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ABSTRACT

In the first part of this work we show that the
Picard scheme P of a curve X (reduced, but not nec-
essarily irreducible) can be constructed from the Picard
scheme of the normalization of X by a sequence of

Im- and cra-extensions.

Next, we study the compactification P of P for
an integral curve X defined as the moduli space of
torsion-free, rank-1 sheaves on X . We show that if X
lies on a smooth surface, the boundary points of P in
F are singular points. If the 6-invariant of the nor-
malization map of X is at most one at each point, we
find the orbits of P under the action of P . More-
over, we describe the analytic structure of the singular-
ities in this case, and we show how the singularities are
distributed on the orbits. If X has ordinary double
points as only singularities, we give an explicit con-
struction of F .

In the case that X does not lie on a smooth surface,
we show that F is reducible. In the last chapter we
extend this result to the moduli space M(n,d) of semi-
stable, torsion-free, rank-n sheaves of degree d on X
We show that if X does not lie on a smooth surface, then
M(n,In) , I E Z , is reducible.

Thesis Supervisor: Steven L. Kleiman
Title: Professor of Mathematics
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INTRODUCTION

Throughout this work k denotes an algebraically

closed field. We will use the word curve to mean a

reduced projective k-scheme of pure dimension 1, and

by a point we mean a closed point. For other basic

concepts of algebraic geometry, we use the terminology

of [14].

In the first part of this work we study the

component P of the Picard scheme of a curve X ,

which parameterizes invertible 0 X-Modules of degree o

If X is smooth, P is a projective group variety. If

X has singularities, P is quasi-projective. We show

how P can be constructed from the Picard scheme of the

normalization of X by a sequence of extensions by a-

and C;m-bundles. We obtain this construction by showing

that the normalization map of X can be written as a

composition of maps where the 6-invariant changes by 1

[Theorem 1.2.4]. Then we prove that if X' -- X is a

surjective map of curves such that 6(X',X) = 1 , the

Picard scheme of X is isomorphic to the Picard scheme

of X' , or it is a am- or Ga-extension of the Picard

scheme of X' [Theorem 3.2.1].

There exists a natural compactification P of P ,

where the points of P corresponds to torsion-free,
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rank-i sheaves on X , if X is irreducible [2]. A

main part of this work is devoted to an investigation

of the properties of P.

If X lies on a smooth surface, Altman, Iarrobino

and Kleiman [1] proved that P is irreducible. We show

the converse: F is reducible if X does not lie on a

smooth surface [Theorem 5.2.4].

In the case that P is irreducible, we show that

the boundary points of P in F are singular points

[Theorem 6.1.3]. In the special case that the 6-

invariant of the normalization map of X is at most

1 at each point, we find the orbits of F under the

action of P . Moreover, we describe the analytic

structure of the singularities of F , and we show how

the singularities are distributed on the orbits

[Proposition 6.2.2].

If X has m ordinary double points as only

singularities, we describe how F can be constructed

from the Picard scheme of the normalization of X .

More precisely, if Y' -+ Y is a desingularization of

one of the nodes, we show that F is obtained fromy

a IP1-bundle over F, by identification of two sections

via a translation by a point of Picy, [Proposition 7.2.2].
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Newstead [19] has verified that there exists a

projective scheme M(n,d) , which parameterizes semi-

stable, torsion-free, rank-n sheaves of degree d on

an irreducible curve X . If X lies on a smooth sur-

face, Rego [23] proved that M(n,d) is irreducible.

In the last chapter we show that M(n,2n) , I E 2Z

is reducible if X does not lie on a smooth surface

[Theorem 8.3.2].

We now give a more detailed description of how

the material is organized. In Chapter I we prove that

the normalization map of a curve can be written as a

composition of maps where the 6-invariant changes by 1.

A main ingredient in the proof of this result is a

modification of a method used by Serre to construct

singular, irreducible curves from their normalization.

The presentation functor PresX'/X , where X' -+ X

is a surjective morphism of curves such that 6(X',X) = 1

is introduced in Chapter II. We show that it is repre-

sented by a Il -bundle over Pic X, if X and X'

have the same number of connected components.

In Section 2.3 we define a subfunctor StPresX'/X

of PresX'/X , which is represented by a Im- or

Tr-bundle over Pic X if X and X' have the same
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number of connected components and by Pic X otherwise.

In Chapter III we show that StPresX;/X is isomorphic

to PicX , and hence the Picard scheme of a curve hasX

the structure of Gm - and Ta-extensions of the Picard

scheme of the normalization of X

In Chapter IV we recall basic facts about the

functor Pic X0 of torsion-free, rank-l sheaves on' X

and the Abel map

An : Quotn(W/X/k) -+)Pic X0

We also give a short discussion of the problem of com-

pactifying Pic 0  in the case that X is reducible.X

In Section 4.3 we give examples of cuspidal plane curves

C such that there exists a point of PicC0  where theC

tangent cone is not a complete intersection. We explain

how these examples show that the program we had for ex-

plicit constructions of compactifications of the Picard

scheme fails.

In Chapter V we show that Pic X0  is reducible if

X does not lie on a smooth surface. This is done in

two steps. We show that Quot 2(w/X/k) is reducible

if X does not lie on a smooth surface. Then we prove

that this implies reducibility of Quotn(w/X/k) , n > 2 ,

and so the smoothness of the Abel map
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An Quotn(w/X/k) -+ Pic X0x

shows that Pic 0  is reducible.x
In Chapter VI we study Pic 0  in the case that Xx

lies on a smooth surface. Using the description of the

singular locus of Hilbn (X/k) of [8], we prove that the

boundary points of Pic 0  in PicX0  are singular points.x x
If the 6-invariant of the normalization map of X is

at most 1 at each point, we show that Pic"X has

orbits (under the action of PicX ) of codimension k ,

1 < k < 6(X,X) . We also give the analytic structure

of the singularities of Pic"o and determine how thex
singularities are distributed on the orbits.

Chapter VII includes a generalization GPresy,/Y

of the presentation functor introduced in Chapter II

where Y' -+ Y is a surjective, birational morphism

of irreducible curves. The source of a generalized

presentation is taken to be a torsion-free, rank-1

sheaf on Y' . We show that GPresy,/Y is repre-

sented by a projective k-scheme. We use generalized

presentations to describe explicitely the structure

of Pic~0  in the case that X has ordinary double

points as only singularities as follows: If Y' -+ Y

is a desingularization of one of the singularities of

X , G Presy, is a P1 -bundle over Pic, , and



Pic = is obtained from this F1 -bundle by identifying

two sections via a translation in Pic .,

Some of the techniques we use in Chapter VIII to

prove reducibility of the moduli space M(n,Ln) of

semi-stable, torsion-free sheaves of rank n and

degree In are similar to the one used in Chapter V.

We show that Quot s (n/X/k) is reducible if X is

not Gorenstein and Quot (n/X/k) is reducible if X

is Gorenstein but X does not lie on a smooth surface

(Quotss denotes the open subscheme of Quot consisting

of quotients N such that ker(wn -. N) is semi-stable).

Since we have no smooth Abel map at hand, we devise other

methods to derive reducibility of M(n,,n) .

I am grateful to my advisor Steven Kleiman for his

help preparing this material.
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CHAPTER I.

The normalization map for curves.

Let X be a curve (reduced, but not necessarily

irreducible). In this chapter we prove that the nor-

malization map

f x

can be written as a composition

X = Xr > Xr-l- o = X

such that the 6-invariant of each f is one.

Both Artin [5] and Oort [21] have constructed a

factorization of f ; Oort in the case that X is

irreducible and Artin for X reducible. However, in

their factorization the 6-invariant does not always

change by one.

The main ingredient in our proof of the breaking

up of f is a modification of the method used by Serre

to construct singular, irreducible curves from their

normalization [25, Prop. 2, page 69]. We generalize

Serre's procedure so that we can construct quotients

by a finite set-theoretic equivalence relation of a

k-scheme, which is reduced, but which need neither be

nonsingular nor irreducible.
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The generalization of Serre's method to schemes of

dimension greater than one allows the construction of

a quotient by an equivalence relation defined by an

involution on a closed subscheme. As an application

1 =0owe construct a quotient of a IP -bundle over Pic, ,

which we in Chapter VII will prove is the compactification

of PicX . Here X is an irreducible curve with or-

dinary double points as only singularities, and X' is

the desingularization of one of the double points.

1.1.

Let X be a locally noetherian k-scheme, and let Z

be a closed subscheme of X such that no component of

X is contained in Z . Let

R Z

be a finite equivalence relation in the category of

sets. It induces an equivalence relation

RD- X.

We denote by Y the quotient of X by R . The

quotient topology gives Y the structure of a topo-

logical space. In this section we will deduce that Y

can be given the structure of a reduced scheme in many

ways.
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First we introduce some notation. Let R(X)

denote the sheaf of total quotient rings of X [11,

Ch. I, Def. 8.3.1]. Since X is locally noetherian

and reduced, the map

0X +Rx)

is injective [11, Ch. I, Prop. 8.3.7].

For a closed point Q E Y we put

0 = f XVP
S PEf~ (Q)X,

where the intersection takes place in k(X) and where

f : X -+ Y denotes the projection.

Let d be a fixed positive integer. For each

closed point Q E f(Z) , fix a local ring 0' such that

(*) k e r c 0 c k E r

where r denotes the radical of O , i.e. the inter-

section of the maximal ideals of O .
For Q E Y , Q 9 f(Z) we set

(**) O= OQ

Proposition 1.1.1. Let X , R , Y and 0' be as above.
Q

Suppose that X can be covered by open affine subsets,
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which are R-stable. Then Y can be given the structure

of a locally noetherian, reduced k-scheme such that

and there is a natural projection morphism p : X -+ Y

Moreover, if X is proper over k , then Y is

proper over k

Proof. Serre's proof of [25, Prop. 2, page 69] carries

over to the above situation with only minor modifications.

1.2.

Let f

curves.

point Q

XI -+ X be a surjective, birational morphism of

We recall that the 6-invariant of f at a

E X , 6(X',X,Q) , is defined by

6(X',XQ) = dimk(OQ/OXQ)

where 0g = n lQOX' P .We set 6(X',X) = Z 8(X',XQ)
PEf(Q) ' QEX

Let Ql, ... ,Qr be the points of X such that

6(X',XQi) o 0 and let S be the points of r5j U f (Qi)

We denote by R the equivalence relation on S in the

category of sets, which intentifies the points in S

mapping to the same point of X . Since S is a finite

set of points, we can find an open covering (Ui) of X'

such that U are R-st-able. Hence we can apply Pro-

position 1.1.1 to deduce:

.
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Lemma 1.2.1. Let f : X' -+ X be a surjective, birational

morphism of curves. Then there exists a curve Y and

morphisms

g : X' -+ Y , h : Y -+ X

such that f = h * g , h is a homeomorphism and 0 =

k E r for all QE Y (r is the radical of 0Q)

The next two lemmas show that we can break up g

and h in steps where 6 changes by one.

Lemma 1.2.2. Let g : X -+ X be as in Lemma 1.2.1.

Then there exists a factorization

X' = Xx X X I = Y

of g such that 6(X{,X 1 ) = 1

Proof. Let P1 and P2 be two different points of X ,

which map to the same point Q of X . Let X_ be

the quotient of X' in the category of sets by the

equivalence relation, which indentifies P1  and P2

By Proposition 1.1.1, X-l can be given the structure

of a curve with a morphism

: X' -+0. X
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such that gs is an isomorphism on X'\(P1 ,P2) and

such that

O , k E r
Xs-l'Q Q

where r is the radical of OX',P 1 ox',P2
Set A 1 = OXIP

and A2 = OXfP2
and denote by

m1 and m2 the maximal ideals of A1 and A2 . The

natural surjection

A1 i A2 -- (A1/m1 ) e (A 2 /m 2 )

has kernel m1 n m2 and so

dimk(A, n A2/ml n m2 ) = 2

Hence we get that

dimk(Al n A2/ @ (mi n m2)) 1

which shows that 6(X',X1 )
We repeat the procedure for the natural morphism

g' :X- -.Y to construct X . After s = 6(X',Y)

steps we reach the curve Y .

Lemma 1.2.3. Let h : Y -+ X be as in Lemma 1.2.1. Then

there exists a factorization
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Y = Y h t - 000-*Y h >Yo X

of h such that 6(Y iYi 1 ) = 1

Proof. Let P be a point of Y where h is not an

isomorphism and set Q = h(P) . Let m denote the

maximal ideal of 0  and let C denote the conductor

of 0 XQ n 0 .

