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ABSTRACT

In the first part of this work we show that the
Picard scheme P of a curve X (reduced, but not nec-
essarily irreducible) can be constructed from the Picard
scheme of the normalization of X by a sequence of
&,~ and Gé-extensions.

Next, we study the compactification P of P for
an integral curve X defined as the moduli space of
torsion-free, rank-l1 sheaves on X . We show that if X
lies on a smooth surface, the boundary points of P in
P are singular points. If the §-invariant of the nor-
malization map of X _ 1is at most one at each point, we
find the orbits of P under the action of P . More-
over, we describe the analytic structure of the singular-
ities in this case, and we show how the singularities are
distributed on the orbits. If X has ordinary double
points as only singularities, we give an explicit con-
struction of P .

In the case that X does not lle on a smooth surface,
we show that P 1is reducible. 1In the last chapter we
extend this result to the moduli space M(n,d) of semi-
stable, torsion-free, rank-n sheaves of degree 4 on X .
We show that if X does not lie on a smooth surface, then
M(n,4n) , £ € Z , is reducible.

Thesis Supervisor: Steven L. Kleiman
Title: Professor of Mathematics
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INTRODUCTION

Throughout this work k denotes an algebraically
closed field. We will use the word curve to mean a
reduced projective k-scheme of pure dimension 1, and
by a point we mean a closed point. For other basic
concepts of algebraic geometry, we use the terminology
of [14].

In the first part of this work we study the
component P of the Picard scheme of a curve X,

which parameterizes invertible O, ,-Modules of degree o .

X
If X 4is smooth, P 1is a projective group variety. If
X has singularities, P 1is quasi-projective. We show
how P can be constructed from the Picard scheme of the
normalization of X by a sequence of extensions by Ga”
and Gm—bundles. We obtain this construction by showing
that the normalization map of X can be written as a
composition of maps where the ¢§-invariant changes by 1
[Theorem 1.2.4]. Then we prove that if X' —= X 1is a
surjective map of curves such that 6(X',X) = 1 , the
Picard scheme of X 1s isomorphic to the Picard scheme
of X' ; or it 18 a Gm- or Ga-extension of the Picard
scheme of X' [Theorem 3.2.1].

There exists a natural compactification P of P,

where the points of P corresponds to torsion-free,



rank-l sheaves on X , if X 1is irreducible [2]. A
main part of this work is devoted to an investigation
of the properties of P .

If X 1lies on a smooth surface, Altman, Iarrobino
and Kleiman [1] proved that P is irreducible. We show
the converse: P is reducible if X does not lie on a
smooth surface [Theorem 5.2.4].

In the case that P 1is irreducible, we show that
the boundary points of P in P are singular points
[Theorem 6.1.3]. 1In the special case that the 6§~
invariant of the normalization map of X is at most
1 at each point, we find the orbits of P under the
action of P . Moreover, we describe the analytic
structure of the singularities of P , and we show how
the singularities are distributed on the orbits
[Proposition 6.2.2].

If X has m ordinary double points as only
singularities, we describe how P can be constructed
from the Picard scheme of the normalization of X .
More precisely, if Y' — Y 1is a desingularization of
one of the nodes, we show that P& is obtained from
a PT -bundle over T

Yl
via a translation by a point of Pic

by identification of two sections

o)

7 [Proposition 7.2.2].



Newstead [19] has verified that there exists a
projective scheme M(n,d) , which parameterizes semi-
stable, torsion-free, rank-n sheaves of degree d on
an irreducible curve X . If X 1lies on a smooth sur-
face, Rego [23] proved that M(n,d) is irreducible.

In the last chapter we show that M(n,4n) , 2 € Z ,
is reducible if X does not lie on a smooth surface
[Theorem 8.3.2].

We now give a more detailed description of how
the material is organized. 1In Chapter I we prove that
the normalization map of a curve can be written as a
composition of maps where the §-invariant changes by 1.
A main ingredient in the proof of this result is a
modification of a method used by Serre to construct
singular, irreducible curves from their normalization.

The presentation functor EEEEX'/X s Where X' —=X
is a surjective morphism of curves such that §(X',X) =1,
is introduced in Chapter II. We show that it is repre-

1

-bundle over Pic° if X and X!

Xl
have the same number of connected components.

sented by a P

In Section 2.3 we define a subfunctor StPresX,/X

of Presx,/X » which is represented by a Gm- or

O

&, -bundle over Picx, if X and X' have the same



7.

number of connected components and by Pici, otherwise.

In Chapter III we show that StPres is isomorphic

Xt /X
to Pico s and hence the Picard scheme of a curve has

the structure of Gm- and Ga—extensions of the Picard
scheme of the normalization of X .
In Chapter IV we recall basic facts about the

functor Pic;o of torsion-free, rank-l1 sheaves on' X

and the Abel map

A" : Quot™(w/X/k) — pler” .

We also give a short discussion of the problem of com-

pactifying Pic§ in the case that X 1s reducible.

In Section 4.3 we give examples of cuspidal plane curves

=0
Cc

tangent cone is not a complete intersection. We explain

C such that there exists a point of Pic where the
how these examples show that the program we had for ex-
plicit constructions of compactifications of the Picard
scheme fails.

In Chapter V we show that Pic;O is reducible if
X does not lie on a smooth surface. This is done in
two steps. We show that Quotz(w/x/k) is reducible
if X does not lie on a smooth surface. Then we prove
that this implies reducibility of Quot™(w/X/k) , n > 2 ,

and so the smoothness of the Abel map



A" : Quot™(w/X/k) — Bl

shows that PicXO is reducible.

In Chapter VI we study Picl°

X
lies on a smooth surface. Using the description of the

in the case that X

singular locus of Hilbn(X/k) of [8], we prove that the

boundary points of Pic§ in Pic;:O are singular points.

If the ¢§-invariant of the normalization map of X is

at most 1 at each point, we show that Pic}0 has (g)

© ) of codimension k ,

X
1<k¢ G(E,X) . We also give the analytic structure

orbits (under the action of Pic

=0
X

singularities are distributed on the orbits.

of the singularities of Pic and determine how the

Chapter VII includes a generalization QEZEEY’/Y
of the presentation functor introduced in Chapter II
where Y' — Y 1is a surjective, birational morphism
of irreducible curves. The source of a generalized
presentation is taken to be a torsion-free, rank-1l
sheaf on Y' . We show that QEZEEY,/Y
sented by &a projective k-scheme. We use generalized

is repre-

presentations to describe explicitely the structure

oF Pic;o in the case that X has ordinary double

points as only singularities as follows: If Y' —=Y

is a desingularization of one of the singularities of
1

X , GPres isa P _;, 5

-bundle over Pic and

¥V/X
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Pic;O is obtained from this Eﬂ'-bundle by identifying
two sections via a translation in Pic;? :

Some of the techniques we use in Chapter VIII to
prove reducibility of the moduli space M(n,#n) of
semi-stable, torsion-free sheaves of rank n and
degree 4n are similar to the one used in Chapter V.
We show that Quoty (w?/X/k) 1is reducible if X is
not Gorenstein and Quotgg(wn/x/k) is reducible if X
is Gorenstein but X does not lie on a smooth surface
(Quotss denotes the open subscheme of Quot consisting
of quotients N such that ker(wn-* N) 1is semi-stable).
Since we have no smooth Abel map at hand, we devise other
methods to derive reducibility of M(n,4n) .

I am grateful to my advisor Steven Kleiman for his

help preparing this material.
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CHAPTER I.

The normalization map for curves.

Let X be a curve (reduced, but not necessarily
irreducible). In this chapter we prove that the nor-

malization map

can be written as a composition

£ £,

= T

such that the 6-invariant of each fi is one.

Both Artin [5] and Qort [21] have constructed a
factorization of f ; Oort in the case that X is
irreducible and Artin for X reducible. However, in
their factorization the §-invariant does not always
change by one.

The main ingredient in our proof of the breaking
up of f 1is a modification of the method used by Serre
to construct singular, irreducible curves from their
normalization [25, Prop. 2, page 69]. We generalize
Serre's procedure so that we can construct quotients
by a finite set-theoretic equivalence relation of a
k-scheme, which is reduced, but which need neither be

nonsingular nor irreducible.
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The generalization of Serre's method to schemes of
dimension greater than one allows the construction of
a quotient by an equivalence relation defined by an
involution on a closed subscheme. As an application
we construct a quotient of a Pt -bundle over Pic;? 3
which we in Chapter VII will prove is the compactification
of Pici . Here X 1s an irreducible curve with or-

dinary double points as only singularities, and X' is

the desingularization of one of the double points.

3:1:
Let X be a locally noetherian Kk-scheme, and let 2
be a closed subscheme of X such that no component of

X 1is contained 1n 2Z . Let

RO Z
be a finite equivalence relation in the category of
sets. It induces an equivalence relation

R X s

We denote by Y the quotient of X by R . The
quotient topology gives Y the structure of a topo-
logical space. In this section we will deduce that Y
can be given the structure of a reduced scheme in many

ways.
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First we introduce some notation. Let A(X)
denote the sheaf of total quotient rings of X [11,
ch. I, Def. 8.3.1]. Since X 1s locally noetherian

and reduced, the map

Oy - R(X)

is injective [11, Ch. I, Prop. 8.3«T7]:
For a closed point Q € Y we put

0. =

n o)
©  per-l(q)

X, P

where the intersection takes place in R(X) and where
f : X=Y denotes the projection.
Let d be a fixed positive integer. For each

closed point Q € f£(Z) , fix a local ring Oé such that

() k@& rg c Oé ck®r,

where rQ denotes the radical of O i.e. the inter-

Q,,
Q-

section of the maximal ideals of O

For Q € Y, Q £ £(Z) we set

(%%) Oé = OQ .

Proposition 1l.1.1. ILet X , R, Y and O! be as above,

Q
Suppose that X can be covered by open affine subsets,
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which are R-stable. Then Y can be given the structure

of a locally noetherian, reduced Kk-scheme such that

P 1]
Oy,q = g »

and there is a natural projection morphism p : X —=Y .

Moreover, if X 1s proper over k , then Y 1is

proper over k .

Proof. Serre's proof of [25, Prop. 2, page 69] carries

over to the above situation with only minor modifications.

1.2
Let f : X' = X be a surjective, birational morphisﬁ of
curves. We recall that the §-invariant of f at a

podnt g€ X 5 B8{XY;X;Q) ; 18 defined by
6(X',X,Q) = dim (0,/0y o)

We set §(X',X) E B(KXs8)

QEX

where 0. = 0N 0
@ per~l(q) X

i.p
Let Ql""’Qr be the points of X such that

6(X',X,Qy) # 0o and let S be the points of iﬁl U f-l(Qi) :

We denote by R the equivalence relation on S in the

category of sets, which intentifies the points in S

mapping to the same point of X . Since S 1is a finite

set of points, we can find an open covering [Ui] of Xt

such that Ui are R-stable. Hence we can apply Pro-

position 1l.1l.1 to deduce:
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Lemma 1.2.1. Let f : X' = X be a surjective, birational

morphism of curves. Then there exists a curve Y and

morphisms
g : X'=Y , hiY¥Y==X

such that f = heg , h 1is a homeomorphism and OY Q=
2

k @& ry for all Q € Y (rQ is the radical of OQ) .

The next two lemmas show that we can break up g

and h in steps where 6 changes by one.

Lemma 1.2.2. Let g : X' = X be as in Lemma 1l.2.1.

Then there exists a factorization

Zs ’ &

= - m— ! =
X' =X —> X, = .. =X —> X =Y
of g such that 5(Xi,Xi_1) = L

Proof. let P and P2 be two different points of X' ,

1

which map to the same point Q of X . Let Xé-l

the quotient of X' 1in the category of sets by the

be

equivalence relation, which indentifies P and P

i § 2
By Proposition l.1l.1, Xé_l can be given the structure

of a curve with a morphism

. - !
gg ¢ X' A.d
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such that g, 1s an isomorphism on X'\{Pl,Pg] and

such that

0 =ker
X!_159Q Q
‘where rQ is the radical of OX',Pl n OX',P2 .
Set Al = OX',P and A2 = OX',P and denote by

1 2

my and m2 the maximal ideals of Al and A The

2 -
natural surjection

Al n A2 —~(Al/ml) @ (Ag/mg)
has kernel my n m, and so
dimk(Al n AE/ml N mg) =2
Hence we get that
dimk(Al nAyk ® (my N me)) =1,

which shows that a(X',Xé_l) -
We repeat the procedure for the natural morphism
g' + X! ;=Y to construct X! , . After s = 6(XY;Y)

steps we reach the curve Y .

Lemma 1.2.3. Let h : Y— X Dbe as in Lemma 1.2.1. Then

there exists a factorization
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h, h
V=¥, — Y e =Y —— ¥ = X

of h such that 6&(Yy,Y; ;) =

Proof. Let P be a point of Y where h 1is not an
isomorphism and set Q = h(P) . Let m denote the

maximal ideal of OX Q and let C denote the conductor
]

of OX,Q Y,p °
If C #m , we have that

in O

@ m#moy p

since the conductor is the largest ideal in which

%%,q °

is also an ideal of O There exists a curve Y!' ,

Yt -~
homeomorphic to Y and isomorphic to Y outside P,

such that

6] =k & mQ

X', P ¥

[Proposition 1.1.1]. From (J) it follows that 6(Y,Y') <
6(Y,X) , so we may assume, using induction on §(Y,X) ,
that the conductor C 1is equal to m .

Set A = OX,Q and B = OY,P and denote by M the
maximal ideal of B . Since h is birational, B/m is

an artinian ring. Hence the exists a number ¢ such

that



17.

Let u Dbe an element of M such that u € m and

ue eEm and set

A" = Alu]

Since mB = m , every element in A' can be written as
a+cu, a€A and c € k, so dimk(A'/A) = 1 .

