationally unbounded leakage
functions will learn no more from its observations than it could given black-box access only to the
input-output behavior of P . Unlike all prior work on this question, this result does not rely on any
secure hardware components and is unconditional. Namely, it holds even if P = NP .

Key words. leakage resilience, cryptography, side channels

AMS subject classifications. 94A60, 68P25, 68Q99

DOI. 10.1137/130931461

1. Introduction. This work addresses the question of how to compute any pro-
gram P , for an unbounded number of executions, so that an adversary who can obtain
partial information on the internal states of executions of P on inputs of its choice
learns nothing about P beyond its input-output behavior. Throughout the introduc-
tion, we will call such executions leakage resilient.

This question is of importance for noncryptographic as well as cryptographic
algorithms. In the setting of cryptographic algorithms, the program P is usually
viewed as a combination of a public algorithm with a secret key, and the secret key
should be protected from side channel attacks. Stepping out of the cryptographic
context, P might be a proprietary search algorithm, a novel numeric computation
procedure, or an algorithm that runs on (embedded) sensitive medical data. We want
to protect such a P while running in an insecure environment, say a cloud server,
where its internals might be partially observed (for an example of such an attack, see
Ristenpart et al. [RTSS09]). Looking ahead, our results do not rely on computational
assumptions and thus will be applicable to noncryptographic settings without adding
any new conditions. They hold even if P = NP (and cryptography as we know it

∗Received by the editors August 1, 2013; accepted for publication (in revised form) April 17,
2015; published electronically October 27, 2015. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S. Government. The U.S. Govern-
ment retains a nonexclusive, royalty-free license to publish or reproduce the published form of this
contribution, or allow others to do so, for U.S. Government purposes. Copyright is owned by SIAM
to the extent not limited by these rights.

http://www.siam.org/journals/sicomp/44-5/93146.html
†MIT, Cambridge, MA 02139, and The Weizmann Institute of Science, Rehovot, 7610001, Israel

(shafi@theory.csail.mit.edu). This author’s research was supported in part by NSF grants CCF-
0915675 and CCF-1018064 and DARPA under agreements FA8750-11-C-0096 and FA8750-11-2-0225.
‡Samsung Research America (SRA), San Francisco, CA 94117 (rothblum@alum.mit.edu). Part

of this author’s research was done while he was at Princeton University and was supported by NSF
grant CCF-0832797 and by a Computing Innovation Fellowship.

1480

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sicomp/44-5/93146.html
mailto:shafi@theory.csail.mit.edu
mailto:rothblum@alum.mit.edu

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1481

does not exist).
A crucial aspect of this question is how to model the partial information or leakage

attack that an adversary can launch during executions. Proper modeling should
simultaneously capture real world attacks and achieve a good level of theoretical
abstraction. Furthermore, there are inherent limitations and impossibility results
limiting the classes of leakage attacks that can be tolerated using general-purpose
compilers (see section 1.3). Thus, to enable leakage-resilient execution of general
algorithms (our goal in this work), we must put restrictions on the leakage attack
model. In light of this, several different leakage attack models have been considered
(and meaningful results obtained) in the literature. We briefly survey these models
here and later compare known results in these models to our results.

Wire probe (ISW-L). The pioneering work of Ishai, Sahai, andWagner [ISW03]
first considered the question of converting general algorithms to equivalent leakage-
resilient algorithms. Their work views algorithms as stateful circuits (e.g., a cryp-
tographic algorithm, whose state is the secret key of an algorithm), and considers
adversaries that can learn the value of a bounded number of wires in each execution
of the circuit, whereas the values of all other wires in this execution are perfectly
hidden. All internal wire values are erased between executions.

AC0 bounded leakage (CB-L). Faust et al. [FRR+10] modify the leakage
model and result of [ISW03]. They still model an algorithm as a stateful circuit, but
in every execution, they let the adversary learn the result of any AC0 computable
function f computed on the values of all the wires. Similarly to the [ISW03] model
they also place a total bound on the output length of this AC0 function f . To obtain
results in this model, Faust et al. [FRR+10] also augment the model to assume the
existence of leak-free hardware components that produce samples from a polynomial
time samplable distribution. It is assumed that there is no data leakage from the
randomness generated and the computation performed inside of the device. Roth-
blum [Rot12] gives a general-purpose compiler for CB-L that does not require secure
hardware, but security is based on an unproved complexity-theoretic conjecture.

Only-computation leaks (OC-L). The only-computation axiom of Micali and
Reyzin [MR04] assumes that there is no leakage in the absence of computation, but
computation always does leak. This axiom was used in the works of Goldwasser and
Rothblum [GR10] and by Juma and Vhalis [JV10], who both transform an input
algorithm P (expressed as a Turing machine or a boolean circuit) into an algorithm
P ′, which is divided into subcomputations. An adversary can learn the value of any
(adaptively chosen) polynomial time computable length bounded function, called a
leakage function,1 computed on each subcomputation’s input and randomness.

To obtain results in this model, the authors of [GR10, JV10] augment the model
to assume the existence of leak-free hardware components that produce samples from
a polynomial time samplable distribution. It is assumed that there is no data leakage
from the randomness generated and the computation performed inside of the device.
Similarly, in independent work, Dziembowski and Faust [DF12] also assume leak-free
components. Unlike in [GR10, JV10], they do not bound the computational power of
the adversary.

RAM cell probe (RAM-L). The RAM model of Goldreich and Ostrovsky
[GO96] considers an architecture that loads data from fully protected memory and

1In contrast to the AC0 restriction on f in [FRR+10].

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1482 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

runs computations in a secure CPU. Goldreich and Ostrovsky [GO96] allowed an
adversary to view the access pattern to memory (and showed how to make this ac-
cess pattern oblivious) but assumed that the CPU’s internals and the contents of
the memory are perfectly hidden.2 This was recently extended by Ajtai [Ajt11]. He
divides the execution into subcomputations. Within each subcomputation, the ad-
versary is allowed to observe the contents of a constant fraction of the addresses read
from memory. (This is similar to the ISW-L model, in that a portion of memory
addresses used in a computation is either fully exposed or fully hidden, except that
Ajtai [Ajt11] works in the RAM model and divides the executions into subcomputa-
tions whereas Ishai, Sahai, and Wagner [ISW03] work in the stateful circuit model).
These are called the compromised memory accesses (or times). The contents of the
uncompromised addresses, and the contents of the main memory not loaded into the
CPU, are assumed to be perfectly hidden.

1.1. This work. We show how to transform any algorithm P into a functionally
equivalent and leakage-resilient algorithm Eval, which can be run for an unbounded
number of executions, without using any secure hardware or any intractability as-
sumptions. We work within the OC-L leakage model, but we further allow the ad-
versary to be computationally unbounded and the leakage on subcomputations to be
the result of evaluating computationally unbounded leakage functions. We proceed to
precisely describe the power of our adversary and the security guarantee we provide.

Computationally unbounded OC-L leakage adversary. The leakage at-
tacks we address are in the “only-computation leak information” model of [MR04].
The algorithm Eval will be composed of a sequence of calls to subcomputations. The
leakage adversary Aλ, on input a security parameter 1κ, can (1) specify a polynomial
number of inputs to P and (2) per execution of Eval on input x request for every sub-
computation of Eval any λ bits of information of its choice, computed on the entire
internal state of the subcomputation, including any randomness the subcomputation
may generate. We emphasize that we do not put any restrictions on the complexity
of the leakage adversary Aλ and that the requested λ bits of leakage may be the re-
sult of computing a computationally unbounded function of the internal state of the
subcomputation.

Security guarantee. Informally, the security guarantee that we provide is that
for any leakage adversary Aλ, whatever Aλ can compute during the execution of Eval ,
it can compute with black-box access to the algorithm P . Formally, this is proved by
exhibiting a simulator which, for every leakage adversary Aλ, given black-box access
to the functionality P , simulates a view which is statistically indistinguishable from
the real view of Aλ during executions of Eval. The simulated view will contain the
results of input-output calls to P , as well as results of applying leakage functions on
the subcomputations as would be seen by Aλ. The running time of the simulator is
polynomial in the running time of Aλ and the running time of the leakage functions
Aλ chooses. We note that the adversary is also in control of the inputs on which Eval
is executed.

Main theorem (informal). We show a compiler that takes as input a program,
in the form of a circuit family {Cn}, a secret y ∈ {0, 1}n (y will be protected; no
information about it should be revealed to the adversary), and a security parameter

2Alternatively, they assume that the memory contents are encrypted and that their decryption
in the CPU is perfectly hidden.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1483

κ. The compiler produces as output a description of a (stateful) algorithm Eval such
that (s.t.) the following hold:

1. Eval(x) = C(y, x) for all inputs x.
2. The execution of Eval(x) for |x| = n will consist of O(|Cn|) subcomputations,

each of complexity (time and space) Õ(κω) (where ω is the exponent in the
best algorithm known for matrix multiplication).

3. There exist a simulator Sim, a leakage bound λ(κ) = Θ̃(κ), and a negligi-
ble distance bound δ(κ) s.t. for every leakage adversary Aλ(κ) and κ ∈ N,
SimC(1κ,A) is δ(κ)-statistically close to view (Aλ), where SimC(1κ,A) de-
notes the output distribution of Sim , on input of the description of A, and
with black-box access to C. view (Aλ) is the view of the leakage adversary
during a polynomial number of executions of Eval on inputs of its choice.
The running time of Sim is polynomial in that of A and that of the leakage
functions chosen by A. The number of oracle calls made is always poly(κ).

For example, C could be a digital signature algorithm and y its signing key. Eval
can be executed to sign different messages, under continual leakage attacks, and the
adversary will learn nothing about the signing key (beyond the signatures it sees).
In particular, the adversary will not be able to use the observed leakage to forge a
signature on a new message. Alternatively, C could be the universal circuit and y the
description of a proprietary algorithm to be protected even under leakage.

We emphasize that our result holds unconditionally, without any leak-free hard-
ware or any computational assumptions. This is in contrast to all of the works
[FRR+10, GR10, JV10, DF12, Rot12] on resilience of general programs against con-
tinual leakage that consider “computationally sophisticated”3 leakage functions. See
section 3 for a fuller comparison with these prior works. See section 1.2 for a descrip-
tion of the “leaky CPU” model, an alternative to the OC leakage model.

Doing away with secure hardware. The idea behind doing away with the
need for secure hardware is to first note that in previous works the use of hardware
was to sample randomly from polynomial time computable distribution Db, where Db

corresponded to encryptions (or encodings) of bit b (where b ∈ {0, 1, r} for r randomly
chosen in {0, 1}) without leaking the coins used to compute the encryptions. The new
idea is for the compiler to prepare (at compile time) what we call “ciphertext banks.”
These ciphertext banks are collection samples from the relevant distributions Db. We
show how to generate new samples from older ones in a leakage-resilient manner.
This is done by taking appropriate linear combinations of collections of ciphertexts;
see below.

Doing away with computational assumptions. Previous works relied on the
existence of homomorphic properties of an underlying public-key encryption scheme
with good leakage-resilience properties and good key-refreshing possibilities, which
helped carry out the computation in a “leakage-resilient” manner. We observe, how-
ever, that there is no need to use a public-key encryption scheme in the context of
secure execution, as the scheme is not used for communication but rather as a way
to carry out computation in a “secrecy-preserving” fashion. Once we make the shift
to a private-key encryption scheme which offers sufficient homomorphism for our us-
age, we are able to inject new entropy into the key “on the fly,” as the computation

3By “computationally sophisticated” we mean that the leakage function performs some nontrivial
computation on wires or memory accesses in the execution, rather than simply releasing their values
as in [ISW03, Ajt11].

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1484 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

progresses, and to achieve unconditional security. It is crucial to use the fact that the
user executing the compiled circuit in this setting is trusted rather than adversarial
and thus will choose independent randomness for this entropy boosting operation.

The new private-key encryption method is simple and uses the inner product
function. The key is a string key ∈ {0, 1}κ, and the encryption of a bit b ∈ {0, 1} is
a ciphertext �c ∈ {0, 1}κ s.t. b is the inner product of key and �c. This simple scheme
is resilient to separate leakage on the key and the ciphertext, is homomorphic under
addition, and is refreshable. The challenge is showing why these properties (and in
particular this level of homomorphism) suffice for executing general programs under
continual leakage.

We also mention that, whereas our focus is on enabling any algorithm to run
securely in the presence of continual leakage, continual leakage on restricted computa-
tions (see, e.g., [DP08, Pie09, FKPR10, BKKV10, DHLAW10, LRW11, LLW11]) and
on storage ([DLWW11]) has been considered under various additional leakage models
in a rich body of recent works. See section 3 for further discussions of related work.

1.2. Leaky CPU: An alternative to OC-leakage. A question that is often
raised regarding the OC-L model is what constitutes a reasonable division of compu-
tation to basic subcomputations (on which leakage is computed). We suggest that to
best address this question, one should think of the OC-L model in terms of an alter-
native model which we call a leaky CPU. A leaky CPU will consist of an instruction
set of constant size, where instructions correspond to basic subcomputations in the
OC-L model, and the instruction set is universal in the sense that every program can
be written in terms of a sequence of calls to instructions from this set. The operands
to an instruction can be leaked on when the instruction is executed. We proceed
with an slightly more formal description. Computations are run on a RAM with two
components:

1. A CPU which executes instructions from a fixed set of special universal in-
structions, each of size poly(κ) for a security parameter κ.

2. A memory that stores the program, input, output, and intermediate results of
the computation. The CPU fetches instructions and data and stores outputs
in this memory.

The adversary model is as follows:
1. For each program instruction loaded and executed in the CPU, the adversary

can learn the value of an arbitrary and adaptively chosen leakage function of
bounded output length (output length ˜Theta(κ) in our results). The leakage
function is applied to the instruction executed in the CPU: It is a function
of all inputs, outputs, randomness, and intermediate wires of the instruction.

2. Contents of memory, when not loaded into the CPU, are hidden from the
adversary.

Our result, stated in this model, provides a fixed set of CPU instructions and a
compiler that can take any polynomial time computation (say, given in the form of a
boolean circuit) and compile it into a program that can be run on this leaky CPU.
A leakage adversary as above, who can specify inputs to the compiled program and
observe its outputs, learns nothing from the execution beyond its input-out behavior.
We note that there is leakage on every instruction executed on the CPU, in contrast
to models where the CPU (or some of its operations) are assumed to be opaque
to an adversary; see Goldreich and Ostrovsky [GO96]. We elaborate on the set of
instructions required by our compiler in section 2.4.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1485

1.3. Relationship to code obfuscation. Code obfuscation is the task of com-
piling programs so that they are “impossible to reverse-engineer,” even when an ad-
versary is given full access to the (obfuscated) program’s code. Strong security defi-
nitions, such as black-box obfuscation [BGI+01], require that such an adversary learn
no more than it would via black-box oracle access to the program’s input-output func-
tionality. Looking ahead, we note that Barak et al. [BGI+01] proved that full-blown
black-box obfuscation of general programs is impossible.

There is a connection between the problems of code obfuscation and leakage
resilience for general programs. In a nutshell, one may think of a full-blown black-
box obfuscator as the ultimate “leakage-resilient” transformation. Such an obfuscator
provides the very strong guarantee that the compiled algorithm can be “fully leaked”
to an adversary—it is under the adversary’s complete control! In particular, the
adversary can execute the transformed algorithm on any (polynomial number of)
inputs of its choice and have a complete view of the executions’ internals, and it
still learns nothing beyond the outputs. Since we know that black-box obfuscation is
impossible [BGI+01], we must relax the requirements on what we can hope to achieve
when obfuscating a circuit. Leakage-resilient versions of algorithms can be viewed
as one such relaxation. One may view our result as showing that, while we cannot
protect general algorithms if we give the adversary complete view of the transformed
algorithm’s code (i.e., the obfuscation), we can protect general algorithms from an
adversary that has a “partial view” of the execution. In our work, this “partial view”
is as defined by the “only-computation leaks” leakage attack model.

Indeed, we can use the above connection to show that the impossibility of program
obfuscation implies impossibility results for leakage-resilience compilers. Impagliazzo
[Imp10] observes that this impossibility can be used to show that if the leakage attack
model allows even a single bit of leakage to be computed by an adversarially chosen
polynomial time function applied to the entire internal state of the execution, then
there exist programs P that cannot be executed in a leakage-resilient manner. This
negative result motivates the study of restricted classes of leakage functions.

Moreover, the problem of leakage-resilience compilation can be even harder than
code obfuscation. Results on leakage-resilience compilation, and our results in particu-
lar, give strong simulation-based guarantees. An adversary that observes T executions
(on inputs of its choice) only learns the outputs on those T executions. In code ob-
fuscation, on the other hand, there is no a priori bound on the number of executions
that an adversary can observe (because the adversary has the code). For example,
if we give an adversary an obfuscated program for generating digital signatures, it
gains the ability to sign any message of its choice (even if the obfuscation protects the
signing key). On the other hand, in our setting, we are able to prove that an adversary
who observes (via leakage) executions that generate signatures on several messages of
its choice still cannot sign any other messages. We note that this stronger definition
allows simpler and more straightforward negative results for leakage resilience against
unrestricted polynomial time leakage (compared to the negative results that follow
from the impossibility of black-box obfuscation).

1.4. Applications of the main theorem.

Application of our compiler to obfuscation with leaky hardware. In a
recent work, Bitansky et al. [BCG+11] make the connection between the OCL attack
model and obfuscation explicit. They use the compiler described here to obfuscate
programs using simple secure hardware components that are “leaky”: they may be
subject to memory leakage attacks. At a high level, they run each “subcomputation”

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1486 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

on a separate hardware component that is subject to memory leakage. Alternatively,
viewing OC leakage as an attack in the leaky CPU model, each instruction of the
leaky CPU is implemented in a separate hardware component. The main challenge
in their setting is providing security even when the communication channels between
the hardware components are observed and controlled by an adversary. They address
this using noncommitting encryption [CFGN96] and MACs.

Application of our compiler to leakage resilient multiparty computa-
tion. In a recent work, Boyle et al. [BGJK12] use our compiler (and the assumption
that FHE exists) to build secure MPC protocols that can compute an unbounded
number of polynomial time functions Ci on an input (which has been shared among
the players in a one-time leak-free preprocessing stage), which are resilient to cor-
ruptions of a constant fraction of the players and to leakage on all of the rest of the
players (separately). Intuitively, one can think of each player in the MPC as running
one of the “subcomputations” in a compilation of Ci using our OC-L compiler. Al-
ternatively, viewing OC leakage as an attack in the leaky CPU model, operations of
the leaky CPU are implemented by different players in the MPC protocol. The addi-
tional challenges here are both adversarial monitoring/control of the communication
channels and (more significantly) that the adversary may completely corrupt many of
the players/subcomputations.

1.5. Conclusions and open problems. In summary, we present a compiler for
transforming general computations so that they can be run securely in the presence
of a rich class of leakage attacks. We do not use computational assumptions or
secure hardware. The leakage operates on every single operation performed by the
(transformed) computation. Alternatively, our main result provides a way of securely
implementing any computation in the leaky CPU model.

At a higher level, the compiler transforms any computation into a sequence of
“local” subcomputations, so that bounded-length leakage operating independently (if
adaptively) on each local subcomputation reveals nothing about the global computa-
tion. This view of our main result led to the applications mentioned in section 1.4,
and we are hopeful that it will find further applications.

Many open questions remain for further work. First, as we noted above, we
are hopeful that our main result will find further applications in cryptography and
complexity theory. There are many natural goals for further improvements: can the
number of subcomputations (the “granularity”) be reduced, or even made constant?
Combining our ciphertext banks with the results of [DF12] is a natural approach to
this question. Can the “leakage rate” be improved, even up to the point where there
is linear leakage from each subcomputation? Another natural question is examining
different classes of leakage. This search can be guided by both a foundational per-
spective (e.g., the computational structure of the leakage) and by a practice-oriented
perspective (e.g., trying to capture real-world attacks). A natural question that is still
open is handling AC0 leakage without resorting to the unproven assumption used in
[Rot12]. In a different direction, can advances in the study of obfuscation [GGH+13]
be leveraged for achieving leakage resilience (or vice versa)? Finally, on a more tech-
nical level, our ciphertext banks provide a new and seemingly useful functionality in
the presence of leakage, and we are hopeful that they will find further applications.

2. Compiler overview and technical contributions. In this section we give
an overview of the compiler and the main technical ideas introduced. The compiler
takes any algorithm in the form of a (public) Boolean circuit C(y, x) with a “secret”

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1487

fixed input y and transforms it into a functionally equivalent probabilistic stateful al-
gorithm that on input x outputs C(y, x) (for the fixed secret y). Each execution of the
transformed algorithm consists of a sequence of subcomputations, and the adversary’s
view of each execution is through applying a sequence of adaptively chosen bounded-
length leakage functions to these subcomputations. We overview the construction in
three steps. Put together, these components yield a compiler that is secure against
continual OC leakage:

• In section 2.1 we describe the first tool in our construction, a leakage-resilient
one-time pad (LROTP) cryptosystem, which is used as the subsidiary crypto-
system4 in our construction and is resilient to bounded leakage. In particular,
we use this cryptosystem to encrypt the secret fixed input y.
• In section 2.2 we show how to use these encryptions to compute the program’s
output once on a given input. This “one-time” safe evaluation is resilient
to bounded OC leakage attacks. The main challenge is to develop a “safe
homomorphic evaluation” procedure for computing the NAND of LROTP
encrypted bits.
• In section 2.3 we show how to extend the “one-time” safe evaluation to “any
polynomial number” of safe evaluations on new inputs, i.e., to resist continual
leakage. The main new technical tool introduced here, and where the bulk
of technical difficulty of our paper lies, is in using what we call “ciphertext
banks”: these will allow repeated generation of secure ciphertexts, even under
leakage.

2.1. Leakage-resilient one-time pad. One of the main components of our
construction is the leakage-resilient one-time pad (LROTP) cryptoscheme. This sim-
ple private-key cryptosystem uses a vector key ∈ {0, 1}κ as its secret key, and each
ciphertext is also a vector �c ∈ {0, 1}κ.5 The plaintext underlying �c (under key) is
the inner product: Decrypt(key ,�c) = 〈key ,�c〉. The scheme maintains the invariants
that key [0] = 1,�c[1] = 1 for any key and ciphertext �c. We generate each key to be
uniformly random under this invariant. To encrypt a bit b, we choose a uniformly
random �c s.t. �c[1] = 1 and Decrypt(key ,�c) = b.

The LROTP scheme is remarkably well suited for our goal of transforming general
computations to resist leakage attacks. We note that similar schemes were used for
enabling leakage-resilient cryptography in [DDV10, GR10, HL11, DF12]. We use new
properties of this (old) scheme in our work. Specifically, the properties we use are
(see section 5 for further details) the properties in the paragraph headings below.

Semantic security under multisource leakage. Statistical security of LROTP
holds against an adversary who launches leakage attacks on both a key and a cipher-
text encrypted under that key. This might seem impossible at first glance. The reason
it is facilitated is two-fold: first, it is due to the nature of the attack model, where the
adversary can never apply a leakage function to the ciphertext and the secret key si-
multaneously (otherwise it could decrypt); second, the leakage from the key and from
the ciphertext is of bounded length. This ensures, for example, that the adversary
cannot learn enough of the ciphertext to break security at a later time—when it could

4It is important to distinguish between leakage on the secret input y taken as input by the
compiler and the leakage resilience of the subsidiary LROTP keys and ciphertexts. Whereas the
LROTP keys and ciphertexts are leaked on (separately) and are designed to retain security in spite
of this leakage, there is no leakage on y: all that an adversary can learn about y is the input-output
behavior of C(y, x).

5Throughout this work, when we refer to κ-bit vectors, we index them using 0, . . . , κ− 1.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1488 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

apply adaptive leakage to the secret key (and, for example, decrypt).
Translating this reasoning into a proof, statistical security is retained under con-

current attacks of bounded leakage O(κ) length on key and �c. As long as leakage is of
bounded length and operates separately on key and on �c, they remain with high prob-
ability (w.h.p.) high entropy sources and are independent up to their inner product
equaling the underlying plaintext. Since the inner product function is a two-source ex-
tractor, the underlying plaintext is statistically close to uniformly random even given
the leakage. Moreover, this is true even for computationally unbounded adversaries
and leakage functions. Similar properties were shown in [DDV10, GR10]. To ensure
that the leakage operates separately on key and �c, we take care in our construction
not to load ciphertexts and keys into working memory simultaneously.6

Key and ciphertext refreshing. We establish procedures for “refreshing” an
LROTP key and ciphertexts: the output key and ciphertext will be a “fresh” uniformly
random encryption of the same underlying plaintext bit. Moreover, the refreshing pro-
cedure operates separately on the key and on the ciphertext, and so an OC leakage
attack will not be able to determine the underlying plaintext. In fact, security of the
underlying plaintext is maintained even under OC leakage from multiple composed
applications of the refreshing procedure. Security is maintained as long as the accu-
mulated leakage is a small constant fraction of the key and ciphertext length. After
a large enough number of composed applications, however, security is lost: An OC
leakage adversary can successfully reconstruct the underlying plaintext. This attack
is described in section 5.2. Intuitively, it “kicks in” once the length of the accumulated
leakage is a large constant fraction of the key and ciphertext length.

Homomorphic addition. For key and two ciphertexts �c1,�c2, we can homomor-
phically add by computing �c′ ← (�c1 ⊕ �c2). By linearity, the plaintext underlying �c′ is
the XOR of the plaintexts underlying �c1 and �c2. For a key-ciphertext pair (key ,�c) and
a plaintext bit b, we can homomorphically add plaintext to the ciphertext by com-
puting �c′ ← (�c⊕ (b, 0, . . . , 0)). Since key [0] = 1, we get that the plaintext underlying
�c′ is the XOR of b and the plaintext underlying �c.

We note that the construction in [GR10] relied on several similar properties of a
computationally secure public-key leakage-resilient scheme: the BHHO/Naor–Segev
scheme [BHHO08, NS09]. Here we achieve these properties with information-theoretic
security and without relying on intractability assumptions such as decisional Diffie–
Hellman.

2.2. One-time secure evaluation. Next, we describe the high-level structure
of the compilation and evaluation algorithm for a single secure execution. In section
2.3 we will show how to extend this framework to support any polynomial number
of secure executions. We note that the high-level structure of the compilation and
evaluation algorithm builds on the construction in [GR10]. The building blocks,
however, are very different, as the subsidiary cryptosystem is now LROTP, and we
no longer use secure hardware.

The input to the compiler is a secret input y ∈ {0, 1}n and a public circuit C of size
poly(n) that is known to the adversary. The circuit takes as inputs the secret y and
also public input x ∈ {0, 1}n (which may be chosen by the adversary), and it produces

6There will be one exception to this rule (see below), where a key and ciphertext will be loaded
into working memory simultaneously, but this will be done only after ensuring that the ciphertexts
are “blinded” and contain no sensitive information.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1489

a single bit output.7 For example, C can be a public cryptographic algorithm (say,
for producing digital signatures), y a secret signing key, and x a public message to
sign. More generally, to compile general algorithms, C can be the universal circuit,
y the description of any particular algorithm that is to be protected, and x a public
input to the protected algorithm.

The output of the compiler on C and y is a probabilistic stateful evaluation al-
gorithm Eval (with a state that will be updated during each run of Eval) s.t. for all
x ∈ {0, 1}n, C(y, x) = Eval (y, x). The compiler is run exactly once at the beginning
of time and is not subject to leakage. In particular, there is no direct leakage on the
secret y being compiled. This secret is stored by the compiler in a leakage-resilient
form, it will never be directly subject to leakage, and indeed all the adversary learns
about y is what it can deduce from the inputs and outputs that it observes. See sec-
tion 4.3 for a formal definition of utility and security under leakage. In this section,
we describe an initialization of Eval that suffices for a single secure execution on any
adversarially chosen input.

Without loss of generality (w.l.o.g.), the circuit C is composed of NAND gates
with fan-in 2 and fan-out 1 and duplication gates with fan-in 1 and fan-out 2. We
assume a fixed topological ordering on the circuit wires s.t. if wire k is the output
wire of gate g, then for any input wire i of the same gate, i < k. We use vi ∈ {0, 1} to
denote the bit value on wire i of the original circuit C(y, x). Eval does not compute or
load into memory the explicit vi values for internal wires (or y-input wires): Any such
value loaded into memory might leak and expose non-black-box information about
the circuit C! Instead, Eval keeps track of each vi value in LROTP encrypted form
(key i,�ci). In other words, there is a key and a ciphertext (with underlying plaintext
vi) for each circuit wire, and vi is protected because the key and ciphertext are never
loaded into memory at once.

