Synthetic Biology Approaches for Engineering Diverse Bacterial Species

by

Jennifer Ann Noelani Brophy
B.S., University of California Berkeley (2009)

Submitted to the Department of Biological Engineering in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Biological Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2016

Signature redacted

Jennifer A. N. Brophy
Author

Signature redacted

Alan D. Grossman
Praecis Professor of Biology
Head, Department of Biology
Thesis Advisor

Signature redacted

Christopher A. Voigt
Professor of Biological Engineering
Thesis Advisor

Signature redacted

Forest M. White
Professor of Biological Engineering
Graduate Program Chair
This doctoral thesis has been examined by a committee of the Department of Biological Engineering as follows:

Douglas A. Lauffenburger
Ford Professor of Biological Engineering, Chemical Engineering and Biology
Head, Department of Biological Engineering
Thesis Committee Chair

Christopher A. Voigt
Professor of Biological Engineering
Thesis Advisor

Alan D. Grossman
Praecis Professor of Biology
Head, Department of Biology
Thesis Advisor

Michael T. Laub
Associate Professor of Biology
Committee Member
Synthetic Biology Approaches for Engineering Diverse Bacterial Species

by

Jennifer Ann Noelani Brophy

Submitted to the Department of Biological Engineering
in May 2016 in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Biological Engineering

Abstract

When engineers control gene expression, cells can be re-programmed to create living therapeutics or materials by initiating expression of biosynthetic pathways in response to specific signals. In this thesis, two new genetic tools were developed to aid the construction of genetic circuits and facilitate their delivery to bacteria isolated from diverse environments. First, antisense transcription was explored as a new tool for tuning gene expression in *Escherichia coli*. Antisense transcription was found to reliably repress gene expression and was applied to simple genetic circuits. Second, an integrative conjugative element from *Bacillus subtilis*, ICEBsI, was engineered to deliver exogenous DNA to diverse strains of undomesticated Gram-positive bacteria. Engineered ICEBsI conjugation was demonstrated in twenty different bacterial strains, spanning sixteen species and five genera. To demonstrate ICE’s utility in creating new probiotics, the element was used to deliver functional nitrogen fixation pathways (*nif* clusters) to bacteria isolated from agricultural soils. Collectively, the tools presented here in provide a platform for programing bacteria from diverse environments for advanced applications.

Supervisors: Christopher A. Voigt & Alan D. Grossman
Acknowledgements

I would first like to thank my advisors, Professors Christopher Voigt and Alan Grossman for their guidance and support throughout my time at MIT. Thank you both for giving me the freedom to pursue the research presented in this thesis and for providing me with so many opportunities to learn about different aspects of academic science. Thank you for continually challenging me to learn new skills and for supporting every scientific endeavor I have attempted, even the unsuccessful ones. I have been incredibly fortunate to work in both of your labs and appreciate all that you have done to help me grow as a scientist.

I would next like to thank my thesis committee members, Professors Mike Laub and Doug Lauffenburger, who provided helpful guidance and thoughtful contributions to my research throughout my time at MIT. I am especially grateful to Doug for your unwavering encouragement and support. Your support of me and your maintenance of an incredibly positive environment within MIT’s Biological Engineering department have made me feel welcome and supported throughout my PhD.

A very special thank you to fellow residents at Simmons Hall. I would never have made it as a GRT without the help of the other Simmons GRTs, housemasters Professor John Essigmann, Dr. Ellen Essgimann, and Professor Steve Hall, and Area Director Joshua Gonzolez. Your unwavering positivity and strength has been invaluable over the years, so thank you for your kindness and friendship. I’d also like to thank Professor Katharina Ribbeck for initiating Zen Café at Simmons Hall and infusing some peace into the stressful whirlwind that sometimes accompanied graduate school. To all of the fabulous undergraduates who lived on the 7th floor of Simmons during my tenure, thank you for not burning down the building on my watch. It has been an honor and a pleasure to live with you all for the last four years.

Many many thanks to all the members of the Voigt lab, past and present, for making everything about graduate school a little bit better. Thank you for all of the technical help. Your scientific advice was truly indispensable for the success of the projects presented in this thesis and thank you for enabling so much goofing off over the years. The memes, gifs, coffee dates, Tatte breaks, and happy hours made the long days spent in lab much more fun. Special scientific thanks to Brian Caliando, MinHyung Ryu, Emerson Glassey, and Adam Meyer for patiently
answering all of my questions about basic science (Brian), *nif* clusters (MinHyung), and violacein production (Adam/Emerson).

To my friends in the BE department, thank you for getting me through the tough classes and long winters. Special thanks to Jen Wilson, Marcus Parrish, Erin Turowski, and Byron Kwan for helping me re-enact scenes from the Big Bang Theory on a weekly basis by getting together to eat Thai take-out and play increasingly complicated board games. You are like an East-coast family to me. Additional thanks to the California girls in Boston, Nitzan Koppel, Joy Makdisi, Anna Chen, and Nina Soltero (yes, I'm lumping you into this category now), for your friendship and love throughout my PhD.

Lastly, immense thanks and love to my parents, John and Bobbie, and brother, Jonathan, for your unconditional love and support. Thank you for travelling out to Boston so many times over the years, hosting thanksgiving dinners in my tiny apartment, braving the winters, and for always encouraging/supporting me. I am so incredibly blessed that you are my family. Thank you, for everything.

I gratefully acknowledge the funding sources that made this work possible: a fellowship from ENI through the MIT Energy Initiative, a National Science Foundation (NSF) Graduate Research Fellowship, the NSF-funded Synthetic Biology Engineering Research Center (SynBERC), the MIT Biological Engineering Department, and the Defense Advanced Research Projects Agency (DARPA).
Table of Contents

List of Tables ... ix

List of Figures .. x

Chapter 1: Introduction ... 1
 1-1: The history of interactions between humans and bacteria ... 1
 1-2: The process of engineering bacteria ... 3
 1-3: Techniques to improve bacterial engineering ... 5

Chapter 2: Practical applications of genetic circuits ... 8
 2-1. Introduction ... 8
 2-2. Genetic circuit design based on different regulator classes ... 11
 2-2-1. DNA-binding Proteins ... 11
 2-2-2. Invertases ... 12
 2-2-3. CRISPR ... 13
 2-2-4. Adapted RNA-IN / RNA-OUT ... 15
 2-3. Selecting Parts to Tune the Circuit Response ... 16
 2-4. Common failure modes from connecting circuits ... 25
 2-5. Interactions between synthetic circuits and the host organism .. 29
 2-6. Conclusions ... 33

