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ABSTRACT

The design of two-dimensional linear phase FIR digital filters,
optimal in the Chebyshev sense, is a very time consuming process. An
alternative design technique proposed by McClellan is the transformation
of a one-dimensional linear-phase FIR equiripple filter into a two-
dimensional linear-phase FIR filter which is nearly optimal in the
Chebyshev sense. The technique is very fast since computing time is
devoted almost entirely to the one-dimensional design which is known to
be efficient. Also, there exists an efficient implementation which in
general requires fewer multiplies per output point than conventional
techniques.

The original McClellan transformation is generalized to approxi-
mate arbitrary two-dimensional contours and compress transition width.
Constraints are derived for guaranteeing a well-defined transformation
and an algorithm is presented for satisfying arbitrary two-dimensional
specifications in terms of one-dimensional filter parameters.

Finally, comparisons are made with the transformation technique,
the optimal design, and various windowing procedures.

Thesis Supervisor: Russell M. Mersereau

Title: Research Associate



3

ACKNOWLEDGEMENTS

I extend my warm thanks to my advisor Russ Mersereau for his

guidance and understanding during this work. I also thank

Wolfgang Mecklanbr~uker for his enlightening discussions. Together

they have helped me to accept and appreciate the constantly changing,

yet growing state of my research.

Finally, I thank Mrs. Delphine Radcliffe for the excellent typing

of this manuscript.



4

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . .

ACKNOWLEDGEMENTS . . . . . . . . . . .0

LIST OF FIGURES .

2

3

6

INTRODUCTION

1. 1 The Subject and Scope of the Thesis .

1.2 The Design Problem

1. 3 Previous Development

. 0 0 0 .0

CHAPTER 2 McCLELLAN TRANSFORMATIONS 0 0 18

2. 1 History

2.2 Generalization to Higher Order
Transformations ..20

2. 3 The Approximation Problem in Contour

CHAPTER 3

Design . 0

2.4 Implementation . . . . . . 0

THE CONSTRAINT PROBLEM WITH APPLI-
CATIONS TO CIRCULARLY SYMMETRIC
CONTOURS . . . 0 . 0 0 0 0

3.1 Constraints for a Well-Defined Mapping

3.2 The Design of Circularly Symmetric
Lowpass Filters with Transition Width
Compression . . .o.o.0...

3. 3 An Algorithm for Meeting Two-Dimensional
Specifications . . . . .0.0.

3. 4 Comparisons in Transition Width
Compression . . . . . . . .

CHAPTER 1 . 10

. 10

. 11

. 13

. 18

26

34

39

39

46

58

65

. . . . . . . . . . . .

. .0 .0 .0 . .0 .0 .a

. . . . . .0 .0 .0 .a

. .9 .0 .0

. .0 .0 .0 . .0 .0



5

TABLE OF CONTENTS (continued)

Page

CHAPTER 4 THE APPROXIMATION OF ARBITRARY
CONTOURS . . . . . . . .

4. 1 The Lowpass to Highpass Transformation

4. 2 The Elliptical Contour

4. 3 The Square Contour

. 71

. 74

4. 4 The Lowpass to Annulus Transformation .

4. 5 Fan Filters. . . . . .

4. 6 The Bandpass Filter . . .

4. 7 Miscellaneous Contours . .

CHAPTER 5 OTHER TECHNIQUES AND TRANSFORMATIONS

5. 1 Comparisons with the Optimal Design

5. 2 Windowing . .

5. 3 Alternative Transformations to Design
Arbitrary Phase Two-Dimensional FIR
Filters

CHAPTER 6 CONCLUSIONS .

6. 1 Summary

6. 2 Suggestions for Further Research .

APPENDIX 1

APPENDIX 2

APPENDIX 3

APPENDIX 4

APPENDIX 5

BIBLIOGRAPHY

. . . . 0 ~ 0 0 ~ ~ 0 ~

* . 0 0 ~ ~ . a 0 ~ ~ a

* a a ~ . a ~ 0 0 ~ ~ ~ 0

. . 0 ~ 0 ~ 0 0 ~ 0 ~

. 70

70

79

81

87

88

93

93

97

. 0 . .a 103

107

107

. . 108

. . . 110

117

120

125

128

. 129

I

0

. . . . . .0 .0 .0

. .0 .0 .0 .0

. .0 .a .0 . .0 .a

. .a . . .

. . . . . . .0 .0 .0 .0 .0 .0 .0



6

LIST OF FIGURES

Figure No.

1.1

1.

2.

2.

2.

2

1

2

3

2.4

2.

2.

5

6

2. 7

2.

2.

8

9

2.10

2. 11

3.1

3.2

3. 3

3. 4

The two-dimensional design specifications for a
circularly symmetric lowpass filter. .

An equiripple lowpass filter. . . . .

The contours of the fan filter transformation.

The lowpass to fan filter mapping. . . 4.

The contours of the original McClellan trans-
formation. . . . .

A 41 x 41 two-dimensional filter designed from
the original McClellan transformation . .

The three-step mapping of the transformation.

The contours of the first order transformation
with cos w free using the minimax criterion
for the ideal radius 0.8 IT. . . . ... 0

The contours of the first order transformation
with cos W free using the least squares
criterion for the ideal radius 0. 8 1. .T..

The frequency variation about the W mapping.
p

The circularity deviation measured by the
change in w. . . . . . . . .a..

The digital filter implementation of the first
order transformation. . . . . .a..

The 3 x 3 nonrecursive filter for the first
order transformation implementation. .

A lowpass filter expressed as a sum of
Chebyshev polynomials. . . . . .

The first order transformation along the u
axis under the constraint 0 -+ (0, 0). .

A sparse grid over which increasing monoton-
icity and a well-defined mapping is guaranteed
with the use of linear programming. .. 0.

Compression for the first order transformation.

Page

12

16

21

21

22

23

25

33

33

35

35

37

37

40

43

43

49



7

LIST OF FIGURES (continued)

Figure No. Page

3. 5 The contour compression for the first order
transformation as a function of Ox/bu. . . . . 49

3. 6 The second order transformation along the u axis. 51

3. 7 The quadratic for maximum compression with the
second order transformation. . . . . . . 51

3.8 The compressed contours of the second order
transformation with an ideal radius of 0. 8 iT. . 53

3. 9 The 5 x 5 nonrecursive filter for the second order
transformation implementation. . . . . . . 53

3. 10a The cubic along the u axis for the third order
transformation with maximum compression on the
0.5IT radius. . . . . . . . . . . . 56

3. o10b The weighting function for the cubic of Fig. 3. 10a. 56

3. 1Oc The compressed contours of the third order trans-
formation with an ideal radius of 0. 5 iT. . . . 57

3.11a The cubic along the u axis for the third order
transformation with maximum compression on the
0Oand 9 radii. . . . . . . . . . . . 59

3.11b The contours for the third order transformation
with compression on the 0 and f radii, and an
ideal radius of0.8. . . . . . . . . . 59

3. 12 Specification matching. . . . . . . . . 60

3.13 The test for a tangent passband edge contour. . . 60

3. 14 The test for a tangent stopband edge contour. 60

3. 15 A skeleton flow graph for the specification
matching algorithm.a. . . . . . . . . . 63

3. 16 An example of specification matching. The dotted
lines are the ideal passband and stopband edges. 64

3. 17a Parameters for the meeting of specifications with
the second order transformation. The two-
dimensional transition width is fixed at 0. 05 I. . 66

3. 17b Parameters for the meeting of specifications with
the first order transformation. The two-
dimensional transition width is fixed at 0. 05 I. . 67



8

LIST OF FIGURES (continued)

Figure No. Page

3.18 The best choice of t(O, 0) for a fixed order 21 x 21
two-dimensional filter with a transition width of
0. 05 i. . . . . . . . . . . . . . 69

4. 1 The contours of the lowpass to highpass first
order transformation. . . . . . . . . 72

4. 2 The contours of the lowpass to elliptical filter
first order transformation. . . . . . . . 75

4. 3a The transition band gradient of the 63 x 63
elliptical filter corresponding to the contours of
Fig. 4.2. . . . . . . . . . . . . 75

4. 3b The frequency response of the 63 x 63 elliptical
filter. . . . . . . . . . . . . . 76

4. 3c The impulse response of the 63 x 63 elliptical
filter. .0 . 0. 0. 0. 0. 0. 9. 0. 0. a. 0. 0. 76

4. 4 The contours of the lowpass to square filter
second order transformation. . . . . . . 78

4. 5 The desired quadratic along the u axis for the
annulus filter centered on the 0. 5 v radius. . . 78

4. 6a The contours of the lowpass to annulus second
order transformation (centered on the 0. 5 ff
radius). . . . . . . . . . . . . 82

4. 6b The transition band gradients of a 61 x 61 annulus
filter. 0. 0. 0. 0. . . . . . . . . . 82

4. 6c The frequency response of the 61 x 61 annulus
filter of Fig. 4. 6b. . . . . . . . . . 83

4. 7 The desired quadratic along the u axis for the
general annulus filter. . . . . . . . . 84

4.8 The contours of the lowpass to annulus filter
second order transformation (centered on the
0. 7 f radius). . . . . . . . . . . . 84

4. 9 The fan filter contours designed without constraints
for a well-defined mapping. . . . . . . . 86

4. 10 The fan filter contours designed by linear
programming with constraints for a well-defined
mapping. . . . . . . . . . . . . 86



9

LIST OF FIGURES (continued)

Figure No. Page

4.11 The frequency response of the modulated lowpass
filter. . . . . . . . . . . . . . 89

4. 12 The contours of a diamond-like filter. . . . 90

4. 13a The convex contours generated from a modification
of the original McClellan transformation. . . 90

4. 13b The frequency response of a 63 x 63 filter corres-
ponding to the contours of Fig. 4. 13b. . . . 91

4.14 Arbitrary contours. . . . . . . . . . 92

4.15 Arbitrary contours. . . . . . . . . . 92

5. la Deviation comparison for 5 x 5 two-dimensional
filters. . . . . . . . . . . . . 95

5. lb Deviation comparison for 7 x 7 two-dimensional
filters. . . . . . . . . . . . . 95

5. 1c Deviation comparison for 9 x 9 two-dimensional
filters. . . . . . . . . . . . . 96

5. id Deviation comparison for 11 x 11 two-dimensional
filters. . . . . . . . . . . . . 96

5.2 The frequency response of a 63 x 63 filter
generated from the transformation of a filter
designed with a rectangular window. . . . . 98

5. 3 The frequency response of a 41 x 41 filter
generated from the transformation of a filter
designed with a Kaiser window. . . . . . 101

5. 4 The frequency response of a 41 x 41 filter
designed with a two-dimensional Kaiser window. 102

A. 1 The possible quadratic functions along the u axis. 118

A. 2 A well-defined, but nonmonotonic quadratic along
the u axis. . . . . . . . . . . . 118



CHAPTER 1

INTRODUCTION

1.1 The Subject and Scope of the Thesis

In this thesis we shall be concerned with the design of two-

dimensional finite duration impulse response (FIR) digital filters. A

novel design technique due to McClellan [1], [2] is extended and general-

ized. This method transforms a one-dimensional FIR filter into a two-

dimensional FIR filter by a change of variables. The transformation

preserves the amplitude characteristic of the one-dimensional filter.

The remainder of this chapter presents the design problem and

historical background which leads to the introduction of the McClellan

transformation.

Chapter 2 is first concerned with the history and mathematics of

the original McClellan transformation and its generalization to higher

order transformations. The contour approximation problem for an

arbitrary frequency response is then formulated. Finally, an efficient

implementation scheme is presented. We shall see that with this

scheme the filters can be implemented with fewer multiplies than with

conventional implementations.

Chapter 3 discusses the constraints needed for a well-defined

transformation and for transition width compression. Also, an

algorithm is presented for meeting two-dimensional specifications.

The versatility of the technique is demonstrated in Chapter 4 by

the design of arbitrary frequency responses.

Finally, Chapters 5 and 6 make comparisons with previous design

methods and present some recent ideas with suggestions for further
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research.

1.2 The Design Problem

Digital filters are categorized as either finite impulse response

(FIR) or infinite impulse response (IIR) filters. FIR filters, unlike IIR

filters, are always stable, can have exactly linear phase, and with an

appropriate finite delay can be made realizable. Also, as shown by

Parks and McClellan [3], the efficient 2nd Remes Exchange Algorithm is

suitable for the design of equiripple one-dimensional FIR filters. This

method, however, cannot be used in the design of optimal two-dimensional

FIR filters. Thus, alternate techniques are being sought for both

optimal and suboptimal designs.

