THE PICARD SCHEME OF A CURVE

AND ITS COMPACTIFICATION

by

Hans Kleppe

Cand. real., University of Oslo, Norway (1974)

SUBMITTED TO THE DEPARTMENT OF MATHEMATICS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

> DOCTOR OF PHILOSOPHY IN MATHEMATICS

> > at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1981

C Hans Kleppe 1981

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

Signature redacted

Signature of Author

Department of Mathematics April 22, 1981

Signature redacted

Certified by

Steven L. Kleiman Thesis Supervisor

Signature redacted

Accepted by

ARCHIVES Chairman, Departmental Graduate Committee MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUL 2 3 1981

LIBRARIES

THE PICARD SCHEME OF A CURVE

AND ITS COMPACTIFICATION

by

Hans Kleppe

Submitted to the Department of Mathematics on April 22, 1981 for the degree of Doctor of Philosophy.

ABSTRACT

In the first part of this work we show that the Picard scheme P of a curve X (reduced, but not necessarily irreducible) can be constructed from the Picard scheme of the normalization of X by a sequence of \mathbb{G}_m - and \mathbb{G}_a -extensions.

Next, we study the compactification \overline{P} of P for an integral curve X defined as the moduli space of torsion-free, rank-1 sheaves on X. We show that if X lies on a smooth surface, the boundary points of P in \overline{P} are singular points. If the δ -invariant of the normalization map of X is at most one at each point, we find the orbits of \overline{P} under the action of P. Moreover, we describe the analytic structure of the singularities in this case, and we show how the singularities are distributed on the orbits. If X has ordinary double points as only singularities, we give an explicit construction of \overline{P} .

In the case that X does not lie on a smooth surface, we show that \overline{P} is reducible. In the last chapter we extend this result to the moduli space M(n,d) of semistable, torsion-free, rank-n sheaves of degree d on X. We show that if X does not lie on a smooth surface, then $M(n,\ell n)$, $\ell\in\mathbb{Z}$, is reducible.

Thesis Supervisor: Steven L. Kleiman Title: Professor of Mathematics

CONTENTS

INTRODUCTI	ON	4
CHAPTER I:	The normalization for curves.	n map 10
CHAPTER II	: The presentation	functor. 23
CHAPTER II	I: A construction of a curve	f the Picard
CHAPTER IV	: On the representation	ability of $\underline{\text{Pic}}_{X}^{=0}$. 49
CHAPTER V:	Reducibility of Picard scheme.	the compactified 64
CHAPTER VI	Results on the boost of $\operatorname{Pic}_X^{=0}$.	oundary points 74
CHAPTER VI	I: The structure of	compactifications. 83
CHAPTER VI	II: Reducibility of a of semi-stable, on a singular cur	the moduli space torsion-free sheaves rve. 95

INTRODUCTION

Throughout this work k denotes an algebraically closed field. We will use the word curve to mean a reduced projective k-scheme of pure dimension 1, and by a point we mean a closed point. For other basic concepts of algebraic geometry, we use the terminology of [14].

In the first part of this work we study the component P of the Picard scheme of a curve X , which parameterizes invertible O_X -Modules of degree o . If X is smooth, P is a projective group variety. If X has singularities, P is quasi-projective. We show how P can be constructed from the Picard scheme of the normalization of X by a sequence of extensions by \mathbb{G}_a and \mathbb{G}_m -bundles. We obtain this construction by showing that the normalization map of X can be written as a composition of maps where the δ -invariant changes by 1 [Theorem 1.2.4]. Then we prove that if $X' \to X$ is a surjective map of curves such that $\delta(X',X) = 1$, the Picard scheme of X is isomorphic to the Picard scheme of X', or it is a \mathbb{G}_m - or \mathbb{G}_a -extension of the Picard scheme of X' [Theorem 3.2.1].

There exists a natural compactification \overline{P} of P, where the points of \overline{P} corresponds to torsion-free,

rank-l sheaves on X , if X is irreducible [2]. A main part of this work is devoted to an investigation of the properties of \overline{P} .

If X lies on a smooth surface, Altman, Iarrobino and Kleiman [1] proved that \overline{P} is irreducible. We show the converse: \overline{P} is reducible if X does not lie on a smooth surface [Theorem 5.2.4].

In the case that \overline{P} is irreducible, we show that the boundary points of P in \overline{P} are singular points [Theorem 6.1.3]. In the special case that the δ invariant of the normalization map of X is at most 1 at each point, we find the orbits of \overline{P} under the action of P. Moreover, we describe the analytic structure of the singularities of \overline{P} , and we show how the singularities are distributed on the orbits [Proposition 6.2.2].

If X has m ordinary double points as only singularities, we describe how \overline{P} can be constructed from the Picard scheme of the normalization of X. More precisely, if $Y' \rightarrow Y$ is a desingularization of one of the nodes, we show that \overline{P}_Y is obtained from a \mathbb{P}^1 -bundle over \overline{P}_Y , by identification of two sections via a translation by a point of $\operatorname{Pic}_Y^{\circ}$, [Proposition 7.2.2].

Newstead [19] has verified that there exists a projective scheme M(n,d), which parameterizes semistable, torsion-free, rank-n sheaves of degree d on an irreducible curve X. If X lies on a smooth surface, Rego [23] proved that M(n,d) is irreducible. In the last chapter we show that $M(n,\ell n)$, $\ell \in \mathbb{Z}$, is reducible if X does not lie on a smooth surface [Theorem 8.3.2].

We now give a more detailed description of how the material is organized. In Chapter I we prove that the normalization map of a curve can be written as a composition of maps where the δ -invariant changes by 1. A main ingredient in the proof of this result is a modification of a method used by Serre to construct singular, irreducible curves from their normalization.

The presentation functor $\underline{\operatorname{Pres}}_{X'/X}$, where $X' \to X$ is a surjective morphism of curves such that $\delta(X',X) = 1$, is introduced in Chapter II. We show that it is represented by a \mathbb{P}^1 -bundle over $\operatorname{Pic}_{X'}^{O}$, if X and X' have the same number of connected components.

In Section 2.3 we define a subfunctor $\underline{StPres}_{X'/X}$ of $\underline{Pres}_{X'/X}$, which is represented by a \mathbb{E}_m - or \mathbb{E}_a -bundle over $\operatorname{Pic}_{X'}^O$, if X and X' have the same

number of connected components and by $\operatorname{Pic}_{X'}^{O}$, otherwise. In Chapter III we show that $\operatorname{StPres}_{X'/X}$ is isomorphic to $\operatorname{Pic}_{X}^{O}$, and hence the Picard scheme of a curve has the structure of \mathbb{G}_m - and \mathbb{G}_a -extensions of the Picard scheme of the normalization of X.

In Chapter IV we recall basic facts about the functor $\underline{\text{Pic}}_X^{=0}$ of torsion-free, rank-1 sheaves on X and the Abel map

$$A^n$$
 : $Quot^n(w/X/k) \rightarrow Pic_X^{=0}$.

We also give a short discussion of the problem of compactifying $\operatorname{Pic}_X^{\circ}$ in the case that X is reducible. In Section 4.3 we give examples of cuspidal plane curves C such that there exists a point of $\operatorname{Pic}_C^{=\circ}$ where the tangent cone is not a complete intersection. We explain how these examples show that the program we had for explicit constructions of compactifications of the Picard scheme fails.

In Chapter V we show that $\operatorname{Pic}_X^{=0}$ is reducible if X does not lie on a smooth surface. This is done in two steps. We show that $\operatorname{Quot}^2(\omega/X/k)$ is reducible if X does not lie on a smooth surface. Then we prove that this implies reducibility of $\operatorname{Quot}^n(\omega/X/k)$, $n \geq 2$, and so the smoothness of the Abel map

$$A^{n}$$
: Quotⁿ($\omega/X/k$) \rightarrow Pic⁼⁰_X

shows that $\operatorname{Pic}_{X}^{=0}$ is reducible.

In Chapter VI we study $\operatorname{Pic}_X^{=0}$ in the case that X lies on a smooth surface. Using the description of the singular locus of $\operatorname{Hilb}^n(X/k)$ of [8], we prove that the boundary points of Pic_X^0 in $\operatorname{Pic}_X^{=0}$ are singular points. If the δ -invariant of the normalization map of X is at most 1 at each point, we show that $\operatorname{Pic}_X^{=0}$ has $\binom{\delta}{k}$ orbits (under the action of Pic_X^0) of codimension k, $1 \leq k \leq \delta(\overline{X}, X)$. We also give the analytic structure of the singularities of $\operatorname{Pic}_X^{=0}$ and determine how the singularities are distributed on the orbits.

Chapter VII includes a generalization <u>GPresy'/Y</u> of the presentation functor introduced in Chapter II where $Y' \rightarrow Y$ is a surjective, birational morphism of irreducible curves. The source of a generalized presentation is taken to be a torsion-free, rank-l sheaf on Y'. We show that <u>GPresy'/Y</u> is represented by a projective k-scheme. We use generalized presentations to describe explicitly the structure of $\operatorname{Pic}_X^{=0}$ in the case that X has ordinary double points as only singularities as follows: If $Y' \rightarrow Y$ is a desingularization of one of the singularities of X, GPresy'/Y is a \mathbb{P}^1 -bundle over $\operatorname{Pic}_{Y'}^{=0}$, and

 $\operatorname{Pic}_{Y}^{=0}$ is obtained from this \mathbb{P}^{1} -bundle by identifying two sections via a translation in $\operatorname{Pic}_{Y'}^{=0}$.

Some of the techniques we use in Chapter VIII to prove reducibility of the moduli space $M(n, \ell n)$ of semi-stable, torsion-free sheaves of rank n and degree ℓn are similar to the one used in Chapter V. We show that $Quot_{ss}^{n}(w^{n}/X/k)$ is reducible if X is not Gorenstein and $Quot_{ss}^{2n}(w^{n}/X/k)$ is reducible if X is Gorenstein but X does not lie on a smooth surface $(Quot_{ss}$ denotes the open subscheme of Quot consisting of quotients N such that $ker(w^{n} \rightarrow N)$ is semi-stable). Since we have no smooth Abel map at hand, we devise other methods to derive reducibility of $M(n, \ell n)$.

I am grateful to my advisor Steven Kleiman for his help preparing this material.

CHAPTER I.

The normalization map for curves.

Let X be a curve (reduced, but not necessarily irreducible). In this chapter we prove that the nor-malization map

f :
$$\overline{X} \to X$$

can be written as a composition

$$\overline{X} = X_r \xrightarrow{f_r} X_{r-1} \rightarrow \dots \xrightarrow{f_1} X_0 = X$$

such that the δ -invariant of each f_i is one.

Both Artin [5] and Oort [21] have constructed a factorization of f; Oort in the case that X is irreducible and Artin for X reducible. However, in their factorization the δ -invariant does not always change by one.

The main ingredient in our proof of the breaking up of f is a modification of the method used by Serre to construct singular, irreducible curves from their normalization [25, Prop. 2, page 69]. We generalize Serre's procedure so that we can construct quotients by a finite set-theoretic equivalence relation of a k-scheme, which is reduced, but which need neither be nonsingular nor irreducible.

The generalization of Serre's method to schemes of dimension greater than one allows the construction of a quotient by an equivalence relation defined by an involution on a closed subscheme. As an application we construct a quotient of a \mathbb{P}^1 -bundle over $\operatorname{Pic}_{X'}^{=0}$, which we in Chapter VII will prove is the compactification of Pic_X^0 . Here X is an irreducible curve with or-dinary double points as only singularities, and X' is the desingularization of one of the double points.

1.1.

Let X be a locally noetherian k-scheme, and let Z be a closed subscheme of X such that no component of X is contained in Z. Let

$R \rightrightarrows Z$

be a finite equivalence relation in the category of sets. It induces an equivalence relation

$R \rightrightarrows X$.

We denote by Y the quotient of X by R. The quotient topology gives Y the structure of a topological space. In this section we will deduce that Y can be given the structure of a reduced scheme in many ways. First we introduce some notation. Let R(X) denote the sheaf of total quotient rings of X [11, Ch. I, Def. 8.3.1]. Since X is locally noetherian and reduced, the map

 $O_{X} \rightarrow \mathcal{R}(X)$

is injective [11, Ch. I, Prop. 8.3.7].

For a closed point $Q \in Y$ we put

$$O_Q = \bigcap_{P \in f^{-1}(Q)} O_{X,P}$$

where the intersection takes place in $\mathcal{R}(X)$ and where f: $X \rightarrow Y$ denotes the projection.

Let d be a fixed positive integer. For each closed point $Q\in f(Z)$, fix a local ring O_Q^* such that

 $(*) \quad k \oplus r_Q^d \subseteq O'_Q \subseteq k \oplus r_Q$

where $r_{\rm Q}$ denotes the radical of $\rm O_{\rm Q}$, i.e. the intersection of the maximal ideals of $\rm O_{\rm Q}$.

For $Q \in Y$, $Q \not\in f(Z)$ we set

$$(**) O_{Q}^{!} = O_{Q}$$
.

<u>Proposition 1.1.1.</u> Let X , R , Y and O'_Q be as above. Suppose that X can be covered by open affine subsets, which are R-stable. Then Y can be given the structure of a locally noetherian, reduced k-scheme such that

$$\circ_{Y,Q} \simeq \circ_{Q}'$$
,

and there is a natural projection morphism $\ensuremath{\,\mathrm{p}}$: $X\to Y$.

Moreover, if X is proper over k, then Y is proper over k.

<u>Proof</u>. Serre's proof of [25, Prop. 2, page 69] carries over to the above situation with only minor modifications.

1.2.

Let $f : X' \to X$ be a surjective, birational morphism of curves. We recall that the δ -invariant of f at a point $Q \in X$, $\delta(X', X, Q)$, is defined by

 $\delta(X', X, Q) = \dim_k(O_Q/O_{X,Q})$

where $O_Q = \bigcap_{P \in f^{-1}(Q)} O_{X',P}$. We set $\delta(X',X) = \sum_{Q \in X} \delta(X',X,Q)$.

Let Q_1, \ldots, Q_r be the points of X such that $\delta(X', X, Q_i) \neq 0$ and let S be the points of $i=1 \cup f^{-1}(Q_i)$. We denote by R the equivalence relation on S in the category of sets, which intentifies the points in S mapping to the same point of X. Since S is a finite set of points, we can find an open covering $\{U_i\}$ of X' such that U_i are R-stable. Hence we can apply Proposition l.l.l to deduce: Lemma 1.2.1. Let $f : X' \to X$ be a surjective, birational morphism of curves. Then there exists a curve Y and morphisms

g: $X' \rightarrow Y$, h: $Y \rightarrow X$

such that $f = h \cdot g$, h is a homeomorphism and $O_{Y,Q} = k \oplus r_Q$ for all $Q \in Y$ $(r_Q$ is the radical of O_Q).

The next two lemmas show that we can break up g and h in steps where δ changes by one.

Lemma 1.2.2. Let $g : X' \to X$ be as in Lemma 1.2.1. Then there exists a factorization

$$X' = X'_{s} \xrightarrow{g_{s}} X'_{s-1} \rightarrow \ldots \rightarrow X'_{1} \xrightarrow{g_{1}} X'_{o} = Y$$

of g such that $\delta(X_{i}^{!}, X_{i-1}^{!}) = 1$.

<u>Proof.</u> Let P_1 and P_2 be two different points of X', which map to the same point Q of X. Let X'_{s-1} be the quotient of X' in the category of sets by the equivalence relation, which indentifies P_1 and P_2 . By Proposition 1.1.1, X'_{s-1} can be given the structure of a curve with a morphism

$$g_s : X' \rightarrow X'_{s-1}$$

such that ${\rm g}_{\rm S}$ is an isomorphism on ${\rm X}^{\rm t} \backslash \{{\rm P}_1,{\rm P}_2\}$ and such that

$$O_{X'_{s-1},Q} \simeq k \oplus r_Q$$

where r_Q is the radical of $O_{X',P_1} \cap O_{X',P_2}$.

Set $A_1 = O_{X',P_1}$ and $A_2 = O_{X',P_2}$ and denote by m_1 and m_2 the maximal ideals of A_1 and A_2 . The natural surjection

$$\mathbf{A_1} \cap \mathbf{A_2} \rightarrow (\mathbf{A_1/m_1}) \oplus (\mathbf{A_2/m_2})$$

has kernel $m_1 \cap m_2$ and so

$$\dim_k(A_1 \cap A_2/m_1 \cap m_2) = 2.$$

Hence we get that

$$\dim_{k}(A_{1} \cap A_{2}/k \oplus (m_{1} \cap m_{2})) = 1,$$

which shows that $\delta(X', X'_{s-1}) = 1$.

We repeat the procedure for the natural morphism g': $X'_{s-1} \rightarrow Y$ to construct X'_{s-2} . After $s = \delta(X', Y)$ steps we reach the curve Y.

Lemma 1.2.3. Let $h: Y \rightarrow X$ be as in Lemma 1.2.1. Then there exists a factorization

$$Y = Y_t \xrightarrow{h_t} Y_{t-1} \rightarrow \cdots \rightarrow Y_1 \xrightarrow{h_1} Y_0 = X$$

of h such that $\delta(Y_i, Y_{i-1}) = 1$.

<u>Proof.</u> Let P be a point of Y where h is not an isomorphism and set Q = h(P). Let m denote the maximal ideal of $O_{X,Q}$ and let C denote the conductor of $O_{X,Q}$ in $O_{Y,P}$.

If $C \neq m$, we have that

(\Box) m \neq mO_Y, P

since the conductor is the largest ideal in $O_{X,Q}$, which is also an ideal of $O_{Y,P}$. There exists a curve Y', homeomorphic to Y and isomorphic to Y outside P, such that

$$O_{Y',P} \simeq k \oplus mO_{Y,P}$$

[Proposition 1.1.1]. From (\Box) it follows that $\delta(Y,Y') < \delta(Y,X)$, so we may assume, using induction on $\delta(Y,X)$, that the conductor C is equal to m.

Set $A = O_{X,Q}$ and $B = O_{Y,P}$ and denote by M the maximal ideal of B. Since h is birational, B/m is an artinian ring. Hence the exists a number ℓ such that

$$M^{\ell} \subseteq m \subseteq M$$
.

Let u be an element of M such that $u \not\in m$ and $u^2 \in m$ and set

$$A' = A[u]$$
.

Since mB = m, every element in A' can be written as a + cu, a \in A and c \in k, so dim_k(A'/A) = 1.

There exists a curve Y_{t-1} and a morphism $h_t : Y \rightarrow Y_{t-1}$ such that h_t is a homeomorphism and $h_t|_{Y \setminus P}$ is an isomorphism, and such that $O_{Y_{t-1},P} \xrightarrow{\sim} A'$ [Proposition 1.1.1]. Since $\delta(Y,Y_{t-1}) = 1$, the lemma is proved using induction on $\delta(Y,X)$.