If C / m , we have that

(C) m / mo Y

since the conductor is the largest ideal in OX,Q , which

is also an ideal of OY . There exists a curve Y' ,

homeomorphic to Y and isomorphic to Y outside P

such that

OYVP ~- k e mO Y

[Proposition 1.1.1]. From (]) it follows that 6(Y,Y') <

6(YX) , so we may assume, using induction on 6(Y,X) ,

that the conductor C is equal to m.

Set A = 0 X.9 and B = O V and denote by M the

maximal ideal of B . Since h is birational, B/m is

an artinian ring. Hence the exists a number , such

that
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MI c m c M.

Let u be an element of M such that u 0 m and

u2 E m and set

A' = A[u]

Since mB = m , every element in A' can be written as

a + cu , a E A and c E k , so dimk(A'/A) = 1

There exists a curve Y t-l and a morphism

ht : Y -t-1 such that ht is a homeomorphism and

htly\ p is an isomorphism, and such that 0 -t-' . - A'

[Proposition 1.1.1]. Since 6(Y,Yt1 ) = 1 , the lemma

is proved using induction on 6(Y,X) .

Let X1,...,Xr denote the irreducible components

of X and let Xi denote the normalization of X . We

define the normalization X of X to be

r
X = e Xi.

i=l

The three previous lemmas give the following result:

Theorem 1.2.4. Let f : X- X be the normalization map

of the curve X . Then f has a decomposition

X = X - Xt-1 - .. - X - X0 = X

such that 6(X i,Xi 1l) = 1.



1.3.

Let W = Spec(B) be an affine scheme and let a: W -+ W

be an involution (i.e. a2 = id) . Let y E W and let

U be an open subset of W such that y , a(y) E U..

Lemma 1.3.1. There exists an element b E B such that

the principal open subset Ut = Spec(Bb) is a-stable

and y E U'c U.

Proof. By shrinking U , if necessary, we may assume

that U = Spec(Bs) , s E B . Put b = sa*(s) and set

U' = Spec(Bb) where a* denotes the comorphism

a*: OW -+ OW . Then U' = U n a(U) so U' is a-stable

and y E U' .

Let Z be a locally noetherian and reduced projective

k-scheme. Let T c: Z be a closed subscheme such that no

component of Z is contained in T . Suppose we have

an involution

a : T -+ T

Lemma 1.3.2. For each point y E T there exists an

affine open subset U = Spec(A) of Z such that y E U

and T n U is a-stable.
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Proof. Since a is an involution on T , we can find

an open affine subset

V = Spec(B)

of T , which is a-stable and such that y E V . Indeed,

let 0 be an affine open subset of T such that

(y , a(y)) c 0 and set V = 0 n a(Q) . Clearly V is

a-stable, and V is affine since T is separated

[12, Ch. I, Prop. 5.5.6].

We choose an affine open subset

U = Spec(A1 )

of Z such that U 1 n T c V and such that (y, a(y))

U . Then Ul n T is of the form

U1 n T = Spec(B1 )

where B1 = A1 /I for an ideal I, A1 . There exists

an element b E B1  such that

U' = Spec(Bl,b)

is a-stable and such that y E U' [Lemma 1.3.1]. Let

a be an element of A1  such that the residue class of a

modulo I is equal to b . Set A = Al,a and put

U = Spec(A) . The assertion now follows since U n T = U'

and U' is a-stable with y E U' .
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Denote by i the inclusion T c Z . The two

morphisms i and i * a define a finite equivalence

relation on Z in the category of sets. As in Section 1.1,

let Y denote the quotient of Z with the quotient

topology. For each closed point Q E Y , let 0' be
Q

local rings, which satisfy the relations (*) and (**.)

of Section 1.1.

Proposition 1.3.3. Y can be given the structure of a

reduced, proper k-scheme such that 0 ~ O for

every closed point Q E Y .

Proof. In order to apply Proposition 1.1.1, we must show

that Z can be covered by affine open subsets, which are

stable with respect to the equivalence relation defined

by i and i 9 a . That is an immediate consequence of

the fact that there is an open, affine covering (U of

Z such that U f T is a-stable [Lemma 1.3.2].

Let Xt be an irreducible curve and denote by

P = PicX, the scheme parameterizing torsion-free, rank-1

sheaves on X' of degree 0 [2, Theorem (8.5), (ii)].

Let L be a universal relatively torsion-free, rank-1

sheaf on X' x P
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Let Q, and Q2 be different, nonsingular points

of X' and denote by L(Q ) the pullback of L to F

by the morphism P PxQ - x X' . Let V be the

jp1 -bundle

V = Proj(L(Q1 ) E L(Q2 ))

over P , and set V = Proj(L(Qj)) , i = 1,2

We define morphisms

1 V2  1 * ' 2 Vl V2.

by *1 =Pl 9g 2 *P 1  and 2 'P2 g1 *21 where

cP : - , i = 1,2 , are the natural isomorphisms,

g1 the isomorphism on F defined by translation by

Q- Q2 and g2  the isomorphism defined by translation

by Q2 - Q1

The projections L(Ql) e L(Q2 ) -+ L(Q) give rise to

closed embeddings V -+ V [12, Ch. II, Rem. 4.3.6]. Let

T denote the union of V1 and V2 . Then

= #1 9 *2 : T -+ T

defines an involution on T . Let V be the quotient

(as toplogical space) of V by the equivalence relation

given by a . We get the following corollary of

Proposition 1.3.3:



V can be given the structure of a

reduced k-scheme such that

0-, k EDr
VsQ Q

ffor all closed points Q E V where r Qdenotes the

radical off n O , .Q 0Q'

Remark 1.3.5. Let X be an irreducible curve with

ordinary nodes as only singularities and let X' be

the desingular.ization of one of the double points. In

Chapter VII we will show that the scheme V constructed

n0in Corollary 1.3.4 is the compactiffication off Pic x

Corollary 1.3.4.
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CHAPTER II.

The presentation functor.

Let f : X' -+ X be a surjective, birational

morphism of curves such that 6(X',X) = 1 . Let Q E X

denote the point such that 6(X',X,Q) = 1 . We define

the presentation functor PresX'/X as follows: For each

k-scheme S , let PresXI/X(S) be the set of surjective

0X -Module homomorphisms

cp : (fs)*L -- N

where L is an invertible OX,-Module of degree 0 , N
S

is an invertible 0 -Module and SuppN = Q x S

A similar functor was first introduced by Oda and

Seshadri [20, Section 12]. Our definition is more general

since they only defined a functor suitable for their pur-

pose, i.e. the case where Q is an ordinary node or a

point where two components meet.

We show that PresX'/X is represented by a IP -bundle

over Pic X' if X' and X have the same number of con-

nected components. Oda and Seshadri claim that their

presentation functor is always representable [20, Prop.

12.1]. However, they also need the hypothesis that X'

and X have the same number of connected components.
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In Section 2.3 we define a subfunctor StPresX'/X

of PresX'/X , which we will show is isomorphic to

Pic0  in Chapter III. We show that StPresX'/ is

represented by a Ga- or Im-bundle over Pic X if

X and X1 have the same number of connected components

and by Pic 0

2.1

Let X = UX

of invertible

otherwise.

be a curve and denote by PicX the functor

OX-Modules of degree 0 , i.e. for each

k-scheme S ,

PicX(S)

is the set of equivalence classes of invertible 0X

Modules L such that x(X iL(s)X ) = X(XiOX) for

each closed point s E S where X denotes the Euler

characteristic. Two invertible 0 X-Modules L and L'

are considered equivalent if there exists an invertible

03 -Module N and an isomorphism

L' ~-ZL EO N.

Let f : X' -+ X be a surjective, birational

morphism of curves such that 6(X',X) = 1 , and let Q E X

denote the point such that 6(X',X,Q) = 1.
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Definition 2.1.1. Let S be a k-scheme. By a

presentation over S we mean a surjective 0 X-Module

homomorphism

S: (fS ),L - N

where L E PicX' (S) , SuppN = Q x S and N is an

invertible 0 -Module.

A presentation

ep' : (f )*L' - N'

is equivalent to p if there exists an OX'-isomorphism
S

a : L -+ L' 9 ST , where T is an invertible 0 -Module,

and an 0 X-isomorphism : N -+ N' S0T such that the

diagram

(fS )*L > N

(ff),a t
(f s)*(L' go T) id N' go T

commutes.

Let S' -+ S be a morphism of k-schemes. The

pullback
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CPS [(f),L], -+ NS

of cp is a surjective 0 X , -homomorphism. NS, is an

invertible O,-Module, and since f is affine, there

is a canonical isomorphism

[(fS)*L]s, ~- )*(LS,)

[11, Ch. I, Prop. 9.3.2]. Hence the pullback cpS, of cp

is a presentation over S' , and the pullback of equivalent

presentations are equivalent. Thus we can make the

following definition:

Definition 2.1.2. Let PresX'/ be the functor defined

as follows: For each k-scheme S , let

PresX'/X

be the set of equivalence classes of presentations over

S . If S' -+ S is a morphism of k-schemes, the map

PresX /X(S) -+ PresX'/X(S') is given by pullback.

2.2

Let Y be a k-scheme and let E be a locally free

sheaf on Y of rank n + 1 . We define a contravariant

functor F(E/Y) from the category of k-schemes to the

category of sets as follows: For each k-scheme T , let
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F (E/Y) (T)

be the set of equivalence classes of pairs (N,cp)

consisting of an invertible 0 T-Module N and a

surjective 0 -Module homomorphism

cp : ET -N

Two pairs (N,p) and (N',p') are equivalent if there

exists an 0 -isomorphism T : N -+ N' such that

Let S(E) denote the symmetric algebra of E and

set JP(E) = Proj(S(E)) . Defined like this, JP(E) comes

with a projection r : 3P(E) -+ Y and a tantological in-

vertible sheaf 0(1) such that there is a natural sur-

jective 0 P(E) -homomorphism T*E -+ 0(l) [12, Ch. II,

Prop. 4.1.6].

The functor F(E/Y) is represented by the Pn -bundle

IP(E) over E , and the universal pair is (0(1),4)

where : r*E - 0(1) is the canonical surjection [12,

Ch. II, Prop. 4.2.3].

Proposition 2.2.1. Let f : X' -+ X be a surjective,

birational morphism of curves such that 6(XtX) = 1 and

such that X1 and X have the same number of connected
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components. Suppose that PicX, is represented by a

scheme P . Then PresX,/X is represented by a F -

bundle over P .

Proof. Let 9 be a universal invertible sheaf on X.

Let Q be the point such that 6(X',X,Q) = 1 and set

E = o(fP)()t](Q)

where [(f P)]Q denotes the pullback of (fp)*p to

P by the morphism P = Q x P -X x P . Then E is a

locally free O-Module of rank 2. We show that PresXI/X

is isomorphic to F(E/P)

Let

Cp : (fS)*L -+ N

be a presentation over S . There exists a morphism

q : S -+ P , an invertible O-Module T and an iso-

morphism

a : (qX,)* ~L (oT

The presentation

(fs)*(L toST) -+ N eo T
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is equivalent to cp . Hence the presentation cp gives

rise to a morphism q : S -+ P and a surjective 0 X
homomorphism

CEl (S)*[ (X,)*V] -+ M

where SuppM = Q x S and M is an invertible 0 -Module.

Since fP is affine,

(fS )*[qX, (X) P*

[11, Ch. I, Prop. 9.3.2]-so l corresponds to a

homomorphism .

cP2 (qX )~P *e] -M.

Let m denote the ideal of Q in OX Since

SuppM = Q x S and M is an invertible 0 -Module,

m ® 0 is the annihilator of M in 0 . Therefore

P2 factors through the 0 -homomorphism

cp3 : ((qX P ) *])(Q) -+ M

The commutative diagram

x S

1i
- Q x S

xP 4- Q x P
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shows that

((qX P )* = *

so cp corresponds to an OX -homomorphism

cp4 : q*E -+ M

an element of F(E/P)(S)

a' be another isomorphism

It gives rise

a commutative

(fs),a' S

Let Z

containing Q

have the same

connected and

at : (qXt)* q = L go S '

to a surjective 0 -homomorphism cp and
xS

diagram

(M

a 1 )

denote the connected component of X

and set Z' = f~ (Z) . Since X' and

number of connected components, Z' is

the isomorphism a 1 a11 Z' is given by

X

which. is

Let

/ P

(f S) *[ (X' I *
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multiplication by an element s E O*(S)

Hence we have a

[2, Lemma 5.4].

commutative diagram

q*E > M

s

M

so P and cp4 define the same element of F(E/P)(S) .

The map

p : PresX,/X -+ F(E/P)

defined above is a map of functors,

sends an element

and the map, which

of F(E/P)(S) to the presenta-

is an inverse of

We keep the same notation as in Section 2.1.

a k-scheme.