The one-dimensional design goal is to minimize the error over

the interval [o, 7T] between the ideal frequency response I(w) and the

actual frequency response H(w), under some error criterion. A two-

dimensional FIR filter is characterized by the two-dimensional frequency

response given by

N-1 N-1

H(wW) = ZZ=0h(n, m) exp(-jw1 n) exp(-jw2 m) (1. 1)

where h(n, m) is of duration N x N. The design goal is analogous to the

one-dimensional case. For example, the ideal frequency response

might be specified over the two-dimensional region [-, IT] x [-I, I], in

which a passband value of one and a stopband value of zero must be

closely met with an allowable transition width. Figure 1. 1 shows a

desired set of specifications over the region [-IT, IT] x [-IT, 7T] for a

circularly symmetric lowpass filter.



PA SS BAND SO P A N
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Fig. 1. 1 The two-dimensional design specifications for a

circularly symmetric lowpass filter.
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1. 3 Previous Development

A number of techniques have been applied for meeting arbitrary

two-dimensional specifications. FIR filters, optimal in the least

squares sense, can be designed by multiplying the unrealizable ideal

frequency response by an N x N rectangular window. The rectangular

window is defined by

1 0 :5n 9 N-1,0 :9m :9N-1
w(n, m) =0 otherwise (1.2)

Rectangular windowing, however, produces a frequency response which

has large ripples or overshoots at the discontinuities of piecewise

constant ideal responses. This is analogous to the Gibbs phenomenon in

one dimension. See Chapter 5 for an example.

Huang [4] has shown that good two-dimensional windows can be

obtained from good one-dimensional windows via the relation

w(n, m) = W(n2 + m2 ), where w(t) is an appropriate one-dimensional

continuous window sampled at the appropriate values. Another possible

window is w(n, m) = w1 (n)w2 (m), where w1 (n) and w2 (m) are good one-

dimensional windows. However, since windowing is a convolution

process in the frequency domain, discontinuities in the ideal response

are smeared. Hence, for example, very narrow band filters with

specific cutoff frequencies are hard to obtain without using very long

windows. Another difficulty arises in taking the inverse transform of

an ideal filter characteristic to determine the ideal impulse response.

In spite of these handicaps, windowing has proven useful due to its speed

and flexibility in approximating arbitrary ideal frequency responses.

Another method of design is frequency sampling [5], where points



in the transition region of an ideal DFT are left free to optimize the

filter under some minimization criterion. The two-dimensional DFT is

defined as

N-1 N-1

H(k,t) = h(n, m) exp(-j2kn) exp(-j2ITm) (1.3)
n = 0 m = 0

This design lacks flexibility in specifying cutoff frequencies; also, the

approximation error tends to be highest around the transition edges.

A large concentration of error near the edges can be undesirable

in some applications. This leads to the equiripple approximation design

of linear phase FIR filters. By definition, a linear phase one-

dimensional FIR filter is of the form

H(w) = G(w) exp (j(A + Bw))

where G(w) is real. Parks and McClellan [3] have shown that one of

four possible solutions is a positive symmetric, odd length impulse

response, where A = 0, B = -(n - 1)/2, and h(n) = h(N - 1 - n). Since

exp(j(A + Bw))contributes only to phase, h(n) is assumed centered at the

origin with zero phase and length N = 2n + 1. Therefore, h(n) is

expressed as

n

H(w) = f h(m) exp(jwm) (1.4)

m= -n

which can be written

n
H(L) = a(m) cos wm (1. 5)

m=0

where, a(0) = h(0)

a(m) = 2h(m), m = 1, 2,... n.



Parks and McClellan [3] have shown that this representation of an

FIR filter in terms of cosine basis functions is suitable for finding the

Chebyshev approximation using the 2nd Remes Exchange Algorithm.

For example, Fig. 1. 2 shows an equiripple lowpass filter with passband

and stopband deviations 6 and 6 and cutoff frequencies w and w s
p s p s

A two-dimensional zero phase positive symmetric FIR filter of

duration (2n + 1) x (2n + 1) is expressed as

n n
H(w 1 ,w 2 ) = L h(,k) exp(-jw 1 LZ) exp(-juA2k) (1.6)

1= -nk= -n

which can be written

n n

H(w,)= 2 a(l, k) cos Awl cos kW2  (1.7)
1=0k=O

where

a(,O) = h(,O0)

a(0,k) = 2h(0,k), k = 1, 2 --- n

a(A,0) = 2h(,0), = 1, 2 ee-e n

a(1,k) = 4h(A, k), =1, 2* - - n, k = 1, 2...n.

The above technique cannot be used in designing optimal two-

dimensional filters since the cosine basis functions do not satisfy the

Haar condition [6]. Thus, the 2nd Remes Exchange Algorithm does not

apply. Hu and Rabiner [5] have interpreted the optimal design problem

in terms of linear programming. The design of a 9 x 9 filter on an

IBM 370 was extremely time consuming. Therefore alternate optimal

design techniques are being sought [7], [8]. These techniques, faster

than linear programming, are nonetheless slow and limit the size of the
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H(UJ)

1+ 6p
1- 6p

wpws

7P 7 7 7 777

Fig. 1.2 An equiripple lowpass filter.



filter.

Hence, the McClellan transformation, a direct transformation of

a one-dimensional design into a two-dimensional design, has become

significant. Although sometimes suboptimum, the transformation

preserves the equiripple nature of one-dimensional optimal filters. In

addition, it is very fast and flexible in designing and implementing a

large class of arbitrary frequency responses.
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CHAPTER 2

McCLELLAN TRANSFORMATIONS

2. 1 History

An alternative to the direct Chebyshev design was proposed by

McClellan [1], [2]. This new approach, although generally suboptimal,

is computationally and implementationally more efficient. The technique

transforms a one-dimensional filter into a two-dimensional filter by a

change of variables. The main advantage is its speed, since computing

time is devoted almost entirely to the one-dimensional design which is

known to be efficient. Hence, filters of very high order are readily

obtained. Also the implementation involves on the order of 2n+ 1 multi-

plies per output point, where (2n+ 1) x (2n+ 1) is the impulse response

duration. This section presents a brief view of McClellan's original

transformation. .

The frequency response of a one-dimensional linear phase filter

can be expressed as

n

H(w) = a(m) coswm. (2.1)
m=0

With w = cos-1 x, cos (Wm) = cos (m cos-1 x) = Tm(x), where Tm(x) is

the mth order Chebyshev polynomial. With the above change of variables,

the frequency response can be expressed in x as

n

H(x) = a(m) Tm(x)
m = mm=0

(2.2)
n

= b(m) xm

m = 0



Therefore,
n

H(w) = b(m) cosm (w)
m=0

(2. 3)

McClellan proposed the following change of variables:

cos W = t(O, 0)+ t(1, 0) cos W1 + t(O, 1)cos 3+ Ct(1, 1)cosW 1 cos"

(2.4)

With the above substitution a two-dimensional zero-phase FIR filter

results:

n 1 nn
H(w 3 L 2 ) = b(m) t(Ak) cos (Zw 1 ) cos (kw2 )]

m=0 A=Ok=0

(2. 5)
n n

$(p, q) cos (pw )cos (qg 2
p=Oq=O

where

= h(0,O0)

= 2h(0, q),

= 2h(p, 0),

= 4h(p, q),

q

p

q

= 1,

= 1,

= 1, 2 n 1, 2

An algorithm to perform this transformation is given in Appendix 1. The

change of variables preserves the amplitude characteristic of the one-

dimensional filter and thus results in an equiripple two-dimensional filter

when the original filter is equiripple. The transformation can be viewed

as a mapping where W is mapped to a contour implicitly described by the

transformation equation (2. 4). This is best understood by studying two

(0,

$( 0,

$(p,

t(p,

0)

q)

0)

q)

(2.

(2.

(2.

(2.1

6a)

6b)

6 c).

6d)
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examples due to McClellan.

The first example was designed for filtering unwanted velocity

components from geophysical seismic traces. With a transformation

determined by the coefficients t(O, 0) = t(1, 1) = 0 and t(1, 0) = -t(0, 1) = 0. 5,

the contours of Fig. 2. 1 were obtained. The value associated with each

contour is the one-dimensional frequency inverse image; that is, the

frequency from which each contour is mapped. McClellan [2] began with

an optimum Chebyshev one-dimensional lowpass filter. The passband

and stopband are mapped to the two-dimensional space as shown in

Fig. 2.2.

There are physical situations, as in picture processing, where

there is no preferred spatial frequency axis. Thus there is a need for

circularly symmetric filters. McClellan [2] used the transformation

given by the coefficients -t(0, 0) = t(1, 0) = t(0, 1)= t(1, 1) = 0. 5 to design

such a filter. See Fig. 2. 3 for the approximately circular contours.

An example is the 41 x 41 filter of Fig. 2. 4. This filter was trans-

formed from a length 41 one-dimensional equiripple filter. Note the

equiripple nature of the frequency response.

The next section will present a more formal analysis of

McClellan's original transformation and its generalization.

2.2 Generalization to Higher Order Transformations

We shall now generalize the original McClellan transformation to

higher orders, to increase the class of possible designs.

By definition, the Mth order transformation can be expressed as

M M

cos W = t(, k) cos (Aki1) cos (kw 2 ) . (2.7)
A= Ok= 0
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Fig. 2. 1 The contours of the fan filter transformation.
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Fig. 2. 3 The contours of the original McClellan transformation.
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For M = 1 this general expression simplifies to that in equation (2. 4).

Substituting for cos w in the one-dimensional FIR filter of equation (2. 3)

results in

n M M
H(w w2)= b(m) t(,k)cos ( 1 ) cos (k 2)] . (2.8)

m= 0 1=0k= 0

As with the first order case, this expression simplifies to that of a zero-

phase two-dimensional FIR filter. Appendix 1 presents a generalization

of a recursive algorithm developed by McClellan [21 for the first order

case of section 2. 1. The resulting filter is expressed as

nM nM

H(w1 , W2) =(p, q) cos (pw1 ) cos (go2) (2.9)

p = 0 q= 0

where the order of the filter is (2nM+ 1) x (2nM+1) and where the

relation between the b(p, q) and the impulse response coefficients h(p, q)

is described by equations (2. 6a, b, c, d). Note that the two-dimensional

order depends on both the one-dimensional impulse response length and

the order of the transformation.

We can view the Mth order transformation as a three-step

mapping, demonstrated in Fig. 2. 5. Let W = cos~ x, oW= cos~- u, and

W2 = cos-1 v. Then, mapping T1 of Fig. 2. 4 maps the interval [0,7] to

[-1, 1], where segment A maps to segment D, and segment B maps to

segment C. Substituting for w, w1 , and w2 leads to the expression

M M
x Z Z t(Z,k) RI(u) Sk(v)

1 = 0 k = 0

M M (2. 10)

Z Z I q(1, k) u1vk
1= Ok= 0
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where R2 (u) and Sk(v) are the Chebyshev polynomials for the variablesk

u and v. Thus a particular value of x maps to an Mth order polynomial

which is implicitly described by the transformation equation in the u, v

space. This is indicated in Fig. 2. 5 by T2 which maps segment C to

region E and segment D to region F in the u, v space. Regions E and F

depend on the choice of transformation coefficients t(L, k). Finally,

since H(w1 , w2 ) is positive symmetric in both w and w2, it is necessary

to consider only the mapping between the u, v space and the first quadrant

of the cI, w2 space bordered by 1. With u = cos w and v = cos W2 , T3

maps region E into region H and maps region F into region G. We

assume the mapping is well-defined, a concept to be discussed in

Chapter 3. Essentially, a well-defined mapping is one which guarantees

that only points from the interval [0, T] are mapped to the two-dimensional

region of interest. Note that the general Mth order mapping preserves

the amplitude characteristic of the one-dimensional filter.

The idea of viewing the mapping as a three-step process, the

second of which maps x to a polynomial in the u, v space, will be of great

interest in later chapters.

2. 3 The Approximation Problem in Contour Design

We have seen that the transformation maps a particular w into a

curve implicitly described by the transformation equation. The goal of

this section is to formulate the general approximation problem in terms

of mapping an w to some desired continuous curveW2 = g(W 1)inthe wj, W2
space. The approximation problem is then made linear, avoiding the

great difficulty in confronting the nonlinear version. That is, 2 can be

written in terms of w 1 by manipulating the transformation equation.

However, as we see from equation (2. 7), this involves writing W2 in terms
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of nonlinear functions such as cosines and arcosines. Hence a very

complicated nonlinear problem develops.

Zero error is desired between the ideal curve w g(w 1 ) and the

contour from which w is mapped. Since this contour will not necessarily

follow the ideal curve exactly, an error can be found in traversing g(w1 )

expressed as

M M
e(w) = cosw- 7.7. t(4,k) cos (Iw ) cos (kg(w1 ))

1= Ok= 0

M 2 
(2.11)

= cosw '- (4) (()
1= 0

where p,()= cos (&W ) cos (kg(w )). The objective is to find a best

approximation to cos W over a given interval in w1 by choosing the

appropriate (o), 'the free coefficients associated with the basis functions

p,(w ). The basis functions and the ideal function, cos W, will change

when constraints are placed on the coefficients, as demonstrated later by

examples.