Let X_1, \ldots, X_r denote the irreducible components of X and let \overline{X}_i denote the normalization of X_i . We define the normalization \overline{X} of X to be

$$\overline{X} = \bigoplus_{i=1}^{r} \overline{X}_{i} .$$

The three previous lemmas give the following result:

<u>Theorem 1.2.4.</u> Let $f : \overline{X} \to X$ be the normalization map of the curve X. Then f has a decomposition

$$\overline{X} = X_t \rightarrow X_{t-1} \rightarrow \dots \rightarrow X_1 \rightarrow X_0 = X$$

such that $\delta(X_i, X_{i-1}) = 1$.

1.3.

Let $W = \operatorname{Spec}(B)$ be an affine scheme and let $\sigma: W \to W$ be an involution (i.e. $\sigma^2 = \operatorname{id}$). Let $y \in W$ and let U be an open subset of W such that y, $\sigma(y) \in U$.

Lemma 1.3.1. There exists an element $b \in B$ such that the principal open subset $U' = \operatorname{Spec}(B_b)$ is σ -stable and $y \in U' \subseteq U$.

<u>Proof.</u> By shrinking U, if necessary, we may assume that U = Spec(B_s), s \in B. Put b = s $\sigma^*(s)$ and set U' = Spec(B_b) where σ^* denotes the comorphism $\sigma^*: O_W \to O_W$. Then U' = U $\cap \sigma(U)$ so U' is σ -stable and y \in U'.

Let Z be a locally noetherian and reduced projective k-scheme. Let $T \subseteq Z$ be a closed subscheme such that no component of Z is contained in T. Suppose we have an involution

σ : $\mathbb{T} \rightarrow \mathbb{T}$.

Lemma 1.3.2. For each point $y \in T$ there exists an affine open subset $U = \operatorname{Spec}(A)$ of Z such that $y \in U$ and $T \cap U$ is σ -stable.

<u>Proof.</u> Since σ is an involution on T , we can find an open affine subset

$$V = Spec(B)$$

of T, which is σ -stable and such that $y \in V$. Indeed, let Ω be an affine open subset of T such that $\{y, \sigma(y)\} \subseteq \Omega$ and set $V = \Omega \cap \sigma(\Omega)$. Clearly V is σ -stable, and V is affine since T is separated [12, Ch. I, Prop. 5.5.6].

We choose an affine open subset

$$U_1 = Spec(A_1)$$

of Z such that $U_1 \cap T \subseteq V$ and such that $\{y, \sigma(y)\} \subseteq U_1$. Then $U_1 \cap T$ is of the form

$$U_1 \cap T = Spec(B_1)$$

where $B_1 = A_1/I_1$ for an ideal $I_1 \subseteq A_1$. There exists an element $b \in B_1$ such that

$$U' = Spec(B_{1,b})$$

is σ -stable and such that $y \in U'$ [Lemma 1.3.1]. Let a be an element of A_1 such that the residue class of a modulo I_1 is equal to b. Set $A = A_{1,a}$ and put $U = \operatorname{Spec}(A)$. The assertion now follows since $U \cap T = U'$ and U' is σ -stable with $y \in U'$. Denote by i the inclusion $T \subseteq Z$. The two morphisms i and i $\circ \sigma$ define a finite equivalence relation on Z in the category of sets. As in Section 1.1, let Y denote the quotient of Z with the quotient topology. For each closed point $Q \in Y$, let O'_Q be local rings, which satisfy the relations (*) and (**.) of Section 1.1.

<u>Proposition 1.3.3.</u> Y can be given the structure of a reduced, proper k-scheme such that $O_{Y,Q} \simeq O_Q^{\dagger}$ for every closed point $Q \in Y$.

<u>Proof.</u> In order to apply Proposition 1.1.1, we must show that Z can be covered by affine open subsets, which are stable with respect to the equivalence relation defined by i and i $\cdot \sigma$. That is an immediate consequence of the fact that there is an open, affine covering {U_i} of Z such that U_i \cap T is σ -stable [Lemma 1.3.2].

Let X' be an irreducible curve and denote by $\overline{P} = \operatorname{Pic}_{X'}^{=0}$ the scheme parameterizing torsion-free, rank-1 sheaves on X' of degree 0 [2, Theorem (8.5), (ii)]. Let L be a universal relatively torsion-free, rank-1 sheaf on X' $\times \overline{P}$. Let Q_1 and Q_2 be different, nonsingular points of X' and denote by $L(Q_1)$ the pullback of L to \overline{P} by the morphism $\overline{P} \simeq \overline{P} \times Q_1 \rightarrow \overline{P} \times X'$. Let V be the \mathbb{P}^1 -bundle

 $V = Proj(L(Q_1) \oplus L(Q_2))$

over \overline{P} , and set V_{i} = $Proj(L(Q_{i}))$, i = 1,2 . We define morphisms

 $\psi_1 : V_2 \rightarrow V_1$, $\psi_2 : V_1 \rightarrow V_2$.

by $\psi_1 = \varphi_1 \cdot g_2 \cdot \varphi_1^{-1}$ and $\psi_2 = \varphi_2 \cdot g_1 \cdot \varphi_2^{-1}$ where $\varphi_i : \overline{P} \rightarrow V_i$, i = 1, 2, are the natural isomorphisms, g_1 the isomorphism on \overline{P} defined by translation by $Q_1 - Q_2$ and g_2 the isomorphism defined by translation by $Q_2 - Q_1$.

The projections $L(Q_1) \oplus L(Q_2) \to L(Q_1)$ give rise to closed embeddings $V_1 \to V$ [12, Ch. II, Rem. 4.3.6]. Let T denote the union of V_1 and V_2 . Then

$$\sigma = \psi_1 \oplus \psi_2 : T \to T$$

defines an involution on T. Let \widetilde{V} be the quotient (as toplogical space) of V by the equivalence relation given by σ . We get the following corollary of Proposition 1.3.3: Corollary 1.3.4. \widetilde{V} can be given the structure of a reduced k-scheme such that

$$O_{\widetilde{V},Q} \simeq k \oplus r_Q$$

for all closed points $Q \in \widetilde{V}$ where r_Q denotes the radical of $\bigcap_{Q' \to Q} O_{V,Q'}$.

<u>Remark 1.3.5.</u> Let X be an irreducible curve with ordinary nodes as only singularities and let X' be the desingularization of one of the double points. In Chapter VII we will show that the scheme \widetilde{V} constructed in Corollary 1.3.4 is the compactification of $\operatorname{Pic}_{Y}^{O}$.

CHAPTER II.

The presentation functor.

Let $f : X' \to X$ be a surjective, birational morphism of curves such that $\delta(X', X) = 1$. Let $Q \in X$ denote the point such that $\delta(X', X, Q) = 1$. We define the presentation functor $\frac{\operatorname{Pres}_X}{X'/X}$ as follows: For each k-scheme S, let $\frac{\operatorname{Pres}_X}{X'/X}(S)$ be the set of surjective O_{X_c} -Module homomorphisms

 $\varphi : (f_S)_* L \to N$

where L is an invertible $O_{X_{S}^{i}}$ -Module of degree O, N is an invertible O_{S} -Module and SuppN = Q x S.

A similar functor was first introduced by Oda and Seshadri [20, Section 12]. Our definition is more general since they only defined a functor suitable for their purpose, i.e. the case where Q is an ordinary node or a point where two components meet.

We show that $\underline{\operatorname{Pres}}_{X'/X}$ is represented by a \mathbb{P}^1 -bundle over $\operatorname{Pic}_{X'}^{O}$ if X' and X have the same number of connected components. Oda and Seshadri claim that their presentation functor is always representable [20, Prop. 12.1]. However, they also need the hypothesis that X' and X have the same number of connected components. In Section 2.3 we define a subfunctor $\underline{StPres}_{X'/X}$ of $\underline{Pres}_{X'/X}$, which we will show is isomorphic to $\underline{Pic}_{X}^{\circ}$ in Chapter III. We show that $\underline{StPres}_{X'/X}$ is represented by a \mathbb{G}_{a} - or \mathbb{G}_{m} -bundle over $\operatorname{Pic}_{X'}^{\circ}$, if X and X' have the same number of connected components and by $\operatorname{Pic}_{X'}^{\circ}$, otherwise.

2.1

Let $X = UX_i$ be a curve and denote by \underline{Pic}_X^O the functor of invertible O_X -Modules of degree O, i.e. for each k-scheme S,

 $\underline{\operatorname{Pic}}_{X}^{O}(S)$

is the set of equivalence classes of invertible $O_{X_S}^{-}$ Modules L such that $\chi(X_i, L(s)|_{X_i}) = \chi(X_i, O_{X_i})$ for each closed point $s \in S$ where χ denotes the Euler characteristic. Two invertible $O_{X_S}^{-}$ -Modules L and L' are considered equivalent if there exists an invertible O_S -Module N and an isomorphism

$$L' \cong L \oplus_{O_S} N$$
.

Let $f : X' \to X$ be a surjective, birational morphism of curves such that $\delta(X', X) = 1$, and let $Q \in X$ denote the point such that $\delta(X', X, Q) = 1$. homomorphism

$$\varphi : (f_S)_* L \to N$$

where $L \in \underline{Pic}_{X}^{O}(S)$, $SuppN = Q \times S$ and N is an invertible O_{S} -Module.

A presentation

$$\varphi'$$
 : $(f_{\varsigma})_{*}L' \rightarrow N'$

is equivalent to φ if there exists an $O_{X_S^*}$ -isomorphism $\alpha : L \to L' \otimes_{O_S} T$, where T is an invertible O_S^* -Module, and an $O_{X_S^*}$ -isomorphism $\beta : N \to N' \otimes_{O_S} T$ such that the diagram

commutes.

Let $S' \rightarrow S$ be a morphism of k-schemes. The pullback

$$\varphi_{\mathrm{S}}: [(f_{\mathrm{S}})_{*}\mathrm{L}]_{\mathrm{S}} \to \mathrm{N}_{\mathrm{S}};$$

of ϕ is a surjective $O_{X_{\rm S}}$ -homomorphism. $N_{\rm S}$ is an invertible $O_{\rm S}$ -Module, and since $f_{\rm S}$ is affine, there is a canonical isomorphism

$$[(f_{\rm S})_{*}L]_{\rm S}, \simeq (f_{\rm S},)_{*}(L_{\rm S},)$$

[11, Ch. I, Prop. 9.3.2]. Hence the pullback $\varphi_{\rm S}$, of ϕ is a presentation over S', and the pullback of equivalent presentations are equivalent. Thus we can make the following definition:

<u>Definition 2.1.2.</u> Let $\underline{\operatorname{Pres}}_{X'/X}$ be the functor defined as follows: For each k-scheme S , let

 $\underline{\operatorname{Pres}}_{X'/X}(S)$

be the set of equivalence classes of presentations over S. If $S' \rightarrow S$ is a morphism of k-schemes, the map $\underline{\operatorname{Pres}}_{X'/X}(S) \rightarrow \underline{\operatorname{Pres}}_{X'/X}(S')$ is given by pullback.

2.2

Let Y be a k-scheme and let E be a locally free sheaf on Y of rank n + 1. We define a contravariant functor F(E/Y) from the category of k-schemes to the category of sets as follows: For each k-scheme T, let

F(E/Y)(T)

be the set of equivalence classes of pairs (N,ϕ) consisting of an invertible $O_{\rm T}\mbox{-}Module\ N$ and a surjective $O_{\rm Y_{T}}\mbox{-}Module\ homomorphism}$.

Two pairs (N, φ) and (N', φ') are equivalent if there exists an $O_{Y_{T}}$ -isomorphism $\tau: N \to N'$ such that $\varphi' = \tau \cdot \varphi$.

Let S(E) denote the symmetric algebra of E and set $\mathbb{P}(E) = \operatorname{Proj}(S(E))$. Defined like this, $\mathbb{P}(E)$ comes with a projection $\pi : \mathbb{P}(E) \to Y$ and a tantological invertible sheaf O(1) such that there is a natural surjective $O_{\mathbb{P}(E)}$ -homomorphism $\pi^*E \to O(1)$ [12, Ch. II, Prop. 4.1.6].

The functor F(E/Y) is represented by the \mathbb{P}^{n} -bundle $\mathbb{P}(E)$ over E, and the universal pair is $(O(1), \Phi)$ where $\Phi : \pi^{*}E \to O(1)$ is the canonical surjection [12, Ch. II, Prop. 4.2.3].

<u>Proposition 2.2.1.</u> Let $f : X' \to X$ be a surjective, birational morphism of curves such that $\delta(X', X) = 1$ and such that X' and X have the same number of connected components. Suppose that $\underline{\text{Pic}}_{X}^{O}$, is represented by a scheme P. Then $\underline{\text{Pres}}_{X'/X}$ is represented by a \mathbb{P}^{1} -bundle over P.

<u>Proof.</u> Let φ be a universal invertible sheaf on X_P^i . Let Q be the point such that $\delta(X^i, X, Q) = 1$ and set

$$E = [(f_p)_* \theta](Q)$$

where $[(f_P)_* \mathcal{P}](Q)$ denotes the pullback of $(f_P)_* \mathcal{P}$ to P by the morphism $P \simeq Q \times P \rightarrow X \times P$. Then E is a locally free O_P -Module of rank 2. We show that $\underline{Pres}_{X'/X}$ is isomorphic to F(E/P).

Let

$$\varphi : (f_{S})_{*}L \to N$$

be a presentation over S . There exists a morphism q : S \rightarrow P , an invertible $\rm O_S$ -Module T and an isomorphism

$$\alpha : (q_X,)^* \mathscr{O} \cong L \otimes_{O_S}^{T} .$$

The presentation

$$(\mathbf{f}_{\mathrm{S}})_{*}(\mathbf{L} \otimes_{\mathbf{O}_{\mathrm{S}}} \mathbf{T}) \rightarrow \mathbf{N} \otimes_{\mathbf{O}_{\mathrm{S}}} \mathbf{T}$$

is equivalent to $\,\phi$. Hence the presentation $\,\phi\,$ gives rise to a morphism q : S \to P and a surjective $_{\rm N_S}$ -homomorphism

$$\varphi_{1} : (f_{S})_{*}[(q_{X};)*\theta] \to M$$

where $SuppM = Q \times S$ and M is an invertible O_S -Module. Since f_P is affine,

$$(f_S)_*[(q_X)^* \theta] \simeq (q_X)^*[(f_P)_* \theta]$$

[11, Ch. I, Prop. 9.3.2] so φ_1 corresponds to a homomorphism

$$\varphi_2 : (q_X)^*[(f_P)_* \theta] \to M$$
.

Let m denote the ideal of Q in O_X . Since SuppM = Q x S and M is an invertible O_S -Module, m $\otimes O_S$ is the annihilator of M in O_{X_S} . Therefore φ_2 factors through the O_S -homomorphism

$$\phi_{\mathfrak{Z}}$$
 : $((\mathtt{q}_{\mathfrak{X}})*[(\mathtt{f}_{\mathfrak{P}})_{*}\mathscr{P}])(\mathtt{Q}) \to \mathtt{M}$.

The commutative diagram

shows that

$$((\mathsf{q}_{\mathsf{X}})^*[(\mathtt{f}_{\mathsf{P}})_*\mathscr{P}])(\mathtt{Q}) \simeq \mathtt{q}^*([(\mathtt{f}_{\mathsf{P}})_*\mathscr{P}](\mathtt{Q}))$$

so $\phi_{\widetilde{\mathcal{J}}}$ corresponds to an $O_{X_{\widetilde{S}}}$ -homomorphism

$$\varphi_{I}: q^* E \to M$$
,

which is an element of F(E/P)(S) .

Let α ' be another isomorphism

$$\alpha'$$
 : $(q_{X'})^* \mathcal{P} \simeq L \otimes_{O_q} T$.

It gives rise to a surjective $0_{\substack{X_{\rm S}}}$ -homomorphism $\phi_1^{\rm i}$ and a commutative diagram

Let Z denote the connected component of X containing Q and set $Z' = f^{-1}(Z)$. Since X' and X have the same number of connected components, Z' is connected and the isomorphism $\alpha' \cdot \alpha^{-1}|_{Z'}$ is given by

multiplication by an element $s \in O^*_S(S)$ [2, Lemma 5.4]. Hence we have a commutative diagram

so ϕ_{4} and $\phi_{4}^{\,\prime}$ define the same element of F(E/P)(S) . The map

$$\rho : \underline{\operatorname{Pres}}_{X'/X} \to F(E/P)$$

defined above is a map of functors, and the map, which sends an element $q^*E \to M$ of F(E/P)(S) to the presentation $(f_S)_*[(q_X,)^*\theta] \to M$, is an inverse of ρ .

2.3

We keep the same notation as in Section 2.1. Let S be a k-scheme. If L is an invertible O_{X_S} -Module, then $[(f_S)_*L](Q)$ is a locally free O_S -Module of rank 2, which splits as follows:

<u>Case 1.</u> There is only one point $Q' \in X'$ such that f(Q') = Q. Then $[(f_S)_*L] \simeq L(Q') \oplus L'$ where L' is an invertible O_S -Module. Indeed, let m and m' denote the ideals of Q and Q'. Since $\delta(X',X) = 1$, m is the conductor of O_X in O_X , [10, Ch. III, Rem. 1.3], and there is a canonical k-isomorphism

$$O_{X'/m} \simeq (O_{X'/m'}) \oplus (m'/m)$$
.

Hence there is a canonical O_S -isomorphism

$$o_{X'_S/m_S} \simeq (o_{X'_S/m'_S}) \oplus (m'_S/m_S) .$$

The morphism ${\rm f}_{\rm S}$ is affine, so there exists a canonical ${\rm O}_{\rm S}\text{-}{\rm isomorphism}$

$$[(f_{\rm S})_*L]({\rm Q}) \simeq L \otimes_{O_{\rm X_{\rm S}^{\prime}}}(O_{\rm X_{\rm S}^{\prime}/m_{\rm S}})$$

[11, Ch. I, Prop. 9.3.2]. Hence we get a canonical splitting

$$[(\mathbf{f}_{\mathrm{S}})_{*}\mathrm{L}](\mathrm{Q}) \cong \mathrm{L}(\mathrm{Q}') \oplus \mathrm{L}'$$

where $L' = L \otimes_{O_{X_S'}} (m_S'/m_S)$.

<u>Case 2.</u> There are two points Q_1 , $Q_2 \in X'$ such that $f(Q_1) = f(Q_2) = Q$. Then there is a canonical O_S^- isomorphism

 $[(\mathtt{f}_{\mathrm{S}})_{\star}\mathtt{L}](\mathtt{Q}) \cong \mathtt{L}(\mathtt{Q}_{\mathtt{l}}) \ \oplus \ \mathtt{L}(\mathtt{Q}_{\mathtt{2}}) \ .$

The proof of this splitting is similar to that given in Case 1.

33.

Suppose that $\underline{\operatorname{Pic}}_{X}^{\circ}$, is represented by a scheme P and let φ be a universal invertible sheaf on X' x P. Using the splitting of $[(f_{\mathrm{P}})_{*}\varphi](Q)$ deduced above, Prop. 2.2.1 can be formulated as follows:

<u>Proposition 2.3.1.</u> <u>Pres_X'/X</u> is represented by the \mathbb{P}^1 -bundle.