[(fS )*L](Q)

If

Let S be

L is an invertible 0 X-Module,

is a locally free O-Module of rank 2

then

, which

as follows:

Case 1. There is only one point

f(Q') = Q . Then [(fS),L] ~ L(Q')

Q' E X' such that

where L' is

an invertible 05 -Module. Indeed, let m and m'

the ideals of Q and Q' . Since 6(X',X) = 1 , m

2.35

p

splits

denote

t ion (fS) *[ (qXI) *,] -+ M ,P

is
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the conductor of 0X in OX, [10, Ch. III, Rem. 1.3],

and there is a canonical k-isomorphism

OX'/m ~ (OX/, ) e (m'/m)

Hence there is a canonical 0 -isomorphism

e (m /m)

The morphism f S is affine, so there exists a canonical

0S-isomorphism

(f)L] (Q)

Ch. I, Prop. 9.3.2].

L 1OXS
S

Hence we get a canonical

splitting

(fs),L](Q) L(Q')

where L' = L ®0 ( m/mI)
X1

Case 2. There are two points

f(Q1 ) = f(Q2 )

isomorphism

= Q .

Ql , Q2
E X' such that

Then there is a canonical 0S-

e L(Q2 )

The proof of this splitting is similar to that given in

Case 1.

[l,

(OX /m )

E L'

OX /M =2 (OX /ml) .

(fS ),L](Q) =2 L(Q 1) *
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Suppose that Pici, is represented by a scheme P

and let . be a universal invertible sheaf on X' x P

Using the splitting of [(fP)*,](Q) deduced above,

Prop. 2.2.1 can be formulated as follows:

Proposition 2.3.1. PresX'/X is represented by the

P 1 -bundle

in Case 1 and by the P 1 -bundle

in Case 2 if X' and X have the same number of

connected components.

Let

CP : (fs)L -+ N

be a presentation over S . We say that p is a

strict presentation if L' -+ N is surjective (Case 1)

or if L(Ql) -+ N and L(Q2 ) -+ N are both surjective

(Case 2).

Definition 2.3.2. Let StPresX'/X be the subfunctor

of PresX'/X defined as follows: For each k-scheme
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S , let

StPresX'/X(S)

be the set of equivalence classes of strict presentations

over S

Proposition 2.3.3.

(a). StPresX'X is represented by the Ia-bundle

vP(g(Q ) 9 g' ) \ a(s(Q ))

over P in Case 1.

(b). StPresX?/X is represented by the Gm-bundleIn

U Jp(G(Q2 )))pe(Q) Ei ae (Q2)) \ ( V(())

over P in Case 2 if X' I and X have the

same number of connected components.

(c). StPres XX is represented by P if X' and X

do not have the same number of connected components.

Proof. (a). Let

cp : fL -+ k

be a presentation over k and let q : Spec (k) -+ P

morphism such that L - (qX)*g . As in the proof of

be a
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Prop. 2.2.1, p corresponds to a k-homomorphism

q*(9(QI)) E q*9I -+ k .

The presentation cp is not strict if and only if

q*,9 -+ k is zero, i.e. if and only if we have a com-

mutative diagram

q*(9(Q'))

where all the maps are surjective. Therefore cp is not

strict if and only if the morphism Spec(k) -+ fP(9(Q') B eI

corresponding to p factors though the closed embedding

P(,9(Q') -* P(9(Q') 9 9') determined by the surjective

O-homomorphism .(Q') E 9' -+ (Q .

A presentation over a k-scheme S is strict if and

only if the restriction to each closed point of S is a

strict presentation. Hence a morphism h : S -+ )P(9(Q') E 9')

corresponds to a strict presentation if and only if h

factors through the open subset JP(q(Q') S g') \ JP(Q')

(b). The proof is similar to the one given for case (a).

So the basic ingredient in the proof is the representability
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of PresX'/X by a F -bundle, and therefore we need

the hypothesis that XI and X have the same number of

connected components.

(c). Set' E1 = 9(Q1 ) and E2  .(Q2 ) . We will show

that StPresX'7  is isomorphic to F(E/.P) XPico F(E2/P)
---

Let S be a k-scheme and let

Cp : ( L - N

be a strict presentation over S . There exists a

morphism q : S -+ P , an invertible 0 -Module T and

an isomorphism

, : (qX')* z ~ L ® 0 T

As in the proof of Proposition 2.2.1, we get a surjective

O -homomorphism

q*E1 E q*E2 -+ M = N (oST

and therefore surjective maps

*1 : q*E - M and *2 : q*E2 - M

because ep is strict.
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Let a' be another isomorphism (qX )* L g T

It gives rise to a surjective 0 -homomorphism

CP' : q*E1 e q*E2 -+ M . Since Q and Q2 lie on

different connected components of X' , the isomorphism

(f) l) gives rise to an isomorphism

$ : q*E11 E*E2 -+ q*El 1 q*E2

given by multiplication by s E O*(S)

mutiplication by s2 E O*(S) on q*E

diagram

s e s2

on q*E1  and

such that the

p

q 9q*E

commutes. Hence we have commutative diagrams

q*E > M

s 1

M

and

q*El 1 q*E2 >M
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Js,2

M

and so cp and cp' give rise to the same element of

F(El/P)(S) x P~iccX' 8F(E2/p)(S)

Hence we have defined a map of functors

p : StPresXX -F(E P) x F(E2 /P)

-XI

Let *1 : q*El -+N , *2 : q*E2 -+ N and

: q*E2 -+ N be surjective maps such that

and , ) define the same element of

1 : q*E -+ N

($ , *2)

F(El) x PJic0XS F(EO/P)

We have commutative diagrams

q*E >

*1

and

N

ts

N

*9
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q* E2

where s1 , s2 E O*(S)

)

N

ts2
N

The pairs (41 ,2 ) and

(*{ , ) give rise to strict presentations

CP , CP' : (fS)*[(qX;)*g] -+ q*El 9 q*E 2 -+ N

Let a denote the OX-isomorphism of (qX
S

defined by s on the connected component of XI con-

taining Q, , by s2 on the connected component containing

Q2 and by 1 on the other components. Then we have a

commutative diagram

(f'),[(qX')*# >. N

4t

and p and cp' define the same element of StPresX/X(S)

Hence we have defined a map

F(E 1 /P) x PicF(E2 /P) -+ StPresX/X '
----

which is an inverse of p .

The assertion of (c) follows since F(El/P) and

F(E2 /P) are represented by schemes isomorphic to P

z



40.

CHAPTER III.

A construction of the Picard scheme of a curve.

In [13] Grothendieck showed the existence of the

Picard scheme of a projective k-scheme [13, Exp. 232, Cor.

6.6]. Oort [21] proved that the Picard scheme of an ir-

reducible curve X can be constructed from the Picard

scheme of the normalization of X by a sequence of ex-

tensions by (Gm )n- and (a )n-bundles. In the special

case that the curve has n singularities, which are all

ordinary nodes, Oda and Seshadri used the presentation

functor to construct PicX as a ( )n-extension of Pic2
X m X

[20, Cor. 12.4].

In this chapter we prove that the Picard scheme of

a curve X (not necessarily irreducible) can be con-

structed from the Picard scheme of the normalization of

X by a sequence of GM- and Ga -extensions. Our

procedure differs notably from that of [21] since we,

inspired by Oda and Seshadri, make the presentation

functor play an essential role in our proof. We show

that if f : Y' -+ Y is a birational, surjective morphism

of curves such that 6(Y',Y) = 1 , then Pic is iso-

morphic to StPres/, . If Pic 0  is represented byZ___Y/ __-yt
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a scheme P , StPres, YI is represented by a cIa- or

(m-bundle over P or by P [Proposition 2.5.3]. Since

the normalization map of X can be written as a com-

position -of maps where 6 changes by one [Theorem 1.2.4],

we obtain a stepwise construction of PicX from PicGX
x

3.1.

Let X be a curve and denote by R(X) the sheaf of

total quotient rings of X . Let F be an 0 X-Module.

We recall that the kernel T(F) of the natural map

F -+-F go R(X),
x

obtained by tensoring the map OX -+ -(X) , is called

the sheaf of torsion of F , and F is called torsion-

free if T(F) = 0 .

Let f : X' -- X be a birational, surjective

morphism of curves such that 6(X',X) = 1 . Let

Cp : fL -- N be a presentation over k and put I = kerp

The commutative diagram

f*I > f*I ®Q (X')

lt c2
L 2 L go X1 X')
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where a2  is injective, shows that a1 factors through

a map

a : 4(I) -- L

where 4(I) = f*I/T(f*I) . Moreover, K = kera is a

torsion-free sheaf because it is a subsheaf of a torsion-

free sheaf, and K = 0 for all generic points g of

X' .Hence K = 0 and a is injective.

Lemma 3.1.1. I is invertible if and only if 4(1) ~ L

Proof. If I is invertible, then 4(I) ~ f*I and

4(1) 2' L because X(X?,f*I) = X(X',L)

Conversely, suppose that Z(I) ~ L . Let U = Spec(A)

be an affine neighbourhood of the point Q E X where

6(X',X,Q) = 1 , and set U' = Spec(A') where U1' = f~ 1(U)

Let M be an A-module such that M = I U and N an

A'-module such that N = LI U' Then M ® A'/T(M ® A') N ,

and by [10, Ch. I, 2.6], there exists an element m E M

such that N is generated by m 9 1 as A'-module.

Let I' be the invertible OX-Module defined by

I IX\Q IIX\Q and I' U = M' where M' is the sub-

module of M generated by m . Then 4(I') ~ f*I' - L

and so X(X,I) = x(XI') . Hence, since I c I , I' 2' I

and I is invertible.
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Lemma 3.1.2. Let S be a k-scheme and let

cp E PresX'/X(S) . Then c E StPresX,/X(S) if and only

if kercp is an invertible 0 X-Module.

Proof. Set I = kerp . Then I is invertible if and

only if I(s) is invertible for all closed points

s E S . Also, p is a strict presentation if and only

if cp(s) is a strict presentation for all closed points

s E S [Nakayama's Lemma]. Hence it is enough to prove

the lemma in the case that S = Spec(k)

Let y : fL -+ N be a presentation over k , and

let

g : f,;(I) -+ fL

be the natural homomorphism 4(I) -+ L considered as an

0X-homomorphism. We have a commutative diagram

I -> fL

f, I)

where all the maps are injective. Hence there is a

homomorphism y : N -+ cokerg and a commutative diagram

CP
f*L > N

(*)Y

cokerg

where all the maps are surjective.
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Suppose that f is a morphism as in Case 1 [see

Sect. 2.3]. Then g restricted to Q splits in a

sum

g(Q') E g' : 4)(Q') 4(1)' - 4(Q') E L

and diagram (*) restricted to Q gives a diagram

(* *)

L(Q')eL' > N

cokerg(Q') 9 cokerg

where all the maps are surjective.

The presentation cp is strict if and only if

L N is surjective. Diagram (**) shows that

L- N is surjective if and only if the composition

L' -+ L(Q') L' -- cokerg(Q') E cokerg'

is surjective, i.e. if and only if coker(Q') = 0

Nakayama's Lemma, cokerg(Q') = 0 if and only if

an isomorphism. Hence Lemma 3.1.2 shows that cp

strict if and only if I = kerp is invertible.

The proof for a morphism f as in Case 2 is

to the proof given above.

. By

g is

is

similar
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35.2.

Let S be a k-scheme and let

CP : (fS),L -+ N

be a presentation over S . It is easy to check, using

[12, Ch. III, Prop. 6.5.8], that kerp is S-flat and

that the formation of the kernel of a presentation com-

mutes with base change. If p is a strict presentation,

kerp is invertible [Lemma 3.1.2], and it is an immediate

consequences of the additivity of the Euler characteristic

on short exact sequences that kercp E PicX(S) . Hence

the map

K : StPresX/X Xi '

which sends a presentation cp to kercp , is a map of

functors.

Let I be an invertible 0 X-Module of degree 0

Tensoring the natural surjection

(fS)*0X '* (s *OX' /OXS S S

by I over 0X and using the projection formula

[14, Ch. II, Ex. 5.1 (d)] gives a presentation

cp : (fS)*(f*I) -+ N
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By Lemma 3.1.2, p is a strict presentation, and we

have defined a map

y : Pic 0 -+ StPres

which is easily seen to be functional.

The kernel of the presentation $ = y(I) is

isomorphic to I so K * y = id . Moreover, there is

an isomorphism a : f*I -+ L of OX,-Modules such that
S S

the diagram

ker* c (fs)*(fgI)

I C L

commutes. Hence cp and $ are equivalent presentations

and y * K = id . Thus the functors Pic_0 and StPresX/X
= -x /

are isomorphic. From Proposition 2.3.3 we get the

following theorem:

Theorem 3.2.1. Let f : X' -+ X be a surjective,

birational morphism of curves such that 6(X',X) = 1

and denote by Q the point of X such that 6(X',XQ) = 1

Suppose that Pic X is represented by a scheme P and

let 9 be a universal invertible sheaf on X' x P
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(i). If X and X' do not have the same number of

connected components, then PicX is represented

by P .