A slight modification of the problem can be made by allowing

x = cos W itself to be a free variable. The minimization procedure will

find not only the optimum coefficients t(I), but also the best frequency

mapping to approximate g(w 1 ).

Nevertheless, the problem can always be viewed as a linear

approximation problem where an ideal function Hd(W1) is to be approxi-

mated by a set of linearly independent basis functions. Two possible

error criteria are the Chebyshev (minimax) or least squares. The

Chebyshev is desirable when approximating discontinuous ideal curves.
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The approximation problem in this case can be formulated as

L

minimize max Ie(w1 )| = max IHd(1) (wl) 1. (2. 12)
It= 0

A very fast and efficient algorithm developed by Hersey and

Mersereau [ 9 1 is used in the minimax approximation procedure. The

set of basis functions, derived from constraint considerations, in general

does not satisfy the Haar condition and so the 2nd Remes Exchange

Algorithm does not apply. Hersey and Mersereau have modified an

ascent algorithm by Cheney [10]to perform a multiple rather than a

single exchange of error deviation, thus quickening the algorithm. This

works in the absence of the Haar condition and so is applicable to the

given set of basis functions.

The least squares approximation, being faster than the above

algorithm (only one iteration is required), is desirable for smooth ideal

curves. The approximation problem can be formulated as

7- 2L 2
minimize e2 ( ) - H d(Wl4 ) L) (2.13)

It=

where the summation is over discrete values of w in the interval (0) of

interest. The least squares solution procedure is well known.

Some examples with the first order transformation follow. They

demonstrate the above techniques and the effect of constraints on the

approximation problem. The ideal function is g(w ) = (R2 - over the

interval [0, Rp] where Rp is the desired passband edge radius (see

Fig. 1. 1) for a circularly symmetric lowpass filter.

Suppose no constraints are applied to the coefficients. Then the
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minimax approximation problem can be expressed as

1 1
minimize max Ie(w 1)1 = maxicos W - t(i, k) cos (Lw1 ) cos (k 2)I

= k=01

(2. 14)

where W = w , the passband edge of the transformed one-dimensional
p

lowpass filter. Since cos w = cos w is a constant, the obvious trivial
p

solution with zero error is

t(0, 0) = cos W (2. 15a)
p

t(1,0) = t(0, 1) = t(1, 1) = 0 . (2. 15b)

Hence, the passband edge in one dimension is mapped to the entire two-

dimensional region (-7T, IT) x (-1T, 7I), as well as the ideal curve g(w1 ).

Some set of constraints, therefore, must be applied. A reasonable set

of constraints for a circularly symmetric lowpass filter is the following

0 + (0,0) (2. 16a)

7T 4 (W1,1) (2. 16b)

H(wlu) = H(w2 ,w 1 ). (2.16c)

These constraints guarantee that the origin in one dimension maps to the

origin in two dimensions and that 1T maps to the outer horizontal boundary

W2 = '. Constraint 2. 16c implies octagonal symmetry and so 7T also

maps to the outer vertical boundary w 1 = 1T. Also, constraining

octagonal symmetry results in t(l, k) = t(k, ), reducing the number of

degrees of freedom in the approximation. This constraint saves
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computational time.

The first constraint (2. 16a) generates the constraint equation

1 = t(0, 0) + t(1, 0) + t(O, 1)+ t(1, 1) . (2. 17)

(2. 16b) implies that

-1 = t(0, 0) - t(1, 0) cos w- t(0, 1) - t(1, 1) cos w

-1 = t(Oo0) - t(0, 1)

0 = t(1,0) + t(1,1)

(2. 18)

(2. 19a)

(2. 19b)

Finally, (2. 16c) yields the equation

t(1, 0) = t(0,1).

This results in four equations with four unknowns.

(2.20)

Solving,

-t(O,0) = t(1,0) = t(0,1) = t(1,1) = 0.5

Hence, this set of constraints gives McClellan's original transformation.

Another reasonable set of constraints is

0 4 (0,0)

T 7 
(T, IT)

H(w1 , W2 )

(2. 21a)

(2. 21b)

(2. 21c)= H(w2 , W, ).

These constraints imply the equations

or
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1 = t(O,0) + t(1,0) + t(0, 1) + t(l, 1)

-1 = t(0, 0) - t(l, 0) - t(0, 1) + t(1, 1)

t(l, 0) = t(0,1) -

(2. 22a)

(2. 22b)

(2. 22c)

We see that one free variable remains.

The approximation problem is formulated in the following way.

Solving in terms of t(0, 0),

t(1, 0)

t(1, 1)

= t(0,1) = 0.5 (2. 23a)

(2. 23b)= -t(0, 0) .

Therefore,

0)+ 0. 5 (cosw 1 + cos W2) - t(O, 0) Cos w 05Cos W2

(2. 24)

= 0. 5 (cos w 1
+ Cos w2 ) + t(0, 0) (1 -Cos O Cos W2)

With cos w = x also a free variable, we can express the approxi-

mation error as

e(w 1 ) = Hd(w1) + t(0,0) P,1(w) + x) (2. 25)

where

= 0. 5 (cosw 1

= 1 -

= 1

+ csW2 )

Cos w 1 Cos w2

and where

2(R2 (2. 26d)1

Cos O = t(0,I

Hd (w1)

(P2 (wl)sW( 1 )

(2. 26a)

(2. 26b)

(2. 26c)

0
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The minimax error criterion with RP = 0. 8 resulted in t(0, 0) =

0. 3529, = cos~1 x = 0. 685 V and nearly perfect circularity. The

contours are shown in Fig. 2. 6.

The least squares error criterion with Rp = 0. 8 1T resulted in

t(0, 0) = -0. 3531, W = cos~ x = 0. 683 IT, and again almost perfect

circularity as shown in Fig. 2. 7. We see that the contours of Fig. 2. 6

and Fig. 2. 7 are nearly identical.

These examples have involved equality constraints. If inequality

constraints are imposed, then linear programming with the minimax error

criterion can be used in the approximation problem. Linear program-

ming, a single exchange algorithm, is much slower than that of Hersey

and Mersereau, but has the advantage of handling inequality constraints.

This technique will be demonstrated in Chapter 4 for the design of fan

filters.

Lastly, we note that the minimax error e(W1 ) does not necessarily

lead to an equiripple contour about the ideal g(w1 ). The error e(w1 ) is

not the actual error deviation of the contour from the specified curve, but

rather the error between Hd(w1) and the set of basis functions. The

actual contour deviation can be measured in the following way. Letting

W, the frequency associated with each contour, vary so that the error is

zero, we write
2

M

cos W - (k)(mQy) = 0 . (2.27)
L=0

Therefore,

M 2

w = arcos LE (o) p(W)] . (2.28)
.= 0
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From equation (2. 11),

W = arcos [cos w0 - e(w)] (2.29)

where W is the frequency which is mapped to the ideal curve. Travers-0

ing the curve g(w1 ) will yield the actual W (given by 2. 28, 2. 29), which

is mapped to the ideal curve as a function of w1 . The frequency

deviation can be written

AW = w(W )W- .(2. 30)

The effects of this deviation are clearly seen by an example. Suppose

the passband edge w = of a one-dimensional lowpass filter is mapped0 p

to an ideal curve using the minimax approximation procedure. Aw

(2. 30) is a measure of the variation in frequency (about w ) which maps
p

to the ideal curve g(w1 ). Figure 2. 8 shows that a frequency response

error of one is possible for a large Ao.

Returning to the general case, we let z(1 ) = cosw0 - e(w ).1 1
Figure 2. 9 shows graphically the function w = arcos (z(w )). We see

that the variation in W is more sensitive to error deviations in e(W ) for

mappings where w0 is close to zero or vT.

2. 4 Implementation

Conventional techniques in implementing two-dimensional FIR

filters involve either direct convolution or the FFT. Briefly presented

in this section is a novel implementation, taking advantage of the unique

properties of the McClellan transformation. The technique was recently

developed by Mecklenbrtuker and Mersereau.

The z transform of a zero phase FIR filter is defined as



35

I UJ

Fig. 2. 8 The frequency variation about the w mapping.
p

(

I d

Fig. 2. 9 The circularity deviation measured by the change in w.

'wp KJ - ,-Jw -A

ifi--

.2 ; qr- . 0 ie-- :6 04 i

I

ftft ftw'

NO~
1116 14%



36

n

H(z) = h(m) z-m
m =-n

(2. 31)

b(m) z + z

where z = exp(jw). Since

-_1 M M .
L2 i =XZq(, k) z 2 -2 F(z, z2) (2.32)

L= Ok= 0

where z= exp (jw ) andz2 = exp(jw2), substituting in equation (2. 31),

n

H(z1 , z 2 ) = b(m) [F(z1 , z2 )]m . (2. 33)
m = 0

Equation (2. 33) describes the digital structure of Fig. 2. 9.

For the first order mapping

z + Z1 z + Z-1 z + Z~-1z +z
F(z 1 , z2 ) = t(O, 0) + t(1, 0)1 12 1 + t(O, [1) 2 2 2 +1 1 2 1 22 2

(2. 34)

Therefore f(n., n2 ), the impulse response of F[z1 , z 2 ], can be repres-

ented by the nonrecursive 3 x 3 filter of Fig. 2. 11. Due to the symmetry

of f(n1 , n2 ), implementation of each stage of Fig. 2. 10 requires in

general only four multiplies for each output point. Since there are n

stages, each output point requires 5n + 1 total multiplies (n + 1 multiplies

to implement b(m)). This can be reduced with the introduction of

equality constraints. For example, the transformation of section 2. 3
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Fig. 2. 10 The digital filter implementation of

the first order transformation.

Fig. 2. 11 The 3 x 3 nonrecursive filter for the first

order transformation implementation.
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with x = cos W a free variable, requires only 1 multiply per output point

for each stage. The reduction occurs because t(1, 0) = t(O, 1) = 0. 5 and

t(1, 1) = -t(0, 0), and so multiplies can be avoided with the proper

hardware implementation (logical shifts, complements, etc.). This

implies 2n + 1 total multiplies per output point.

In general, for any order transformation the number of multiplies

for each output point is on the order of kn, where k is a constant depend-

ent on the number of degrees of freedom and the constraints in the trans-

formation. This is a significant reduction from conventional techniques*

for a certain range of input and impulse response duration. Research

is presently going on to quantify these results.

*
Direct convolution requires about (2n + 1)2 multiplies per output point.

The FFT requires greater than kn multiplies up to approximately n = 21
for the first order transformation.
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CHAPTER 3

THE CONSTRAINT PROBLEM WITH APPLICATIONS TO

CIRCULARLY SYMMETRIC CONTOURS

3.1 Constraints for a Well-Defined Mapping

A number of constraints are derived for guaranteeing a well-

defined mapping, a condition which prevents the mapping of points from

off the unit circle in the z-plane, into the two-dimensional region

[-T, 7] x [-7,17]. Also, we present conditions for controlling the general

shape of contours; that is, we derive constraints to insure contours of

increasing or decreasing monotonicity of a given shape.

The definition of a well-defined mapping can be developed by

expressing the one-dimensional frequency response as a function of

x = Cos W:

n

H(x) = a(m) Tm(x) (3.1)
m=O

Figure 3. 1 shows a typical lowpass filter as a sum of Chebyshev poly-

nomials. We see that outside the region I x I 1 the polynomial H(x)

becomes quite large in magnitude, a characteristic of Chebyshev poly-

nomials. An alternate viewpoint is that the region Ix I > 1 corresponds

to points in the z plane off the unit circle. This implies that the

frequency response of points off the unit circle maps onto the two-

dimensional unit surface. The problem becomes more serious as the

order of the one-dimensional filter increases, because higher order

Chebyshev polynomials are involved. Therefore, there appears to be

no control over the magnitude of H(x) for lxI > 1. We see from the

three-step mapping of section 2.2 that points outside the interval |x| s 1
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Fig. 3. 1 A lowpass filter expressed as a sum of Chebyshev polynomials.
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can map to the u, v region (-1, 1) x (-1, 1). Therefore, the constraint

M M

lxI= t -(Ik) R 2I(u) Sk(v) 1 (3.2)
L=Ok=O

over (-1, 1) x (-1, 1) must be made on the transformation coefficients

t(A, k) to avoid an ill-defined mapping. This implies the equivalent

constraint

M M

lcos WI = Zt(Z, k) cos (IWI ) cos (kw2 ) 1 (3.3)
=0 k = 0

over (0,IT) x (0,7T).

One possible way to implement this constraint is to force |xI r 1

on a densely spaced grid over (-1, 1) x (-1, 1). This requires a very

large number of inequality constraints on t(, k) and so also the tedious

and time consuming use of linear programming.