We emphasize that the adversary does not actually ever see any key or ciphertext
in its entirety, nor does it see any underlying plaintext. Rather, the adversary only
sees the result of bounded-length leakage functions that operate separately on these
keys and ciphertexts.

Initialization for one-time evaluation. For each y-input wire i carrying bit
y[j] of the y-input, generate an LROTP encryption of y[j]: (key i,�ci). For each x-
input wire i, generate an LROTP encryption of 0: (�ci, keyi). For the output wire

output , generate an LROTP encryption of 0: (��output , �doutput). For each internal wire
i, choose a bit ri ∈R {0, 1} uniformly at random. Generate two independent LROTP

encryptions of ri: (��i, �di) and (��′i, �d
′
i). Finally, for each internal wire i (and for the

output wire too), generate an LROTP encryption of 1: (�oi, �ei).
Recall that initialization is performed without any leakage. Looking ahead, the

main challenge for multiple execution will be securely generating the keys and cipher-
texts for each wire even in the presence of OC leakage. See section 2.3.

Eval on input x. Once a (nonsecret) input x is selected for Eval , for each wire
i carrying bit x[j], “toggle” �ci so that the underlying plaintext is x[j]. This is done
using homomorphic ciphertext-plaintext addition, taking �ci ← �ci ⊕ (x[j], 0, . . . , 0).
Taking these encryptions together with those generated in initialization, we get that
for each input wire i of the original circuit C (carrying a bit of y or a bit of x), we
now have an LROTP encryption (key i,�ci) of vi.

7For clarity, we restrict our attention to single bit outputs. The case of multibit outputs follows
directly, with a simple generalization to multiple output wires.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1490 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Eval proceeds to compute, for each internal wire i of the circuit (and for the out-
put wire output), a secure LROTP encryption (key i,�ci) of vi. This is accomplished
using a safe homomorphic evaluation procedure discussed below. The homomorphic
evaluation follows the computation of the original circuit C gate by gate in a fixed
topological order (from the input wires to the output wire). For the output wire
output , its value voutput is revealed as part of the SafeNAND computation of the out-
put gate. The adversary learns nothing about the vi values, even under leakage, except
the input x and the output voutput = C(y, x). The main challenge is homomorphic
evaluation of the internal NAND gates.

Leakage-resilient “Safe NAND” computation. We provide a procedure
that, for a NAND gate, takes as input LROTP encryptions of the bits on the gate’s
input wires and outputs an LROTP encryption of the bit on the gate’s output wire.
We prove that even under leakage, this procedure exposes nothing about the private
shares of the gate’s input wires and output wire (beyond the value of the output wire’s
public share). This “Safe NAND” procedure uses a secure LROTP encryption of 1
and two secure LROTP encryptions of a random bit (which were generated in the
initialization phase above). We also need a similar procedure for the aforementioned
duplication gates, but we focus here on the more challenging case of NAND.

For a NAND gate with input wires i, j and output wire k, the input to the
SafeNAND procedure is ciphertext-key pairs: (key i,�ci), (keyj ,�cj) (underlying plain-

texts vi, vj), (��k, �dk) (random underlying plaintext rk), and (�ok, �ek) (underlying plain-
text 1). The goal is to compute the “public bit” ak = (vi NAND vj) ⊕ rk, without
leaking anything more about the underlying plaintexts (vi, vj , rk).

Note that, in its own right, the bit ak exposes nothing about vi or vj . This is
because the random bit rk masks (vi NAND vj). Once we have securely computed the

bit ak, we use the pair (��′k, �d
′
k) (with the same underlying plaintext rk) to obtain an

LROTP encryption (keyk,�ck) of vk = (vi NAND vj). This is done using homomorphic

ciphertext-plaintext addition, by setting keyk ← ��′k and �ck ← (�d′k ⊕ (ak, 0, 0, . . . , 0)).
8

We proceed with an overview of SafeNAND ; see section 7 for details. As a
starting point, we first choose a single key and compute from (key i,�ci), (keyj ,�cj),

(��k, �dk), (�ok, �ek) new ciphertexts (�c∗i ,�c
∗
j ,

�d∗k, �e
∗
k) whose underlying plaintexts under

this single key remain (vi, vj , rk, 1) (respectively). This uses homomorphic properties
of the LROTP cryptosystem keys. Once the ciphertexts are all encrypted under the
same key, our goal is to compute the public bit ak = (vi NAND vj)⊕ rk = vk ⊕ ak.

To compute ak, we start with an idea of Sander, Young, and Yung [SYY99] for
homomorphically computing the NAND of two ciphertexts with underlying plaintexts
vi, vj . They used homomorphic addition to create a 3-tuple of ciphertexts s.t. the
number of ciphertexts with underlying plaintext 0 in this 3-tuple specifies whether
(vi NAND vj) is 0 or 1. The locations of 0’s and 1’s in the 3-tuple expose information

8It is natural to ask why we needed two different LROTP encryptions (��k, �dk) and (��′k , �d
′
k) of the

same random bit rk. Why not simply use (��k, �dk) twice? The reason is that, during the execution

of SafeNAND , ��k and �dk are used to determine LROTP keys and ciphertexts that are eventually
loaded into memory together and decrypted. While we will argue that this exposes nothing about
the bit rk, the leakage might create statistical dependencies between the strings ��k and �dk . If we
then reused ��k and �dk to compute the output (keyk, �ck) of SafeNAND , they will later be involved in
another SafeNAND computation (as inputs). The statistical dependencies might accumulate, and

security might fail. Using a fresh pair of ciphertexts (��′k , �d
′
k) (encrypting the same bit) that have

never been loaded into memory together avoids the accumulation of any statistical dependencies and
allows us to prove security. See section 7 for details.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1491

about vi and vj beyond their NAND, but in [SYY99] the authors permute the 3-tuple
of ciphertexts using a random permutation (and also refresh each ciphertext). They
showed that the resulting 3-tuple of permuted ciphertexts exposes only (vi NAND vj)
and nothing more. They use this idea to build secure function evaluation protocols
for NC1 circuits.

We translate this idea to our setting. We use the homomorphic addition properties
of LROTP to compute a 4-tuple of encryptions (all under the same key):

C ← (�d∗k, (�c
∗
i ⊕ �d∗k), (�c

∗
j ⊕ �d∗k), (�c

∗
i ⊕ �c∗j ⊕ �d∗k ⊕ �e∗k)).

The plaintexts underlying the 4 ciphertexts in C are

(rk, (vi ⊕ rk), (vj ⊕ rk), (vi ⊕ vj ⊕ rk ⊕ 1)).

Now, if ak = 0, then three of these plaintexts will be 1, and one will be 0, whereas
if ak = 1, then three of the plaintexts will be 0, and one will be 1. We note that
for the output wire output , since its value is computed explicitly and revealed to the
adversary, we simply initialize routput = 0 so that the public bit aoutput equals the
output value C(y, x) (see details in the full construction).

Now, as was the case in [SYY99], the locations of 0’s and 1’s might reveal (via the
adversary’s leakage) information about (vi, vj , rk) beyond just the value of ak. Trying
to follow [SYY99], we might try to permute the ciphertexts before decrypting. Our
problem, however, is that any permutation we use might leak. What we seek, then, is
a method for randomly permuting the ciphertexts even under leakage.

Securely permuting under leakage. The leakage-resilient permutation proce-
dure Permute takes as input key and a 4-tuple C, consisting of 4 ciphertexts. Permute
makes 4 copies of key and then proceeds in � iterations i← 1, . . . , �. The input to each
iteration i is a 4-tuple of keys and a 4-tuple of corresponding ciphertexts. The output
from each iteration is a 4-tuple of keys and a 4-tuple of corresponding ciphertexts,
whose underlying plaintexts are some permutation πi ∈ S4 of those in that iteration’s
input. The output of iteration i is fed as input to iteration (i + 1), and so after �
iterations the plaintexts underlying the output keys and ciphertexts of iteration � will
be a “composed” permutation π = π1 ◦ · · · ◦ π� of the plaintexts underlying the first
iteration’s input keys and ciphertexts.

The goal is that πi used in each iteration will look “fairly random” even under
leakage. This will imply that the composed permutation π will be statistically close
to uniformly random even under leakage. To this end, each iteration i operates as
follows.

Subcomputation 1: Duplicate-refresh-permute. Create κ copies of the in-
put key and ciphertext 4-tuples. Refresh each tuple-copy using key-ciphertext refresh
as in section 2.1 (each refresh uses independent randomness). Finally, permute each
tuple-copy using an independent uniformly random permutation πj

i ∈R S4 (πj
i is used

in iteration i on the jth refreshed tuple-copy).

Subcomputation 2: Choose. Choose, uniformly and at random, one of the
tuple copies as this iteration’s output.

We first observe that without leakage from subcomputation 1, all κ permutations

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1492 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

(πi,1, . . . , πi,κ) look independently and uniformly random.9 Thus, given λ bits of
leakage from subcomputation 1, where λ < 0.1κ, most permutations still look “fairly
random”: by a counting argument, even given the λ bits of leakage, the entropy in
many of the permutations (πi,1, . . . , πi,κ) will remain high. In other words, while
significant leakage can occur on some of the permutations, it cannot occur on all of
them. After this leakage occurs, in subcomputation 2 we choose one of the tuple-

copies j∗ ∈ {1, . . . , κ} (and its permutation) uniformly at random and set πi ← πj∗
i .

By the above, with constant probability we get that πi has high entropy even given the
leakage. Composing the permutations chosen in many iterations, with overwhelming
probability in a constant fraction of the iterations the permutation chosen has high
entropy. When this is the case, the composed permutation is statistically close to
uniform. See section 7 for further details on Permute and a formal statement and
proof of its security properties.

2.3. Multiple secure evaluations. In this section we modify the Init and
Eval procedures described in section 2.2 to support any polynomial number of secure
evaluations. The main challenge is generating secure key-ciphertext pairs for the
various circuit wires.

Ciphertext generation under continual leakage. We seek a procedure for
repeatedly generating secure LROTP key-ciphertext pairs with a fixed underlying
plaintext bit. The underlying plaintexts will be as before in the construction of
section 2.2: for each y-input wire i corresponding to the jth bit of y, the underlying
plaintext should be y[j]. For each x-input wire and for the output wire output , the
underlying plaintext should be 0. For each internal wire (and for the output wire),
we will generate a key-ciphertext pair with underlying plaintext 1. Finally, we also
seek a procedure for repeatedly generating two LROTP key-ciphertext pairs (��i,�ci)

and (��′i,�c
′
i) whose underlying plaintexts are a uniformly random bit ri ∈ {0, 1} (the

same bit in both pairs).
For security, the underlying plaintexts of the keys and ciphertexts produced should

be completely protected even under continual leakage on the repeated generations. In
previous works such as [FRR+10, GR10, JV10] and in the independent work [DF12],
similar challenges were (roughly speaking) overcome using secure hardware to generate
“fresh” encodings of leakage-resilient plaintexts from scratch in each execution.

We generate key-ciphertext pairs using ciphertext banks. We begin by describing
this new tool and how it is used for repeated secure generations with a fixed under-
lying plaintext bit. This is what is needed for input wires and for the output wire.
We then describe how to “randomize” the fixed underlying plaintext bit to be uni-
formly random (which is used to repeatedly generate two key-ciphertext pairs with a
uniformly and independently random underlying plaintext).

A ciphertext bank is initialized once using a BankInit(b) procedure, where b is
either 0 or 1 (there is no leakage during initialization). It can then be used, via

9In slightly more detail, we consider the case where the underlying plaintexts are all 0 and show
that without leakage, even given all the refreshed and permuted tuple-copies, the permutation
chosen for each copy looks uniformly random. This is because the refreshing procedure outputs
a uniformly random key-ciphertext pair encrypting the same underlying plaintext. We will then
show that when the underlying plaintexts are all 0, the composed permutation looks uniformly
random even under leakage. Finally, we will claim that when the underlying plaintexts are not
all 0, the composed permutation also looks uniformly random under leakage. This is because, by
LROTP security of the underlying plaintext bits, a leakage adversary cannot distinguish whether the
underlying plaintexts are all 0 or have some other values.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1493

a BankGen procedure, to repeatedly generate key-ciphertext pairs with underlying
plaintext bit b for an unbounded polynomial number of generations. We refer to b as
the ciphertext bank’s underlying plaintext bit. We also provide a BankGenRand pro-
cedure for generating pairs of key-ciphertext pairs with a uniformly random underlying
plaintext bit. Informally, the ciphertext bank security property is that, even under
leakage from the repeated generations, the plaintext underlying each key-ciphertext
pair is protected. More formally, there are efficient simulation procedures that have
arbitrary control over the plaintexts underlying all key-ciphertext pairs that the bank
produces. Leakage from the simulated calls is statistically close to leakage from the
“real” ciphertext bank calls. We outline these procedures below; see section 6 for
further details.

Using ciphertext banks, we modify the initialization and evaluation outlined in
section 2.2. In initialization, we initialize a ciphertext bank with a fixed underlying
plaintext bit for each input wire and for each internal wire (with underlying plaintext
1), and we initialize two banks for the output wire (see section 2.2 for all the fixed
underlying plaintexts). We also initialize a ciphertext bank with a random underlying
plaintext bit, which will be used for generating pairs of key-ciphertext pairs with a
random underlying plaintext for the internal wires (see section 2.2). Before each
evaluation, we use these ciphertext banks to generate all of the key-ciphertext pairs
that are needed for each circuit wire. After this first step, evaluation proceeds as
outlined in section 2.2. The full Init and Eval procedures are in section 8.

Ciphertext bank implementation. A ciphertext bank consists of an LROTP
key and a collection C of 2κ ciphertexts. We view C as a κ×2κmatrix, whose columns
are the ciphertexts. In the BankInit procedure, on input b, key is drawn uniformly
at random, and the columns of C are drawn uniformly at random s.t. the plaintext
underlying each column equals b. This invariant will be maintained throughout the
ciphertext bank’s operation, and we call b the bank’s underlying plaintext bit.

The BankGen procedure outputs key and a linear combination of C’s columns.
The linear combination is chosen uniformly at random s.t. it has parity 1. This
guarantees that it will yield a ciphertext whose underlying plaintext is b. We then
inject new entropy into key and into C: we refresh the key using the LROTP key
refresh property, and we refresh C by multiplying it with a random 2κ × 2κ matrix
whose columns all have parity 1. These refresh operations are performed under leakage
(and, looking ahead, we note that the multiplication is divided into subcomputations
and performed using a particular leakage-resilient procedure).

The BankGenRand procedure redraws the bank’s underlying plaintext bit by
choosing a uniformly random ciphertext �v ∈ {0, 1}κ and adding it to all the columns
of C. If the inner product of key and �v is 0 (happens with probability 1/2), then
the bank’s underlying plaintext bit is unchanged. If the inner product is 1 (also with
probability 1/2), then the bank’s underlying plaintext bit is flipped.

In the security proof, we provide a simulation procedure SimBankGen that can
arbitrarily control the value of the plaintext bit underlying the key-ciphertext pair it
generates. Here we maintain a simulated ciphertext bank, consisting of a key and a
matrix, similarly to the real ciphertext bank. These are initialized, without leakage,
using a SimBankInit procedure that draws key and the columns of C uniformly at
random from {0, 1}κ. Note that here, unlike in the real ciphertext bank, the plaintexts
underlying C’s columns are uniformly random bits (rather than a single plaintext bit
b). The operation of SimBankGen is similar to BankGen , except that it uses a biased
linear combination of C’s columns to control the underlying plaintext it produces.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1494 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

The main technical challenge and contribution here is showing that leakage from
the real and simulated calls is statistically close. Note that, even for a single genera-
tion, this is nonobvious. As an (important) example, consider the rank of the matrix
C: in the real view (say, for b = 0), C’s columns are all orthogonal to key , and the
rank is at most κ − 1. In the simulated view, however, the rank will be κ (w.h.p).
If the matrix C was loaded into memory in its entirety, then the real and simulated
views would be distinguishable!

Observe, however, that computing a linear combination of C’s columns does not
require loading C into memory in its entirety. Instead, we can compute the linear
combination in a “piecemeal”10 manner: first, load only (c · κ) columns of C into
memory (for a small 0 < c < 0.5). Compute their contribution �x1 to the linear
combination. Then, load �x1 into memory together with the next (c · κ) columns of C
and add �x1 to these columns’ contribution to the linear combination. This gives �x2,
which is the contribution of the first (2c·κ) columns to the linear combination. We can
continue this process for (2/c) substeps, eventually computing the linear combination
of C’s columns without ever loading C into memory in its entirety. All we need to load
into memory at one time is a collection of ((c·κ)+1) linear combinations of columns of
C. We call each such collection a “sketch” (or a “piece”) of C. We prove that sketches
of random matrices are leakage resilient, and in particular leakage from sketches of
C is statistically close in the real and simulated distributions (i.e., when C is of
rank κ− 1 or uniformly random). Thus, the above procedure for computing a linear
combination of C’s rows is leakage resilient. We show how to implement BankGen and
SimBankGen using subcomputations, where each subcomputation loads only a single
“sketch” of C into memory. We give a similar implementation for BankGenRand . We
use the ciphertext banks, as implemented using piecemeal operations, to show security
of the ciphertext bank for any unbounded (polynomial) number of generations. We
view these proofs as our most important technical contribution.

2.4. Leaky CPU: What are the universal instructions? Recall that in
the leaky CPU model (an alternative to the OC-leakage model), a leaky CPU exe-
cutes atomic operations from a fixed set of universal instructions. Leakage operates
separately on each atomic operation. The atomic operations are equivalent to the
subcomputations performed by our compiler.

We elaborate here on the set of universal CPU instructions required. These are
fairly simple and straightforward. They include instructions for generating a ran-
dom matrix/vector of 0/1 bits for vector-vector addition and multiplication (i.e., in-
ner product), for matrix-matrix addition, and for matrix-vector and matrix-matrix
multiplication. Beyond these, the only additional functionality used is permuting a
sequence of vectors. This, in a nutshell, is a complete (high-level) list of the required
instructions. This set of instructions suffices for LROTP operations such as decryp-
tion, key and ciphertext refresh, and homomorphic operations (implemented using
vector operations), as well as for the ciphertext banks outlined in section 2.3 (im-
plemented using matrix-matrix and matrix-vector multiplication). The SafeNAND
and Permute procedures outlined above use these procedures as well as a duplicate-
refresh-and-permute operation. This operation can be implemented as a single atomic
instruction (as described above) or as a sequence of instructions for duplication, re-
freshing, and permuting. Both implementations are leakage resilient.

10The word “piecemeal” means “made or done in pieces or one stage at a time” (Wiktionary). We
perform matrix operations in a piecemeal manner: we do it gradually, while loading different parts
of the matrix into memory one at a time.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1495

For security parameter κ, the instructions used all have input and output size
O(κ2) and can be implemented by circuits of size O(κω), where ω is the exponent of
the circuit size required for matrix multiplication.

2.5. Organization and roadmap. We provide further comparison to past work
in section 3. Definitions, notation, and preliminaries are in section 4. This includes the
definitions of secure compilers against leakage and technical lemmas about entropy,
multisource extractors, and leakage resilience that will be used in the subsequent
sections.

We then proceed with a full description of our construction. In section 5 we specify
the LROTP scheme and its properties. We present the ciphertext bank procedures,
used for secure generation of secure ciphertexts under leakage, in section 6. The
SafeNAND and SafeXOR procedures are in section 7. These ingredients are put
together in section 8, where we present the main construction and a proof (sketch) of
its security.

3. Further related work. We provide a more detailed comparison to prior
work on leakage-resilience compilers for general programs in various continual leakage
attack models. Comparing to the work of Goldwasser and Rothblum [GR10] and
of Juma and Vhalis [JV10] in the OC-L model, the main qualitative difference is
that both of those prior works use computational intractability assumptions (DDH
in [GR10] and the existence of fully homomorphic encryption (FHE) in [JV10]) as
well as secure hardware. Our result, on the other hand, is unconditional and uses
no secure hardware components. We do note, however, that the high-level structure
of our compiler is inherited from [GR10]. In particular, we build on that work in
two main ways: (i) replacing the computational public-key cryptosystem that they
use with the simple and information-theoretically secure LROTP scheme, and (ii)
replacing the secure hardware they use to generate encryptions of set (or random)
values with leakage-resilient ciphertext banks (our main contribution).

In terms of quantitative bounds, for security parameter κ, Juma and Vhalis [JV10]
transform a circuit of size C into a new circuit C′ of size poly(κ) · |C|. The new cir-
cuit C′ is composed of O(1) subcircuits (one of the subcircuits is of size poly(κ) · |C|).
Assuming a fully homomorphic cryptosystem that (for the security parameter κ) is se-
cure against adversaries that run in time T , their construction can withstand O(log T)
bits of leakage on each subcircuit. For example, if the FHE is secure against poly(L)-
time adversaries, then the leakage bound is O(logL). In our new construction, for
any leakage parameter L, there are O(|C|) subcomputations (i.e., more subcomputa-
tions), each of size Õ(Lω), where ω is the exponent in the best algorithm known for
matrix multiplication (i.e., the subcomputations are smaller). The new construction
can withstand L bits of leakage from each subcomputation (i.e., the amount of leak-
age we can tolerate, relative to the subcomputation size, is larger). The quantitative
parameters of [GR10] are similar to ours (up to polynomial factors). The independent
work of Dziembowki and Faust [DF12] also constructs an OC-L compiler and does not
rely on computational assumptions. The main difference from our work is that they
do rely on secure hardware components (as in prior works). In quantitative terms,
their main result achieves comparable parameters to ours (up to polynomial factors).
We do note that their scheme is quite different from ours. An interesting direction for
future work is obtaining better or different parameters by using their construction,
combined with our ciphertext banks. We highlight this in Remark 3.1.

Remark 3.1 (relationship to [DF12]). In independent work, Dziembowski and
Faust [DF12] give an unconditional OC leakage compiler that relies on secure hard-

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1496 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

ware. Informally, phrasing their result in our language, at its heart there is a method
for one-time secure evaluation. This method uses LROTP encryptions (in our lan-
guage) and procedures for safe addition and multiplication (as opposed to NAND)
under OC leakage. To get a many-time result, they rely on hardware for generating
secure LROTP encryptions (i.e., in their work, these are vectors whose inner product
is protected). We are hopeful that our ciphertext banks (see below) can be used to
eliminate the use of secure hardware from their result, giving an alternative construc-
tion, which may yield different or better parameters.

The work of Ishai, Sahai, and Wagner [ISW03] in the ISW-L leakage model may
be viewed as converting any circuit C into O(|C|) subcircuits, each of size O(L2),
and allowing the leakage of L wire values from each subcircuit. Our transformation
converts C into O(|C|) subcircuits, each of size Õ(Lω), and allows the leakage of L
bits from each subcircuit where these bits can be the output of arbitrary computations
on the wire values (rather than the wire values themselves as in [ISW03]).

The work of Faust et al. [FRR+10] in the CB-L model, under the additional as-
sumption that leak-free hardware components exist, shows how to convert any circuit
C into a new circuit C′ of size O(|C| · L2), which is resilient to leakage of the result
of any AC0 function f of output length L computed on the entire set of wire values.
Qualitatively, the main differences are that (i) construction used secure hardware,
whereas we do not use secure hardware, and (ii) in terms of the class of leakage tol-
erated, they can handle bounded-length AC0 leakage on the entire computation of
each execution. We, on the other hand, can handle length bounded OC-L leakage
of arbitrary complexity that operates separately (if adaptively) on each subcomputa-
tion. A more recent result of [Rot12] removes the need for hardware components and
shows how to convert C into C′ of size O(|C| · poly(L) which is resilient against AC0
leakage functions of length L, under the computational assumption that computing
inner product cannot be done in AC0, even if polynomial time preprocessing (of the
inputs to the inner product) is allowed. Rothblum [Rot12] uses ciphertext banks, a
tool introduced in this work.

Comparing to the work of Ajtai [Ajt11] in the RAM-L model, he divides the
computation of program P into subcomputations, each utilizing O(L) memory ac-
cesses, and shows resilience to an adversary who, for each subcomputation, sees the
contents of L memory accesses out of the O(L) accesses in that subcomputation. In
other words, a constant fraction of all memory accesses in each subcomputation are
exposed, whereas all the other memory accesses are perfectly hidden. Translating our
result to the RAM model, we divide the computation into subcomputations of Õ(Lω)
accesses and show resilience against an adversary that can receive L arbitrary bits
of information computed on the entire set of memory accesses and randomness. In
particular, there are no protected or hidden accesses.

Other related work. Whereas our focus is on enabling any algorithm to run
securely in the presence of continual leakage, continual leakage on restricted compu-
tations (see, e.g., [DP08, Pie09, FKPR10, BKKV10, DHLAW10, LRW11, LLW11]),
and on storage (see [DLWW11]), has been considered under various additional leakage
models in a rich body of recent works. We elaborate on a few pertinent results.

Constructions in the OCL leakage model. Various constructions of par-
ticular cryptographic primitives [DP08, Pie09, FKPR10], such as stream ciphers and
digital signatures, have been proposed in the OCL attack model and proved secure un-
der various computational intractability assumptions. The approach in these results
was to consider leakage in design time and construct new schemes which are leakage

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1497

resilient, rather than a general transformation (that can be applied to schemes that
are not leakage-resilient).

In another independent work by Dziembowski and Faust [DF11], they show how
to compile a variety of well-known cryptosystems (i.e., El Gamal PKC and Okamoto
identification) into leakage-resilient variants that resist OCL attacks. Their results
assume the existence of hardware components (and retain the same computational
assumption of the underlying cryptosystem).

In the context of a bounded number of executions, the work of Goldwasser, Kalai,
and Rothblum [GKR08] on one-time programs implies that any cryptographic func-
tionality can be executed once in the presence of an OCL attack (after an initial
leak-free compilation phase). Recall that a one-time program is a program that can
only be executed once (or an a priori bounded number of times). One-time programs
are based on simple secure hardware-based memory components. In those compo-
nents, any data that is ever read or written can leak in its entirety (i.e., they are
secure even against the identity leakage function). This holds under the assumption
that one-way functions exist and that no secure hardware is required. The idea is that
in the compilation stage, one transforms the cryptographic algorithm into a one-time
program with one crucial difference. Whereas one-time programs use hardware-based
memory to ensure that only certain portions of this memory cannot be read by the
adversary running the one-time program, in the context of leakage the party who
runs the one-time program is not an adversary but rather the honest user attempting
to protect himself against OCL attacks. In the compilation stage, the honest user
stores the entire content of the special hardware-based memory in [GKR08] in ordi-
nary memory. At the execution stage, the user can be trusted to read only those
memory locations necessary to run the single execution. Since an OCL attack can
only view the contents of memory which are read, the execution is secure. Note that
security is maintained even against leakage that exposes all data that was computed
on (as long as data that wasn’t computed on does not leak). We further observe that
the followup work of Goyal et al. [GIS+10] on one-time programs, which removes the
need for the one-way function assumption, similarly implies that any cryptographic
functionality can be executed once in the presence of OCL attacks unconditionally.

Specific cryptographic primitives in the continual memory-leakage
model. The continual memory-leakage attack model for public-key encryption and
digital signatures was introduced by Brakerski et al. [BKKV10] and Dodis et al.
[DHLAW10]. They consider a model where an adversary can periodically compute
arbitrary polynomial time functions of bounded output length L on the entire secret
memory of the device. The device has an internal notion of time periods, and, at
the end of each period, it updates its secret key, using some fresh local randomness,
maintaining the same public key throughout. As long as the rate at which the ad-
versary can compute its leakage functions is slower than the update rate, the authors
of [BKKV10, DHLAW10, LRW11, LLW11] can construct leakage-resilient public-key
primitives which are still semantically secure under various intractability assump-
tions on problems on bilinear groups. The continual memory-leakage model is quite
strong: it does not restrict the leakage functions, as in, say, ISW-L, to output in-
dividual wire values or, as in CB-L, to AC0 bounded functions, nor does it restrict
the leakage functions to compute locally on subcomputations, as in RAM-L or OC-
L. However, as pointed out by the impossibility result discussed above, this model
cannot offer the kind of generality or security that we seek. In particular, the re-
sults in [BKKV10, DHLAW10, LRW11, LLW11] do not guarantee that the view the

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1498 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

attacker obtains during the execution of a decryption algorithm is “computationally
equivalent” to an attacker viewing only the input-output behavior of the decryption
algorithm. For example, say an adversary’s goal in choosing its leakage requests
is to compute a bit about the plaintext underlying ciphertext c. In the model of
[BKKV10, DHLAW10], it will simply compute a leakage function that decrypts c
and output the requested bit. This could not be computed from the view of the
input-output of the decryption algorithms decrypting ciphertexts which are unrelated
to c.