 $\mathbb{P}(\varphi(Q') \oplus \varphi')$

in Case 1 and by the \mathbb{P}^1 -bundle

$$\mathbb{P}(\mathcal{P}(\mathbb{Q}_1) \oplus \mathcal{P}(\mathbb{Q}_2)$$

in Case 2 if X' and X have the same number of connected components.

Let

$$\varphi : (f_S)_* L \to N$$

be a presentation over S. We say that φ is a <u>strict presentation</u> if $L' \to N$ is surjective (Case 1) or if $L(Q_1) \to N$ and $L(Q_2) \to N$ are both surjective (Case 2).

<u>Definition 2.3.2.</u> Let <u>StPres_X'/X</u> be the subfunctor of <u>Pres_X'/X</u> defined as follows: For each k-scheme S, let

$$\underline{StPres}_{X'/X}(S)$$

be the set of equivalence classes of strict presentations over S .

Proposition 2.3.3.

(a). <u>StPres_X'/X</u> is represented by the \mathbb{G}_a -bundle

 $\mathbb{P}(\mathfrak{P}(\mathbb{Q}^{\,\prime}) \oplus \mathfrak{P}^{\,\prime}) \setminus \mathbb{P}(\mathfrak{P}(\mathbb{Q}_{1}))$

over P in Case 1.

(b). StPres_X'/X is represented by the
$$\mathbb{G}_{m}$$
-bundle
 $\mathbb{P}(\varphi(\mathbb{Q}_{1}) \oplus \varphi(\mathbb{Q}_{2})) \setminus (\mathbb{P}(\varphi(\mathbb{Q}_{1})) \cup \mathbb{P}(\varphi(\mathbb{Q}_{2})))$

over P in Case 2 if X' and X have the same number of connected components.

(c). $\underline{StPres}_{X'/X}$ is represented by P if X' and X do not have the same number of connected components.

Proof. (a). Let

$\varphi : f_{\star}L \rightarrow k$

be a presentation over k and let q : ${\rm Spec}(k)\to P$ be a morphism such that $L\cong (q_\chi)*{\cal G}$. As in the proof of

Prop. 2.2.1, ϕ corresponds to a k-homomorphism

$$q^*(\varphi(Q')) \oplus q^* \varphi' \to k$$
.

The presentation φ is not strict if and only if $q^* \theta^! \rightarrow k$ is zero, i.e. if and only if we have a commutative diagram

where all the maps are surjective. Therefore φ is not strict if and only if the morphism $\operatorname{Spec}(k) \to \mathbb{P}(\varphi(Q') \oplus \varphi')$ corresponding to φ factors though the closed embedding $\mathbb{P}(\varphi(Q') \to \mathbb{P}(\varphi(Q') \oplus \varphi'))$ determined by the surjective $O_{\mathbb{P}}$ -homomorphism $\varphi(Q') \oplus \varphi' \to \varphi(Q')$.

A presentation over a k-scheme S is strict if and only if the restriction to each closed point of S is a strict presentation. Hence a morphism $h : S \to \mathbb{P}(\mathcal{P}(Q') \oplus \mathcal{P}')$ corresponds to a strict presentation if and only if h factors through the open subset $\mathbb{P}(\mathcal{P}(Q') \oplus \mathcal{P}') \setminus \mathbb{P}(\mathcal{P}(Q'))$.

(b). The proof is similar to the one given for case (a).So the basic ingredient in the proof is the representability

of $\underline{\operatorname{Pres}}_{X'/X}$ by a \mathbb{P}^1 -bundle, and therefore we need the hypothesis that X' and X have the same number of connected components.

(c). Set $E_1 = \varphi(Q_1)$ and $E_2 = \varphi(Q_2)$. We will show that $\underline{\text{StPres}}_{X'/X}$ is isomorphic to $F(E_1/P) \times \underline{\text{Pic}}_{X'}^{\circ} F(E_2/P)$. Let S be a k-scheme and let

$$\varphi : (f_{S})_{*}L \to N$$

be a strict presentation over S . There exists a morphism q : S \rightarrow P , an invertible $\rm O_S-Module~T$ and an isomorphism

$$\alpha : (\mathsf{q}_X,) * \mathscr{P} \cong \mathsf{L} \otimes_{\mathsf{O}_S}^{\mathsf{T}} .$$

As in the proof of Proposition 2.2.1, we get a surjective $\rm O_{g}\mbox{-}homomorphism}$

$$q^*E_1 \oplus q^*E_2 \rightarrow M = N \otimes_{O_S} T$$
,

and therefore surjective maps

$$\psi_1 : q^*E_1 \rightarrow M \text{ and } \psi_2 : q^*E_2 \rightarrow M$$

because ϕ is strict.
Let α' be another isomorphism $(q_X')^* \theta \simeq L \otimes_{O_S}^{T}$. It gives rise to a surjective O_S -homomorphism $\varphi': q^* E_1 \oplus q^* E_2 \to M$. Since Q_1 and Q_2 lie on different connected components of X', the isomorphism $(f_S)_*(\alpha' \cdot \alpha^{-1})$ gives rise to an isomorphism

$$\boldsymbol{\psi} : \boldsymbol{q}^{*}\boldsymbol{\mathrm{E}}_{1} \oplus \boldsymbol{q}^{*}\boldsymbol{\mathrm{E}}_{2} \to \boldsymbol{q}^{*}\boldsymbol{\mathrm{E}}_{1} \oplus \boldsymbol{q}^{*}\boldsymbol{\mathrm{E}}_{2}$$

given by multiplication by $s_1\in O^*_S(S)$ on q^*E_1 and mutiplication by $s_2\in O^*_S(S)$ on q^*E_2 such that the diagram

commutes. Hence we have commutative diagrams

and

and so ϕ and ϕ' give rise to the same element of

$$F(E_1/P)(S) \times F(E_2/P)(S)$$
.
Pic^O_X,(S)

Hence we have defined a map of functors

$$\rho : \underline{\text{StPres}_{X'/X}} \to F(E_1P) \times F(E_2/P) .$$

$$\underline{\text{Pic}_{X'}}$$

Let $\psi_1 : q^*E_1 \to N$, $\psi_2 : q^*E_2 \to N$ and $\psi'_1 : q^*E_1 \to N$, $\psi'_2 : q^*E_2 \to N$ be surjective maps such that (ψ_1, ψ_2) and (ψ'_1, ψ'_2) define the same element of

$$F(E_1/P) \times F(E_2/P)$$
.
Pic⁰_X,(S)

We have commutative diagrams

and

where s_1 , $s_2 \in O_S^*(S)$. The pairs (ψ_1, ψ_2) and (ψ_1', ψ_2') give rise to strict presentations

 $\varphi \ , \ \varphi' \ : \ (\texttt{f}_{\texttt{S}})_{\ast}[\,(\texttt{q}_{\texttt{X}};\,)^{\ast} \mathcal{P}] \rightarrow \texttt{q}^{\ast} \texttt{E}_{\texttt{l}} \ \oplus \ \texttt{q}^{\ast} \texttt{E}_{\texttt{2}} \rightarrow \texttt{N} \ .$

Let α denote the $O_{X_S^{\prime}}$ -isomorphism of $(q_{X^{\prime}})^* \theta$ defined by s_1 on the connected component of X_S^{\prime} containing Q_1 , by s_2 on the connected component containing Q_2 and by 1 on the other components. Then we have a commutative diagram

and ϕ and ϕ' define the same element of $\underline{StPres}_{X'/X}(S)$. Hence we have defined a map

$$F(E_1/P) \times \frac{Pic_X^{O}}{Pic_X} F(E_2/P) \rightarrow \frac{StPres_X'/X}{Y}$$

which is an inverse of p .

The assertion of (c) follows since $F(E_1/P)$ and $F(E_2/P)$ are represented by schemes isomorphic to P.

CHAPTER III.

A construction of the Picard scheme of a curve.

In [13] Grothendieck showed the existence of the Picard scheme of a projective k-scheme [13, Exp. 232, Cor. 6.6]. Oort [21] proved that the Picard scheme of an irreducible curve X can be constructed from the Picard scheme of the normalization of X by a sequence of extensions by $(\mathbb{G}_m)^n$ - and $(\mathbb{G}_a)^n$ -bundles. In the special case that the curve has n singularities, which are all ordinary nodes, Oda and Seshadri used the presentation functor to construct $\operatorname{Pic}_X^{\circ}$ as a $(\mathbb{G}_m)^n$ -extension of $\operatorname{Pic}_{\overline{X}}^{\circ}$ [20, Cor. 12.4].

In this chapter we prove that the Picard scheme of a curve X (not necessarily irreducible) can be constructed from the Picard scheme of the normalization of X by a sequence of \mathbb{G}_m - and \mathbb{G}_a -extensions. Our procedure differs notably from that of [21] since we, inspired by Oda and Seshadri, make the presentation functor play an essential role in our proof. We show that if $f: Y' \to Y$ is a birational, surjective morphism of curves such that $\delta(Y',Y) = 1$, then $\underline{\operatorname{Pic}}_Y^{\mathsf{O}}$ is isomorphic to $\underline{\operatorname{StPres}_{Y'/Y}}$. If $\underline{\operatorname{Pic}}_Y^{\mathsf{O}}$, is represented by

40.

a scheme P, $\underline{StPres}_{Y'/Y}$ is represented by a \mathbb{G}_a - or \mathbb{G}_m -bundle over P or by P [Proposition 2.3.3]. Since the normalization map of X can be written as a composition of maps where δ changes by one [Theorem 1.2.4], we obtain a stepwise construction of $\operatorname{Pic}_X^{\circ}$ from $\operatorname{Pic}_{X'}^{\circ}$.

3.1.

Let X be a curve and denote by $\mathcal{R}(X)$ the sheaf of total quotient rings of O_X . Let F be an O_X -Module. We recall that the kernel T(F) of the natural map

$$F \rightarrow F \otimes_{O_X} \mathcal{R}(X)$$
,

obtained by tensoring the map $O_X \rightarrow \mathcal{R}(X)$, is called the <u>sheaf of torsion</u> of F, and F is called <u>torsion</u>-<u>free</u> if T(F) = 0.

Let $f : X' \to X$ be a birational, surjective morphism of curves such that $\delta(X', X) = 1$. Let $\varphi : f_*L \to N$ be a presentation over k and put $I = \ker \varphi$. The commutative diagram

$$\begin{array}{cccc} f^{*}I & \longrightarrow & f^{*}I \otimes_{O_{X'}} \mathcal{R}(X') \\ \sigma_{1} & & & \downarrow \\ L & & & \downarrow \\ L & \xrightarrow{\sigma_{2}} & L \otimes_{O_{X'}} \mathcal{R}(X') \end{array}$$

where σ_2 is injective, shows that σ_1 factors through a map

$$\sigma : \mathcal{L}(I) \to L$$

where $\mathcal{L}(I) = f^*I/T(f^*I)$. Moreover, $K = \ker \sigma$ is a torsion-free sheaf because it is a subsheaf of a torsion-free sheaf, and $K_g = 0$ for all generic points g of X'. Hence K = 0 and σ is injective.

Lemma 3.1.1. I is invertible if and only if $\mathcal{L}(I) \simeq L$. <u>Proof.</u> If I is invertible, then $\mathcal{L}(I) \simeq f^*I$ and $\mathcal{L}(I) \simeq L$ because $\chi(X', f^*I) = \chi(X', L)$.

Conversely, suppose that $\mathcal{L}(I) \simeq L$. Let $U = \operatorname{Spec}(A)$ be an affine neighbourhood of the point $Q \in X$ where $\delta(X', X, Q) = 1$, and set $U' = \operatorname{Spec}(A')$ where $U' = f^{-1}(U)$. Let M be an A-module such that $\widetilde{M} \simeq I|_U$ and N an A'-module such that $\widetilde{N} = L|_{U'}$. Then $M \otimes A'/T(M \otimes A') \simeq N$, and by [10, Ch. I, 2.6], there exists an element $m \in M$ such that N is generated by $\overline{m \otimes I}$ as A'-module. Let I' be the invertible O_X -Module defined by $I'|_{X\setminus Q} \simeq I|_{X\setminus Q}$ and $I'|_U = \widetilde{M}'$ where M' is the sub-module of M generated by m. Then $\mathcal{L}(I') \simeq f*I' \simeq L$ and so $\chi(X,I) = \chi(X,I')$. Hence, since $I' \subseteq I, I' \simeq I$ and I is invertible. Lemma 3.1.2. Let S be a k-scheme and let $\varphi \in \underline{\operatorname{Pres}}_{X'/X}(S)$. Then $\varphi \in \underline{\operatorname{StPres}}_{X'/X}(S)$ if and only if ker φ is an invertible $O_{X_{C}}$ -Module.

<u>Proof.</u> Set I = ker φ . Then I is invertible if and only if I(s) is invertible for all closed points . s \in S. Also, φ is a strict presentation if and only if $\varphi(s)$ is a strict presentation for all closed points s \in S [Nakayama's Lemma]. Hence it is enough to prove the lemma in the case that S = Spec(k).

Let $\phi\,:\,f_{\star}L \rightarrow N$ be a presentation over k , and let

 $g : f_{*}\mathcal{L}(I) \to f_{*}L$

be the natural homomorphism ${}_{\mathcal{L}}(I)\to L$ considered as an $0_\chi\text{-homomorphism}.$ We have a commutative diagram

where all the maps are injective. Hence there is a homomorphism γ : $N\to \operatorname{cokerg}$ and a commutative diagram

where all the maps are surjective.

Suppose that f is a morphism as in Case l [see Sect. 2.3]. Then g restricted to Q splits in a sum

 $g(Q') \oplus g' : \pounds(I)(Q') \oplus \pounds(I)' \to \pounds(Q') \oplus L',$

and diagram (*) restricted to Q gives a diagram

where all the maps are surjective.

The presentation φ is strict if and only if L' \rightarrow N is surjective. Diagram (**) shows that L' \rightarrow N is surjective if and only if the composition

 $L' \rightarrow L(Q') \oplus L' \rightarrow cokerg(Q') \oplus cokerg'$

is surjective, i.e. if and only if coker(Q') = 0. By Nakayama's Lemma, cokerg(Q') = 0 if and only if g is an isomorphism. Hence Lemma 3.1.2 shows that φ is strict if and only if I = ker φ is invertible.

The proof for a morphism f as in Case 2 is similar to the proof given above.

3.2.

Let S be a k-scheme and let

 $\varphi : (f_S)_* L \to N$

be a presentation over S. It is easy to check, using [12, Ch. III, Prop. 6.5.8], that ker φ is S-flat and that the formation of the kernel of a presentation commutes with base change. If φ is a strict presentation, ker φ is invertible [Lemma 3.1.2], and it is an immediate consequences of the additivity of the Euler characteristic on short exact sequences that ker $\varphi \in \underline{\operatorname{Pic}}_X^{O}(S)$. Hence the map

$$\underline{K} : \underline{StPres}_{X'/X} \to \underline{Pic}_{X}^{\circ} ,$$

which sends a presentation ϕ to ker ϕ , is a map of functors.

Let I be an invertible ${\rm O}_{\rm X}$ -Module of degree O . Tensoring the natural surjection

$$(\mathtt{f}_{\mathtt{S}})_{\ast} \mathtt{O}_{\mathtt{X}_{\mathtt{S}}^{\dagger}} \rightarrow (\mathtt{f}_{\mathtt{S}})_{\ast} \mathtt{O}_{\mathtt{X}_{\mathtt{S}}^{\dagger}} / \mathtt{O}_{\mathtt{X}_{\mathtt{S}}}$$

by I over $O_{X_{S}}$ and using the projection formula [14, Ch. II, Ex. 5.1 (d)] gives a presentation

 φ : $(f_S)_*(f_S^*I) \rightarrow N$.

45.

By Lemma 3.1.2, ϕ is a strict presentation, and we have defined a map

$$\underline{Y} : \underline{\operatorname{Pic}}_{X}^{\circ} \to \underline{\operatorname{StPres}}_{X'/X}$$
,

which is easily seen to be functional.

The kernel of the presentation $\psi = \underline{\gamma}(I)$ is isomorphic to I so $\underline{K} \cdot \underline{\gamma} = \mathrm{id}$. Moreover, there is an isomorphism $\alpha : f_S^*I \to L$ of $O_{X_S'}$ -Modules such that the diagram

commutes. Hence φ and ψ are equivalent presentations and $\underline{\gamma} \cdot \underline{K} = \mathrm{id}$. Thus the functors $\underline{\operatorname{Pic}}_{X}^{O}$ and $\underline{\operatorname{StPres}}_{X'/X}$ are isomorphic. From Proposition 2.3.3 we get the following theorem:

<u>Theorem 3.2.1.</u> Let $f : X' \to X$ be a surjective, birational morphism of curves such that $\delta(X', X) = 1$, and denote by Q the point of X such that $\delta(X', X, Q) = 1$. Suppose that $\underline{\text{Pic}}_{X'}^{O}$, is represented by a scheme P and let φ be a universal invertible sheaf on X' × P.

- (i). If X and X' do not have the same number of connected components, then $\frac{\text{Pic}_X^0}{X}$ is represented by P.
- (ii). If there are two points Q_1 , $Q_2 \in X'$, which map to Q, and X' and X have the same number of connected components, then \underline{Pic}_X^{O} is represented by the \mathbb{G}_m -bundle

$$\mathbb{P}(\varphi(\mathbb{Q}_{1}) \oplus \varphi(\mathbb{Q}_{2})) \setminus (\mathbb{P}(\varphi(\mathbb{Q}_{1})) \cup \mathbb{P}(\varphi(\mathbb{Q}_{2})))$$

over P.

(iii). If there is only one point Q' \in X', which map to Q, then $\underline{\rm Pic}_X^0$ is represented by the \mathbb{F}_a- bundle

 $\mathbb{P}(\varphi(\mathbb{Q}^{!}) \oplus \varphi^{!}) \setminus \mathbb{P}(\varphi(\mathbb{Q}^{!}))$

over P.

The theorem above together with the breaking up of the normalization map proved in Section 1.2 [Theorem 1.2.4] gives the corollary:

<u>Corollary 3.2.2.</u> The Picard scheme of a curve can be constructed from the Picard scheme of the normalization of the curve by a sequence of extensions by \mathbb{G}_m - and \mathbb{G}_n -bundles. Let $X = \underset{i=1}{\ell} \cup X_i$ be a curve with ℓ irreducible components and r connected components. Using the additivity of the Euler characteristic, it is easy to see that the arithmetic genus $p(X) = 1 - \chi(X, O_X)$ is given by

$$p(X) = \sum_{i=1}^{\ell} p(\overline{X}_i) + \delta - \ell + 1$$

where $\overline{X}_{\underline{i}}$ denotes the normalization of $X_{\underline{i}}$ and $\delta \,=\, \delta \left(\overline{X}, X \right) \;.$

From Theorem 3.2.1 it follows that

 $\operatorname{dimPic}_{X}^{O} = \operatorname{dimPic}_{\overline{X}}^{O} + \delta - (\ell - r)$,

and since dimPic $\frac{o}{X} = \sum_{i=1}^{l} p(\overline{X}_i)$, we get the following formula for the dimension of Pic_X^o :

Proposition 3.3.1. $dimPic_X^{\circ} = p(X) + r - 1$.