Chapter 3: Antisense transcription as a tool to tune gene expression ... 36
 3-1. Introduction ... 36
 3-2. Results ... 38
 3-2-1. Repression correlates with the strength of the antisense promoter .. 38
 3-2-2. Multiplexed characterization of antisense promoters ... 42
 3-2-3. The response threshold correlates with antisense promoter strength 46
 3-2-4. Characterization of terminator/promoter pairs as “parts” ... 50
 3-2-5. Repression occurs due to a combination of asRNA activity and transcriptional collisions 52
 3-3. Conclusions ... 59
 3-4. Materials and Methods .. 62
3-4-1. Strains and media ...62
3-4-2. Measurement of response functions ..62
3-4-3. Cytometry measurement and data analysis63
3-4-4. Promoter strength calculations ...63
3-4-5. Classification of terminators ...65
3-4-6. Library design and construction ..66
3-4-7. Library growth and fluorescence activated cell sorting (FACS)67
3-4-8. Sorted library sequencing ...68
3-4-9. Deep sequencing analysis ...69
3-4-10. Sorted-parts strength analysis ...73
3-4-11. Enrichment calculation ...73
3-4-12. Measurement of growth curves ...74
3-4-13. Construction and testing of the transcriptional interference model. 75
3-4-15. Data availability ...75

Chapter 4: Stable Engineering of Undomesticated Bacteria using a Miniaturized Integrative
Conjugative Element (ICE) ...76
4-1. Introduction ..76
4-2. Results ...80
 4-2-1. Engineering control over ICEBsI conjugation: small molecule inducers...80
 4-2-2. Engineering control over ICEBsI conjugation: miniature elements82
 4-2-3. High throughput mating conditions ..84
 4-2-4. D-alanine auxotrophy as a counter selection to streamline transconjugate
 isolation ..86
 4-2-5. Compilation and characterization of recipient bacteria collection88
 4-2-6. Conjugation of wild type and miniature ICEBsI into diverse bacterial
 species ..94
 4-2-7. Delivery of a functional nif clusters to soil dwelling bacteria98
4-3. Discussion ...100
4-4. Materials and Methods ..103
 4-4-1. Media and growth conditions ..103
 4-4-2. Strains ..103
 4-4-3. 16S rRNA sequencing ..104
4-4-4. Growth rate measurement ... 104
4-4-5. Conjugation assays ... 105
4-4-6. Nitrogenase activity assay ... 105
4-4-7. Fluorescence measurement .. 106

Chapter 5: Conclusions ... 107
 5-1: Utility of subtle regulatory methods for controlling gene expression 107
 5-2: Additional factors that affect antisense transcription 108
 5-3: Modifications that may expand the host range & conjugation frequency of ICEBs/I110

Bibliography .. 113
List of Tables

Table 2-1: Base parameters for the NOT gate ODE model...18
Table 2-2: Base parameters for the oscillator ODE model..23
Table 3-1: Illumina sequencing results..46
Table 3-2: Terminator promoter pairs tested in Figure 3-10...52
Table 3-3: Parameters in the transcriptional interference model.......................................55
Table 3-4: Oligonucleotides used in this study. ...69
Table 3-5: Promoter and Terminator ordering for Figure 3-28...73
Table 4-1: Complete list of potential recipient bacteria...91
Table 4-2: Doubling times and antibiotic resistance of human isolates............................92
Table 4-3: Doubling times and antibiotic resistance of soil and other isolates....................94
List of Figures

Figure 1-1: Timeline of human/bacteria interactions ..2
Figure 1-2: Steps to engineer bacteria. ...4
Figure 2-1: Potential uses of synthetic genetic circuits ...9
Figure 2-2: Logic gates built based on different regulator types ..14
Figure 2-3: Methods of Modifying NOT Gate Behavior ..19
Figure 2-4: Architecture of the NOT gate with sRNA or decoy operator regulation21
Figure 2-5: Methods of Modifying Oscillator Behavior ...23
Figure 2-6: Architecture of the oscillator with sRNA or decoy operator regulation25
Figure 2-7: Common failure modes and their impact on circuit dynamics27
Figure 2-8: Circuit performance within the context of a living cell ..31
Figure 2-9: Conceptual circuit for a therapeutic bacterium ..33
Figure 3-1: A schematic showing the antisense transcription reporter system39
Figure 3-2: Impact of antisense transcription on gene expression40
Figure 3-3: Fluorescence histograms corresponding to the data in Fig 3-241
Figure 3-4: Construction and characterization workflow of a library of terminator/antisense promoter pairs. ..42
Figure 3-5: Response functions of NOT gates with antisense promoters43
Figure 3-6: Thresholds and Hill coefficients of sorted NOT gate constructs44
Figure 3-7: Fluorescence histograms and statistics of sorted bins45
Figure 3-8: Correlations between bin fluorescence and part strength47
Figure 3-9: Heat map of the bins in which terminator/promoter pairs were most enriched49
Figure 3-10: Composability of unidirectional terminators and antisense promoters51
Figure 3-11: Repression generated by asRNA ...53
Figure 3-12: Schematic of the transcriptional interference model55
Figure 3-13: Comparison of model predictions to experimental data.56
Figure 3-14: Model results when ε_f and ε_r are varied between 0 and 1 at increments of 0.01.57
Figure 3-15: Best fit values of ε as a function of forward P_f and antisense P_r promoter strength. ...58
Figure 3-16: Model predicts an exponential increase in repression.59
Figure 3-17: Plasmids to measure promoter firing rates (RNAP/second).64
Figure 3-18: REU standard plasmids used in this study.65
Figure 3-19: Composite part frequencies in each library by bin.70
Figure 4-1: Typical Integrative Conjugative Element (ICE) life cycle.78
Figure 4-3: Schematic for inducible ICEBs1 strains. ...81
Figure 4-4: Inducible $B. subtilis$ promoters for RapI expression/conjugation81
Figure 4-5: Miniature ICE schematics and conjugation efficiencies83
Figure 4-6: High throughput conjugation methods optimization.86
Figure 4-7: Transconjugate isolation using a D-alanine auxotrophic donor87
Figure 4-8: Phylogenetic tree and conjugation proficiencies for recipient bacteria collection ...95
Figure 4-9: ICEBs1 attB site in recipient bacterial species96
Figure 4-10: $P_{spank-GFPmut2}$ response functions in diverse bacterial species97
Figure 4-11: Activity of nitrogen fixation pathway $nif/WLY78$ across species99
Figure 4-12: Methods for engineering bacteria with ICE102
Figure 5-1: Impact of RBS sense on antisense transcription109
Chapter 1: Introduction