Continual leakage on a stored secret. A recent independent work of Dodis
et al. [DLWW11] addresses the problem of how to store a value S secretly on devices
that continually leak information about their internal state to an external attacker.
They design a leakage-resilient distributed storage method: essentially they store an
encryption of S denoted by Esk(S) on one device and store sk on another device for a
semantically secure encryption method E which (i) is leakage resilient under the linear
assumption in prime order groups, and (ii) is “refreshable” in that the secret key sk
and Esk(S) can be updated periodically. Their attack model is that an adversary
can only leak on each device separately and that the leakage will not “keep up” with
the update of sk and Esk(S). One may view the assumption of leaking separately on
each device as essentially a weak version of the only-computation leak axiom, where
locality of leakage is assumed per “device” rather than per “computation step.” We
point out that storing a secret on continually leaky devices is a special case of the
general results described above [ISW03, FRR+10, GR10, JV10], as they all must
implicitly maintain the secret “state” of the input algorithm (or circuit) throughout
its continual execution. The beauty in [DLWW11] is that no interaction is needed
between the devices, and they can update themselves asynchronously.

4. Definitions and preliminaries. In this section we define leakage and mul-
tisource leakage attacks (section 4.1) and give a brief exposition about entropy, multi-
source extractors, and facts about them that we use throughout this work (section 4.2).

Preliminaries. For a string x ∈ Σ∗ (where Σ is some finite alphabet) we denote
by |x| the length of the string and by xi or x[i] the ith symbol in the string. For a
k-symbol string x, we index the symbols from 0 to (k − 1), i.e., x = (x0, . . . , xk−1).
We use x−(i) to denote the string formed from x by replacing the ith symbol of x with
⊥. Similarly, we use x−(i1,i2,...,ik) to denote the string formed from x by replacing the
i1th, i2th, . . . , ikth symbols of x with ⊥.

For a finite set S we denote by y ∈R S the y drawn uniformly at random from S.
We use Δ(D,F) to denote the statistical (L1) distance between distributions D and
F . For a distribution D over a finite set, we use x ∼ D to denote the experiment of
sampling x by D, and we use D[x] to denote the probability of item x by distribution
D. For jointly distributed random variables X and Y , we use (X |Y = y) or (X |y) to
denote the distribution of X , conditioned on Y taking value y.

4.1. Leakage model. We build on the model and notation used in [GR10].

Leakage attack. A leakage attack is launched on an algorithm or on a data
string. In the case of a data string x, an adversary can request to see any function
�(x) whose output length is bounded by λ bits. In the case of an algorithm, the
algorithm is divided into ordered subcomputations. The adversary can request to see
a bounded-length (λ bit) function of each subcomputation’s input and randomness.
The leakage functions are computed separately on each subcomputation, in the order

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1499

in which the subcomputations occur, and can be chosen adaptively by the adversary.
Remark 4.1. Throughout this work we focus on computationally unbounded

adversaries. In particular, we do not restrict the computational complexity of the
leakage functions. Moreover, w.l.o.g., we consider only deterministic adversaries and
leakage functions.

Definition 4.2 (leakage attack Aλ(x)[s]). Let s be a source: either a data string
or a computation. We model a λ-bit leakage attack of adversary A with input x on
the source s as follows.

If s is a computation (viewed as a boolean circuit with a fixed input), it is di-
vided into m disjoint and ordered subcomputations sub1, . . . , subm, where the input to
subcomputation subi should depend only on the output of earlier subcomputations. A
λ-bit leakage attack on s is one in which A can adaptively choose functions �1, . . . �m,
where �i takes as input the input to subcomputation i and any randomness used in that
subcomputation. Each �i has output length at most λ bits. For each �i (in order), the
adversary receives the output of �i on subcomputation subi’s input and randomness
and then chooses �i+1. The view of the adversary in the attack consists of the outputs
to all the leakage functions.

In the case that s is a data string, we treat it as a single subcomputation.

Multisource leakage attacks. A multisource leakage attack is one in which the
adversary gets to launch concurrent leakage attacks on several sources. Each source
is an algorithm or a data string. We consider both ordered sources, where an order is
imposed on the adversary’s access to the sources, and concurrent sources, where the
leakages from each source can be interleaved arbitrarily. In both cases, each leakage
is computed as a function of a single source only.

Ordered multisource leakage. An ordered multisource leakage attack is one in
which the adversary gets to launch a leakage attack on multiple sources, where again
each source is an algorithm or a data string. The attacks must occur in a specified
order.

Definition 4.3 (ordered multisource leakage attack A(x){sλ1
1 , . . . , sλk

k }). Let
s1, . . . , sk be leakage sources (algorithms or data strings, as in Definition 4.2). We
model an ordered multisource leakage attack on {s1, . . . , sk} as follows. The adversary
A with input x runs k separate leakage attacks, one attack on each source. When
attacking source si, the adversary can request λi bits of leakage. The attacks on
sources s1, . . . , sk are run sequentially and in order; i.e., once the adversary requests
leakage from sj, it cannot get any more leakage from si for i < j.

For convenience, we drop the superscript when the source is exposed in its en-
tirety (i.e., λi = |si|). So A(x){sλ1

1 , s2} is an attack where the adversary can request
λ1 bits of leakage on s1 and then sees s2 in its entirety. When the leakage bound
on all k sources is identical we use a “global” leakage bound λ and denote this by
Aλ(x){s1, . . . , sk}. Finally, we remark that each source may be a data string or a
computation. Square braces, e.g., [si]

λi , are used to emphasize that source si is not
exposed in its entirety, but rather only via a leakage attack.

Concurrent multisource leakage. A concurrent leakage attack on multiple
sources is one in which the adversary can interleave the leakages from each of the
sources arbitrarily. Each leakage is still a function of a single source, though. We
allow additional flexibility by considering a combination of concurrent sources and
ordered sources as above. Leakage from the ordered sources must obey the ordering,
and the leakage from the concurrent sources can be arbitrarily interleaved with the

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1500 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

leakage from the ordered sources.

Definition 4.4 (multisource leakage attack A(x)[sλ1
1 , . . . , sλk

k]{rλ′
1

1 , . . . , r
λ′
m

m }).
Let s1, . . . , sk and r1, . . . , rm be k+m leakage sources (algorithms or data strings, as
in Definition 4.2). We model a concurrent multisource leakage attack on [s1, . . . , sk]
{r1, . . . , rm} as follows. The adversary runs k + m leakage attacks, one on each
source. The attacks on each source, si or rj , for a λi or λ′j-bit leakage attack are as
in Definition 4.2. We emphasize that each λ-bit attack on a single source consists of
λ adaptive choices of 1-bit leakage functions. Between different sources, the leakages
can be interleaved arbitrarily and adaptively, except for each j and j′ s.t. j < j′; no
leakage from rj can occur after any leakage from rj′ . There are no restrictions on the
interleaving of leakages from si sources.

It is important that each leakage function is computed as a function of a single
subcomputation in a single source (i.e., the leakages are never a function of the in-
ternal state of multiple sources). It is also important that the attacks launched by
the adversary are concurrent and adaptive, and their interleaving is controlled by the
adversary. For example, A can request a leakage function from a subcomputation of
source si before deciding which source to attack next; then after attacking several other
sources, it can go back to source i and request a new adaptively chosen leakage attack
on its next subcomputation.

As in Definition 4.3, we drop the superscript if a source is exposed in its entirety.11

When the leakage from all sources is of the same length λ, we append the superscript
to the adversary and drop it from the sources. If there are no ordered sources, then
we drop the curly braces.

4.2. Extractors, entropy, and leakage-resilient subspaces. In this section
we define notions of min-entropy and two-source extractors that will be used in this
work. We will then present the inner-product two-source extractor. Finally, we will
state two lemmas that will be used in our proof of security: a lemma of [DORS08]
about the connection between leakage and min-entropy and a lemma of Brakerski et
al. [BKKV10] regarding leakage-resilient subspaces.

Definition 4.5 (min-entropy). For a distribution D over a domain X, its min-
entropy is

H∞(D) � min
x∈X

log
1

Pry∼D[y = x]
.

Definition 4.6 ((n,m, k, ε)-two-source strong extractor). A function Ext :
{0, 1}n × {0, 1}n → {0, 1}m is an (n,m, k, ε)-two-source extractor if for every two
distributions X and Y over {0, 1}n s.t. H∞(X), H∞(Y) ≥ k it is the case that

Pr
y∼Y

[Δ(Ext(X, y), Um) > ε] < ε,

Pr
x∼X

[Δ(Ext(x, Y), Um) > ε] < ε.

Chor and Goldreich [CG88] showed that the inner-product function over any field
is a two-source extractor. See also the excellent exposition of Rao [Rao07]. The claims
made in those works imply the lemma below (they make more general statements).

Lemma 4.7 (inner-product extractor [CG88]). For κ ∈ N and �x, �y ∈ GF[2]κ

11We use this only for the ordered sources; concurrent sources exposed in their entirety are w.l.o.g.
given to the adversary as part of its input.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1501

define

Ext(�x, �y) = 〈�x, �y〉.
For any κ ∈ N, the function Ext(x, y) is a (κ, 1, 0.51κ, 2−Ω(κ))-two-source strong
extractor.

Finally, we will use the fact that bounded-length multisource (or rather two-
source) leakage attacks on high-entropy sources X and Y leave an adversary with
a view that is statistically close to one in which each of the sources comes from a
high-entropy distribution. This follows from a result of Dodis et al. [DORS08] (we
state and use this lemma for the two-source case).

Lemma 4.8 (follows from residual entropy after leakage [DORS08]). Let X and Y
be two sources with min-entropy at least k. Then for any leakage adversary A, taking
w = Aλ[X,Y], consider the conditional distributions X ′ = (X |w) and Y ′ = (Y |w),
which are just X and Y conditioned on leakage w. For any δ > 0, with probability at
least 1− δ over the choice of w, H∞(X ′), H∞(Y ′) ≥ k − λ− log(1/δ).

4.3. Secure compiler: Definitions. We now present the formal definition for
a secure compiler against continuous and computationally unbounded leakage. We
view the input to the compiler as a circuit C that is known to all parties and takes
inputs x and y. The input y is fixed, whereas the input x is chosen by the user. The
user can adaptively choose inputs x1, x2, . . . , and the functionality requirement is that
on each input xi the user receives C(y, xi). The secrecy requirement is that even for
a computationally unbounded adversary who chooses the inputs (polynomially many
inputs in the security parameter), even giving the adversary access (repeatedly) to a
leakage attack on the secure transformed computation, the adversary learns nothing
more than the circuit’s outputs. In particular, the adversary should not learn y.12

We divide a compiler into parts: the first part, the initialization, occurs only
once at the beginning of time. This procedure depends only on the circuit C being
compiled and the private input y. We assume that during this phase there is no
leakage. The second part is the evaluation. This occurs whenever the user wants to
evaluate the circuit C(y, ·) on an input x. In this part the user specifies an input x;
the corresponding output C(y, x) is computed under leakage.

Definition 4.9 ((λ(·), δ(κ)) continuous leakage secure compiler). We say that
a compiler (Init ,Eval) is (λ(·), δ(κ))-secure under continuous leakage if for every
polynomial-sized circuit ensemble {Cn(y, x)}n∈N, where Cn operates on two n-bit in-
puts, and for every n, κ ∈ N and y ∈ {0, 1}n, the following hold:

• Initialization: Init(1κ, Cn, y) runs in time poly(κ, n) and outputs an initial
state state0.
• Evaluation: for every integer t ≤ poly(κ), the evaluation procedure is run on
the previous state, statet−1, and an input xt ∈ {0, 1}n. We require that for
every xt ∈ {0, 1}n, when we run

(out t, statet)← Eval(statet−1, xt)

with all but negligible probability over the coins of Init and the t invocations
of Eval , out t = Cn(y, xt).
• (λ(κ), δ(κ))-continuous leakage security: There exists a simulator Sim s.t. for
every (computationally unbounded) leakage adversary A, the view RealA of

12Unless, of course, y can be computed from the outputs of the circuit on the inputs the adversary
chose.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1502 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

A when adaptively choosing T = poly(κ) inputs (x1, x2, . . . xT) while running
a continuous leakage attack on the sequence

(Eval (state0, x1), . . . ,Eval(stateT−1, xT)),

with adaptively and adversarially chosen xt’s, is (δ(κ))-statistically close to
the view SimulatedA generated by Sim, which gets only the description of the
adversary and the input-output pairs:

((x1, C(y, x1)), . . . , (xT , C(y, xT))).

Formally, the adversary repeatedly and adaptively, in iterations t← 1, . . . , T ,
chooses an input xt and launches a λ(κ)-bit leakage attack on Eval(statet−1, xt)
(see Definition 4.2). RealA,t is the view of the adversary in iteration t, in-
cluding the input xt, the output ot, and the (aggregated) leakage wt from the
tth iteration. The complete view of the adversary is

RealA = (RealA,1, . . . ,RealA,T),

a random variable over the coins of the adversary, of Init , and of Eval (in
all of its iterations).
The simulator’s view is generated by running the adversary with simulated
leakage attacks. The simulator includes SimInit and SimEval procedures.
The initial state is generated using SimInit. Then, in each iteration t the
simulator gets the input xt chosen by the adversary and the circuit output
C(y, xt). It generates simulated leakage wt. It is important that the simulator
sees nothing of the internal workings of the evaluation procedure. We compute

state0 ← SimInit(1κ, Cn),

xt ← A(SimulatedA,1, . . . ,SimulatedA,t−1),

(statet, SimulatedA,t)← SimEval (statet−1, xt, , C(y, xt),A, SimulatedA,1, . . . ,

SimulatedA,t−1),

where SimulatedA,t is a random variable over the coins of the adversary when
choosing the next input and of the simulator. The complete view of the sim-
ulator is

SimulatedA = (SimulatedA,1, . . . ,SimulatedA,T).

The two views RealA and SimulatedA must be (exp(−Ω(κ)))-statistically close.
We note that modeling the leakage attacks requires dividing the Eval procedure

into subcomputations. In our constructions, the size of these subcomputations is
always O(κω), where ω is the exponent in the size of the best circuit family known
for matrix multiplication (e.g., see the recent work of Williams [Wil12]).

5. Leakage-resilient one-time pad (LROTP). In this section we present the
leakage resilient one-time pad cryptosystem, a main component of our construction.
See the overview in section 2.1. Here we specify the scheme and its properties that will
be used in the main construction. The LROTP cryptosystem is specified in Figure 1.

We use the following notation to denote key-ciphertext pairs.
Definition 5.1 (LROTPκ

�b
distribution). For κ ∈ N and �b ∈ {0, 1}m, we use

the following shorthand to denote drawing a fresh key and m fresh ciphertexts with
underlying plaintexts as per �b:

LROTPκ
�b
= (key , C)key←KeyGen(1κ),C[i]←Encrypt(key,�b[i]).

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1503

Leakage-Resilient One-Time Pad (LROTP) Cryptosystem (KeyGen ,Encrypt ,Decrypt)

• KeyGen(1κ): output a uniformly random key ∈ {0, 1}κ s.t. key [0] = 1

• CipherGen(1κ): output a uniformly random �c ∈ {0, 1}κ s.t. �c[1] = 1.

• Encrypt(key , b ∈ {0, 1}): output a uniformly random �c ∈ {0, 1}κ s.t. �c[1] = 1 and 〈key ,�c〉 = b

• Decrypt(key ,�c): output 〈key ,�c〉

Fig. 1. Leakage-resilient one-time pad (LROTP) cryptosystem.

5.1. Semantic security under multisource leakage.
Definition 5.2 (statistical security under λ(·)-multisource leakage). A crypto-

system comprising algorithms (KeyGen ,Encrypt ,Decrypt) is statistically secure under
computationally unbounded multisource leakage attacks if for every (unbounded) ad-
versary A, when we run the game below, the adversary’s advantage in winning (over
1/2) is exp(−Ω(κ)):

1. The game chooses b ∈R {0, 1} and (key ,�c) ∼ LROTPκ
b .

2. The adversary launches a leakage attack on key and �c and outputs a “guess”
b′:

b′ ← Aλ(κ)(1κ)[key ,�c].

The adversary wins if b′ = b.
The LROTP cryptosystem is statistically secure in the presence of multisource

leakage with leakage bound λ(κ) = κ/3. This follows from Lemma 5.4 below.
Lemma 5.3. Fix an integer m > 0. For every leakage bound λ(·), every multi-

source adversary A, every κ ∈ N, and every �b ∈ {0, 1}m, consider

D =
(
Aλ(κ)[key , C]

)
(key,C)∼LROTPκ

�b

.

For any w in the support of D, let K(�b, w) be the conditional marginal distribution of

key, conditioned on �b and on leakage w, and let C(�b, w) be the conditional marginal

distribution of C, conditioned on �b and on leakage w. The following hold:
1. The marginal distributions K(w) = K(�b, w) and C(w) = C(�b, w) are indepen-

dent of �b. In other words, for every w in the support and �b ∈ {0, 1}m, these
marginal distributions are identical.

2. The joint distribution of (key , C) conditioned on w equals the product distri-
bution K(w) × C(w), conditioned on key ′ ∼ K(w) and C′ ∼ C(w) satisfying

〈key ′, C′〉 = �b.
Proof. Take w = Aλ[key , C]. The leakage operates separately on key and on C,

and thus there exist two sets Skey(w) ⊆ {0, 1}κ and SC(w) ⊆ {0, 1}κ·m s.t.

w = Aλ[key , C]⇔ (key , C) ∈ Skey(w) × SC(w).

Now, since the leakage operates separately on key and on C, for fixed leakage w, the
sets Skey(w) and SC(w) are well defined and completely independent of the underlying

plaintexts �b (though the distribution of w itself may depend on �b).
Let K(w) be key conditioned on key ∈ Skey(w), and let C(w) be C conditioned

on C ∈ SC(w). Let X = LROTPκ
�b

be the initial joint distribution of (key , C).
In other words, let key and C be drawn uniformly at random s.t. the inner prod-
ucts equal �b. For w in the support of D, let X (w) = (X|w) be the distribution

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1504 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

of (key , C), conditioned on leakage w. By the above, X (w) is X conditioned on
(key , C) ∈ Skey(w) × SC(w). Thus, X (w) is the product distribution K(w) × C(w),
conditioned on 〈key , C〉 = �b.

Lemma 5.4. For κ ∈ N, for an integer m ≤ 0.1κ and leakage bound λ(κ) = 0.2κ,

for every multisource adversary A, and for every �b,�b′ ∈ {0, 1}m, take

D =
(
Aλ(κ)[key , C]

)
(key,C)∼LROTPκ

�b

,

D′ =
(
Aλ(κ)[key , C]

)
(key,C)∼LROTPκ

�b′
.

Then Δ(D,D′) = exp(−Ω(κ)).
We note that a similar claim was proved in [DDV10] in their Lemma 8. See also

Lemma 6.16 below, which proves a related claim, for an alternative approach that
uses a hybrid argument.

Proof of Lemma 5.4. Let w = Aλ[key , C]. Let X (w) be the distribution of
(key , C) ∼ LROTPκ

�b
conditioned on leakage w, and let X ′(w) be the distribution of

(key , C) ∼ LROTPκ
�b′ conditioned on w. By Lemma 5.3, the conditional distributions

K(w) and C(w) of key and of C (respectively) are independent of �b.
For fixed w, define β(w) to be the statistical distance of the inner product

〈key , C〉key∼K(w),C∼C(w) from uniform. We will show that with overwhelming proba-
bility β(w) is exponentially small. This is shown in Claim 5.6 below. Moreover, we
have the following claim.

Claim 5.5. For any w ∈ Support(D),

1−O(β(w)) ≤ D
′[w]
D[w] ≤ 1 +O(β(w)).

Proof. By Lemma 5.3 and Bayes’ Rule,

D[w] = Pr
key∼K,C∼C:〈key,C〉=�b

[(key , C) ∈ Skey(w) × SC(w)]

=
Prkey∼K,C∼C[((key , C) ∈ Skey(w)× SC(w))

∧
(〈key , C〉 = �b)]

Prkey∼K,C∼C[〈key , C〉 = �b]

= 2m · Pr
key∼K,C∼C

[((key , C) ∈ Skey(w) × SC(w))
∧

(〈key , C〉 = �b)].

Similarly,

D′[w] = 2m · Pr
key∼K,C∼C

[((key , C) ∈ Skey(w) × SC(w))
∧

(〈key , C〉 = �b′)].

The inner product of key ∼ K(w) and C ∼ C(w) is β(w)-close to uniform. If it were

truly uniform, then the probability of any fixed value �b would be 1/2|�b| = 1/2m. Since
it is β(w)-close, we get that

1

2m
− β(w)

2
< Pr

key∼K,C∼C
[((key , C) ∈ Skey(w)× SC(w))

∧
(〈key , C〉 = �b)] <

1

2m
+

β(w)

2
,

(1)

1

2m
− β(w)

2
< Pr

key∼K,C∼C
[((key , C) ∈ Skey(w)× SC(w))

∧
(〈key , C〉 = �b′)] <

1

2m
+

β(w)

2
.

(2)

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1505

And the claim follows.
Claim 5.6. With all but exp(−Ω(κ)) probability over w ∼ D, β(w) = exp(−Ω(κ)).
Proof. By Lemma 4.8, with all but δ probability over w ∼ D, we have that

H∞(K(w)) +H∞(C(w)) ≥ (m+ 1− 0.5) · κ. This is because the leakage bound from
each source in the statement of Lemma 5.4 is 0.2κ. Thus, by Lemma 4.7 we have
β(w) = exp(−Ω(κ)).

By Claims 5.5 and 5.6, plugging the bound on β(w) into (1) and (2), we conclude
that Δ(Real , Simulated) = exp(−Ω(κ)).

5.2. Key and ciphertext refreshing. As discussed in the introduction, the
LROTP scheme supports procedures for injecting new entropy into a key or a cipher-
text. This is done using entropy generators KeyEntGen and CipherEntGen . The
values these procedures produce can be used to refresh a key or ciphertext using
KeyRefresh or CipherRefresh (respectively). Key entropy σ can also be used, with-
out knowledge of key , to correlate a ciphertext �c so that the plaintext underlying
the correlated ciphertext �c′ under key ′ ← KeyRefresh(key , σ) is equal to the plain-
text underlying �c under key . This is done using the CipherCorrelate procedure. A
similar KeyCorrelate procedure for correlating keys uses ciphertext entropy. These
procedures are all in Figure 2 below.

LROTP key and ciphertext refresh

• KeyEntGen(1κ) : output a uniformly random σ ∈ {0, 1}κ s.t. σ[0] = 0

• KeyRefresh(key , σ) : output key ⊕ σ

• CipherCorrelate(�c, σ) : modify �c[0]← �c[0]⊕ 〈�c, σ〉, and then output �c

• CipherEntGen(1κ) : output a uniformly random τ ∈ {0, 1}κ s.t. τ [1] = 0

• CipherRefresh(�c, τ) : output �c⊕ τ

• KeyCorrelate(key , τ) : modify key [1]← key [1]⊕ 〈key , τ 〉, and then output key

Fig. 2. LROTP key and ciphertext refresh procedures.

We proceed with a discussion of the security properties of the refreshing proce-
dures and their limitations. For a key-ciphertext pair (key ,�c), a refresh operation on
the pair injects new entropy into the key and the ciphertext, while maintaining the
underlying plaintext, as follows:

1. σ ← KeyEntGen(1κ).
2. key ′ ← KeyRefresh(key , σ).
3. �c′ ← CipherCorrelate (�c, σ).
4. π ← CipherEntGen(1κ).
5. �c′′ ← CipherRefresh(�c′, π).
6. key ′′ ← KeyCorrelate(key ′, π).

The output of the refresh operation is (key ′′,�c′′). We treat each step of the key-
refresh as a subcomputation, and so the leakage operates separately on the keys and
on the ciphertexts.

Security properties. We use the following two security properties of the refresh
procedure:

1. A key-ciphertext pair can be refreshed without ever loading the key and
ciphertext into memory at the same time, i.e., while operating separately on
the key and on the ciphertext.
We will use this to argue that an OC leakage adversary learns nothing about

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1506 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

the plaintext bit underlying a pair that is being refreshed (as long as the total
amount of leakage is bounded).

2. Without any leakage, the refreshed pair is a uniformly random key-ciphertext
pair with the same underlying plaintext bit. We capture this property in the
following claim.
Claim 5.7. In the refresh operation described above, the joint distribution of
(key ′′,�c′′) is a uniformly LROTP random encryption of b = Decrypt(key ,�c)
(i.e., a draw from LROTPκ

�b
) and is independent of (key ,�c). The randomness

is over the choice of σ, π.
We use these two properties to prove security of the Permute procedure which is

used in SafeNAND (see sections 2.3 and 7.2). Permute proceeds in iterations. In each
iteration, we refresh a tuple of key-ciphertext pairs and then permute them using a
random permutation. The property of the refresh procedure that we will use is that
without any leakage, even given both the input and the output of a single iteration
of Permute, nothing is leaked about the permutation chosen (beyond what can be
gleaned from the underlying plaintexts). This will then be used to argue that, even
under a bounded amount of leakage from each iteration, the permutation chosen in
each iteration of Permute has (w.h.p.) high entropy. This is later used to prove the
security of SafeNAND .

Refresh forever? It is natural to ask whether key-ciphertext refreshing main-
tains security of the underlying plaintext under OC leakage for an unbounded poly-
nomial number of refreshing operations. If so, we could hope to do away with the
(significantly more complicated) ciphertext banks, replacing the ciphertexts gener-
ated by each bank with a sequence of ciphertexts generated using repeated refresh
calls. Unfortunately, there is an OC attack that exposes the plaintext underlying a
key-ciphertext pair that is refreshed too many times. The attack is outlined below.

We consider a sequence of refresh operations, where the output of the ith refresh
is used as input for the (i + 1)st refresh. During the first refresh, an OC adversary
leaks the inner product (i.e., the product) of the first bit of the output key and the
first bit of the output ciphertext. This requires only one bit of leakage from each. In
the second refresh, the adversary will learn the inner product of the first two bits of
the output key and the output ciphertext. To do so, let (key1,�c1) be the inputs to
the second refresh. The adversary leaks the second bits of key2 during KeyRefresh
and of �c2 during CipherRefresh . It also keeps track of the change in inner product of
the first bit of key ′1 = (key1 + σ) and of �c′1 = CipherCorrelate(�c1, σ) using a single
bit of leakage: The change (w.r.t. the inner product of key1 and �c1) is just a function
of σ and �c1, which are loaded into memory during CipherCorrelate . Similarly, the
adversary can keep track of the subsequent change to the inner product of the first
bits of key2 = KeyCorrelate(key ′1, π) and �c2 = �c′1⊕π using a single bit of leakage from
KeyCorrelate . Putting these pieces together, the adversary learns the inner product
of the first two bits of key2 and �c2. More generally, after the ith refresh call, the key
point is that if the adversary knows the inner product of the first i bits of the input
key and ciphertext, it can track the change in this inner product for the output key
and cipher. Tracking the change requires only two bits of OC leakage. The adversary
uses two additional bits of OC leakage to expand its knowledge to the inner product
of the first (i+ 1) bits.

Continuing the above attack for κ refresh calls, the adversary learns the inner
product of the key and ciphertext obtained; i.e., the underlying plaintext is exposed.
Note that this used only O(1) bits of leakage from each subcomputation. If � bits of

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1507

leakage from each subcomputation were allowed, then the underlying plaintext would
be exposed after O(κ/�) refresh calls. When using refresh, we will take care that the
total leakage accumulated from a sequence of refresh calls to a key-ciphertext pair will
be well under κ bits. Since refresh operates separately on keys and ciphertexts, the
statistical security of LROTP in the presence of multisource leakage will guarantee
that the underlying plaintext is hidden.

5.3. “Safe” homomorphic computations. The LROTP cryptosystem sup-
ports homomorphic computation on ciphertexts13 as follows.