The formula of Prop. 3.3.1 can also be deduced from the fact that $\operatorname{dimPic}_X^{O} = \operatorname{dim}_{k} \operatorname{H}^{1}(X, O_X)$, which is proved by Grothendieck [13, Exp. 236, Prop. 2.10 (iii)].

3.3.

CHAPTER IV.

On the representability of $\operatorname{Pic}_{X}^{=0}$.

The Picard scheme $\operatorname{Pic}_X^{\circ}$ of a smooth curve is a projective variety over k. If X has singularities, $\operatorname{Pic}_X^{\circ}$ is not proper over k. Compactifications of the Picard scheme have been studied by many authors using different methods [see [2], [10] and [20] for a historical overview]. Altman and Kleiman [2] showed that if X is an irreducible curve, then the functor $\operatorname{Pic}_X^{=\circ}$ of torsion-free, rank-l sheaves on X is represented by a projective k-scheme. We use their work as a basic reference in the upcoming chapters.

In this chapter we discuss the problem of compactifying $\operatorname{Pic}_X^{\circ}$ for a reducible curve. Oda and Seshadri [10] constructed compactifications of $\operatorname{Pic}_X^{\circ}$ for a class of reducible curves using geometric invariant theory. The breaking up of the normalization map in steps $X' \to X$ such that $\delta(X',X) = 1$ and the construction of $\operatorname{Pic}_X^{\circ}$ as a \mathfrak{E}_m - or \mathfrak{E}_a -bundle over $\operatorname{Pic}_X^{\circ}$, suggests the possibility of a compactification of $\operatorname{Pic}_X^{\circ}$ as a fibration over the compactification of $\operatorname{Pic}_X^{\circ}$. We give examples, which illustrates the difficulties met in carrying out such a construction.

49.

Even for an irreducible curve we are interested in a new construction of $\operatorname{Pic}_X^{=0}$, which will give more information on the structure of the singularities of $\operatorname{Pic}_X^{=0}$. For instance, Kleiman has privately pointed out that all the properties of the Abel map

$$\operatorname{Hilb}^{d}(C/k) \to \operatorname{Pic}_{C}^{O}$$

proved in [16] for a smooth, irreducible curve C, can be proved for the Abel-Altman-Kleiman map

$$\operatorname{Quot}^{d}(w/X/k) \rightarrow \operatorname{Pic}_{X}^{=0}$$

for an arbitrary integral curve X if we know that the tangent cone of $\operatorname{Pic}_X^{=0}$ at each point is Cohen-Macaulay.

The stronger assertion, that the tangent cone is a complete intersection, does not hold. In Section 4.3 we give an example of a plane, irreducible curve and a point of $\operatorname{Pic}_X^{=0}$ where the tangent cone is not a complete intersection.

4.1

Let X be an irreducible curve. A coherent, torsionfree 0_X -Module F is said to have rank n if $F_g \simeq 0_{X,g}^n$ where g denotes the generic point of X. The degree

50.

of F, degF, is defined by

$$degF = \chi(X,F) - n\chi(X,O_{\chi}) .$$

Let $Y \rightarrow S$ be a morphism of k-schemes such that the fibers Y(s) are integral curves for all closed points $s \in S$. An O_Y -Module I is called relatively torsion-free, rank-n over S if it is S-flat and if the pullback I(s) of I to Y(s) is a torsion-free, rank-n sheaf for all closed points $s \in S$.

We define a contravariant functor $\underline{\text{Pic}}_X^=$ as follows: For each k-scheme S , let

$\underline{\operatorname{Pic}}_{X}^{=}(S)$

denote the set of equivalence classes of $O_{X_{S}}$ -Modules, which are relatively torsion-free, rank-1 over S, where I and J are considered equivalent if there exists an invertible O_{S} -Module N and an isomorphism

If $S' \to S$ is a morphism of k-schemes, the map $\underline{\text{Pic}}_{X}^{=}(S) \to \underline{\text{Pic}}_{X}^{=}(S')$ is given by pullback.

Let d be an integer. We define subfunctors $\underline{\text{Pic}}_X^{=d}$ of $\underline{\text{Pic}}_X^{=}$ as follows: For each k-scheme S, let

be the elements I of $\underline{\operatorname{Pic}}_{X}^{=}(S)$ such that $\operatorname{degI}(s) = d$ for all closed points $s \in S$. It is proved in [2] that the functor $\underline{\operatorname{Pic}}_{X}^{=d}$ is represented by a projective kscheme $\operatorname{Pic}_{X}^{=d}$ [2, Theorem (8.5) (ii)].

Let w denote the dualizing sheaf on X. Let S be a k-scheme and fix a positive integer n. Let F be an element of $Quot^n(w/X/k)$ and denote by I(F) the kernel of the natural surjection

$$\omega_{\rm S} \rightarrow F$$
.

Let s be a closed point of S. The formation of I(F)commutes with base change, so $I(F)(s) \subseteq w$. Since wis a torsion-free, rank-1 sheaf on X [4, 2.8, page 8], it follows that I(F)(s) is torsion-free, rank-1. By the additivity of the Euler characteristic on short exact sequences, we get that

$$\chi(I(F)(s)) = \chi(w) - n ,$$

so I(F) is an element of $\underline{\text{Pic}}_X^{=d}(S)$ where $d = \chi(\omega) - \chi(O_\chi) - n$. The map of functors

 \underline{A}^n : $\underline{\text{Quot}}^n(\omega/X/k) \to \underline{\text{Pic}}_X^{=d}$,

Pic_x^{=d}(S)

which sends a quotient $\,F\,$ to $\,I(F)$, defines a morphism of schemes

$$A^n$$
 : $Quot^n(\omega/X/k) \rightarrow Pic_X^{=d}$.

We call this map the Abel map associated to $\ \omega$.

It is proved by Altman and Kleiman [2, Theorem (8.4) (v), Lemma (5.17) (ii) and Theorem (4.2)] that A^d is smooth and the fibers are projective spaces if and only if $d \ge 2p - 1$. Here p denotes the arithmetic genus of X. In fact Altman and Kleiman used the fact that the fibers of \underline{A}^n are linear systems of quotients of ω , which are represented by projective spaces, to construct $\operatorname{Pic}_X^{=d}$ as a quotient of $\operatorname{Quot}^n(\omega/X/k)$ by a smooth and proper equivalence relation.

4.2.

The methods used by Altman and Kleiman to represent $\frac{\text{Pic}_X^{=d}}{\text{M}}$ for an irreducible curve X do not immediately extend to the case that X is reducible.

Let $X' \to X$ be a partial normalization of X such that $\delta(X', X) = 1$. Suppose we have constructed a compactification $\overline{P}_{X'}$ of $\operatorname{Pic}_{X'}^{\circ}$. We can try to construct a compactification \overline{P}_X of $\operatorname{Pic}_X^{\circ}$ along the following lines: First we extend the \mathbb{P}^1 -bundle $\operatorname{Pres}_{X'/X}$ over $\operatorname{Pic}_{X'}^0$ to a \mathbb{P}^1 -bundle over $\overline{\mathbb{P}}_{X'}$, and we construct $\overline{\mathbb{P}}_X$ as a quotient of this \mathbb{P}^1 -bundle by identifications of points in the fibers.

The first identifications to try are the following: If $X' \to X$ is an identification of two points of X', we identify the point at infinity with the origin in the same fiber such that \overline{P}_X is a fibration over $\overline{P}_{X'}$, by nodal cubic curves. If $X' \to X$ is an infinitesimal identification, we make an infinitesimal identification in each fiber such that \overline{P}_X is a fibration over $\overline{P}_{X'}$ by cuspidal cubic curves.

However, examples show that the constructions indicated above cannot be carried out. First, suppose that X has one ordinary double point as only singularity and that the normalization X' has genus 1. Then \overline{P}_X is obtained from the \mathbb{P}^1 -bundle $\operatorname{Pres}_{X'/X}$ over $\overline{P}_{X'}$ by identifying two sections via a translation of $\overline{P}_{X'}$ by the point of $\operatorname{Pic}_{X'}^{O}$, corresponding to $O_{X'}[Q_2 - Q_1]$ [20, Example (1), page 83]. Hence \overline{P}_X is not a fibration over $\overline{P}_{X'}$.

The example of Oda and Seshadri mentioned above, suggests that \overline{P}_X can be constructed as a quotient of a \mathbb{P}^1 -bundle either by identifying two sections via a

54.

translation in \overline{P}_X , or by making an infinitesimal identification in one section via an infinitesimal translation in \overline{P}_X . If such a construction is possible, the tangent cone at a point of \overline{P}_X will be a complete intersection since it depends only on the analytic structure of that point [4, Prop. 1.19].

However, in Section 4.3 we give an example of a plane, irreducible curve X and a point of $\operatorname{Pic}_X^{=0}$ where the tangent cone is not a complete intersection.

4.3.

Let S be a smooth surface and let q be a closed subscheme of S of length n, which is supported at one point Q \in S. Set χ = Hilbⁿ(S/k) and let v denote the point of χ corresponding to q. Then

$$A = Q_{vv}$$

is a regular, local ring of dimension 2n [1, Prop. (3)]. Let

WCSXX

denote the universal subscheme and set

 $R = O_{W,(Q,V)}$.

Then R is a free A-module of rank n since the projection $p: W \to \chi$ is flat of degree n. Denote by m the maximal ideal of A. Since $p^{-1}(v) = q$, R/mR is a k-vector space of dimension n. We lift a basis $\overline{v}_1, \ldots, \overline{v}_n$ of R/mR to a basis v_1, \ldots, v_n of R as an A-module.

Let C be a closed subscheme of S such that $q \subseteq C$. Let $Spec(A_1)$ be an open affine subset of S containing q, and suppose that C is given by an equation $F \in A_1$ in this open subset. We denote by f the image of F in R by the natural homomorphism $A_1 \rightarrow R$. There exist elements $a_1, \ldots, a_n \in A$ such that

$$\mathbf{f} = \mathbf{a}_1 \mathbf{v}_1 + \dots + \mathbf{a}_n \mathbf{v}_n \cdot \mathbf{v}_n$$

Lemma 4.3.1. Set $H = Hilb^n(C/k)$ and denote by z the point of H corresponding to q. Then $O_{H,z} \simeq A/(a_1, \ldots, a_n)$. <u>Proof.</u> Let K denote the kernel of the natural map $O_{SXX} \rightarrow O_{CXX}$, and let

$$u : K \rightarrow O_W$$

denote the composition of the inclusion $K \subseteq O_{\operatorname{S} X^{\mathrm{K}}}$ and the surjection $O_{\operatorname{S} X^{\mathrm{K}}} \to O_{\mathrm{W}}$.

Let $T \rightarrow \mathscr{U}$ be a morphism of k-schemes. It corresponds to an element of $\underline{\text{Hilb}}^{n}(S/k)(T)$, which is an element of $\underline{\text{Hilb}}^{n}(C/k)(T)$ if and only if the map

$$u_{\mathrm{T}}$$
 : $K_{\mathrm{T}} \rightarrow O_{\mathrm{W}_{\mathrm{T}}}$

is zero. By [11, Ch. I, Prop. 9.7.9.1] there exists a closed subscheme \mathscr{V}_{O} of \mathscr{V} such that $T \to \mathscr{V}$ factors through \mathscr{V}_{O} if and only if u_{T} is zero. Hence Hilbⁿ(C/k) = \mathscr{V}_{O} , and $O_{H,Z} = A/I$ for an ideal $I \subseteq A$.

The stalk of the map u at (Q,v) is the natural map

$$u_{(\Omega, \mathbf{v})} : \mathbf{F} \otimes \mathbf{A} \to \mathbf{R}$$
,

and since $f = a_1v_1 + \ldots + a_nv_n$ is the image of F in R, I = (a_1, \ldots, a_n) and $O_{H,Z} = A/(a_1, \ldots, a_n)$.

<u>Proposition 4.3.2.</u> Fix an integer $n \ge 2$ and let $e \ge 3n + 1$ be an odd integer. Let X be the plane curve given by the equation

$$(T_1/T_0)^2 - (T_2/T_0)^e$$

in the open subset $\operatorname{Speck}[T_1/T_0, T_2/T_0]$ of $\mathbb{P}^2 = \operatorname{Projk}[T_0, T_1, T_2]$. Let z be the point of Hilbⁿ(X/k) corresponding to the closed subscheme of X given by the ideal (T_1, T_2^n) . Then the tangent cone of Hilbⁿ(X/k) at z is not a complete intersection. <u>Proof.</u> Set $t_1 = T_1/T_0$ and $t_2 = T_2/T_0$. Using the same notation as in the beginning of this section with $S = \mathbb{P}^2$ and q the closed subscheme of S given by the ideal (T_1, T_2^n) , we get that

is a basis of R over A . We write $t_2^n \in R$ as

$$t_2^n = c_0 + c_1 t_2 + \dots + c_{n-1} t_2^{n-1}$$

where $c_i \in A$. Since q is a closed subscheme of the l-dimensional subscheme of \mathbb{P}^2 defined by the equation $T_2^n = 0$, $A/(c_0, \ldots, c_{n-1}) \neq 0$ [Lemma 4.3.1], so c_i are contained in the maximal ideal m of A.

An easy calculation shows that

(i)
$$t_2^{rn+1} = d_0 + d_1 t_2 + \dots + d_{n-1} t_2^{n-1}$$

where $d_i \in m^r$.

Write

$$t_{1} = V_{0} + V_{1}t_{2} + \dots + V_{n-1}t_{2}^{n-1}$$

where $V_i \in A$. Let C_l be the line in \mathbb{P}^2 defined by the ideal (T_l) . Then $Hilb^n(C_l/k)$ is a nonsingular scheme of dimension n [l, Lemma (l)], so V_0, \ldots, V_{n-1} is a part of a regular system of parameters of m [Lemma 4.3.1].

An easy calculation shows that

$$t_{1}^{2} = V_{0}^{2} + h_{0} + (2V_{0}V_{1} + h_{1})t_{2} + \dots +$$
(ii)

$$+ (\sum_{i+j=\ell} V_{i}V_{j} + h_{\ell})t_{2}^{\ell} + \dots + (\sum_{i+j=n-1} V_{i}V_{j} + h_{n-1})t_{2}^{n-1}$$
where $h_{0}, \dots, h_{n-1} \in m^{3}$.
Using (i) and (ii) we write $t_{1}^{2} - t_{2}^{e}$ as
 $t_{1}^{2} - t_{2}^{e} = V_{0}^{2} + g_{0} + \dots + (\sum_{i+j=\ell} V_{i}V_{j} + g_{\ell})t_{2}^{\ell} +$
 $+ \dots + (\sum_{i+j=n-1} V_{i}V_{j} + g_{n-1})t_{2}^{n-1}$

where $g_i \in m^2$. Hence the local ring B of Hilbⁿ(X/k) at the point z is of the form

B = A/I

where $I = (V_0^2 + g_0, \dots, \sum_{i+j=\ell}^{\Sigma} V_i V_j + g_\ell, \dots, \sum_{i+j=n-l}^{\Sigma} V_i V_j + g_{n-l})$ [Lemma 4.3.1].

Let I* be the ideal of A generated by the leading forms of the elements of I . Set

$$J = (V_0^2, V_0 V_1, \dots, \sum_{i+j=\ell}^{\Sigma} V_i V_j, \dots, \sum_{i+j=n-l}^{\Sigma} V_i V_j) .$$

Since $g_i \in m^3$, we have an inclusion

 $J\subseteq I^{\ast}$.

Let M denote the maximal ideal of B . There is an isomorphism

 $gr_M(B) \simeq A/I*$

[18, Ch. III, §3], and therefore

$$ht(I^*) = n$$

since $\operatorname{dimgr}_{M}(B) = \operatorname{dim} B = n$ [1, Cor. (7)].

The ideal J is contained in (V_0,V_1,\ldots,V_{n-2}) , so htJ \leq n - l . Hence I* is of the form

$$I^* = (V_0^2, \dots, \Sigma_{i+j=n-l} V_i V_j, H_1, \dots H_s)$$

where $H_i \in m^3$.

It is easy to see that $V_0^2, \ldots, \sum V_i V_j, \ldots, \sum V_i V_j$ is a minimal set of generators of J, and therefore a minimal set of generators of I* has more than n elements. Thus $gr_M(B) \simeq A/I^*$ is not a complete intersection.

The plane curve X defined by $t_1^2 - t_2^e$ has arithmetic genus (e - 1)(e - 2)/2. We plan to use the Abel map

$$\operatorname{Quot}^{d}(w/X/k) \rightarrow \operatorname{Pic}_{X}^{=0}$$

to show the existence of a point of $\operatorname{Pic}_X^{=0}$ where the tangent cone is not a complete intersection. Since this map is smooth if and only if $d \ge (e - 1)(e - 2) - 1$, we need the following lemma:

Lemma 4.3.3. Let C be a curve. Fix positive numbers n_1 and n_2 . Set $H_1 = Hilb^{n_1}(C/k)$, $H_2 = Hilb^{n_2}(C/k)$ and $H = Hilb^{n_1+n_2}(C/k)$. Let q_1 and q_2 be closed subschemes of C of length n_1 and n_2 such that Suppq_1 \cap Suppq_2 = ϕ . Denote by v_1 and v_2 the points of H_1 and H_2 corresponding to q_1 and q_2 and by v the point of H corresponding to $q_1 \cup q_2$. Then

$$\hat{\circ}_{\mathrm{H},\mathrm{v}} \simeq \hat{\circ}_{\mathrm{H}_{\mathrm{I}},\mathrm{v}_{\mathrm{I}}} \otimes_{\mathrm{k}} \hat{\circ}_{\mathrm{H}_{2},\mathrm{v}_{2}} \ .$$

<u>Proof.</u> Let σ be a close subscheme of C of length n. We define a functor Def_{σ} from the category of local, artinian k-algebras with residue field k to the category of sets as follows:

$$Def_{\sigma}(A)$$

is the set of subschemes $D \subseteq C \times \operatorname{Spec}(A)$ such that the projection $f: D \to \operatorname{Spec}(A)$ is flat and $f^{-1}(\operatorname{Spec}(k)) = \sigma$. This functor is prorepresentable [24, Def. on page 208] by $\stackrel{\wedge}{O}_{H',\Sigma}$ where Σ is the point of $H' = \operatorname{Hilb}^{n}(C/k)$ corresponding to σ .