1-1: THE HISTORY OF INTERACTIONS BETWEEN HUMANS AND BACTERIA

Humans and bacteria have a complicated relationship. For the bulk of human history, bacteria were credited almost exclusively with causing disease. Plagues and pandemics caused by bacteria, such as the 5th Plague of Egypt (1250 B.C.E.)¹, the Plague of Athens (430 B.C.E.)², the Black Death (1346 to 1361 C.E.)³, and the Paris Whooping Cough Epidemic (1578 C.E.)⁴, wiped out significant portions of human populations in the past and often lead to a weakening of society in cities and nations (Fig 1-1). At first, doctors believed that these diseases were spread by miasma, a noxious form of “bad air” emanating from rotting organic matter. In the miasma theory of disease, illnesses were caused by environmental factors (miasma) present at specific locations and not by transmission between individuals⁵. However in the 19th century, humans began to realize that bacteria were responsible for causing some diseases. European physicians developed the germ theory of disease, which stated that microorganisms cause diseases when they grow and reproduce within a human host⁶. Acceptance of the germ theory of disease led to an increase in sanitation practices and a decline in devastating human pandemics. Since the mid-19th century researchers have identified several of the pathogenic bacteria that caused the major pandemics, e.g Bacillus anthracis (5th Plague of Egypt)¹, Salmonella enterica serovar typhi (Plague of Athens)², Yersinia pestis (Black Death)³, and Bordetella pertussis (Whooping cough)⁴, using DNA recovered from teeth in mass graves and historical descriptions of illness.

Although the germ theory of disease correctly identified pathogenic bacteria as causative agents of illness, it missed the beneficial effects of other bacteria. In the late 19th century, researchers began to identify bacteria capable of positively influencing their hosts. One of the first symbiotic relationships between bacteria and a eukaryotic host was reported in 1889 by a Dutch microbiologist and botanist named Martinus Willem Beijerinck (1851-1931)⁷. Beijerinck demonstrated that legume roots contained bacteria that turned atmospheric nitrogen (N₂) into ammonium (NH₃)⁸. He named the bacteria Rhizobia and demonstrated that they provide the nitrogen needed for legume plants to grow. Around the same time, another bacterium Bacillus thuringiensis was isolated from silkworms by a Japanese biologist named Ishiwata Shigetane⁹.
Strains of this bacterium kill insects and can protect plants from predators by living on its surfaces. More recently, researchers have identified beneficial bacteria in humans. Human symbiotic bacteria are typically studied en masse as a microbiota, i.e., a community of microorganisms living in a specific environment. Research into the human gut microbiota has demonstrated the importance of bacteria in defining human susceptibility to disease, nutrient absorption, immune function, and neural function10. In fact, the human gut microbiota is often characterized as a “forgotten organ” because it plays so many important roles in human health11. Studies of the human skin12, vaginal13, and mouth14 microbiota have revealed other important roles for bacteria in maintaining human health.

Although pathogenic and beneficial interactions between humans and bacteria typically arise without conscious human action, humans can deliberately use bacteria to produce goods. Bacterially fermented foods, such as yogurt (fermented milk), beer (fermented grain), and natto (fermented soybean), have been produced by humans using bacteria since at least the 18th century B.C.E.15. Production of these goods relies on naturally occurring bacteria to ferment...
milk, grain, and beans. However relying on naturally occurring bacteria limits the types of products that can be made using microorganisms. Fortunately, researchers developed cloning techniques that allow biologists to engineer bacteria and alter their behavior. Since the late 1970s, bacterial engineering has enabled fermentation-based production of drugs to treat diabetes (insulin)16, malaria (artemisinin)17, and cancer (taxol)18. Bacteria have also been engineered to detect toxins (arsenic)19 and human pathogens (\textit{Pseudomonas aeruginosa})20 to prevent illness. Though naturally occurring bacteria can positively impact our world, engineering opens up new ways for bacteria and humans to interact and may create new solutions to today’s problems.

1-2: THE PROCESS OF ENGINEERING BACTERIA

The process of engineering bacteria can be crudely broken down into three steps (Fig 1-2). First, a researcher must select a strain of bacteria to modify. There is no shortage of bacteria with unique capabilities that can be used as starting strains for engineering projects. There are approximately 5×10^{30} bacteria on earth21, many of which have interesting innate abilities, such as tolerance of extreme environments, utilization of unusual carbon sources, sensing/production of interesting molecules, etc. Ideally a researcher would engineer bacteria with the most advantageous characteristics for their purpose. These characteristics may include the ability to withstand a specific harsh condition, thrive in a competitive environment, secrete a massive amount of protein, or interact with other cell types. When selecting strains, researchers must also consider a bacterium’s capacity to uptake and express genes from foreign DNA. Since most genetic engineering techniques/tools, \textit{e.g.}, transformation methods, DNA vectors, antibiotic resistance cassettes, were developed for laboratory strains of model microorganisms, \textit{e.g.}, \textit{Escherichia coli} K12, \textit{Saccharomyces cerevisiae}, these strains are often used by engineers to create complex genetic programs, \textit{e.g.}, multi-input logic gates22, synthetic oscillators23. Unfortunately, genetic engineering techniques/tools can be difficult to use with non-model organisms. Thus, although unique strains of bacteria may be more desirable for specific applications, they may not be selected for engineering projects because they can be difficult to work with. The pros and cons of working with well-characterized model organisms need to be weighed when selecting strains to engineer.
The second step in engineering bacteria is to design and build DNA that alters the bacteria’s behavior. Genes that produce the desired effect can be sourced from any organism. For example, if researchers want to produce the neuroactive compound phenylethylamine (PEA), an aromatic amino acid decarboxylase can be used to convert phenylalanine to the desired product\(^{24}\). This decarboxylase can be sourced from any organism, including complex eukaryotes, as long as it can catalyze the desired reaction. DNA sequences that encode the enzyme just need to be introduced to the bacteria with the correct control elements, *i.e.*, promoters, ribosome binding sites (RBSs), terminators, etc. These parts control the amount of gene expression, *i.e.*, mRNA levels and protein concentration, and are usually carefully selected to express the correct amount of mRNA and protein in the target bacteria. Overexpression of the target molecules can overburden cells and slow growth\(^{25}\), however underexpression can result in weak phenotypes or poor yields of the desired product. Several large promoter, RBS, and terminator libraries have been built and tested in model organisms to facilitate the design of DNA that expresses the right amount of mRNA and protein\(^{26,27}\). These parts can be used with additional biochemical tuning knobs (discussed in Chapter 2) to achieve the desired expression levels.