(ii). If there are two points Q1 ,Q2 E X, which

map to Q , and X' and X have the same number

of connected components, then Pic 0  is represented

by the Gm-bundle

over P .

(iii). If there is only one point Q' E X' , which map

to Q , then Pic0  is represented by the Ga-

bundle

over P .

The theorem above together with the breaking up

of the normalization map proved in Section 1.2 [Theorem

1.2.4] gives the corollary:

Corollary 3.2.2. The Picard scheme of a curve can be

constructed from the Picard scheme of the normalization

of the curve by a sequence of extensions by Im- and

Ta-bundles.

IP (e(Q t ) 9 49' ) \1P ( (Q' ) )
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Let X = U X be a curve with A irreducible

components and r connected components. Using the

additivity of the Euler- characteristic, it is easy to

see that the arithmetic genus p(X) = 1 - x(XOx) is

given by

p(X) = E p(xi) + 6 - . + 1
i=1

where X. denotes the normalization of X. and

6 = 6(X,X) .

From Theorem 3.2.1 it follows th-at

dimPicX = dimPicy + 6 - (I - r)

0 It
and since dimPicy = p(X ) , we get the following

i=10
formula for the dimension of Pic0X

xx
Proposition 3.15.1. dimPicX = p(X) + r -l.

The formula of Prop. 3.3.1 can also be deduced

from the fact that dimPicX = dimkHi (XOX) , which is

proved by Grothendieck [13, Exp. 236, Prop. 2.10 (iii)].



49.

CHAPTER IV.

On the representability of Pic 0

The Picard scheme Pic 0  of a smooth curve is ax
projective variety over k . If X has singularities,

Pic 0  is not proper over k . Compactifications of thex
Picard scheme have been studied by many authors using

different methods [see [2], [10] and [20] for a historical

overview]. 'Altman and Kleiman [2] showed that if X is

an irreducible curve, then the functor Pic~ 0  of torsion-

free, rank-1 sheaves on X is represented by a projective

k-scheme. We use their work as a basic reference in the

upcoming chapters.

In this chapter we discuss the problem of compactifying

Pic 0  for a reducible curve. Oda and Seshadri [10] con-x
structed compactifications of Pic for a class of re-

ducible curves using geometric invariant theory. The

breaking up of the normalization map in steps X' -+ X

such that 6(X',X) = 1 and the construction of Pic X

as a Gm- or Ga-bundle over Pic X suggests the

possibility of a compactification of Pic 0  as a fibrationx
over the compactification of PicX . We give examples,

which illustrates the difficulties met in carrying out

such a construction.
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Even for an irreducible curve we are interested

in a new construction of PicX 0 , which will give more

information on the structure of the singularities of

PicX . For instance, Kleiman has privately pointed

out that all the properties of the Abel map

Hilb d(C/k) -+ PicC

proved in [16] for a smooth, irreducible curve C

can be proved for the Abel-Altman-Kleiman map

Quotd(w/X/k) -+ Pic=0

for an arbitrary integral curve X if we know that

the tangent cone of PicXo at each point is Cohen-

Macaulay.

The stronger assertion, that the tangent cone is

a complete intersection, does not hold. In Section 4.3

we give an example of a plane, irreducible curve and a

point of PicXo where the tangent cone is not a com-x
plete intersection.

4.1

Let X be an irreducible curve. A coherent, torsion-

free 0X-Module F is said to have rank n if F ~ n

where g denotes the generic point of X . The degree



of F , degF , is defined by

degF = X(XF) - nX(X,0X)

Let Y - S be a morphism of k-schemes such that

the fibers Y(s) are integral curves for all closed

points s E S . An 0 Y-Module I is called relatively

torsion-free, rank-n over S if it is S-flat and if

the pullback I(s) of I to Y(s) is a torsion-free,

rank-n sheaf for all closed points s E S

We define a contravariant functor Pic as follows:

For each k-scheme S , let

Pic-(S)

denote the set of equivalence classes of 0 X-Modules,

which are relatively torsion-free, rank-1 over S ,

where I and J are considered equivalent if there

exists an invertible 0 -Module N and an isomorphism

I @0SN ~ J

If S' -* S is a morphism of k-schemes, the map

Pi =(S) -+ Pic(S') is given by pullback.

Let d be an integer. We define subfunctors

Pic-Xd of Pic as follows: For each k-scheme S ,

let



be the elements I of Pick(S) such that degI(s) = d

for all closed points s E S . It is proved in [2] that

the functor Pic= d is represented by a projective k-

scheme Pickd [2, Theorem (8.5) (ii)].

Let w denote the dualizing sheaf on X . Let S

be a k-scheme and fix a positive integer n . Let F

be an element of Quotn(w/X/k) and denote by I(F) the

kernel of the natural surjection

WS F

Let s be a closed point of S . The formation of I(F)

commutes with base change, so I(F)(s) c w . Since w

is a torsion-free, rank-1 sheaf on X [4, 2.8, page 8],

it follows that I(F)(s) is torsion-free, rank-l . By

the additivity of the Euler characteristic on short exact

sequences, we get that

X(I(F)(s)) = x(w) - n

so I(F) is an element of Xd(S) where d = X(w) -

x(oX) - n . The map of functors

An : Quotn (w/X/k) -0 -d



which sends a quotient F to I(F) , defines a morphism

of schemes

An : Quotn(w/X/k) -+ PicXd

We call this map the Abel map associated to .

It is proved by Altman and Kleiman [2, Theorem (8.4)

d .
(v), Lemma (5.17) (ii) and Theorem (4.2)] that A is

smooth and the fibers are projective spaces if and only

if d > 2p - 1 . Here p denotes the arithmetic genus

of X . In fact Altman and Kleiman used the fact that

the fibers of A n are linear systems of quotients of w ,

which are represented by projective spaces, to construct

PicXd as a quotient of Quotn(w/X/k) by a smooth andx
proper equivalence relation.

4.2.

The methods used by Altman and Kleiman to represent

PicXd for an irreducible curve X do not immediatelyx
extend to the case that X is reducible.

Let X' - X be a partial normalization of X

such that 6(X',X) = 1. Suppose we have constructed

a compactification PXt of PicX. We can try to

construct a compactification PX of Pic X along the
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following lines: First we extend the P 1-bundle

Pres over Pic X to a P 1-bundle over X

and we construct -X as a quotient of this PA -bundle

by identifications of points in the fibers.

The first identifications to try are the following:

If X' -+ X is an identification of two points of X'

we identify the point at infinity with the origin in the

same fiber such that PX is a fibration over PX' by

nodal cubic curves. If X' -+ X is an infinitesimal

identification, we make an infinitesimal identification

in each fiber such that PX is a fibration over PX'

by cuspidal cubic curves.

However, examples show that the constructions

indicated above cannot be carried out. First, suppose

that X has one ordinary double point as only singularity

and that the normalization X' has genus 1 . Then P

is obtained from the P 1-bundle Pres over X

by identifying two sections via a translation of PX'

by the point of PicX' corresponding to 0 [Q2 Q Q1]

[20, Example (1), page 83]. Hence PX is not a fibra-

tion over PX'

The example of Oda and Seshadri mentioned above,

suggests that PX can be constructed as a quotient of

a PA -bundle either by identifying two sections via a
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translation in or by making an infinitesimal

identification in one section via an infinitesimal

translation in X. If such a construction is

possible, the tangent cone at a point of FX will be

a complete intersection since it depends only on the

analytic structure of that point [4, Prop. 1.19].

However, in Section 4.3 we give an example of a

plane, irreducible curve X and a point of PicX0

where the tangent cone is not a complete intersection.

4.35.

Let S be a smooth surface and let q be a closed

subscheme of S of length n , which is supported at

one point Q E S . Set t = Hilb n(S/k) and let v

denote the point of v corresponding to q . Then

A = 'P

is a regular, local ring of dimension 2n [1, Prop. (3)].

Let

W c S x V

denote the universal subscheme and set

R = 0 W,(QV) a



Then R is a free A-module of rank n since the

projection p W -+ V is flat of degree n . Denote by

m the maximal ideal of A . Since p~ (v) = q , R/mR

is a k-vector space of dimension n .

V ,. n

We lift a basis

of R/mR to a basis v 1,. .. Ivn of R as an

A-module.

Let C be a closed subscheme of S such that

q c C . Let Spec(A ) be an open affine subset of S

containing q , and suppose that C is given by an

equation F E A1
in this open subset. We denote by f

the image of F in R by the natural homomorphism

A1 -+ R . There exist elements a1 ,.. .,an E A such that

f = a v1 + ... + a n vn

Lemma 4.3.1. Set H = Hilbn(C/k) and denote by z the

point of H corresponding to q. Then 0 H,z - A/(a1 , ... n'

Proof. Let K denote the kernel of the natural map

0Sx -* CX , and let

u : K-OW

denote the composition of the inclusion K c 0 and

the surjection 0 gy -+ OW'
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Let T -+V be a morphism of k-schemes. It

corresponds to an element of Hilbn (S/k)(T) , which is

an element of Hilbn(C/k)(T) if and only if the map

uT : KT WT T

is zero. By [I1, Ch. I, Prop. 9.7.9.1] there exists a

closed subscheme V of V such that T -- V factors

through V if and only if u is zero. Hence0 T

Hilbn(C/k) = V , and 0Htz = A/I for an ideal I c A

The stalk of the map u at (Q,v) is the natural

map

u(Q.v) :F ® A -+ R

and since f = a 1 v + ... + an vn is the image of F in

R , I = (a1,...,an) and 0 H,z = A/(a1,.. .,an)

Proposition 4.3.2. Fix an integer n > 2 and let

e > 3n + 1 be an odd integer. Let X be the plane

curve given by the equation

(T1/To) - (T2/To)e

in the open subset Speck[T 1 /T0 ,T2 /T] of 2 = Projk[T0 ,T ,T2 *
Let z be the point of Hilbn(X/k) corresponding to the

closed subscheme of X given by the ideal (T1,T ) . Then

the tangent cone of Hilbn(X/k) at z is not a complete

intersection.
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Proof. Set t1 = T1/T and t2 = T2 /T . Using the

same notation as in the beginning of this section with

S = ]P and q the closed subscheme of S given by

the ideal (T1,TS) , we get that

n-1

is a basis of R over A. We write t n ER as2

n -t = c +c n-12

where ci E A. Since q is a closed subscheme of the

1-dimensional subscheme of EP 2 defined by the equation

Tn = 0 , A/(co,...,cn 1 ) # 0 [Lemma 4.~5.1, so c. are

contained in the maximal ideal m of A

An easy calculation shows that

rn+ln-
(i) t2 = d0 + d t2 + .. + d tn-l

where di E mr

Write

n-l
ti -- VO + Vt2 + + Vn-lt2

where Vi E A . Let C1 be the line in BP2 defined

Then Hilbn(C 1/k) is a nonsingularby the ideal (T ) .



scheme of dimension n [1, Lemma (1)], so V ,...,vn-1

is a part of a regular system of parameters of m

[Lemma 4.3.11.

An easy calculation shows that

t = V + ho + (2VOV + h1)t2 + ... +
(ii)

+ ( E v v + h )tI + ... + (
i+j=z

E V V + h-)tn-1
i+j=n-1 2

where h ,...,h n- E m5 -.

Using (i) and (ii) we write t - t as
1 2

E V + g )tI +
j+j =,zIj

+ ... +( zE VV + gn-l)t-
i+j=n-11

where gE m . Hence the local ring B of Hilbn(X/k)

at the point z is of the form

B = A/I

where I = (V2 + g

[Lemma 4.3.1].

E v J v
J+j =vv

Let I* be the ideal of A

forms of the elements of I . Set

J (V2,V v

+ ge...* E v v + gn-1
i+j=n-1

generated by the leading

t - t e= V2 + go + .. +(

j+j=,t i+j=n-1 i
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Since gE m , we have an inclusion

J c I* .

Let M denote the maximal ideal of B There is

an isomorphism

grM(B) = A/I*

[18, Ch. III, 31], and therefore

ht(I*) = n

since dimgrM(B) = dimB = n [l, Cor. (7)].

The ideal J is contained in (V 0,v,..., Vn-2)
so htJ < n - 1. Hence I* is of the form

1* (V2 ,...,. VVjH,...Hs
i+j=n-1

where H E m3

It is easy to see that , V E V
0 i+j=l I i+jan-1

is a minimal set of generators of J , and therefore a

minimal set of generators of I* has more than n

elements. Thus grM(B) = A/I* is not a complete

intersection.