A more elegant approach is the following. Consider the first

order transformation,

cos W = t(0, 0) + t(1, 0) cos W + t(0, 1) cos W2

+ t(1, 1) cos W1 cos W2

which can be written

x = t(O, 0) + t(1, 0)u + t(0, 1)v + t(1, 1)uv . (3.4)

Differentiating,
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=xt(1, 0) + t(1, 1)v (3. 5a)

Ox _

= t(0, 1) + t(1, 1)u . (3. 5b)

Along the W1 W2 axes,

= t(1, 0) + t(1,1) (3. 6a)

Ox

-x t(0,1 1) + M 91 1). (3. 6b)

Imposing the constraint 0 + (0, 0) and octagonal symmetry on H(w1 , W2 )M

we see from Fig. 3. 2 that the mapping remains well defined for

t(1, 0) + t(1, 1) 1 along the lines v = 1 and u = 1. If the additional

constraint i- 0 (IT, 17) is applied with the above equality constraints and

inequality constraint, t(1, 0) + t(1, 1) r 1, then a well-defined mapping is

guaranteed over the entire boundary of the region (-1, 1) x (-1, 1).

Because of the linear nature of the mapping, a well-defined mapping on

the boundary implies a well-defined mapping within the boundary.

Another problem of interest is contour monotonicity. For any

order transformation, we can show that

d'42 dv(1u2 . (3.7)
1 1 - v u= cos W

v = cosW2

d12 dvThus and - have the same sign over the region (0,7I) x (0,71). In
dW1  du

particular it can be shown that for the first order transformation
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dv - t(0, 0) t(1, 1) - t(1, 0) t(0, 1) - t(1, 1)x (3.8)
du (2, 1) + t(1, ))

and thus v is either a monotonically increasing or decreasing function of

u for a given x [1]. Furthermore, we can show increasing monotonicity

for

x<[t(0, 0) t(1, 1) - t(1, 0) t(0, 1)] (3.9)
t(1, 1)

and decreasing monotonicity otherwise. For example, McClellan's

original mapping coefficients are such that [t(0, 0) t(1, 1) -

t(1, 0) t(0, 1)]/t(1, 1) = -1. Since x in the region IxI r 1 is always

greater than -1, all contours are thus guaranteed to be monotonically

decreasing.

A set of constraints for a well-defined mapping can also be

derived for the second order transformation, which is expressed as

2 2
x = 7q(,k) u v. (3.10)

=0k=0

Differentiating,

2 2

q(1, k) vk(u ).(3. 11)
k = 1

Hence is linear in u and quadratic in v. Imposing the constraints,

0 + (0,0) (3. 12a)

Compatible with circularly symmetric lowpass filters.
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T -+ (W , IT) (3. 12b)

H(w1 9,W 2 ) = H(2' cW1) (3. 12c)

a well-defined mapping is guaranteed when

Ox 0 (3. 13a)

6 a0 (3. 13b)

at the points (-1, -1), (1, 1), (-1, 1), and (1, -1) (see Appendix 2). These

inequality constraints are naturally satisfied in designing certain

circularly symmetric contours as shown in a later section. Thus linear

programming can be avoided. Also we can show that the above

constraints imply decreasingly monotonic contours and that 2 0 along

any horizontal line in the region (-1, 1) x (-1, 1). Thus the constraints

are compatible with the design of lowpass filters.

Similarly a set of constraints can be obtained for a well-defined

mapping with increasingly monotonic contours, a necessity in designing

fan filters, for example. Because of the lack of symmetry and few

equality constraints (0 -O (IT, 0), IT - (0,IW)), these constraints are rather

complicated. Hence, a convenient sparse grid was used where Ix I 1

and where increasing monotonicity was guaranteed. See Fig. 3. 3.

Chapter 4 discusses this in greater depth with the use of linear

programming.

As a final note, a recent development by Mersereau and

Mecklenbrquker has led to a very efficient technique for avoiding an ill-

defined mapping. Suppose coefficients t(., k) are found such that
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cos WjI > 1 (see equation (2. 7)). The error deviation is then scaled

by the maximum value of cos W (c ) over the region (0, V) x (0,I7):

e(w ) cos W M M

e'()= C ~C z k cos (AW 1 ) cos (kg(w 1 ))

(3. 14)

where wc maps to the original approximating contour. It can be seen

that the new error e'(w ) and the corresponding contours remain optimal

(either in the minimax or least squares sense). However, the frequency
cos W

from which this contour is mapped has changed (cos w' = 0).
0 c m

Scaling the coefficients t(.9, k) by cm has made the mapping well-defined.

However, there is no guarantee on monotonicity as with the previous

methods. This technique is presently under experimental investigation.

3. 2 The Design of Circularly Symmetric Lowpass Filters

with Transition Width Compression

The problem is to find the best possible transformation to satisfy

a set of two-dimensional lowpass filter specifications. The one-

dimensional passband cutoff frequency must map closely to a curve

described by = (Rp - 2) where Rp is the two-dimensional passband

edge radius.

It is well known that the transition width of a one-dimensional

lowpass filter affects the amount of ripple (error) which must be tolerated

in the passband and stopband of such a filter. Thus, the one-dimensional

transition width should be made as large as possible while satisfying the

two-dimensional specifications. A mapping which produces a dense

packing of contours in the two-dimensional transition width is desirable,

because then a wide one-dimensional transition width can be mapped into
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a narrow two-dimensional transition width.

We can show that

ow ox(1-u 2 (3.15)
b 1 W2 - x 2) v = cos W2

u = Cos W

where - represents the slope (compression) of contours along a hori-ow 1b
zontal line in W2 . In particular for w2 = 0, -wl is a measure of contour

compression along the W and W2 axes (assuming octagonal symmetry).

One possibility is to find linear constraints such that is large in the
0w

1
transition region. The remaining degrees of freedom can be used to

approximate circularity along the passband edge with the hope that

circularity will be maintained in the transition width while preserving the

density of contours. Maximizing- - at a particular Wo generates non-
owl 1 Ox .

linear constraints and is thus undesirable, while maximizing b- at

u = cos W, generates linear constraints. Although Ox is distorted by the

1a2 j}a
nonlinear term ( 2), compression has nonetheless been achieved as

1-x
shown in the following sections.

The theory of transition width compression is now presented for

the first, second, and third order transformations. Finally, in section

3. 3 a technique for finding a good filter which matches a given set of

specifications is developed and comparisons are made between the

different order transformations.

We saw in section 2. 3 the constraints which led to McClellan's

original coefficients -t(0, 0) = t(1, 0) = t(0, 1) = t(1, 1) = 0. 5. Since

t(1, 0)+ t(1, 1) = 1 and (t(0, 0) t(1, 1) - t(1, 0) t(0, 1)/t(i, 1) = -1, the mapping

is well defined and all contours are monotonically decreasing. However,
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there are no degrees of freedom remaining and so no approximation

problem. Fortunately it can be shown (Fig. 2. 3) that these contours are

nearly circular, at least for small to moderate radii. It is also true

that these constraints preserve the one-dimensional filter along the

W1, W2 axes. This is because the above constraints imply the constraint

W -+ (w, 0), (0, w). Hence the transition width is determined by that of

the one-dimensional filter.

Suppose w = 0. 5 T is closely mapped to the circle with radius

0. 5 7. Then,

O WO x1~ 0O X( 3 . 1 6 )

in the region of the 0. 5 1T radius along the w 1, W2 axes. To obtain

compression in this region, t(l, 0) + t(1, 1) must be made large as shown

in Fig. 3. 4. However, this condition leads to an ill-defined mapping.

In fact the maximum slope t(1, 0) + t(1, 1) is one for any set of constraints.

Likewise, it can be argued that the actual contour compression 1.

Figure 3. 5 shows -1 as a function of - for u = 0 and u = 0. 8, where

a well-defined mapping is guaranteed. Since in the original McClellan

mapping u = v = x along the axes, OW -b = 1. Hence, the McClellan

mapping yields the densest packing along the axes.

Under constraints 2. 21a, b, c with x = cos W a free variable,

almost perfect circularity was achieved for circles of large radius,

whereas McClellan's original mapping yields box-like contours for large

radii. Figure 2. 6 shows a circular approximation on the 0. 8 IT radius

for the mapping x = cos (0. 685 7T). We see that a disadvantage is that the

transition width will be wider due to the decrease of the slope t(1, 0) +

t(1, 1). Furthermore, this technique tends to give ill-defined mappings
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for circles of radius less than 0. 2 it, since x is such that t(1, 0) + t(1, 1)

> i. Nevertheless, the original McClellan mapping yields almost

perfect circles in this region, making the first order transformation

useful for any radius (see section 3. 4).

Since the first order transformation gives nearly perfect

circularity on any radius, higher order transformations will probably

prove useful only for transition width compression or for non-circular

contour approximation. The second order transformation can be

expressed as

2 2
x = q(u, v) u1vk, (3.17)

1= 0 k = 0

a quadratic in u and v. Along the u axis,

2 2
x = q(, k)u . (3. 18)

A.=O k=0

Imposing constraints 3. 12a, b, c yields three free variables. These

constraints fix the quadratic at the endpoints along the u axis. Therefore,

two of the three degrees of freedom of the quadratic are consumed as

demonstrated in Fig. 3. 6.

If the constraint W -+ (W, 0) is imposed, the one-dimensional w

axis maps to the .t, w2 axes exactly. This implies that x = u = v along

the u, v axes. Thus the one-dimensional filter is preserved along the

W1 9W2 axes and no compression is obtained. This will be referred to as

the basic second order transformation. The approximation problem can

'A,

This can be avoided with the new technique of Mersereau and
Mecklenbr~uker (see section 2. 1).
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be formulated similarly to that of the compression constraint problem to

follow.

The possible ill-defined mapping of Fig. 3. 6 can be prevented by

constraining Ox_ + 0. Under this constraint and constraints
Ou U

Ox
(3. 12a, b, c), an additional constraint was derived to maximize as a

function of u (see Appendix 3). Letting A' equal the coefficient of the

squared term in the quadratic expression for x along the u axis, then we

see maximum compression occurs when

, u 0
A' = {0(3.19)

-t, u< 0

This is shown graphically in Fig. 3. 7. The slope at u= 1 is two and

decreases monotonically to one at u = 0. Thus compression is possible

for small and large radii. However, the weighting factor (1 - u will
1 -x 2

reduce the slope. At u = 1, v = 1 using L'Hospital's rule,

1 = 12. (3.20)

Therefore there is compression of /2 for very large and very small

circles. Figure 3. 8 shows an example of transition width compression

with R = 0. 8 . The approximation problem is presented in Appendix 3.

Recall that the second order transformation doubles the order of

the two-dimensional filter achieved by the first order transformation,

for a fixed length one-dimensional filter. Therefore the second order

transformation must compress the transition width by at least a factor of

two for circles of small radius for a fixed order two-dimensional filter.
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Fig. 3. 8 The compressed contours of the second order trans-
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The 5 x 5 nonrecursive filter for the second
order transformation implementation.
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For large circles the necessary compression is somewhat less due to the

widening of the transition width with the first order transformation.

In conventional implementation schemes (direct convolution or the

FFT) the number of multiplies per output point grows with the order of

the filter. This is not necessarily true with the implementation of

section 2. 4. The number of multiplies is on the order of kn where k

depends on the number of degrees of freedom in the transformation and

(2n+ 1) is the order of the one-dimensional filter. We can show for the

above second order transformation that the 5 x 5 nonrecursive filter of

Fig. 3. 9 must be implemented at each stage of Fig. 2. 10. Each

coefficient is a linear function of the transformation coefficients. The

constraints (see Appendix 3) imply about two multiplies per output point

at each stage, generating a total of 3n+ 1 multiplies per output point.

The first order transformation of section 2. 4 required 2n+ 1 multiplies per

output point while yielding nearly perfect circularity for circles of large

radius, but with a widening of the transition width. We will see in

section 3. 4 that the compression in this region for the second order trans-

formation is nearly twice that of the first order transformation with a

comparable number of multiplies (2n+ 1 versus 3n+ 1). Hence, the

second order transformation would be preferred when multiplies are of

primary cost and not filter order.

One consideration remaining is that of guaranteeing a well-defined

mapping. The constraint (3. 13b) is not necessarily satisfied.

Nevertheless, as shown in Fig. 3. 7, constraint (3. 13a) is satisfied due to

the nature of the quadratic along the u, v axes. It was found empirically

that these constraints are sufficient for guaranteeing a well-defined

mapping.
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Compression can also be achieved with the third order trans-

formation which can be expressed as

3 3
Ik

x = z L g(A.,k)uAvk (3.21)
A= 0 k=0

a cubic in u and v. Along the v axis

3 3
x = g4 k) u (3.22)

I= 0 k =0

Imposing the constraints (3. 12a, b, c) with the slope constraint

bx = 0 (3.23)
Ou = + 1

led to a maximum slope at the origin of value 3/2 (see Appendix 4).

Figure 3. 10a shows the cubic nature of x as a function of u along the v

axis. The term (1 u2 ) is negligible in the region of contour
1 - x

compression, since uR, x ; 0 (see Fig. 3. 10b). Figure 3. 10c demon-

strates this compression near a radius of 0. 5 IT. Although compression

is not three or greater, the same implementation consideration can be

made as with compression for the second order transformation. The

number of multiplies per output point is about 5n+ 1. Thus, if filter

order is not of primary cost, this technique may be preferable for circles

of radius about 0. 5 IT.