There exists a curve Yt-l and a morphism
ht : Y=Y
htlY‘\P is an isomorphism, and such that O

F such that ht is a homeomorphism and

v, .,p— A

t-1

[Proposition 1.1.1]. Since &§(Y,Y ) =1, the lemma
t-1

is proved using induction on 6(Y,X)

Let Xl""’Xr denote the irreducible components

of X and let X; denote the normalizationof X, . We

define the normalization X of X to be

¢
;1

X =
i

I @

The three previous lemmas give the following result:

Theorem 1.2.4, Let f : X — X be the normalization map

of the curve X . Then f has a decomposition
X=Xt—vxt_l—>...—-xl—~xo=x

such that 5(X1’X1-1) =1 .
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U
Let W = Spec(B) Dbe an affine scheme and let o: W —W
be an involution (i.e. e id) . Let y € W and let

U be an open subset of W such that y , o(y) € U ..

Lemma 1.3.1l. There exists an element b € B such that

the principal open subset U' = Spec(Bb) is o¢-stable

and y €U' cU.

Proof. By shrinking U , if necessary, we may assume
that U = Spec(BS) s SE€EB. Put b = sc*(s) and set
Ut = Spec(Bb) where o* denotes the comorphism

g*: 0

- 0 Then U' = UN o(U) so U' is o-stable

W w
and y € U' .

Let Z Dbe a locally noetherian and reduced projective
k-scheme. Let T c Z be a closed subscheme such that no
component of Z 1s contained in T . Suppose we have

an involution
g T==T .,

Lemma 1.%.2. For each point y € T there exists an

affine open subset U = Spec(A) of Z such that y € U

and T N U 1is o¢-stable.
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Proof. Since ¢ 1is an involution on T , we can find

an open affine subset
V = Spec(B)

of T , which 1s o¢-stable and such that y € V . Indeed,
let 0 be an affine open subset of T such that

{y » 6(y)) €0 and set V=qanec(Q) . Clearly V is
o-stable, and V 1is affine since T is separated

[12; Ch. I, Prop. 5.5.61].

We choose an affine open subset

U, = Spec(Al)

of Z such that Uy N TcV and such that {y » o(y)} c

U Then Ul AT ids of the form

1 -
Uy NT = Spec(Bl)

where Bl = Al/I1 for an ideal I1 c Al . There exists

an element b € Bl such that
' —
U Spec(Bl,b)

is o¢-stable and such that y € U' [Lemma 1.3.1]. Let
a be an element of Al such that the residue class of a

modulo Il is equal to b . Set A=A and put

1,a
U = Spec(A) . The assertion now follows since U N T = U!'

and U' 1is o-stable with y € U' .
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Denote by 1 the inclusion T € Z . The two
morphisms 1 and 1 « ¢ define a finite equivalence
relation on Z 1in the category of sets. As in Section G P
let Y denote the quotient of Z with the quotient
topology. For each closed point Q € Y , let Oé be
local rings, which satisfy the relations () and (**)

of Section 1.1.

Proposition 1.3.3. Y can be given the structure of a

= 0! for

reduced, proper KX-scheme such that 0
Y,Q Q

every closed point Q € Y .

Proof. 1In order to apply Proposition 1.1.1, we must show
that Z can be covered by affine opeﬁ subsets, which are
stable with respect to the equivalence relation defined
by 1 and 1 e« g . That is an immediate consequence of
the fact that there is an open, affine covering {Ui} of

Z such that U; N T is o-stable [Lemma 1.3.2].

Let X' ©be an irreducible curve and denote by
P = Pic;? the scheme parameterizing torsion-free, rank-1
sheaves on X' of degree O [2, Theorem (8.5), (ii)].
Let L Dbe a universal relatively torsion-free, rank-1

sheaf on X' x P .
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Let Ql and Q2 be different, nonsingular points
of X' and denote by L(Qi) the pullback of L to P
by the morphism P = P x Qy —+P x X'. Let V be the

IPl -bundle

V = Proj(L(e;) ® L(,))

over P , and set v, = Proj(L(Qi)) g L= 1,0 .,

We define morphisms

¥, ¢ Ve-*'V

<}

1 ¥ 2

: -1 -1
oy ‘51 =R vEBs * @y and 192 = g ® By * Oy where

©y ¢ ?-*'Vi s 1 =1,2 , are the natural isomorphisms,
g, the isomorphism on P defined by translation by
Ql - Q2 and & the isomorphism defined by translation
by @y = Qp

The projections L(Ql) = L(QE)-» L(Qi) give rise to
closed embeddings V, =V [12, Ch. II, Rem. 4.3.6]. Let

T denote the union of Vl and V Then

2 -
g = wl & ¢2 : I =T

defines an involution on T . Let V be the quotient

(as toplogical space) of V by the equivalence relation

given by o . We get the following corollary of

Proposltion 1.5.5:
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Corollary 1.3.4. ¥ can be given the structure of a

reduced K-scheme such that

for all closed points Q € ¥ where r, denotes the

radical of QLDQOVJQ' .

Remark 1.3.5. Let X be an irreducible curve with

ordinary nodes as only singularities and let X' Dbe

the desingularization of one of the double points. In

~

Chapter VII we will show that the scheme V constructed

o]

in Corollary 1.3.4 is the compactification of Picy .
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CHAPTER II.

The presentation functor.

Let £ : X' =X be a surjective, birational

morphism of curves such that §(X',X) =1 . Let Q € X
denote the point such that 6(X',X,Q) =1 . We define
the presentation functor Presx,/x as follows: For each

k-scheme S , let Presx,/x(s) be the set of surjective

OX -Module homomorphisms
S

@ ¢ (fq)yL — N

where L 1is an invertible OX,mModule of degree 0O , N

is an invertible OS—Module ang SuppN = Q@ X S .

A similar functor was first introduced by 0Oda and
Seshadri [20, Section 12]. Our definition 1s more general
since they only defined a functor suitable for their pur-
pose, i.e. the case where @ 1s an ordinary node or a
point where two components meet.

We show that Ezggx,/x is represented by a Eﬂ'-buﬁdle
over Pic%. if X' and X have the same number of con-
nected components. Oda and Seshadri claim that their
presentation functor is always representable [20, Prop.

12.1]. However, they also need the hypothesis that X!

and X have the same number of connected components.
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In Section 2.3 we define a subfunctor StPresX,/X

of Presx,/X » which we will show is isomorphic to

o £ 3
PicX in Chapter III. We show that ‘,Presx,/X is
represented by a Ga- or Gm-bundle over Pic%, o e

X and X' have the same number of connected components

and by _Pic%, otherwise.

2.1

Let X = UXi be a curve and denote by Pic§ the functor

of invertible OX-Modules of degree O , il.e. for each

kK-scheme S ,

Picy(s)

is the set of equivalence classes of invertible OX -

S

Modules L such that ¥(X;,L(s) ) = %(X,,0, )} for
i Xy i Xy

each closed point s € S where < denotes the Euler

characteristic. Two invertible OX -Modules L and L!
S

are considered equivalent if there exists an invertible

OS—Module N and an isomorphism

L' S Le. N .
Og

Let f : X' = X be a surjective, birational

morphism of curves such that &§(X',X) 1, and let Q € X

Il

l -

I

denote the point such that 6(X',X,Q)
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Definition 2.1.1. Let S be a Kk-scheme. By a

presentation over S we mean a surjective O

X -Module

S
homomorphism

P ¢ (fS)*L - N

where L € Pici,(s) s SuppN = Q@ x S and N 1is an

invertible O0O.-Module.

S
A presentation

@' ¢ (fg)uLl' = N

is equivalent to o 1if there exists an OX,—isomorphism

S
a ¢« L =Lt Sb T , where T 1is an invertible OS-Wodule,
S
and an OX -isomorphism g8 : N — N! 2q T such that the
S S
diagram
@
(fs)*L ———— N
(fs)*a l L B
(fo)u(L' ® T) —— N' @, T
Sl OS o' ®id QS
commutes.

Let S' —- S be a morphism of k-schemes. The
pullback
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cpsl : [(fs)*Ljst —’NSI

of o 1s a surjective OX -homomorphism. NS' is an
SI

invertible Os,-Module, and since fS is affine, there

is a canonical isomorphism

(BT Tos 2 42 i) (B )

[11, Ch. I, Prop. 9.3.2]. Hence the pullback g1 Oof @
is a presentation over S' , and the pullback of equivalent
presentations are equivalent. Thus we can make the

following definition:

Definition 2.1.2. Let Presx,/X

as follows: For each k-scheme S , let

be the functor defined

PresX,/x(S)

be the set of equivalence classes of presentations over
S. If S'—=S8 1s a morphism of k-schemes, the map

—_ ! i
Presx,/X(S) Presx,/x(s ) 1is given by pullback.

2o

Let Y Dbe a k-scheme and let E be a locally free
sheaf on Y of rank n + 1 . We define a contravariant
functor F(E/Y) from the category of k-schemes to the

category of sets as follows: For each k-scheme T , let
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F(E/Y)(T)

be the set of equivalence classes of pairs (N,eo)
consisting of an invertible OT-Module N and a

surjective OY -Module homomorphism
T

Cp:ET—>N.

Two pairs (N,e) and (N',9') are equivalent if there
exists an OYT-isomorphism r: N—=N' such that
Pl = ¢ o p .,

Let S(E) denote the symmetric algebra of E and
set IPP(E) = Proj(s(E)) . Defined like this, IP(E) comes
with a projection w : P(E) =Y and a tantological in-
vertible sheaf O0(1) such that there is a natural sur-
Jjective OE%EU -homomorphism #*E — 0(1) [12, Ch. II,
Brop. H.1.6].

The functor F(E/Y) 1is represented by the P -pundle
P(E) over E , and the universal pair is (0(1),8%)

where ¢ : m*E — O(1) 1is the canonical surjection [12,

¢k, II, Prop. 4.2.37%.

Proposition 2.2.1. Let f : X' = X be a surjective,

birational morphism of curves such that §(X',X) = 1 and

such that X' and X have the same number of connected
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components. Suppose that Pici, is represented by a
1

scheme P . Then Pres is represented by a I -

—— X' /X
bundle over P .
Proof. Let & be a universal invertible sheaf on Xﬁ ;
Let Q Dbe the point such that 6(X',X,Q) = 1 and set

E = [(£5).2](a)

where [(fP)*QJ(Q) denotes the pullback of (fj).@ to
P by the morphism P=Q X P — X x P . Then E is a

-Module of rank 2. We show that Pres

locally free O X' /X

P
is isomorphic to F(E/P) .

Let
e ¢ (fS)*L — N

be a presentation over S . There exists a morphism

q : S—= P, an invertible O,-Module T and an iso-

S
morphism

& 3 (qx,)*é =5 &, T .
S
The presentation

¢

(fa)u(l. 2. T) =N ®. T
S/* Og s
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is equivalent to ¢ . Hence the presentation ¢ gives

rise to a morphism q : S—= P and a surjective OX -
S

homomorphism
© ¢ (fs)*[(qxr)*g] =

where SuppM = Q X S and M is an invertible OS-Module.

Since fP is affine,

(11, Ch. X, Prop. 9.3.2].80 ¥, corresponds to a

homomorphism
9 ¢ (A )*[(£p)e8] = M .

Let m denote the ideal of Q@ in O Since

X -
SuppM = Q@ x S and M 1is an invertible OS—Module,

3 is the annihilator of M in OX . Therefore
S

Ps factors through the OS-homomorphism

m® 0

ez ¢ ((ay)*[(fp)ef])(Q) = M .

The commutative diagram

ay }l{ a |
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shows that

((ag)*[(£5)401)(Q) = a*([(£,)401(Q))

SO 3 corresponds to an O, -homomorphism

L3

@) P Q*¥E—- M ,

which.is an element of F(E/P)(S) .

Let @' Dbe another isomorphism

| B * N
al @ (qx,) #=1L ®OST .

It gives rise to a surjective OX -homomorphism

a commutative diagram

(£5)5(ay)*6] —2> M

(£5)e(a’ « o) l

(£5) %[ (ay1)*e]

Let Z denote the connected component of X

containing @ and set Z' = f'l(z) . Since X!

have the same number of connected components, Z'

connected and the isomorphism a' - a-ll

and

and X

71 i1s given by
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multiplication by an element s € OE(S) [2, Lemma 5.4]7.
Hence we have a commutative diagram

Py
g*E — M

wﬁ\‘ Ls

M

so @, and o define the same element of F(E/P)(S) .

The map

B Presx,/X‘w-F(E/P)

defined above is a map of functors, and the map, which
sends an element g*E— M of F(E/P)(S) to the presenta-

tion (fg)«[(ay:)*@] =M , is an inverse of »p

2+
We keep the same notation as in Section 2.1. Let S be

a k-scheme. If L is an invertible OX -Module, then
S

[(f5)xL1(Q) 1is a locally free Og-Module of rank 2, which

S
splits as follows:

Case 1. There is only one point Q' € X' such that

£(Q') = @ - Then [(fs)*L] ZL(Q') ® L' where L' 1is
an invertible OS-Module. Indeed, let m and m' denote
the ideals of Q and Q' . Since 6(X',X) =1, m is
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the conductor of OX in OX‘ f10, €h. III, Rem. 1.3%],

and there is a canonical k-isomorphism

OX'/m = (Oxr/mr) @ (m'/m)

Hence there 1s a canonical Os—isomorphism

Oxy/mg = Oxy/my) © (mi/mg) -

The morphism fS is affine, so there exists a canonical

Os-isomorphism

[(fs)*L](Q) =L ®OX'(OXé/mS)
S
(11, Ch. I, Prop. 9.3.2]. Hence we get a canonical

splitting
[(fs)*L](Q) - L(Q') e L!

| = ]
where L' =L ®OX'(mS/mS) .
S
Case 2. There are two points Ql » Q2 € X' such that
f(Ql) = f(Qe) = Q « Then there is a canonical Og-
isomorphism

[(£5)4L1(Q) = L(q;) ® L(Q,) -

The proof of this splitting is similar to that given in

Case 1.
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Suppose that Picg, is represented by a scheme P
and let & be a universal invertible sheaf on X' x P .
Using the splitting of [(fp)*g](Q) deduced above,

Prop. 2.2.1 can be formulated as follows:

Proposition 2.3.1. Pres is represented by the

Xt SX
IP]' -bundle

P(#(Q') & 2')
in Case 1 and by the Eﬂ'~bundle
P(&(e;) @ 2(a,)

in Case 2 if X' and X have the same number of

connected components.
Let
P (fs)*L — N

be a presentation over S . We say that ¢ 1is a

strict presentation if L' — N 1is surjective (Case 1)

or if L(Q;) =N and L(Q,) = N are both surjective

(Case 2).