2 e
The plane curve X defined by t2 - t2  has

arithmetic genus (e - 1)(e - 2)/2 . We plan to use
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the Abel map

Quot d(w/X/k) -- Picko

to show the existence of a point of Pic 0Xo where thex
tangent cone is not a complete intersection. Since this

map is smooth if and only if d > (e - 1)(e - 2) - 1 ,

we need the following lemma:

Lemma 4.3.3. Let C be a curve. Fix positive numbers
1 n n 2

n and n2 . s 1 = Hilb (C/k) H2 = Hilb (C/k)

and H = Hilb (C/k) . Let q and q2 be closed

subschemes of C 9f length n1  and n2  such that

Suppq n Suppq2 = . Denote by v1  and v2 the points

of H1  and H2  corresponding to q and q2 and by v

the point of H corresponding to q, U q . Then

A A A
0 H,v = H 1 ,vi "kOH2' 2

Proof. Let a be a close subscheme of C of length n

We define a functor Def from the category of local,

artinian k-algebras with residue field k to the category

of sets as follows:

Def (A)



62.

is the set of subschemes D c C x Spec(A) such that the

projection f : D -+ Spec(A) is flat and f1 (Spec(k)) = .

This functor is prorepresentable [24, Def. on page 208]
An

by 0H',E where Z is the point of HI = Hilb (C/k)

corresponding to a .

Let A be a local, artinian k-algebra, and let

D be an element of Def q(A) . Since A is henselian

[12, Ch. IV, Prop. 18.5.11], D can be written as

D = D1 E D2

where Di E Def (A) [12, Ch. IV, Thm. 18.5.11 (c)].

Hence the functor Def can be written at

Defq = Def 1 E Def ,

and therefore

A A A

0H,v H ,v 2' 2Q gkOH v

Fix an integer d > (e - 1)(e - 2) - 1. There

exists a point of Hilb d(X/k) where the tangent cone is

not a complete intersection [Prop. 4.3.2], so, by

Lemma 4.3.3, there exists a point y of Hilb d(X/k)

where the tangent cone C1  is not a complete intersection.

Since the Abel map Ad : Hilb d(X/k) -+ PicXo is smooth,

we have that



63.

C 1 C2 [U1 ,.., ]

where C2 is the tangent cone of Pic 0 at A- dat A (y)

and U are independent variables over k [4, Thm. 3.2].

Hence the tangent cone of Pic 0 at the point Ad (y) is

not a complete intersection and we have proved:

Proposition 4.3.4. Let X be as in Proposition 4.3.2.

Then there exists a point of Pic 0 where the tangent
x

cone is not a complete intersection.

Remark 4.3.5. Set n = 2 in Prop. 4.3.2. In this case

we can show that

I* = (V0 ,V0V1 , V t - Vo t1 )

where ti E m , and I* is generated by the maximal

minors of

Vo

0

t0 t

I 1)
o 1

Hence A/I* is Cohen-Macaulay [15, Cor. 4].

It is an open question if the tangent cone at each

point of PicXo is Cohen-Macaulay if X lies on a
x

smooth surface.



CHAPTER V.

Reducibility of the compactified Picard scheme.

Let X be an irreducible curve of arithmetitic

genus p . Set P = Pic= . Altman, Iarrobino and

Kleiman proved an irreducibility theorem [1, Theorem (9)]:

P is irreducible if X lies on a smooth surface, or

equivalently, if the embedding dimension at each point

of X is at most two [3, Corollary (9)]. They also

constructed an example [1, Example (13)] of an X , which

is a complete intersection in P3 and for which P

is reducible. The example suggests that the converse

of the theorem holds, and in this chapter we prove that

if X does not lie on a smooth surface, then P is

reducible.

Rego [22] asserted the reducibility theorem and

offered a sketchy proof. First he showed that Hilb 2(X/k)

is reducible if X does not lie on a smooth surface.

Then, if X is also Gorenstein, he concluded that F

is reducible from the fact that the Abel map

Hilb n(X/k) -

is smooth for large n . This map is no longer smooth

if X is not Gorenstein, and so Rego devised other methods

to obtain reducibility in general.



65.

However, Altman and Kleiman [2] developed a theory

in which Quotn(w/X/k) , where w is the dualizing

sheaf of X , replaces Hilbn(X/k) as the source of an

Abel map

An : Quotn (w/X/k) -+ P

Whether or not X is Gorenstein, An is smooth and its

fibers are projective spaces for all n > 2p - 1 . Hence

F will be reducible if Quotn(w/X/k) is reducible for

large n .

This reducibility is proved below in two steps.

First, we show that if Quotm w/X/k) is reducible, then

Quotn(w/X/k) is reducible for n > m [Proposition 5.1.2].

Secondly, we show that if X does not lie on a smooth

surface, then Quot d(w/X/k) is reducible for small d

in fact for d = 2 if X is Gorenstein, and for d = 1

if X is not Gorenstein [Proposition 5.2.1].

5.1.

Fix a torsion-free, rank-1 sheaf G on X . Denote by

U the open subscheme of X consisting of nonsingular

points. There is an open subscheme Qn of Quotn(G/X/k)

which parameterizes quotients of G with support con-

tained in U [13, Exp. 221, 4a]. Since G11U is
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invertible, QnU is isomorphic to Hilbn(U/k) , so QnU

is irreducible of dimension n [1, Lemma (1)]. Hence

Quotn(G/X/k) is irreducible if and only if is

dense in Quotn(G/X/k) . Using the valuative criterion

[12, Ch. II, Prop. 7.1.4 (i)], we therefore get Lemma 5.1.1

below:

Lemma 5.1.1. Quotn(G/X/k) is irreducible if and only

if, for all quotients F of G of length n , there

exists a scheme T = Spec(A) , where A is a complete,

discrete valuation ring, and a T-flat quotient 7 of

GT such that

F(t) = F

and

SuppF(r) c UT(rl)

Here t and r denote the closed.and generic points of

T .

Proposition 5.1.2. If Quot (G/X/k) is irreducible, then

Quotm(G/X/k) is irreducible for all m < n

Proof. Let F be a quotient of G of length m . Let

I denote the kernel of the natural map G -+ F , and
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let xll,...xn-m be different nonsingular points of X

such that x 9 SuppF for i = 1,.. .,n - m . Then

F' = G/M - -Mn-mI

where M denotes the ideal of x , is a quotient of

G of length n . By Lemma 5.1.1 there exists a complete,

discrete valuation ring A and a quotient F' of G T

T = Spec(A) , with all the properties listed in that

lemma and such that

T'(t) ~ F'

Let W be the closed subscheme of XT defined by

the annihilator of 7' , i.e. W is defined by the sheaf

of ideals J where J is the kernel of the natural

homomorphism

0XT -+Hom (T' ,' ) .
T T

The remaining part of the proof proceeds by steps.

Step 1. We have an inclusion

x 1 U --- U Xn-m U V c W(t)

where V is the closed subscheme of X defined by the

annihilator of F .
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Proof. Restricting the exact sequence

0 -0J. -+ XT -+ HomX T

to XT(t) - X gives a sequence

J (t) -+ 0 X ..+ HomX(F',F').

The image of J(t) in 0X is the ideal defining W(t)

as a subscheme of X . Hence the subscheme of X defined

by the annihilator of F' is contained in W(t) , and

this proves Step 1.

Step 2. W can be written as

W = W eE --- E Wn-m E W'

where xi E Wi(t) and V c W'(t) .

Proof. A is a henselian ring [12, Ch. IV, Prop. 18.5.14],

and hence the asserted decomposition follows from [12,

Ch. IV, Thm. 18.5.11 (c)].

Step 3. Let i denote the inclusion W' c XT . Define

T by

F= *

Then F is a T-flat quotient of 7'



Proof. Let x be a closed point of XT if x 0 W,

then F = (0) . If x E W' , then

F ~-I/JF'
x x x x

so F = F1  since J is the annihilator of F1 in
x x x x

0 XT'. It follows that the natural map

Th-

is surjective and that F is T-flat.

Step 4. T(t) ~ F and SuppF(rg) c U(T

Proof. Suppf'(n) c UT(r) by the definition of 7' , so

Supp() C: U T() since 7 is a quotient of F'

Since i : W' a XT is an affine morphism, the

commutative diagram

i
W1 C:

W'(t) C
i(~t)

[Step 31.

XT

UI

x

shows that

T(t ) = 1 (t ),i (t ) *7'(t) .
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Hence we get that

T(t) = G/Mi---Mn-mI + CG

where C is the ideal defining W'(t) as a closed

subscheme of X . By Step 2,

C c AnnoX (F)

and therefore CG c I , so we have an inclusion

Ml-*Mn-mI + CG c I.

Since x . 0 , the ideals M 1--Mn-m and C are co-

maximal, and hence we also have inclusions

I c M -- Mn-mI + CI C M1 -*Mn-mI + CG

It follows that F(t) ~ G/I = F .

Step 5. Quotm(G/X/k) is irreducible.

Proof. Let F be a quotient of G of length m . Let

T = Spec(A) , A a complete, discrete valuation ring, and

let F be the quotient of GT constructed in Step 3. By

Step 4, F(t) =- F and SuppF(r) a UT(f) . Hence the

assertion follows from Lemma 5.1.1.
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5.2.

Let w denote the dualizing sheaf of X

Proposition 5.2.1. Let x be a closed point of X and

denote by M the ideal defining x

(a). If dimk(w/Mw) > 2 , then Quot~(w/X/k) is reducible.

(b). If dimk(w/Mw) = 1 and dimk(M/M ) > 3 , then

Quot 2(w/X/k) is reducible.

Proof. (a). Set w = w/Mw . Obviously, the functors

Quot 1(w1/X/k) and Grass1 (w 1 /k) are isomorphic. Since

dimk(wl) > 2 , Grassl(wl/k) has dimension at least 1

Hence, since Quot (wi/X/k) is a closed subscheme of

Quot 1(w/X/k) , we therefore get

dimQuot (w/X/k) > 1

If equality holds, Quot (w/X/k) is reducible since

Quot 1(w 1/X/k) is a closed 1-dimensional subscheme. If

equality fails, then the closure of Q is a component

of Quot (w/X/k) of dimension 1 , and so Quot 1(w/X/k)

is reducible.

(b). Since w is torsion-free [4, 2.8, page 8], w is

invertible at x because dimk(w/Mw) = 1 . Since
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dimk(M/M ) > 3 , we get that

dimk(MU/M 2 u) > 3 .

Set w2 = w/M w . A vector subspace of Mw/M 2W of

codimension 1 corresponds to a quotient of w2 of length

2. It is not hard to see that this correspondence extends

to families of quotients and vector subspaces, so that

Grass1 ([Mw/M2 w]/k) can be considered as a subfunctor of

Quot (w2/X/k) . Hence, since a proper monomorphism is a

closed embedding [12, Ch. IV, Prop. 8.11-5], Quot2 (w2/X/k)

contains Grassl([Mw/M2 w]/k) . Since the latter has

dimension at least two, reasoning as in the proof of (a)

we conclude that Quot 2(w/X/k) is reducible.

We say that X has embedding dimension n at x

if dimk(MVI/M ) = n . Since an integral curve with em-

bedding dimension at most 2 at each point can be embedded

in a smooth surface [3, Cor. (9)], we have that X lies

on a smooth surface if and only if the embedding dimension

at each point is at most 2

As an immediate consequence of Proposition 5.1.2

and Proposition 5.2.1 we get:

Proposition 5.2.2. If X does not lie on a smooth surface,

then Quot 2(w/X/k) is reducible for d>2 .
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Lemma 5.2.3. Suppose that P is irreducible. Then

Quot d(w/X/k) is irreducible for all d > 1

Proof. The Abel map

Ad : Quot d(w/X/k) -+ P

is smooth with integral fibers if d > 2p - 1 . Therefore

Quot d(w/X/k) is connected and hence irreducible for

d > 2p - 1 [4, Theorem 1.8]. It follows from Proposition

5.1.2 that Quot d(w/X/k) is irreducible for all d > 1

Theorem 5.2.4. If X does not lie on a smooth surface,

then the compactified Picard scheme P is reducible.