Let A be a local, artinian k-algebra, and let D be an element of $Def_q(A)$. Since A is henselian [12, Ch. IV, Prop. 18.5.11], D can be written as

$$D = D_1 \oplus D_2$$

where $D_i \in Def_{q_i}(A)$ [12, Ch. IV, Thm. 18.5.11 (c)]. Hence the functor Def_q can be written at

$$Def_q = Def_{q_1} \oplus Def_{q_2}$$
,

and therefore

$$\hat{\mathbf{O}}_{\mathrm{H},\mathrm{v}} \simeq \hat{\mathbf{O}}_{\mathrm{H}_{1},\mathrm{v}_{1}} \otimes_{\mathrm{k}} \hat{\mathbf{O}}_{\mathrm{H}_{2},\mathrm{v}_{2}} .$$

Fix an integer $d \ge (e - 1)(e - 2) - 1$. There exists a point of Hilb^d(X/k) where the tangent cone is not a complete intersection [Prop. 4.3.2], so, by Lemma 4.3.3, there exists a point y of Hilb^d(X/k) where the tangent cone C_1 is not a complete intersection. Since the Abel map A^d : Hilb^d(X/k) $\rightarrow \operatorname{Pic}_X^{=0}$ is smooth, we have that

$$C_1 \simeq C_2[U_1, \dots, U_\ell]$$

where C_2 is the tangent cone of $\operatorname{Pic}_X^{=0}$ at $\operatorname{A}^d(y)$ and U_i are independent variables over k [4, Thm. 3.2]. Hence the tangent cone of $\operatorname{Pic}_X^{=0}$ at the point $\operatorname{A}^d(y)$ is not a complete intersection and we have proved:

<u>Proposition 4.3.4.</u> Let X be as in Proposition 4.3.2. Then there exists a point of $\operatorname{Pic}_X^{=0}$ where the tangent cone is not a complete intersection.

<u>Remark 4.3.5.</u> Set n = 2 in Prop. 4.3.2. In this case we can show that

 $I^* = (V_0^2, V_0 V_1, V_1 t_0 - V_0 t_1)$

where $\textbf{t}_i \in \textbf{m}^3$, and I* is generated by the maximal minors of

$$\begin{pmatrix} v_{o} & t_{o} & t_{l} \\ o & v_{o} & v_{l} \end{pmatrix}$$
.

Hence A/I* is Cohen-Macaulay [15, Cor. 4].

It is an open question if the tangent cone at each point of $\text{Pic}_X^{=0}$ is Cohen-Macaulay if X lies on a smooth surface.

CHAPTER V.

Reducibility of the compactified Picard scheme.

Let X be an irreducible curve of arithmetitic genus p. Set $\overline{P} = \operatorname{Pic}_X^{=0}$. Altman, Iarrobino and Kleiman proved an irreducibility theorem [1, Theorem (9)]: \overline{P} is irreducible if X lies on a smooth surface, or equivalently, if the embedding dimension at each point of X is at most two [3, Corollary (9)]. They also constructed an example [1, Example (13)] of an X, which is a complete intersection in \mathbb{P}^3 and for which \overline{P} is reducible. The example suggests that the converse of the theorem holds, and in this chapter we prove that if X does not lie on a smooth surface, then \overline{P} is reducible.

Rego [22] asserted the reducibility theorem and offered a sketchy proof. First he showed that $\operatorname{Hilb}^2(X/k)$ is reducible if X does not lie on a smooth surface. Then, if X is also Gorenstein, he concluded that \overline{P} is reducible from the fact that the Abel map

$\operatorname{Hilb}^{n}(X/k) \to \overline{P}$

is smooth for large n. This map is no longer smooth if X is not Gorenstein, and so Rego devised other methods to obtain reducibility in general.

64.

However, Altman and Kleiman [2] developed a theory in which $Quot^n(w/X/k)$, where w is the dualizing sheaf of X, replaces $Hilb^n(X/k)$ as the source of an Abel map

 A^n : Quotⁿ($\omega/X/k$) $\rightarrow \overline{P}$.

Whether or not X is Gorenstein, A^n is smooth and its fibers are projective spaces for all $n \ge 2p - 1$. Hence \overline{P} will be reducible if $Quot^n(w/X/k)$ is reducible for large n.

This reducibility is proved below in two steps. First, we show that if $Quot^{m}(w/X/k)$ is reducible, then $Quot^{n}(w/X/k)$ is reducible for $n \ge m$ [Proposition 5.1.2]. Secondly, we show that if X does not lie on a smooth surface, then $Quot^{d}(w/X/k)$ is reducible for small d, in fact for d = 2 if X is Gorenstein, and for d = 1if X is not Gorenstein [Proposition 5.2.1].

5.1.

Fix a torsion-free, rank-1 sheaf G on X. Denote by U the open subscheme of X consisting of nonsingular points. There is an open subscheme Q_U^n of $Quot^n(G/X/k)$, which parameterizes quotients of G with support contained in U [13, Exp. 221, 4a]. Since G|_U is invertible, Q_U^n is isomorphic to Hilbⁿ(U/k), so Q_U^n is irreducible of dimension n [l, Lemma (l)]. Hence $Quot^n(G/X/k)$ is irreducible if and only if Q_U^n is dense in $Quot^n(G/X/k)$. Using the valuative criterion [12, Ch. II, Prop. 7.1.4 (i)], we therefore get Lemma 5.1.1 below:

Lemma 5.1.1. Quotⁿ(G/X/k) is irreducible if and only if, for all quotients F of G of length n, there exists a scheme T = Spec(A), where A is a complete, discrete valuation ring, and a T-flat quotient \overline{F} of G_T such that

 $\overline{F}(t) \simeq F$

and

$$\operatorname{Supp}\overline{F}(\eta) \subseteq U_{\tau}(\eta)$$
.

Here t and η denote the closed and generic points of T .

<u>Proposition 5.1.2.</u> If $Quot^n(G/X/k)$ is irreducible, then $Quot^m(G/X/k)$ is irreducible for all m < n.

<u>Proof.</u> Let F be a quotient of G of length m . Let I denote the kernel of the natural map $G \to F$, and

let x_1, \ldots, x_{n-m} be different nonsingular points of X such that $x_i \notin SuppF$ for $i = 1, \ldots, n - m$. Then

$$F' = G/M_1 \cdots M_{n-m}I$$

where M_i denotes the ideal of x_i , is a quotient of G of length n. By Lemma 5.1.1 there exists a complete, discrete valuation ring A and a quotient \overline{F} ' of G_T , $T = \operatorname{Spec}(A)$, with all the properties listed in that lemma and such that

$$\overline{F}'(t) \simeq F'$$
.

Let W be the closed subscheme of X_T defined by the annihilator of \overline{F} ', i.e. W is defined by the sheaf of ideals J where J is the kernel of the natural homomorphism

$$O_{X_{T}} \rightarrow \underline{HOm}_{X_{T}}(\overline{F}', \overline{F}')$$
.

The remaining part of the proof proceeds by steps. Step 1. We have an inclusion

$$x_1 \cup \cdots \cup x_{n-m} \cup V \subseteq W(t)$$

where V is the closed subscheme of X defined by the annihilator of F .

Proof. Restricting the exact sequence

$$\mathsf{O} \to \mathsf{J} \to \mathsf{O}_{\mathsf{X}_{\mathrm{T}}} \to \mathrm{Hom}_{\mathsf{X}_{\mathrm{T}}}(\overline{\mathsf{F}}^{\, \prime}\,, \overline{\mathsf{F}}^{\, \prime}\,)$$

to $X_{\mathrm{T}}(t) \simeq X$ gives a sequence

$$J(t) \rightarrow O_X \rightarrow Hom_X(F',F')$$
.

The image of J(t) in O_X is the ideal defining W(t) as a subscheme of X. Hence the subscheme of X defined by the annihilator of F' is contained in W(t), and this proves Step 1.

Step 2. W can be written as

$$W = W_1 \oplus \cdots \oplus W_{n-m} \oplus W'$$

where $x_i \in W_i(t)$ and $V \subseteq W'(t)$.

<u>Proof.</u> A is a henselian ring [12, Ch. IV, Prop. 18.5.14], and hence the asserted decomposition follows from [12, Ch. IV, Thm. 18.5.11 (c)].

Step 3. Let i denote the inclusion $\texttt{W'} \subseteq \texttt{X}_T$. Define $\overline{\texttt{F}}$ by

$$\overline{F} = i_* i^* \overline{F}'$$
.

Then \overline{F} is a T-flat quotient of \overline{F}' .

$$\overline{\mathrm{F}}_{\mathrm{x}} \simeq \overline{\mathrm{F}}_{\mathrm{x}}' / \mathrm{J}_{\mathrm{x}} \overline{\mathrm{F}}_{\mathrm{x}}'$$
 ,

so $\overline{F}_{x} = \overline{F}_{x}^{\prime}$ since J_{x} is the annihilator of $\overline{F}_{x}^{\prime}$ in $O_{X_{T},x}$. It follows that the natural map

$$\overline{F}^{\prime} \rightarrow \overline{F}$$

is surjective and that \overline{F} is T-flat.

<u>Step 4.</u> $\overline{F}(t)\cong F$ and ${\rm Supp}\overline{F}(\eta)\subseteq U_{T}(\eta)$.

<u>Proof.</u> Supp $\overline{F}'(\eta) \subseteq U_T(\eta)$ by the definition of \overline{F}' , so Supp $\overline{F}(\eta) \subseteq U_T(\eta)$ since \overline{F} is a quotient of \overline{F}' [Step 3].

Since $i: W' \subseteq X_T$ is an affine morphism, the commutative diagram

$$\begin{array}{cccc} \mathbb{W}' & \stackrel{i}{\subseteq} & \mathbb{X}_{T} \\ \mathbb{U}| & \mathbb{U}| \\ \mathbb{W}'(t) & \stackrel{c}{\subseteq} & \mathbb{X} \\ & \mathbb{i}(t) \end{array}$$

shows that

 $\overline{F}(t) \simeq i(t)_*i(t)^*\overline{F}^!(t)$.

Hence we get that

$$\overline{F}(t) \simeq G/M_1 \cdots M_{n-m} I + CG$$

where C is the ideal defining W'(t) as a closed subscheme of X . By Step 2,

$$C \subseteq Ann_{O_X}(F)$$

and therefore CG \subset I , so we have an inclusion

$$M_1 \cdots M_{n-m} I + CG \subseteq I$$
.

Since $x_{i} \not\in V$, the ideals $M_{1} \cdots M_{n-m}$ and C are commaximal, and hence we also have inclusions

$$I \subseteq M_1 \cdots M_{n-m}I + CI \subseteq M_1 \cdots M_{n-m}I + CG$$
.

It follows that $\overline{F}(t) \simeq G/I = F$.

Step 5. $Quot^m(G/X/k)$ is irreducible.

<u>Proof.</u> Let F be a quotient of G of length m. Let $T = \operatorname{Spec}(A)$, A a complete, discrete valuation ring, and let \overline{F} be the quotient of G_T constructed in Step 3. By Step 4, $\overline{F}(t) \cong F$ and $\operatorname{Supp}\overline{F}(\eta) \subseteq U_T(\eta)$. Hence the assertion follows from Lemma 5.1.1.

5.2.

Let ω denote the dualizing sheaf of X .

Proposition 5.2.1. Let x be a closed point of X and denote by M the ideal defining x.

(a). If $\dim_k(w/Mw) \ge 2$, then $\operatorname{Quot}^1(w/X/k)$ is reducible. (b). If $\dim_k(w/Mw) = 1$ and $\dim_k(M/M^2) \ge 3$, then $\operatorname{Quot}^2(w/X/k)$ is reducible.

<u>Proof.</u> (a). Set $w_1 = w/Mw$. Obviously, the functors <u>Quot¹($w_1/X/k$)</u> and <u>Grass₁(w_1/k)</u> are isomorphic. Since dim_k(w_1) ≥ 2 , Grass₁(w_1/k) has dimension at least 1. Hence, since Quot¹($w_1/X/k$) is a closed subscheme of Quot¹(w/X/k), we therefore get

 $\texttt{dimQuot}^{l}(\boldsymbol{\omega}/\boldsymbol{X}/\boldsymbol{k}) \geq l$.

If equality holds, $Quot^{1}(\omega/X/k)$ is reducible since $Quot^{1}(\omega_{1}/X/k)$ is a closed 1-dimensional subscheme. If equality fails, then the closure of Q_{U}^{n} is a component of $Quot^{1}(\omega/X/k)$ of dimension 1, and so $Quot^{1}(\omega/X/k)$ is reducible.

(b). Since w is torsion-free [4, 2.8, page 8], w is invertible at x because $\dim_k(w/Mw) = 1$. Since

 $\dim_k(\mathrm{M/M}^2) \geq 3$, we get that

 $\dim_k(\operatorname{M} \omega/\operatorname{M}^2 \omega) \geq 3$.

Set $w_2 = w/M^2 w$. A vector subspace of $Mw/M^2 w$ of codimension 1 corresponds to a quotient of w_2 of length 2. It is not hard to see that this correspondence extends to families of quotients and vector subspaces, so that $Grass_1([Mw/M^2w]/k)$ can be considered as a subfunctor of $Quot^2(w_2/X/k)$. Hence, since a proper monomorphism is a closed embedding [12, Ch. IV, Prop. 8.11.5], $Quot^2(w_2/X/k)$ contains $Grass_1([Mw/M^2w]/k)$. Since the latter has dimension at least two, reasoning as in the proof of (a) we conclude that $Quot^2(w/X/k)$ is reducible.

We say that X has embedding dimension n at x if $\dim_k(M/M^2) = n$. Since an integral curve with embedding dimension at most 2 at each point can be embedded in a smooth surface [3, Cor. (9)], we have that X lies on a smooth surface if and only if the embedding dimension at each point is at most 2.

As an immediate consequence of Proposition 5.1.2 and Proposition 5.2.1 we get:

<u>Proposition 5.2.2.</u> If X does not lie on a smooth surface, then $Quot^2(w/X/k)$ is reducible for d>2.
Lemma 5.2.3. Suppose that \overline{P} is irreducible. Then $Quot^{d}(\omega/X/k)$ is irreducible for all $d \ge 1$.

Proof. The Abel map

$$A^d$$
: Quot^d($w/X/k$) $\rightarrow \overline{P}$

is smooth with integral fibers if $d \ge 2p - 1$. Therefore Quot^d(w/X/k) is connected and hence irreducible for $d \ge 2p - 1$ [4, Theorem 1.8]. It follows from Proposition 5.1.2 that Quot^d(w/X/k) is irreducible for all $d \ge 1$.

Theorem 5.2.4. If X does not lie on a smooth surface, then the compactified Picard scheme \overline{P} is reducible.

<u>Proof.</u> Proposition 5.2.2 gives that $Quot^{d}(w/X/k)$ is reducible for $d \ge 2$. Hence, by Lemma 5.2.3, \overline{P} is reducible.

CHAPTER VI

Results on the boundary points of $\operatorname{Pic}_X^{=0}$.

Let X be a curve lying on a smooth surface (or equivalently, $\operatorname{Pic}_X^{=0}$ is irreducible). Briacon, Granger and Speder [8] showed that the singular points of Hilbⁿ(X/k) are exactly the points corresponding to subschemes of X defined by ideals, which are not principal. Using the smoothness of the Abel map

$$A^n$$
 : Hilbⁿ(X/k) $\rightarrow \operatorname{Pic}_X^{=0}$

for large n , we get that a point of $\operatorname{Pic}_X^{=0}$, which does not lie in Pic_X^0 , is a singular point of $\operatorname{Pic}_X^{=0}$.

In Section 6.2 we study the orbits of $\operatorname{Pic}_X^{=0}$ under the action of Pic_X^0 defined by tensor product. In the case that $\delta(\overline{X}, X, Q)$ is at most one at each point $Q \in X$, we show that there are $\binom{\delta}{\mathfrak{l}}$ orbits of codimension \mathfrak{l} in $\operatorname{Pic}_X^{=0}$ for each \mathfrak{l} , $1 \leq \mathfrak{l} \leq \delta(\overline{X}, X)$. Here \overline{X} denotes the normalization of X.

D' Souza [10] studied the analytic structure of $\operatorname{Pic}_X^{=0}$ in the case that the singularities of X are ordinary double points. He showed that the completion of the local ring of $\operatorname{Pic}_X^{=0}$ at a singular point is of the form

74.

$$\mathbf{k}[[\mathbf{T}_1,\ldots,\mathbf{T}_r]]/(\mathbf{T}_1\mathbf{T}_2,\ldots,\mathbf{T}_{2\ell-1}\mathbf{T}_{2\ell})$$

where ℓ is an integer less or equal to the number of singular points of X .

We determine the analytic structure of the singularities of $\operatorname{Pic}_X^{=0}$ in the case that $\delta(\overline{X}, X, Q)$ is at most one at each point $Q \in X$, and we show how the singularities are distributed on the $\sum_{\ell=1}^{\delta} {\delta \choose \ell}$ orbits of $\operatorname{Pic}_X^{=0}$. The completion of the local ring at a point in an orbit of codimension ℓ is of the form

 $k[[T_1, \dots, T_r]]/(T_1T_2, \dots, T_{2s-1}T_{2s}, T_{2s+1}^2 - T_{2s+2}^3, \dots, T_{2\ell-1}^2 - T_{2\ell}^3)$ where s is a number less or equal to the number of nodes on X.

6.1.

Let X be a curve lying on a smooth surface S. In the characterization of the singularities of $\operatorname{Hilb}^n(X/k)$ in [8], Briaçon, Granger and Speder used a theory of "flattening" developed by Hironaka and Tessier. However, in a remark they pointed out that one can avoid the use of "flattening" by using the fact that an ideal of height 2 in a regular, 2-dimensional ring can be generated by the maximal minors of an n x (n + 1) matrix. Following this approach, the proof of [8, Prop. II.2] becomes short and elegant. Lemma 6.1.1. [8, Ch. II, Remarque]. Let A be a regular, local ring of dimension 2, and let $I \subseteq A$ be an ideal of height 2. Let

$$\varphi : I \rightarrow A/I$$

be an A-module homomorphism. Then, if I is not a complete intersection in A , $\phi(I)$ is contained in M/I where M denotes the maximal ideal of A .

<u>Proof.</u> Set $p + l = \dim_k(I/MI)$, and lift a basis $\overline{i_0}, \ldots, \overline{i_p}$ of I/MI to a set of generators i_0, \ldots, i_p of I. Let $\varphi \in \operatorname{Hom}_A(I, A/I)$ and suppose that $\varphi(i_0) \notin M/I$. Let a_t be an element of A such that the residue class of a_t modulo I is equal to $\varphi(i_t)/\varphi(i_0)$, $t = 1, \ldots, p$. Then i'_0, \ldots, i'_p , where $i'_0 = i_0$ and $i'_t = i_t - a_t i_0$, is a minimal set of generators of I, and by [9, Thm. 5], i'_0, \ldots, i'_p are the maximal minors of an $(p + 1) \times p$ matrix $R = (r_{ij})$, $r_{ij} \in A$. Since i'_0, \ldots, i'_p form a minimal set of generators of I, therefore $r_{ij} \in M$.

If $p \ge 2$, $(i_1', \dots, i_p') \subseteq M(r_{ol}, \dots, r_{op})$, so there exists an integer j such that $r_{oj} \not\in I$ because none of i_1', \dots, i_p' is in MI. On the other hand, $r_{oj}i_0' + \dots + r_{pj}i_p' = 0$ implies that $r_{oj} \in I$, which is a contradiction, so if $\varphi(i_0') \not\in M/I$, I is a complete intersection.