Homomorphic addition or XOR. For key and two ciphertexts �c1,�c2, we can
homomorphically add by computing �c′ ← (�c1⊕�c2). By linearity, the plaintext under-
lying �c′ is the sum or XOR of the plaintexts underlying �c1 and �c2.

Homomorphic NAND. LROTP supports safe computation of a masked NAND
functionality. This functionality takes three input key-ciphertext pairs and outputs
the NAND of the first two underlying plaintexts and XORed with the third underly-
ing plaintext. Moreover, this can be performed via the SafeNAND procedure, which
guarantees that even an OC leakage attacker who gets leakage on the computation
learns nothing about the input plaintexts beyond the procedure’s output. See sections
2.3 and 7 for details.

We note that this can be extended to “standard” homomorphic computation of
NAND, where the input is two key-ciphertext pairs, and the output is a “blinded” key-
ciphertext pair whose underlying plaintext is the NAND of the plaintexts underlying
the inputs. The details are omitted (this second property follows from the security of
SafeNAND but is not used in our construction).

6. Ciphertext banks. In this section we present the procedures for maintain-
ing, utilizing, and simulating banks of secure ciphertexts. We use these to create
fresh secure ciphertexts under leakage attacks. The security property we want is that,
even though the generation of new ciphertexts is done under leakage, a simulator can
create an indistinguishable simulated view with complete and arbitrary control over
these ciphertexts’ underlying plaintexts. See section 2.3 for an overview.

This section is organized as follows. In section 6.1 we describe the ciphertext
bank procedures, and those of the simulator, and state the security properties that
will be used in the main construction (the proofs follow in subsequent sections). These
procedures (and their proofs) make use of secure procedures for piecemeal (see above)
matrix multiplication and for refreshing collections of ciphertexts, which are in section
6.2. We also define piecemeal attacks on matrices and prove security properties of
the piecemeal operations under these attacks. In section 6.3 we prove the ciphertext
bank’s security properties (which are stated in section 6.1). In section 6.4 we prove
the piecemeal operations’ security properties.

6.1. Ciphertext bank: Interface and security. We present a full description
of the ciphertext bank procedures and simulator. Recall that (as in section 5) keys
and ciphertexts are vectors in {0, 1}κ, and the decryption of ciphertext �c under key
is the inner product b = 〈key ,�c〉. We call b the plaintext underlying ciphertext �c.

Ciphertext bank procedures. The ciphertext bank is used to generate fresh
ciphertext-key pairs. The bank is initialized (without leakage) using a BankInit pro-
cedure that takes as input a bit b ∈ {0, 1}. It can then be accessed (repeatedly) using

13We refer to the XOR bit operation as homomorphic addition over GF [2].

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1508 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

a BankGen procedure, which produces a key-ciphertext pair whose underlying plain-
text is b. The BankGen procedure then injects new entropy into the bank’s internal
state. Leakage from a sequence of BankGen and BankUpdate calls can be simulated.
The simulator has arbitrary control over the plaintext bits underlying the generated
ciphertexts. Simulated leakage is statistically close to leakage from the real calls.

In addition, we provide a BankGenRand procedure. This procedure redraws a
uniformly random plaintext bit that will underly ciphertexts produced by the bank
and then produces two key-ciphertext pairs with this underlying plaintext bit. The
redrawn plaintext bit looks uniformly random even in the presence of leakage on the
BankGenRand procedure (and on all ciphertext generations).

These functionalities are implemented as follows. The ciphertext bank consists
of key and a collection C of 2κ ciphertexts. We view C as a κ × 2κ matrix, whose
columns are the ciphertexts.

In the BankInit procedure, on input b, the key is drawn uniformly at random, and
the columns of C are drawn uniformly at random s.t. their inner product with key is
b. This invariant will be maintained throughout the ciphertext bank’s operation. We
sometimes refer to b as the ciphertext bank’s underlying plaintext bit.

The BankGen procedure begins by injecting new entropy into the key (see below).
It then outputs a linear combination of C’s columns. The linear combination is
chosen uniformly at random s.t. it has parity 1. This guarantees that it will yield
a ciphertext whose underlying plaintext is b. The linear combination is taken using
a secure “piecemeal” matrix-vector multiplication procedure PiecemealMM . It then
injects new entropy into C and (again) into the key. Key refresh procedures are
performed using a (“piecemeal”) key refresh procedure PiecemealRefresh . We refresh
C by multiplying it with a random matrix whose columns all have parity 1. Matrix
multiplication is again performed securely using PiecemealMM .

The BankGenRand procedure adds a uniformly random vector in {0, 1}κ to each
column of C (the same vector to all columns; here key is left unchanged). With
probability 1/2, the vector has inner product 1 with key , and the underlying plaintext
bit is flipped. Otherwise, the underlying plaintext bit is unchanged. Adding the vector
to each column of the matrix is performed using a secure PiecemealAdd procedure. It
then generates two key-ciphertext pairs with this new underlying plaintext bit using
the BankGen procedure described above.

The full ciphertext bank procedures are in Figure 3. The piecemeal matrix mul-
tiplication, addition, and key refresh procedures are below in section 6.2.

Simulated ciphertext bank. We provide a simulator for simulating the ci-
phertext bank procedure, while arbitrarily controlling the plaintext bits underlying
the ciphertexts that are produced. Towards this end, the simulation procedures main-
tain a simulated ciphertext bank, consisting of a key and a matrix, similarly to the real
ciphertext bank. These are initialized, without leakage, in a SimBankInit procedure
that draws key and the columns of C uniformly at random from {0, 1}κ. Note that
here, unlike in the real ciphertext bank, the plaintexts underlying C’s columns are
independent and uniformly random bits (rather than all 0 or all 1). In the simulation
procedures, we use �x ∈ {0, 1}2κ to denote this vector of (uniformly random) plaintext
bits underlying the columns of C.

Calls to BankGen are simulated using SimBankGen . This procedure operates
similarly to BankGen , except that it uses a biased linear combination of C’s columns
to control the plaintext underlying its output ciphertext, and keeps track of changes
to the vector �x of underlying plaintexts when new entropy is injected into the bank.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1509

BankInit(1κ, b): initializes a ciphertext bank; No leakage

1. pick key ← KeyGen(1κ)

2. for i← 1, . . . , 2κ: C[i]← Encrypt(key , b)

3. output Bank ← (key , C)

BankGen(Bank = (key , C)): generates a ciphertext; Under leakage

1. pick �r ∈R {0, 1}2κ with parity 1

�c← PiecemealMM (C,�r)

2. refresh the key: (�,D)← PiecemealRefresh(key , C)

3. refresh the ciphertexts:

pick R ∈R {0, 1}2κ×2κ s.t. its columns all have parity 1,

C′ ← PiecemealMM (D,R)

4. Bank ← (�, C′)

5. output (key ,�c)

BankGenRand(Bank = (key , C)): generates ciphertext pair with random plaintext; Under leakage

1. redraw the underlying plaintext: pick �v ∈R {0, 1}κ, compute D ← PiecemealAdd(C,�v)

Bank ← (key , D)

2. generate the first ciphertext: (key ,�c)← BankGen(Bank)

3. generate the second ciphertext: (key ′,�c′)← BankGen(Bank)

4. output (key ,�c, key ′,�c′)

Fig. 3. Ciphertext bank.

Finally, we also provide a SimBankGenRand procedure, which operates similarly to
BankGenRand , except that it too keeps track of changes to the vector �x of plaintext
bits underlying C. The simulation procedures are in Figure 4.

SimBankInit(1κ); No leakage

1. pick key ← KeyGen(1κ), �x ∈R {0, 1}2κ
2. for i← 1, . . . ,m: C[i]← Encrypt(key , �x[i])

3. output Bank ← (key , C);

SimBankGen(Bank = (key , C), b)

Recall that we use �x to denote the vector of plaintext bits underlying (key , C).

1. pick �r ∈R {0, 1}2κ with parity 1, and s.t. 〈�x, �r〉 = b

2. run exactly as in BankGen , except in step 1 use the above “biased” �r

leakage is (only) on this operation of BankGen (with the biased �r)

SimBankGenRand(Bank = (key , C), b, b′)

Recall that we use �x to denote the vector of plaintext bits underlying (key , C).

1. run exactly as in BankGenRand , except replace the first call to SimBankGen with a call to
SimBankGen(b), and replace the second call with a call to SimBankGen(b′)

leakage is (only) on this operation of BankGenRand

2. update �x to contain the new bits underlying the updated C

Fig. 4. Simulated ciphertext bank.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1510 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Ciphertext bank security. We show several security properties of the cipher-
text bank. In all of these security properties, we consider sequences of ciphertext
bank generations, real or simulated. A sequence of real generations starts with a call
to BankInit to initialize the ciphertext bank. This is followed by a sequence of ci-
phertext generations, each performed via a call to BankGen . A sequence of simulated
generations is similar, except that initialization is performed using SimBankInit , and
each generation is performed by specifying an underlying plaintext bit b and then
calling SimBankGen .

We also consider sequences of generations of pairs of key-ciphertext pairs; each
pair of pairs has the same uniformly random underlying plaintext bit. A sequence
of real random generations begins with an initialization call to BankInit with a uni-
formly random bit value. This is followed by a sequence of pair generations, each
performed by a call to BankGenRand to get two keys and two ciphertexts with the
same underlying plaintexts. A sequence of simulated random generations is performed
similarly, except that BankInit and BankGenRand are replaced by SimBankInit and
SimBankGenRand plaintext bits b, b′ (we will not always use the same plaintext bit
in both generations).

We now describe several security properties for sequences of real and simulated
generations and random generations of pairs. Intuitive description are listed below,
and the formal lemma statements follow.

Real and simulated sequences, identical underlying plaintexts. Consider
an OC leakage attacker’s “real” view, given leakage from a real sequence of genera-
tions using a bank initialized with bit b. Consider also a “simulated” view for the
same attacker, given leakage from a simulated sequence of calls, where all calls to
SimBankGen specify the same underlying plaintext bit b. In other words, the plain-
texts underlying the ciphertexts generated in these real and simulated views are all
identical. We show that the distributions of the leakage obtained in these two views,
in conjunction with the explicit list of key-ciphertext pairs produced, are statistically
close.

This is stated formally in Lemma 6.1.
Lemma 6.1. There exist a leakage bound λ(κ) = Ω(κ) and a distance bound

δ(κ) = exp(−Ω(κ)) s.t. for any bit b ∈ {0, 1}, security parameter κ ∈ N, execu-
tion bound T = poly(κ), and (computationally unbounded) leakage adversary A the
following holds:

Let Real and Simulated be as follows, where in Real we begin by running Bank ←
BankInit(1κ, b), and in Simulated we begin by running Bank ← SimBankInit(1κ)
(both without leakage):

Real = A{[(key0,�c0)← BankGen(Bank)]λ(κ), key0,�c0,

[(key1,�c1)← BankGen(Bank)]λ(κ), key1,�c1,

. . .

[(keyT−1,�cT−1)← BankGen(Bank)]λ(κ), keyT−1,�cT−1
}
,

Simulated = A{[(key0,�c0)← SimBankGen(Bank , b)]λ(κ), key0,�c0,

[(key1,�c1)← SimBankGen(Bank , b)]λ(κ), key1,�c1,

. . .

[(keyT−1,�cT−1)← SimBankGen(Bank , b)]λ(κ), keyT−1,�cT−1
}
.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1511

Then Δ(Real , Simulated) = δ(κ).
We defer the proof to section 6.3.

Single simulated sequence: Each generation is strongly secure. Consider
an OC leakage adversary that attacks a sequence of T simulated generations, gen-
erating key-ciphertext pairs with underlying plaintexts �b ∈ {0, 1}T . The adversary
“targets” a single generation in this sequence, say the ith generation with underlying
plaintext �b[i]. We show that the entire view of the adversary, in conjunction with
all the generated key-ciphertexts pairs except the ith pair and the final state of the
(simulated) ciphertext bank after the generations are complete, can be generated by a
simulator that is only given multisource leakage access to a freshly generated LROTP
key-ciphertext pair (key∗,�c∗) with underlying plaintext �b[i] and is also given all bits

of �b except the ith bit. This is stated formally in Lemma 6.2 below.
Notice that, in particular, this means that an adversary cannot determine the

ith underlying plaintext bits even given all other keys and ciphertexts generated: if
the adversary could determine the ith underlying plaintext, then it could also break
the security of the LROTP scheme using multisource leakage (which is impossible by
Lemma 5.4).

Lemma 6.2. There exist a simulator Sim and a constant α > 1 s.t. for any
leakage bound λ(·), security parameter κ ∈ N, execution bound T = poly(κ), vector �b ∈
{0, 1}T , “target” round i ∈ [T], and (computationally unbounded) leakage adversary
A, the following holds:

Let D and E be the following distribution, where in D we begin by running Bank ←
SimBankInit(1κ) (without leakage):

D = Aλ(κ)
{
[(key0,�c0)← SimBankGen(Bank ,�b[0])], key0,�c0,

[(key1,�c1)← SimBankGen(Bank ,�b[1])], key1,�c1,

. . . ,

[(key i−1,�ci−1)← SimBankGen(Bank ,�b[i− 1])], key i−1,�ci−1,

[(key i,�ci)← SimBankGen(Bank ,�b[i])],

[(key i+1,�ci+1)← SimBankGen(Bank ,�b[i + 1])], keyi+1,�ci+1,

. . . ,

[(keyT−1,�cT−1)← SimBankGen(Bank ,�b[T − 1])], keyT−1,�cT−1,
[keyi,�ci],Bank

}
,

E = Simα·λ(κ)(�b−(i))[key i,�ci](keyi,�ci)∼LROTPκ
�b[i]

.

Then the distributions D and E are identical (i.e., statistical distance 0).
We defer the proof to section 6.3.

Real and simulated sequences of random generations. Consider an OC
leakage attacker’s “real” view, given leakage from a real sequence of random genera-
tions of ciphertext pairs via BankGenRand . Consider also a “simulated” view for the
same attacker, given leakage from a simulated sequence of calls, where each pair of
calls to SimBankGenRand specifies a uniformly random bit (the same bit for both gen-
erations and independent of all other pairs). In particular, the plaintexts underlying
the ciphertexts generated in these real and simulated views are identically distributed
(uniformly random for each pair independently). We show that the distributions of

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1512 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

the leakage obtained in these two views, in conjunction with the explicit list of keys
and ciphertext pairs produced, are statistically close.

This is stated formally in Lemma 6.3.
Lemma 6.3. There exist a leakage bound λ(κ) = Ω(κ) and a distance bound

δ(κ) = exp(−Ω(κ)) s.t. for any security parameter κ ∈ N, execution bound T =
poly(κ), and (computationally unbounded) leakage adversary A the following holds:

Let Real and Simulated be as follows. In Real , we begin by running Bank ←
BankInit(1κ, 0). In Simulated, we begin by running Bank ← SimBankInit(1κ) and

we choose �b ∈R {0, 1}T :

Real = A{[(key0, �c0, key
′
0, �c
′
0)← BankGenRand(Bank)]λ(κ), (key0, �c0, key

′
0, �c
′
0),

[(key1, �c1, key
′
1, �c
′
1)← BankGenRand(Bank)]λ(κ), (key1, �c1, key

′
1, �c
′
1),

. . .

[(keyT−1, �cT−1, key
′
T−1, �c

′
T−1)← BankGenRand(Bank)]λ(κ),

(keyT−1, �cT−1, key
′
T−1, �c

′
T−1)

}
,

Simulated = A{[(key0, �c0, key
′
0, �c
′
0)← SimBankGenRand(Bank ,�b[0],�b[0])]λ(κ),

(key0, �c0, key
′
0, �c
′
0),

[(key1, �c1, key
′
1, �c
′
1)← SimBankGenRand(Bank ,�b[1],�b[1])]λ(κ),

(key1, �c1, key
′
1, �c
′
1),

. . .

[(keyT−1, �cT−1, key
′
T−1, �c

′
T−1)← SimBankGenRand(Bank ,�b[T − 1],�b[T − 1])]λ(κ),

(keyT−1, �cT−1, key
′
T−1, �c

′
T−1)

}
.

Then Δ(Real , Simulated) = δ(κ).
The proof is similar to that of Lemma 6.1; see section 6.3.

Single simulated sequence of random generations: Each triplet strongly
secure. Consider an OC leakage adversary that attacks a sequence of T simulated
generations of random pairs via SimBankGenRand , where each generation generates
a pair of key-ciphertext pairs, with underlying plaintexts �b ∈ {0, 1}2T . The adversary
“targets” three generation in this sequence, say (i, j, k) ∈ [2T]3, with underlying plain-

texts �b[i],�b[j],�b[k]. We show that the entire view of the adversary, in conjunction with
all the generated key-ciphertexts pairs except the pairs from the (i, j, k) generations
and the complete state of the (simulated) ciphertext bank after all generations are
complete, can be generated by a simulator that is only given multisource leakage ac-
cess to freshly generated LROTP key-ciphertext pairs (key i,�ci), (key j ,�cj), (keyk,�ck)

with underlying plaintext�b[i],�b[j],�b[k] and is also given all bits of�b except bits (i, j, k).
This is stated formally in Lemma 6.4 below.

We note that, as was the case for a single sequence of (standard) generations,
by the security of LROTP under multisource leakage, this means that the underlying
plaintext bits for the targeted keys and ciphertexts are strongly protected (even given
all other keys and ciphertexts that were generated).

Lemma 6.4. There exist a simulator Sim and a constant α > 1 s.t. for any
leakage bound λ(·), security parameter κ ∈ N, execution bound T = poly(κ), vector
�b ∈ {0, 1}2T , “target” generations (i, j, k) ∈ [2T], and (computationally unbounded)
leakage adversary A, the following holds:

Let D and E be the following distribution, where in D we begin by running Bank ←
SimBankInit(1κ) (without leakage):

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1513

D = Aλ(κ){((key0,�c0, key
′
0,�c
′
0)← SimBankGenRand(Bank ,�b[0],�b[1])), key0,�c0, key

′
0,�c
′
0

((key1,�c1, key
′
1,�c
′
1)← SimBankGenRand(Bank ,�b[2],�b[3])), , key1,�c1, key

′
1,�c
′
1

. . .

for generations of ith, jth, and kth key-ciphertext pairs, only

leakage is released

(the explicit keys and ciphertexts are not released)

. . .

((keyT−1,�cT−1, key
′
T−1,�c

′
T−1)← SimBankGenRand(Bank ,�b[2T − 2],�b[2T − 1])),

keyT−1,�cT−1, key
′
T−1,�c

′
T−1,

[(key i, keyj , keyk), (�ci,�cj ,�ck)],Bank
}

E = Simα·λ(κ)(�b−(i,j,k))

[(key i, keyj , keyk), (�ci,�cj ,�ck)]((keyi,keyj ,keyk),(�ci,�cj ,�ck))∼LROTPκ
(�b[i],�b[j],�b[k])

The proof is very similar to that of Lemma 6.2; see section 6.3.

6.2. Piecemeal matrix computations. Recall that we treat collections of ci-
phertexts as matrices, where each column of the matrix is a ciphertext. We refer
to the procedures in this section as “piecemeal” because they access the matrices
by dividing them into “pieces” or “sketches” and loading each piece (or sketch) into
memory separately. Each piece/sketch is a collection of linear combinations of the
matrix’s columns. We refer to these as pieces (rather than sketches) throughout this
section.

We present piecemeal procedures for matrix multiplication, for refreshing the key
under which the ciphertexts in a matrix’s columns are encrypted, and for adding a
vector to the columns of a matrix (we refer to this as matrix-vector addition). These
procedures are specified in Figures 5, 6, and 7. We show that these procedures have
several security properties under leakage attacks. In all these procedures, no matrix
is ever loaded into memory in its entirety. Rather, the matrices are only accessed in
a piecemeal manner. We note that throughout this section we use the symbol × to
refer to matrix multiplication (i.e., A×B is the product of matrices A and B).

As an (important) example for why this facilitates security, consider the rank of
a matrix on which we are computing. If this matrix is loaded into memory in its
entirety, then a leakage adversary can compute its rank. If, however, only “pieces”
of the matrix are loaded into memory at any one time, then it is no longer clear
how a leakage adversary can compute the rank. In fact, we will show that (under
the appropriate matrix distribution), as long as the matrix is accessed in a piecemeal
fashion, its rank is completely hidden, even from a computationally unbounded leakage
adversary. This fact will be used extensively in our security proofs. See the subsequent
sections for security properties and proofs.

6.2.1. Piecemeal leakage attacks on matrices and vectors. In this section,
we define “piecemeal leakage attacks” on matrices. In particular, these attacks cap-
ture the leakage that can be computed via a leakage attack on the piecemeal matrix
procedures (multiplication, refresh, and matrix-vector addition). We prove then that
random matrices are resilient to several flavors of such piecemeal attacks.

Attack on a matrix. A piecemeal leakage attack on a matrix is a multisource
leakage attack, where the sources are key and (one or many) “pieces” of the matrix.
Recall that each “piece” here is a collection of linear combinations of the matrix

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1514 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

PiecemealMM (A,B): multiplies matrices A ∈ {0, 1}κ×m and B ∈ {0, 1}m×n; Under leakage

Parse: A = [A1, . . . , Aa], where each Ai is a κ × � matrix, and BT = [BT
1 , . . . , BT

b], where each Bj is an
m× � matrix. Further parse each BT

i = [BT
i,1, . . . , B

T
i,a], where each Bi,j is an �× � matrix.

1. For i← 1, . . . , b:

(a) Set D0 = 0̄
(b) For j ← 1, . . . , a: Dj ← Dj−1+(Aj×Bi,j); leakage on each tuple (Dj−1, Aj , Bi,j) separately
(c) Ci ← Da

2. Output the product matrix C = [C1, . . . , Cb]

Fig. 5. Piecemeal matrix multiplication for κ, � ∈ N.

PiecemealRefresh(key , A): refreshes the key for matrix A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× � matrix.

1. σ ← KeyEntGen(1κ)

2. for i← 1 . . . , a: A′i ← CipherCorrelate(Ai, σ); leakage on (Ai, σ) for each i separately

3. key ′ ← KeyRefresh(key , σ); leakage on (key , σ)

4. Output key and the refreshed matrix A′ = [A′1, . . . , A
′
a]

Fig. 6. Piecemeal matrix refresh for κ, � ∈ N.

PiecemealAdd(A,�v): adds �v ∈ {0, 1}κ to each column of A ∈ {0, 1}κ×m

Parse: A = [A1, . . . , Aa], where each Ai is a κ× � matrix.

1. for i← 1 . . . , a, j ← 1 . . . �: A′i[�]← Ai[�] + �v; leakage on (Ai, �v) for each i separately

2. A′ = [A′1, . . . , A
′
a]

Fig. 7. Piecemeal matrix addition for κ, � ∈ N.

columns. See Definition 6.5 below. We focus on the case where the matrix is either
independent of key or has columns orthogonal to key (as is the case for a ciphertext
bank corresponding to underlying plaintext bit 0). The case where the columns have
inner product 1 with key is handled identically.

We show that a random matrix M is resilient to piecemeal leakage: the leakage
computed in such an attack is statistically close when (i) the columns of M are all
in the kernel of key , (ii) M is a uniformly random matrix, and (iii) M is a uniformly
random matrix of rank κ−1 (independent of key). Moreover, this statistical closeness
holds even if key is later exposed in its entirety. We begin in section 6.4.1 with a
warmup for the case of an attack on a single piece (Lemma 6.16). We then show
security for large numbers of pieces in section 6.4.3 (Lemma 6.21).

Definition 6.5 (piecemeal leakage attack on (key ,M)). Take a, κ, λ, �,m ∈ N.

Let �Lin = (Lin1, . . . ,Lina) be a sequence of (one or more) matrices, where for each
Lin i, its columns each specify the coefficients of a linear combination of the rows of
M . Thus, for M ∈ {0, 1}κ×m and Lini ∈ {0, 1}m×�, the matrix piece M × Lin i is a
collection of � linear combinations of M ’s columns.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several
matrices in {0, 1}κ×� (each matrix is M ×Lini for some i). We denote A’s output by

Aλ
κ,�,m, �Lin

(key ,M) � Aλ(1κ)[key]{(M × Lin1), . . . , (M × Lina)}.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1515

We refer to A as a “piecemeal adversary” operating on (key ,M). We omit κ, λ, �,

m, and �Lin when they are clear from the context. We omit key in cases when the
adversary does not get any access to it (not even leakage access).

Attack on a matrix and vector. We extend the notion of a piecemeal leakage
attack further, considering piecemeal leakage that operates separately on key , and on
pieces of a matrix M (as before), each piece jointly with a vector �v. See Definition
6.6 below.

We show that, for a matrix M with columns in the kernel of key , the leakage
computed in such an attack is statistically close when (i) the vector �v is in the kernel
of key , and (ii) the vector �v is not in the kernel of key . Moreover, this statistical
closeness holds even if key is later exposed in its entirety (as above) and also M is
later exposed in its entirety. See section 6.4.4 and Lemma 6.26.

Definition 6.6 (piecemeal leakage attack on (key , (M,�v))). Take a, κ, λ, �,m ∈
N. Let �Lin = (Lin1, . . . ,Lina) be a sequence of matrices, where for each Lin i, its
columns each specify the coefficients of a linear combination of the rows of M as in
Definition 6.5.

Let A be a leakage adversary, operating separately on key ∈ {0, 1}κ and on several
matrices in {0, 1}κ×� (as in Definition 6.5), each matrix jointly with a vector �v ∈
{0, 1}κ. We denote A’s output by

Aλ
κ,�,m, �Lin

(key , (M,�v)) � Aλ(1κ)[key]{((M × Lin1), �v), . . . , ((M × Lina), �v)}.
We refer to A as a “piecemeal adversary” operating on (key , (M,�v)). We omit κ, λ,

�, m, and �Lin when they are clear from the context.

6.2.2. Piecemeal matrix multiplication: Security. We state the security
properties of piecemeal operations under piecemeal leakage that are used above to
prove the security of the ciphertext bank as a whole.

Lemma 6.7. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set � = 0.1κ and leakage bound
λ = 0.01κ·(�/m)2. Let A be any piecemeal adversary and A′ be any leakage adversary.
Let D and F be the following two distributions, where in both cases we draw key ∈R
{0, 1}κ, �x ∈R {0, 1}m, and B ∈R {0, 1}m×n s.t. the columns of B are all in the kernel
of �x and with parity 1:

D = (key , C, w ← Aλ
κ,�,m,Lin(key ,A),

A′λ(w, �x,B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×m:∀i,〈key,A[i]〉=0,

F = (key , C, w ← Aλ
κ,�,m,Lin(key ,A),

A′λ(w, �x,B)[key , C ← PiecemealMM (A, B)])A∈R{0,1}κ×n:∀i,〈key,A[i]〉=�x[i].

Then Δ(D,F) = exp(−Ω(κ)).
The proof is deferred to section 6.4.5.
Lemma 6.8. Take κ,m, n ∈ N s.t. m,n ≥ κ. Set � = 0.1κ and leakage bound λ =

0.01κ·(�/m)2. Let A be any leakage adversary and A′ be any piecemeal adversary. Let
D and F be the following two distributions, where in both distributions key ∈r {0, 1}κ
and A ∈R {0, 1}κ×m s.t. the columns of A are orthogonal to key:

D = (w ← Aλ(key , A)[C ← PiecemealMM (A,B)],

Aλ(w, key , A)κ,�,m,Lin(B))B∈R{0,1}m×n:∀i,⊕BT [i]=1,

F = (w ← Aλ(key , A)[C ← PiecemealMM (A,B)],

Aλ(w, key , A)κ,�,m,Lin(B))B∈R{0,1}m×n:rank(B)=m−1,∀i,⊕BT [i]=1.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1516 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Then Δ(D,F) = exp(−Ω(κ)).
The proof is deferred to section 6.4.5 (it is an immediate consequence of Corollary

6.27 below).

6.3. Ciphertext bank security proofs.
Proof of Lemma 6.1. We prove here the case b = 0; the case b = 1 is similar. We

consider the T generations, real or simulated, and keep track of the values of various
internal variables as the computation proceeds.

Internal variables. For the tth generation (where t goes from 0 to T − 1),
(key t, Ct) denote the bank before the tth generation, with underlying plaintexts �xt.
The randomness used to generate the tth output ciphertext is �rt, the matrix used
to refresh the bank is Rt, and the key refresh value is σt. We use Dt to denote
the intermediate ciphertext bank in the tth generation after key refresh but before
multiplication with Rt. The output of the tth generation is the key-ciphertext pair
(key t,�ct).