Proof. Proposition 5.2.2 gives that Quotd (w/X/k) is

reducible for d > 2 . Hence, by Lemma 5.2.3, P is

reducible.
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CHAPTER VI

Results on the boundary points of PicX0

Let X be a curve lying on a smooth surface (or

equivalently, Pic 0  is irreducible). Briacon, Grangerx
and Speder [8] showed that the singular points of

Hilbn(X/k) are exactly the points corresponding to

subschemes of X defined by ideals, which are not

principal. Using the smoothness of the Abel map

A n : Hilb n(X/k) -+. Pic X 0

for large n , we get that a point of PicX0 , which

does not lie in Pic 0 , is a singular point of PicXx x
In Section 6.2 we study the orbits of PicX0 underx

the action of Pic X defined by tensor product. In the

case that 6(X,XQ) is at most one at each point Q E X ,

we show that there are (1) orbits of codimension I in

PicXo for each A , 1 < I < 6(X,X) . Here X denotesx
the normalization of X

D' Souza [10] studied the analytic structure of

PicX0 in the case that the singularities of X arex
ordinary double points. He showed that the completion

of the local ring of Pic 0 at a singular point is ofx

the form
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k[[Tl,...,Tr ]]/(TT2 ... ,T2 2 lT22 )

where I is an integer less or equal to the number of

singular points of X

We determine the analytic structure of the

singularities of PicXo in the case that 6(X,X,Q) isx
at most one at each point Q E X , and we show how the

6
singularities are distributed on the Z (5) orbits of

=0 2=1

PicX . The completion of the local ring at a point in

an orbit of codimension I is of the form

krToT ]]/(T T *Tl 2 -T3  ,..T 2 -T~ 3
k[i...,Tr lT2 ,.. 2 slT 2 s' 2 s+l~ 2s+2''' 22-1~ 212

where s is a number less or equal to the number of

nodes on X

6.1.

Let X be a curve lying on a smooth surface S . In

the characterization of the singularities of Hilbn(X/k)

in [8], Briaqon, Granger and Speder used a theory of

"flattening" developed by Hironaka and Tessier. However,

in a remark they pointed out that one can avoid the use

of "flattening" by using the fact that an ideal of height 2

in a regular, 2-dimensional ring can be generated by the

maximal minors of an n x (n + 1) matrix. Following this

approach, the proof of [8, Prop. 11.2] becomes short and

elegant.
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Lemma 6.1.1. [8, Ch. II, Remarque]. Let A be a regular,

local ring of dimension 2, and let I c A be an ideal

of height 2. Let

cv: I -- A/I

be an A-module homomorphism. Then, if I is not a

complete intersection in' A , p(I) is contained in M/I

where M denotes the maximal ideal of A

Proof. Set p + 1 = dimk(I/MI) , and lift a basis i ,..0 p

of I/MI to a set of generators io,..., i of I. Let0 p
cp E HomA(I,A/I) and suppose that p(i 0 ) 0 M/I . Let at

be an element of A such that the residue class of at

modulo I is equal to p(it)/cp(i) , t = l,...,p . Then

i',...,i ,where if = i and i = - ai , is a0 p 0 0 t t to0

minimal set of generators of I , and by [9, Thm. 5],

i',...,i are the maximal minors of an (p + 1) x p0 p

matrix R = (ri) , ri E A . Since i ,...,1 form a

minimal set of generators of I , therefore r E M

If p > 2, (il,...,i ) c M(ro l,**,rop) , so there1 p op
exists an integer j such that r0o 9' I because none of

i,...,1i is in MI . On the other hand, ro i' + ... +

r i' = 0 implies that r E I , which is a contradiction,
pj p oj

so if p(i') 9 M/I , I is a complete intersection.
0
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Proposition 6.1.2. (Briagon, Granger, Speder). Let q

be a point of H = Hilbn(X/k) such that the closed

subscheme aq of X corresponding to q is not defined

by an invertible ideal. Then q is a singular point

of H .

Proof. Suppose that a can be written as a disjoint
A A A

union a =a U ... U% . Then 0  = 0" @.
q l H,q Ll3 , Hlqn

where q is the point of H = Hilbn (X/k) corresponding

to a, [Lemma 4.3.3]. Hence we may assume that a is

supported at one point Q of X .

Set A = 0 and denote by M the maximal ideal

of A . Then 0XQ = A/(f) = A for an element f r A

We denote by I the ideal in A corresponding to a; ,

and we set I = I/(f) .

Let cp E Hom A(IA/I) . If I is a complete

intersection generated by f ,f2 , then f is of the

form f = a1 f1 + a2 f2 , and al,a2 E M because I is

not a principal ideal. Hence cp(f) E M/I . On the other

hand, if I is not a complete intersection, then

p(f) E M/I by [Lemma 6.1.1].

The Zariski tangent spaces of Hilb n(S/k) and

Hilbn(X/k) at q are isomorphic to HomA(I,A/I) and
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Homg( I,IA/I) [13, Exp. 221, cor. 5.3]. The vector

subspace HomK(IA/I) of HomrA(I,A/I) consists of

elements cp E HomA(I,A/I) such that cp(f) = 0 . Since

S is smooth

dimkHomA(IA/I) = 2n

[1, Prop. (3)].

Let = t Pl,...'2n} be a basis
n-1

Since cpi(f) E M/I , pi(f) = Z b .t
j=1

and t ,.. .,tnl is a basis of M/I

(ble e.b 2 ne) , I = l,...,n - 1 . An

of HomA(IA/I)

where b E k

Set B =

element

p E HomA(I,A/I) lies in HomT(I,/I) if and only if

the coordinates of cp relative to $ is an element

of the orthogonal space of B,..., Bn-1 . Hence

dimkHom.(I,A/I) > n + 1

and since dimH = n [1, Cor. (7)], q is a singular

point of H .

Theorem 6.1.3. The boundary points of Pic 0  in thex
compactification PicXo are singular points.x

Proof. Let p denote the arithmetic genus of X an

fix an integer n > 2p - 1. Let q be a point of
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Hilbn(X/k) , which map to a boundary point of PicXk

by the Abel map

An: Hilbn(X/k) -+ Pic -0

The subscheme of X corresponding to q is defined

by an ideal, which is not invertible. By Prop. 6.1.2,

q is a singular point of Hilbn(X/k) , and since An

is smooth, An(q) is a singular point of Pic 0 . Since

An is surjective, all the boundary points of PicX0  arex
singular.

6.2.

Let X be an irr'educible curve with m singularities

QJ,...,QM and suppose that 6(XXQi) = 1 . Let X'

be the desingularization of A of the points of X ,

say QI,...,Q . Denote by M1 ,...,M the ideals of

Q...,Q1 . Set M = M1 1 ... M and put I = M JSX

where J is an invertible 0 X-Module of degree I.

Denote by Q the point of PicX0  corresponding to I .x

Lemma 6.2.1. The orbit O(q) of q under the action

of Pic 0  has codimension I in Pic =0x x

Proof. Since M is the conductor of OX in OX'

[10, Ch. III, Rem. 1.3], I is an OX'-Module and the



tensor product defines a map

PicX, x q -- PicX0

Since every invertible 0X'-Module L is of the form

F eXOX where F is an invertible 0 X-Module, the

image of $ is equal to O(q)

Suppose that I @0X'L - I 00X L' where L and L'

are invertible 0X,-Modules of degree 0 . Since J is

an invertible 0X-Module, tensoring by J~ gives an

isomorphism

M 3OX, L ~- M go X'L'.

But -M is an invertible OX,-Module, so L ~- L' , and

therefore the morphism 4 has zero-dimensional fibers.

Hence dimO(q) = dimPicX, , and

dimPic4X = dimPic 0 -X1 X

because Pic X is dense in PicX0  [1, Thm. (9)]. It

follows that O(q) has codimension A in PicX

Proposition 6.2.2. Pic"o has orbits of codimension

A , each given by the action of Pic 0  on a point qX

of Pic corresponding to a torsion-free, rank-1 sheafX

on X of the form I = M t ... 0 M ®J where J is

an invertible OX-Module of degree .
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The completion of the local ring of Picyo at ax
point of O(q) is of the form

k[[T1...Tv]](T 2 ,..,T 2 s-lT2 s' T 2 s+l s+2'' *OJT 2 1-1 1  )

where s is the number of nodes and I - s is the

number of cusps among the points Q ,

Proof. Let F be a torsion-free, rank-1 sheaf on X

There exists an invertible 0 X-Module L such that

F 90XL c Ox [2, Lemma 3.31]. Let t ... 3t be the

points of X where F is not invertible. Then

F eoXL is of the form M ® ... 0 Mt A It where I'

is invertible [10, Ch. III, Lemma 1.4]. Hence every*

torsion-free, rank-1 sheaf I on X , which is not

invertible at Q ' ' '' At is of the form

I = Mt 1 ... Mt

There are (A) different subsets of

consisting of A points, and hence there are (M) orbits

O(q) of points q corresponding to torsion-free, rank-1

sheaves on X , which are not invertible at A points.

Each such orbit has codimension I in PicX0  [Lemma 6.2.1].

The point of PicX0  corresponding to

x

I=Mt1 0 A(
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is in the image of the Abel map An of a point q'

of Hilb n(X/k) corresponding to a subscheme

Q, U ... U Q U V where Q ( V . Using Lemma 4.3.3

and the fact that Hilb (X/k) = X [2, Lemma 8.7] , we

get that the completion of the local ring of Hilbn(X/k)

at q is isomorphic to

k[[T,..,,Tr]/(T2 ... ,T2 s-T2 s' 2s+1 2s+2'' 1-1~ 2

Hence, since An is smooth for large n , the completion

of the local ring of Pic 0  at q is of the desired
x

form.



CHAPTER VII.

The structure of compactifications.

Let X be an irreducible curve of arithmetic

genus p . In some special cases the structure of

Pic 0Xo is known. For example, if p = 1 , PicX0 - X

[2, Example 8.9 (iii)]. If p = 2 and X has one

ordinary node as only singularity, then Oda and

Seshadri [20, Ex. (1), page 83] showed that Pic 0 isx
obtained from the P1 -bundle PresX over Pic- - XxI/X x
as follows: Let Q and Q. be the points of X ,

which map to the singular point of X . Then Pic 0  isx
obtained from Pres7/X ~ 3P(Oy G OS ) by identifying the

0-section and the o-section via the translation in X

by its point Q, - Q 2 *

In this chapter we give an explicit construction

of PicXo in the case that X has ordinary nodes as

only singularities. The main tool in this construction

is a generalized presentation functor GPres Y,7  where

Y' - Y is a surjective, birational morphism of curves.

The source I of a generalized presentation

(fS)*I -+ N
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over S lies in Pic (S) . If X' -+ X is the

desingularization of one of the points of X , we show

that GPresX'/X is a :2P1 -bundle over Pic=? and that

Pic"0 is obtained from this I1 -bundle by identifying

two sections via a translation in Pick.

In the last section of this chapter we study PicX 0

for a curve X such that 6(X,X) = 2 . We give an

explicit description of the underlying topological space

of Pic=0 in the case that p = 2 , X = JP and X has

only one singularity, which is a tacnode.

7.1.

Let f : Xt -+ X be a surjective, birational morphism of

irreducible curves. Denote by C the conductor of 0X

in OX' and set 6 = 6(X',X) . Let S be a k-scheme

and F an 0 -Module. We denote by CF the image of

C ®X F -+ F . A generalized presentation over S is a

surjective 0 X-Module homomorphism

cp : (f )*I -+ N

where I E Pic 7(S) , CI c kerp and N is a locally

free 0 -Module of rank 6 . Equivalent presentations

and the pullback cp, by a k-morphism S' -+ S are

defined as in Section 2.1.
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Definition 7.1.1. We define a functor GPresX/X as

follows: For each k-scheme S , let

GPresX/X(S)

be the set of isomorphism classes of generalized

presentations over S

Set P = Pic~o and let .9 denote a universal

torsion-free, rank-1 sheaf on X' x P

Proposition 7.1.2. The functor GPresX'/X is represented

by a projective scheme over P

Proof. Let Z denote the closed subscheme of X defined

by the conductor C and denote by i : Z -- X the in-

clusion. Let S be a k-scheme and

We denote by F(C) the pullback i*F
S

We will show that GPresX?/X is

Quot [(fP)*g](C)/Z x P/P)

Let

F an oX -Module.

isomorphic to

CP : (fS)*L-+ N

be an element of GPresX'/X(S) There exists a

morphism q : S -- P , an invertible 0 -Module T and

an isomorphism
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-- L 0 0S T .

The presentation

(fs)*(L go T)
S' *

is equivalent

cp gives rise

presentation

to

-- N ®O T
S

p . Hence the generalized presentation

to a morphism q : S -+ P and a generalized

CPl (f*[X,)*9] -

As in the proof of Proposition 2.2.1,

to a surjective

which is an element

Pl corresponds

O -homomorphism
xsphs

of x P/P)(S)

Moreover, if

a ' : (qX)*9 - L goST

is another isomorphism, we get

x P/P)(S)

an element in

, which is equivalent to

Hence we have a map

p : GPres,/X -+ Quot 6 ([(fp)*g](C)/Z

M

Quot6 ([(fp)* 9](C)/Z

P f

Quot6 (I(fp)*g.](C)IZ

.

x P/P) (S) .