Figure 1-2: Steps to engineer bacteria.

Once the DNA is designed and built, the last step in engineering is to introduce it to bacteria. There are four commonly used strategies for introducing exogenous DNA to bacteria.
The first is to use a bacteria’s natural ability to uptake extracellular DNA from their environment. This is a genetically encoded ability that few bacteria possess. Bacteria that are not capable of natural competence can be made artificially competent with chemical or electrical shocks. Chemical and electrical shocks make bacterial membranes transiently permeable to DNA. Unfortunately, these methods can also kill cells and are not suitable for all cell types. A third strategy is to use engineered bacteriophages to deliver DNA. Delivering DNA with phage engineering requires isolating phage that can infect the target bacteria without causing lysis. Phage genomes can be modified to include exogenous segments of DNA. Unfortunately, the amount of DNA that can be delivered using engineered phage is limited by the phage capsid, which must package the DNA for delivery into target bacteria. Finally, conjugation can be used to transfer genetic material between cells. Conjugation is a form of horizontal gene transfer that occurs frequently in nature. Using conjugation to engineer bacteria in the lab requires two steps. First the foreign DNA must be introduced to a genetically tractable donor strain, then it can be conjugated into the bacteria of interest. Fortunately, it is easy to introduce foreign DNA to lab strains of *E. coli* and *B. subtilis*, which can be used as donors for conjugation.

After the new DNA is introduced to the bacteria of interest, the strain can be tested for the desired phenotype. If the phenotype is suboptimal, the second two steps can be iteratively repeated to create a design, build, test cycle that ultimately leads to the desired engineered bacteria product.

1-3: TECHNIQUES TO IMPROVE BACTERIAL ENGINEERING

This thesis is devoted to developing tools that can be used to engineer environmental isolates of non-model bacteria. The desire to engineer these organisms was inspired by bacteria that form symbiotic relationships with humans, plants, and animals. Symbiotic bacteria positively impact the health of their hosts through several mechanisms, such as protecting hosts from pathogens, providing nutrients, or influencing host behavior. However, these bacteria could be engineered further improve our world by performing new functions. Some examples of new advantageous functions include: producing therapeutic drugs in specific locations in the human body to fight cancer and providing nutrients to specific food crops to reduce fertilizer input and weed growth. Engineered symbiotic bacteria can be thought of as
smart probiotics, which are expected to perform a beneficial function after being delivered to a target environment. One key challenge in developing smart probiotics is ensuring survival of the engineered bacterium in the target environment. The most well studied strains of bacteria, e.g., *Escherichia coli* K-12, are poorly adapted for survival outside lab conditions. Therefore, smart probiotics would ideally be engineered using bacteria that have evolved to survive in the target environment. The tools developed herein can be used to deliver DNA to environmental isolates of bacteria and tune expression of the delivered genes. In addition to creating smart probiotics, the tools can be applied to engineer bacteria that possess unique properties for other purposes, such as solvent tolerant bacteria for the industrial production of enzymes or chemicals.

The first chapter of this thesis is a distillation of what is currently known about how to construct complex genetic programs in *Escherichia coli*. The chapter is intended to serve as a benchmark for current state of the art of constructing genetic circuits in model organisms. There is an emphasis on the tools that are available for constructing genetic circuits and methods that can be used to tune gene expression. Studies that characterize gene expression control elements, e.g., sRNAs, ribosome binding sites (RBSs), UP-elements, for the specific purpose of using them as ‘parts’ to tune gene expression in synthetic circuits are summarized using mathematical models that demonstrate the impact of modifying/including these ‘parts’ in synthetic circuits. Commonly encountered failure modes, and techniques to circumvent them, are also described to emphasize the practical challenges associated with constructing complex genetic programs in bacteria.

After surveying the tools available for constructing genetic circuits in *E. coli*, we decided to characterize a method for tuning gene expression with potentially broad applicability across organisms. In the second chapter of this thesis, antisense transcription is rigorously characterized using a fluorescent reporter system and mathematical modeling. Antisense transcription is a pervasive biological phenomenon that has been detected in all three domains on the tree of life. We sought to rigorously quantify its impact on gene expression so that it could be used as another tool for precisely controlling gene expression. We envision engineers using antisense transcription as a secondary tool that can be layered on top of other methods of regulation to make small adjustments in expression. Since convergent promoters on the same segment of DNA generate antisense transcription, operon arrangement can now be used as a tuning knob. Using
the results of our study, engineers can quantitatively predict the change in gene expression produced by designing convergent transcriptional units in synthetic gene clusters.

Two aspects of the antisense transcription project are especially important. First, antisense transcription may be a method of repressing gene expression that is applicable across all cell types. Although we characterize the phenomena in *E. coli*, the basic tenants of antisense transcription should hold true in other organisms, including eukaryotes. The qualitative effect that antisense transcription has on gene expression (repression) should be universal, even if the quantitative predictions made by our model are not. Second, this project is an example of a synthetic biology study that makes mechanistic predictions about a biological process. Specifically, the mathematical model of RNA polymerase collision that we built and parameterized using experimental data predicts that RNA polymerase collision rarely results in the release of the polymerase(s) from the DNA (≤ 50%). We believe that mechanistic insight into biological processes could be obtained by analyzing more data from synthetic biology studies, especially because synthetic biology projects often produce large datasets that could be mined for more information.

The last chapter of this thesis is aimed at generating a tool for delivering DNA to undomesticated bacterial species. We recognize that DNA delivery is the first challenge, after isolation and culturing, associated with engineering new bacterial species. In order to begin building sophisticated genetic programs in new strains/isolates of bacteria, we must first be able to reliably introduce foreign DNA to the organism. We adapt an integrative conjugative element from the soil bacterium *Bacillus subtilis* as a tool for introducing DNA to undomesticated isolates of Gram-positive bacteria. This chapter fits into the broader goal of being able to engineer the *best* bacteria for a specific application by developing a tool that can be used to naively engineer new bacterial isolates.
Chapter 2: Practical applications of genetic circuits

This chapter is an introduction to genetic circuit design. It is focused on the tools that are currently available for constructing genetic circuits and the potential applications of genetic circuits in medicine, industrial chemical production, and agriculture. First, the parts that are currently available for constructing genetic circuits are presented and ordinary differential equation models are used to show how regulator choices and “tuning knobs” can influence circuit dynamics. Next, commonly encountered failure modes and the constraints that arise from operating within a living cell are discussed. Ultimately, this introduction attempts to demonstrate that better tools, well-characterized parts, and a comprehensive understanding of how to compose circuits are leading to a breakthrough in the ability to program living cells for advanced applications.