Definition 2.3.2. Let StPres be the subfunctor

X'/X
of Presx,/X defined as follows: For each Kk-scheme
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S , let
StPresX,/X(S)

be the set of equivalence classes of strict presentations

over S .

Propeslition 2.3:5s

(a). StPres

X' /X is represented by the & -bundle

P(e(Q') @ ')\ P(2(Q))

over P in Case 1.

(b). StPres

X' /X is represented by the Gm-bundle

P(5(Qy) @ (Q))\ (P(e(e)) U P(&(ay)))

over P 1in Case 2 if X' and X have the
same number of connected components.
(e )s StPresy, ,y
do not have the same number of connected components.

is represented by P if X' and X

Proof. (a). Let
p 2 £ L —=+k

be a presentation over k and let gq : Spec(k) = P be a

morphism such that L :-(qX)*Q . As in the proof of
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Prop. 2.2.1, ¢ corresponds to a k-homomorphism
g*(#(Q')) ® q*9' — k .

The presentation ¢ 1is not strict if and only if
qQ*@! - k 1is zero, i.e. if and only if we have a com-

mutative diagram

a*(e(Q')) ® g*2' ——> 'k

L

a*(e(Q")

where all the maps are surjective. Therefore ¢ 1is not
strict if and only if the morphism Spec(k) — P(£(Q') & 2&')
corresponding to ¢ factors though the closed embedding
P(2(Q') = P(2(Q') ® ') determined by the surjective
Op-homomorphism 2(Q') & &' = 2(Q') .

A presentation over a k-scheme S 1is strict if and
only if the restriction to each closed point of S 1is a
strict presentation. Hence a morphism h : S — P(&(Q') & ¢')

corresponds to a strict presentation if and only if h

factors through the open subset P(2(Q') & ¢')\ P(2(Q'))

(b). The proof is similar to the one given for case (a).

So the basic ingredient in the proof is the representability
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1

of Presx,/X by a 1P~ -bundle, and therefore we need

the hypothesis that X' and X have the same number of

connected components.

(). Set E; = Q(Ql) and E, = G(Qz) . We will show
that StPresx,/X
Let S be a k-scheme and let

is isomorphic to F(El/P) xPic%,F(EE/P) .

® = (fs)*L -+ N

be a strict presentation over S . There exists a
morphism q : S—= P , an invertible OS-Module T and

an isomorphism

a 8 (qx,)*g =L ®OST :

As in the proof of Proposition 2.2.1, we get a surjective

Oq-homomorphism

S
q*El 5] q*Ee-ﬂ-M = N @bST 3
and therefore surjective maps

¢l 3 q*El-ﬂ-M and ¢2 : q*EE-ﬂvM

because ¢ 1is strict.
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Let a' Dbe another isomorphism (qx')*9<= L3T.
S
It gives rise to a surjective Os-homomorphism
p! q*E1 D q*E2 —+ M . Since Ql and Q2 lie on
different connected components of X' , the isomorphism

(fs)*(a' . a-l) gives rise to an isomorphism
¥ ¢ Q*E, ® Q*E, — q*E; © q*E,

given by multiplication by s; € OE(S) on g*E; and
mutiplication by s, € OE(S) on q*E, such that the

diagram

qQ*E, © Q*E, s o
S @ s
) 2j, ®
A*E; @ Q*E,

commutes. Hence we have commutative diagrams

»* ‘b‘l
a El —_— M
S
¢i\\\\\y l ?

and



and so o and o' give rise to the same element of

F(E;/P)(S) X F(E,/P)(S)

Pdcs, (8)

Hence we have defined a map of functors

o @ StPresX,/X-ﬂ-F(ElP) XP' 2 F(EQ/P) .
icys

Let *l : q*El-* N, ¢2 : q*E2 — N and wi : q*El - N,
¥4 ¢ Q*E, = N Dbe surjective maps such that (45 , ¢2)

and (¥] » ¢é) define the same element of

F(E,/P) x F(EQ/P) .

Pic;,(s)

We have commutative diagrams

¥
q*E; ——> X

YN | 2

N

and
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where sy , S, € OE(S) . The pairs (y; , ¥,) and
)

give rise to strict presentations
® s @' (fs)*[(qx;)*Q] e Q*El ® Q*Eg - N .

Let a denote the OX,-isomorphism of (qx,)*Q

S
defined by s, on the connected component of X! con-

S
taining Ql s by 5, on the connected component containing
Q2 and by 1 on the other components. Then we have a
commutative diagram

(£5)x[(ag1)*0] —> N

N S /////am

(£) [ (ays)*4]

and ¢ and o' define the same element of StPresX,/X(S)

Hence we have defined a map

F(El/P) X 0F(EQ/P) —*StI—’resX,/X 3
Picx

which is an inverse of o .
The assertion of (c¢) follows since F(El/P) and

F(EE/P) are represented by schemes isomorphic to P .
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CHAPTER III.

A construction of the Picard scheme of a curve.

In [13] Grothendieck showed the existence of the
Picard scheme of a projective k-scheme [13, Exp. 232, Cor.
6.6]. Oort [21] proved that the Picard scheme of an ir-
reducible curve X can be constructed from the Picard
scheme of the normalization of X by a segquence of ex-
tensions by (Gm)n- and (Ga)n-bundles. In the special
case that the curve has n singularities, which are all
ordinary nodes, Oda and Seshadri used the presentation
functor to construct Pic§ as a (Gm)n-extension of Pic%
[20, Cor. 12.4].

In this chapter we prove that the Picard scheme of
a curve X (not necessarily irreducible) can be con-
structed from the Picard scheme of the normalization of
X by a sequence of - and Ga-extensions. Qur
procedure differs notably from that of [21] since we,
inspired by Oda and Seshadri, make the presentation
functor play an essential role in our proof. We show
that if £ : Y' = Y is a birational, surjective morphism
of curves such that 6&§(Y',Y) =1 , then EEE? is iso-

Y

morphic to StPres If Plcd is represented by

G S —=
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a scheme P , StPresY,/Y is represented by a Ga- or
Gm-bundle over P or by P [Proposition 2.3.3]. Sinece
the normalization map of X can be written as a com-

position -of maps where § changes by one [Theorem 1.2.47,"

(0]

we obtain a stepwise construction of PicX

from Pic;, .

3-1-
Let X Dbe a curve and denote by R(X) the sheaf of

total quotient rings of OX . Let F be an 0. -Module.

X
We recall that the kernel T(F) of the natural map

F—>F @, R(X) ,
X
obtained by tensoring the map OX-*-E(X) s, is called

the sheaf of torsion of F , and F 1is called torsion-

free if T(F) = O .
ILet £ : X' —= X be a birational, surjective
morphism of curves such that 6(X',X) =1 . Let
v ¢+ f,L—- N Dbe a presentation over Kk and put I = Kery .

The commutative diagram

f*I — ff*I ®

°1J/ L

92
L —=> L& #&X')

R(X'")

OX'



b2,

where o5 is injective, shows that oy factors through

a map
o £(I)—L

where £(I) = £*I/T(f*I) . Moreover, K = kerg 1is a
torsion-free sheaf because it is a subsheaf of a torsion-
free sheaf, and K_ = 0 for all generic points g of

g
X' . Hence K =0 and o 1is injective.

Lemma 3.1.1. I is invertible if and only if 2£(I) =L .

Proof. If I is invertible, then £(I) = £*I and
Z(I) =L because x(X',f*I) = x(X',L) .

Conversely, suppose that &£(I) =L . Let U = Spec(A)
be an affine neighbourhood of the point Q € X where
6(X',X,Q) =1, and set U' = Spec(A') where U! = f_l(U) :
Let M be an A-module such that M = I|U and N an
A'-module such that X = LlU, . Then M ®A'/T(M ® A') =N ,
and by [10, Ch. I, 2.6], there exists an element m € M
such that N 1s generated by me®1 as A'-module.

Let I' be the invertible 0,-Module defined by

X

and I! = M!' where M' is the sub=-

' ~
I'xa ™ I xe |u
module of M generated by m . Then 2(I') = f*I' = L

and so x(X,I) = x(X,I') . Hence, since I'c I, I'=T1I

and I is invertible.



43,

Lemma 3.1.2. Let S be a k-scheme and let

® € Presx,/X(S) . Then o € StPresX,/X(S) if and only

if kerg 1s an invertible OX -Module.
S

Proof. Set I = kerp . Then I is invertible if and
only if I(s) 1is invertible for all closed points
s € S. Also, @ 1is a strict presentation if and only
if o(s) 1s a strict presentation for all closed points
s € S [Nakayama's Lemma]. Hence it is enough to prove
the lemma in the case that S = Spec(k) .

_Let ¢ ¢+ f,L—- N be a presentation over k , and

let
g ! Pui(l) - T.L

be the natural homomorphism #£(I) — L considered as an

Oy-homomorphism. We have a commutative diagram

X

; U,

/ﬂ

£o2(I)

where all the maps are injective. Hence there is a
homomorphism y ¢ N — cokerg and a commutative diagram
)
fbL —— N

(*) \ L/Y

cokerg

where all the maps are surjective.
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Suppose that f 1s a morphism as in Case 1 [see
Sect. 2.3]. Then g restricted to Q splits in a

sum

g(Q') @ g' : £(I)(Q') ® £(I)' = £(Q') @ L',
and diagram (%) restricted to Q gives a diagram

e e Lt —a W

(%) /

cokerg(Q') & cokerg

where all the maps are surjective.
The presentation ¢ is strict if and only if
L' = N 1is surjective. Diagram (%) shows that

L' =+ N 1is surjective if and only if the composition
L' = L(Q') ® L' — cokerg(Q') ® cokerg'

is surjective, i.e. if and only if coker(Q') = 0 . By
Nakayama's Lemma, cokerg(Q') = O if and only if g is
an isomorphism. Hence Lemma 3.1.2 shows: that ¢ 1is
strict if and only if I = keregp 4is invertible.

The proof for a morphism f as i1n Case 2 is similar

to the proof given above.
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o PR

ILet S be a K-scheme and let
@ (fs)*L = i

be a presentation over S . It is easy to check, using
[12, Ch. III, Prop. 6.5.8], that kerp is S-flat and
that the formation of the kernel of a presentation com-
mutes with base change. If ¢ 1s a strict presentation,
kergp 1is invertible [Lemma 3.1.2], and it is an immediate

consequences of the additivity of the Fuler characteristic

on short exact sequences that kerg € Pici(s) . Hence
the map

K : StPres — Pic?

- " —_—X'/X ==X’

which sends a presentation o to kereop , is a map of
functors.

Let I be an invertible OX
Tensoring the natural surjection

-Module of degree O .
S

(£4)405: =* (£5)404,/0
§/* s e e A

by I over OX and using the projection formula
S
(14, Cch. II, Ex. 5.1 (d)] gives a presentation

@ 3 (Bg)lE81) =N .
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By Lemma 3.1.2, ¢ 1is a strict presentation, and we

have defined a map

Y. Picg — StPres

X'/X ?
which 1s easily seen to be functional.

The kernel of the presentation ¢ = y(I) is

isomorphic to I so K » y = id . Moreover, there is

an isomorphism a : fEI -+ 1 of OX,—Modules such that
S

the diagram

kery < (fs)*(fgI)

I' b e

L = L

commutes. Hence ¢ and ¢ are equivalent presentations

-
and y ¢ K =1d . Thus the functors PlcX and StPresX,/X

are isomorphie. From Proposition 2.3.3 we get the

following theorem:

Theorem 5.2.1. Let f : X' = X be a surjective,

birational morphism of curves such that 6§(X',X) =1,

and denote by Q the point of X such that 6(X',X,Q) =1 .

Suppose that Picg, is represented by a scheme P and

—_—

let & be a universal invertible sheaf on X' x P .



47.

(1). If X and X' do not have the same number of
connected components, then gigi is represented
by P .

{11). If there are two points Q, , Q, € X' , which

map to Q , and X' and X have the same number

of connected components, then Pic®

X is represented

by the Gm-bundle

P(5(q;) ® 6(a) N(P(e(ay)) U P(6(ay)))

over P .
(iii). If there is only one point Q' € X' , which map
to Q@ , then Pic§ is represented by the Ga-

bundle
P(2(Q') @ 2')\P(2(Q"))
over P .

The theorem above together with the breaking up
of the normalization map proved in Section 1.2 [Theorem

1.2.4] gives the corollary:

Corollary 3.2.2. The Picard scheme of a curve can be

constructed from the Picard scheme of the normalization
of the curve by a sequence of extensions by Gm- and

Ga-bundles.
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I
Let X =iil U Xi be a curve with £ dirreducible
components and r connected components. Using the

additivity of the Euler:-characteristic, it is easy to

see that the arithmetic genus p(X) =1 - X(X:OX) is
given by
L iy
P(X) = Zp(X;) +6-2+1
i=1
where §£ denotes the normalization of Xi and
6 = G(E’X) .
From Theorem 3.2.1 it follows that
o} o
dimPicy = dimPicy + & - (¢ - 1),
0 L =
and since dimPicy = = p(Xi) , we get the following
J=1
formula for the dimension of Pici :

Proposition 3.3.1. dimPic§ =p(X) +r -1

The formula of Prop. 3.3.1 can also be deduced
0 1
x = ddmH(
proved by Grothendieck [13, Exp. 236, Prop. 2.10 (iii)].

from the fact that dimPic dim X,OX) , which is
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CHAPTER 1IV.