Hybrids. We define hybrid views {Ht} for t ∈ {0, . . . , T+1}. The output of each
hybrid is T tuples, one per ciphertext generation, each consisting of a leakage value,
key, and ciphertext. We compute the hybrid views by running the T generations,
under the leakage attack of A, using biased random coins as follows.

For t > 0, Ht is initialized using (key0, C0) as in Simulated (in H0 we initialize
(key0, C0) as in Real). We then run T ciphertext generations under A’s leakage attack.
For the ith generation in Ht, the key refresh value σi is uniformly random. For i < t,
we choose �ri uniformly at random s.t. it has odd parity and is in kernel(�xi). For i ≥ t,
we choose �ri to be uniformly random with odd parity (and no further restrictions).
For i �= (t − 1), we use a uniformly random Ri whose columns have odd parity. For
i = (t− 1), we use a uniformly random Ri whose columns have odd parity and are in
kernel(�xi). In particular, this means that for i < t, the distribution of Ci is uniformly
random, and �xi specifies the underlying plaintexts in C’s columns (as in Simulated).
For i ≥ t, the columns of Ci are orthogonal to key , and �xi is the zero vector (and has
no effect on the distribution).

By construction, we get that H0 = Real and HT+1 = Simulated . It remains to
show that, for all t ∈ [T + 1], Δ(Ht,Ht+1) = exp(−Ω(κ)).

We use an intermediate distribution H′t, which operates as Ht, except that it
chooses the vector �xt uniformly at random (recall that in Ht the columns of Ct are
all in kernel(key), and �xt is the zero vector). It then chooses �rt and the columns of
Rt to be uniformly random with odd parity and in kernel(�xt) (whereas in Ht these
were uniformly random with odd parity and no further restriction).

The lemma will follow from Claims 6.9 and 6.12 below (the proofs will depend
on technical lemmas on leakage resilience of piecemeal matrix operations; see sections
6.2 and 6.2.2).

Claim 6.9. Δ(H′t,Ht+1) = exp(−Ω(κ)).
Proof. The differences between H′t and Ht+1 are the following: (i) in H′t, the

columns of Ct are orthogonal to key t, whereas in Ht+1 they are uniformly random,
and (ii) the distribution of �rt and the columns of Rt have odd parity in both Ht+1

and H′t, but in Ht+1 they are orthogonal to �xt that has the plaintext bits encrypted in
Ct, whereas in H′t they are orthogonal to a uniformly random �xt that is independent
of (key t, Ct).

Statistical closeness of the views follows from Lemma 6.7 in section 6.2.2. That
lemma considers the multiplication of two matrices A and B under piecemeal leakage

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1517

from the matrices. The leakage attack of Lemma 6.7 draws uniformly random vectors
key and �x, takes B to have columns that are orthogonal to �x, and considers two cases.
In the first case, A has columns orthogonal to key (and is independent of �x). In the
second case, �x specifies the inner products of A’s columns with key . Lemma 6.7 shows
that piecemeal leakage from the multiplication of A and B (together with piecemeal
leakage from key and A) is statistically close in the two cases, even in conjunction
with key and with the product of A and B.

To reduce the attack of Lemma 6.7 to distinguishing H′t and Ht+1, we put key as
key t, A as Ct, �x as �xt, and B as Rt (we also include the vector �rt in B; its distribution
is identical to that of Rt’s columns in both cases). By the conditions of Lemma 6.7, we
get that in the first case (�x is independent of key , A), setting the variables as above,
they are distributed as in Ht+1. In the second case (�x specifies the inner products of
A’s columns with key), the variables are distributed as in H′t.

By the above reduction and by Lemma 6.7, we get that leakage from keyt and
from the (piecemeal) multiplication of Ct by Rt, together with the explicit values of
key t, �ct, and Ct+1 = Ct×Rt, is statistically close in the two hybrids. From key t, Ct+1

we can generate the view for the generations (t+ 1), . . . , (T − 1), and so we conclude
that the leakage values and ciphertexts produced in generations t, . . . , (T − 1) are
statistically close in both hybrids.

Proving that the view from prior generations (leakage and the key-ciphertext
pairs) is also statistically close in the two hybrids requires a bit more work. In a
nutshell, we will use piecemeal leakage from key t and from Ct to generate the view
for prior generations 1, . . . , (t− 1). This will complete the proof because we can then
proceed as above to complete the view for generations t, . . . , (T − 1).

Towards this, for each i ∈ {0, . . . , t − 1}, we pick (key i,�ci) uniformly at random
(independent of (key t, Ct)) s.t. they have inner product 0. We also choose a uniformly
random correlation value σt. Note that the distribution of these key-ciphertext pairs,
in conjunction with (key t, Ct) set as above, is exactly as in H′t and Ht+1 (depending
on the distribution of key and A for the security game of Lemma 6.7).

It remains to compute the leakage from iterations 0, . . . , t − 1 using piecemeal
leakage from key t and Ct. In fact, for i ∈ {0, . . . , t− 3}, the leakage is independent of
(key t, Ct): we simply choose all of the randomness for these generations independently
of (key t, Ct). For generations {0, . . . , t− 2}, each Ci is sampled uniformly at random.
The σi values are specified by key i⊕σi = key i+1, and these in turn (together with the
Ci’s) specify the Di key-refreshed banks. The Ri matrices are uniformly random s.t.
their columns have odd parity and multiplyingDi by Ri yields Ci+1. �ri’s are uniformly
random s.t. they have odd parity and Ci × �ri = �ci. This completely specifies the
randomness for all iterations 0, . . . (t−3), and we can compute the leakage from those
iterations using these values, independently of (key t, Ct). We treat all these internal
values as “public” because they are completely independent of key t, Ct and distributed
identically in both hybrids. We emphasize that the randomness for iterations t−2 and
t−1 will depend on (key t, Ct), and so leakage from those iterations is not independent
and will be computed as follows using piecemeal leakage from (key t, Ct).

We turn our attention to the remaining iterations ((t− 2) and (t− 1)). We begin
by setting Dt−2 and Dt−1 to be uniformly random “public” matrices (as they are in
both hybrids). Let us not review the internal variables that have not yet been chosen
explicitly. For iteration (t − 2), they are (Ct−2, σt−2, Rt−2). For iteration (t − 1),
they are (Ct−1, σt−1, Rt−1). All other variables have been chosen and set above. We
show that, given the values that have been publicly set above, piecemeal leakage from
each of these random variables can be computed using (bounded) leakage from key or

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1518 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

using piecemeal leakage from Ct. This is stated in Propositions 6.10 and 6.11 below.
Proposition 6.10. Given fixed

(key t−2, Dt−2, keyt−1, Dt−1),

the values of

(Ct−2, σt−2, �rt−2, Rt−2, Ct−1, σt−1, �rt−1)

can be computed directly from key t (and are independent of Ct).
Proof. The variable σt−2 is a function of key t−2 and key t−1, which are both

public. Together with Dt−2, this also specifies Ct−2 (which is public), and adding
�ct−2 we can also generate �rt−2 (again, publicly).

The variable σt−1 = key t−1 ⊕ key t is a function of key t and the fixed public
key t−1. The ciphertext bank Ct−1 is a function of Dt−1 and of σt−1, i.e., of public
information and of key t. The variable �rt−1 is a function of Ct−1 and �ct−1, i.e., of key t

and public information.
Finally, for Rt−2, we use Dt−2 (public) and Ct−1 (a function of key t), and thus

Rt−2 is also a function of key t.
Proposition 6.11. Given fixed Dt−1, piecemeal leakage from Rt−1 can be com-

puted directly using piecemeal leakage from Ct (and is independent of Ct).
Proof. To compute each piece of Rt−1 used in the piecemeal matrix multiplication,

we observe that it suffices to use explicit access to all of Dt−1 (a “public” uniformly
random matrix), together with piecemeal leakage from Ct. We use here the fact that
the pieces of Rt−1 that are needed for simulating matrix multiplication are all disjoint.
In other words, for each piece of Rt−1 in the computation Ct ← Dt−1 × Rt−1 (this
accesses several rows of Rt−1 at a time), the reduction can choose a uniform collection
of rows that satisfy the equation Ct ← Dt−1 × Rt−1 for the piece being computed.
Note that, in particular, the distributions of Rt−1 that we will get in the two scenarios
of Lemma 6.7 are quite different (as they should be).

In conclusion, we used a piecemeal attack on (key t, Ct) to generate the key-
ciphertext pairs and leakage up to the tth generation and an attack as in Lemma
6.7 to generate the leakage from the tth generation on. This yields the views H′t and
Ht+1. By Lemma 6.7, these views are exp(−Ω(κ))-statistically close. As a final note,
if t < 2, then the iterations t− 2, t− 1 might not exist. In this case, the only change
is that we need not generate the view from these iterations.

Claim 6.12. Δ(Ht,H′t) = exp(−Ω(κ)).
Proof. The only difference between the hybrids is in the distribution of �rt and

Rt (in the tth generation). In Ht the vector �rt and columns of Rt are uniformly
random with odd parity. In H′t there is an additional restriction that these vectors
are all orthogonal to kernel(�xt), i.e., they are all in a (random) subspace of dimension
(2κ − 1) (�xt is a uniformly random vector independent of any of the other variables
in the construction). Note that �rt and Rt are independent of key t, Ct, σt.

Statistical closeness of the views follows from Lemma 6.8 in section 6.2.2. That
lemma shows that bounded-length piecemeal leakage from a matrix B of dimension
2κ × 2κ is statistically close in the cases where B’s columns are uniformly random
with odd parity and where the matrix columns are uniformly random with odd parity
and in a subspace of rank 2κ − 1. This is true even combined with leakage from
(piecemeal) multiplication of B with a public matrix A whose columns are orthogonal
to a public vector key .

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1519

To reduce the attack of Lemma 6.8 to distinguishing Ht and H′t, we put key as
key t, A as Ct, and B as Rt. We can pick all the variables for iterations 0, . . . , (t− 1)
according to their distribution in both hybrids (these distributions are identical in Ht

and H′t). The leakage from the (t− 1)st generation (where σt−1, Rt−1 depend on Ct)
is computed as a function of key t, Ct, which are given to the adversary explicitly in
the security game of Lemma 6.8.

It remains to generate the leakage and the key-ciphertext pairs from rounds
t, . . . , (T − 1). This is done similarly to the proof of Claim 6.9, as a function of
the (public) key t, Ct and piecemeal leakage from Rt. The reduction picks all the vari-
ables for iterations (t + 2), . . . , (T − 1). For iteration (t + 1), it picks key t+1,�ct+1.
This leaves (Ct+1, Rt+1) unset. By Proposition 6.13 below, piecemeal leakage from
the matrix multiplication Ct+1 = Ct × Rt and subsequent piecemeal leakage from
Ct+1, Rt+1 can be simulated using piecemeal leakage from Rt.

Proposition 6.13. Given fixed

key t, Ct, key t+1, key t+2, Ct+2,

piecemeal leakage from Ct+1 and Rt+1 can be computed directly using piecemeal leakage
from Rt.

Proof. Given the fixed Ct, each piece of Ct+1 depends only on a subset of Rt’s
columns. Given the fixed Ct+2 and piecemeal access to Ct+1, we can pick the columns
of Rt to be uniformly random with odd parity under the restriction that Ct+1×Rt+1 =
Ct+2.

In conclusion, we use a reduction from the attack of Lemma 6.8. The reduction
generates all key-ciphertext pairs as needed and uses the attack of Lemma 6.8 on Rt

to generate the leakage from iterations t, (t + 1). As a final note, if t > T − 2, then
the iterations t + 1, t + 2 might not exist. In this case, the only change is that we
need not generate the view from these iterations.

Proof of Lemma 6.2. The simulator Sim has �b−(i) and multisource leakage access
to key i and �ci (with underlying plaintext bit�b[i]) and wants to generate the adversary’s
view in the leakage attack. To do this, Sim chooses uniformly random matrix Ct

of LROTP ciphertexts for each of the T generations (note that these matrices are
independent of the underlying plaintexts in the simulated generations!). Sim also
chooses a uniformly random LROTP key, key t, for each of the T generations except
the ith (the key for the ith generation, key i, is only accessed via bounded-length
leakage). Sim also chooses uniformly random output ciphertext �ct s.t. (key t,�ct) have

underlying plaintext bit �b[t] for all generations except the ith generation.
By construction, the joint distribution of {(Ct, key t,�ct)}t∈[T] created by the sim-

ulator is identical to their joint distribution in D. Now Sim simulates the sequence
of generations with these values of {(Ct, key t,�ct)}. The only issues are (i) simulating
the leakage from the ith generation, where Sim does not know the explicit values of
key i or of �ci, and (ii) simulating the leakage from the key refresh in the (i − 1)st
generation, where Sim does not know the “target” key. This leakage is simulated
using multisource leakage access to key i and to �ci as follows.

For the ith generation, leakage from the generation of �ci is a function of (�ci, Ci),
where Ci is explicitly known to Sim . Thus, this can be simulated using (bounded-
length) leakage from �ci only: the leakage function chooses a random linear combination
�r of odd weight s.t. Ci × �r = �ci and then computes leakage as a function of Ci and �r.
Leakage from the key refresh is only a function of (key i, key i+1, Ci), where key i+1 and
Ci are explicitly known to Sim. Thus this (bounded-length) leakage can be simulated

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1520 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

using (bounded-length) leakage from key i only. Finally, refreshing the ciphertexts in
the bank is only a function of Ci and Ci+1, which are explicitly known to Sim. Thus,
the leakage from the ith generation can be computed via separate bounded-length
leakage from key i and from �ci.

Similarly, for the (i − 1)st generation, leakage from the key refresh step can be
simulated as a bounded-length function of key i only (since all variables, including the
(i− 1)st output ciphertext, are explicitly known to Sim).

Proof sketch for Lemma 6.3. The proof is similar to that of Lemma 6.1; we
assume that the reader is familiar with that proof and focus on the differences. We
define a sequence of hybrids, where in Ht the ciphertext banks used up until the tth
generation are as in Simulated (i.e., uniformly random), and from the tth generation
the ciphertext banks are as in Real (i.e., they all have the same inner product with
key). The transition is done as part of the second generation in iteration t, where
we use a matrix Rt with a biased distribution to set the inner products of Ct+1 with
key t+1 a fixed (random) bit value. We note that there is no difference in the choice
or addition of the vector �v in the two views.

As in Lemma 6.1, we also define an “intermediate” hybrid distribution H′t, where
the columns of the matrix Rt are picked to be have a set (random) inner product with
a uniformly random vector �x (the same inner product for all columns of Rt). The
proof follows by the following two claims.

Claim 6.14. Δ(H′t,Ht+1) = exp(−Ω(κ)).
Proof sketch. The proof is almost identical to that of Claim 6.9. We again show

that the entire views can be generated using the attack of Lemma 6.7. There are
slight differences in the internal variables used; namely, each iteration generates two
ciphertexts, not one. Still, as was the case there, we can use the matrix product and
key (which are made public) to simulate the view from iterations (t+1) on. The view
from the earlier iterations is again generated using piecemeal leakage from (key t, Ct)
(see Propositions 6.10 and 6.11).

Claim 6.15. Δ(H′t,Ht) = exp(−Ω(κ)).
Proof sketch. The proof is almost identical to that of Claim 6.12. As was the

case there, the entire views can be generated using the attack of Lemma 6.8. There
are slight differences in the internal variables used; namely, each iteration generates
two ciphertexts, not one. Still, as was the case there, we can use (key t, Ct) (which
are public) to generate the view from all iterations up to t. We use piecemeal leakage
from Rt (and the public (key t, Ct)) to generate the leakage from subsequent iterations
(see Proposition 6.13).

Proof of Lemma 6.4. The proof is almost identical to that of Lemma 6.2. The only
difference is that here there are three key-ciphertext pairs that Sim cannot generate
explicitly (instead of just one pair). As in the proof of Lemma 6.2, the simulator can
explicitly generate all other key-ciphertext pairs and the ciphertext matrices in the
bank in all generations. Leakage from the ith, jth, and kth generations can then be
computed using bounded-length multisource leakage from (key i, keyj , keyk) and from
(�ci,�cj ,�ck).

The simulator Sim has�b−(i,j,k) and multisource leakage access to (key i, keyj , keyk),

(�ci,�cj ,�ck) (with underlying plaintext bits �b[i, j, k]) and wants to generate the adver-
sary’s view in the leakage attack. To do this, Sim chooses uniformly random matrix
Ct of LROTP ciphertexts for each of the T generations (note that these matrices are
independent of the underlying plaintexts in the simulated generations!). Sim also
chooses uniformly random LROTP keys (key t, key

′
t) for each of the T generations ex-

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1521

cept i, j, and k. Sim also chooses uniformly random output ciphertexts (�ct,�c
′
t) with

underlying plaintext bit �b[t] for all generations except i, j, and k.
As for the remaining three iterations (the “target iterations”), for each h ∈

{i, j, k}, the simulator sets (keyh,�ch) to be equal to the key-ciphertext pair it has
leakage access to and can compute leakage on the key and the ciphertext. It also uses
key-ciphertext refresh with correlation values to generate (key ′h,�c′h) with the same
underlying plaintext. The important property is that leakage from key ′h and from �c′h
can be computed using leakage from keyh or from �c′h (respectively) and the (“public”)
correlation values.

By construction, the joint distribution of ciphertext banks, keys, and ciphertexts
created by the simulator is identical to their joint distribution in D. Now Sim simu-
lates the sequence of generations with these values. The only issues are (i) simulating
the leakage from target iterations i, j, and k, where Sim does not know the explicit
values of keys or ciphertexts, and (ii) simulating the leakage from the key refresh in
the iterations before the target ones, where Sim does not know the “target” key. This
leakage is simulated using multisource leakage access to the keys and ciphertexts as
follows.

For iteration h ∈ {i, j, k}, leakage from the generation of �ch is a function of
(�ch, Ch), where Ch is explicitly known to Sim. Thus, this can be simulated using
(bounded-length) leakage from �ch only: the leakage function chooses a random linear
combination �r of odd weight s.t. Ch×�r = �ch and then computes leakage as a function
of Ch and �r. Leakage from the key refresh is only a function of (keyh, Ch, key

′
h), where

key i+1 and Ci are explicitly known to Sim . Thus this (bounded-length) leakage can
be simulated using (bounded-length) leakage from key i only. Finally, refreshing the
ciphertexts in the bank is only a function of Ci and Ci+1, which are explicitly known
to Sim. Similarly, we can simulate the generation of key ′h,�c

′
h using leakage from

keyh,�ch and the known correlation values. We conclude that the leakage from each
target iteration h can be computed via separate bounded-length leakage from key i

and from �ci.
Similarly, for the iteration (h − 1) that precedes a target iteration h, leakage

from the key refresh step can be simulated as a bounded-length function of keyh only
(since all variables, including the (h− 1)st output ciphertext, are explicitly known to
Sim).

6.4. Piecemeal matrix operations: Security and proofs. In this section
we prove security properties of our piecemeal matrix operations, culminating with
proofs of Lemmas 6.7 and 6.8, which were stated above and used in the proofs of the
ciphertext bank’s security.

6.4.1. Piecemeal leakage resilience: One piece. We begin by showing that,
for a uniformly random key ∈ {0, 1}κ and a matrix M , given separate leakage from
key and from a single piece of the matrix, the following two cases induce statistically
close distributions. In the first case, the matrix M is uniformly random with columns
in the kernel of key . In the second case, M is a uniformly random matrix of rank κ−1
(independent of key). By a “single piece” of M we mean any (adversarially chosen)
collection of � linear combinations of vectors from M , where here we take � = 0.1κ.
This result, stated in Lemma 6.16, is a warmup for the results in later sections.

Lemma 6.16 (matrices are resilient to piecemeal leakage with one piece). Take
κ,m ∈ N, where m ≥ κ. Fix � = 0.1κ and λ = 0.05κ. Let Lin ∈ {0, 1}m×� be any
collection of coefficients for � linear combinations, and let A be any piecemeal leakage

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1522 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

adversary. Take Real and Simulated to be the following two distributions:

Real =
(
key ,Aλ

κ,�,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key) ,

Simulated =
(
key ,Aλ

κ,�,m,Lin(key ,M)
)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1 .

Then Δ(Real , Simulated) ≤ 2m · 2−0.2κ.
Remark 6.17. We note that, without any leakage access to key (i.e., given only

leakage from the chosen piece of M), a qualitatively similar result to Lemma 6.16 can
be derived from a lemma of Brakerski et al. [BKKV10] on the leakage resilience of
random linear subspaces. Their work focused on the more challenging setting where
the leakage operates on vectors that are drawn from a low-dimensional subspace (e.g.,
constant dimension).

Proof of Lemma 6.16. The proof is by a hybrid argument over the matrix columns.
For i ∈ {0, . . . ,m}, let Hi be the ith hybrid, where the view is as above but using a
matrix M drawn s.t. the first i columns of Mi are uniformly random in the kernel of
key , and the last m− i columns are uniformly random s.t. rank(M) = κ−1. We show
that for all i, Δ(Hi,Hi+1) ≤ 2 · 2−0.2κ. The lemma follows because H0 = Simulated
and Hm = Real .

We show that the hybrids are close by giving a reduction from the task of pre-
dicting the inner product of two vectors under multisource leakage to the task of
distinguishing Hi and Hi+1. Since the inner product cannot be predicted under mul-
tisource leakage (by Lemma 4.7), we conclude that the hybrids are statistically close.

To set up the reduction, first fix i. Draw a uniformly random matrix M ∈
{0, 1}κ×m of rank κ − 1. Let �v be the (i + 1)st column of M . Let M−(i+1) be the
matrix M with the (i + 1)st column set to 0. Now draw key ∈ {0, 1}κ s.t key is
orthogonal to the first i columns in M−(i+1).

We show a reduction from predicting the inner product 〈key , �v〉 given multisource
leakage and (M−(i+1) ×Lin) to distinguishing Hi and Hi+1. This is done by running
A(key ,M) on key and on the matrix M drawn above. The reduction computes A’s
(multisource) leakage on key using multisource leakage from key . A’s (multisource)
leakage from M ×Lin is computed using leakage from �v (since Lin and M−(i+1)×Lin
are “public”). Note now that the joint distribution of (key ,M) is exactly as in Hi.
If, however, we condition on the inner product of key and �v being 0, we get that the
joint distribution of (key ,M) is exactly as in Hi+1. Thus, if A has advantage δ in
distinguishing Hi and Hi+1, then the reduction has advantage δ in distinguishing the
case that the inner product of key and �v is 0 from the case that there is no restriction
on the inner product.

Now observe that, given (M−(i+1) × Lin), the vector key is a random variable
with min-entropy at least κ − � ≥ 0.9κ. This is because key is uniformly random
under the restriction that it is in the kernel of the first i columns of M . The matrix
piece (M−(i+1)×Lin) contains only � = 0.1κ vectors, and so it cannot give more than
� bits of information on key .

Now consider the distribution of �v given (M−(i+1)×Lin). �v is a uniformly random
vector in a subspace of rank κ − 1 that includes the � columns of (M−(i+1) × Lin).

Thus, with probability 2�/2κ−1, �v is spanned by the columns of (M−(i+1)×Lin), and
otherwise it is uniformly random outside of the span of the columns of (M−(i+1)×Lin).
We conclude that the distribution of �v given (M−(i+1) × Lin) is O(2�−κ)-close to
uniformly random.

The reduction uses λ = 0.05κ bits of multisource leakage, and so by Lemma 4.8

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1523

with all but 2−0.2κ probability, even given (M−(i+1) × Lin) and the leakage, key and
�v are still independent random sources and have min entropy at least 0.7κ (or rather,
�v is statistically close to uniformly random). When this is the case, by Lemma 4.7 we
know that, even given key , the inner product of key and �v is 2−0.2κ-close to uniform.
We conclude that δ ≤ 2 · 2−0.2κ.

One remaining subtlety is that the lemma doesn’t consider giving (M−(i+1) ×
Lin) in its entirety but rather only the leakage (a function of (M−(i+1) × Lin) and
of key and �v separately). The joint distribution of key and �v given the leakage,
however, is a convex combination of independent high-entropy subdistributions (one
for each possible value of (M−(i+1) × Lin)). By the above, the leakage on each pair
of subdistributions is close, and the lemma follows.

6.4.2. Independence up to orthogonality. To prove leakage resilience to a
piecemeal leakage attack that targets many pieces, we introduce and use the notion
of “independence up to orthogonality.”

Definition 6.18 (independent up to orthogonality (IuO) distribution on vec-
tors). Let D be a distribution over pairs (�x, �y) ∈ {0, 1}κ × {0, 1}κ. We say that D is
IuO w.r.t. �v ∈ {0, 1}κ and b ∈ {0, 1} if there exist distributions X and Y, both over
{0, 1}κ, s.t. D is obtained by sampling �x ∼ X and then sampling �y ∼ Y, conditioned
on 〈�x+�v, �y〉 = b. We call X and Y the underlying distributions of D and denote this
by D = X ⊥(�v,b) Y.

When �v = �0 we will sometimes simply say that D is IuO with orthogonality b and
denote this by D = X ⊥b Y.

We also consider the independently drawn variant of D which is obtained by
independently sampling �x ∼ X and �y ∼ Y . We denote the independently drawn
variant by D× or X × Y.

Definition 6.19 (independent up to orthogonality (IuO) distribution on matri-
ces). Generalizing Definition 6.18, for an integer m ≥ 1, let D be a distribution over
pairs (X,Y) ∈ {0, 1}m×κ × {0, 1}m×κ. We say that D is IuO w.r.t. V ∈ {0, 1}m×κ
and �b ∈ {0, 1}m if there exist distributions X and Y, both over {0, 1}m×κ, s.t. D is
obtained by sampling X ∼ X and then (independently) sampling Y ∼ Y conditioned

on for all i ∈ [m], 〈X [i] + V [i], Y [i]〉 = �b[i]. As in Definition 6.18, we call X and Y
the underlying distributions of D and denote this by D = X ⊥(V,�b) Y.

When V is the all-zeros matrix, we will sometimes simply say that D is IuO with
orthogonality �b and denote this by D = X ⊥�b Y.

We also consider the independently drawn variant of D which is obtained by
independently sampling X ∼ X and Y ∼ Y . We denote the independently drawn
variant by D× or X × Y.

Finally, for a distribution D over pairs (�x, Y) ∈ {0, 1}κ × {0, 1}mκ, we say that
D is IuO (with parameters as above) if D′, in which we replace �x with a matrix X
whose columns are m (identical) copies of �x, is IuO (as above). We emphasize that
the copies of �x are all identical and completely dependent.

One important property of IuO distributions, which we will use repeatedly, is that
they are indistinguishable from their independently drawn variant under multisource
leakage (as long as they have sufficient entropy).

Lemma 6.20. Let D be an IuO distribution over pairs (X,Y) ∈ SX×SY , with un-
derlying distributions X and Y. Suppose that SX = {0, 1}mX·κ and SY = {0, 1}mY ·κ

for mX and mY s.t. 1 ≤ mX ≤ mY ≤ 10. Suppose also that H∞(D) ≥ (mX +mY −
0.3) · κ. Then for any (computationally unbounded) multisource leakage adversary A

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1524 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

and leakage bound λ ≤ 0.1κ, taking the two distributions

Real =
(Aλ[X,Y]

)
(X,Y)∼D ,

Simulated =
(Aλ[X,Y]

)
(X,Y)∼D× ,

it is the case that Δ(Real , Simulated) = exp(−Ω(κ)).
Moreover, for any w in the support of Real, we can derive from X a conditional

underlying distribution X (w) and from Y a conditional underlying distribution Y(w).
In particular, note that D is not needed for computing these conditional underlying
distributions. Taking D(w) = (D|w) to be the conditional distribution of D, given
leakage w, then D(w) is IuO, with underlying distributions X (w) and Y(w).

As noted above, there are different proofs for this lemma. It follows directly from
Lemmas 5.3 and 5.4. Alternatively, it follows from Lemma 8 of [DDV10].

Before proceeding, consider a simple application to multisource leakage from two
strings. In Real the strings are uniformly random with inner product 0, and in
Simulated they are independently uniformly random. By Lemma 6.20, the leakage
in both cases is statistically close. The distribution of the strings in Real , given the
leakage, is IuO, and each of its underlying distributions can be computed (separately)
given the leakage (and that the original underlying distributions were uniformly ran-
dom).