2-1. INTRODUCTION

The ability to perform computation in a living cell will revolutionize biotechnology by improving existing products and enabling new applications. In the short term, genetic circuits could be used to improve bio-based chemical production by inducing gene expression at different stages of fermentation or limiting expression of an enzyme to specific conditions (e.g., low oxygen)39-44. As circuits become more advanced, entire algorithms from control theory could be applied to further improve biochemical production (Fig 2-1a)45-54. Synthetic regulation could also be used to discover new natural products, including pharmaceuticals and insecticides, by stimulating expression of biosynthetic gene clusters that are not expressed in laboratory conditions55-60. Outside the fermenter, living cells could be programmed to serve as therapeutic agents that correct genetic disease (Fig 2-1b) or colonize niches in the human microbiome to perform a therapeutic function (Fig 2-1c)61-73. Longer-term capabilities include “smart plants” that sense and adapt to environmental challenges (Fig 2-1d) and bacteria that organize to weave functional materials with nanoscale features74-80.

Despite its potential, genetic circuit design remains one of the most challenging aspects of genetic engineering81. The earlier fields of protein and metabolic engineering have yielded
tools to optimize enzymes and flux through a metabolic network. These tools include computational methods that can predict the impact of an amino acid substitution on protein thermostability or the distribution of flux through modified metabolic networks. Biotech companies often have research groups dedicated to protein and metabolic engineering that have specialized training in these tools. However, industrial groups dedicated to building synthetic regulation are rare and even simple tasks, like building a switch or inducible system, tend to be one-off projects performed by a non-specialist.

Figure 2-1: Potential uses of synthetic genetic circuits.
(a) In industrial applications, most synthetic metabolic pathways are overexpressed at all times or are under simple inducible control. This could be improved by incorporating timing, feedback of metabolic intermediates, or dynamic control. Here, we show a circuit that is controlling the production of a diesel fuel alternative (bisabolane) by regulating the accumulation of a toxic intermediate (HMG-CoA) by sensing sugar, which induces oscillations in the production of HMGR. This type of oscillatory control occurs in natural metabolic networks. (b) Gene therapy circuits could be built based on CRISPRi technology by detecting SNPs and integrating this information with tissue-specific sensors. As a hypothetical example, we show a circuit that could detect two SNPs associated with colon cancer susceptibility (rs4444235 and rs9929218) and this is integrated with a promoter that is specific to colon cells (pAMUC2) to control the expression of misregulated genes (DLGAP5, NO3, and DDX28). (c) Bacteria could be programmed to colonize human gut and implement a therapeutic response. An example is
envisioned where a commensal bacterium is used to stabilize pH and treat gastooesophageal acid reflux (GERD). A bacterium that naturally resides in the stomach could be programmed to maintain a specific pH using a set point control circuit whose output is a proton pump inhibitor (PPI). The imagined circuit would restrict acid regulation to the stomach by terminating the bacterium via an irreversible switch if it leaves this organ. Genetic circuits could also be used to build "smart plants" that are able to sense environmental stimuli and implement a response. Currently, traits are produced all the time whether or not they are needed by the plant. Here, we envision a circuit that would operate in the chloroplast integrate sensors for drought (pSpark), temperature (pCBF), and plant maturity (pSAG12) to control multiple traits. This could reduce the amount of recombinant protein that is produced and enters the food supply without reducing the effectiveness of the trait.

Several features of genetic circuits make them challenging to work with. First, circuits require the precise balancing of their component regulators to generate the proper response. Computational tools and part libraries that enable the tuning of expression levels have only been developed recently. Before this, only course-grained control was achievable with small sets of parts. Second, many circuits are difficult to screen in directed evolution experiments. Digital logic has clear on and off states that can form the basis for a screen. However, screening for functional dynamic circuits, such as oscillators, is significantly more complex and it is hard to imagine how screens would be established for more sophisticated functions, like a PID controller with proscribed response properties. Third, there are few tools to measure circuit performance. Typically, a fluorescent reporter is used to measure the output, but fluorescence detection requires artificially high expression levels and fluorescent protein degradation rates can limit the ability to measure dynamics. Fourth, synthetic circuits are very sensitive to environment, growth conditions, and genetic context in ways that are poorly understood. Finally, the process of building a large genetic circuit requires the assembly of many DNA parts and this process has been both technically challenging (until recently) and fraught with its own sources of errors.

This chapter can serve as a guide for designing prokaryotic transcriptional circuits, where both the inputs and outputs are promoters. Transcriptional circuits maintain a common signal carrier, which simplifies the connection of circuits to build up sophisticated operations. Post-transcriptional circuits, including those based on protein and RNA interactions, are covered in excellent reviews. Although the majority of this guide is dedicated to bacterial circuits, many of the principles, albeit not the details, are relevant for eukaryotes, including human cells and plants.
2-2. GENETIC CIRCUIT DESIGN BASED ON DIFFERENT REGULATOR CLASSES

Transcriptional circuits operate by affecting the flow of RNA polymerase (RNAP) on DNA. There are a number of molecules that impact transcription that have been used as the basis for building synthetic circuits (Fig 2-2). For example, DNA-binding proteins can recruit or block RNAP to increase or decrease the flux, respectively. Analogously, the new CRISPRi system can use the Cas9 protein to bind DNA and alter transcription. RNAP flux can also be altered with invertases that change the orientation of promoters, terminators, or gene sequences. Finally, RNA translational repressors, such as RNA-IN/OUT, can be converted to transcriptional regulators to control RNAP flux. In this section, we describe recent advances in these methods and analyze the impact that each regulator has on circuit response.

2-2-1. DNA-binding Proteins

Many families of proteins can bind to specific DNA sequences (operators). The simplest way to use these proteins as regulators is to use them as repressors, which block the binding of RNAP to promoters or inhibit elongation. Repressors have been built out of zinc finger proteins (ZFPs), transcription activator-like effectors (TALEs), TetR homologues, phage repressors, and LacI homologues. A core set of ~3 repressors were re-used in many of the first synthetic circuits (CI, TetR, LacI). However, recently there have been efforts to expand the number of DNA-binding proteins that are available for circuit design. Expanding protein libraries can be challenging because each repressor has to be orthogonal; i.e., only interact with their operator and not the others in the set. Because of their simple function, repressors are relatively easy to move between species, including to eukaryotes. DNA-binding proteins can also function as activators that increase the flux of RNAP on DNA. Activators either recruit host RNAP to a promoter or are alternative RNAPs that transcribe genes directly. Recent efforts have increased the number of such proteins that are available for constructing circuits.