On the representability of Piczo :

The Picard scheme Pic; of a smooth curve 1is a
projective variety over k . If X has singularities,
Pici i1s not proper over k . Compactifications of the
Picard scheme have been studied by many authors using
different methods [see [2], [10] and [20] for a historical
overview]. Altman and Kleiman [2] showed that if X is
an irreducible curve, then‘the funetor EEE;O of torsion-
free, rank-l sheaves on X 1s represented by a projective
k-scheme. We use their work as a basic reference in the

upcoming chapters.

In this chapter we discuss the problem of compactifying

Pici for a reducible curve. Oda and Seshadri [10] con-
structed compactifications of Pic§ for a class of re-

ducible curves using geometric invariant theory. The
breaking up of the normalization map in steps X' — X

such that §(X',X) = 1 and the construction of Pic§

as a Gm- or Ga-bundle over Pic%, suggests the

o
X

We give examples,

possibility of a compactification of Pic as a fibration

o
XV -

which illustrates the difficulties met in carrying out

over the compactification of Pic

such a construction.
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Even for an irreducible curve we are interested
in a new construction of Pic;O, which will give more
information on the structure of the singularities of
Pic;O . For instance, Kleiman has privately pointed

out -that all the properties of the Abel map
P o}
Hilb (C/k)-—-»-PicC

proved in [16] for a smooth, irreducible curve C ,

can be proved for the Abel-Altman-Kleiman map
d s =0
Quot ™~ (w/X/k) — Picy

for an arbitrary integral curve X 1if we know that

o

the tangent cone of Pic at each pecint is Cohen-

=l

Macaulay.

The stronger assertion, that the tangent cone 1is
a complete intersection, does not hold. In Section 4.3
we give an example of a plane, irreducible curve and a
point of Pic;o where the tangent cone is not a com-

plete intersection.

!'Lll

Let X be an irreducible curve. A coherent, torsion-
~ AN

X—Module F is said to have rank n if Fg = Ox,g

where g denotes the generic point of X . The degree

free O
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of F , degF , is defined by
degF = y(X,F) - nx(x,ox)

Let Y= S be a morphism of k-schemes such that
the fibers 7Y(s) are integral curves for all closed

points s € S . An O, ,-Module I 1is called relatively

Y
torsion-free, rank-n over S if it is S-flat and if
the pullback I(s) of I to Y(s) is a torsion-free,
rank-n sheaf for all closed points s € S .

We define a contravariant functor EEE; as follows:
For each Kk-scheme S , let

Pic,(s)

XS-Modules,

which are relatively torsion-free, rank-l1l over S ,

denote the set of equivalence classes of O

where I and J are considered equivalent if there

exists an invertible OS—Module N and an isomorphism

If S!' = S 1is a morphism of Kk-schemes, the map
2}3%(8) _’E}E;(S') is given by pullback.

ILet d be an integer. We define subfunctors
EEE;d of EEE; as follows: For each k-scheme S ,
let
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e
Pic, (&)

be the elements I of Pic;(s) such that degI(s) = d

for all closed points s € S . It is proved in [2] that
the functor Pic;d is represented by a projective k-
scheme Pic;d [2, Theorem (8.5) (1i)].

ILet w denote the dualizing sheaf on X . Let S
be a k-scheme and fix a positive integer n . Let F
be an element of Quotn(w/X/k) and denote by I(F) the

kernel of the natural surjection

ms'* F

Let s be a closed point of S . The formation of I(F)
commutes with base change, so I(F)(s) c w . Since w

is a torsion-free, rank-1 sheaf on X [4, 2.8, page 8],
it follows that I(F)(s) 1is torsion-free, rank-l . By
the additivity of the Euler characteristic on short exact

sequences, we get that

X(I(F)(s)) = x(w) - n,

so I(F) 1s an element of Pic;d(s) where d = ¥x(w) -

X(OX) - n . The map of functors

I

A" @ Quot”(w/x/k) — Picy® ,
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which sends a quotient F to I(F) , defines a morphism

of schemes

n

A" ¢ quot™(w/X/k) — Pic3d

_—
We call this map the Abel map associated to w

It is proved by Altman and Kleiman [2, Theorem (8..4)
(v), Lemma (5.17) (ii) and Theorem (4.2)] that A% is
smooth and the fibers are projective spaces if and only
if 4 >2p -1 . Here p denotes the arithmetic genus
of X . In fact Altman and Kleiman used the fact that
the fibers of gp are linear systems of quotients of w ,
which are represented by projective spaces, to construct
d

Pic as a quotient of Quotn(w/x/k) by a smooth and

o

proper equivalence relation.

4.2,

The methods used by Altman and Kleiman to represent

=d
PicX

extend to the case that X 1is reducible.

for an irreducible curve X do not immediately

Let X' — X be a partial normalization of X
such that 6(X',X) = 1 . Suppose we have constructed

a compactification P of Pic®, . We can try to

XT

construct a compactification 5& of Pic§ along the
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following lines: First we extend the jPl-bundle

5 O i
Presx,/X over Picy, to a PP -bundle over F.

)

and we construct P as a quotient of this E;-bundle

X
by identifications of points in the fibers.

The first identifications to try are the following:
If X' — X 1is an identification of two points of X' ,
we identify the point at infinity with the origin in the

same fiber such that P, 1s a fibration over Py, by

X
nodal cubic curves. If X' — X 4is an infinitesimal
identification, we make an infinitesimal identification
in each fiber such that ?k is a fibration over ?X,
by cuspidal cubic curves.

However, examples show that the constructions

indicated above cannot be carried out. First, suppose

that X has one ordinary double point as only singularity

and that the normalization X' has genus 1 . Then ?i

over P

X'/X X!

by identifying two sections via a translation of PX'

by the point of Pic%, corresponding to Oy,[Q; - Q]

is obtained from the jPl-bundle Pres

[20, Example (1), page 83]. Hence P

X is not a fibra-

tion over PX' .

The example of Oda and Seshadri mentioned above,
suggests that ﬁk
a ZPl-bundle either by identifying two sectiocns via a

can be constructed as a quotient of
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translation in ?k, or by making an infinitesimal
identification in one section via an infinitesimal

translation in ?k, . If such a construction is

possible, the tangent cone at a point of PX will be

a complete intersection since it depends only on the
analytic structure of that point [4, Prop. 1.19].

However, in Section 4.3 we give an example of a

=0
X

where the tangent cone is not a complete intersection.

plane, irreducible curve X and a point of Pic

L.3.

Let S be a smooth surface and let g be a closed
subscheme of S of length n , which is supported at
one point Q € S . Set ¥ = Hilb"(S/k) and let v

denote the point of % corresponding to q . Then

A= qv,v

is a regular, local ring of dimension 2n [1, Prop. (3)].

Let
We S M

denote the universal subscheme and set

B = O (av) *
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Then R 1s a free A-module of rank n since the

projection p : W— % 1is flat of degree n . Denote by

m the maximal ideal of A . Since p'l(v) = q ; R/mR
is a k-vector space of dimension n . We 1lift a basis
?i, .,Vh of R/mR to a basis Viseeesv, of R as an
A-module.

Let C Dbe a closed subscheme of S such that
qcC . -Let Spec(Al) be an open affine subset of S
containing q , and suppose that C 1is given by an
equation F € Al in this open subset. We denote by f
the image of F in R by the natural homomorphism

Al — R . There exist elements Byseeesdy € A such that
a,vy .. T a v

Lemma 4,3.1. Set H = Hildb™(C/k) and denote by =z the

point of H corresponding to g. Then Oy. 5 :-A/(al,...,an)
3

Proof. Let K denote the kernel of the natural map

0 — 0 and let

Sx¥ Cxy °

u: $ K-ﬂ-Ow

denote the composition of the inclusion X € 0O and

Sx¥
the surjection OSW.--*Ow .
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Let T —=% be a morphism of k-schemes. It
corresponds to an element of Hilb (S/k)(T) , which is

an element of Hilb™(C/k)(T) if and only if the map

is zero. By [1ll, Ch. I, Prop. 9.7.9.1] there exists a
closed subscheme NO of ¥ such that T —=% factors

through ¥ if and only if U is zero. Hence

Hilb"(C/k) = ¥_ , and Oy , = A/I for an ideal I cA .
, =

The stalk of the map u at (Q,v) is the natural

map
U‘(Q,V) F® A—-R,

and since f = a;vy t .o +a v, is the image of F in

R F] I — (al,-oogan) aﬂd OH,Z = A/(&l,...,an)

Proposition 4.3.2. Fix an integer n > 2 and let

e >3n + 1 be an odd integer. Let X be the plane

curve given by the equation

(1 =T )

. 2 :
in the open subset Speck[Tl/To,TE/To] of " = Proak[To,Tl,Tg].

Let 2z be the point of Hilb™(X/k) corresponding to the
n

5l

the tangent cone of Hilbn(X/k) at z 1is not a complete

closed subscheme of X given by the ideal (Tl,T Then

intersection.
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Proof. Set tl = Tl/TO and t2 = T2/TO . Using the
same notation as in the beginning of this section with
S = Eﬁ and q the closed subscheme of S given by

the ideal (Tl,T;) , we get that

n-1
l,tg,...,t2
is a basis of R over A . We write tg € R as
n n-1
t2 = cO + clt2 o TR cn-lt2

where Cy € A . Since g 1is a closed subscheme of the

l-dimensional subscheme of Eﬁ defined by the equation

n
Ty =0, A/(co,...,cn_l) # 0 [Lemma 4.3.1], so c; are
contained in the maximal ideal m of A .

An easy calculation shows that

4 rn+l n-1
(1)' ts =dy +dyty £ ...+ 4t
where di € mr "
Write
n-1

where Vi € A . Let Cl be the line in Eﬁ defined

by the ideal (Tl) . Then Hilbn(Cl/k) is a nonsingular
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scheme of dimension n [1l, Lemma (l)], so V ""’Vn-

o] ik

is a part of a regular system of parameters of m
[Lemma 4.3.1].

An easy calculation shows that

2

2
t] =V, + hy + (2V V) + hl)t2 + oee. +
(i) |
+ (T W+ h)td+ oo+ (% V¥, + by J =t
1+3=12 i+j=n-1 =
where h h € m3'
0, LI L ] n_.l -
Using (1) and (ii) we write ti - t; as
2 e 2 2
ty ~mt, =V + g + ..o+ ( T V.V, + g, )tl +
1 2 o o] 1+j=4 1% 2772

-y
+ oo+ ( T V.V, + g )t
{pj=pm] * 4  BTE

where g, € m3 . Hence the local ring B of Hi1b™(X/k
i

at the point 2z 1is of the form
E = A/T

where I = (V2 + & zaneyg B ViVliy + E,5:0:3 T V.V.+g )
S fagdmt < 9 - T gagena B

[Lemma 4.3.17.
Let I* Dbe the ideal of A generated by the leading

forms of the elements of I . Set

e (U Mygiing B Llyriney § 7 :
ot Folar Ndei T Habey 0
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Since g4 € m3 » We have an inclusion
Jd © I*
Let M denote the maximal ideal of B . There is

an isomorphism
ng(B) = AST*
[18, Ch. III, §3], and therefore
ht(I*) = n

since dimgr (B) = dimB = n [1, Cor. (7)].

The ideal J 1is contained in (Vo’vl""’vn—E) 5

so htJ £n - 1l . Hence I*¥ is of the form
* — <
I P (V‘i,-oc, e ViVJ,Hl’..'HS)

i+j=n-1
where Hi € m3

It is easy to see that Vﬁ,..., = ViV.,..., 2 ViV.
i+j=4 T 9 f4j=n-1 * 9

is a minimal set of generators of J , and therefore a
minimal set of generators of I* has more than n
elements. Thus ng(B) >~ A/I* 1is not a complete

intersection.

The plane curve X defined by ti - tg has

arithmetic genus (e - 1)(e - 2)/2 . We plan to use
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the Abel map

- d . : =0

Quot~ (w/X/k) — Pch
=0
X
tangent cone is not a complete intersection. Since this

to show the existence of a point of Pic where the

map is smooth if and only if d > (e - 1)(e - 2) - 1,
we need the following lemma:
Lemma 4.3.3. Let C be a curve. Fix positive numbers

Ho
= Hilb “(C/k)

. n

n: and n,. Set H. = Hilb 1(C/k) § B

1 2 5 2
ny+n,

and H = Hilb (C/k) . Let gq; and q, be closed

subschemes of C o¢f length ny and N, such that

Suppql n Suppq2 = ¢ . Denote by vy and 2 the points

of Hl and H2 corresponding to 94y and s

the point of H corresponding to q4 U s - Then

and by v

A - A
OH,V =0

A
2 0 .
Hl’vl gk H2,v2
Proof. Let ¢ be a close subscheme of C of length n .
We define a functor DefG from the category of local,
artinian k-algebras with residue field k to the category

of sets as follows:

Defc(A)
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is the set of subschemes D c C x Spec(A) such that the
projection f : D - Spec(A) is flat and f'l(Spec(k)) = 0.
This functor 1s prorepresentable [24, Def. on page 208]
by SH‘,E where £ 1is the point of H' = Hilbn(c/k)
corresponding to o .

Let A Dbe a local, artinian k-algebra, and let
D be an element of Defq(A) . Since A 1is henselian

[12, Ch. IV, Prop. 18.5.11], D can be written as

D = Dl = D2
where D; € Def‘q_(A) [12, Ch. IV, Thm. 18.5.11 {e)].
1.