An attempt was made to achieve compression for large and small

radii (using a technique similar to that of Appendix 4). With constraints

(3. 12a, b, c) and the additional constraint
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Fig. 3.10c The compressed contours of the third order

transformation with an ideal radius of 0. 51r.
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-= (3. 24)
lu = 0

the maximum possible slope at the endpoints is three. Using

L'Hospital's rule = /3 at zero and IT. Figures 3. 11a, b show x as a

function of u along the u axis and the resulting contours. As seen in

Fig. 3. 11b, the mapping is ill-defined and lacks monotonicity. Hence,

linear programming may be necessary to guarantee a well-defined

mapping.

For the second and third order transformations, IT was mapped to

the outer boundaries. Replacing this constraint with the constraint

IT -+ (T, IT) may lead to better circularity for large radii. Compression

constraints for this mapping and other mappings have yet to be investi-

gated for the higher order cases.

3. 3 An Algorithm for Meeting Two-Dimensional Specifications

An algorithm will be presented for meeting two-dimensional

specifications in terms of one-dimensional passband and stopband cutoff

frequencies. The algorithm is designed for circularly symmetric low-

pass filters, but can be generalized.

A specification problem for circularly symmetric lowpass filters

is the following. Find the transformation and one-dimensional filter

such that the filter satisfies a given passband cutoff tolerance Rp and

stopband cutoff Rs with the smallest passband and stopband deviation.

The two-dimensional filter should be of size (2n+ 1) x (2n+ 1).

The specifications are met when the one-dimensional passband

and stopband frequencies W and w map to contours tangent to the
p s

specified cutoff radii (see Fig. 3. 12).
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Fig. 3. lib The contours for the third order transformation
with compression on the 0 and ir radii, and an
ideal radius of 0.8 1V.
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The algorithm to perform the specification matching can be

described in the following way. In general, the approximation routine

yields a contour oscillating about the ideal contour. Thus the passband

specification is not met. A test for a tangent contour is made. If the

test fails within a certain error criterion, the ideal radius is incremented

and the approximation repeated for a new contour.

Since the value of W increases radially (cos w decreases), a very

simple test for a tangent contour is whether the .following holds:

M M

cosW = t(,k) cos(Ao ) cos(kg( )) < cos W (3. 25)
1=0 k0= 1

That is, traversing the ideal curve g(w 1 ) yields a different inverse

frequency image w (different from w ) for each w1 . If the contour
p 1

mapped from w is tangent to the ideal curve g(w 1 ), then w is less than
p

or equal to w (cos w cos w ) everywhere along g(w 1). See Fig. 3. 13
p p

for a graphical interpretation. If cos w is less than cos W along
p

g(W ),the radius for the ideal approximation is incremented by the

tangent error

= max[W -W]. (3.26)
p

If the radius is incremented so that the new passband contour goes

beyond the given ideal passband circle, then the radius will be

decremented by ( on the next iteration. Eventually the passband

contour mapped from w will converge to a curve almost tangent (within
p

some allowable error) to the given passband radius.

The one-dimensional cutoff frequency ws, which maps to a contour

that meets the stopband radius specification, can be found quite simply.
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The maximum value of cos w along gs(W 1 ) =JR - 1 corresponds to

w = ws, which is tangent to the ideal stopband edge. See Fig. 3. 14 for

a graphical interpretation. Ws can be expressed as

M M

ws = arcos [minZ z t(e,k) cos (2w)cos (kgS(w 1 ))]. (3.27)
L = 0 k = 0

The maximum deviation from circularity along the ideal passband

edge can be approximated by the expression

E ~ 2(R' - R ) (3.28)
p p

where R is the original ideal passband radius and R' is the new
p p

(incremented) ideal radius over which the approximation is made.

Although the approximating contour is not exactly equiripple about the

ideal, C is a good indication of the maximum circularity deviation.

The flow graph for the algorithm is shown in Fig. 3. 15. For

example, the second order compression mapping in Fig. 3.16 has an

ideal passband radius 0. 8 and stopband radius 0. 9 iT. The one-

dimensional cutoff frequencies necessary for tangent contours are

f =0.727 andf = 0.82.
ps

Alternatively, we could approximate the stopband ideal cutoff

first and then find the tangent passband contour. In certain cases this

may yield better circularity over the transition band since inner contours

tend more toward circularity than the outer contours. Another possi-

bility is that the design could be performed on the two contours simul-

taneously.
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Fig. 3.16 An example of specification matching. The

dotted lines are the ideal passband and stop-

band edges.
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3. 4 Comparisons in Transition Width Compression

Figures 3. 17a, b show the relative advantages of the methods

discussed in section 3. 2 for transition width compression. All curves

refer to the two-dimensional specifications which require a passband

radius scanning from 0. 1 1T to 0. 9 1T and a transition width of 0. 05 I.

The first graph gives the allowable one-dimensional transition

width. The second graph shows the one and hence two-dimensional

passband and stopband deviations given by the appropriate one-

dimensional formula due to Rabiner et al.:

14(N - 1)Awt + 15~-20 log (6p - 6s) (3.29)

where

N = filter order

6 = passband deviation
p

6s = stopband deviation

Awt = transition width.

We assume N = 21 and 6 = 6 = 6.
ps

The third graph plots the circularity deviation described in

section 3. 3. Since McClellan's original first order mapping does not

involve an approximation, there is no ripple about the ideal curve. The

deviation, maximum on the 450 line, can be approximated by

11
W t(.Z, k) cos (.Zw cos (k (R - W)2 (3. 30)

L= k = 0

where = cos ( I/4).

Figures 3. 17a, b demonstrate a number of important points. The

original McClellan mapping (solid line in Fig. 3. 17b) makes specification
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matching impossible for radii greater than about 0. 7 1T. This is due to

the box-like nature of the contours in this region. Thus passband and

stopband deviations as well as the circularity deviation grow arbitrarily

large for large radii.

The first order mapping with x = cos w free (dotted line in

Fig. 3. 17b),yields ill-defined regions for radii less than about 0. 21I;

that is, x is such that t(1, 0) + t(1, 1), the slope of the mapping along the

u, v axes, is greater than one. Nevertheless, there is approximately

zero circularity deviation for any radius.

Figure 3. 17a compares the second order transformation with

compression constraints (dotted line) and without compression constraints

(solid line). We see the compression mapping yields an improvement in

passband and stopband deviation over all other three techniques.

However, the circularity is degraded for contours of very large radii.

Of course, this advantage is recognized when the number of multiplies

and not the filter order is of primary cost.

In considering a fixed order filter, we see the required transition

width for the second order compression mapping is not twice that of

either first order mapping. The original first order mapping is best up

to about a radius of 0. 45 7T, after which the alternative first order

mapping yields a higher allowable transition width and lower deviations.

Figure 3. 18 gives a plot of the best value of t(0, 0) and its respective first

order transformation for a fixed two-dimensional filter order of 21 x 21.
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CHAPTER 4

THE APPROXIMATION OF ARBITRARY CONTOURS

4. 1 The Lowpass to Highpass Transformation

In Chapter 2 we discussed the general approximation problem

where the function2 = g(w 1 ) described the ideal curve in the two-

dimensional region (0, T) x (0, i). In this chapter we shall apply this idea

together with new constraints to obtain a variety of novel two-dimensional

filters.

As a starting point consider the design of a highpass filter. The

ideal highpass filter can be defined to have a value of one outside a radius

R and zero inside R with some allowable transition width. One design
ps

procedure is to transform a one-dimensional highpass filter into a two-

dimensional highpass filter. Another method which demonstrates the

flexibility of the algorithm is the transformation of a one-dimensional

lowpass filter into a two-dimensional highpass filter.

Applying the constraints

0 (W , 1) (4. la)

7T (0, 0) (4. 1b)

H1('i W2) = H(w2' 1), (4.1 c)

the constraint equations for the first order transformation become

t(1, 0) - t(1, 1) = 0 (4. 2a)

t(0, 0) - t(1, 0) = 1 (4. 2b)

t(0, 0) + t(1, 0) + t(0, 1) + t(1, 1) = -1 (4. 2c)

t(1,0) = t(0,1). (4.2d)

The four constraints leave no free variables. Hence solving we obtain
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-t(0, 0) = t(1,0) = t(0,1) = t(1,1) = -0.5. (4.3)

Along the u axis

x = (t(0, 0) + t(0, 1)) + (t(1, 0) + t(1, 1))u = -u . (4. 4)

Thus the slope of x has changed sign from that of the original lowpass to

lowpass transformation (x = +u). Figure 4. 1 shows the frequency

contour plot for the lowpass to highpass transformation.

4. 2 The Elliptical Contour

The ideal passband cutoff contour for an elliptically shaped filter

can be expressed as

Sg(w1) = b(1 - (/2}

where a and b are the values of the major and minor axes, respectively.

One possible constraint set is

0 o (0,0) (4. 5a)

T W (,T ) . (4. 5b)

For the ideal ellipse with major axis in the horizontal direction, these

constraints compress the contours around the w axis. Although almost

zero approximation error is obtained, ill-defined regions exist near the

boundary W2 = 'T.

Linear programming can be avoided by applying the alternate

constraint set

S4 (0 W ) (4. 6a)

IT (mW ) . (4. 6b)
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Fig. 4. 1 The contours of the lowpass to highpass

first order transformation.
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For a > b the first constraint controls the spacing of the contours. The

second constraint tends to spread out the contours in the vertical

direction. This serves as a pseudo-guarantee for a well-defined

mapping. For the first order transformation the constraint equations

are:

t(1,0)+ t(1,1) = 1 (4. 7a)

t(0, 0) + t(0, 1) = 0 (4. 7b)

t(0, 0) - t(1, 0) = -1 (4. 7c)

t(0,'1) - t(1, 1) = 0 (4. 7d)

Constraints (4. 6a, b) determine the mapping along the W axis and the

upper boundary W2 = '. Hence, these four equations are not independent

in the sense that any three imply the fourth. Solving in terms of the

free variable t(0, 0) yields the three equations

t(1, 0) = -t(0, 0) (4. 8a)

t(0, 1) = 1 + t(0, 0) (4. 8b)

t(,1) = -t(0, 0). (4.8c)

Since the mapping of the vertical axis w = 0 is fixed, making x = cos w

a free variable is of no value. The approximation routine will force

x = b, the length of the minor axis. Thus, the approximation problem

is formulated to minimize e(W 1 ) where

e(w ) = Hd(W1) - t(OO) (pl(w1 ) (4.9)

and

Hd(w 1) = cos b - cosW (2(4. 10a)
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pWw) = 1 -eCos W1 + CosW2  Cos 2W1CosW2 (4.10b)

w2 = b(1 - (w/a))} . (4.10 c)

See Appendix 3 for the technique involved in setting up the approximation

problem. Figure 4. 2 gives the frequency contours for the approxi-

mation of an ideal ellipse with major axis 0. 5 V and minor axis 0. 25 IT.

The approximation error from the ideal is effectively zero for

t(O, 0) -0. 146.

A length 63 one-dimensional filter was transformed using the

above mapping. Figures 4. 3a, b, c show the two-dimensional

elliptical frequency response, impulse response, and transition band

where the innermost contour represents a value of 0. 9 and the outermost

contour represents a value of 0. 1.

The design of the elliptical contour under the above constraints,

using the second order transformation, yields four free variables.

Although the approximation cannot be improved since it was essentially

perfect for the first order mapping, it is perhaps possible to compress

the transition width using the additional free variables.

4. 3 The Square Contour

With octagonal symmetry the ideal curve for the square can be

expressed as

W2 =g(W 1 ) = k (4.11)

where k is the length of a side of the square and w, goes from zero to k.

The original first order mapping, having no free variables, is

not suitable for this approximation problem. Alternatively, the first
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order mapping under the constraints

0 4 (0,0) (4. 12a)

IT (T,"IT) (4. 12b)

H(wi,9W2) = H(w2 ' 1 ) (4. 12c)

with cos W fixed yields huge errors. For example, for k = 0. 6 7., a

maximum error of e(w 1 ) = 0.25 was incurred. Allowing cos w to be

free led to degeneracies in both the least squares and minimax approxi-

mation problem.

The second order transformation under the constraints

0 - (0,0) (4.13a)

IT -+ (W1,7r) (4. 13b)

H(w1 , W2 ) = H(w 2 ' w1 ) (4.13c)

generates the constraint equations (A = t(0, 0), B = t(1, 0) ... I = t(2., 2))

C = B (4. 14a)

D = 0.5 (4. 14b)

E = F = -1-A+B (4.14c)

G = H = 0. 5-B (4.14d)

I = 1.5= A - 2B. (4.14e)

Hence there are three free variables in the approximation. The ideal

and basis functions are derived similarly to those of Appendix 3.