Many logic gates have been constructed with DNA binding proteins that recruit or block RNAP. For example, NOT and NOR gates have been built with inducible promoters that drive expression of repressors (Fig 2-2a). Additional transcriptional logic has been achieved with regulators that bind directly to the proteins to either inhibit or enhance their
function. For example, AND gates have been built with activators that require chaperones (Fig 2-2b)98,144 and with artificially split proteins154. Similarly, NAND gates can be built with proteins that block the activity of an activator, such as anti-\(\sigma\) factors, which inhibit \(\sigma\) factors143. Of the regulators described in this review, DNA-binding proteins are the only class (so far) that has been used to build dynamic circuits. This includes pulse generators155, bistable switches90,96,156, counters112, feedback loops, and oscillators that have different periods and amplitudes113,131,157-159. Analog computing modules have also been built with DNA binding proteins, which highlights the diverse signal processing capabilities of these regulators98,114,144,146,153.

2-2-2. Invertases

Invertases are site-specific recombinase proteins that facilitate the inversion of DNA segments between binding sites160. All invertases mediate “cut-and-paste” recombination, during which DNA is looped, cleaved and re-ligated161. Two types of invertases have been used to build genetic circuits. The first are tyrosine recombinases, such as Cre, Flp, and FimBE, which require host-specific factors112,162-164. These recombinases can be reversible and flip the DNA in both directions, or irreversible and only flip DNA in a single direction. The second class of invertases is serine integrases, which catalyze unidirectional reactions that rely on double stranded breaks to invert DNA. Serine integrases typically do not require host factors and often have cognate excisionases that can be expressed independently to return the DNA to its original orientation.

Invertases have been used to build switches162, memory circuits163,164, counters112, and logic gates165,166. These proteins are ideal for memory storage, because they flip DNA permanently and do not require the continuous input of materials or energy to maintain their new orientation. In invertase logic gates, discrete physical states of the DNA can correspond to on and off states (0 and 1). However, using invertases can be challenging because their reactions are slow (requiring 2-6 hours) and can generate mixed populations when targeting a multicopy plasmid164. Reversible invertases can also generate mixed populations, however this limitation was overcome recently by using a serine integrase to flip DNA in one direction and an integrase/exisionase pair to return it to the original state167.

All two-input gates, including AND and NOR logic, have been constructed using orthogonal serine integrases (Fig 2-2cd)165,166. The gates are organized such that two input
promoters express a pair of orthogonal recombinases, which change RNAP flux by inverting unidirectional terminators, promoters, or entire genes. These gates are based on unidirectional serine integrases without excisionases, therefore they operate as memory circuits that remember exposure to two input signals. Once flipped, the circuits cannot be returned to their original state, therefore the gates do not distinguish the order they were exposed to the inputs or even if they occurred at the same time.

2-2-3. CRISPR

CRISPR (Clustered Regularly Spaced Short Palindromic Repeat) arrays function as a bacterial “immune system” that targets specific DNA sequence motifs for degradation. CRISPR systems utilize a Cas nuclease and guide RNA to introduce double strand breaks to specific DNA sequences. Mutant Cas proteins (dCas9, Cas9N) that do not have nuclease activity have been developed and used as transcription factors that knock down gene expression by forming a DNA bubble that interferes with RNAP activity. CRISPR machinery can also be used to activate transcription by fusing an RNAP recruiting domain to catalytically inactive Cas9. Considering the needs of synthetic circuits, a significant advantage of CRISPR is the ability to design guide RNAs to target specific DNA sequences. A large set of orthogonal guide sequences that target different promoters would enable the construction of large genetic circuits.

CRISPRi is still relatively new and NOT gates are the most complex circuits built to date. The NOT gates induce sgRNA and dCas9 expression simultaneously to repress transcription at an output promoter. In theory, a NOR gate could be created by introducing a second sgRNA that targets the same output promoter (Fig 2-2e). In general, CRISPRi circuits will probably resemble DNA binding protein circuits. However, unlike the repressor based NOR gate (Fig 2-2a), the CRISPRi NOR gate will need to have the sgRNAs expressed from separate input promoters because 5' RNA extensions can reduce or eliminate activity (Fig 2-2e). Circuits based on CRISPRi are expected to operate on similar timescales to protein-based circuits because of the stability of the regulatory dCas9/sgRNA/DNA duplex.
Figure 2.2: Logic gates built based on different regulator types.
All of the gates are transcriptional, where there are two input promoters (P_{IN1} and P_{IN2}) and one output promoter (P_{OUT}). Two-input transcriptional logic gates have not yet been built for CRISPRi and RNA-In/Out.
IN/OUT so we hypothesize how these biochemistries could be used. The graphs at the right show how the gates will respond to inputs introduced at the same time (graphs at left) or sequentially (right). In all panels, the on state is assumed to generate ten fold higher than the off state. (a) A NOR gate is shown based on a repressor that binds DNA\(^{153}\). The lines are based on measured induction (\(\tau_{1/2} \approx 36\) min) and relaxation (\(\tau_{1/2} \approx 35\) min) half-lives\(^{176}\). (b) An AND gate based on an activator that binds DNA that requires a second protein to be active\(^8\). The lines are based on a measured induction (\(\tau_{1/2} \approx 36\) min)\(^{98}\) and approximate relaxation (\(\tau_{1/2} \approx 35\) min) half-life. (c) A NOR gate based on integrases that flip two terminators to turn off the output\(^{162,166}\). We assume a small readthrough probability, which leads to a change in the rate when only one terminator is flipped. Conceptually, a NOR gate could also be constructed by having two input promoters in series drive the expression of a single integrase. The lines are based on an on-rate of 1.8 hours\(^{162,164,165}\). (d) An AND gate based on integrases\(^{165}\). The same on- and off- rates are used as in part c. (e) A NOR gate could be built based on CRISPRi by setting a constitutive level of Cas9 expression and then having the two input promoters drive the expression of two guide RNAs. The lines are based on measured induction (\(\tau_{1/2} \approx 35\) min) and relaxation (\(\tau_{1/2} = 47\) min) half-lives\(^{122}\). (f) A NOR gate could be built based on the RNA-IN/RNA-OUT system developed by Arkin and co-workers\(^{123}\). RNA-OUT represses translation of tnaC, which allows Rho to bind the mRNA and repress transcription of the output. The CRISPR machinery needed to process RNA-IN mRNA for this circuit is not shown. The lines are based on theoretical induction (\(\tau_{1/2} \approx 30\) min) and relaxation (\(\tau_{1/2} \approx 35\) min) half-lives\(^{176,177}\).