Hence the functor Defq can be written at

Def_ = Def @& Def P

q q; a5

and therefore

A _ A A

O —

0 0 .
HsW Hl,vl gk H2’V2

Fix an integer d > (e - 1)(e - 2) - 1 . There
exists a point of Hilbd(X/k) where the tangent cone is
not a complete intersection [Prop. 4.3.2], so, by
Lemma 4.3.3, there exists a point y of Hilbd(X/k)

where the tangent cone Cl is not a complete intersection.

Since the Abel map I Hilbd(x/k)-# Pic;O is smooth,
we have that
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€y = CplUps-et5U,]

0

where C, 1is the tangent cone of Picy at Ad(y)

X
and U; are independent variables over k [4, Thm. 3.2].

=0
X

not a complete intersection and we have proved:

Hence the tangent cone of Pic at the point Ad(y) is

Proposition 4.3.4., ILet X be as in Proposition 4.3.2.

=0
X

cone is not a complete intersection.

Then there exists a point of Pic where the tangent

Remark 4.3.5. Set n =2 4in Prop. 4.3.2. 1In this case

we can show that

Vit - V_t,)

2
I* = (Vo’vovl’ 170 0"l

where ti € m3 » and I* 1is generated by the maximal

minors of

Hence A/I* 1s Cohen-Macaulay [15, Cor. 4].

It is an open question if the tangent cone at each

=0
X

smooth surface.

point of Pilc is Cohen-Macaulay if X 1lies on a
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CHAPTER V.

Reducibility of the compactified Picard scheme.

Let X be an irreducible curve of aritnmetitic

genus p . Set P = Pic;o . Altmen, Iarrobino and

Kleiman proved an irreducibility theorem [1, Theorem (9)]:
P is irreducible if X 1lies on a smooth surface, or
equivalently, if the embedding dimension at each point

of X 1s at most two [3, Corollary (9)]. They also
constructed an example [1l, Example (13)] of an X , which
is a complete intersection in }j and for which P

is reducible., The example suggests that the converse

of the theorem holds, and in this chapter we prove that

if X does not lie on a smooth surface, then P is
reducible.

Rego [22] asserted the reducibility theorem and
offered a sketchy proof. First he showed that Hilbg(x/k)
is reducible if X does not lie on a smooth surface.
Then, if X 1s also Gorenstein, he concluded that P

is reducible from the fact that the Abel map
n
Hi1b®(X/k) = F

is smooth for large n . This map is no longer smooth
if X 1is not Gorenstein, and so Rego devised other methods

to obtain reducibility in general.



[O)
N

However, Altman and Kleiman [2] developed a theory
in which Quotn(w/x/k) , Where w 1is the dualizing
sheaf of X , replaces Hilbn(X/K) as the source of an

Abel map
A" : Quot™(w/X/k) = F .

Whether or not X 1s Gorenstein, A" is smooth and its
fibers are projective spaces for all n >2p - 1 . Hence
P will be reducible if Quotn(w/X/k) is reducible for
large n .

This reducibility is proved below in two steps.
First, we show that if Quotm(w/x/k) is reducible, then
Quotn(w/x/k) is reducible for n > m [Proposition 5.1.2].
Secondly, we show that if X does not lie on a smooth
surface, then Quotd(w/x/k) is reducible for small 4 ,
in fact for d =2 if X 1is Gorenstein, and for d =1

if X 1is not Gorenstein [Proposition 5.2.1].

e Ln

Fix a torsion-free, rank-l sheaf G on X . Denote by

U the open subscheme of X consisting of nonsingular
points. There is an open subscheme QE of Quotn(G/X/k) 5
which parameterizes quotients of G with support con-

tained in U [13, Exp. 221, 4a]. Since G]U is
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ob
‘U

is irreducible of dimension n [1, Lemma (1)]. Hence

invertible, QE is isomorphic to Hilbn(U/k) s SO

Quot™(G/X/k) 1is irreducible if and only if QIG is
dense in Quotn(G/X/k) . Using the valuative criterion
(12, Cch. II, Prop. 7.1l.4 (i)], we therefore get Lemma 5.1.1

below:

Lemma 5.1.1. Quotn(G/X/k) is irreducible if and only

if, for all quotients F of G of length n , there
exists a scheme T = Spec(A) , where A 1is a complete,

discrete valuation ring, and a T-flat quotient F of

GT such that
F(t) = F
and

SuppF(n) € Un(n) -

Here t and mn denote the closed .and generic points of

T @

Propogition 5.1.2. If Quotn(G/X/k) is irreducible, then

Quotm(G/X/k) is irreducible for all m < n .

Proof. Let F Dbe a quotlent of G of length m . Let

I denote the kernel of the natural map G — F , and
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let XyseeesX be different nonsingular points of X

n-m

such that X5 € SuppF for i =1l,...,0 =m . Then

F' = G/My--+M T

where Mi denotes the ideal of X5 s is a quotient of
G of length n . By Lemma 5.1l.1 there exists a complete,
discrete valuation ring A and a quotient F' of GT 3
T = Spec(A) , with all the properties listed in that

lemma and such that
Fr{sg)=m .

Let W be the closed subscheme of X, defined by
XL
the annihilator of F' , i.e. W 4is defined by the sheaf
of ideals J where J is the kernel of the natural

homomorphism

0, — Hom, (F',F') .

X7 Ap

The remaining part of the proof proceeds by steps.

Step 1. We have an inclusion

where V 1is the closed subscheme of X defined by the

annihilateor of I .
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Proof. Restricting the exact sequence

0 =3 =0, — Hom, (F',F')
Xy Xy

to XT(t) =~ X gives a seqguence

J(t) = 0y — Hom,(F',F')

X

The image of J(t) in Oy 1s the ideal defining W(t)
as a subscheme of X . Hence the subscheme of X defined
by the annihilator of F' is contained in W(t) , and

this proves Step 1.
Step 2. W can be written as

(1 T ¢ s ‘T w1
W = Nl 5] 22 Vn " @ W

where xy € W;(t) and V< W'(t)

Proof. A 1s a hensellan ring [12, Ch. IV, Prop. 18.5.147,
and hence the asserted decomposition follows from [12,

Ch. IV, Thm. 18.5.11 (c)].

Step 5. Let 1 denote the inclusion W' < XT . Define

F by
F o= i,i*F' .

Then F is a T-flat quotient of F!' .
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3

Proof. Let Xx be a closed point of Xp - If x g W'

then F, = (0) . If x € W'

3 = , then

E R | =
Fx Fx/Jxrx 4

T = @ 3 4 e i1 gl 2
SO Fx = Fx since JX is the annihilator of FX in
OXT 2 It follows that the natural map
]
F'->F
is surjective and that F 1ls Tflat.

Step 4. F(t) =F and SuppF(n) = uT(n)

Proof. SuppF'(n) (= UT(n) by the definition of TF!
SuppF(n) < UT(n) since F 1is a quotient of F' [Step 3].

Since 1 : W!' & XT is an affine morphism, the

commutative diagram

shows that

F(t) = 1(t),1(t)*F'(t) .
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Hence we get that

where C 1is the ideal defining W'(t) as a closed
subscheme of X . By Step 2,
C < Annj (F)
X

and therefore CG € I , so0 we have an inclusion

Mo M. I+ COET .

Si the ide e M an i -
Since x4 £V, als My - g, d C are co

maximal, and hence we also have inclusions
Ic Ml---Mn_mI + CI € Nl---Mn_mI + CQ .

It follows that F(t) =G6/I =F .

Step 5. Quotm(G/X/k) is irreducible.

Proof. ILet F be a quotient of G of length m . Let
T = Spec(A) , A a complete, discrete valuation ring, and

let F Dbe the quotient of G constructed in Step 3. By

T
Step 4, F(t) = F and SuppF(m) e UT(n) . Hence the

assertion follows from Lemma 5.1.1.
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5-2-
Let w denote the dualizing sheaf of X .

Proposition 5.2.1. ILet Xx be a closed point of X and

denote by M the ideal defining x .
g
(8)s If dimk(w/Mw) >2 , then Quot™(w/X/k) is reducible.
o
(b). If dim (w/Mw) =1 and dimk(M/M‘) >3 , then

Quote(w/x/k) is reducible.

Proof. (a). Set wy = w/Mw . Obviously, the functors

Quotl(ww/X/k) and Grassl(wl/k) are isomorphic. Since
dimk(wl) >2, Grassl(wl/k) has dimensiocn at least 1 .

Hence, since Quotl(wl/x/k) is a closed subscheme of

Quotl(w/x/k) s, we therefore get
dimQuotl(w/X/k) > A .

If equality holds, Quotl(w/X/k) is reducible since

Quotl(wl/x/k) is a closed l-dimensional subscheme. If
equality fails, then the closure of QE is a component
of Quotl(w/X/k) of dimension 1 , and so Quotl(w/x/k)

is reducible.

(b). Since w 1is torsion-free [4, 2.8, page 8], w 1is

invertible at x because dim (w/Mw) =1 . Since
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dimk(M/Mg) >3 , we get that
i it

Set wy = w/Mew . A vector subspace of Mw/Mgw of

codimension 1 corresponds to a quotient of of length

Vg
2. It is not hard tp see that this correspondence extends
to families of quotients and vector subspaces, so that
gzggil([Mw/Mgw]/k) can be considered as a subfunctor of
gggge(wz/x/k) . Hence, since a proper monomorphism is a
closed embedding [12, Ch. IV, Prop. 8.11.5], Quot®(w,/X/k)
contains Grassl([Mw/Mew]/k) . Since the latter has
dimension at least two, reasoning as in the proof of (a)

we conclude that Quotg(w/X/k) is reducible.

We say that X has embedding dimension n at x
=2 dimk(M/Mg) =n . Since an integral curve with em-
bedding dimension at most 2 at each point can be embedded
in a smooth surface [3, Cor. (9)], we have that X 1lies
on a smooth surface if and only if the embedding dimension
at each point is at most 2 .

As an immediate consequence of Proposition 5.1.2

and Proposition 5.2.1 we get:

Proposition 5.2.2. If X does not lie on a smooth surface,

then Quote(w/x/k) is reducible for d>2 .
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Lemma 5.2.3. Suppose that P is irreducible. Then

Quotc(w/x/k) is irreducible for all 4 > 1

Proof. The Abel map

d d(

A% : Quot™(w/X/k) = P

is smooth with integral fibers if d > 2p - 1 . Therefore
Quotd(w/x/k) is connected and hence irreducible for
d >2p -1 [4, Theorem 1.8]. It follows from Proposition

5.1.2 that Quotd(w/x/k) is irreducible for all d ¥ 1

Theorem 5.2.4. If X does not lie on a smooth surface,

then the compactified Picard scheme P 1s reducible.

Proof. Proposition 5.2.2 gives that Quotd(w/X/k) is
reducible for d > 2 . Hence, by Lemma 5.2.3, P 1is

reducible.
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CHAPTER VI

Results on the boundary points of PicLe .

Let X be a curve lying on a smooth surface (or
o

equivalently, Pic; is irreducible). Briacon, Granger
and Speder [8] showed that the singular points of
Hilbn(X/k) are exactly the points corresponding to

subschemes of X defined by ideals, which are not

principal. Using the'smoothness of the Abel map

n

A" ¢ Hilb™(X/k) — Picl®

X
-
is a singular point of Pic

for large n , we get that a point of Pic which

=0
v -
under

does not lie in Pic§ %

In Section 6.2 we study the orbits of Pic}:CO
the aection of Pic; defined by tensor product. In the
case that 6(X,X,Q) is at most one at each point Q € X ,

we show that there are (2) orbits of codimension 4 in

s =0
PlcX

the normalization of X .

for each £ , 1 < 2 < 6(X,X) . Here X denotes

D' Souza [10] studied the analytic structure of

=0
X

ordinary double points. He showed that the completion

Pie in the case that the singularities of X are

=0

of the local ring of Pic at a singular point is of

the form
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U1

K[TyseeesTL /(T Tpseees Ty, 1T5,)

where £ 1is an integer less or equal to the number of
singular points of X .

We determine the analytic structure of the
singularities.of Piczo in the case that 6(X,X,Q) 1is

at most one at each point Q € X , and we show how the

)
singularities are distributed on the 5 (3) orbits of
_ 2=1
Picio . The completion of the local ring at a point in

an orbit of codimension £ is of the form

m m m m 2 3 2 ""‘3
K[[Tyseees T/ (T Tnse e sTng 1TpgsTog 1= Togyps 29 T5, 1-T5,)

where s 1is a number less or equal to the number of

nodes on X .

b, s

Let X Dbe a curve lying on a smooth surface S . In

the characterization of the singularities of Hilbn(X/k)

in [8], Briagon, Granger and Speder used a theory of
"flattening" developed by Hironaka and Tessier. However,
in a remark they pointed out that one can avoid the use

of "flattening" by using the fact that an ideal of height 2
in a regular, 2-dimensicnal ring can be generated by the
maximal minors of an n x (n + 1) matrix. Following this
approach, the proof of [8, Prop. II.2] becomes short and

elegant.
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Lemma 6.1.1. [8, Ch. II, Remarque]. Let A be a regular,

local ring of dimension 2, and let I € A Dbe an ideal

of height 2. Let
o : I—=A/I

be an A-module homomorphism. Then, if I is not a
complete intersection in” A , @(I) 1s contained in M/I

where M denotes the maximal ideal of A .

of I/MI to a set of generators i ..,iP of I . Let

o?"*

p € HomA(I,A/I) and suppose that m(io)  M/I . Let a

t

be an element of A such that the residue class of at

modulo I 1is equal to m(it)/m(io) sy £ = ly.c.30 « Then

il

0,...’iD' k] WheI‘e i' = i a,nd i' = i — a.tio ) iS a

0 (o} t €

minimal set of generators of I , and by [9, Thm. 5],
ié,...,ié are the maximal minors of an (p + 1) x p

e 1 R 21
matrix R = (rij) > Ty € A . Since Llseeesiy form a

minimal set of generators of I , therefore r EM.