Finally, with x = cos (0. 6 7r) (that is, the ideal square has sides of length

0, 6 T), the contours of Fig. 4. 4 were obtained. The ideal curve is

drawn in dotted lines. A maximum error of e(w1 ) 0. 093 was

incurred. This is due to the incompatibility of the differentiable
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cosine-like basis functions and the non-differentiable ideal contour.

4. 4 The Lowpass to Annulus Transformation

The second order transformation can be expressed as

2 2

X=q(, k) u Yvk
= 0 k 0

Along the line v = 1, x can be written as the quadratic,

2 2
x = q(, k)u . (4. 15)

Y= 0k = 0

If the coefficients q(L, k) are constrained such that the quadratic in

Fig. 4. 5 results, then the two-dimensional filter takes on the appearance

of a ring or annulus centered on the 0. 5 IT radius. The polynomial in

Fig. 4. 5 can be determined by the constraints

0 4 (0. 5 IT,0) (4. 16a)

1 T (W IT), (0,0) (4.16b)

H(w 1 ,tW2 ) = H(w2 ' W1 ) . (4.16c)

These constraints have the overall effect of mapping a lowpass filter to

two regions, one region from the 0. 5 1T radius to the outer boundaries,

and the other from the 0. 5 1T radius to the origin.

The second and third constraints can be implemented directly.

The resulting constraint equations are (A = t(0, 0), B = t(1, 0), - - - I = t(2, 2))

C = B (4.17a)

D = 0 (4. 17b)
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E = F = -1 -A+B (4.17c)

G = H = -B (4.17d)

I = 1 + A - 2B,, (4.17e)

where A and B are free variables. Constraint (4. 16a) is made indirectly

in approximating a circle of radius 0. 5 IT for the mapping x = cos (0).

Under the above constraint equations the approximation problem can be

formulated to minimize

e(w)1 ) -Hd( Apl(wl ) - Bqp(wl) (4. 18)

where p(w) and ( 2 (W 2 ) are linear functions of cos W1, cos " 2 , cos (2w 1 ),

and cos (2w2 ), and where w= [(0. 5 it) _ 2 1 1 (see Appendix 3 for the

derivation technique).

The resulting frequency contours are shown in Fig. 4. 6a. A

61 x 61 ring-shaped filter was designed by transforming a length 31 one-

dimensional filter with cutoff frequencies w o 0. 16 IT and W ~ 0. 3 iT.
p s

The transition band contours and the surface plot are shown in Figs.

4. 6b and 4. 6c. The square-like nature of the outer contours suggests

a better approximation might have been obtained if the contour design

were performed on the outer stopband cutoff. This is because the

contours inside the ideal radius tend toward circularity more than the

contours outside this radius. This can be accomplished by finding the

value of x in Fig. 4. 5 which maps to the outer stopband radius

(u = cos Rs). The approximation problem is then reformulated to be

compatible with this mapping.

We see in Fig. 4. 6a that the number of contours in the region

(0, IT) x (0,1i) has been doubled over that of the lowpass to lowpass trans-

formation. Thus the transition width is reduced by approximately one
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half. An optimum one-dimensional bandpass filter must be approximately

twice as long as a lowpass with the same deviation and transition width.

Since the second order lowpass to bandpass transformation compresses

the transition width by about a factor of two, this approach seems prefer-

able to transforming a one-dimensional bandpass filter. The advantage

is not as great, however, for a bandpass centered at a larger radius.

Here a quadratic sufficient to maintain a well-defined mapping is shown

in Fig. 4. 7. This can be accomplished with the constraints

IT - (0,0), (IT,IT) (4. 19a)

H(w1 ,W2) = H(w2,W1) (4. 19b)

=0 . (4. 19c)
u-U = U 0

It is evident from Fig. 4. 7 that the contours will be spread out

due to the increase in width of the quadratic function. Under the above

constraints with u0 = cos (0.7 IT) (an ideal radius of 0. 7 IT), the frequency

contours of Fig. 4. 8 resulted. Here the bandpass to bandpass trans-

formation might be preferred.

4. 5 Fan Filters

The Fan filter of Chapter 2 (Fig. 2. 1) can be derived for the first

order transformation under the constraints

0 (T, 0) (4. 20a)

T 4 (0,V) (4. 20b)

0. 5 V 2 " -(4. 20c)

The constraints yield the equations
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it

Fig. 4. 6a The contours of the lowpass to annulus second order
transformation (centered on the 0. 5 1T radius).

;o) (r.D>

Fig. 4. 6b The transition band gradients of a 61 x 61 annulus filter.
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Fig. 4. 6c The frequency response of the 61 x 61 annulus filter of Fig. 4. 6b.
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Iu

Fig. 4. 7 The desired quadratic along the u axis

for the general annulus filter.

;o (7iO)
Fig. 4. 8 The contours of the lowpass to annulus filter second order

transformation (centered on the 0. 7 it radius).
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t(O, 0) - t(1, 0) + t(0, 1) - t(1, 1) = 1 (4. 21a)

t(0, 0) + t(, 0) - t(0, 1) - t(, 1) = -1 (4. 21b)

t(O, 0) + t(i, 0) cos W + t(0, 1) Cos W + t(1, 1) cos2 W = 0 (4. 21c)

Equation 4. 21c implies that t(0, 0) = t(1, 1) = 0 and that t(1, 0) + t(0, 1) = 0.

Hence two equations with two unknowns develop:

t(0, 1) - t(1, 0) = 1 (4. 22a)

t(1, 0) + t(0, 1) = 0 (4. 22b)

Thus, t(1, 0) = -t(0, 1) = -0. 5.

An alternative method is the formulation of an approximation

problem where the ideal curve is described by W2 = g(w 1 ) = kwl. k is

the slope of the ideal passband edge; hence, variable angle filters can be

approximated. In addition, the free variables of the second order

transformation allow transition width compression at the same time the

approximation is made.

With the second order transformation under the constraints

0 (it,0) (4. 23a)

IT (W1 071) (4. 23b)

the ideal curve W2 = 0. 5 w, was approximated with the hope that the

constraint 4. 23b would spread the contours to produce a well-defined

mapping. This approximation formulation is similar to that of previous

sections. The resulting contours are shown in Fig. 4. 9. Although the

approximation is very good, ill-defined regions are generated.

To avoid this problem, the increasing monotonicity constraint

>- 0 (4.24)
5U0



The fan filter contours designed without
constraints for a well-defined mapping.

Fig. 4. 10 The fan filter contours designed by linear programming
with constraints for a well-defined mapping.
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was imposed over the sparse grid of Fig. 3. 3. We can argue that

these constraints imply a pseudo-guarantee for a well-defined mapping

when the additional constraints (4. 23a, b) are made. The utility of

linear programming was demonstrated for this example (see Appendix 5).

The constraint

0.5T (0,0. 3 T), (T, IT) (4.25)

was also imposed to restrain the transition width. The transition width

was found to be very large without this constraint. Figure 4. 10 shows

the resulting contours for an ideal passband edge W2 = 0. 7 Wi. Hence,

although the approximation has been slightly degraded, the ill-defined

regions of Fig. 4. 9 have been eliminated. More study might be made

in the application of inequality constraints to the approximation problem.

4. 6 The Bandpass Filter

A two-dimensional bandpass filter is generated by modulating a

two-dimensional narrowband lowpass filter. The modulation can be

expressed as

g(n, m) = 4h(n, m) cos (wxn) cos (w m) . (4. 26)
y

This implies the frequency spectrum

G(w, lw2) = H(wi+wxW2 +wy)+ H(wi+Wxw2 ~-yW

(4.27)

+ H(wi -xW 2 +y) + H(wi -xW 2 ~y

A narrowband lowpass 63 x 63 filter was designed by performing

the original first order transformation on a length 63 one-dimensional

filter with cutoff frequencies W 0.1I and w 0. 2 1. The surface
p s
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plot is shown in Fig. 4. 11.

4. 7 Miscellaneous Contours

To further show the versatility of the technique, a number of other

examples were designed.

With the ideal curve w2 = 0. 6 7f - wI, the diamond contours of

Fig. 4.12 were designed. The first order transformation coefficients

are t(O, 0) = -t(1, 1) = 0. 3548 and t(1. 0) = t(0, 1) = 0. 5. Constraints (2. 21)

were used.

Interchanging the signs of the coefficients t(0, 0) and t(1, 1) of the

original McClellan mapping generates the convex contours of Fig. 4. 13a.

An example is the 63 x 63 order filter of Fig. 4. 13b.

Two additional contour designs are shown in Figs. 4. 14 and 4. 15.



Fig. 4. 11 The frequency response of the modulated lowpass filter.
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Fig. 4. 12 The contours of a diamond-like filter.
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Fig. 4. 13a The convex contours generated from a modification
of the original McClellan transformation.
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Fig. 4.13b The frequency response of a 63 x 63 filter corres-

ponding to the contours of Fig. 4. 13a.
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CHAPTER 5

OTHER TECHNIQUES AND TRANSFORMATIONS

5. 1 Comparisons with the Optimal Design

McClellan has suggested that the original first order transforma-

tion yields optimal minimax two-dimensional designs when transformed

from optimal minimax one-dimensional designs. The argument is that

along the w axis

n n

H (, = A2)b(A, k) cos (w 1 A) (5.1)
1= 0k= 0

and thus since the number of degrees of freedom here equals that of the

one-dimensional design, and because the frequency response along the

W axis is indeed the one-dimensional filter, the error deviation along

this axis is the smallest possible. Hence, the minimax error over the

region (0,1T) x (0, 1) is the smallest possible when McClellan's cutoff

contours match those of the optimum. The theoretical validity of this

assertion is still in question. This section nevertheless presents some

empirical comparisons with optimal designs.

The above argument suggests that higher order mappings are not

necessarily optimum in the minimax sense. Along the w axis

nM nM

H(witW2 ) = b(, k) cos (W 1 ) . (5.2)
A=0 k=0

If H(w) is mapped to the w axis, then the number of ripples along w is

not sufficient to guarantee an optimal design along this axis. We see

this is because equation (5. 2) has, in general, nM degrees of freedom,

whereas the original one-dimensional design has n degrees of freedom.
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A comparison was made with optimal two-dimensional circularly.

symmetric lowpass filters of order 5 x 5, 7 x 7, 9 x 9, and 11 x 11

designed by Harris with a novel technique under the minimax error

criterion. The two-dimensional specifications are R = 0. 4 V and

Rs = 0. 6 V. The comparisons are made with the original McClellan

transformation and the first order transformation with cos W a free

variable.

The results are summarized in the tables shown in Figs. 5. la, b,

c, d. The second row in each table (Mc. 1) gives the one-dimensional

passband and stopband frequencies necessary for tangent cutoff contours

(see section 3. 4) for the original McClellan transformation. We see

that in all four cases the one-dimensional and hence two-dimensional

passband and stopband deviation (6 = 6 = 6) is greater than that of the
p s

optimal two-dimensional deviation. The maximum difference in

deviation is approximately 0. 02 or about 35% greater for the large order

filters.

If, instead of meeting the two-dimensional specifications exactly,

we use the two-dimensional radii 0. 4 g and 0. 6 7T as the one-dimensional

passband and stopband cutoff frequencies, the parameters of row three

(Mc. 2) are generated. The deviation is actually less than the optimal

in all four cases. As we see in Fig. 2. 3, the contours 0. 4 V and 0. 6 V

are near circular. If this circularity deviation is tolerated, better than

the optimal deviation can be achieved. However, a fairer comparison is

to design the optimal two-dimensional filter over the contours of the

McClellan transformation and then compare the resulting deviation with

the deviation of the transformed filter. This technique would serve to

test McClellan's hypothesis as well as make a more valid comparison.
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w pWS

p 6s

optimal - - 0.2670

Mc. 1 0.4000 0.5760 0.2852

Mc. 2 0.4000 0.6000 0.2639

A. 1 0.4000 0. 5758 0.2854

Fig. 5. la Deviation comparison for 5 x 5 two-dimensional filters.

W WS
p s

optimal - - 0. 1269

Mc. 1 0.4000 0.5760 0.1278

Mc. 2 0.4000 0.6000 0.1129

A. 1 0.4000 0.5758 0.1279

Fig. 5. lb Deviation comparison for 7 x 7 two-dimensional filters.
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Ws

optimal - 0.1141

Mc. 1 0.4000 0.5760 0.1334

Mc. 2 0.4000 0.6000 0.1129

A. 1 0.4000 0.5758 0.1336

Fig. 5. 1c Deviation comparison for 9 x 9 two-dimensional filters.

p s

optimal - 0. 0569

Mc. 1 0.4000 0.5760 0.0704

Mc. 2 0.4000 0. 6000 0.0508

A. 1 0.4000 0.5758 0.0705

Fig. 5. 1d Deviation comparison for 11 x 11 two-dimensional filters.
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We can also test optimality in a more formal way with the Characterization

Theorem (10).