76.

<u>Proposition 6.1.2.</u> (Briagon, Granger, Speder). Let q be a point of $H = Hilb^{n}(X/k)$ such that the closed subscheme σ_{q} of X corresponding to q is not defined by an invertible ideal. Then q is a singular point of H.

<u>Proof.</u> Suppose that σ_q can be written as a disjoint union $\sigma_q = \sigma_1 \cup \cdots \cup \sigma_\ell$. Then $\circ_{H,q} = \circ_{H_1,q_1} \otimes \cdots \otimes \circ_{H_1,q_n}$ where q_i is the point of $H_i = \text{Hilb}^{n_1}(X/k)$ corresponding to σ_i [Lemma 4.3.3]. Hence we may assume that σ is supported at one point Q of X.

Set A = $O_{S,Q}$ and denote by M the maximal ideal of A. Then $O_{X,Q} = A/(f) = \overline{A}$ for an element $f \in A$. We denote by I the ideal in A corresponding to σ_q , and we set $\overline{I} = I/(f)$.

Let $\varphi \in \operatorname{Hom}_A(I, A/I)$. If I is a complete intersection generated by f_1, f_2 , then f is of the form $f = a_1 f_1 + a_2 f_2$, and $a_1, a_2 \in M$ because \overline{I} is not a principal ideal. Hence $\varphi(f) \in M/I$. On the other hand, if I is not a complete intersection, then $\varphi(f) \in M/I$ by [Lemma 6.1.1].

The Zariski tangent spaces of $Hilb^{n}(S/k)$ and $Hilb^{n}(X/k)$ at q are isomorphic to $Hom_{A}(I,A/I)$ and

$$\begin{split} & \operatorname{Hom}_{\overline{A}}(\overline{I},\overline{A}/\overline{I}) \quad [13, \text{ Exp. 221, Cor. 5.3}]. & \text{The vector} \\ & \text{subspace } \operatorname{Hom}_{\overline{A}}(\overline{I},\overline{A}/\overline{I}) & \text{of } \operatorname{Hom}_{A}(I,A/I) & \text{consists of} \\ & \text{elements } \phi \in \operatorname{Hom}_{A}(I,A/I) & \text{such that } \phi(f) = 0 & \text{. Since} \\ & \text{S is smooth} \end{split}$$

 $\dim_k Hom_A(I, A/I) = 2n$

[1, Prop. (3)].

Let $\beta = \{\varphi_1, \dots, \varphi_{2n}\}$ be a basis of $\operatorname{Hom}_A(I, A/I)$. Since $\varphi_i(f) \in M/I$, $\varphi_i(f) = \sum_{j=1}^{\infty} b_{ij} t_j$ where $b_{ij} \in k$ and t_1, \dots, t_{n-1} is a basis of M/I. Set $B_l = (b_{1l}, \dots, b_{2nl})$, $l = 1, \dots, n-1$. An element $\varphi \in \operatorname{Hom}_A(I, A/I)$ lies in $\operatorname{Hom}_{\overline{A}}(\overline{I}, \overline{A}/\overline{I})$ if and only if the coordinates of φ relative to β is an element of the orthogonal space of B_1, \dots, B_{n-1} . Hence

 $\dim_{k} \operatorname{Hom}_{\overline{A}}(\overline{I}, \overline{A}/\overline{I}) \geq n + 1$

and since dimH = n [l, Cor. (7)], q is a singular point of H.

<u>Theorem 6.1.3.</u> The boundary points of $\operatorname{Pic}_X^{\circ}$ in the compactification $\operatorname{Pic}_X^{=\circ}$ are singular points.

<u>Proof.</u> Let p denote the arithmetic genus of X an fix an integer $n \ge 2p - 1$. Let q be a point of

 ${\tt Hilb}^{\rm n}(X/k)$, which map to a boundary point of ${\tt Pic}_{\rm X}^{=0}$ by the Abel map

 A^n : Hilbⁿ(X/k) $\rightarrow \text{Pic}_X^{=0}$.

The subscheme of X corresponding to q is defined by an ideal, which is not invertible. By Prop. 6.1.2, q is a singular point of Hilbⁿ(X/k), and since A^n is smooth, $A^n(q)$ is a singular point of $\operatorname{Pic}_X^{=0}$. Since A^n is surjective, all the boundary points of $\operatorname{Pic}_X^{=0}$ are singular.

6.2.

Let X be an irreducible curve with m singularities Q_1, \ldots, Q_m and suppose that $\delta(\overline{X}, X, Q_1) = 1$. Let X' be the desingularization of ℓ of the points of X, say Q_1, \ldots, Q_ℓ . Denote by M_1, \ldots, M_ℓ the ideals of Q_1, \ldots, Q_ℓ . Set $M = M_1 \otimes \ldots \otimes M_\ell$ and put $I = M \otimes_{O_X} J$ where J is an invertible O_X -Module of degree ℓ . Denote by Q the point of $\operatorname{Pic}_X^{=O}$ corresponding to I.

Lemma 6.2.1. The orbit O(q) of q under the action of Pic_X^{O} has codimension ℓ in $Pic_X^{=O}$.

<u>Proof.</u> Since M is the conductor of O_X in O_X ' [10, Ch. III, Rem. 1.3], I is an O_X ,-Module and the tensor product defines a map

$$\psi$$
 : $\operatorname{Pic}_X^{\circ}$, $x q \to \operatorname{Pic}_X^{=\circ}$.

Since every invertible O_X , -Module L is of the form $F \otimes_{O_X} O_X$, where F is an invertible O_X -Module, the image of ψ is equal to O(q).

Suppose that I $\otimes_{O_X} L \cong I \otimes_{O_X} L'$ where L and L' are invertible O_X ,-Modules of degree O. Since J is an invertible O_X -Module, tensoring by J^{-1} gives an isomorphism

$$\mathsf{M} \otimes_{\mathsf{O}_X'} \mathsf{L} \cong \mathsf{M} \otimes_{\mathsf{O}_X'} \mathsf{L'} .$$

But M is an invertible O_X ,-Module, so $L \simeq L'$, and therefore the morphism ψ has zero-dimensional fibers. Hence dimO(q) = dimPic^O_X, , and

$$\operatorname{dimPic}_{X}^{O}$$
, = $\operatorname{dimPic}_{X}^{=O}$ - ℓ

because $\operatorname{Pic}_X^{\circ}$ is dense in $\operatorname{Pic}_X^{=\circ}$ [1, Thm. (9)]. It follows that O(q) has codimension ℓ in $\operatorname{Pic}_X^{\circ}$.

<u>Proposition 6.2.2.</u> $\operatorname{Pic}_X^{=0}$ has $\binom{m}{l}$ orbits of codimension l, each given by the action of Pic_X^{0} on a point q of $\operatorname{Pic}_X^{=0}$ corresponding to a torsion-free, rank-l sheaf on X of the form $I = \operatorname{M}_{t_1} \otimes \cdots \otimes \operatorname{M}_{t_k} \otimes J$ where J is an invertible O_X -Module of degree l.

The completion of the local ring of $\operatorname{Pic}_X^{=0}$ at a point of O(q) is of the form $k[[T_1, \dots, T_v]]/(T_1T_2, \dots, T_{2s-1}T_{2s}, T_{2s+1}^2 - T_{2s+2}^3, \dots, T_{2k-1}^2 - T_{2k}^3)$ where s is the number of nodes and l - s is the number of cusps among the points Q_{t_1}, \ldots, Q_{t_t} . Proof. Let F be a torsion-free, rank-1 sheaf on X . There exists an invertible O_X -Module L such that $F \otimes_{O_X} L \subseteq O_X$ [2, Lemma 3.3]. Let Q_{t_1}, \dots, Q_{t_k} be the points of X where F is not invertible. Then $F \otimes_{O_X} L$ is of the form $M_{t_1} \otimes \ldots \otimes M_{t_n} \otimes I'$ where I' is invertible [10, Ch. III, Lemma 1.4]. Hence every torsion-free, rank-1 sheaf I on X, which is not invertible at Q_{t_1}, \ldots, Q_{t_n} is of the form

 $I = M_{t_1} \otimes \ldots \otimes M_{t_n} \otimes J$.

There are $\binom{m}{l}$ different subsets of $\{Q_1, \ldots, Q_m\}$ consisting of ℓ points, and hence there are $\binom{m}{\ell}$ orbits O(q) of points q corresponding to torsion-free, rank-1 sheaves on X , which are not invertible at ℓ points. Each such orbit has codimension ℓ in $\operatorname{Pic}_{\chi}^{=0}$ [Lemma 6.2.1].

The point of $\operatorname{Pic}_X^{=0}$ corresponding to

 $I = M_{t_1} \otimes \ldots \otimes M_{t_q} \otimes J$

is in the image of the Abel map A^n of a point q' of Hilbⁿ(X/k) corresponding to a subscheme $Q_1 \cup \cdots \cup Q_k \cup V$ where $Q_i \not\in V$. Using Lemma 4.3.3 and the fact that Hilb¹(X/k) \simeq X [2, Lemma 8.7], we get that the completion of the local ring of Hilbⁿ(X/k) at q is isomorphic to

 $k[[T_1, \dots, T_r]]/(T_1T_2, \dots, T_{2s-1}T_{2s}, T_{2s+1}^2 - T_{2s+2}^3, \dots, T_{2\ell-1}^2 - T_{2\ell}^3) .$ Hence, since A^n is smooth for large n, the completion of the local ring of $\operatorname{Pic}_X^{=0}$ at q is of the desired form.

CHAPTER VII.

The structure of compactifications.

Let X be an irreducible curve of arithmetic genus p. In some special cases the structure of $\operatorname{Pic}_X^{=0}$ is known. For example, if p = 1, $\operatorname{Pic}_X^{=0} \cong X$ [2, Example 8.9 (iii)]. If p = 2 and X has one ordinary node as only singularity, then Oda and Seshadri [20, Ex. (1), page 83] showed that $\operatorname{Pic}_X^{=0}$ is obtained from the \mathbb{P}^1 -bundle $\operatorname{Pres}_{X'/X}$ over $\operatorname{Pic}_X^{0} \cong \overline{X}$ as follows: Let \mathbb{Q}_1 and \mathbb{Q}_2 be the points of \overline{X} , which map to the singular point of X. Then $\operatorname{Pic}_X^{=0}$ is obtained from $\operatorname{Pres}_{\overline{X}/X} \cong \mathbb{P}(\mathbb{O}_{\overline{X}} \oplus \mathbb{O}_{\overline{X}})$ by identifying the 0-section and the ∞ -section via the translation in \overline{X}

In this chapter we give an explicit construction of $\operatorname{Pic}_X^{=0}$ in the case that X has ordinary nodes as only singularities. The main tool in this construction is a generalized presentation functor $\underline{\operatorname{GPres}}_{Y'/Y}$ where $Y' \to Y$ is a surjective, birational morphism of curves. The source I of a generalized presentation

 $(f_S)_* I \rightarrow N$

over S lies in $\underline{\operatorname{Pic}}_{Y'}^{=0}(S)$. If $X' \to X$ is the desingularization of one of the points of X, we show that $\operatorname{GPres}_{X'/X}$ is a \mathbb{P}^1 -bundle over $\operatorname{Pic}_{X'}^{=0}$ and that $\operatorname{Pic}_X^{=0}$ is obtained from this \mathbb{P}^1 -bundle by identifying two sections via a translation in $\operatorname{Pic}_{X'}^{=0}$.

In the last section of this chapter we study $\operatorname{Pic}_X^{=0}$ for a curve X such that $\delta(\overline{X}, X) = 2$. We give an explicit description of the underlying topological space of $\operatorname{Pic}_X^{=0}$ in the case that p = 2, $\overline{X} = \mathbb{P}^1$ and X has only one singularity, which is a tacnode.

7.1.

Let $f : X' \to X$ be a surjective, birational morphism of irreducible curves. Denote by C the conductor of O_X in O_X' and set $\delta = \delta(X', X)$. Let S be a k-scheme and F an O_X -Module. We denote by CF the image of C \otimes_{X_S} F \to F. A generalized presentation over S is a surjective O_{X_G} -Module homomorphism

 $\varphi : (f_S)_* I \rightarrow N$

where $I \in \underline{\operatorname{Pic}_{X'}^{=0}(S)}$, $CI \subseteq \ker \varphi$ and N is a locally free O_S -Module of rank δ . Equivalent presentations and the pullback φ_S , by a k-morphism $S' \to S$ are defined as in Section 2.1. Definition 7.1.1. We define a functor $\underline{GPres}_{X'/X}$ as follows: For each k-scheme S , let

$$\underline{GPres}_{\chi'/\chi}(S)$$

be the set of isomorphism classes of generalized presentations over S .

Set $P = Pic_{X'}^{=0}$ and let θ denote a universal torsion-free, rank-1 sheaf on X' x P.

<u>Proposition 7.1.2.</u> The functor $\underline{GPres}_{X'/X}$ is represented by a projective scheme over P.

<u>Proof.</u> Let Z denote the closed subscheme of X defined by the conductor C and denote by i : $Z \rightarrow X$ the inclusion. Let S be a k-scheme and F an $O_{X_{S}}$ -Module. We denote by F(C) the pullback $i_{S}^{*}F$.

We will show that $\underline{GPres}_{X'/X}$ is isomorphic to $Quot^{\delta}[(f_p)_* \theta](C)/Z \times P/P)$.

Let

$$\varphi : (f_S)_* L \to N$$

be an element of $\underline{GPres}_{X'/X}(S)$. There exists a morphism q : $S \to P$, an invertible O_S -Module T and an isomorphism

$$\alpha : (q_X,) * \varphi \to L \otimes_{O_S} T.$$

The presentation

$$(\mathbf{f}_{\mathrm{S}})_{*}(\mathbf{L} \otimes_{\mathbf{O}_{\mathrm{S}}^{\cdot}} \mathbf{T}) \to \mathbf{N} \otimes_{\mathbf{O}_{\mathrm{S}}^{\mathrm{T}}} \mathbf{T}$$

is equivalent to ϕ . Hence the generalized presentation ϕ gives rise to a morphism q : $S \to P$ and a generalized presentation

$$\varphi_{l}$$
 : $(\texttt{f}_{S})_{*}[(\texttt{q}_{X},)^{*} \mathcal{P}] \rightarrow \texttt{M}$.

As in the proof of Proposition 2.2.1, ϕ_{l} corresponds to a surjective $0_{\chi_{c}}$ -homomorphism

$$\phi_2$$
 : $(\texttt{q}_Z)^*[(\texttt{f}_P)_*\mathcal{P}](\texttt{C}) \to \texttt{M}$,

which is an element of $\mbox{Quot}^{\delta}([(f_{\rm P})_{\star} \mbox{\ensuremath{\#}}]({\rm C})/{\rm Z} \, \times \, {\rm P}/{\rm P})({\rm S})$. Moreover, if

$$\alpha' : (q_X')^* \mathcal{P} \to L \otimes_{O_S}^{T}$$

is another isomorphism, we get an element $\varphi_2^!$ in $\underline{\text{Quot}}^{\delta}([(\mathbf{f}_P)_* \theta](C)/Z \times P/P)(S)$, which is equivalent to φ_2 . Hence we have a map

$$\rho : \underline{\operatorname{GPres}}_{X'/X} \to \underline{\operatorname{Quot}}^{\delta}([(f_P)_* \theta](C)/Z \times P/P)(S) .$$

It is easy to see that the map

$$\underline{\text{Quot}}^{0}([(\mathbf{f}_{P})_{*}\mathcal{P}](C)/Z \times P/P) \rightarrow \underline{\text{GPres}}_{X'/X},$$

which sends

$$(q_7)*([(f_p)_*\mathcal{P}](C)) \rightarrow M$$

to the generalized presentation

$$(f_S)_*[(q_X)^* \theta] \to M$$

is an inverse of ρ .

The proof of the proposition is now completed since $\underline{\text{Quot}}^{\delta}([(f_{P})_{*}\mathcal{P}](C)/Z \times P/P)$ is represented by a projective scheme over P [13, Exp. 221, Thm. 3.2].

<u>Corollary 7.1.3.</u> Let $f : X' \to X$ be the desingularization of one point Q of X, and suppose that C is equal to the maximal ideal M of Q. Then $GPres_{X'/X}$ is a \mathbb{P}^{δ} -bundle over P.

<u>Proof.</u> The functor $\underline{\text{Quot}}^{\delta}([(f_{P})_{*}\theta](M)/\mathbb{Q} \times P/P)$ is isomorphic to $\underline{\text{Grass}}_{\delta}([(f_{P})_{*}\theta](M)/P)$. Since $[(f_{P})_{*}\theta](M)$ is a locally free \mathbb{O}_{P} -Module of rank $\delta + 1$, $\underline{\text{Grass}}_{\delta}([(f_{P})_{*}\theta](M)/P)$ is represented by a \mathbb{P}^{δ} -bundle over P [17, Prop. 1.2 and Prop. 1.6]. Let

$$\underline{K} : \underline{GPres}_{X'/X} \to \underline{Pic}_{X}^{=0}$$

be the map, which sends a generalized presentation ϕ to $ker\phi$. The corresponding morphism

$$K : GPres_{X'/X} \to Pic_X^{=0}$$

is an isomorphism on $K^{-1}(\operatorname{Pic}_X^{\circ})$ [see Section 3.2 for the same property of the morphism $\operatorname{Pres}_{X'/X} \to \operatorname{Pic}_X^{=\circ}$].

<u>Remark 7.1.4.</u> The morphism $K : \operatorname{GPres}_{X'/X} \to \operatorname{Pic}_{X}^{=0}$ need not be surjective. For example, let X be a curve with one singularity Q such that $\delta(\overline{X}, X, Q) = 2$ and such that there are three points $P_1, P_2, P_3 \in \overline{X}$, which map to Q. Then the conductor of O_X in $O_{\overline{X}}$ is the maximal ideal M of Q, and so $\operatorname{GPres}_{\overline{X}/X}$ is a \mathbb{P}^2 bundle over $\operatorname{Pic}_{\overline{X}}^{O}$ [Corollary 7.1.3]. Hence $\operatorname{GPres}_{\overline{X}/X}$ is irreducible. On the other hand, since length of $(O_{\overline{X}}/M) \neq \operatorname{length} of(O_{\overline{X}}, O_{\overline{X}})$, X is not Gorenstein [6, Cor. 6.5]. Therefore $\operatorname{Pic}_{\overline{X}}^{=0}$ is reducible by Theorem 5.2.4, and so K is not surjective.

In the next section we consider the case where X lies on a smooth surface. Then $\operatorname{Pic}_X^{=0}$ is irreducible and K is surjective.

7.2.

Let X be an irreducible curve with ordinary double points as only singularities, and let $f : X' \to X$ be the desingularization of one of the double points $Q \in X$. We denote by Q_1 and Q_2 the points of X', which map to Q.