= 1|
If p>2, (ii,...,ié) = M(rol,...,rop) ,» SO there
exists an integer Jj such that Toj # I Dbecause none of
31 1 3 i1
11,...,ip is in MI . On the other hand, rojlo C SRR
erié = 0 implies that roj € I , which is a contradiction,

so if m(ié) Z M/I , I is a complete intersection.

Proof. Set p + 1 = dimk(I/MI) » and 1lift a basis 1i_,...,1

b
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Proposition 6.1.2. (Briagon, Granger, Speder). Let q

be a point of H = Hilbn(x/k) such that the closed
subscheme % of X corresponding to q 1is not defined
by an invertible ideal. Then g 1is a singular point

of H .

Proof. Suppose that oq can be written as a disjoint

A A A
Then O._, — O-- '8 ) ® O
a Zl:ql
(X/k) corresponding

union Uq = cl € cz 2

where qj is the point of Hi = Hilb

-
l-? f{®)]

to o4 [Lemma 4.3.3]. Hence we may assume that ¢ is
supported at one point Q@ of X .

Set A = OS,Q and denote by M the maximal ideal
of A . Then Oy o = A/(f) = & for an element f € 4 .

We denote by I the ideal in A corresponding to cq s

and we set I = I/(f)

Let o € HomA(I,A/I) . If I is a complete
intersection generated by fl,f2 s then f 1is of the
form f = a;fy + ayf, , and aj,a, € M Dbecause T is
not a principal ideal. Hence o(f) € M/I . On the other
hand, if I 1s not a complete intersection, then
p(f) € M/I by [Lemma 6.1.1].

The Zariski tangent spaces of Hilb"(S/k) and

Hilbn(X/k) at q are isomorphic to HomA(I,A/I) and

Hl’qn



Homﬁ{f,ﬁyf) [13, Exp. 221, Cor. 5.3]. The vector
subspace Homg(f;i/f) of HomA(I,A/I) consists of
elements o € HomA(I,A/I) such that o(f) = 0 . Since

S 1is smooth
dimkHomA(I,A/I) = 2n

[1, Prop. (3)3-

Let B = {@l,...,wgn] b basis of HomA(I,A/I)

e a
n=-1

Since Qi(f) € M/TI , ui(f) = jélbijtj where bij € k
and tl”"’tn—l is a basis of M/I . Set Bz =
(blL""’bEnz) , £ =1,...,n = 1 . An element

¢ € Hom,(I,A/I) 1lies in HomK(T;K/T) if and only if

the coordinates of ¢ relative to g 1is an element

of the orthogonal space of Bl""’Bnnl . Hence

dimkHomK(I,A/I) il |

and since dimH = n [1l, Cor. (7)], q 1is a singular

point of H .

Theorem 6.1.3. The boundary points of Pici in the

are singular points.

compactification Pic}:{O

Proof. Let p denote the arithmetic genus of X an

fix an integer n >2p -1 . Let gq be a point of
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Hilb"(X/k) , which map to a boundary point of Pic-C

X
by the Abel map

A" : Hilb®(X/k) — Pl .

The subscheme of X corresponding to gq is defined

by an ideal, which is not invertible. By Prop. 6.1.2,

q is a singular point of Hilbn(x/k) , and since A"

is smooth, An(q) is a singular point of Piczo . Since
A" is surjective, all the boundary points of Pic =

are

>l

singular.

6.2,

Let X Dbe an irreducible curve with m singularities
Qqs+++sQ, and suppose that 6(X,X,Qi) =1 . Let X'
be the desingularization of 1 of the points of X ,

LoeeesM,

Ql,.."QE. SEt M=Ml®--- ®M£ and put I=M30XJ

where J 1s an invertible OX-Module of' degree 1 .

Denote by @ the point of Pic

say Ql""’Qz . Denote by M the ideals of

;o corresponding to I .

Lemma 6.2.1. The orbit 0(q) of gq under the action

oL Pic§ has codimension ¢ in Pic

=0
x
Proof. Since M 1is the conductor of Oy in OX'
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tensor product defines a map

o}
X!

=0

y ¢ Plc - Picx .

Since every invertible O0O,,-Module L 1is of the form

X

F %O 0 where F is an invertible 0. ,-Module, the

x X
image of ¢ 1s equal to 0(q) .

X

Suppose that I ® L =I®. L' where L and L'
N e &

are invertible 0. ,-Modules of degree O . Since J 1is

Xl
an invertible OX-uodule, tensoring by J—l gives an

isomorphism

Xl

But - M 4is an invertible O0,,-Module, so L = L' , and

Xl
therefore the morphism ¢ has zero-dimensional fibers.

Hence dimO(q) = dimPic?{T 5 Sd

o] o}

dlmPch, = dlmPch - 2
because Pic§ is dense in Piczo [1, Thm. (9)]. It
follows that 0(g) has codimension 4 in Pic§ .

Proposition 6.2.2. Pic;o has (ﬁ) orbits of codimension

L , each given by the action of Pic®

X
of Pic;O corresponding to a torsion-free, rank-l sheaf

on a point q

on X of the form I =M B vae & Mt ® J where J 1is

o 2

an invertible OX—Module of degree 3 .
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(o]

The completion of the local ring of Pic at a

X
point of 0(q) is of the form

2 3 2

R[[Tyseees T /(T Tos e esTog 1Tpgs Togy1 =~ Togups s 2Toy 1 -

where s 1s the number of nodes and 4 - s 1s the

number of cusps among the points Qtl""’Qt .
2

Proof. Let F Dbe a torsion-free, rank-l sheaf cn X .

There exists an invertible OX-Module I. such that

T & ( +

F SOXL c OX (2, Lemma 3.3]. Let Qtl""’atﬁ be the

points of X where F 1is not invertible. Then

F 80 L is of the form Mt B o« iee D Mt ® I' where I
X 3 2

is invertible [10, Ch. III, Lemma 1..]. Hence every’
torsion-free, rank-l sheaf I on X , which is not

invertible at Qt ,...,Qt is of the form
£

3

I =M ® ... M

t ® J .

% L7

There are (?) different subsets of [Ql""’Qm]
2

consisting of

0(q) of points q corresponding to torsion-free, rank-1

sheaves on X , which are not invertible at ¢ points.

Each such orbit has codimension £ in Piczo

The point of Pic corresponding to

=0
X

I =p" 3‘.. ®Mt ®J

% 2

points, and hence there are (ﬁ) orbits

it

>
24

)

[Lemma 6.2.1].
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is in the image of the Abel map A" of a palnt g
of Hilbn(X/k) corresponding to a subscheme

QQ U ++v U Qz U V where Q Z V . Using Lemma 4.3.3

and the fact that Hilbl(X/k) =X [2, Lemma 8.7] , we

get that the completion of the local ring of Hilbn(X/k)

at q 1is isomorphic to

. : 2 2 ~
R[[Tl,...,Tr]]/(Tng,. eesTog 1TogsTogag = Tgs+2,.. . 51 -T

. n . -
Hence, since A is smooth for large n , the completion

of the local ring of Pic ® st q 1s of the desired

X
form.
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CHAPTER VII.

The structure of compactifications.

Let X be an irreducible curve of arithmetic

genus p . In some special cases the structure of

Pic;O is known. For example, if p =1 , Pic;O

[2, Example 8.9 (iii)]. If p =2 and X has one

=X

ordinary node as only singularity, then 0Oda and

Seshadri [20, Ex. (1), page 83] showed that Pic;o is
obtained from the Eﬂ'-bundle Presx,/X over Pic%‘l x
as follows: Let Q; and Q, Dbe the points of %

=0
X

obtained from Pres-}-(-/X = E%O§-$ Uf) by identifying the

O-section and the w=-section via the translation in X

which map to the singular point of X . Then Pic is

by its point Q. - @
& & 1 2

In this chapter we give an explicit construction

. =0
of P:LcX

only singularities. The main tool in this construction

in the case that X has ordinary nodes as

is a generalized presentation functor GPresY,/Y where

Y' =Y is a surjective, birational morphism of curves.

The source I of a generalized presentation

(£5)%I = N
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over S 1lies in Pic;?(s) . If X' =X 1s the

desingularization of one of the points of X , we show

=0
X'/X X!
is obtained from this Eﬂ'-bundle by identifying

that GPres is a Eﬂ'-bundle over Pic and that

. =0
Pic

X
two sections via a translation in Pic

"

In the last section of this chapter we study Pic ©

X
for a curve X such that 6(X,X) =2 . We give an
explicit description of the underlying topological space

of Pic;O in the case that p = 2 , X = P~ and X has

only one singularity, which is a tacnode.

v 4000
Let £ : X' —= X Dbe a surjective, birational morphism of

irreducible curves. Denote by C the conductor of OX

in Oy, and set § = 5(X',X) . Let S be a k-scheme
and F an OX -Module. We denote by CF the image of
S
C ®X F—=F . A generalized presentation over S 1is a
S

-Module homomorphism
S

surjective OX

g 2 (f )T ~u

where I € Picx?(s) » CI ckerp and N is a locally
free OS—Module of rank § . Equivalent presentations
and the pullback Pg by a Kk-morphism S!' — S are

defined as in Section 2.1.



Definition 7.1l.l. We define a functor GPresK,/K as

follows: For each k-scheme S , let

GPresX,/X( )

be the set of isomorphism classes of generalized

presentations over S .

Set P = Pch? and let & denote a universal

torsion-free, rank-l sheaf on X' x P .

Proposition 7.1l.2. The funetor GPres is represented

—X'/X

by a projective scheme over P .

Proof. Let Z denote the closed subscheme of X defined
by the conductor C and denote by i : Z—= X the in-
clugsion. Let- S be a Kk-scheme and F an OXS—Module.
We denote by F(C) the pullback igF g

We will show that GPres

quot{ [ (£5)421(C)/Z x B/P) .
Let

GPresy: ¢ is isomorphic to

be an element of GPresX,/X( ) . There exists a

morphism q ¢ S—= P , an invertible OS—Module T and

an isomorphism
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. * w— E
& 3 (qX,) #—=L & T.

S

The presentation
(fs)*(L 2 y) - N gy T
S S
is equivalent to ¢ . Hence the generalized presentation
¢ glves rise to a morphism gq : S—=P and a generalized

presentation

vy ¢ (fgl)ul(qy)*2] = M .

As in the proof of Proposition 2.2.1, 9 corresponds

to a surjective OX -homomorphism
S

By @ (qz)*[(fP)*Q](C)-» M,

which is an element of Quoté([(fp)*éj(c)/z % BYPICR) .

Moreover, if

1 . * —
&t 1 (qX,) ¢—-1L ®OST

is another isomorphism, we get an element mé in
Quotﬁ([(fP)*Q](C)/Z x P/P)(S) , which is equivalent to

Oy - Hence we have a map

o ¢ GPresX,/X—>Quot5([(fp)*9](c)/2 x P/P)(S) .
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It is easy to see that the map

Quoté([(fP)*Q](C)/z x P/P) —*EEEEEXI/X ?

which sends
(a5)*([(£5)421(C)) = M
to the generalized presentation
(fs)*[(qxi )*9] = N

is an inverse of p
The proof of the proposition is now completed since

Quoté([(fp)*é](C)/Z x P/P) 1is represented by a projective

scheme over P [13,; Exp. 221; Thm. 3.2].

Corollary 7.l.3. Let f : X! — X Dbe the desingularization

of one point Q@ of X , and suppecse that C 1is equal to
the maximal ideal M of @ . Then GPres is a

:P6 -bundle over P .

X'/X

Proof. The functor Quotﬁ([(fp)*QJ(M)/Q x P/P) is

isomorphic to Grass ([(fp)«2](M)/P) . Since [(fp).@](M)

is a locally free OP-Module of rank 6 + 1 ,

Grassﬁ([(fP)*Q](M)/P) is represented by a PO

-bundle

over P [17, Prop. 1.2 and Prop. 1l.6].
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Let

N - D30
§ : GPresX,/X *ch

be the map, which sends a generalized presentation o

to kereg . The corresponding morphism
K : GPres — P1cZ°
’ X'/X X

is an isomorphism on K'l(Pici) [see Section 3.2 for

o}

1.

the same property of the morphism Presx,/Y-+ Pic;

Remark 7.l.4. The morphism K : GPresX,/x-+ Pic need

(0]

X
not be surjective. For example, let X be a curve with

one singularity Q such that 6(X,X,Q) = 2 and such
that there are three points P,,P;,Pz € X , which map

to Q . Then the conductor of O in Oz 1is the

X X
maximal ideal M of @ , and so GPreSiVX is a IPE -
bundle over Pic% [Corollary 7.1.3]. Hence GPresiyx

is irreducible. On the other hand, since length of
(OX/M) # length of(OX,/OX) » X 1is not Gorenstein [0,
Cor. 6.5]. Therefore Pic;O is reducible by Theorem 5.2..4,
and so K 1is not surjective.
In the next section we consider the case where X
lies on a smooth surface. Then Pic;O is irreducible
and K 1s surjective.
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T2
Let X Dbe an irreducible curve with ordinary double
points as only singularities, and let f : X' — X be
the desingularizatiocn of one of the double points Q € X .
We denote by Ql and Q2 the points of X' , which map
to Q .

Suppose that Pic;? is represented by a scheme P ,
and let ¢ Dbe a universal torsion-free, rank-l sheaf

on X' x P .