Row four (A. 1) presents the one-dimensional parameters for

the first order transformation with cos w a free variable. We see that

in all four cases the deviation is slightly larger (approximately 0. 0001 or

0. 07%) than the original McClellan transformation with specifications

satisfied (Mc. 1). This is due to the widening of the transition band,

which is done to improve the contour shape.

Finally, a comparison of implementation requirements shows a

very significant improvement. For example, an 11 x 11 optimal filter

requires approximately 21 multiplies per output point, while the original

McClellan transformation generates a filter of the same order requiring

only 11 multiplies per output point. This is a considerable reduction in

multiplies for a negligible increase in deviation.

5.2 Windowing

In this section we present comparisons between two-dimensional

filters designed from transforming one-dimensional windowed filters and

filters designed by windowing directly in two dimensions.

Figure 5.2 shows a surface plot of a 63 x 63 two-dimensional

filter generated from the original McClellan mapping. The one-dimensional

prototype was designed by applying a rectangular window to the impulse

response of an ideal lowpass filter with cutoff frequency 0. 45 1T. The one-

dimensional impulse response is expressed as

sin (0. 45 7Tn)
un ' In 1 :531

h(n) = { (5. 3)
0 InI > 31(.

Note the Gibbs phenomenon behavior near the transition edges in Fig. 5. 2.



Fig. 5.2 The frequency response of a 63 x 63 filter generated from the transformation of
a filter designed with a rectangular window.



99

The mean squared error for this filter from the ideal is defined as

C=hZ(*hZL, k) -hd(A, k)1
A= -.ck= -00

n n

L Zn I hIh(A, k) - hd(1, k) (5.4)
-n k= -n

+ ZIhIhd(Lk)12

Ii>n Ik>n

We find that the mean squared error is approximately 3.2 x 10-3. The

mean squared error for the filter designed from windowing the two-

dimensional impulse response directly is simply the second term in the

sum of equation (5. 4). This yields about 2.0 x 10

We can show therefore that the error performance of the trans-

formed 63 x 63 filter is comparable to a 39 x 39 filter designed by

windowing directly in two dimensions. The number of multiplies to

implement the 39 x 39 by direct convolution is approximately 211, whereas

the number of multiplies required for the transformed 63 x 63 is approxi-

mately 63. If the FFT is used the 39 x 39 is, however, more efficient.

The comparison here is not entirely fair since contour deviations

introduce large errors in the transition bands. This error probably

outweighs the passband and stopband deviation error due to the very high

order of the filter. Perhaps a fairer comparison can be made with an

ideal filter of order 21 x 21 and passband cutoff of radius 0. 3 7. Both the

transformed and the directly windowed filters were designed. The mean

squared error for the direct window design is 4. 407 x 10-3. The mean



squared error for the transformed window design is 5. 117 x 10-3. We

can show that the error performance of this filter is equivalent to a

direct window design of order 9 x 9. The number of required multiplies

per output point for the 9 x 9 is about 15, whereas the transformation

implementation requires 21 multiplies per output point. These two

results suggest that it is more efficient to perform the windowing operation

in two dimensions rather than in one dimension.

Similarly, the continuous Kaiser window

I [a (1 -(t/ T)2 II<
SI (a) tT

0
w(t) = (5. 5)

0 tI> T

was sampled and applied to the impulse response of an ideal lowpass

filter of cutoff frequency 0. 3 1T. a was chosen to provide a transition

width of about 0. 1 7T. The frequency response of order 41 x 41 designed

from the original transformation of this filter is shown in Fig. 5. 3. The

mean squared error is 2. 729 x 10-3. Figure 5. 4 shows the frequency

response due to windowing the impulse response of the ideal lowpass

filter in two dimensions with cutoff radius 0. 3 IT. The window used was

the Cartesian product of the above one-dimensional Kaiser window. The

mean squared error is 2. 355 x 10-3

Hence the mean squared errors are comparable. However, we

can see that the ripple of the filter in Fig. 5. 4 is greater than that of

Fig. 5. 3. This perhaps is explained by noting that the peaks of the

transformed filter are determined by the one-dimensional convolution in

the windowing process. These peaks are given by the area under the

100



The frequency response of a 41 x 41 filter generated from the transformation
of a filter designed with a Kaiser window.

...........

Fig. 5. 3

0
I.

limp%



Fig. 5. 4 The frequency response of a 41 x 41 filter designed with a two-dimensional Kaiser window.
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product of the ideal frequency response and the transform of the window.

The direct convolution in two dimensions, however, involves a volume

integration. Thus, since the frequency response of the two-dimensional

window is the Cartesian product of the frequency response of the one-

dimensional window, larger peaks are possible. This suggests, but

does not prove, that windowing in one dimension is preferred when peak

ripple is of primary concern.

5. 3 Alternative Transformations to Design Arbitrary

Phase Two-Dimensional FIR Filters

In this section we present alternative transformations and their

properties. Also, we show that with these transformations any zero

phase FIR filter with a real impulse response can be designed. That is,

we do not restrict the zero-phase FIR filter to have quadrant to quadrant

positive symmetry, as done previously. Finally, we show that any

arbitrary phase FIR filter with a real impulse response can be designed

with a set of four different transformations.

Suppose we perform the following transformation

M M

cos W=Z Z t(L, k) sin (LW 1) sin (kW 2 ) . (5.6)
4= 0 k = 0

Then making the substitution in the expression for the one-dimensional

zero-phase filter (equation [2. 3]), we obtain

nM nM

H(w1 , w2 ) = b(p, q) sin (pw1 ) sin (qw2 ). (5.7)

p=O q=O

These concepts were recently shown to be in error since sin nw cannot
in general be written as a sum of terms of the form sinnW (see equations
5. 7, 5. 10, and 5. 12).
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H(W 1 , w2 ) represents a zero-phase negative symmetric two-dimensional

FIR filter. This is a filter where h(n, m) = h(n, -m) = h(-n, m) = h(-n, -m).

It can be shown that any odd length zero-phase FIR two-dimensional

filter with a real impulse response can be written as a sum of a positive

symmetric and negative symmetric FIR filter. In the frequency domain

this implies that H(wi, w2 ) can be expressed as

7
H(1, W2 ? a(p, q) cos (pw 1 ) cos (g2

p=0 q=0

(5.8)
P Q

+ b(p, q) sin (pwl) sin (g2

p=0 q=0

Hence we can specify any ideal zero-phase filter with arbitrary magnitude,

separate this ideal filter into its postive symmetric and negative

symmetric components, and then perform two individual transformations,

the cosine-to-cosine transformation for the positive symmetric ideal and

the cosine-to-sine transformation for the negative symmetric ideal.

Also, we can show that any FIR filter with real impulse response

(analogous to Hermitian symmetry for one-dimensional filters and odd

duration) can be written as a sum of four terms

P Q
H(W 1 , W2 ) = Z Z a(p, q) cos (pw1 ) cos(qw 2 )

p=0 q=0

P
+ b(p, q) sin (pW 1 ) sin(qw 2 )

p=O q=0
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P

+ jc(p, q) sin (pw) cos (q
p=O q=O

P Q
+i j

p=O q=O

d(p, q) cos (pw1 ) sin (qw2 )

This is quite suitable for the transformation problem. A one-dimensional

negative symmetric FIR filter of length 2n+ 1 can be expressed as

H(W)

n

m= 1

= jZ
m= 1

n

= j

m= 1

(-j2h(m)) sin (mw)

a(m) sin (mw)

A ma(m) sin C)

Suppose we perform the transformations

M M

sinW = jt(t,k)sin(Lw ) cos (kW 2 )
A=O k= 0

and

M M

sin W = t(.Z,k) cos (lW1 ) sin (kM 2 ).
A= 0 k=0

Substituting into equation (5. 10) we obtain:

nM nM
H(W1,72) = j c(p, q) sin (pW1 )cos (q42 )p= 0 q= 0

(5. 10)

(5.l a)

(5. l1b)

(5. 12a)

(5.9)
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and

nM nM
H(w1 ,cZ) = j Z d(p, q) cos (pw) sin (qw2 ). (5.12b)

p=O q=O

This is precisely what we need to represent the arbitrary phase FIR

filter of equation (5. 9).

Hence, given any arbitrary phase FIR filter, we can perform

different transformations (cosine-to-cosine, cosine-to-sine, and sine-to-

cosine, sine) to obtain all four components of equation (5. 9).

These results offer many possibilities of generalizing the class of

filters previously designed.



CHAPTER 6

CONCLUSIONS

6. 1 Summary

We have seen that the generalized McClellan transformation offers

a very efficient technique for both designing and implementing two-

dimensional filters of a large class of frequency responses and sizes.

This technique can yield filters very close to optimal, as we saw in

Chapter 5. Chebyshev optimization in two dimensions is slow and has

been limited to the design of filters of highest order 15 x 15 because of

the large amount of computer time required. Hence, not only is the

transformation technique more efficient than the direct approximation,

but, perhaps, offers the only practical method of designing nearly

optimal two-dimensional FIR filters of large order.

We have seen that the contour approximation problem is solvable

using either the least squares or minimax criterion. The minimax

solution can be found with the efficient algorithm due to Hersey and

Mersereau. Linear programming can be utilized when inequality

constraints are needed in guaranteeing a well-defined mapping.

In Chapter 4 we saw that arbitrary contour shapes can be readily

designed with the appropriate constraints and ideal curve g(w1 ). In many

cases these constraints offer a pseudo-guarantee for a well-defined

mapping. Hence, the time consumption of linear programming can be

avoided if the scaling technique of section 3. 1 fails to give the desired

contours.

Chapter 3 presented methods for controlling the shape and

increasing the density of the contours with the use of the second and third
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order transformations. Also, an algorithm was developed to find the

one-dimensional passband and stopband frequencies to satisfy two-

dimensional specifications.

We have seen that the second big advantage over the optimal

design is the speed of implementation. A transformed filter requires on

the order of n multiplies per output point where 2n + 1 is the order of the

one-dimensional filter. Since our current technology dictates that speed

is a function of multiplies, this implementation offers another strong

justification for the transformation technique.

In Chapter 5 we further generalized the transformation for the

design of arbitrary phase FIR filters. New transformations involving

sine terms were presented for accomplishing this.

In essence, an entire design and implementation package has been

developed with many potentialities remaining.

6.2 Suggestions for Further Research

One obvious extension of this thesis is the design of additional

arbitrary contours with higher order transformations. Since multiplies

are not of great concern due to the efficient implementation, high order

transformations yielding high order filters do not pose a real implement-

ation problem. These transformations may improve compression and

present greater flexibility as in mapping a lowpass filter to a multiband-

pass filter.

The scaling technique of section 3. 1 needs further study. The

effects of scaling to provide a well-defined mapping have not been experi-

mentally shown.

A recent idea is the design of two contours simultaneously.

Mersereau has designed circular and elliptical contours simultaneously,
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using the least squares criterion. Designing a circular passband and

stopband simultaneously should result in a more circular transition

width than designing one of the two cutoff edges separately.

The ideas presented in section 5. 3 may open up a whole new area

of interest. Although these results were recently shown to be in error,

the question still remains whether there exist transformations that allow

the efficient design and implementation of arbitrary phase FIR filters.



APPENDIX 1

The following is a generalization of McClellan's recursive

algorithm [21 to obtain the two-dimensional impulse response coefficients

from the parameters of the transformation.

Define Tk(x), Rk(u), and Sk(v) as the Chebyshev polynomials of

degree k in the three different variables. With x = cos w, the frequency

response can be written in x as

H(x)
n

k=O0
a(k) Tk W'.

The Chebyshev polynomials satisfy the identity

Tk(x)

With this substitution for Tk(x).

= 2xTk-1 - Tk-2

H(x) can be written as

= T (x)a(n)
n

+ T n-1(x) a(n-i) + Tn-2x)a(n-2)

n-3

k= 0
a(k) Tk

= [2a(n)x + a(n-1)]Tn-1(x) + [a(n-2) - a(n)]T(n-2

n-3

k= 0
a(k) Tk(x).

We recall that the Mth order transformation is expressed as

H(x)
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M M

x = t(k)RA(u)Sk(v)
A= 0 k=0

RA(u) and Sk(v) are Chebyshev polynomials up to degree M. We there-

fore define the functions

PM(x) = 2a(n)x + a(n-1)

Q (x) = a(n-2) - a(n) -

Substituting the transformation relation for x in these equations, we

obtain the new functions, PM(u, v) and Q0(u, v) in terms of u and v.

PM(u, v) can also be considered a function of Chebyshev polynomials

R0 (u), R 1 (u).......RM(u) and S0 (v), S 1 (v)-.- -.. SM(v), or

PM(u, v) = PM(R09 R , RM; So, S 5M0 =SPM(RS)

where R and S represent Chebyshev polynomials up to order M (the sub-

script of P). Likewise, Q0(u, v) can be written as a function of Chebyshev

polynomials R0 and S0

Q(u, v) = Q0 (R S0) = Q (RS)

where R and S represent Chebyshev polynomials of order zero (the sub-

script of Q).