It is easy to see that the map

6 ([(fP)*1](C)/Z X P/P) - GPresX'/X

which sends

(qZ)*[ P *g

to the generalized presentation

(f S )i[(qX'f

is an inverse of p .

The proof of the proposition is now completed since

x P/P) is represented by a projective

scheme over P [13, Exp. 221, Thm. 3.2].

Corollary 7.1.3.

of one point

Let f : X' -- X be the

Q of X , and suppose that

desingularization

C is equal to

the maximal ideal M of

IP -bundle over

Proof.

Q . Then GPresX?/X

P .

The functor Quot6 ([(fp)*O](M)/Q x P/P)

isomorphic to

is a locally free OP-Module of rank 6 + 1 ,

Grass ((fp*](M)/P) is represented by a

over P [17, Prop. 1.2 and Prop.

is a

is

Since [(fP)*9](M)

IP -bundle

Quotla(fP4 91(c)/Z

Grass 6 (P)*'9](M)/P) .

1.6].



88.

Let

K : GPresX/X -+ PicX

be the map, which sends a generalized presentation cp

to kerp . The corresponding morphism

K : GPresX'/X -+ Pic 0

is an isomorphism on K~ (PicX) [see Section 3.2 for

the same property of the morphism PresX'/X -+ Pic 0 ].

Remark 7.1.4. The morphism K : GPresXt/X -+ Pic 0 need

not be surjective. For example, let X be a curve with

one singularity Q such that 6(X,X,Q) = 2 and such

that there are three points P1 ,P2, 3 E X , which map

to Q . Then the conductor of OX in 0- is the

maximal ideal M of Q , and so GPres/ is a I2 _x /X
bundle over Pic [Corollary 7.1.3]. Hence GPres-/X

is irreducible. On the other hand, since length of

(OX/M) /length of(OX'/OX) , X is not Gorenstein [6,

Cor. 6.5]. Therefore Pic X is reducible by Theorem 5.2.4,

and so K is not surjective.

In the next section we consider the case where X

lies on a smooth surface. Then PicX0  is irreducible
x

and K is surjective.



7.2.

Let X be an irreducible curve with ordinary double

points as only singularities, and let f : X' -+ X be

the desingularization of one of the double points Q E X

We denote by Q, and Q2 the points of X' , which map

to Q

Suppose that Pic" is represented by a scheme P

and let q be a universal torsion-free, rank-1 sheaf

on X' x P .

Lemma 7.2.1. The underlying topological space of Pic"X0

is obtained by identifying the two sections IP(C(Qi))

and P(P(Q 2 )) of the B 1 -bundle GPres X'/X

Ip(9(Ql) S 2)) over P via a translation in P by

the point of

Proof. Let

PicX, corresponding to OX LQ2 - Q1]

I -N

and

I' N'

be two generalized presentations over k . Set j = kerp

and J' = kerp' and suppose that j is 0 X-isomorphic



to j' . If j and JT are invertible, then cp = e'

KJ K 1 (PicX)

Suppose that J

is an isomorphism onto PicX

and J' are not invertible at Q .

Then J and J are OX'-Modules of the form J = I[-Q ].

= I[-Q ] [10, Ch. III, Cor. 1.5]. Hence. cp

are of the form

I -- I(Q ) I -+ I(Q.)

If i = j , then I ~ I' because I[-Qj j- I'[-Q ]

and hence CP = CP

Suppose that i 7 ji , say i = 1

Since I[-Ql] = I'[-Q2] IQ2 - Q] The point

corresponding to cp is identified with

the point

PicX= isx
identifyin

q' E F(.(Q2))

obtained from the

g 1P( (Q1 )) and

corresponding to cp'

IP -bundle

]P(19(Q2 )))

Hence

GPresX'/X by,

via the translation

in P by the point Pic0Pi'~ corresponding to

OX' I2 - Ql1]

The quotient of GPres X'/X in the category of

topological spaces formed in Lemma 7.2.1, can be given

the structure of a reduced k-scheme in many ways

However, in the case that X

because

and Jt

and cp'

q E

and i = 2

.

[Proposition 1.3.3]. has
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ordinary double points as only singularities, we know

the analytic structure of the singularities of PicX 0
x

[Proposition 6.2.2], and this allows us to determine

the scheme structure of Pic: 0  as follows:x
Let 0' be an orbit of Pick? of codimension I

The completion of the local ring of Pic 0  at a point

of 0' is isomorphic to

k[[Tl, .. , ](T 1 T 2,...,T 2 e-_T21)

[Proposition 6.2.2].

Set V = :P((Q )) and V = T~1(ot)- where

S: GPres X'/X -+ Pic- denotes the natural projection.

The identification of V n V and V n V2  is an orbit

of Indeed, an 0 X-Module corresponding to

a point of K(V n V.) is an OX'-Module [see the proof

of Lemma 7.2.1], and every invertible OX-,-Module is of

the form L %O OX, where L is an invertible 0X~

Module. Moreover, 0 has codimension A + 1 in Pico

since dimPic 0 = dimPic + 1x X

The completion of the local ring of PicX0  at a

point in 0 is isomorphic to

k[[T ,..., Tv]]/(T1 T2 ,9 .,T 2 2+1 T2 z+2)



[Proposition 6.2.2]. Hence the 6-invariant of the

morphism K : GPresX'/X -+ PicX0 is at most one atXI/X x
each point of PicX0 . We have proved the followingx
proposition:

Proposition 7.2.2. Let X be a curve with ordinary

nodes as only singularities, and let

Xm = X -* Xm-l X0 = X

be a factorization of X-+ X such that 6(Xi,X 1 ) = 1

Then PicXo can be constructed from Pic2  in m stepsx X
as follows: Suppose we have constructed Pic~ . ThenXi*

the underlying topological space of Pic 0o is the
Xi-l

quotient of GPres X constructed in Lemma 7.2.1,

and if q, and q2  are two points of GPres XX

which are identified to one point, the local ring of

the resulting point of Pic 0  is isomorphic to
Xi-l

k e m q l m where m denotes the ideal of q.
q q2  1i

7.3.

Let X be an irreducible curve of arithmetic genus 2

such that the normalization X is equal to P .

Suppose that X has only one singular point, which is

a tacnode. We can construct such a curve in the following

way: Let X' be the plane, cubic nodal curve. Locally,

XI is given by Spec(A) where
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A = k[u 1,u2] = k[U1,U2]/U2 - U1 (U, + 1)

Let $ denote the composition

4: k[U1 ,U1 U2 ] c k[U1 ,U2 1 -+ A

The image of $ is a subalgebra A' of A , and

dimk(A/A') = 1

because the elements of A not in A' are of the

form cu2 , c E k .

Set m = A' n (u ,u2 ) By Proposition 1.1.1, there

exists a curve X , which is homeomorphic to X' , and

which has one singular point Q where the local ring

is isomorphic to A .

The restriction of the morphism

K : PresX' -+ Pic =0

to StPresX'/X is an isomorphism onto Pic X [Lemma 3.1.2].

Let p E PresX'/X(k) , p 9 StPresX,/X(k) . Then p is

of the form

Cp : f*L -+ L(Q'

where Q' is the singular point of X' and L E Pic ,(k)

Suppose that ep' is another presentation over k of the

form



The OX,-Modules L'[-Q'] and L[-Q1 ] are torsion-free,

rank-i of degree-1 , which are not invertible. Since

-c1 Pic~~ ~ XI [2, Example 8.9 (iii)], LT [-Q'] and

L[-Q'] correspond to the same point of Pic .

Therefore L'[-Q'] .is isomorphic to L[-Q'] as OXI

Modules (and as 0 X-Modules) and K(q) = K(q') where

q and q' are the points of PresX'/X corresponding

to cp and cpt . Hence the image of K in Pic 0  isx
the cone over PicX~ Xt \ Q' obtained by identifying

one section of the P1 -bundle PresX'/X over X' \ Q'

to one point R

The complement of Pic 0  in Pic~0  is an irreduciblex x
scheme of codimension 1 [22, Theorem B], which passes

through R . Therefore the underlying topological space

of PicX0  is a cone over Pick~ X.

R

/ \/ \

/\

Q'/

Cp' : f*L' -_+ L' (Q')
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Reducibility of the moduli space of semi-stable,

torsion-free sheaves on a singular curve.

Let X be a singular, integral curve. It has

been verified by Newstead [19, Ch. 5, Thm, 5.8'] that

there exists a projective scheme M(n,d) , which is a

coarse moduli space for semi-stable, torsion-free 0 X

Modules of rank n and degree d . The points of

M(n,d) corresponding to locally free 0 X-Modules, form

an open, irreducible subset [19, Rem. 5.9 (i)].

Rego [23] proved that if X lies on a smooth

surface, then M(n,d) is irreducible. Every torsion-

free, rank-n sheaf on X is contained in 0n (by

twisting if nescessary), and Rego obtained the irredu-

cibility of M(nd) by showing that Quotm(O /X/k) is

irreducible for all m > 1 if X lies on a smooth

surface.

In this chapter we prove that M(n,In) , E 2Z

is reducible if X does not lie on a smooth surface.

Since every torsion-free, rank-1 sheaf is semi-stable,

M(1,0) = PicXo , and so we obtain another proof of
x

Theorem 5.2.4.



The first step in the proof of reducibility of

M(nin) is to show that

Quot5 (w n /X/k)

is reducible for small t , in fact, for t = 1 if

w is not invertible and for t = 2 if w is invertible.

Here Quotss (n/X/k) denotes the open subscheme of

Quot(wn/X/k) parameterizing quotients N such that

ker(,n -* N) is semi-stable.

We show that the open subset Q s ofFss

Quot t(,n/X/k) , parameterizing quotients N such that

ker(wn -+ N) is locally free, is irreducible. Then, if

q is a point of Quot (W n/X/k) , which does not lie
stn

on the component containing QFss , the corresponding

quotient N of Wn has the property that I = ker(wn -+ N)

is not deformable to a locally free sheaf. The degree

of I is n(2p - 2 - t) where p is the genus of X,

and we get that M(n,n(2p - 2 - t)) is reducible.

Let A E Z . Tensoring by an invertible OX-Module

L with

degL = + 2 + t - 2p,

defines an isomorphism
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M(n,n(2p - 2 - t)) 2= M(n,2n) .

Hence M(n,2n) is reducible for all I E 2Z

8.1.

Let A be a complete, discrete valuation ring and set

S = Spec(A) . Denote by s -any r the closed and

generic points of S . Let I be an 0 X-Module. An

0XS-Module I is called a deformation of I if it is

S-flat and if

I(S) -1 I.

We say that I can be deformed to a locally free sheaf

if there exists a deformation I of I such that

I(r) is locally free.

Let w denote the dualizing sheaf on X , and

denote by U the open subscheme of X consisting of

nonsingular points. Let

QmU

denote the open subscheme of Quot m n/X/k) , which

parameterizes quotients of wn with support contained

in U. Rego [23, Prop. 1.2.0] showed that mis

irreducible of dimension nm . His proof runs as

follows: Consider the map
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A : Quotm(On/U/k) -+ Hilbm(U/k)

defined by sending a quotient N of 0 to the
U

subscheme of U defined by the ideal A(ker[OU -+)N])

The fibers of A at points in the open subscheme Hsm

of Hilbm(U/k) , corresponding to smooth subschemes of

U , are isomorphic to (P n- )m . Since Hilbm(U/k).

is irreducible of dimension m [1, Lemma (1)], the

open subscheme A (H sm) , which parameterizes quotients

of 0 with sipport at m distinct points, is irredu-
Un

cible of dimension nm . Since every quotient of 0n

of length m can be deformed to a quotient supported

at m distinct points, A- (H sm) is dense in

Quotm(On/U/k)

Clearly, Quotm(wn/X/k) is irreducible if and

only if for each quotient F of n of length m

there exists a deformation F of F such that

SuppF(r) C Us(f )

Lemma 8.1.1. Let x be a point of X and denote by M

the ideal defining x .

(a) If dimk(w/Mw) >_ 2 , then Quotn (wn/X/k) is

reducible.

(b) If dimk(w/Mw) = 1 and if dimk(M/M ) > 3 , then

Quot (Wn/X/k) is reducible.
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Proof. (a) Set w1 = w/M . Obviously the functors

Quotn(wn/X/k) and Grass (Wn/k) are isomorphic. Since
1n 2

dimk(wl) > 2 , Grassn(,n /k) has dimension at least n2

Hence, since Quotn(W /X/k) is a closed subscheme of

Quotn(Wn/X/k) , we therefore get

dimQuotn(wn/X/k) > n2

If equality .holds, then Quotn (,n/X/k) is reducible

because Quot n(w/X/k) is a closed subscheme of dimen-

sion n2 , which is obviously different from Quotn(Wn/X/k)

If equality fails, the closure of Q in Quotn(,n/X/k)

is a component of dimension n2 , and so Quot (Ln/X/k)

is reducible.