=0

Lemma 7.2.1l. The underlying topological space of PicX

is obtained by identifying the two sections 1?{9(@1))

fo
, 1 . -
and TP(¢(Q,)) of the T -bundle GPresy, v =

P(e(Q;) @ €(Q,)) over P via a translation in P by

the point of Pici, corresponding to OX,[Q2 - Ql] .

Proof. Let

13y
and
‘.pf
I' > N!
be two generalized presentations over k . Set J = Kerop
and J' = kereg' and suppose that J is O, ,-isomorphic

X



go.

to g' . If g and J' are invertible, then ¢ = o'

o
X

Suppose that J and J' are not invertible at Q .

.

because KjK'l(Pic;) is an isomorphism onto Pic

Then J and J% are OX,-Modules of the form J = I[-Qi]-
and J' = I[—Qj] [10, Ch. III, Cor. 1.5]. Hence. o
and ¢' are of the form

!

121(a) 5 15 1(q,) -

J

If i =J, then I =1I' because I[—Qi] :-I'[—Qi] -
and hence ¢ = o' .

Suppose that 1 # j , say 1 =1 and Jj =2 .
Since I[-Qq] Z-I'[-QQ] s I' = I[Q, - Q] . The point
q € P(#(Q,)) corresponding to ¢ is identified with
the point q EZP(Q(QEJ) corresponding to ' . Hence

© is obtained from the EJ'—bundle GPresX,/X by

Pic;
identifying P(#(Q;)) and P(g(Q,)) via the translation

@]

in P by the point of PiCX'

Oxl[Qe - Ql] 2

corresponding to

The quotient of GPres in the category of

XV IX
topological spaces formed in Lemma 7.2.1, can be given
the structure of a reduced k-scheme in many ways

[Proposition 1.3.3]. However, in the case that X has
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ordinary double points as only singularities, we know

the analytic structure of the singularities of Pic;O

[Proposition 6.2.2], and this allows us to determine

: . =0 3
the scheme structure of PlcX as follows:

Let O' Dbe an orbit of Pic;? of codimension ¢
=0

The completion of the local ring of Picx, at a point

of 0O!' 1is isomorphic to

KT 5o e es T N/(TyTos e e s Toy 1Toy)

[Proposition 6.2.2].

Set V; = E(Q("i)) and V = n'l(o') * where
. =0
T GPresX,/X-* PlCX,

The identification of VvV N Vl and V N V2 is an orbit

denotes the natural projection.

0 of Pic;0 . Indeed, an Oy-Module corresponding to
a point of K(V N Vi) is an Oy,-Module [see the proof

of Lemma 7.2.1], and every invertible O, ,-Module is of

X

the form L ®, O,, where L 1is an invertible O,-
OX X X

Module. Moreover, O has codimension 2 + 1 in Pic

since dimPiczo = dimPic;?

The completion of the local ring of Pic;o at a

+ l -

point in O is isomorphic to

K[[Tyseees T 0/ (TqTpseeesTs,1Tn,00)

=0
X
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[Proposition 6.2.2]. Hence the §-invariant of the
3 . . . =0 . :

morphism X : GPresX,/X Pch i1s at most one at

each point of Pic;O . We have proved the following

proposition:

Proposition 7.2.2. ILet X be a curve with ordinary

nodes as only singularities, and let

Xy =X~ X > e =X =X

be a factorization of X — X such that 6&(X;,X_ 1

g =
Then Piczo can be constructed from Pic% in m steps
as follows: Suppose we have constructed Pic}i .
is the

Then
=0

£5.1
constructed in Lemma 7.2.1,

the underlying topological space of Pic

quotient of GPres
X3/%5 1

and if g, and g, are two points of GPrein/Xi_ls

which are identified to one point, the local ring of

the resulting point of Pic;? . is isomorphic to
] -
k m N m where m denotes the ideal of 5 s
& 9 do 44 93

FaDs

Let X be an irreducible curve of arithmetic genus 2

such that the normalization X is equal to IPl -

Suppose that X has only one singular point, which is

a tacnode. We can construct such a curve in the following

way: Let X' be the plane, cubic nodal curve. Locally,

X' is given by Spec(A) where



A = k[up,uy] = K[U,ULJ/U5 - U (U + 1) .
Let ¢ denote the composition
¥ 3 k[Ul’UlUE] = k[Ul,Ug] — A .
The image of ¢ 1is a subalgebra A' of A , and
dimk(A/A') =1

because the elements of A not in A' are of the
form cCu, , C € k .

Set m = A'n (ul,ug) . By Proposition 1.1.1, there
exlists a curve X , which is homeomorphic to X' , and
which has one singular point @ where the local ring
is isomorphic to Aé .

The restriction of the morphism

. — Pi1a=0
K : PJf'esX,/X PlCX

to StPresX,/X is an isomorphism onto Pic [Lemma 3.1.2].

X
Let o € Presx,/x(k) s @ £ StPresX,/X(k) . Then o 1is

of the form
o ¢ T.L ~>L(Q')

where Q' is the singular point of X' and L € Pic%,(k) .
Suppose that o' 1is another presentation over Kk of the

form
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' ¢ £,L' = L'(Q')

The OX,-Modules L'[-Q'] and L[-Q'] are torsion-free,
rank-1 of degree-l , which are not invertible. Since
PicZ;T = X' [2, Example 8.9 (iii)], L'[-Q'] and

X1
Therefore L'[-Q'] .1s isomorphic to L[-Q'] as O

L[-Q'] correspond to the same point of Pic

X';

Modules (and as O,-Modules) and X(q) = K(q') where

X
g and q' are the points of Presx,/X corresponding
to @ and o' . Hence the image of X in Pic;O is

O
XT

one section of the Eﬂ‘-bundle Pres

the cone over Pic,, = X'\ Q' obtained by identifying

X' /X over X'\@Q!

to one point. é -

O & . — % i 4
X in PchO is an irreducible

scheme of codimension 1 [22, Theorem B], which passes

The complement of Pic

through R . Therefore the underlying topological space
o)

is a cone over Pic;,

of P:LcX
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CHAPTER VIII.

Reducibility of the modulli space of semi-stable,

torsion-free sheaves on a singular curve.

Let X Dbe a singular, integral curve. It has
been verified by Newstead [19, Ch. 5, Thm, 5.8'] that
there exists a projective scheme M(n,d) , which is a
coarse moduli space for semi-stable, torsion-free OX—
Modules of rank n and degree d . The points of
M(n,d) corresponding to locally free OX-Modules, form
an open, irreducible subset [19, Rem. 5.9 (1)].

Rego [23] proved that if X 1lies on a smooth
surface, then M(n,d) is irreducible. Every torsion-
free, rank-n sheaf on X 1is contained in Og (by
twisting if nescessary), and Rego obtained the irredu-
cibility of M(n,d) Dby showing that Quotm(OE/X/K) is
irreducible for all m > 1 1if X 1lies on a smooth
surface.

In this chapter we prove that M(n,¢n) , 2 € Z ,
is reducible if X does not lie on a smooth surface.
Since every torsion-free, rank-1l sheaf 1s semi-stable,

Mil,0) = Pic;O s and so we obtain another proof of

Theorem 5.2.4,
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The first step in the proof of reducibility of

M(n, 4n) 1is to show that
Quotzg(wn/x/k)

is reducible for small ¢t , in fact, for t =1 if

w 1is not invertible and for t =2 if w 1is invertible.
Here Quotss(wn/X/k) denotes the open subscheme of

Quot (w"/X/k) parameterizing quotients N such that
ker(w” — N) is semi-stable.

We show that the open subset Q;?SS of
Quotgg(wn/X/k) , parameterizing quotients N such that
ker(wn — N) is locally free, is irreducible. Then, if
q 1is a point of Quotgg(wn/x/k) s which does not lie
on the component containing Q;Tss s the corresponding
quotient N of w" has the property that I = ker(wn - N)
is not deformable to a locally free sheaf. The degree
of I is n(2p -2 - t) where p is the genus of X,
and we get that M(n,n(2p -2 - 1)) is reducible.

Iet ¢ € Z . Tensoring by an invertible 0, -Module

X
T, with

degl = 2 +2 +t -2p ,

defines an isomorphism
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M(n,n(2p - 2 - t)) = M(n,4n)
Hence M(n,#n) 1is reducible for all (£ € Z

Bl
Let A be a complete, discrete valuation ring and set
S = Spec(A) . Denote by s *any mn the closed and

generic points of 3 . ILet I be an OX-Module. An

X -Module I 1is called a deformation of I if it is
S

S-flat and if

0]

T(8) =T .

We say thag I can be deformed to a locally free sheaf
if there exists a deformation I of I such that
TI(n) is locally free.

Let w denote the dualizing sheaf on X , and
denote by U the open subscheme of X consisting of

nonsingular points. Let

m
<y

denote the open subscheme of Quotm(wn/x/k) s which

parameterizes quotients of wn with support contained

in U . Rego [23, Prop. 1.2.0] showed that QE is

irreducible of dimension nm . His proof runs as

follows: Consider the map
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A Quotm(O%/U/k)-* Hilb™(U/k)

defined by sending a quotient N of og to the

n
subscheme of U defined by the ideal A(ker[og-* N1)

The fibers of A at points in the open subscheme Hsm

of Hilbm(U/k) , corresponding to smooth subschemes of

n-1.m
)

U , are isomorphic to (TP . Since Hilbm(U/k)_

is irreducible of dimension m [1, Lemma (1)], the

open subscheme A*l(Hsm) s, which parameterizes quotients

of O% with support at m distinct points, is irredu-

n
u

of length m can be deformed to a quotient supported

cible of dimension nm . Since every quotient of O

at m distinct points, A—l(Hsm) is dense in
Quotm(O%/U/k) y

Clearly, Quotm(wn/x/k) is irreducible if and
only if for each quotient F of W’ of length m

there exists a deformation F of F such that

SuppF(n) < Ug(n) -

Lemma §.1.1. Let x be a point of X and denote by M

the ideal defining x .

(a) If dim (w/Mwe) >2 , then Quot®(w"/X/k) is
reducible.

(b} 1If dimk(w/Mw) =1 and if dimk(M/Mz) >3 , then

Quot®®(w®/X/k) 1is reducible.
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Proof. (a) Set w; = w/Mw . Obviously the functors
Quotn(w?/x/k) and Grass (w?/k) are isomorphic. Since
dimk(wl) > 2 4 Grassn(wg/k) has dimension at least n<
Hence, since Quotn(w?/x/k) is a closed subscheme of

Quotn(wn/X/k) s, We therefore get

dimQuotn(wn/X/k) 2> n° .

If equality holds, then Quotn(wn/x/k) - 1s reducible

because Quotn(wl/X/k) is a closed subscheme of dimen-

sion n2 s which is obviously different from Quotn(wn/x/k) s
If equality fails, the closure of Qg
is a component of dimension n° , and so Quotn(wn/x/k)

in  Quot™(w?/%X/k)

is reducible.
(b) Since w is torsion-free, rank-l1 [4, 2.8, page 8],
w 1is invertible at x because dimk(w/Mw) =1 . Since

dimk(M/Mg) >3 , we get that
2
dim, (Ma/M w) > 3

Set w, = w/MEw . A vector subspace of (Mw/MQw)n of
codimension n corresponds to a quotient of wg of
length 2n . It is not hard to see that this cor-
respondence extends to families of quotients and vector
subspaces, so Grass ([Mw/Mgw]n/k) can be considered
as a subfunctor of Quotgn(wg/x/k) . Hence, since a

proper monomorphism is a closed embedding [12, Ch. IV,
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Prop. 8.11.5], Quotgn(wg/x/k) contains
Grassn([Mw/Mzw]n/k) . Since dimk(Mw/MEw) >3 ; the
latter has dimension at least 2n2 » and reasoning

as in the proof of (a), we conclude that Quotan(wn/x/k)

is reducible.
Let I be a torsion-free sheaf on X and set
u(I) = degI/rkI .

We say that I 1s semi-stable if for all subsheaves

I' & I ; alX*) € u{I) «

Lemma 8.1.2. Let I,,.-+,I, be torsion-free, rank-1
sheaves on X such that degI1 = see = degIn =d .
Then
n
Pkt

is a semi-stable, torsion-free, rank-n sheaf.

Proof. Let J be a subsheaf of T of rank r , and
let Tl"“’Tt be the set of all subsheaves of T of

o
the form @ I + We denote by
1=1 ™M

the composition of the inclusion J < T and the

natural projection T — Tj
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et g denote the generic point of X . There
exists an integer £ , 1 < £ < t , such that the map

£ of O -vector spaces 1s an isomorphism. Hence
1,8 X5 8

:J—b
: 3 T,

is injective, and the cokernel of fz is supported
at a finite set of points. The additivity of the Euler
characteristic gives that degd < deg,TJE =rd , and

therefore
u(J) < u(r) =4 .

Set @ = Quotm(wn/x/k) and let 7 be a universal
guotient on X x @ . The points g € Q@ such that
[ker(wg'ﬂ-r)](q) is semi-stable, form an open subset
Qi of Q@ [19, Ch. 5, §3, Rem., page 136]. Hence
the subfunctor of ggggé(wn/x/k) of quotients N such
that ker(w” — N) 4is semi-stable, is represented by

an open subscheme Quotgs(wn/x/k) of Quotm(wn/x/k)

Proposition 8.1.3. Let x be a point of X and denote

by M the ideal defining x .

(a) If dimk(w/Mw) > 2, then Quotgs(wn/x/k) is
reducible.

(b) If dim (w/Mw) =1 and if dim (M/M°) > 3 , then

Quotig(wn/X/k) is reducible.
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Proof. (a). Set
. 85, n n ' S
Grass_ (wl/k) = Grassn(wl/k) n Quotss(w /X/k)

where Grassn(wl/k) is the subscheme of Quotn(wn/x/k)
defined in the proof of part (a) of Lemma 8.1.1. Let V
be a vector subspace of wy of colength 1. Then Vn
corresponds to a point of Grassn(wi/k) s, which, by

Lemma &.1.2, lies in Grassis(wg/k) . Hence

dimGrassis(wz/k) > n°

and the arguments used to prove Lemma 8.1.1 (2) shows
that Quoty (w"/X/k) 1is reducible.
(b). A similar modification of the proof of part (b)

of Lemma 8.1.1 gives that Quotgg(wn/X/k) is reducible.