Hence we can write H(x) as a function of R, S, and x. However, x

is a function of Chebyshev polynomials up to degree M. Thus we write



H(R, S) =

n-3

P , T 1 (X)+ Q(R.,S)Tn 2 (x) + 7 a(k) Tk
k = 0

= L2xPM(R, S) + Q0(R, S)l Tn- 2 (x) + [a(n-3) - PM (R 9)]

- Tn-3

Now, let

P2 M (R, S)

QM(R, S)

n-4

+ a(k) Tk(x)

= 2xPm (RS) + Q ,(RS)

= a(n-3) - PM(R, S).

We can see in the following way that P2 M (R, S) is a function of Chebyshev

polynomials, R and S, up to degree 2M. Substituting for x,

Pm (R,S)

M M

= 2a(n) L zt(6, k) RI(u) Sk(v) + a(n-1)
1= 0 k = 0

m m

b(p, q) R (u) S (v)
p=O q=0

where

b(p, q) =
2a(n)t(0, 0)

2a(n) t(p, q)

+a(n-1), p =q=

, otherwise

Therefore,
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p2M (R,0S)= 2

M M

L 7 7 t(Y,, k) RA(u) Sk(v)]
= 0 k = 0

M M

1- b(pq)R(u) S (v)]+ Q(R,S)
p=O q=0

2M 2M

d(i, j) R.(u) S.(v).
i=0 j=0

It is obvious that QM-R, S) can be expressed as

QM(R, S)

M M

= c(i, j) R.(u) S.(v)

i=0 j=0

For example, for M = 1

P 2 M(R.,S) = P 2(R,S)

p=0q=

1 1

= 2[ Zt(A,k) R,(u) Sk(v)
A= 0 k= 0

b(p, q) Rp(u) Sq(v) + Q0(R,S)

= 2 Lt(O, 0) + t(1, 0) Rl(u) S (v) + t(O, 1) R (u) S (v)

1 1

+Mt(9 1) R y(U) S (V) b (p, q) R (u) Sq (V)
p=0 q=0

0 0

+ / q(p, q) Rp(u) S (v) .
p=Oq=0q

113
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Since T 1 (u) Tn(u) = j [Tn-1 (u) + Tn+1 (u)] for n $ 0, we can write

4
=O

2t(0, 0) b(p, q)
q=0

2t(1, 0) b(p, q)
p=O q=0

1
+1
p=O

1

q=0
2t(O, 1) b(p, q)

R (u) S (v)

i [Rp+(u) + Rp_ 1 (u)]Sq(v)

R (U) t p+1(V) + S _ ]

p=O q=0
2t(1, 1) b(p, q)

SP 1 M(v) +
r 0

q(p, q)
=0 q=0

R p(u) S (v)

i=wn

where, in general

d(ij)

j

2

7-L I
=0

d(i, j) R.(u) S.(v)

= 2t(O, 0) b(i, j) + t(1, 0) [b(i + 1, j) + b(i - 1, j)]

+ t(0, 1) [b(i, j + 1) + b(i, j - 1)]

+ h t(1, 1) [b(i + 1,j+ 1) + b(i - 1,j + 1) + b(i + 1,j - 1)

+ b(i - 1, j - 1)] + q(i, j).

Note the special case where n = 0 in the formula T1 (u) Tn(u) =

J[Tn-1(u) + Tn+1(u)]. This special case must be accounted for in the

above formulation. Also, QM(R, S) can be written as

(u)

p 2(R., S)

- } [sp+1,)

} [R p+1(u) + R P-_1
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QM (RS) = Q1 (RiS)

= a(n-3) - P1 ,(RS)

i=O j=O
c(i,j) R(u) S(v).

This procedure can be generalized for higher order transformations.

At the next step of recursion

p3M (R., S) = 2xP(2M(R, + QM (RS)

3M 3M

i=O j=O
d(i, j) R.(u) S.(v)

Q2M(R, S) = a(n-4) - P2 M(RS)

2M 2M

c(i, j) R (u) S.(v)
i=0 j=0

At the kth step of recursion

= P(k+1)M(R S) Tn-k-1 (X) + QkM(R ,S) T-k 2

n-k-2

k 0
a(k) Tk(x)

The degree of Tk(x) is decreasing by one, while that of R(u) and S(v) in

and

H(R, S)
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H, P, and Q is increasing by M in each iteration.

Finally, after n iterations

H(R, S) = Pn(R,S) +
-- nM

nM nM

i=O j=0
d(i, j) R.(u) S.(v) .

Therefore, with u = cos w and v = cos W2' we can write H(R, S) as
12

H(W
1 , W2 )

nM nM

= d(i, j) cos (iw ) cos(jw2)
i=O j=0

where the order of the two-dimensional filter is (2nM + 1) x (2nM + 1).

We note that due to the special cases (T1(u) Tn(u) # j[Tn+1(u) +

T n-1(u)] for n = 0), this method becomes very tedious for high order

transformations. A simpler, more elegant approach is to apply a unit

sample to the recently developed filter implementation of section 2. 4.

This generates the unit sample (impulse) response, the desired result.
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APPENDIX 2

This appendix presents constraints for guaranteeing a well-defined

second order transformation.

The second order transformation can be expressed as

2 2
x = q(&,k) uZv kL Z

Y=0 k= 0

Differentiating,

2 2
q(4, k) (uY)vk

Thus., bxis linear in u and quadratic in v. The constraints

0 (0,0)

7T (W1 IT)

H(1' 2 )H (w2 , w,

imply that x = 0 maps to [1, 1] in the u, v space and x = 1T maps to the

lines v = -land u = -1. Making a- 0 in all four corners of the region

(-1, 1) x (-1, 1) constrains the line v - 1 to be well defined. From

octagonal symmetry the line u = 1 is likewise well defined. Therefore,

the entire boundary is well defined.

Since, along any horizontal line, is linear in u, and since the

boundaries are well defined, then constraining Ox k 0 along the lines

v = + 1 guarantees a well-defined mapping. This can be seen in Fig. A. 1.

However, if this constraint is not satisfied, a well-defined mapping may

still exist, as shown in Fig. A. 2. Since - is a quadratic in v, the
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2
constraint 2L X 0 in all four corners is sufficient.

Hence, the constraints

0

at (1, 1), (-1, -1), (-1, 1) and (1, -1) are sufficient but not necessary for a

well-defined second order mapping.



APPENDIX 3

Here we present the derivation of the second order transformation

approximation problem for transition width compression, for circularly

symmetric lowpass filters.

The second order transformation can be written

q(4, k)vu k
2 2

1= 0 k= 0

Along the u axis

q(4, k)u.

2 2

1= 0 k= 0

We let t(L, k) = t(k, 4) and make the substitution A = t(0, 0), B = t(1, 0),

C = t(O, 1) -.... I = t(2, 2). Then we can show that

x = (A+B-G-21) + (B+D+G)u + (2E + 2G + 21)u2

Letting

A'

B'

C'

= 2E + 2G + 2I

= B+ D+ G

= A+B - G - 21

then

x = A'u2 + B'u + C' .

Imposing the additional constraints

0 - (0, 0)
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IT -+ (wi1 T7)

;-0
ti1

we can show that

Bu 'u

B'I = 1

A' = -C'

and hence

x = A'u2 -A'.

These constraints guarantee a well-defined mapping along the u, v axes.

Continuing,

= 2A'u + 1 a0x - +1

ou =

implying that

A' -}, u=21

A' *, u = -1.

The objective is to maximize the slope at a particular u = u

maxmax (O
u9

= max (2A'u0+1).

Thus, by inspection

A' ={ '
<0

to maximize the slope at u0 .

u
0

u 0
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The approximation problem is formulated in the following way.

The constraint equations can be expressed as

A' =ti:

0 4 (0,0):

IT 4 (W, IT):

2E+ 2G+ 21 - +-1

A + 2B + D + 2E + 2G + I = 1

A - B + E = -1

B - D+ G= 0

E - G+I=0

These equations can also be expressed in matrix form (with A the only

free variable) as:

0 0 1 1 1

-1 0 1 0 0

1 -1 0 1 0

0 0 1 -1 1

2. 1 2 2 1

x

B

D

E

G

I

C

0

-1

0

0

-1

P

+

-1

0

0

1

Q

We can write this in the more compact form

C = AM 1'P + M 1 Q.

Solving for u > 0

B = 0. 625

D = 0. 5

E = -A - 0. 375

G = -0. 125
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I = A+0.75.

Let

a1 = cosw 1

a 2 = cos w 2

Al = cos (2W)

92 = cos (2W2

2 R2 W2

(L2 = (R -wo).W2 p 1

The ideal and basis function for A can be found for u > 0 by writing

cos w as

cos w = A + 0.625 (a1 + a2) + 0. 5 a1a2

+ (-A - 0. 375)(A+21+2) -0.125(91a2+ a 12

+ (A+0.25) #1 92 *

Therefore

e(w ) = Hd(w1) - Apl wl)

where

Hd (w) =cos w - (O.625(a + a2))

+ 0. 5 U12 - 0. 375 (A#1+A2

- 0.125 ( U 2 + a 192

+ 0.25 A 12

Pj(wi) = 1 - #1 - P2 + PA#2'
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The approximation problem can be similarly formulated for u < 0.

It is important to note that since the quadratic along the u, v axes

is completely determined, the value of w (the inverse frequency image of

the desired contour) must be such that

cosw= x = A'u2 + u + A'0 0

where R = cos~ u0 , the ideal two-dimensional passband radius. For
p

example, if we desire a circular contour of radius 0. 8 , then cos W of

the ideal function Hd (w) must be such that

cos w = A'(0.8 T)2 + (0.81T) + A'

where A' =
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APPENDIX 4

In this appendix we derive the third order transformation approxi-

mation problem for transition width compression for a circularly

symmetric lowpass filter with passband cutoff near 0. 5 71.

The third order transformation can be expressed as

3 3

x = q(1, k) u vk
1=0 k=0

As in Appendix 3 along the u axis we can write

x = A'u3 + B'u2 + C'u + D'

where A', B', C', and D' are linear functions of the transformation

coefficients t(L, k).

For compression near the 0. 5 7T radius constraints on A', B', C',

and D' must be found such that =x is large. Constraining
bu u = 0 g.Cntann

O +u = 1 > 0 and (a quadratic) to be concave downward guarantees a

well-defined mapping on the u, v axes. We impose the additional equality

constraints

0 (0,0)

H(w1 , W2 ) = H(w2' W1 )

The total set of constraint equations on the cubic can then be written

Ox ;z:0 3A'+ 2B',+ C' :0

u=+ 113A'- 2B'+ C' 20

downward concavity: A' 0



equality constraints:

where- u = = z is to be maximized.
uondut =0 r

conditions for the existence of a solution

3(1 - C') - 2B' + C, ;-

3B'

A' + C' = 1

B' = -DI

Under

can be

these constraints,

derived:

0

z .

Likewise,

3
B1  z -

Hence, for a solution to exist

1s z

Thus maximum compression at the

where it can be shown that

origin is achieved when -x = 3
bu u = 0=

ox
Oulu =+ 1 =

0

A' = -}

B' = 0

CI 3

Finally, with the same technique as in Appendix 3, the approxi-

mation problem can be formulated. All the above constraints taken

together yield three free variables A = t(0, 0), B = t(1, 0), and D = t(1, 1).

Therefore the error can be expressed as

126

or



e(w 1 ) = Hd(w1) - A~po(w) - B(w) - Dp3(w1).

Again (as in Appendix 3) cos W, which is part of the ideal function,

Hd(W 1), must be such that

0 2
+C'u +0

if a particular frequency mapping is desired. For u 0 = 0 (ideal radius

of 0. 5 7) the curves and contours of Figs.3.1Oa, b, c were obtained.
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APPENDIX 5

The following presents the procedure for the design of Fan filters

under inequality constraints. Linear programming is utilized.

Using implicit differentiation, we can show that (A = t(O, 0),

B = t(1, 0) -.. I = t(2,2))

dv (H-B) + 4(I- E)u - Dv - 4Guv - 2Hv2 -8Iuv2

du (C- G) + Du + 4(F - I)v+ 2Gu2 + 4uv + 81u2 v

The increasing monotonicity constraint 0 (over the sparse grid of

Fig. 3. 3) is imposed by constraining both the numerator and denominator

to be greater than zero. This yields eighteen inequality constraints.

Remarkably, the constraints O 0 and b- - 0 (implying, but not

guaranteeing, a well-defined mapping) yield the same set of constraints

over this grid.

Hence the linear programming problem can be formulated in the

following way. Minimize 6 e under the constraints

0 (IT,0)

T (0,IT

0, over a sparse grid
u v

1J3

M M
cost1 - t(, k) cos (Lw 1) cos (kg(w )) 6

A=0 k=0

where W, and g(w ) = bw 1 are sampled over a fine grid. b represents the

slope of the passband edge of the Fan filter. (See Fig. 4. 10 for an

example.)
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