(b) Since w is torsion-free, rank-1 [4, 2.8, page 8],

w is invertible at x because dimk(w/Mw) = 1 . Since

dimk(M/M2 ) > 3 , we get that

dimk(Mw/M w) > 3 .

Set W2 = w/M w . A vector subspace of (Mw/M 2)n of

codimension n corresponds to a quotient of w of

length 2n. It is not hard to see that this cor-

respondence extends to families of quotients and vector

subspaces, so Grassn([Mw/M2 Wn/k) can be considered

as a subfunctor of Quot (w2n/X/k) . Hence, since a

proper monomorphism is a closed embedding [12, Ch. IV,
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Prop. 8.11.5], Quot2 n(n /X/k) contains
2 22

Grassn([MUJ/M W]n/k) . Since dimk(M/'M 2 w) > 3 , the

latter has dimension at least 2n , and reasoning

as in the proof of (a), we conclude that Quot2 n(Wn/X/k)

is reducible.

Let I be a torsion-free sheaf on X and set

p(I) = degI/rkI .

We say that I is semi-stable if for all subsheaves

i' C: I , P(I') < U(I) .

Lemma 8.1.2. Let I ,...'In be torsion-free, rank-1

sheaves on X such that degI1 = ... = degI = d.

Then

n
T = I.

i=l

is a semi-stable, torsion-free, rank-n sheaf.

Proof. Let j be a subsheaf of T of rank r , and

let T1,...,Tt be the set of all subsheaves of T of
k

the form e I . We denote by
i=l ni

f. : - T

the composition of the inclusion J c T and the

natural projection T -+ T .
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Let g denote the generic point of X . There

exists an integer I , 1 < A < t , such that the map

f of 0 X,g-vector spaces is an isomorphism. Hence

f : J- T

is injective, and the cokernel of f is -supported

at a finite set of points. The additivity of the Euler

characteristic gives that degJ < degT2 = rd , and

therefore

u(J) < p(T) = d

Set Q = Quotm (n/X/k) and let q be a universal

quotient on X x Q . The points q E Q such that

[ker(,n-+ )](q) is semi-stable, form an open subset

Qss of Q [19, Ch. 5, 3, Rem., page 136]. Hence

the subfunctor of Quotm( n/X/k) of quotients N such

that ker(on -+ N) is semi-stable, is represented by

an open subscheme Quotm s(n/X/k) of Quotm (Wn/X/k)

Proposition 8.1.3. Let x be a point of X and denote

by M the ideal defining x .

(a) If dimk(w/Mw) > 2 , then Quotns(n/X/k) is

reducible.

(b) If dimk(w/Mw) = 1 and if dimk(M/M2 ) > 3 , then

Quot 2(Wn/X/k) is reducible.
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Proof. (a). Set

Grassss(w'/k) = Grassn(, /k) n Quot s(wn/X/k)

where Grassn(wi/k) is the subscheme of Quotn(Wn/X/k)

defined in the proof of part (a) of Lemma 8.1.1. Let V

be a vector subspace of w of colength 1. Then Vn

corresponds to a point of Grassn( /k) , which, by

Lemma 8.1.2, lies in Grass ss( /k) . Hence

dimGrass ss(w/k) > n2

and the arguments used to prove Lemma 8.1.1 (a) shows

that Quot (Wn/X/k) is reducible.

(b). A similar modification of the proof of part (b)

of Lemma 8.1.1 gives that Quot (Wn/X/k) is reducible.

8.2.

The first lemma below was originally proved by

Grothendieck [12, Ch.04, Prop. 19.1.10]. It is proved

by Oda and Sehadri [20, Lemma in Appendix] in the

following version:

Lemma 8.2.1. Let A -+ B be a local homomorphism of

noetherian local rings. Let N and L be finite

B-modules with L A-flat. Then a B-homomorphism
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is injective with A-flat cokernel if and only if

fOAK:NOAK--LAK

is injective where K denotes the residue field of A.

Let A -+ B be a flat homomorphism of local

noetherian rings. If F is a B-module, we denote

by F the A-module F ®A K where K is the residue

field of A

Let N be a finite B-module such that

ExtL(N,7) = 0 Under this hypothesis Oda and Seshadri

showed that

HomB(NB) SAK Hom-(N,B)

[19, Corollary of Appendix]. However, their proof gives

the more general result:

Lemma 8.2.2. Suppose that

Ext (NL)= 0

Then there is an isomorphism

HomB(NL) OAK ~ Hom(Y,!~)

where N and L are finite B-modules with L A-flat.
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As an immediate consequence of the two previous

lemmas we get the proposition:

Proposition 8.2.3. Set S = Spec(A) , A a local

k-algebra, and let Y-- S be a flat morphism of affine

schemes. Let N and L be coherent 0 Y-Modules with

L flat over S . Suppose that

ExtY1(s)(N(s),L(s)) = 0

where s denotes the closed point of S . Then there

is an isomorphism

Homy(NL)(s) ZHomY(s)(N(s),L(s))

Moreover, if * : N(s) -. L(s) is injective and

ep : N -- L is a homomorphism such that cp(s) = $ , then

ep is injective.

Next we give a criterion for vanishing of

Ext -groupes, which we will use later.

Lemma 8.2.4. Let w denote the dualizing sheaf of X ,

and let N be a torsion-free, rank-n sheaf. Then for

all points x E X we have that

Ext0  (N ,uJ) = 0
OX.Ix
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Let I be an 0X-ideal, I / OX ,

Let to be a number

is generated by global sections

there exists an isomorphism

the generic point of

and set

such that HomX(N,G)(t)

t > t

N = G

X , there is an

Since

, where g denotes

injective map

a(t) : N(-t) -+ G

for t > t .

If HO(XN(-t)) , there is a non-zero map

-+ N(-t)

Then a(t) * gives a non-zero map OX -* G

hence a non-zero map 0X -+ I Since X(I(n)) < x(OX(n)) ,

n > 0 , there is no non-zero map OX -+ I [2, Prop. 3.4,

(ii) (b)]. Hence we get that HO (XN(-t))

By duality

= HO(XN(-t)) ,

so

= 0

for t > t .

Proof.
n

G = E I

and

= 0

.

.

.

ExtX(N(-t),w)

ExtX(N(-t),wn)
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Let t be an integer such that Ext (N(-t),Wn)

is generated by global sections for t > t1 . If

t > max(t ,tl) , then Ext 1(N(-t),wn)x = 0 for all

points x E X . Since

Ext 1(N(-t),VLOn) Ext1X,x(N n)

[14, Prop. 6.8], the assertion follows.

8.13.

Let Q denote the open subscheme of Quotm(w n/X/k) ,

which parameterizes quotients N of Wn such that the

kernel of wn -+ N is locally-free.

Lemma 8.3.1. Q is irreducible.

Proof. Let q and q be two points of Q and

denote by N1  and N2  the quotients of wn corre-

sponding to q, and q2  Set Ii = ker(wn _ )

There exists a family F of locally free, rank-n sheaves

over an irreducible scheme T such that I = F(ti)

for closed points t ,t2 E T [19, Ch. 5, remark on page

136].

Let A be a discrete valuation ring and set

S = Spec(A) . Denote by s and I the closed and

There exist maps g1,g2 : S -+ Tgeneric points of S .
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such that g (s) = t and g, (r) = g2 (r) [12, Ch. II,

Prop. 7.1.4 (i)]. The pullbacks of F to S by g,

and g2  give families F1  and F2 over S such

that F1 (n) = F2 (r) and Fi(s) - I .

Let V be an open subset of X such that

Supp(Nl) U Supp(N2 ) c V . By Proposition 8.2.3, there

exist maps

h1,h2  nS w /X/k)

such that h1 (s) = q and h1 (n) = h2 (r). Hence q

and q2  lie on the same irreducible component of

QV(wn/X/k) and therefore on the same component of

Quotm (n/X/k) .

We are now ready to prove the main result of this

chapter.

Theorem 8.3.2. If X does not lie on a smooth surface,

then M(n,Ln) , A E Z , is reducible.

Proof. Quot tn(Wn/X/k) is reducible for t = 1 if Xss

is Gorenstein and for t = 2 if X is not Gorenstein

[Proposition 8.1.3]. Since QF s = Quot t(wn/X/k) n Q n

is irreducible [Lemma 8.3.1], ~FQ~s / Quot (wn/X/k)
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Let q E Quot (Wn/X/k) , q 0 Q . Let Nss~ F, s s

denote the quotient of wn corresponding to q , and

denote by I the kernel of the map wn - N. Suppose

that I can be deformed to a locally free sheaf over

S = Spec(A) , A a complete, discrete valuation ring.

Let V be an affine open subset of X such that

SuppN c V and denote by t the open subscheme

of Quot (W n/X/k) , which parameterizes quotients of

Wn with support contained in V. Put J = I I.

Since I can be deformed to a locally free sheaf over

S , there exists a deformation j of J to a locally

free sheaf over S . By Proposition 8.2.3 and Lemma

8.2.4, the inclusion

J c (W/V)n

lifts to an injection

a : J -+ (w/V)n

The cokernel of a is S-flat [Lemma 8.2.1] so it

corresponds to a morphism

S - ss



such that the generic point of S maps to Q ss Fnss

This implies that q E QF,ss , and we have a contradiction

since q was chosen not to lie in Q ss Hence I

is a torsion-free, rank-n sheaf of degree n(2p - 2 - t) ,

which can not be deformed to a locally free sheaf, and

therefore M(n,n(2p - 2 - t)) is reducible.

If I is torsion-free of rank n and L is an

invertible 0 X-Module, then deg(I ® L) = degI + ndegL

[19, page 131]. Tensoring by an invertible O-Module

L with

degL = I + 2 + t - 2P

I E Z , defines an isomorphism

M(n,n(2p - 2 - t)) ~ M(nIn)

Hence M(n,2n) is reducible for all A E Z .

Remark 8.3.3. Suppose that X does not lie on a smooth

surface. Then there exists a torsion-free, rank-1

sheaf I on X , which has no deformation to a locally

free sheaf [Theorem 5.2.4].

Set

I = Ili 1 2 E '' * Din
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.



where I , i = 2,...,n are torsion-free, rank-1 and

degI = degI . If every deformation I of I can

be written as

n

where I is a deformation of Ii , then I is a

semi-stable, torsion-free, rank-n sheaf, which has

no deformation to a locally free sheaf. Hence, if

such decompositions of deformations hold, reducibility

of M(n,nt) will follow'from reducibility of M(l,d)

However, the next proposition shows that this is

not the case.

Proposition 8.3.4. Let A be a local k-algebra,

which is an integral domain of dimension 1, and suppose

that A is not regular. Then there exists a torsion-

free A-module I of rank 1, a free A-module 12

and a k[[T]]-flat A[[T]]-module I such that

u [C T ]] k Ioi2

but I does not have a decomposition

1 ED1 2
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where I is a deformation of I . Here T is an

independent variable over k

Proof. Let m denote the maximal ideal of A . Since

A is not regular, there exist elements f ,f2  of m

such that

dimk((f lf2 )/m(f ,f2 )) = 2

Set B = A[[T]] and let K be the submodule of B3

generated by the

the submodule of

element (f1,f2 ,T) . Let K'

A3 generated by (f 1 ,f2,0)

j=B/K and I=A3 /K' .

Then

k~-

and I is k[[T]]-flat [Lemma 8.2.1].

Let K" be the submodule of A generated by

(f ,f2 ) . Then I = A 2 /K" is a torsion-free A-module

of rank 1 and I can be written as

I = I 1 I2

where 12 is free of rank 1.

denote

and set



We will show that there is no decomposition of

I of the form

I= 1 e I 2

where I are deformations of I . We proceed as

in the proof of [8, Prop. 1.2]:

For a B-module M , let y(B) denote the least

number of elements required to generate M . Suppose

that I can be written as

We have the following formulas:

y(ef) + y(T2 ) = y() < 3 [8, Lemma 1.3]

rank I + rank 12 = rank I

and

rank I y , rank Y2 2)

From these conditions we conclude that either

rank I = y(I) , rank T = y' ) or rank 12 2

i.e. either I1,12 or I is free.
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I is not free since I ®1 k ~- I and I is

not a free A-module. Suppose, therefore, that I,

say, is free. Projecting I i with kernel 1232
induces a map f : B -+ , which thus splits. Since

a E kerf , a belongs to a proper summand of B

Hence to some new basis of B3 , a has at least one

zero coordinate. But the ideal (flf2 ,T) in B is

generated by the coordinates of a relative to any

basis of B . Therefore, since Y(f ,f2,T) = 3 , no

coordinate of a vanish. Hence the assumption that

I can be written as I 1 12 leads to a contradiction.
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