6.4.3. Piecemeal leakage resilience: Many pieces. In this section, we show
our main technical result regarding piecemeal matrix leakage. We show that random
matrices are resilient to piecemeal leakage on multiple pieces of the matrix (operating
separately on each piece). In particular, the leakage is statistically close in the case
where the matrix is one whose columns are all orthogonal to key and in the case
where the matrix is uniformly random. Moreover, this remains true even if key is
later exposed in its entirety.

Lemma 6.21 (matrices are resilient to piecemeal leakage with many pieces).

Take a, κ,m ∈ N, where m ≥ κ. Fix � = 0.1κ, and let λ = 0.05κ/a. Let �Lin =
(Lin1, . . . ,Lina) be any sequence of collections of coefficients for linear combinations,
where for each i, Lin i ∈ {0, 1}m×� has full rank �. Let A be any piecemeal leakage
adversary. Take Real and Simulated to be the following two distributions:

Real =
(
key ,Aλ

κ,�,m, �Lin
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key)

,

Simulated =
(
key ,Aλ

κ,�,m, �Lin
(key ,M)

)
key∈R{0,1}κ,M∈R{0,1}κ×m:rank(M)=κ−1

.

Then Δ(Real , Simulated) ≤ 5a2 · 2−0.04κ/a.
Proof. For i ∈ {0, . . . , a}, we denote by Pi = M × Lini the matrix “piece”

being leaked on/attacked in the ith part of the attack. We use wi to denote the
leakage accumulated by A up to and including the ith attack. We will consider Vi the
conditional distribution on (key,M), drawn as in Real , given the leakage wi. Namely,
in V0 we have key drawn uniformly at random and M is random with columns in
kernel(key). Note that the random variables key and M , when drawn by Vi, are not
independent. In particular, key and the columns of M are orthogonal. Let Ki and
Mi be the marginal distributions of Vi on key and on M .

Hybrids. We will prove Lemma 6.21 using a hybrid argument. For i ∈ {0, . . . , a},
we define a hybrid distribution Hi. Each hybrid’s output domain will be key ∈ {0, 1}κ
and leakage values computed by A(key ,M).

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1525

For each i, we define Hi by drawing (key ,M) ∼ V0 and simulating the piecemeal
leakage attack A(key ,M). We always use key for computing the key leakage in the
attack. For leakage on the jth matrix piece, however, we use Pj ’s drawn differently
for each Hi:

• For j ∈ {1, . . . , i}, we define Pj = (M× Linj).
• For j ∈ {i + 1, . . . , a}, redraw Mj ∼ Mj−1. In other words, we redraw the
matrix from the current marginal distribution of Vj−1 on M , independently
of key . Define Pj = (Mj × Linj).

Clearly, Ha = Real because in Ha we never compute leakage on a redrawn matrix
Mj . We will show that H0 = Simulated ; see Claim 6.22. Note that this is nontrivial
because in H0 the matrix M is continually redrawn from Mj (independently of key),
whereas in Simulated the matrix M is never redrawn. Nonetheless, Claim 6.22 shows
that, because the leakage operates separately on key and onM , these two distributions
are identical.

Claim 6.22. H0 = Simulated.
Proof of Claim 6.22. Fix leakage wj for the first j attacks on pieces of M . In the

distribution H0, for the (j + 1)st matrix piece, we use Pj+1 = Mj+1 × Linj+1, where
Mj+1 is redrawn from the marginal distributionMj .

In the distribution Simulated , on the other hand, we use Pj+1 = M × Linj+1,
where M is drawn fromM′j , the distribution of uniformly random M ’s of rank κ− 1
(independent of key), given that the multisource leakage so far was wj .

Other than this difference, the distributions are identical. Thus, it suffices to
show that, for every j and every fixed leakage wj in the first j attacks, we have that
Mj =M′j .

The leakage in the first j attacks operates separately on key and on M . Thus, we
know that conditioning the joint distribution V0 on wj is equivalent to conditioning
V0 on (key ,M) falling in a product set. Let Skey ⊆ {0, 1}κ and SM ⊆ {0, 1}κ×2κ
be the sets s.t. for all (key ,M) ∈ Skey × SM , the leakage on the first j pieces in a
piecemeal attack on (key ,M) equals wj . Now we know that Mj is exactly equal to
M0, conditioned on M falling in the set SM .

Similarly, in Simulated the distribution M′j is the uniform distribution on rank
κ− 1 matrices, conditioned on the leakage wj , i.e., on M falling in the set SM . Since
M0 is uniform on rank κ− 1 matrices, for any wj we get thatMj =M′j . The claim
follows.

To complete the proof of Lemma 6.21, we will show that Δ(Hi,Hi+1) ≤ 4m ·
2−0.04κ/a. The lemma follows by a hybrid argument. For this, consider the joint
distribution of key and of the leakage wi+1 computed on the first (i + 1) pieces. We
will show that the joint distribution is statistically close in both hybrids. This suffices
to show that the hybrids themselves are statistically close because, for both hybrids,
the leakage on pieces ((i+2), . . . , a) and the remaining leakage on key can be computed
as a function of (key , wi+1) (the same function for both hybrids).

In both Hi,Hi+1, leakage on the first i pieces is computed in exactly the same
way. The difference is in leakage on the (i + 1)st piece. Fixing the leakage wi on the
first i pieces, in Hi+1 we have Pi+1 computed using dependent (key ,M) ∼ Vi. In
Hi we use independent key ∼ Ki,M ∼ Mi. These two different distributions yield
different leakage w on the (i+ 1)st piece.

Piecemeal leakage from IuO distributions. key andM drawn (jointly) by Vi
are not independent. In general, for a dependant distribution Vi on key and M with
marginal distributions Ki andMi, leakage on (key ,M) ∼ Vi could look very different

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1526 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

from leakage on (key ∼ Ki,M ∼Mi). We will show, however, that piecemeal leakage
resilience does hold in a special case where the joint distribution Vi is independent
up to orthogonality (IuO; see Definition 6.19). We will also show it holds when Vi is
statistically close to IuO, as defined below.

Definition 6.23 (key-matrix α-independence up to orthogonality). Let V be a
distribution on pairs (key ,M), where key ∈ {0, 1}κ,M ∈ {0, 1}κ×2κ, and M is always
of rank κ − 1. We say that V is α-independent up to orthogonality if there exists
distribution V ′ that is independent up to orthogonality and Δ(V ,V ′) ≤ α.

We will show that piecemeal leakage on an IuO distribution is statistically close
to piecemeal leakage when key and M are sampled from the independently drawn
variant; see Claim 6.24. We also show that Vi is (w.h.p. over wi) an IoU distribution;
see Claim 6.25. Statistical closeness of the hybrids Hi and Hi+1 follows.

Claim 6.24. Take a, κ,m, �, λ as in Lemma 6.21. Let V be any distribution over
pairs (key ,M), where key ∈ {0, 1}κ,M ∈ {0, 1}κ×m, and M has rank κ− 1. Suppose
that V is IuO, with underlying distributions K and M. Suppose further that V has
min-entropy at least (κ+ (κ− 1) · 2κ− 0.15κ).

Let Lin ∈ {0, 1}m×� be a collection of coefficients for linear combinations, specified
by a matrix of rank �. Let A be any piecemeal leakage adversary. Take D and F to
be the following distributions:

D = (key , w)(key,M)∼V,w←A(key,M),

F = (key , w)key∼K,M∼M,w←A(key,M).

Take δ = (4� · 2−0.05κ). Then Δ(D,F) ≤ 2δ. Moreover, with all but δ probability over
w ∼ D, we have that Δ((D|A(key ,M) = w), (F |A(key ,M) = w)) ≤ δ.

The proof of Claim 6.24 is below.
Claim 6.25. Take a, κ, �, λ,V , L,A as in Claim 6.24. Suppose here that V (i) has

min-entropy at least (κ+ (κ− 1) · 2κ− 0.15κ) (as in Claim 6.24), and (ii) is α-close
to independence up to orthogonality (see Definition 6.23). Define the distribution

V(w) = (key ,M)(key,M)∼V:A(key,M)=w,

and take δ = (4� · 2−0.05κ). For any 0 < β < 1, with all but (β + δ) probability over
w ← A(key ,M)(key,M)∼V it is the case that V(w) is ((α/β)+δ)-close to independence
up to orthogonality.

The proof of Claim 6.25 is below. We now complete the proof of Lemma 6.21:
1. With all but 2−0.05κ probability over wi, for all j ≤ i simultaneously, the

min-entropy of Vj is at least κ+ (κ− 1) · 2κ− 0.15κ. This is by Lemma 4.8
because the min-entropy of V0 is κ+ (κ− 1) · 2κ, and the amount of leakage
in the first i ≤ a attacks (leakage from both key and M) is less than 0.1κ.

2. Take δ = (4� · 2−0.05κ), β = 2−0.04κ/a. We show the following by induction
for j ≤ i:
With all but (2−0.05κ + j · (δ + β)) probability over wi, we have that Vj is
(2δ/βj)-close to independence up to orthogonality (and also the min-entropy
bound of item 1 holds). The induction basis follows because V0 is perfectly
independent up to orthogonality. The induction step follows from Claim 6.25
(and the min-entropy bound in item 1).

Finally, we use Claim 6.24 to conclude that with all but (2−0.05κ + i · (δ + β))
probability over wi, the hybrids Hi and Hi+1 are (2δ/βi + 2δ)-statistically close. In
particular, this implies that

Δ(Hi,Hi+1) ≤ (2−0.05κ + i · (δ + β)) + (2δ/βi) + 2δ) ≤ 5a · 2−0.04κ/a,

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1527

where the second inequality assumes i · β is the largest term in the sum (and using
i ≤ a).

Proof of Claim 6.24. The proof is by a hybrid argument. We denote P = M ×L.
For i ∈ [a+ 1], take the ith hybrid Hi to be

Hi = (key , w)M∼M,P←M×L,key∼(K|P [1],...,P [i]),w←A(key,P);

i.e., the key is drawn from a conditional distribution on K, conditioning on the first i
columns of P . We get that H0 = F because key is drawn without conditioning on any
columns (i.e., independently of M). Also H� = D because key is redrawn conditioned
on all of P , which is the same as just drawing (key ,M) ∼ V and taking P = M × L.

For each pair of hybrids, we bound Δ(Hi,Hi+1). To do so, consider the following
experiment: draw (P [1], . . . , P [i]) ∼ M (as in both Hi and Hi+1). Fixing these
draws, in Hi the distribution of P [i + 1] is a random sample from Pi = (P [i +
1]M∼M|P [1],...,P [i]). Similarly, in Hi we have that key is a random sample from Ki =
(K|P [1], . . . , P [i]). In particular, note that key is independent of P [i+ 1].

We now examine H+
i , obtained from Hi by also including the inner product of

key and P [i+ 1]. We can also consider HR
i , obtained from Hi by adding a uniformly

random bit:

H+
i = (key, 〈key, P [i+ 1]〉, w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [�])∼(M|P [1],...,P [i+1])),w←A(key,P),

HR
i = (key, r , w)key∼Ki,P [i+1]∼Pi,(P [i+2],...,P [�])∼(M|P [1],...,P [i+1])),w←A(key,P),r∈R{0,1}.

We will show that Δ(Hi,Hi+1) ≤ 2Δ(H+
i ,HR

i). To show this, consider nowHi+1.
Again, P [i+1] is an independent sample from Pi (as in Hi). Here, however, we have
that key depends on P [i+1] and is a sample fromKi+1 = (K|w,P [1], . . . , P [i],P[i+ 1]).
Since V is independent up to orthogonality, we have

Ki+1 = (key , P [1], . . . , P [i], P [i+ 1])(key,M)∼V,P←M×L
= (key , P [1], . . . , P [i], 〈key ,P[i+ 1]〉 = 0)(key,M)∼V,P←M×L.

Given (key , P [1], . . . , P [i + 1]), the marginal distributions of (P [i + 2], . . . , P [�]) and
of w in Hi+1 are identical to Hi. Thus, the only difference between Hi and Hi+1 is
that in Hi+1 we add an extra condition on key to be in the kernel of P [i+ 1].

Re-examiningH+
i , by definition,Hi is the marginal distribution ofH+

i on (key , w).
We now conclude also that Hi+1 is the marginal distribution on (key , w) in H+

i con-
ditioned on 〈key , P [i+ 1]〉 = 0. Thus Δ(Hi,Hi+1) ≤ 2Δ(H+

i ,HR
i).

It remains to bound Δ(H+
i ,HR

i). We know that in both these distributions, given
(P [1], . . . , P [i]) (without w), we have that key and P [i+ 1] are drawn independently
and the joint distribution of (key , P [i + 1]) has entropy at least (1.85κ− i) ≥ 1.75κ.
This is simply by the min-entropy of V . By Lemma 4.8, with all but 2−0.05κ probability
over the choice of w, the min-entropy of (key , P [i+1]) also given w (of length at most
0.1κ) is at least 1.6κ.

We conclude, by Lemma 4.7, that with all but 2−0.05κ probability over w ∼ Hi,
it is the case that with all but 2−0.05κ probability over key conditioned on w, the
inner product of key and P [i + 1] (given (key , w)) is 2−0.05κ-close to uniform. In
particular, when this is the case, with all but 2·2−0.05κ probability over (key , w) ∼ Hi,
we have that the probabilities of (key , w) by Hi and by Hi+1 differ by at most an
exp(1.5 · 2−0.05κ) multiplicative factor. The claim follows.

Proof of Claim 6.25. V is α-close to IuO. Let V ′ be an IuO distribution s.t.
Δ(V ,V ′) ≤ α. Let K′ and M′ be the marginal distributions of V ′ on key and M

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1528 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

(respectively). Now take

Z ′ � (key ,M,w)(key,M)∼V′, w←A(key,M),

= (key ,M, w)(key,M′)∼V′, w←A(key,M ′),M∼(M′|key,A(key,M)=w),

Z ′′ � (key ,M, w)key∼K′,M′∼M′, w←A(key,M ′),M∼(M′|key,A(key,M)=w).

Let Z ′(w) and Z ′′(w) be the marginal distributions of Z ′ and Z ′′ (respectively)
on (key ,M), conditioned on A(key ,M) = w. Note that Z ′(w) is also the conditional
distribution of V ′ (conditioned on w). By Claim 6.24, we know that with all but δ
probability over w ∼ Z ′, we have that Δ(Z ′(w),Z ′′(w)) ≤ δ. Claim 6.24 shows this
is true for the marginal distributions on (key , w), but in Z ′ and Z ′′, the matrix M is
just a probabilistic function of (key , w), and so the bound on the statistical distance
holds also when M is added to the output.

We claim that (for any w) the distribution Z ′′(w) is (perfectly) independent up to
orthogonality. This is because in Z ′′, the leakage w is computed as multisource leakage
on independently drawn key and M . Thus, conditioning Z ′′ on w is conditioning Z ′′
on (key ,M) falling in a product set Skey × SM . We know that Z ′′ is (perfectly)
independent up to orthogonality, and so conditioning Z ′′ on a product set Skey ×SM

will also yield a distribution that is independent up to orthogonality.
We conclude that, with all but δ probability over w ∼ Z ′, we have that

Δ(Z ′(w),Z ′′(w)) ≤ δ

and Z ′′(w) is independent up to orthogonality. Let Wbad be the set of “bad” w’s for
which Δ(Z ′(w),Z ′′(w)) > δ. Since Δ(V ,V ′) ≤ α, we know that

Pr
w∼V

[w ∈Wbad] ≤ α+ δ,

Pr
w∼V

[Δ(V(w),V ′(w)) ≥ (α/β)] ≤ β,

where the second equation follows by Markov’s inequality. We conclude (by a union
bound and since V ′(w) = Z ′(w)) that with all but (α + β + δ) probability over
w ∼ V , we have that V(w) is ((α/β) + δ)-close to Z ′′(w) and to independence up to
orthogonality.

6.4.4. Piecemeal leakage resilience: Jointly with a vector. In this section,
we show further security properties of random matrices under piecemeal leakage. We
focus on piecemeal leakage that operates jointly on (each piece of) a matrix and
a vector (and separately on key). The matrix will always have columns that are
(random) in the kernel of key . We show that the leakage is statistically close in the
cases where the vector is and is not in the kernel. Moreover, this statistical closeness
is strong and holds even if the matrix is later released in its entirety. The proof
is based on Lemma 6.21 (piecemeal leakage resilience of random matrices) and on a
“pairwise independence” property under piecemeal leakage, stated separately in Claim
6.28 below.

Lemma 6.26 (strong resilience to matrix-vector piecemeal leakage). Take a, κ,m ∈
N, where m ≥ κ. Fix � = 0.1κ, and let λ = 0.01κ/a2. Let �Lin = (Lin1, . . . ,Lina)
be any sequence of collections of coefficients for linear combinations, where for each
i, Lin i ∈ {0, 1}m×� has full rank �. Let A be any piecemeal leakage adversary. Take
Real and Simulated to be the following two distributions:

Real =
(
key,M,Aλ

κ,�,m, �Lin
(key, (M,�v))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M[i]∈kernel(key),�v∈Rkernel(key)

,

Simulated =
(
key,M,Aλ

κ,�,m, �Lin
(key, (M,�v))

)
key∈R{0,1}κ,M∈R{0,1}κ×m:∀i,M[i]∈kernel(key),�v∈Rkernel(key)

.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1529

Then Δ(Real , Simulated) ≤ 3a · 2−0.01κ/a.
Before proving Lemma 6.26, we state a useful corollary. In a nutshell, Corollary

6.27 states that a piecemeal leakage attack on a matrix M cannot distinguish between
a uniformly random matrix and one whose columns are orthogonal to a vector �x. This
is true even when the leakage is combined with the vector �x.

Corollary 6.27. Take a, κ,m ∈ N, where m ≥ κ. Fix � = 0.1κ, and let
λ = 0.01κ/a2. Let �Lin = (Lin1, . . . ,Lina) be any sequence of collections of coefficients
for linear combinations, where for each i, Lini ∈ {0, 1}m×� has full rank �. Let A
be any piecemeal leakage adversary. Take Real and Simulated to be the following two
distributions:

Real =
(
key ,Aλ

κ,�,m, �Lin
(key , B)

)
key∈R{0,1}κ,B∈R{0,1}κ×m:∀i,B[i]∈kernel(�x)

,

Simulated =
(
key ,Aλ

κ,�,m, �Lin
(key , B)

)
key∈R{0,1}κ,B∈R{0,1}κ×m

.

Then Δ(Real , Simulated) ≤ 3a · 2−0.01κ/a.
Proof. The proof follows from Lemma 6.26. Taking key ,M,�v as in that lemma,

we reduce to the security game of Corollary 6.27 by using the same key , choosing a
uniformly random vector �x, and taking B ←M +(�xT ×�v) (where �xT is �x transposed,
a column vector). When �v is in the kernel of key , we get that B’s columns are
uniformly distributed in the kernel, but when �v is not in the kernel, B’s columns are
uniformly distributed. Now, by Lemma 6.26, we get that piecemeal leakage from B
is indistinguishable in these two cases, even in conjunction with key (but note that
here we cannot release B, as its distribution depends on �v and differs in the two
cases!).

Proof of Lemma 6.26. We define the “midpoint” distribution:

D = 1/2 · Real + 1/2 · Simulated = (key ,M,w = A(key , (M,�v)))key,M,�v∈R{0,1}κ .

For fixed (key ,M,w), we consider their bias:

bias(key ,M,w) � Real [key ,M,w]− Simulated [key ,M,w]

D[key ,M,w]
.

And note that (by definition)

Δ(Real , Simulated) = E(key,M,w)∼D[|bias(key ,M,w)|]/2.(3)

Thus we focus on bounding E(key,M,w)∼H [|bias(key ,M,w)|]. We will use a “pairwise
independence” property of matrices under piecemeal leakage.

Claim 6.28 (pairwise independence under piecemeal leakage). Take a, κ,m, �, λ,
�Lin,A as in Lemma 6.26. Let F and F ′ be the following distributions. In both F and
F ′, take key ∈R {0, 1}κ and a matrix M ∈R {0, 1}κ×m s.t. all of M ’s columns are in
the kernel of key. Choose �v1, �v2 ∈r {0, 1}κ s.t. A(key , (M,�v1) = A(key , (M,�v2)).

F = (�v1, �v2, b1, b2,A(key , (M,�v1)))key,M,�v1,�v2,b1=〈key,ṽ1〉,b2=〈key,ṽ2〉,
F ′ = (�v1, �v2, b1, b2,A(key , (M,�v1)))key,M,�v1,�v2,b1,b2∈R{0,1}.

Then Δ(F ,F ′) ≤ δ = 5a2 · 2−0.03κ/a.
The proof of Claim 6.28 is deferred and appears below.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1530 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

We will show that if E(key,M,w)∼H [|bias(key ,M,w)|] is too high, then we can
predict the inner products of �v1, �v2 as above with key and distinguish F and F ′ (a
contradiction to Claim 6.28). Intuitively, this is because high expected bias indicates
that leakage values tend to be correlated either with �v’s whose inner product with key
is 0 or with �v’s whose inner product is 1. Thus, when we draw two independent �v1, �v2
that produce the same leakage values, they will tend to have the same inner product
with key . This is in contradiction to Claim 6.28.

Formally, we consider a distinguisher DIS that gets (�v1, �v2, b1, b2, w) (where
(�v1, �v2, w) are distributed as in both F and F ′) and attempts to distinguish whether
b1, b2 ∈ {0, 1} are uniformly random (distribution F ′) or are the inner products of
�v1, �v2 with key (distribution F). The distinguisher DIS outputs 1 if b1 = b2 and
outputs 0 otherwise. By Claim 6.28, the advantage of (any distinguisher, and in
particular also of) DIS is bounded by δ = 6a2 · 2−0.03κ.

For distribution F ′, the bits b1, b2 are independent uniform bits, and so the prob-
ability that DIS outputs 1 is exactly 1/2. In distribution F , on the other hand,
if E(key,M,w)∼D[|bias(key ,M,w)|] is high, then DIS will output 1 with significantly
higher probability (this gives a bound on the expected magnitude of the bias).

To see this, fix (key ,M). For a possible leakage value w ∈ {0, 1}a·λ, denote by
pkey,M,w the probability of leakage w given key and M (for (key ,M,�v) ∼ D). Condi-
tioning D on (key ,M), the probability of identical leakage from uniformly random �v1
and �v2 is the “collision probability” cp(key ,M) �

∑
w∈{0,1}a·λ p2key,M,w. Conditioning

D on (key ,M) and identical leakage from �v1 and �v2, the probability that the leakage
is some specific value w is exactly p2key,M,w/cp(key ,M). Conditioning D on (key ,M)
and identical leakage w from �v1, �v2, the probability that the inner products of �v1 and
�v2 with key are equal and DIS outputs 1 is exactly 1/2+ 2|bias(key ,M,w)|2 (notice
that the advantage over 1/2 is always “in the same direction”). Since (by Claim 6.28)
the advantage of DIS is at most δ, we get that

δ ≥ Ekey,M [DIS’s advantage in outputting 1 given (key ,M)]

= Ekey,M

⎡
⎣ ∑
w∈{0,1}a·λ

(p2key,M,w/cp(key ,M)) · 2|bias(key ,M,w)|2
⎤
⎦ .

Now because cp(key ,M) ≥ 2−a·λ, we get that

Ekey,M

⎡
⎣ ∑
w∈{0,1}a·λ

p2key,M,w · 2|bias(key ,M,w)|2
⎤
⎦ ≤ 2a·λ · δ.(4)

We also have that

2Δ(Real , Simulated) = E(key,M,w)∼H [|bias(key ,M,w)|]

= Ekey,M

⎡
⎣ ∑
w∈{0,1}a·λ

pkey,M,w · |bias(key ,M,w)|
⎤
⎦

≤

√√√√√2a·λ · Ekey,M

⎡
⎣ ∑
w∈{0,1}a·λ

p2key,M,w · |bias(key ,M,w)|2
⎤
⎦,

where the last inequality is by Cauchy–Schwarz. Putting this together with (4), we

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1531

get

Δ(Real , Simulated) ≤ 2a·λ ·
√
δ < 3a · 2−0.01κ/a,

which completes the proof.
Proof of Claim 6.28. Consider the following distribution E , where key is uniformly

random, M is a uniformly random matrix with columns in key ’s kernel, and �v1, �v2 are
a uniformly random pair s.t. A(key , (M,�v1)) = A(key , (M,�v2)):

E = (key , �v1, �v2,A(key , (M, �v1)))key,M∈R{0,1}κ×m:∀i,M [i]∈kernel(key),�v1,�v2 .

Consider also the distribution H that uses a uniformly random matrix M of rank
κ− 1:

H = (key , �v1, �v2,A(key , (M, �v1)))key,M∈R{0,1}κ×m:rank(M)=κ−1,�v1,�v2 .

We will show the following:
1. Δ(E ,H) < 5a2 · 2−0.03κ/a; this will follow by piecemeal leakage resilience

(Lemma 6.21).
2. In H, the advantage in distinguishing (〈key , �v1〉, 〈key , �v2〉) from uniformly

random unbiased bits is bounded by 2−0.1κ+3. In other words, in H the inner
products of �v1 and �v2 with key are (close to) pairwise independent.

The claim will follow from the two items above (we assume 2−0.1κ+3 ≤ a2 ·2−0.03κ/a).
Item 1; E and H are close. Let A be an adversary for which we get ε =

Δ(E ,H). Given A, we show a piecemeal leakage attack A′ on (key ,M) à la Lemma
6.21. We show that if A has advantage ε in distinguishing E and H, then A′ has
advantage ε′ (where ε′ ≥ ε · 2−a·λ) in distinguishing whether M is in key ’s kernel or
M is independent of key . By Lemma 6.21, we conclude a bound on ε′ and (through
it) on ε.

The piecemeal leakage attack A′ proceeds as follows. The adversary chooses two
uniformly random vectors �v1, �v2 ∈R {0, 1}κ. It then computes piecemeal leakage
A(key , (M,�v1)) and also computes whether A(key , (M,�v1)) = A(key , (M,�v2)) (for
the randomly chosen �v1, �v2). This requires (λ+1) bits of piecemeal leakage from key
and (each piece of) M (it takes λ bits to determine the leakage from each piece �v1
and an extra bit to tell whether the leakage on �v2 is identical). If the leakage from �v1
and �v2 is identical, we output

A′(key ,M) = (�v1, �v2,A(key , (M,�v1)).

Otherwise, we output A′(key ,M) =⊥. See now, conditioning on A(key , (M,�v1)) =
A(key , (M,�v2)), that we have that the output of A′ on M with columns in key ’s
kernel (together with key) is exactly the distribution E . The output of A′ on M that
is independent of key (conditioned on identical leakage from �v1, �v2 and together with
key) is distributed exactly as H. In both cases, when the leakage from �v1, �v2 is not
identical, the output is simply ⊥. We conclude that the statistical distance ε′ between
the output of A′ in both cases (M in the kernel and independent M) is at least ε
multiplied by the probability that the leakage on �v1 and �v2 is identical (say, w.l.o.g.
we refer to the “leakage collision” probability for M in the kernel).

For any fixed (key ,M), the probability that we get identical leakage on �v1 and
�v2 chosen uniformly at random is at least the inverse of the total amount of possible

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1532 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

leakage values, i.e., at least 2−a·λ. This gives a lower bound on ε′ as a function of ε.
By Lemma 6.21 we also have an upper bound on ε′. Putting these together,

ε · 2−a·λ ≤ ε′ ≤ 5a2 · 2−0.04κ,

we conclude that

Δ(E ,H) ≤ 5a2 · 2−0.04κ · 2a·λ = 5a2 · 2−0.03κ.

Item 2; H is pairwise independent. Consider the piecemeal leakage in H as
a multisource leakage attack on key and on (�v1, �v2) (chosen conditioned on �v1 and �v2
yielding the same leakage). For any fixed M , the amount of leakage from key in the
attack is bounded by 0.01κ/a. In particular, by Lemma 4.8 we have that, given the
leakage, with all but 2−0.1κ probability, key is an independent sample in a source with
min-entropy at least 0.85κ.

We now consider (�v1, �v2). We claim that (for any fixed (key ,M)) with all but
2−0.1κ probability over the choice of �v1, �v2 yielding the same leakage, the set of vectors
yielding the same leakage as �v1 and �v2 is of size at least 20.85κ. To see this, for a vector
�v, let S(�v) be the set of vectors that give the same leakage as �v. Let Sbad be the set
of all vectors �v for which S(�v) is of size less than 2−0.85κ. By Lemma 4.8 we get that

α = Pr
�v∈R{0,1}κ

[�v ∈ Sbad] ≤ 2−0.1κ.