Suppose that $\operatorname{Pic}_{X'}^{=0}$ is represented by a scheme P, and let \mathscr{P} be a universal torsion-free, rank-l sheaf on X' x P.

Lemma 7.2.1. The underlying topological space of $\operatorname{Pic}_X^{=0}$ is obtained by identifying the two sections $\mathbb{P}(\mathscr{Q}(\mathbb{Q}_1))$ and $\mathbb{P}(\mathscr{Q}(\mathbb{Q}_2))$ of the \mathbb{P}^1 -bundle $\operatorname{GPres}_{X'/X} =$ $\mathbb{P}(\mathscr{P}(\mathbb{Q}_1) \oplus \mathscr{P}(\mathbb{Q}_2))$ over P via a translation in P by the point of Pic_X^0 , corresponding to $\mathcal{O}_{X'}[\mathbb{Q}_2 - \mathbb{Q}_1]$.

Proof. Let

 $I \xrightarrow{\phi} N$

and

$$I' \xrightarrow{\varphi'} N'$$

be two generalized presentations over k . Set J = ker ϕ and J' = ker ϕ' and suppose that J is $O_{\chi}\text{-isomorphic}$

to J'. If J and J' are invertible, then $\varphi = \varphi'$ because $K_{K^{-1}(\operatorname{Pic}_{X}^{O})}$ is an isomorphism onto $\operatorname{Pic}_{X}^{O}$.

Suppose that J and J' are not invertible at Q. Then J and J' are $O_{X'}$ -Modules of the form $J = I[-Q_1]$ and J' = $I[-Q_j]$ [10, Ch. III, Cor. 1.5]. Hence φ and φ' are of the form

$$\texttt{I}\xrightarrow{\phi}\texttt{I}(\texttt{Q}_\texttt{i})$$
 , $\texttt{I}\xrightarrow{\phi'}\texttt{I}(\texttt{Q}_\texttt{j})$.

If i = j , then I \simeq I' because I[-Q_i] \simeq I'[-Q_i] , and hence ϕ = ϕ' .

Suppose that $i \neq j$, say i = 1 and j = 2. Since $I[-Q_1] \cong I'[-Q_2]$, $I' \cong I[Q_2 - Q_1]$. The point $q \in \mathbb{P}(\theta(Q_1))$ corresponding to φ is identified with the point $q' \in \mathbb{P}(\theta(Q_2))$ corresponding to φ' . Hence $\operatorname{Pic}_X^{=0}$ is obtained from the \mathbb{P}^1 -bundle $\operatorname{GPres}_{X'/X}$ by identifying $\mathbb{P}(\theta(Q_1))$ and $\mathbb{P}(\theta(Q_2))$ via the translation in P by the point of Pic_X^{0} , corresponding to $Q_{X'}[Q_2 - Q_1]$.

The quotient of $GPres_{X'/X}$ in the category of topological spaces formed in Lemma 7.2.1, can be given the structure of a reduced k-scheme in many ways [Proposition 1.3.3]. However, in the case that X has

ordinary double points as only singularities, we know the analytic structure of the singularities of $\operatorname{Pic}_X^{=0}$ [Proposition 6.2.2], and this allows us to determine the scheme structure of $\operatorname{Pic}_X^{=0}$ as follows:

Let O' be an orbit of $\operatorname{Pic}_{X'}^{=0}$ of codimension ℓ . The completion of the local ring of $\operatorname{Pic}_{X'}^{=0}$ at a point of O' is isomorphic to

 $\mathbf{k}[[\mathbf{T}_1,\ldots,\mathbf{T}_v]]/(\mathbf{T}_1\mathbf{T}_2,\ldots,\mathbf{T}_{2\ell-1}\mathbf{T}_{2\ell})$

[Proposition 6.2.2].

Set $V_i = \mathbb{P}(\mathcal{P}(Q_i))$ and $V = \pi^{-1}(0')$ where $\pi : \operatorname{GPres}_{X'/X} \to \operatorname{Pic}_{X'}^{=0}$ denotes the natural projection. The identification of $V \cap V_1$ and $V \cap V_2$ is an orbit 0 of $\operatorname{Pic}_X^{=0}$. Indeed, an O_X -Module corresponding to a point of $K(V \cap V_i)$ is an O_X . Module [see the proof of Lemma 7.2.1], and every invertible O_X . Module is of the form $L \otimes_{O_X} O_X$, where L is an invertible O_X^- . Module. Moreover, 0 has codimension $\ell + 1$ in $\operatorname{Pic}_X^{=0}$ since $\operatorname{dimPic}_X^{=0} = \operatorname{dimPic}_{X'}^{=0} + 1$.

The completion of the local ring of $\operatorname{Pic}_X^{=0}$ at a point in 0 is isomorphic to

 $\mathbf{k}[[\mathbf{T}_1,\ldots,\mathbf{T}_v]]/(\mathbf{T}_1\mathbf{T}_2,\ldots,\mathbf{T}_{2\ell+1}\mathbf{T}_{2\ell+2})$

[Proposition 6.2.2]. Hence the δ -invariant of the morphism K : GPres_{X'/X} \rightarrow Pic_X⁼⁰ is at most one at each point of Pic_X⁼⁰. We have proved the following proposition:

Proposition 7.2.2. Let X be a curve with ordinary nodes as only singularities, and let

$$X_m = \overline{X} \rightarrow X_{m-1} \rightarrow \dots \rightarrow X_0 = X$$

be a factorization of $\overline{X} \to X$ such that $\delta(X_i, X_{i-1}) = 1$. Then $\operatorname{Pic}_X^{=0}$ can be constructed from $\operatorname{Pic}_{\overline{X}}^{0}$ in m steps as follows: Suppose we have constructed $\operatorname{Pic}_{X_i}^{=0}$. Then the underlying topological space of $\operatorname{Pic}_{X_{i-1}}^{=0}$ is the quotient of $\operatorname{GPres}_{X_i/X_{i-1}}$ constructed in Lemma 7.2.1, and if q_1 and q_2 are two points of $\operatorname{GPres}_{X_i/X_{i-1}}$, which are identified to one point, the local ring of the resulting point of $\operatorname{Pic}_{X_{i-1}}^{=0}$ is isomorphic to $k \oplus m_{q_1} \cap m_{q_2}$ where m_q denotes the ideal of q_i .

7.3.

Let X be an irreducible curve of arithmetic genus 2 such that the normalization \overline{X} is equal to \mathbb{P}^1 . Suppose that X has only one singular point, which is a tacnode. We can construct such a curve in the following way: Let X' be the plane, cubic nodal curve. Locally, X' is given by Spec(A) where

$$A = k[u_1, u_2] = k[U_1, U_2]/U_2^2 - U_1(U_1 + 1) .$$

Let ψ denote the composition

$$\psi : k[U_1, U_1 U_2] \subseteq k[U_1, U_2] \rightarrow A .$$

The image of ψ is a subalgebra A' of A, and

$$\dim_{k}(A/A') = 1$$

because the elements of A not in A' are of the form cu_{2} , $c \in k$.

Set $m = A' \cap (u_1, u_2)$. By Proposition 1.1.1, there exists a curve X, which is homeomorphic to X', and which has one singular point Q where the local ring is isomorphic to A'_m .

The restriction of the morphism

$$K : \operatorname{Pres}_{X'/X} \to \operatorname{Pic}_{X}^{=0}$$

to $StPres_{X'/X}$ is an isomorphism onto Pic_X^{O} [Lemma 3.1.2]. Let $\varphi \in \underline{Pres}_{X'/X}(k)$, $\varphi \notin \underline{StPres}_{X'/X}(k)$. Then φ is of the form

$$\varphi : f_{\star}L \to L(Q')$$

where Q' is the singular point of X' and $L\in \underline{\text{Pic}}_{X'}^O(k)$. Suppose that ϕ' is another presentation over k of the form

$$\varphi'$$
: $f_*L' \rightarrow L'(Q')$

The $O_{X'}$ -Modules L'[-Q'] and L[-Q'] are torsion-free, rank-l of degree_l, which are not invertible. Since $\operatorname{Pic}_{X'}^{=-1} \simeq X'$ [2, Example 8.9 (iii)], L'[-Q'] and L[-Q'] correspond to the same point of $\operatorname{Pic}_{X'}^{=-1}$. Therefore L'[-Q'] is isomorphic to L[-Q'] as $O_{X'}^{-1}$. Modules (and as $O_X^{-Modules}$) and K(q) = K(q') where q and q' are the points of $\operatorname{Pres}_{X'/X}$ corresponding to φ and φ' . Hence the image of K in $\operatorname{Pic}_X^{=0}$ is the cone over $\operatorname{Pic}_{X'}^{O} \simeq X' \setminus Q'$ obtained by identifying one section of the \mathbb{P}^1 -bundle $\operatorname{Pres}_{X'/X}$ over $X' \setminus Q'$ to one point R.

The complement of $\operatorname{Pic}_X^{\circ}$ in $\operatorname{Pic}_X^{=\circ}$ is an irreducible scheme of codimension 1 [22, Theorem B], which passes through R. Therefore the underlying topological space of $\operatorname{Pic}_X^{=\circ}$ is a cone over $\operatorname{Pic}_{X'}^{=\circ} \simeq X'$.

CHAPTER VIII.

Reducibility of the moduli space of semi-stable,

torsion-free sheaves on a singular curve.

Let X be a singular, integral curve. It has been verified by Newstead [19, Ch. 5, Thm, 5.8'] that there exists a projective scheme M(n,d), which is a coarse moduli space for semi-stable, torsion-free O_X -Modules of rank n and degree d. The points of M(n,d) corresponding to locally free O_X -Modules, form an open, irreducible subset [19, Rem. 5.9 (i)].

Rego [23] proved that if X lies on a smooth surface, then M(n,d) is irreducible. Every torsion-free, rank-n sheaf on X is contained in O_X^n (by twisting if nescessary), and Rego obtained the irreducibility of M(n,d) by showing that $Quot^m(O_X^n/X/k)$ is irreducible for all $m \ge 1$ if X lies on a smooth surface.

In this chapter we prove that $M(n, \ell n)$, $\ell \in \mathbb{Z}$, is reducible if X does not lie on a smooth surface. Since every torsion-free, rank-1 sheaf is semi-stable, $M(1,0) = \operatorname{Pic}_X^{=0}$, and so we obtain another proof of Theorem 5.2.4.

95.

The first step in the proof of reducibility of M(n, ln) is to show that

$$\operatorname{Quot}_{ss}^{tn}(w^n/X/k)$$

is reducible for small t, in fact, for t = 1 if ω is not invertible and for t = 2 if ω is invertible. Here $\operatorname{Quot}_{ss}(\omega^n/X/k)$ denotes the open subscheme of $\operatorname{Quot}(\omega^n/X/k)$ parameterizing quotients N such that $\operatorname{ker}(\omega^n \to N)$ is semi-stable.

We show that the open subset $Q_{F,ss}^{tn}$ of $Quot_{ss}^{tn}(\omega^n/X/k)$, parameterizing quotients N such that $ker(\omega^n \to N)$ is locally free, is irreducible. Then, if q is a point of $Quot_{ss}^{tn}(\omega^n/X/k)$, which does not lie on the component containing $Q_{F,ss}^{tn}$, the corresponding quotient N of ω^n has the property that $I = ker(\omega^n \to N)$ is not deformable to a locally free sheaf. The degree of I is n(2p - 2 - t) where p is the genus of X, and we get that M(n,n(2p - 2 - t)) is reducible.

Let $\boldsymbol{\imath} \in \mathbb{Z}$. Tensoring by an invertible $\text{O}_X\text{-}Module$ L with

degL = l + 2 + t - 2p,

defines an isomorphism

 $M(n,n(2p - 2 - t)) \simeq M(n, ln)$.

Hence M(n, ln) is reducible for all $l \in \mathbb{Z}$.

8.1.

Let A be a complete, discrete valuation ring and set S = Spec(A). Denote by s any η the closed and generic points of S. Let I be an O_X -Module. An O_X -Module \widetilde{I} is called a <u>deformation</u> of I if it is S-flat and if

$$\widetilde{I}(s) \simeq I$$
.

We say that I can be deformed to a locally free sheaf if there exists a deformation \widetilde{I} of I such that $\widetilde{I}(\eta)$ is locally free.

Let $\ensuremath{\,\omega}$ denote the dualizing sheaf on X , and denote by U the open subscheme of X consisting of nonsingular points. Let

Q_{II}^{m}

denote the open subscheme of $Quot^m(\omega^n/X/k)$, which parameterizes quotients of ω^n with support contained in U. Rego [23, Prop. 1.2.0] showed that Q_U^m is irreducible of dimension nm. His proof runs as follows: Consider the map

$$\Lambda : \operatorname{Quot}^{m}(\operatorname{O}_{U}^{n}/U/k) \to \operatorname{Hilb}^{m}(U/k)$$

defined by sending a quotient N of O_U^n to the subscheme of U defined by the ideal $\Lambda(\ker[O_U^n \to N])$. The fibers of Λ at points in the open subscheme H_{sm} of Hilb^m(U/k), corresponding to smooth subschemes of U, are isomorphic to $(\mathbb{P}^{n-1})^m$. Since $\operatorname{Hilb}^m(U/k)$ is irreducible of dimension m [l, Lemma (l)], the open subscheme $\Lambda^{-1}(H_{sm})$, which parameterizes quotients of O_U^n with support at m distinct points, is irreducible of dimension nm. Since every quotient of O_U^n of length m can be deformed to a quotient supported at m distinct points, $\Lambda^{-1}(H_{sm})$ is dense in $\operatorname{Quot}^m(O_U^n/U/k)$.

Clearly, $\operatorname{Quot}^m(\omega^n/X/k)$ is irreducible if and only if for each quotient F of ω^n of length m there exists a deformation \widetilde{F} of F such that $\operatorname{Supp}\widetilde{F}(\eta) \subseteq U_S(\eta)$.

Lemma 8.1.1. Let x be a point of X and denote by M the ideal defining x.

(a) If $\dim_k(\omega/M\omega)\geq 2$, then $\operatorname{Quot}^n(\omega^n/X/k)$ is reducible.

(b) If $\dim_k(\omega/M\omega)=1$ and if $\dim_k(M/M^2)\geq 3$, then ${\rm Quot}^{2n}(\omega^n/X/k)$ is reducible.

<u>Proof.</u> (a) Set $w_1 = w/Mw$. Obviously the functors <u>Quotⁿ($w_1^n/X/k$) and <u>Grass_n(w_1^n/k </u>) are isomorphic. Since $\dim_k(w_1) \ge 2$, $\operatorname{Grass_n}(w_1^n/k)$ has dimension at least n^2 . Hence, since $\operatorname{Quot^n}(w_1^n/X/k)$ is a closed subscheme of $\operatorname{Quot^n}(w^n/X/k)$, we therefore get</u>

$$\operatorname{dim}\operatorname{Quot}^n(\omega^n/X/k) \ge n^2$$
.

If equality holds, then $\operatorname{Quot}^n(\mathfrak{w}^n/X/k)$ is reducible because $\operatorname{Quot}^n(\mathfrak{w}_1/X/k)$ is a closed subscheme of dimension n^2 , which is obviously different from $\operatorname{Quot}^n(\mathfrak{w}^n/X/k)$. If equality fails, the closure of Q^n_U in $\operatorname{Quot}^n(\mathfrak{w}^n/X/k)$ is a component of dimension n^2 , and so $\operatorname{Quot}^n(\mathfrak{w}^n/X/k)$ is reducible.

(b) Since ω is torsion-free, rank-l [4, 2.8, page 8], ω is invertible at x because $\dim_k(\omega/M\omega) = 1$. Since $\dim_k(M/M^2) \ge 3$, we get that

 $\dim_k(\operatorname{M}\!\omega/\operatorname{M}^2\!\omega) \geq 3$.

Set $w_2 = w/M^2 w$. A vector subspace of $(Mw/M^2 w)^n$ of codimension n corresponds to a quotient of w_2^n of length 2n . It is not hard to see that this correspondence extends to families of quotients and vector subspaces, so $\frac{Grass}{n}([Mw/M^2w]^n/k)$ can be considered as a subfunctor of $Quot^{2n}(w_2^n/X/k)$. Hence, since a proper monomorphism is a closed embedding [12, Ch. IV,

Prop. 8.11.5], $\operatorname{Quot}^{2n}(\omega_2^n/X/k)$ contains $\operatorname{Grass}_n([\operatorname{Mw}/\operatorname{M}^2 \omega]^n/k)$. Since $\dim_k(\operatorname{Mw}/\operatorname{M}^2 \omega) \geq 3$, the latter has dimension at least $2n^2$, and reasoning as in the proof of (a), we conclude that $\operatorname{Quot}^{2n}(\omega^n/X/k)$ is reducible.

Let I be a torsion-free sheaf on X and set

$$u(I) = degI/rkI$$
.

We say that I is semi-stable if for all subsheaves I' \sub{I} , $\mu(I') \leq u(I)$.

Lemma 8.1.2. Let I_1, \ldots, I_n be torsion-free, rank-1 sheaves on X such that $\deg I_1 = \ldots = \deg I_n = d$. Then

$$T = \bigoplus_{i=1}^{n} I_i$$

is a semi-stable, torsion-free, rank-n sheaf.

<u>Proof.</u> Let J be a subsheaf of T of rank r, and let T_1, \ldots, T_t be the set of all subsheaves of T of the form $\bigoplus_{i=1}^{k} I_{n_i}$. We denote by

$$f_j : J \to T_j$$

the composition of the inclusion $J \subset T$ and the natural projection $T \to T_j$.

Let g denote the generic point of X. There exists an integer l, $l \leq l \leq t$, such that the map $f_{l,g}$ of $O_{X,g}$ -vector spaces is an isomorphism. Hence

$$f_{\ell}: J \to T_{\ell}$$

is injective, and the cokernel of f_l is supported at a finite set of points. The additivity of the Euler characteristic gives that $\deg J \leq \deg T_l = rd$, and therefore

$$\mu(J) \leq \mu(T) = d .$$

Set $Q = Quot^m(w^n/X/k)$ and let \mathcal{T} be a universal quotient on $X \times Q$. The points $q \in Q$ such that $[\ker(w_Q^n \to \mathcal{T})](q)$ is semi-stable, form an open subset Q_{ss} of Q [19, Ch. 5, §3, Rem., page 136]. Hence the subfunctor of $\underline{Quot}^m(w^n/X/k)$ of quotients N such that $\ker(w^n \to N)$ is semi-stable, is represented by an open subscheme $\operatorname{Quot}_{ss}^m(w^n/X/k)$ of $\operatorname{Quot}_{w^n/X/k}^m(w^n/X/k)$.

<u>Proposition 8.1.3.</u> Let x be a point of X and denote by M the ideal defining x.

(a) If $\dim_k(\omega/M\omega)\geq 2$, then ${\rm Quot}_{\rm ss}^n(\omega^n/X/k)$ is reducible.

(b) If $\dim_k({\tt w}/{\tt M}{\tt w})=1$ and if $\dim_k({\tt M}/{\tt M}^2)\geq 3$, then ${\tt Quot}_{ss}^{2n}({\tt w}^n/{\tt X}/k)$ is reducible.