A current challenge in implementing CRISPRi circuits is toxicity, which is difficult to control. Toxicity is most likely the result of Cas9 binding to the host genome at PAM sequences (NGG) and forming bubbles that deleteriously impact host gene expression\(^{178,179}\). Another consideration for building CRISPRi circuits is retroactivity\(^{180}\), which could arise from using Cas9 as a shared resource (Section III). One way to circumvent retroactivity would be to express multiple orthogonal Cas9 homologues\(^{181,182}\). Finally, each guide RNA will need to be experimentally screened because predicting guide RNA orthogonality is complicated\(^{175,181,183,184}\).

2-2-4. Adapted RNA-IN / RNA-OUT

The RNA-IN/OUT system from *E. coli* represses translation of a target protein when a short noncoding RNA (RNA-OUT) is expressed. In the natural system, RNA-OUT binds to a specific sequence at the 5'end of an mRNA (RNA-IN) to occlude ribosome binding and increase mRNA degradation\(^{185-187}\). Arkin and co-workers retooled this system to repress transcription, instead of translation, using a transcriptional adaptor from the *tna* operon\(^{123}\). The *tna* regulatory element is composed of a ribosome binding site (RBS), the coding sequence for a short peptide called *tnaC*, a Rho binding site and an RNAP pause site that facilitates Rho-mediated transcription termination. Translation of *tnaC* causes ribosomal stalling, which blocks Rho-factor binding and allows RNAP to transcribe genes downstream of *tnaC*. However, when translation of *tnaC* is prohibited, Rho binds the growing mRNA and knocks off RNAP thereby inhibiting
transcription elongation. RNA-IN/OUT RNAs regulate transcription elongation by altering translation of $tnaC$. Like CRISPRi, the adapted RNA-IN/OUT system could be used to generate a large set of orthogonal regulators because it is based on designable RNA-RNA interactions. To date, more than 150 different families of at least seven orthogonal RNA-IN/OUT mutants have been designed using an RNA-IN/OUT model and all of the mutants tested experimentally have been functional and orthogonal.

Adapted RNA-IN/OUT has been used to build two-, three-, and four-input NOR gates (Fig 2-2f)123. In these systems, orthogonal RNA-IN variants were connected such that expression of any cognate RNA-OUT represses transcription of the output gene. Additional layers of regulation could be engineered into the adapted RNA-IN/OUT system with ligand-responsive aptamers that regulate RNA-OUT activity188 or tRNAs that control ribosomal pausing in $tnaC$189. A challenge in building larger RNA-IN/OUT circuits is that each transcriptional regulator requires the same tna regulatory element (~290bp). The re-use of this part in multiple circuits could lead to homologous recombination (Section III). Engineering TnaC to reduce the length of the repeated sequence123 or using homologs from other organisms and alternative Rho binding sites could potentially attenuate recombination.

2-3. SELECTING PARTS TO TUNE THE CIRCUIT RESPONSE

Genetic circuits need to be tuned to meet the specifications required for a particular application. For example, a large dynamic range may be required to strongly activate a pathway. Similarly, low off states are desirable when expressing toxic proteins190. When the first synthetic circuits were built, there were few options available for tuning circuits and only course-grained changes were possible89,90. New libraries of well-characterized parts and computational tools have made it easier to design and tune genetic circuits. Moreover, new classes of insulators improve the reliability of these parts when they are placed in the local genetic context of a circuit. Additional biochemical interactions, such as small RNA (sRNA), have been incorporated into circuits in order to provide additional tuning knobs. In a review, graduate students from the Voigt lab detailed advances in part design and tools to obtain reliable expression levels191. Here, we show how the selection or modification of different parts impacts the response of a circuit.
Two circuits are used as model systems to demonstrate the effects of various tuning knobs. The first, a NOT gate, represents a simple logic operation (Fig 2-3a). Logic gates are often characterized by their response function, which captures how the steady-state output changes as a function of input. The shape of this function is defined by: 1. the ON and OFF states, which define the circuit's dynamic range, 2. the amount of input required to reach the half-maximum output (also referred to as the threshold), and 3. cooperativity of the switch. An oscillator was selected as an example of a dynamic circuit (Fig 2-4a). These types of circuits can be very difficult to tune because they need to be balanced in a narrow region of parameter space in order to function properly. For an oscillator, tuning will affect the period, amplitude, and shape of the oscillations. Tuning can also force the system out of the oscillating parameter space and cause the circuit to fail.

Two ordinary differential equation (ODE) models were used to show how the selection or modification of different parts impacts the performance of the logic gate and dynamic circuit. The following equations, 2-1 – 2-9, comprise the NOT gate ODE model, with the base parameters in Table 2-1.

\[
\frac{dL}{dt} = 0
\]
\[
\frac{dP_T}{dt} = P_{T+L} \delta_L - P_T L \alpha_L + P_{T+L} Y_{T+L}
\]
\[
\frac{dP_{T+L}}{dt} = P_T L \alpha_L - P_{T+L} \delta_L - P_{T+L} Y_{T+L}
\]
\[
\frac{dmR}{dt} = P_T \eta_T - m_R Y_{mR}
\]
\[
\frac{dR}{dt} = m_R \tau_R - R \gamma R - R P_R \alpha_R + P_{R+R} \delta_R
\]
\[
\frac{dP_R}{dt} = P_{R+R} \delta_R - R P_R \alpha_R + P_{R+R} Y_{R+R}
\]
\[
\frac{dP_{R+R}}{dt} = R P_R \alpha_R - P_{R+R} \delta_R - P_{R+R} Y_{R+R}
\]
\[
\frac{dmY}{dt} = P_R \eta_R - m_Y Y_{mY}
\]
\[
\frac{dY}{dt} = m_Y \tau_Y - Y \gamma Y
\]