The probability that �v1, �v2 is drawn s.t. their leakage is identical and both land
in Sbad is at most α2 divided by the total probability that the leakage from uniformly
random �v1, �v2 is identical (the “collision probability”). The total leakage is of bounded
length a · λ, so the collision probability is at least 2−a·λ. We conclude that

Pr
�v1,�v2∈R{0,1}κ:A(key,(M,�v1))=A(key,(M,�v2))

[�v1, �v2 ∈ Sbad] ≤ α2 · 2a·λ < 2−0.1κ.

We conclude that with all but 2 · 2−0.1κ probability, given the leakage, the ran-
dom variables key , �v1, �v2 are independent and each of min entropy at least 0.85κ. By
Lemma 4.7, we conclude that the joint distribution of inner products of �v1 and �v2
with key is at statical distance 2−0.1κ+3 from uniformly random (or pairwise indepen-
dent).

6.4.5. Piecemeal matrix multiplication: Security proofs.
Proof of Lemma 6.7. The claim follows from Lemma 6.26 (strong resilience to

matrix-vector piecemeal leakage). We use the random variables key ,M,�v from Lemma
6.26 to generate the views D or F , depending on whether the inner product of key
and �v is 0 or 1. We assume w.l.o.g. that the parity of �v is 0 and that the columns of
M all have parity 1 (we can always extend a given �v and M by a single coordinate to
guarantee that this is the case).

To reduce to the game of Lemma 6.7, we use the same key , and we pick a uniformly
random “public” �x ∈R {0, 1}m. Now take

A←M + (�x× �vT)

so that A is a function of M and �v only (together with the public �x). Observe that
if �v is in the kernel of key , then A is a uniformly random matrix whose columns are
in the kernel of key (as in D). If �v is not in the kernel of key , then A is a uniformly

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1533

random matrix whose columns have inner products �x with key (as in F). Finally, the
reduction chooses a uniformly random B s.t. its columns are in the kernel of �x. Now
piecemeal leakage as in Lemma 6.7 can be used to compute the leakage:

w ← (Aλ
κ,�,m,Lin(key , A),A′λ(w, �x,B)[key , C ← PiecemealMM (A,B)]

)
.

Given the above reduction, by Lemma 6.26 we conclude that the joint distri-
butions of (�x,B, key ,M,w) are statistically when they are drawn by D and by F .
Finally, observe that

C = A×B = (M + (�x× �vT))×B = M ×B

(we use here the fact that the columns of B are orthogonal to �x). We conclude that
the joint distributions of key , C, w are close when they are drawn by D and by F .

Proof of Lemma 6.8. The proof follows directly from Corollary 6.27, taking
B to be the matrix undergoing a piecemeal leakage attack, and because the leak-
age from piecemeal matrix-multiplication can be generated using piecemeal leakage
from B.

7. Safe computations. In this section we present the SafeXOR and SafeNAND
procedures; see section 2.2 for an overview. We begin in section 7.1 with the SafeXOR
procedure and its security, a warmup for the considerably more complex SafeNAND
procedure. SafeNAND and its security are in section 7.3. SafeNAND uses a leakage-
resilient permutation procedure, Permute, which is presented and proved secure in
section 7.2.

7.1. SafeXOR: Interface and security. In this section we present the proce-
dure for safely computing an XOR functionality. This will be used for secure imple-
mentation of duplication gates. The input is two key-ciphertext pairs, and the output
is the XOR of their underlying plaintexts. For security, we show that an adversary’s
view in a leakage attack on a SafeXOR computation (with freshly drawn LROTP keys
and ciphertexts as its input) can be simulated, given only the output bit of SafeXOR.
This is formalized in Lemma 7.1. The full procedure is in Figure 8. Correctness
follows from the description.

SafeXOR(key i,�ci, keyj ,�cj): Safe XOR computation

1. Correlate the ciphertexts to a new key. Pick a new key key∗ ← KeyGen(1κ):

σi ← key i ⊕ key∗,�c∗i ← CipherCorrelate(�ci, σi)

σj ← keyj ⊕ key∗,�c∗j ← CipherCorrelate(�cj , σj)

leakage on [(key i, key j , σi, σj), (�ci,�cj , σi, σj)]

2. �c∗ ← �c∗i ⊕ �c∗j
leakage on (�c∗i ,�c

∗
j)

3. Pick a new key key ← KeyGen(1κ):

σ ← key∗ ⊕ key ,�c← CipherCorrelate(�c∗, σ)

leakage on [(key∗, σ), (�c∗, σ)]

4. Output a← Decrypt(key ,�c).

leakage on (key ,�c) (jointly)

Fig. 8. SafeXOR procedure.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1534 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Security of SafeXOR. We provide a simulator for simulating leakage observed
in an OC leakage attack on the SafeXOR procedure. The attack considers two freshly
drawn key-ciphertext pairs, where the underlying plaintext bits are a (vi, vj). The
attack proceeds in two phases: first, an adversary A1 mounts a leakage attack oper-
ating separately on the input keys and on the input ciphertexts (with bounded length
leakage). A1 generates an output view V as a function of this leakage (the leakage is of
bounded length, but V might be long). Then, a second adversary A2 mounts an OC
leakage attack on the execution of SafeXOR with those same inputs. A2’s attack can
be adaptive and depends on the output V generated by A1. The Simulator SimXOR
is given only the output bit a = vi ⊕ vj (but not any of the plaintext bits underlying
the input) and simulates the leakage generated by A1 and A2 in their two-step attack.
Note that the leakage attack includes the leakage from the Decrypt operation (which
loads keys and ciphertexts into memory simultaneously). The security claim is in
Lemma 7.1.

Lemma 7.1. There exist a simulator SimXOR, a leakage bound λ(κ) = Θ(κ),
and a distance bound δ(κ) = exp(−Ω(κ)) s.t. for every κ ∈ N and leakage adversaries
A1,A2 and for any bit values vi, vj ∈ {0, 1}, taking

Real = (V ← Aλ(κ)
1 [(key i, keyj), (�ci,�cj)],

Aλ(κ)
2 (V)[a← SafeXOR(key i,�ci, keyj ,�cj)])

: ((key i, keyj), (�ci,�cj)) ∼ LROTPκ
(vi,vj),

Simulated = SimXOR(a)a←(vi⊕vj),

it is the case that Δ(Real , Simulated) ≤ δ(κ).
Proof. The simulator SimXOR chooses v′i ∈R {0, 1}. It generates (key∗,�c∗i) ∼

LROTPκ(v′i) and simulates the view of A1,A2 using O(λ(κ)) bits of multisource
leakage from key∗ and from �c∗i .

SimXOR chooses auxiliary random variables: some of these will be “public,”
meaning they are completely independent of (key∗,�c∗i). Other random variables are
either computed using O(λ(κ)) bits of leakage from key∗ (in fact, two bits of leakage
are sufficient), in which case we think of them as “public” too, or are each a function
either of key∗ or of �c∗i (but never of both). SimXOR computes the leakage from
(A1,A2)’s attack using bounded multisource leakage from key∗ and from �c∗i . Finally,
when v′i = vi, the view computed is identical to the Real view produced in A1 and A2’s
attack on SafeXOR. By leakage-resilient security of LROTP, the view is statistically
close to Real even when v′i is a uniformly random bit.

We now specify the random variables used by SimXOR as a function of key∗ and
of �c∗i :

• Choose a public uniformly random �c∗ s.t. the underlying plaintext of (key∗,�c∗)
is a. This requires a single bit of leakage from key∗ (to guarantee the under-
lying plaintext value).
• Take �c∗j = �c∗ ⊕ �c∗i (a function of the public �c∗ and of �ci).
• Choose public uniformly random correlation values σi ← KeyEntGen(1κ), σj

← KeyEntGen(1κ). Take key i = key∗⊕σi, keyj = key∗⊕σj so that key i, keyj

are functions of key∗ and of the public σi, σj (respectively). Similarly, �ci,�cj
are a function of �c∗i and of the public σi, σj (respectively) (recall that �c

∗
j itself

is a function of �c∗i and of the public �c∗).
• Choose a public uniformly random key ← KeyGen(1κ). Take σ = key⊕key∗,
a function of the public key∗ and of key . Note that �c is a function of the

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1535

public �c∗ and of 〈�c∗, σ〉, where this inner product can be computed using a
single bit of leakage from key∗. Thus, �c is also public.

Once these random variables are chosen as above, the leakage from an execution
of SafeXOR can be computed using multisource leakage from key∗ and from �c∗i :

• In the real execution, the leakage from step 1 is a function of [(key i, keyj , σi, σj),
(�ci,�cj , σi, σj)]. In the simulation, σi, σj are public, and this leakage can be
simulated using multisource leakage from [key∗,�c∗i].
• In the real execution, the leakage from step 2 is a function of [(�c∗i ,�c

∗
j)].

In the simulation, it can be simulated using access to �c∗i .
• In the real execution, the leakage from step 3 is a function of [(key , σ), (�c∗, σ)].
In the simulation, key and �c∗ are public, and this leakage can be simulated
using leakage from key∗.
• In the real execution, the leakage from step 4 is a joint function of (key ,�c).
In the simulation, both key and �c are public, and so this leakage is public too.

By construction, when v′i = vi this simulation gives the view Real , and the proof
follows from leakage resilience of the LROTP cryptosystem (Lemma 5.4).

7.2. Leakage-resilient permutation. The Permute procedure receives as in-
put a key and a 4-tuple of ciphertexts. It outputs a “fresh” pair of 4-tuples of keys
and ciphertexts. Its correctness property is that the plaintexts underlying the out-
put ciphertexts (under the respective output keys) are a (random) permutation of
the plaintexts underlying the input ciphertexts. The intuitive security guarantee is
that, even to a computationally unbounded leakage adversary, the permutation looks
uniformly random. The procedure is below in Figure 9.

Correctness is immediate.
Security is formalized by the existence of a simulator that generates a complete

view of the leakage observed in an OC leakage attack on Permute and the output
keys and ciphertexts. We consider attacks on a freshly drawn key and four LROTP
ciphertexts C, where the underlying plaintexts are some 4-tuple of bits �b. An attack
proceeds in two phases (similarly to an attack on SafeXOR): first, an adversary
A1 mounts a (bounded-length) leakage attack operating separately on key and on
C. Then, a second adversary A2 mounts an OC leakage attack on the execution of
Permute with those inputs. Finally, we also include Permute’s outputs (K ′, C′) in
the attacker’s view. The simulator gets only a random permutation of the plaintexts
underlying the input (key , C) and simulates the leakage generated by A1 and A2

in their attack together with the output (K ′, C′). The security claim is below in
Lemma 7.2.

We note that the Simulator we provide here is not efficient and may run in expo-
nential time. This is not a problem because the SimPermute simulator is only used
in the security proof of our main construction and never in the main construction’s
simulator (the main construction’s simulator is efficient). We will use SimPermute
when generating hybrid distributions, and since the hybrids will all be statistically
close to each other, we do not mind that their generation requires exponential time.

Lemma 7.2. There exist an (exponential time) simulator SimPermute, a leakage
bound λ(κ) = Ω̃(κ), and a distance bound δ(κ) = negl(κ) s.t. for every κ ∈ N and

leakage adversaries A1,A2 and for any vector of bit values �b = (b1, b2, b3, b1 + b2 +
b3 + 1), taking

Real = (Aλ(κ)
1 [key , C],

Aλ(κ)
2 [(K ′, C′)← Permute(key , C)],

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1536 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Permute(key , C): leakage-resilient permutation for key and a 4-tuple C of ciphertexts

Take K0 ← (key , key , key , key), C0 ← C, and � = polylog(κ)

For i ∈ [�], repeat:

1. for j ∈ [κ], k ∈ [4]: σi[j][k] ← KeyEntGen(1κ), Li[j][k] ← KeyRefresh(Ki[k], σi[j][k]) leakage on
(Ki, σi)

2. for j ∈ [κ], k ∈ [4]: Di[j][k] ← CipherCorrelate(Ci[k], σi[j][k])

leakage on (Ci, σi)

3. for j ∈ [κ], k ∈ [4]: τi[j][k]← CipherEntGen(1κ), D′i[j][k] ← CipherRefresh(Di[j][k], τi[j][k])

leakage on (Di, τi)

4. for j ∈ [κ], k ∈ [4]: L′i[j][k] ← KeyCorrelate(Li[j][k], τi[j][k])

leakage on (Li, τi)

5. pick πi ∈R Sκ
4 , for j ∈ [κ]: L′′i [j]← πi[j](L

′
i[j]), D

′′
i [j]← πi[j](D

′
i[j])

leakage on [(L′i, πi), (D
′
i, πi)]

6. pick j∗i ∈R [κ]. Save Ki+1 ← L′′i [j
∗
i], and Ci+1 ← D′′i [j

∗
i]

leakage on [(L′′i [j
∗
i], j

∗
i), (K

′′
i [j
∗
i], j

∗
i)]

Output (K�, C�)

Fig. 9. Leakage-resilient ciphertext permutation for κ ∈ N.

K ′, C′)(key,(�c1,�c2,�c3))∼LROTPκ

(b1 ,b2,b3),C=(�c1,�c2,�c3,(�c1⊕�c2⊕�c3⊕(1,0,...,0))),

Simulated = SimPermute(�b′)μ∈RS4,�b′←μ(�b),

then Δ(Real , Simulated) ≤ δ(κ).

Proof. The SimPermute simulator takes as input �b′ = μ(�b). It outputs leakage w
and an output (K ′, C′) of Permute as follows:

1. Sample (key , C) ∼ LROTPκ
�0
(i.e., LROTP encryptions of 0, rather than of �b

as in Real).
Fix randomness for the adversaries A1,A2, and compute

w = (Aλ(κ)
1 [key , C],Aλ(κ)

2 [(K ′, C′)← Permute(key , C)]).

Let π be the composed distribution used by Permute.
2. Compute the conditional distribution K′ of K ′ given (i) the fixed randomness

used by the adversaries, (ii) the leakage w, (iii) the permutation π, and (iv)
that (key , C) ∼ LROTPκ

�0
.

Sample K ′ ∼ K′.
3. Compute the conditional distribution C′ of C′ given (i) the fixed randomness

used by the adversaries, (ii) the leakage w, (iii) the permutation π, and (iv)
that (key , C) ∼ LROTPκ

�0
.

Sample C′ ∼ C′, under the additional condition that the inner products of C′

with K ′ are �b′.
4. The simulator’s output is (w,K ′, C′).

We remark again, as noted above, that the complexity of the simulator is super-
polynomial in κ (this is required for sampling from the conditional distributions K′
and C′ above).

The Hybrid distribution. Observe that (key , C) chosen in Real and Simulated
consist of an LROTP key and four ciphertexts. The only difference in their distri-
butions is that in Real the underlying plaintexts are �b, and in Simulated they are

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1537

�0. The Permute procedure operates separately on key and on C (as does the leak-
age computed by A1), and the total leakage computed by A1 and A2 is bounded by
O(� · λ(κ)) � κ bits. By Lemma 5.4 (security of the LROTP cryptosystem), the
distributions of leakage w generated in Real and Simulated are statistically close (this
remains true even if we include the randomness used by A1 and A2).

The more difficult part of the proof is arguing that (w.h.p. over w), even given
w, the joint distributions of (K ′, C′) in Real and in Simulated are statistically close.
For this, we consider a hybrid distribution Hybrid . We generate Hybrid exactly as
does SimPermute, except that in step 3, we draw C′ from C′ conditioning also on the
inner products of K ′ and C′ being π(�b) (rather than �b′ = μ(�b) for a random μ as in
Simulated).

We now show that Hybrid is statistically close to both Real and Simulated . In
what follows, we always fix the randomness used by A1 and A2: statistical closeness
holds for any fixed randomness used by the adversaries, and so it will also hold over
the choice of randomness.

Proposition 7.3. Δ(Real ,Hybrid) = O(δ(κ)).
Proof. We recast Real as follows. We generate Real using a procedure similar to

the generation of Hybrid , except that in step 1, we sample (key , C) ∼ LROTPκ
�b
(i.e.,

encryptions of the real �b bits). In steps 2 and 3, we condition K′ and C′ (respectively)
on (key , C) ∼ LROTPκ

�b
. Other than these changes to the bits encrypted in (key , C),

we proceed as in Hybrid .
To see that this indeed generates the Real view, observe that the joint distribution

of (w, π) is exactly as in Real . In step 2 we are sampling K ′ from its true conditional
distribution in Real (given (w, π)), and similarly C′ is drawn from its true conditional
distribution in Real (given (w, π)). Fixing all random choices of Permute (including
the composed permutation π), the leakage w operates separately on key and on C.
Thus, by Lemma 5.3, the conditional distribution of C′ given (w, π) and also given K ′

equals its conditional distribution given (w, π) conditioned only on the inner product

of C′ and K ′ equalling π(�b).
To argue that Real and Hybrid are statistically close, we fix all the randomness

used by Permute (including the composed distribution π) and view these two distribu-
tions as a multisource leakage attack operating separately on key and on C. In Real ,
(key , C) are generated as LROTP encryptions of�b, and in Hybrid they are encryptions
of �0. By Lemma 5.4, the joint distributions of w and the randomness used by Permute
in Real and Simulated are statistically close. Moreover, by Lemma 5.3, w.h.p. over
w the conditional distributions of key and of C (each separately), conditioned on w
and Permute’s randomness, are identical. Once Permute’s randomness is fixed, K ′

and C′ are deterministic functions of key and of C (respectively). We conclude that
w.h.p. over w, the conditional distributions of K ′ and of C′ (each separately) in Real
and in Hybrid (conditioned on (w, π)) are also identical. We emphasize that this is
true even though we are conditioning on different plaintexts encrypted in (key , C) in
Real and in Hybrid .

Real and Hybrid both draw K ′ from its conditional distribution, so these draws
(together with (w, π)) will be statistically close. They then draw C′ from its condi-

tional distribution, conditioning further on the same inner products π(�b) with K ′. By
Lemma 5.3, for fixed (w, π,K ′), the draws of C′ conditioned on (w, π,K ′) (and inner

products π(�b)) in Real and in Hybrid will be statistically close.
Proposition 7.4. Δ(Simulated ,Hybrid) = negl(κ).
Proof. The main claim we will show is that, when (key , C) ∼ LROTPκ

�0
, w.h.p.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1538 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

over w, even given leakage w on Permute and also given the output (K ′, C′), the com-
posed permutation π used by Permute is indistinguishable from uniformly random.
This is stated in Claim 7.5 below.

The only difference between Hybrid and Simulated is that in Hybrid we condi-
tion (K ′, C′) on the permutation π (and on w), whereas in Simulated , we effectively
condition (K ′, C′) on a uniformly random composed permutation (μ ◦ π). By Claim
7.5, with overwhelming probability over the leakage w, drawing (K ′, C′) from these
two conditional distributions yields statistically close views.

Claim 7.5. Fix any randomness for the adversaries A1,A2, and consider

w = (Aλ(κ)
1 [key , C],Aλ(κ)

2 [(K ′, C′)← Permute(key , C)])(key,C)∼LROTPκ
�0
.

Let π be the composed distribution used by Permute. Consider the conditional distri-
butions:

D0(w) = ((π,K ′, C′)|w),
D1(w) = (((μ ◦ π),K ′, C′)|w)μ∈RS4 .

Then with all but exp(−Ω(κ)) probability over w, it is the case that Δ(D0(w), D1(w)) =
negl(κ).

Proof. The intuition, loosely speaking, is that for each i ∈ [�], the permutation
π∗i = πi[j

∗
i] chosen in Permute’s ith iteration looks “fairly random” even given w.

Moreover, these � permutations are drawn independently from their “fairly random”
distributions. The composition, over all � iterations of Permute, of the permutations
chosen in each iteration is thus statistically close to uniformly random. We formalize
this intuition below, starting with the notion of “well-mixing” distributions over S4.

Definition 7.6 (well-mixing distribution on permutations). A distribution P
over S4 is said to be well-mixing if

H∞(P) ≥ 0.99 log |S4|.
Next, we observe that the composition of a sequence of permutations drawn from

well-mixing distributions itself is very close to uniform.
Proposition 7.7. For any sequence P0, . . . , P�−1 of well-mixing distributions,

let P be

P � (π0 ◦ · · · ◦ π�−1)π0∼P1,...,π�−1∼P�−1
.

Then P is exp(−Ω(�))-close to uniform over S4.
For Permute’s ith iteration, let wi be the leakage in that iteration. We define

Pi to be the distribution of the permutation π∗i = πi[j
∗
i] chosen in the ith iteration,

conditioned on (w0, . . . , wi) and also on the keys and ciphertexts (Ki, Ci,Ki+1, Ci+1).
We show with overwhelming probability over the random coins up to (but not includ-
ing) the choice of j∗i , with probability at least 1/2 over Permute’s choice of j∗i , that
the distribution Pi is well-mixing.

Proposition 7.8. In Permute’s execution in Claim 7.5, for any i ∈ [�] and
for any (Ki, Ci, (w0, . . . , wi−1)), with all but exp(−Ω(κ)) probability over Permute’s
random choices in iteration i up to step 6, with probability at least 1/2 over Permute’s
choice of j∗i in step 6, the distribution Pi is well-mixing.

Proof. Examine the distribution of the vector πi of permutations used in iteration
i, conditioned on the values (Ki, Ci, (w0, . . . , wi−1)) and conditioned also on (L′′i , D

′′
i)

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1539

(but without conditioning on the leakage wi in the ith iteration or on j∗i). Here the
randomness is over (σi, τi, πi). We observe that in this conditional distribution, the
marginal distribution on (πi[0], . . . , πi[κ − 1]) is uniformly random over Sκ

4 . This is
because, by Claim 5.7, for each j ∈ [κ], the pair (σi[j], τi[j]) is uniformly random

(under the condition that they maintain the underlying 0 plaintext bits in �bi). Thus,
σi[j], τi[j] completely “mask” the permutation πi[j] that was used: all permutations

are equally likely. Note that here we use the fact that the plaintext bits �bi underlying
(Ki, Ci) here are all identical (they all equal 0). Otherwise, since Permute preserves
the set of underlying plaintexts (if not their order), there would be information about
each πi[j] in the plaintexts underlying (L′′i [j], D

′′
i [j]).

By Lemma 4.8, since the leakage wi on (σi, τi, πi) is of length at most O(λ(κ))
bits, with all but exp(−Ω(κ)) probability, the min-entropy of the vector πi given
(Ki, Ci, L

′′
i , D

′′
i , (w0, . . . , wi−1, wi)) is at least 0.995 ·κ · log |S4|. By an averaging argu-

ment, with probability at least 1/2 over Permute’s (uniformly random) choice of j∗i ,
we get that the min-entropy of π∗i = πi[j

∗
i], given (Ki, Ci, L

′′
i , D

′′
i , (w0, . . . , wi−1, wi)),

is at least 0.99 log |S4|. The claim about Pi follows (in Pi we condition π∗i on the
same information as above, except we replace (L′′i , D

′′
i) with just (Ki+1, Ci+1) =

(L′′i [j
∗
i], D

′′
i [j
∗
i])).

To complete the proof of Proposition 7.4, we examine the composed distribution:

(π = (π∗0 ◦ · · · ◦ π∗�−1)|w,K0, C0, . . . ,K�, C�).

Each π∗i is drawn from Pi, and these draws are all independent of each other. By
Proposition 7.8, we get that with all but exp(−Ω(�)) probability over the random
coins, fixing the sequence ((K0, C0), . . . , (K�, C�)) and the leakage w, at least 1/3 of
the distributions Pi are well-mixing. When this happens, by Proposition 7.7, the
distribution of (π|w,K0, C0, . . . ,K�, C�) is exp(−Ω(�))-close to uniform, where � =
polylog(κ).

7.3. SafeNAND : Interface and security. In this section we present the
procedure for safely computing NAND gates. The full procedure is in Figure 10.
Correctness follows from the description (see section 2.2). For security, we show that
an adversary’s view in a leakage attack on a SafeNAND computation (with freshly
drawn LROTP keys and ciphertexts as its input) can be simulated, given only the
output bit of SafeNAND . This is formalized in Lemma 7.9.

Security of SafeNAND . We provide a simulator for simulating leakage ob-
served in an OC leakage attack on the SafeNAND procedure. We consider attacks
on two freshly drawn 4-tuples of keys and ciphertexts, where the underlying plaintext
bits are a 4-tuple (vi, vj , rk, 1) (note that the last underlying plaintext bit is always
fixed to 1). An attack proceeds in two phases: first, an adversary A1 mounts a leak-
age attack operating separately on the input keys and on the input ciphertexts (with
bounded-length leakage). A1 generates an output view V as a function of this leakage
(the leakage is of bounded length, but V might be long). Then, a second adversary
A2 mounts an OC leakage attack on the execution of SafeNAND with those inputs.
A2’s attack can be adaptive and depends on the output V generated by A1. The
Simulator SimNAND is given only the output bit ak = (vi NAND vj) ⊕ rk (but not
any of the plaintext bits underlying the input) and simulates the leakage generated
by A1 and A2 in their two-step attack. Note that the leakage attack includes the
leakage from the Decrypt operation (which loads keys and ciphertexts into memory

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1540 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

SafeNAND(key i,�ci, key j ,�cj ,
��k, �dk, �ok, �ek): Safe NAND computation

1. Correlate the ciphertexts to a new key. Pick a new key key ← KeyGen(1κ):

σi ← key i ⊕ key ,�c∗i ← CipherCorrelate(�ci, σi)

σj ← keyj ⊕ key ,�c∗j ← CipherCorrelate(�cj , σj)

σk ← ��k ⊕ key , �d∗k ← CipherCorrelate(�dk, σk)

σ′k ← �ok ⊕ key , �e∗k ← CipherCorrelate(�ek, σ
′
k)

leakage on [(key i, key j ,
��k, �ok, σi, σj , σk, σ

′
k), (�ci,�cj , �dk, �ek, σi, σj , σk, σ

′
k)]

2. C ← (�d∗k,�c
∗
i ⊕ �d∗k,�c

∗
j ⊕ �d∗k,�c

∗
i ⊕ �c∗j ⊕ �d∗k ⊕ �e∗k)

leakage on ciphertexts

3. (K′, C′)← Permute(key , C)

leakage from Permute (see below)

4. Decrypt the four ciphertexts in C′ using the four keys in K′. If there is one 0 plaintext in the
results, then output ak ← 0. Otherwise, output ak ← 1

leakage on (K′, C′) (jointly)

Fig. 10. SafeNAND procedure. The Permute procedure is in Figure 9.

simultaneously). The security claim is in Lemma 7.9.
Lemma 7.9. There exist a simulator SimNAND, a leakage bound λ(κ) = Ω̃(κ),

and a distance bound δ(κ) = negl(κ) s.t. for every κ ∈ N and leakage adversaries
A1,A2 and for any bit values vi, vj , rk ∈ {0, 1}, taking

Real = (V ← Aλ(κ)
1 [(key i, keyj ,

��k, �ok), (�ci,�cj , �dk, �ek)],

Aλ(κ)
2 (V)[ak ← SafeNAND(key i,�ci, keyj ,�cj,

��k, �dk, �ok, �ek)])

: ((key i, keyj ,
��k, �ok), (�ci,�cj , �dk, �ek)) ∼ LROTPκ

(vi,vj ,rk,1)
,

Simulated = SimNAND(ak)ak←((viNANDvj)⊕rk),

it is the case that Δ(Real , Simulated) ≤ δ(κ).
Proof. The proof of security for SafeNAND will follow directly from the security

of Permute, which is stated in Lemma 7.2 of section 7.2. We begin by describing the
SimNAND simulator and then proceed with a proof of statistical closeness of Real
and Simulated .

SimNAND simulator. The simulator gets as input a bit ak ∈ {0, 1}. It chooses
(arbitrarily) bit values (v′i, v

′
j , r
′
k) ∈ {0, 1}3 s.t. ak = ((v′i NAND v′j)⊕r′k) and runs the

leakage attack on freshly generated keys and ciphertexts encrypting these bit values
(note that the simulator does not know the “real” (vi, vj , rk), and we expect that
(v′i, v

′
j , r
′
k) �= (vi, vj , rk)). The simulator’s output is the leakage in the attack:

Simulated = (V ← Aλ(κ)
1 [(key i, keyj ,

��k, �ok), (�ci,�cj , �dk, �ek)],

Aλ(κ)
2 (V)[ak ← SafeNAND(key i,�ci, keyj ,�cj ,

��k, �dk, �ok, �ek)]))

: ((key i, keyj ,
��k, �ok), (�ci,�cj , �dk, �ek)) ∼ LROTPκ

(v′
i,v

′
j ,r

′
k,1)

.