Proof. (a). Set

 $\operatorname{Grass}_{n}^{ss}(\boldsymbol{\omega}_{l}^{n}/k) = \operatorname{Grass}_{n}(\boldsymbol{\omega}_{l}^{n}/k) \cap \operatorname{Quot}_{ss}^{n}(\boldsymbol{\omega}^{n}/X/k)$

where $\operatorname{Grass}_{n}(\omega_{l}/k)$ is the subscheme of $\operatorname{Quot}^{n}(\omega^{n}/X/k)$ defined in the proof of part (a) of Lemma 8.1.1. Let V be a vector subspace of ω_{l} of colength 1. Then V^{n} corresponds to a point of $\operatorname{Grass}_{n}(\omega_{l}^{n}/k)$, which, by Lemma 8.1.2, lies in $\operatorname{Grass}_{n}^{ss}(\omega_{l}^{n}/k)$. Hence

$$dimGrass_n^{ss}(\omega_1^n/k) \ge n^2$$

and the arguments used to prove Lemma 8.1.1 (a) shows that $Quot_{ss}^{n}(\omega^{n}/X/k)$ is reducible. (b). A similar modification of the proof of part (b) of Lemma 8.1.1 gives that $Quot_{ss}^{2n}(\omega^{n}/X/k)$ is reducible.

8.2.

The first lemma below was originally proved by Grothendieck [12, $Ch.O_4$, Prop. 19.1.10]. It is proved by Oda and Sehadri [20, Lemma in Appendix] in the following version:

<u>Lemma 8.2.1.</u> Let $A \rightarrow B$ be a local homomorphism of noetherian local rings. Let N and L be finite B-modules with L A-flat. Then a B-homomorphism

f : $N \rightarrow L$

is injective with A-flat cokernel if and only if

$$f \otimes_A K : N \otimes_A K \to L \otimes_A K$$

is injective where K denotes the residue field of A.

Let $A \rightarrow B$ be a flat homomorphism of local noetherian rings. If F is a B-module, we denote by \overline{F} the A-module $F \otimes_A K$ where K is the residue field of A.

Let N be a finite B-module such that $\mathrm{Ext}\frac{1}{B}(\overline{N},\overline{B}) = 0$. Under this hypothesis Oda and Seshadri showed that

$$\operatorname{Hom}_{\operatorname{B}}(\operatorname{N},\operatorname{B}) \otimes_{\operatorname{A}} \operatorname{K} \simeq \operatorname{Hom}_{\overline{\operatorname{B}}}(\overline{\operatorname{N}},\overline{\operatorname{B}})$$

[19, Corollary of Appendix]. However, their proof gives the more general result:

Lemma 8.2.2. Suppose that

$$\operatorname{Ext}^{\underline{l}}_{\overline{B}}(\overline{N},\overline{L}) = 0$$
.

Then there is an isomorphism

$$\operatorname{Hom}_{\mathrm{B}}(\mathrm{N},\mathrm{L}) \otimes_{\mathrm{A}} \mathrm{K} \xrightarrow{\sim} \operatorname{Hom}_{\overline{\mathrm{B}}}(\overline{\mathrm{N}},\overline{\mathrm{L}})$$

where N and L are finite B-modules with L A-flat.

As an immediate consequence of the two previous lemmas we get the proposition:

<u>Proposition 8.2.3.</u> Set S = Spec(A), A a local k-algebra, and let $Y \rightarrow S$ be a flat morphism of affine schemes. Let N and L be coherent O_Y -Modules with L flat over S. Suppose that

$$\operatorname{Ext}_{Y(s)}^{1}(N(s),L(s)) = 0$$

where s denotes the closed point of S . Then there is an isomorphism

$$\operatorname{Hom}_{Y}(N,L)(s) \simeq \operatorname{Hom}_{Y(s)}(N(s),L(s))$$

Moreover, if ψ : N(s) \rightarrow L(s) is injective and φ : N \rightarrow L is a homomorphism such that $\varphi(s) = \psi$, then φ is injective.

Next we give a criterion for vanishing of Ext¹-groupes, which we will use later.

Lemma 8.2.4. Let ω denote the dualizing sheaf of X, and let N be a torsion-free, rank-n sheaf. Then for all points $x \in X$ we have that

$$\operatorname{Ext}^{1}_{O_{X,X}}(N_{X},\omega_{X}) = 0$$
.

<u>Proof.</u> Let I be an O_X -ideal, $I \neq O_X$, and set $G = \bigoplus^n I$. Let t_o be a number such that $\underline{Hom}_X(N,G)(t)$ is generated by global sections if $t \geq t_o$. Since there exists an isomorphism $N_g \simeq G_g$, where g denotes the generic point of X, there is an injective map

 $\alpha(t)$: N(-t) \rightarrow G

for $t \ge t_0$. If $H^O(X,N(-t)) \ne 0$, there is a non-zero map

$$\beta : O_X \rightarrow N(-t)$$
.

Then $\alpha(t) \cdot \beta$ gives a non-zero map $O_X \rightarrow G$, and hence a non-zero map $O_X \rightarrow I$. Since $\chi(I(n)) < \chi(O_X(n))$, $n \ge 0$, there is no non-zero map $O_X \rightarrow I$ [2, Prop. 3.4, (ii) (b)]. Hence we get that $H^O(X,N(-t)) = 0$.

By duality

$$\operatorname{Ext}_{X}^{1}(\operatorname{N}(-t), \omega) \simeq \operatorname{H}^{O}(X, \operatorname{N}(-t))$$
,

SO

$$\operatorname{Ext}_{X}^{1}(\operatorname{N}(-t), \omega^{n}) = 0$$

for $t \ge t_0$.

Let t_1 be an integer such that $\underline{\operatorname{Ext}}_X^1(\mathbb{N}(-t), \omega^n)$ is generated by global sections for $t \ge t_1$. If $t \ge \max(t_0, t_1)$, then $\underline{\operatorname{Ext}}_X^1(\mathbb{N}(-t), \omega^n)_X = 0$ for all points $x \in X$. Since

$$\underline{\operatorname{Ext}}_{X}^{1}(\operatorname{N}(-t), \omega^{n})_{x} \simeq \operatorname{Ext}_{O_{X, x}}^{1}(\operatorname{N}_{x}, \omega_{x}^{n})$$

[14, Prop. 6.8], the assertion follows.

8.3.

Let Q_F^m denote the open subscheme of $Quot^m(\omega^n/X/k)$, which parameterizes quotients N of ω^n such that the kernel of $\omega^n \to N$ is locally-free.

Lemma 8.3.1. Q_F^m is irreducible.

<u>Proof.</u> Let q_1 and q_2 be two points of Q_F^m and denote by N_1 and N_2 the quotients of ω^n corresponding to q_1 and q_2 . Set $I_i = \ker(\omega^n \to N_i)$. There exists a family F of locally free, rank-n sheaves over an irreducible scheme T such that $I_i = F(t_i)$ for closed points $t_1, t_2 \in T$ [19, Ch. 5, remark on page 136].

Let A be a discrete valuation ring and set S = Spec(A). Denote by s and η the closed and generic points of S. There exist maps $g_1, g_2 : S \rightarrow T$ such that $g_i(s) = t_i$ and $g_1(\eta) = g_2(\eta)$ [12, Ch. II, Prop. 7.1.4 (i)]. The pullbacks of F to S by g_1 and g_2 give families F_1 and F_2 over S such that $F_1(\eta) = F_2(\eta)$ and $F_i(s) \simeq I_i$.

Let V be an open subset of X such that $Supp(N_1) \cup Supp(N_2) \subseteq V$. By Proposition 8.2.3, there exist maps

$$h_1, h_2 : S \rightarrow Q_V^m(\omega^n/X/k)$$

such that $h_i(s) = q_i$ and $h_1(\eta) = h_2(\eta)$. Hence q_1 and q_2 lie on the same irreducible component of $Q_V^m(w^n/X/k)$ and therefore on the same component of $Quot^m(w^n/X/k)$.

We are now ready to prove the main result of this chapter.

Theorem 8.3.2. If X does not lie on a smooth surface, then $M(n, \ell n)$, $\ell \in \mathbb{Z}$, is reducible.

<u>Proof.</u> $\operatorname{Quot}_{ss}^{tn}(w^n/X/k)$ is reducible for t = 1 if X is Gorenstein and for t = 2 if X is not Gorenstein [Proposition 8.1.3]. Since $\operatorname{Q}_{F,ss}^{tn} = \operatorname{Quot}_{ss}^{tn}(w^n/X/k) \cap \operatorname{Q}_{F}^{tn}$ is irreducible [Lemma 8.3.1], $\overline{\operatorname{Q}}_{F,ss}^{tn} \neq \operatorname{Quot}_{ss}^{tn}(w^n/X/k)$. Let $q \in Quot_{ss}^{tn}(\omega^n/X/k)$, $q \notin \overline{Q}_{F,ss}^{tn}$. Let N denote the quotient of ω^n corresponding to q, and denote by I the kernel of the map $\omega^n \to N$. Suppose that I can be deformed to a locally free sheaf over S = Spec(A), A a complete, discrete valuation ring.

Let V be an affine open subset of X such that $\operatorname{SuppN} \subseteq V$ and denote by $\operatorname{Q}_{V,ss}^{tn}$ the open subscheme of $\operatorname{Quot}_{ss}^{tn}(\omega^n/X/k)$, which parameterizes quotients of ω^n with support contained in V. Put $J = I|_V$. Since I can be deformed to a locally free sheaf over S, there exists a deformation \tilde{J} of J to a locally free sheaf over S. By Proposition 8.2.3 and Lemma 8.2.4, the inclusion

$$J \subset (\omega/V)^n$$

lifts to an injection

$$\alpha$$
 : J \rightarrow $(\omega/V)_{\rm S}^{\rm n}$.

The cokernel of α is S-flat [Lemma 8.2.1] so it corresponds to a morphism

$$S \rightarrow Q_{V,ss}^{tn}$$
such that the generic point of S maps to $Q_{V,ss}^{tn} \cap Q_{F,ss}^{tn}$. This implies that $q \in \overline{Q}_{F,ss}$, and we have a contradiction since q was chosen not to lie in $\overline{Q}_{F,ss}^{tn}$. Hence I is a torsion-free, rank-n sheaf of degree n(2p - 2 - t), which can not be deformed to a locally free sheaf, and therefore M(n,n(2p - 2 - t)) is reducible.

If I is torsion-free of rank n and L is an invertible O_X -Module, then $deg(I \otimes L) = degI + ndegL$ [19, page 131]. Tensoring by an invertible O_X -Module L with

$$degL = l + 2 + t - 2p$$
,

 $\textbf{\textit{l}} \in \textbf{Z}$, defines an isomorphism

 $M(n,n(2p - 2 - t)) \simeq M(n, ln)$.

Hence M(n, ln) is reducible for all $l \in \mathbb{Z}$.

<u>Remark 8.3.3.</u> Suppose that X does not lie on a smooth surface. Then there exists a torsion-free, rank-l sheaf I_1 on X, which has no deformation to a locally free sheaf [Theorem 5.2.4].

Set

 $I = I_1 \oplus I_2 \oplus \dots \oplus I_n$

where I_i , i = 2, ..., n are torsion-free, rank-1 and degI_i = degI₁. If every deformation \tilde{I} of I can be written as

 $\widetilde{I} = \widetilde{I}_1 \oplus \ldots \oplus \widetilde{I}_n$

where \tilde{I}_i is a deformation of I_i , then I is a semi-stable, torsion-free, rank-n sheaf, which has no deformation to a locally free sheaf. Hence, if such decompositions of deformations hold, reducibility of $M(n,n\ell)$ will follow from reducibility of M(l,d).

However, the next proposition shows that this is not the case.

<u>Proposition 8.3.4.</u> Let A be a local k-algebra, which is an integral domain of dimension 1, and suppose that A is not regular. Then there exists a torsionfree A-module I_1 of rank 1, a free A-module I_2 and a k[[T]]-flat A[[T]]-module \tilde{I} such that

$$\tilde{I} \otimes_{k[[T]]}^{k} \simeq I_{1} \oplus I_{2}$$
,

but \widetilde{I} does not have a decomposition

$$\widetilde{I} = \widetilde{I}_1 \oplus \widetilde{I}_2$$

where \widetilde{I}_{i} is a deformation of I_{i} . Here T is an independent variable over k.

<u>Proof.</u> Let m denote the maximal ideal of A . Since A is not regular, there exist elements f_1, f_2 of m such that

$$\dim_k((f_1, f_2)/m(f_1, f_2)) = 2$$
.

Set B = A[[T]] and let K be the submodule of B^3 generated by the element (f_1, f_2, T) . Let K' denote the submodule of A^3 generated by $(f_1, f_2, 0)$ and set

$$\tilde{I} = B^3/K$$
 and $I = A^3/K'$.

Then

and \tilde{I} is k[[T]]-flat [Lemma 8.2.1].

Let K" be the submodule of A^2 generated by (f_1, f_2) . Then $I_1 = A^2/K$ " is a torsion-free A-module of rank l and I can be written as

$$I = I_1 \oplus I_2$$

where ${\rm I}_2$ is free of rank l .

We will show that there is no decomposition of $\widetilde{\mathrm{I}}$ of the form

$$\widetilde{I} = \widetilde{I}_1 \oplus \widetilde{I}_2$$
 .

where \widetilde{I}_{i} are deformations of I_{i} . We proceed as in the proof of [8, Prop. 1.2]:

For a B-module M , let $\gamma(B)$ denote the least number of elements required to generate M . Suppose that \widetilde{I} can be written as

$$\widetilde{\mathtt{I}} = \widetilde{\mathtt{I}}_1 \oplus \widetilde{\mathtt{I}}_2 \ .$$

We have the following formulas:

$$\begin{split} \mathbf{\gamma}(\widetilde{\mathbf{I}}_1) + \mathbf{\gamma}(\widetilde{\mathbf{I}}_2) &= \mathbf{\gamma}(\widetilde{\mathbf{I}}) \leq \mathbf{\mathcal{I}} \quad [\mathbf{8}, \, \text{Lemma 1.3}] \\ & \text{rank } \widetilde{\mathbf{I}}_1 + \text{rank } \widetilde{\mathbf{I}}_2 = \text{rank } \widetilde{\mathbf{I}} \end{split}$$

and

rank
$$\widetilde{I}_1 \leq \gamma(\widetilde{I}_1)$$
 , rank $\widetilde{I}_2 \leq \gamma(\widetilde{I}_2)$.

From these conditions we conclude that either rank $\tilde{I} = \gamma(\tilde{I})$, rank $\tilde{I}_1 = \gamma(\tilde{I}_1)$ or rank $\tilde{I}_2 = \gamma(\tilde{I}_2)$, i.e. either \tilde{I}_1, \tilde{I}_2 or \tilde{I} is free.

 \tilde{I} is not free since $\tilde{I} \otimes_{k[T]} k \simeq I$ and I is not a free A-module. Suppose, therefore, that \tilde{I}_1 , say, is free. Projecting $\tilde{I} \to \tilde{I}_1$ with kernel \tilde{I}_2 induces a map $f: B^3 \to \tilde{I}_1$, which thus splits. Since $\alpha \in \ker f$, α belongs to a proper summand of B^3 . Hence to some new basis of B^3 , α has at least one zero coordinate. But the ideal (f_1, f_2, T) in B is generated by the coordinates of α relative to any basis of B^3 . Therefore, since $\gamma(f_1, f_2, T) = 3$, no coordinate of α vanish. Hence the assumption that \tilde{I} can be written as $\tilde{I}_1 \oplus \tilde{I}_2$ leads to a contradiction.

REFERENCES

- [1] Altman, Iarrobino and Kleiman, "Irreducibility of the Compactified Jacobian", Nordic Summer School NAVF, Oslo 1976, Noordhoff (1977).
- [2] Altman and Kleiman, "Compactifying the Picard Scheme", Advances in Math., Vol 35 (1980), 50-112.
- [3] Altman and Kleiman, "Bertini Theorems for Hypersurface Sections Containing a Subscheme", Communications in Algebra 7(8) (1979), 775-790.
- [4] Altman and Kleiman, Introduction to Grothendieck
 Duality Theory, Lecture Notes in Math. 146,
 Springer Verlag, Heidelberg (1970).
- [5] Artin M., "Some numerical criteria for contractibility of curves on algebraic surfaces", Amer. J. Math. 84 (1962), 485-496.
- [6] Bass, "On the Ubiquity of Gorenstein Rings", Math. Zeit., Vol 82 (1963), 8-28.
- [7] Bass, "Torsion free and projective modules", Trans.A.M.S., Vol 102 (1962), 319-327.

- [8] Briançon, Granger and Speder, "Sur le Schema de Hilbert d'une Curbe Plane", preprint, Université de Nice (1979).
- [9] Burch L., "On ideals of finite homological dimension", Cambridge Philosophical Society, Proceedings, Vol 64 (1968), 941-949.
- [10] D'Souza, "Compactifications of generalized Jacobians", Proc. Indian Acad. Sci., Vol 88 (1979), 419-457.
- [11] Grothendieck and Dieudonné, Elémentes de Géométrie Algébrique I, Springer Verlag (1971).
- [12] Grothendieck and Dieudonné, "Elémentes de Géométrie Algébrique", Publ. Math. I.H.E.S., Nos 8,11,17,20, 24,28,32 (1961,'63,'64,'65,'66,'67).
- [13] Grothendieck, "Techniques de Construction et Théorème d'Existence en Géométrie Algébrique", Exp. 221,232,236, Seminaire Bourbaki 1960/61.
- [14] Hartshorne, Algebraic Geometry, Springer Verlag, New York (1977).
- [15] Hochster and Eagon, "Cohen-Macaulay rings,...," Amer. J. Math., 93 (1971).

- [16] Kempf, "On the geometry of a theorem of Riemann", Ann. of Math. (2), 98 (1973).
- [17] Kleiman, "Geometry of Grassmannians and Applications to ...", Publ. Math. I.H.E.S. No 36 (1969).
- [18] Mumford, Introduction to Algebraic Geometry, Benjamin, New York (1968).
- [19] Newstead P.E., Introduction to moduli problems and orbit spaces, Tata Inst. of Fundamental Research, No. 51 (1978).
- [20] Oda and Seshadri, "Compactifications of the Generalized Jacobian Variety", Trans. A.M.S. Vol 253 (1979), 1-90.
- [21] Oort, "A construction of Generalized Jacobian Varieties by Group Extensions", Math. Annalen, 147 (1962), 227-286.
- [22] Rego, "The Compactified Jacobian", revised and expanded version, Tata Institute, Preprint (1978).
- [23] Rego, "Compactification of the Space of Vector Bundles on a singular curve", Tata Institute, Preprint (1980).

- [24] Schlessinger, "Functors of Artin rings", Trans. A.M.S., Vol 130 (1968), 208-222.
- [25] Serre, Groupes algebrique et corps de classes, Paris: Hermann (1959).