8.2.

The first lemma below was originally proved by
Grothendieck [12, Ch.ou, Prop. 19.1.10]. It is proved
by Oda and Sehadri [20, Lemma in Appendix] in the

following version:

Lemma 8.2.1. Let A — B be a local homomorphism of

noetherian local rings. Let N and L Dbe finite

B-modules with L A-flat. Then a B-homomorphism

T s N=—=5
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is injective with A-flat cokernel if and only if

f ®AK HE ®AK-—b L ®AK

is injective where K denotes the residue field of A.

Let A — B be a flat homomorphism of local
noetherian rings. If F is a B-module, we denote

by F the A-module F ®AK where K 1s the residue

fleld of & .

ILet N Dbe a finite B-module such that

Ext%{ﬁ,ﬁ) = 0 . Under this hypothesis Oda and Seshadri

showed that

N,B) ®,K = Hom=(N,E)

Hom A 5

a(

[19, Corollary of Appendix]. However, their proof gives

the more general result:

Lemma 8.2.2. Suppose that

Ext%(N,f) =0 .
Then there is an isomorphism
HomB(N,L) ®,K = Homg(ﬁ;f)

where N and L are finite B-modules with 1L A-flat.
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As an immediate consequence of the two previous

lemmas we get the proposition:

Proposition 8.2.3. Set S = Spec(A) , A a local

k-algebra, and let Y —= S be a flat morphism of affine

schemes. ILet N and L be coherent OY—Modules with

L flat over S . Suppose that
Extl, \(N(s),L(s)) = 0
= 1(e) ’

where s denotes the closed point of S . Then there

is an isomorphism

HomY(N,L)(s)':.Homy(s)(w(s),L(s)) .

Moreover, if ¢ : N(s) — L(s) 1is injective and
¢ : N—=L is a homomorphism such that o(s) = ¢ , then

¢ is injective.

Next we give a criterion for vanishing of

Extl-groupes, which we will use later.

Lemma 8.2.4. TLet w denote the dualizing sheaf of X,

and let N be a torsion-free, rank-n sheaf. Then for

all points x € X we have that

1 g
EXt (No,w.) =0 .

OX,X
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Proof. ILet I Dbe an OX-ideal, I #£0 and set

X 2
n
G=@I. Let t, be a number such that HomX(N,G)(t)

is generated by global sections if t > to « Since
there exists an isomorphism Ng ’—”—-Gg s Where g denotes
the generic point of X , there is an injective map

a(t) ¢ N(-t) =G

for © b4 to 5
o)

If H (X,N(-t)) # O , there is a non-zero map

8§ : 0, = N(-t) .

X
Then a(t) s 3 gives a non-zero map Oy = G , and
hence a non-zero map 0O, — I . Since w(I{n)) < x(OX(n)) 3
n >0 , there is no non-zero map O, —+ I [2, Prop. 3.4,

X
(11) (b)]. Hence we get that H°(X,N(-t)) = 0 .

By duality
3 ST o |
Eth(N('t)’w) — H (X,N(—t)) 3

SO
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Let t; Dbe an integer such that Ext;(N(-t),w

is generated by global sections for ¢t > t1 IR
sl n

¢ z_max(to,tl) s then nxtX(N(-t),m )x = 0 for all

points x € X . Since

e

T - My we wnsacd
LXtX(N(-t),w ) - ILXt (NX;LUX

p-d OX,X

(14, Prop. 6.8], the assertion follows.

8-3-

m : m, N,
Let Qp denote the open subscheme of Quot (w /X/k) ,
which parameterizes quotients N of w" such that the

kernel of w' =N is locally-free.

Lemma 8.3.1. Q; is irreducible.

Proof. Let q; and ds be two points of Qg and
denote by Nl and N2 the quotients of w' corre-
sponding to gq; and g, . Set I, = ker(wn-+ Ni) .
There exists a family F of locally free, rank-n sheaves
over an irreducible scheme T such that Iy = F(ti)

for closed points tl,t2 €T [1l9, Ch. 5, remark on page
1561

Let A be a discrete valuation ring and set
S = Spec(A) . Denote by s and n the closed and

generic points of S . There exist maps gys8y, ¢+ ST
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such that gi(s) = t; and gl(n) = gg(n) A2, the TI;
Prop. 7.1.4 (1)]. The pullbacks of F to S by g1
and o give families Py and F2 over S such
that F,(n) = Fy(n) and Fy(s) =1, .

Let V be an open subset of X such that
Supp(Nl) U Supp(N2) c V . By Proposition 8.2.3, there

exist maps
hy,hy ¢ 8 — Q@(wn/}{/k)

such that hi(s) = q; and hl(n) = hg(ﬂ) . Hence gq;
and ap lie on the same irreducible component of
Q@(wn/X/K) and therefore on the same component of

Quotm(wn/x/k) .

We are now ready to prove the main result of this

chapter.

Theorem 8.3.2. If X does not lie on a smooth surface,

then M(n,4n) , 4 € Z , is reducible.

Proof. Quotgg(wn/x/k) is reducible for t =1 if X
is Gorenstein and for t =2 if X 1s not Gorenstein
; g tn _ th, n tn
[Proposition 8.1.3]. Since QF,ss = Quot__(w /X/k) N Qp
is irreducible [Lemma 8.3.1], anss #£ Quotzg(wn/x/k) .
3
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Let q € Quotgg(wn/x/k) 5 q £ Q;?SS . Let N
denote the quotient of wn corresponding to gq , and
denote by I the kernel of the map Wt =N . Suppose
that I can be deformed to a locally free sheaf over
S = Spec(A) , A a complete, discrete valuation ring.

Let V be an affine open subset of X such that
SuppN € V and denote by Q@?SS the open subscheme
of Quotgz(wn/x/k) , which parameterizes quotients of
w® with support contained in V. Put Jd =1 v
Since I can be deformed to a locally free sheaf over
S , there exists a deformation 3 of J§ %o & lecglly

free sheaf over S . By Proposition &.2.3 and Lemma

8.2.4, the inelusion
J e (wv)?
lifts to an injection
@ : J = (w/V)g

The cokernel of <« 1s S-flat [Lemma 8.2.1] so it

corresponds to a morphism

tn
G -t QV,ss
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. tn tn
such that the generic point of S maps to QV,ss n QF,ss
This implies that q € Q? ¢g » and we have a contradiction

3
since g was chosen not to lie in Q;nss . Hence- I
2

is a torsion-free, rank-n sheaf of degree n(2p -2 - t) ,
which can not be deformed to a locally free sheaf, and .
therefore M(n,n(2p - 2 - t)) 1is reducible.

If I 1s torslion-free of rank n and L 1s an
invertible OX-Module, then deg(I ® L) = degl + ndegL

[19, page 131]. Tensoring by an invertible O,-Module

X
I with

degL = 2 +2 + t - Eb s
4 € Z , defines an isomorphism
M(n,n(2p - 2 - t)) = M(n,4n) .
Hence M(n,#n) is reducible for all ¢ € Z .

Remark 8.3.3. Suppose that X does not lie on a smooth

surface. Then there exists a torsion-free, rank-1
sheaf Il on X , which has no deformation to a locally
free sheaf [Theorem 5.2.4].

Set

I = Il & 12 D ... & In
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where Ii s 1 =2,...,n are torsion-free, rank-1 and
degl, = degl; . If every deformation I of I can
be written as

I = Il B o0 B In

where Ti is a deformation of I then I is a

i
semi-stable, torsion-free, rank-n sheaf, which has

no deformation to a locally free sheaf. Hence, if
such decompositions of deformations hold, reducibility
of M(n,n#) will follow from reducibility of M(1,d)

However, the next proposition shows that this is

not the case.

Proposition 8.3.4. Let A Dbe a local k-algebra,

which is an integral domain of dimension 1, and suppose
that A 1is not regular. Then there exists a torsion-

free A-module Il of rank 1, a free A-module I

2
and a k[[T]]-flat A[[T]]-module T such that

= ®k[[T]]k 1,81,

but I does not have a decomposition
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where Ti is a deformation of Ii . Here T 1is an

independent wvariable over k .

Proof. Let m denote the maximal ideal of A . Since

A 1is not regular, there exist elements fl’f of m

2
such that

dim ((£1,8,)/m(£,5,)) = 2 .

Set B = A[[T]] and let K be the submodule of B’
generated by the element (fl,fg,T) . Let KXK' denote

the submodule of A> generated by (fl,fe,O) and set
T = BB/K and I = AB/K'
Then

it

et

and I is k[[T]]-flat [Lemma 8.2.1].

Let K" be the submodule of A° generated by
£

(£ Then I, = AE/ " 1s a torsion-free A-module

]:* 2) X
of rank 1 and I can be written as

I = Il @ I2

where 12 is free of rank 1 .
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We will show that there is no decomposition of
T of the form

I = Il 5] I2

where Ti are deformations of I, . We proceed as
in the proof of [8, Prop. 1.2]:

For a B-module M , let y(B) denote the least
ﬁumber of elements required to generate M . Suppose
that I can be written as

We have the following formulas:
Y(Tl) + y(fg) = yll) < 3 [8, Lemma 1.3]

rank I. + rank Tg = rank T

1

and
rank El < Y(Il) , rank TE S_V(TQ) :

From these conditions we conclude that either

rank T = y(I) , rank Tl = Y(Ti) or rank fg = y(fg) P

i.e. either Tl’EE or T is free.
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T 1is not free since T ®Mﬁq]k'= I and I 1is

not a free A-module. Suppose, therefore, that Tl ’
say, 1s free. Projecting T'—vfi with kernel EE
induces a map f : B3 —*fi » which thus splits. Since

a € kerf , « Dbelongs to a proper summand of B3
Hence to some new basis of B3 » & has at least one
zero coordinate. But the ideal (fl,fg,T) in B is
generated by the coordinates of a« relative to any
basis of B3 . Therefore, since Y(fl,fg,T) =3 , no
ccordinate of « vanish. Hence the assumption that

T can be written as Tl & Té leads to a contradiction.



[1]

(2]

(3]

[4]

(5]

(6]

[7]

114,

REFERENCES

Altman, Iarrobino and Kleiman, "Irreducibility of
the Compactified Jacobian", Nordiec Summer School

NAVF, Oslo 1976, Noordhoff (1977).

Altman and Kleiman, "Compactifying the Picard

Scheme", Advances in Math., Vol 35 (1980), 50-112.

Altman and Kleiman, "Bertini Theorems for Hypersurface
Sections Containing a Subscheme", Communications in

Algebra 7(8) (1979), 775-790.

Altman and Kleiman, Introduction to Grothendieck
Duality Theory, Lecture Notes in Math. 146,

Springer Verlag, Heidelberg (1970).

Artin M., "Some numerical criteria for contractibility
of curves on algebraic surfaces", Amer. J. Math. 84

(1962), 485-496.

Bass, "On the Ubiquity of Gorenstein Rings", Math.
Zeit., Vol 82 (1963), 8-28.

Bass, "Torsion free and projective modules", Trans.

A.M.S., Vol 102 (1962), 319-327.



115.

[8] Briangon, Granger and Speder, "Sur le Schema de
Hilbert d'une Curbe Plane", preprint, Université

de Nice (1979).

[9] Burch L., "On ideals of finite homological dimension',
Cambridge Philosophical Society, Proceedings, Vol 64
(1968), Su41-949.

[10] D'Souza, "Compactifications of generalized Jacobians",

Proc. Indian Acad. Sci., Vol 88 (1979), 419-457.

[11] Grothendieck and Dieudonné, Elémentes de Géométrie

Algébrique I, Springer Verlag (1971).

[12] Grothendieck and Dieudonné, "Elémentes de Géometrie
Algébrique", Publ. Math. I.H.E.S., Nos 8,11,17,20,
214,28,32 (1961, 163, 164, 165, 166, 167).

[13] Grothendieck, "Techniques de Construction et
Théoreéme d'Existence en Géométrie Algébrigue’,

Exp. 221,232,236, Seminaire Rourbaki 1960/61l.

[14] Hartshorne, Algebraic Geometry, Springer Verlag,
New York (1977).

[15] Hochster and Eagon, "Cohen-Macaulay rings,...,"

Amer. J. Math., 93 (1971).



[16]

[(17]

[18]

[19]

[20]

[21]

[(22]

(23]

116,

Kempf, "On the geometry of a theorem of Riemann",

Ann. of Math. (2), 98 (1973).

Kleiman, "Geometry of Grassmannians and Applications

tO LI ”’ Publn M&tfl. IoHo E. So NO 36 (1969) .

Mumford, Introduction to Algebraic Geometry,

Benjamin, New York (1968).

Newstead P.E., Introduction to moduli problems and
orbit spaces, Tata Inst. of Fundamental Research,

No. 51 (1978).

Oda and Seshadri, "Compactifications of the Generalized

Jacobian Variety", Trans. A.M.S. Vol 253 (1979), 1-90.

Oort, "A construction of Generalized Jacobian
Varieties by Group Extensions", Math. Annalen, 147

(1962), 227-286.

Rego, "The Compactified Jacobian", revised and

expanded version, Tata Institute, Preprint (1978).

Rego, "Compactification of the Space of Vector
Bundles on a singular curve", Tata Institute,

Preprint (1980).



L1of
[24] Schlessinger, "Functors of Artin rings", Trans.
A.M.S., Vol 130 (1958), 208-222.

[25] Serre, Groupes algebrique et corps de classes,

Paris: Hermann (1959).