Statistical closeness of Real and Simulated . We reduce the leakage attacks
of A1 and A2 on SafeNAND in Real and in Simulated to attacks on Permute. The
two cases (Real and Simulated) reduce to attacks on Permute that differ only in the
plaintext bits underlying Permute’s input ciphertexts, and the numbers of 0 plaintexts
and 1 plaintexts are identical in the two cases. By the security of Permute, we conclude

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1541

that the views generated in the leakage attack on Permute launched in the Real and
Simulated cases are statistically close, and so the views Real and Simulated must also
be statistically close. Note that we will assume from here on that the leakage w from
SafeNAND includes Permute’s output (K ′, C′) in its entirety. This is a strengthening
of the leakage adversaries (they get more leakage “for free”), and so it strengthens
our security claim for SafeNAND .

The security game for Permute is set up as follows: for the case of the Real attack,
we use the bit-vector �b = (rk, vi ⊕ rk, vj ⊕ rk, vi ⊕ vj ⊕ rk ⊕ 1). For the case of the

Simulated attack, we use the bit-vector �b = (r′k, v
′
i⊕ r′k, v

′
j ⊕ r′k, v

′
i⊕ v′j ⊕ r′k⊕ 1). Note

that for both (vi, vj , rk) used in Real and (v′i, v
′
j , r
′
k) used in Simulated , the number

of 0’s and 1’s in �b is identical (three 0’s if ak = 1 and one 0 if ak = 0). Given these
bit values, we generate an input (key , C) ∼ LROTPκ

�b
for the Permute security game

of Lemma 7.2.
We now construct from the SafeNAND adversariesA1 andA2 two new adversaries

A′1 and A′2 for Permute as follows. First, we choose correlation values (σi, σj , σk, σ
′
k).

The adversaries A′1 and A′2 will attack Permute by simulating an attack of A1 and

A2 on SafeNAND . The inputs (key i,�ci, keyj ,�cj ,
��k, �dk, �ok, �ek) to SafeNAND , as well

as the internal variables, are set up in the natural way. For example, key i and �ci are
set as

key i ← key ⊕ σi,

�c∗i ← C[1]⊕ C[0],

�ci ← CipherCorrelate(�c∗i , σi).

In this way, the joint distributions of input keys and ciphertexts, correlation val-
ues, internal variables, and the resulting (key , C) are identical in this simulation and
in an execution of an attack on SafeNAND on inputs with underlying plaintexts
(vi, vj , rk, 1) or (v

′
i, v
′
j , r
′
k, 1) (in the Real and Simulated cases, respectively).

Now A′1 runs A1 and A2 on steps 1 and 2 of SafeNAND to generate leakage w1.
Observe that (since A′1 “knows” the correlation values) the leakage computed by A1

from the inputs to SafeNAND and the leakage computed by A2 in steps 1 and 2 can
be computed as a multisource functions of length O(λ(κ)), operating separately on
key and on C.

Next, A′2 runs A2 on step 3 of SafeNAND to compute leakage w2 from Permute’s
operation. This uses multisource leakage of Õ(κ) bits from key and from C.

Finally, we add to the leakage values computed by A1 and A2 the keys and
ciphertexts (K ′, C′) as generated by Permute in step 3 of SafeNAND .

By the security of Permute, we conclude that (w1, w2,K
′, C′) comprising both

the leakage computed by A′1 and A′2 and the output of Permute are statistically close
in the Real and Simulated cases. This is because the number of 0 plaintexts and
1 plaintexts in the ciphertexts C given as input to Permute in these two views are
identical, and so both views will be close to those generated by Permute’s simulator
SimPermute (which is only given a uniformly random permutation of these plaintext
bits).

8. Putting it together: The full construction. In this section we show how
to compile any circuit into a secure transformed one that resists OC side-channel
attacks, as per Definition 4.9 in section 4.3. See section 2 for an overview of the
construction and its security.

The full initialization and evaluation procedures are presented below in Figures

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1542 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

11 and 12. The evaluation procedure is separated into subcomputations (which may
themselves be separated into subcomputations of the cryptographic algorithms). Ci-
phertext bank procedures are in section 6. The procedures for safely computing
NAND and duplication are in section 7. Theorem 8.1 states the security of the com-
piler.

Initialization Init(1κ, C, y)

1. for every y-input wire i, corresponding to y[j]:

Bank i ← BankInit(1κ, y[j])

2. for every x-input wire i:

Bank i ← BankInit(1κ, 0)

3. for the output wire output :

Bankoutput ← BankInit(1κ, 0)

4. for the internal wires:

Bank random ← BankInit(1κ, 0)

Bankfixed ← BankInit(1κ, 1)

5. output: state0 ← ({Bank i}i is an input wire,Bankoutput ,Bank random ,Bankfixed)

Fig. 11. Init procedure, to be run in an offline stage on circuit C and secret y.

Evaluation Eval(statet−1, xt)

statet−1 = ({Bank i}i is an input wire,Bankoutput ,Bank random ,Bankfixed)

1. Generate keys and ciphertexts for all circuit wires:

(a) y input wire i:
(key i,�ci)← BankGen(Bank i)

(b) x input wire i, carrying bit xt[j]:
(key i,�ci)← BankGen(Bank i)
�ci ← �ci ⊕ (xt[j], 0, . . . , 0)

(c) output wire output :

(��output , �doutput)← BankGen(Bankoutput)
(�ooutput , �eoutput)← BankGen(Bankfixed)

(d) each internal wire i (in sequence):

(��i, �di, ��
′
i, �d
′
i)← BankGenRand (Bank random)

(�oi, �ei)← BankGen(Bankfixed)

2. Proceed layer by layer (from input to output):

(a) for each NAND gate with input wires i, j and output wire k, compute:

ak ← SafeNAND(key i,�ci, keyj ,�cj ,
��k, �dk, �ok, �ek)

for internal NAND gates, also compute:

keyk ← ��′k,�ck ← �d′k ⊕ (ak, 0, . . . , 0)

(b) for each duplication gate with input wire i and output wires j, k, compute:

aj ← SafeXOR(key i,�ci,
��j , �dj), key j ← ��′j ,�ck ← �d′j ⊕ (aj , 0, . . . , 0)

ak ← SafeXOR(key i,�ci,
��k, �dk), key i ← ��′k,�ck ← �d′k ⊕ (ak, 0, . . . , 0)

After completing these evaluations, output aoutput

3. the new state is: state t ← ({Bank i}i is an input wire,Bankoutput ,Bank random ,Bankfixed)

Fig. 12. Eval procedure performed on input xt, under OC leakage. See section 6.1 for ciphertext
bank procedures and section 7 for the full SafeNAND and SafeXOR procedures.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1543

Theorem 8.1. There exist a leakage bound λ(κ) = Θ̃(κ) and a distance bound
δ(κ) = negl(κ) s.t. for every κ ∈ N, the (Init ,Eval) compiler specified in Figures 11
and 12 is a (λ, δ)-continuous leakage secure compiler, as per Definition 4.9.

Proof. We first specify the simulator and then provide a proof of statistical
security.

Simulator. Let A be a (continuous) leakage adversary. The simulator, using
SimInit and SimEval , creates a view of repeated executions of Eval , on different in-
puts, under a (continuous) leakage attack by A. It mimics the operation of the “real”
Eval procedure. The SimInit procedure starts by initializing all ciphertext banks
using SimBankInit . Within the tth execution, with input xt and output C(y, xt), the
simulator computes the values on all internal wires for the “dummy” circuit computa-
tion C(�0, xt); let v

′
i be the value on wire i in this dummy computation. We emphasize

that in the simulated view, the v′i values are always stored and manipulated in LROTP
encrypted form and are never exposed to the adversary (similarly to the vi wire values
in the real execution).

The simulator also picks “public bits” ai ∈ {0, 1} for the internal and output
wires. This bit determines the (public) output of the SafeNAND or SafeXOR call
whose output is on wire i. For each internal wire i, the bits ai are uniformly random.
For the output wire, the simulator sets aoutput = C(y, xt). In particular, the outputs of
all SafeNAND and SafeXOR calls are identically distributed in the real and simulated
executions (as they should be because these are visible to the adversary).

Once the v′i and ai values are picked, the simulator uses the SimBankGen sim-
ulation procedure to generate key-ciphertext pairs for all circuit wires, where the
underlying plaintexts are consistent with the v′i and ai values: for the input wires, the
y-input wire keys-ciphertext pairs have underlying plaintext bit 0 (the x-input wire
ciphertexts are unchanged). Proceeding layer by layer, the keys and ciphertexts on
the input wires of each NAND gate have the dummy v′i wire values as their underlying
plaintexts. For an internal (or output) wire i, the key-ciphertext pair (��i, �di), (��

′
i,
�d′i)

encrypts the bit (v′i ⊕ ai). When the simulator runs a SafeNAND call for the NAND

gate whose output wire is i, it will get output ai and will “toggle” (��′i, �d
′
i) to get

(key i,�ci) with underlying plaintext v′i (we note that there is no change to the under-
lying plaintext of (�oi, �ei); it remains 1). Finally, after evaluating all the NAND gates
in order, the output gate’s SafeNAND evaluation yields aoutput , the correct output
value. The leakage is generated as it would be from an execution of Eval using the
ciphertexts generated by SimBankGen . The SimInit and SimEval procedures are
specified in Figures 13 and 14.

Simulator Initialization SimInit(1κ, C)

Proceed exactly as in Init , but replace each call to BankInit with a call to SimBankInit.

Fig. 13. Simulator initialization SimInit .

Statistical security. The intuition for security is that the “public” ai values
computed by SafeNAND in the simulated execution are distributed exactly as they
are in the real execution—they are uniformly random for all internal wires, and for
the output wire aoutput equals the circuit output C(y, xt). The “hidden” underlying
plaintexts for internal wires may be quite different, but the ciphertext bank security
guarantees that the leakage adversary cannot distinguish the simulated generations

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1544 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

Simulator SimEval(statet−1, xt, C(y, xt))

The SimEval simulator sets values as follows:
for each circuit wire i, compute its value v′i by evaluating C(�0, xt)
for each internal circuit wire i, choose a share ai ∈R {0, 1}
for the output wire output , set aoutput ← C(y, xt)

It then runs a simulated execution of Eval under leakage as follows:

• In Step 1:

for each y-input wire i, replace each call to BankGen with a call to SimBankGen(0)

for each x-input wire i, replace each call to BankGen with a call to SimBankGen(0)

for the output wire output , replace the call to BankGen for generating (��output , �doutput) with a call
to SimBankGen(v′output ⊕ aoutput). Replace the call to BankGen for generating (�ooutput , �eoutput)
with a call to SimBankGen(1).

for each internal wire i, replace the call to BankGenRand for generating (��i, �di, ��
′
i, �d
′
i) with a call

to SimBankGenRand(v′i ⊕ ai, v
′
i ⊕ ai). Replace the call to BankGen for generating (�oi, �ei) with a

call to SimBankGen(1).

• In Step 2, proceed as in Eval and compute for each internal wire i the bit ai and the key-ciphertext
pair (�ci, key i). For the output wire, compute aoutput , the output for this execution.

• In Step 3, update the state as in Eval .

Fig. 14. Sim procedure performed on input xt and circuit output C(y, xt).

from the real ones, and the security of SafeNAND implies that the adversary learns
no more than the output ai of SafeNAND for the NAND gate with out wire i (and
these values are identically distributed in the real and simulated executions). The full
proof that Real and Simulated are statistically close uses several hybrids.

Real and HybridReal : Replacing real generations with simulated ones.
The view HybridReal is obtained from Real by replacing each “real” generation with
a “simulated” generation that produces a key-ciphertext pair with the same under-
lying plaintext. In particular, we replace each BankInit call of Init with a call to
SimBankInit . We then replace each BankGen call for an x-input wire with a call to
SimBankGen(0), each call to BankGen for a y-input wire i carrying the jth bit of y
with a call to SimBankGen(y[j]), and the call to BankGen for the output wire with
a call to SimBankGen(0). For each internal wire, we replace each call to BankGen
for generating a ciphertext with underlying plaintext 1 with a call to SimBankGen(1)
and each call to BankGenRand with a call to SimBankGenRand with a uniformly
random plaintext (the same plaintext for both SimBankGenRand). Other than these
changes to the ciphertext bank calls, we run exactly as in Real .

The two views Real and HybridReal differ only in that in Real we have calls to
BankInit , BankGen , BankGenRand , whereas in HybridReal we have calls to the corre-
sponding simulated procedures. Note that the b-values given as input to SimBankGen
and SimBankGenRand in HybridReal are distributed identically to the plaintexts un-
derlying the ciphertexts generated in the corresponding calls to BankGen in Real .
By Lemmas 6.1 and 6.3, the joint distributions of the leakage in all of these calls,
together with all keys and ciphertexts produced, are negl(κ)-statistically close in Real
and in HybridReal . For each execution of Eval , we can replace the ciphertext gen-
erations as above and then complete the adversary’s view by generating the leakage
from SafeNAND and SafeXOR as a function of the keys and ciphertexts produced.
Thus, we conclude that Real and HybridReal are negl(κ)-statistically close.

HybridReal to Simulated : Simulated generations, different underlying
plaintexts. In both the HybridReal and the Simulated views, all ciphertexts are gen-

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1545

erated using simulated ciphertext bank calls. The same computations are performed
on the key-ciphertext pairs that are generated in both views (namely the Eval pro-
cedure’s SafeNAND and SafeXOR computations). The only difference between the
views is in the underlying plaintexts specified as inputs for simulated ciphertext bank
generations.

The difference between HybridReal and Simulated in one execution of Eval on
input xt is as follows. The input xt specifies, for each internal wire i, a value vi ∈
{0, 1}, the bit on wire i in the evaluation of C(y, xt) (as in HybridReal), and a value
v′i ∈ {0, 1}, the bit on wire i in the evaluation of C(�0, xt) (as in Simulated). Similarly,
voutput , v

′
output are the bits on the output wire in C(y, xt) and C(�0, xt).

In both views the execution is also determined by “public bits,” where for each
internal wire i there is a public bit ai ∈ {0, 1}. These public bits are identically
distributed in HybridReal and Simulated : for each internal wire i, the public bit ai is
uniformly random, and for the output wire output we have aoutput = C(y, xt) (this is
the distribution in both views).

The values vi, v
′
i for each circuit wire and the public bits ai for the internal and

output wires determine the plaintexts underlying each simulated ciphertext genera-
tions as follows:

• For an input wire i, we use wi to denote the underlying plaintext of the
(single) key-ciphertext pair generated for that wire.
In HybridReal the underlying plaintext is the corresponding bit of y or xt,
i.e., wi = vi, whereas in Simulated we have wi = v′i (which is 0 for a y-input
wire or the correct corresponding bit of xt for an x-input wire).
• For an internal wire i, we use ui, wi to denote the underlying plaintexts
of the (two) key-ciphertext pairs (��i, �di), (��

′
i,
�d′i) (respectively) generated by

the BankGenRand call for wire i. We note that in both HybridReal and
Simulated , these two key-ciphertext pairs have the same underlying plain-
texts (within each view) and ui = wi. In the security proof below, however,
we will consider further hybrids where this is not the case and ui �= wi.
In HybridReal we have ui = wi = (vi ⊕ ai), whereas in Simulated we have
ui = wi = (v′i ⊕ ai).
• For the output wire output , we use uoutput to denote the underlying plaintext
of the (single) key-ciphertext pair generated for that wire.
In HybridReal we have uoutput = (voutput⊕aoutput) = (C(y, xt)⊕C(y, xt)) = 0,

whereas in Simulated we have uoutput = (v′output ⊕ aoutput) = (C(�0, xt) ⊕
C(y, xt)).

Gate-by-gate hybrids. To prove that HybridReal and Simulated are statisti-
cally close, we consider a sequence of hybrid views. We view C as a layered circuit of
depth D, where layer 0 is the layer of input wires and layerD is the layer of the output
wire (we layer the wires in the circuit, which also imposes a layering on the gates).
We take S to be a bound on the number of circuit gates and also on the number of
gates in each layer (we assume a numbering on the gates within each circuit layer).
We take T to be the total number of Eval calls. We then have a sequence of hybrids:

{Ht,d,k}t∈[T+1],d∈[D],s∈[S].

Each hybrid is associated with a single execution of Eval (within the T execu-
tions) and a single gate in a single layer of the circuit C. The hybrids differ in the
plaintexts underlying the calls to the simulated ciphertext bank, i.e., in the values of
ui and wi. We emphasize that in all hybrids the joint distributions of the public ai

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1546 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

values are identical and as in HybridReal and Simulated . Moreover, the hybrids differ
only in the underlying plaintext for the key-ciphertext pairs that are generated. The
subsequent computations on these key-ciphertext pairs (e.g., SafeNAND , SafeXOR)
are performed identically in all hybrids (as in HybridReal and Simulated).

In Ht,d,k, all calls up to (but not including) the calls for wires in layer d in the
tth execution of Eval use underlying plaintexts (ui, wi) as in HybridReal . All calls
after (but not including) layer (d + 1) in the tth execution use underlying plaintexts
(ui, wi) as in Simulated . It remains to specify the underlying plaintexts for wires in
layers d and d+1 of the tth execution. Take gs to be the sth gate between wire layers
d and d+1. Without loss of generality, let gs be a SafeNAND gate, with input wires
i and j and output wire k (SafeXOR gates are handled similarly). The main case is
when wires i, j, k are internal circuit wires, but we also specify the distributions when
i, j are circuit input wires:

• If the dth layer is an “internal” layer, i.e., d ∈ {1, 2, . . . , D − 1}, then the
underlying plaintexts are determined as follows.
In layer d, all of the ui values are as in HybridReal . For wires going into gates
up to (but not including) gate gs, the wi values are as in HybridReal . For
wires going into gate gs or higher, the wi values are as in Simulated .
In layer (d+1), all of the wi values are as in Simulated . For wires going into
gates up to (but not including) gate gs, the ui values are as in HybridReal .
For wires going into gate gs or higher, the ui values are as in Simulated .
• If the dth layer is the input layer, i.e., d = 0, then the underlying plaintexts
are determined as follows.
In layer d, for wires going into gates up to (but not including) gate gs, the
wi values are as in HybridReal . For wires going into gate gs or higher, the wi

values are as in Simulated .
In layer d + 1, all of the wi values are as in Simulated . For wires going into
gates up to (but not including) gate gs, the ui values are as in HybridReal .
For wires going into gate gs or higher, the ui values are as in Simulated .

By definition, H0,0,0 = Simulated and HT,0,0 = HybridReal . Propositions 8.2,
8.3, and 8.4 show that adjacent hybrids are statistically close. Statistical closeness of
HybridReal and Simulated follows by a hybrid argument.

Proposition 8.2. For every t ∈ [T], d ∈ [D − 1], s ∈ [S − 1],

Δ(Ht,d,s,Ht,d,s+1) = negl(δ).

Proposition 8.3. For every t ∈ [T], d ∈ [D − 1],

Δ(Ht,d,S−1,Ht,d+1,0) = negl(δ).

Proposition 8.4. For every t ∈ [T],

Δ(Ht,D−1,0,Ht+1,0,0) = negl(δ).

We prove Proposition 8.2; the proofs of Propositions 8.3 and 8.4 are identical up
to the borderline conditions.

Proof of Proposition 8.2. Let A be Eval ’s OC leakage attacker. Consider the
hybrids Ht,d,s and Ht,d,s+1 and the executions of Eval up to (and including) the tth
execution. Fix values for the ai “public bits.” Let gs be the sth gate between wire
layers d and d + 1, with input wires i, j and output wire k (w.l.o.g. we assume that
gs is a NAND gate). The only difference between the hybrids is in the underlying

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1547

plaintexts (wi, wj , and uk) of the key-ciphertext pairs (�′i, �d
′
i), (�

′
j ,
�d′j), (�k, �dk). In

what follows, we call these the target key-ciphertext pairs. In Ht,d,s, the underlying
plaintexts for the target pairs are (ai⊕ v′i), (aj ⊕ v′j), and (ak ⊕ v′k) (respectively). In
Ht,d,s+1, they are (ai ⊕ vi), (aj ⊕ vj), and (ak ⊕ vk) (respectively). The generations
of all other key-ciphertext pairs are identical in the two hybrids.
A’s OC leakage attack on Eval is viewed as an attack on the (simulated) cipher-

text bank and on the SafeNAND procedure. Consider the leakage on the first t − 1
executions of Eval and on the ciphertext generations of the tth execution (but not
yet on the SafeNAND and SafeXOR operations in the tth execution). This leakage is
a function of all the key-ciphertext pairs produced in the first t executions. We can
cast this leakage attack as an attack on the simulated ciphertext bank, in particular
on the generation of the target key-ciphertext pairs in the t-execution of Eval .

In particular, the computation of (i) the leakage in the first t− 1 executions, (ii)
all generations in the tth execution, (iii) the list of all key-ciphertext pairs produced
in the tth execution except the target ones, and (iv) the explicit values of all cipher-
text banks at the end of the t-execution’s generation can be viewed as an attack on
the (simulated) ciphertext bank’s generation of the target key-ciphertext pairs. By
Lemma 6.4 (security of the simulated ciphertext bank), there exists a simulator Sim1

that can simulate this entire computation. Sim1 need only know the underlying plain-
texts for the non-target key-ciphertext pairs (which are identical in both hybrids) and
multisource leakage access to the target key-ciphertext pairs.

Let V be the view generated by Sim1. It now remains to generate (i) the leakage
from the SafeNAND and SafeXOR operations on all gates but gs in the tth execution
(these do not involve any of the target pairs), (ii) the leakage from the SafeNAND
operation on gate gs (and the target pairs), and (iii) the leakage from all subsequent
executions of Eval (a function of the ciphertext banks at the end of the tth execution).
The view V generated by Sim1 can be used to compute items (i) and (iii) above, but
for item (ii), generating the leakage from gate gs’s SafeNAND operation, we need
access to the target keys and ciphertexts. Moreover, the SafeNAND operation can
load LROTP keys and ciphertexts into memory together, and so multisource leakage
access to the target pairs may not be sufficient.

This is where we use the security of SafeNAND . LetA2 be the leakage attack that
the adversary mounts on the SafeNAND operation for gate gs (this attack is a function
of V). The computation of all leakage seen by the adversary can now be computed as
a function of V and of this leakage attack. By Lemma 7.9 (security of SafeNAND),
generating the view V (using Sim1 and multisource access to the target keys and the
target ciphertexts) and then generating the leakage from SafeNAND on the target
pairs (using A2 and OC leakage on this operation) can be simulated using only the
output of SafeNAND . This output, in both of the hybrids, is simply the (identical)
bit ak, and so we conclude that the hybrids are statistically close.

REFERENCES

[Ajt11] M. Ajtai, Secure computation with information leaking to an adversary, in STOC,
2011, pp. 715–724.

[BCG+11] N. Bitansky, R. Canetti, S. Goldwasser, S. Halevi, Y. T. Kalai, and G. N.

Rothblum, Program obfuscation with leaky hardware, in ASIACRYPT, 2011, pp.
722–739.

[BGI+01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan,

and K. Yang, On the (im)possibility of obfuscating programs, in CRYPTO, 2001,
pp. 1–18.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1548 SHAFI GOLDWASSER AND GUY N. ROTHBLUM

[BGJK12] E. Boyle, S. Goldwasser, A. Jain, and Y. T. Kalai, Multiparty computation secure
against continual leakage, in STOC, 2012, pp. 1235–1254.

[BHHO08] D. Boneh, S. Halevi, M. Hamburg, and R. Ostrovsky, Circular-secure encryption
from decision Diffie-Hellman, in CRYPTO, 2008, pp. 108–125.

[BKKV10] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan, Overcoming the hole
in the bucket: Public-key cryptography resilient to continual memory leakage, in
FOCS, 2010, pp. 501–510.

[CFGN96] R. Canetti, U. Feige, O. Goldreich, and M. Naor, Adaptively secure multi-party
computation, in STOC, 1996, pp. 639–648.

[CG88] B. Chor and O. Goldreich, Unbiased bits from sources of weak randomness and
probabilistic communication complexity, SIAM J. Comput., 17 (1988), pp. 230–
261.

[DDV10] F. Dav̀ı, S. Dziembowski, and D. Venturi, Leakage-resilient storage, in SCN, 2010,
Amalfi, Italy, 2010, pp. 121–137.

[DF11] S. Dziembowski and S. Faust, Leakage-resilient cryptography from the inner-product
extractor, in ASIACRYPT, 2011, pp. 702–721.

[DF12] S. Dziembowski and S. Faust, Leakage-resilient circuits without computational as-
sumptions, in TCC, 2012, pp. 230–247.

[DHLAW10] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs, Cryptography against
continuous memory attacks, in FOCS, 2010, pp. 511–520.

[DLWW11] Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs, Storing secrets on continually
leaky devices, in FOCS, 2011, pp. 688–697.

[DORS08] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data, SIAM J. Comput., 38
(2008), pp. 97–139.

[DP08] S. Dziembowski and K. Pietrzak, Leakage-resilient cryptography, in FOCS, 2008,
pp. 293–302.

[FKPR10] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum, Leakage-resilient signatures,
in TCC, 2010, pp. 343–360.

[FRR+10] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan, Protecting
circuits from leakage: The computationally-bounded and noisy cases, in EURO-
CRYPT, 2010, pp. 135–156.

[GGH+13] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters, Candi-
date indistinguishability obfuscation and functional encryption for all circuits, in
FOCS, 2013, Berkeley, CA, 2013, pp. 40–49.

[GIS+10] V. Goyal, Y. Ishai, A. Sahai, R. Venkatesan, and A. Wadia, Founding cryptog-
raphy on tamper-proof hardware tokens, in TCC, 2010, pp. 308–326.

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, One-time programs, in
CRYPTO, 2008, pp. 39–56.

[GO96] O. Goldreich and R. Ostrovsky, Software protection and simulation on oblivious
RAMs, J. ACM, 43 (1996), pp. 431–473.

[GR10] S. Goldwasser and G. N. Rothblum, Securing computation against continuous leak-
age, in CRYPTO, 2010, pp. 59–79.

[HL11] S. Halevi and H. Lin, After-the-fact leakage in public-key encryption, in TCC, 2011,
pp. 107–124.

[Imp10] R. Impagliazzo, private communication, 2010.
[ISW03] Y. Ishai, A. Sahai, and D. Wagner, Private circuits: Securing hardware against

probing attacks, in CRYPTO, 2003, pp. 463–481.
[JV10] A. Juma and Y. Vahlis, Protecting cryptographic keys against continual leakage, in

CRYPTO, 2010, pp. 41–58.
[LLW11] A. Lewko, M. Lewko, and B. Waters, How to leak on key updates, in STOC, 2011,

pp. 725–734.
[LRW11] A. Lewko, Y. Rouselakis, and B. Waters, Achieving leakage resilience through dual

system encryption, in TCC, 2011, pp. 70–88.
[MR04] S. Micali and L. Reyzin, Physically observable cryptography (extended abstract), in

TCC, 2004, pp. 278–296.
[NS09] M. Naor and G. Segev, Public-key cryptosystems resilient to key leakage, in

CRYPTO, 2009, pp. 18–35.
[Pie09] K. Pietrzak, A leakage-resilient mode of operation, in EUROCRYPT, 2009, pp. 462–

482.
[Rao07] A. Rao, An exposition of Bourgain’s 2-source extractor, Electronic Colloquium on

Computational Complexity (ECCC), 14(034), 2007.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

HOW TO COMPUTE IN THE PRESENCE OF LEAKAGE 1549

[Rot12] G. N. Rothblum, How to compute under AC0 leakage without secure hardware, in
CRYPTO, 2012, pp. 552–569.

[RTSS09] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, Hey, you, get off of my
cloud: Exploring information leakage in third-party compute clouds, in CCS, 2009,
Chicago, IL, 2009, pp. 199–212.

[SYY99] T. Sander, A. Young, and M. Yung, Non-interactive cryptocomputing for NC1, in
FOCS, 1999, pp. 554–567.

[Wil12] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in STOC,
2012, New York, NY, 2012, pp. 887–898.

c© 2015 Shafi Goldwasser & Guy Rothblum

D
ow

nl
oa

de
d

05
/1

0/
18

 to
 1

8.
51

.0
.9

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