Here \(P_T \) and \(P_R \) are the input and output promoters, \(m_R \) and \(m_y \) are the mRNA species for the repressor and output reporter protein (YFP), \(L, R \) and \(Y \) are LacI, the repressor protein, and YFP.
and P_{T+L} and P_{R+R} are the input promoter bound to LacI and the output promoter bound to the repressor, respectively. The model assumes that the LacI repressor concentration changes only as a function of added inducer. The concentration of LacI was determined using the following model:

$$[LacI] = \frac{(1-IPTG^2)}{0.01(IPTG^2+0.01^2)}$$

(2-10)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter value</th>
<th>Species</th>
<th>Species description</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LacI dissociation (\delta_L)</td>
<td>0.1</td>
<td>L</td>
<td>Lac repressor (LacI)</td>
<td>Eq 1</td>
</tr>
<tr>
<td>LacI association (\alpha_L)</td>
<td>0.5</td>
<td>L</td>
<td>Ptac promoter</td>
<td>25</td>
</tr>
<tr>
<td>LacI degradation (\gamma_{I+L})</td>
<td>0.000005</td>
<td>P_T</td>
<td>P_{lac} bound by LacI</td>
<td>0</td>
</tr>
<tr>
<td>m_r transcription (\eta_{I+L})</td>
<td>0.005</td>
<td>m_R</td>
<td>Repressor mRNA</td>
<td>0</td>
</tr>
<tr>
<td>m_r degradation (\gamma_{m_R})</td>
<td>0.004</td>
<td>R</td>
<td>Repressor</td>
<td>0</td>
</tr>
<tr>
<td>R translation (\tau_R)</td>
<td>0.05</td>
<td>P_R</td>
<td>Repressible promoter</td>
<td>25</td>
</tr>
<tr>
<td>R degradation (\gamma_R)</td>
<td>0.0008</td>
<td>P_{R+R}</td>
<td>P_R bound by repressor</td>
<td>0</td>
</tr>
<tr>
<td>R dissociation (\delta_R)</td>
<td>0.00036</td>
<td>m_Y</td>
<td>YFP mRNA</td>
<td>0</td>
</tr>
<tr>
<td>R association (\alpha_R)</td>
<td>0.0001</td>
<td>Y</td>
<td>YFP protein</td>
<td>0</td>
</tr>
<tr>
<td>R degradation on promoter (\gamma_{R+R})</td>
<td>0.000005</td>
<td>P_C</td>
<td>Constitutive promoter</td>
<td>25</td>
</tr>
<tr>
<td>m_y transcription (\eta_y)</td>
<td>0.01</td>
<td>s_R</td>
<td>sRNA</td>
<td>0</td>
</tr>
<tr>
<td>m_y degradation (\gamma_{m_Y})</td>
<td>0.004</td>
<td>d_{SR}</td>
<td>sRNA mRNA duplex</td>
<td>0</td>
</tr>
<tr>
<td>R translation (\tau_y)</td>
<td>0.03</td>
<td>O</td>
<td>Operator</td>
<td>1000</td>
</tr>
<tr>
<td>Y degradation (\gamma_y)</td>
<td>0.00028</td>
<td>O_R</td>
<td>O bound by repressor</td>
<td>0</td>
</tr>
<tr>
<td>sRNA transcription (\eta_{s})</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sRNA/mRNA hybridization (\sigma_s)</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sRNA/mRNA dissociation (\sigma)</td>
<td>0.0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sRNA degradation (\gamma_s)</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA duplex degradation (\gamma_{d})</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2-1: Base parameters for the NOT gate ODE model.
Parameters were altered to simulate tuning knobs as described in the main text.

The response function of a digital logic gate can be shifted up or down by changing promoter strengths (Fig 2-3b), ribosome binding sites (RBS), or the proteins’ degradation rates (Fig 2-3c). Promoter strength can be altered with mutations in the promoter sequence or by selecting new promoters from a characterized library. Increased degradation can be achieved with protease tags or N-terminal degrons. Circuit components are often distributed between multiple plasmids at different copy numbers in order to synthesize each component at the necessary level. However, when entire circuits are expressed on one plasmid, copy number can
be shifted to simultaneously alter the circuit's dynamic range and threshold (Fig 2-3d). Different origins of replication can generate complex and poorly understood effects on expression, for example, by changing localization and supercoiling. This can be minimized by using plasmid systems where the copy number can be controlled without changing the origin.

Figure 2-3: Methods of Modifying NOT Gate Behavior.
Every panel displays circuit outputs with original parameter values (black) or tuning knob variations (grey). Inputs in (a-f) are IPTG. (a) Architecture and ideal response functions for the NOT gate. (b) Promoter strength is increased (dashed grey line) or decreased (solid grey line) by a factor of two. (c) Enzymatic degradation of the reporter protein was modeled as a five fold increase in the protein degradation rate. (d) Gene dosage. The NOT gate is moved between a high copy plasmid (dashed grey line) and the genome (solid grey line) to tune expression. The high copy plasmid is assumed to be ten times more abundant than the original circuit. (e) Ribosome binding site strength. Repressor RBSs (RBS1) are increased (dashed grey line) or decreased (solid grey line) by a factor of five. Altering the reporter RBS would shift the output of both circuits vertically (not pictured). (f) Small RNA designed to bind repressor mRNA are modeled with the introduction of a new species that binds repressor mRNA with the same affinity as a ribosome (this value was chosen arbitrarily and can be modulated to change circuit dynamics). In this model, small RNAs are produced constitutively and sRNA/mRNA duplexes are degraded faster than either RNA alone. (g) Decoy operators that bind repressor proteins. Decoy operators were modeled by introducing a new species that binds repressor protein with the same K_d as the repressible promoter. The model has 25 decoy operator sites, however circuits can be tuned with more or less as needed.
The threshold of the gate can be changed via several methods. Selecting a stronger or weaker RBS, adding multiple operators, or changing operator positions within the repressible promoter can change the threshold (Fig 2-3e). The threshold of a gate becomes steeper and more switch-like when small changes in the input have a large effect on the output. This phenomenon, known as ultrasensitivity, can be important for controlling actuators where intermediate levels of expression are undesirable. It can also make connecting gates easier by decreasing the range of input needed from an upstream circuit to span the induction threshold. One way to make a gate ultrasensitive is to change the cooperativity of repressor binding to the promoter or to introduce DNA looping. Another approach is to express a sequestering molecule that binds a circuit component and prevents it from functioning. Sequestration has been achieved using sRNAs that bind to mRNA, proteins that bind to transcription factors, and decoy DNA operators that titrate the transcription factor away from the output promoter.

sRNA-based mRNA sequestration was modeled by adding three equations to the original NOT gate model (Eq 2-1 – 2-9) and modifying Eq 2-4. These equations (Eq 2-10 – 2-12, with 2-4M) describe a constitutively expressed sRNA that irreversibly binds mRNA encoding the repressor, leading to increased degradation (Fig 2-4).

\[
\frac{d[R_c]}{dt} = 0 \tag{2-10}
\]

\[
\frac{d[s_R]}{dt} = P_c \eta_s - s_R m_R \sigma_+ + d_{Rs} \sigma_- - s_R \gamma_S \tag{2-11}
\]

\[
\frac{d[d_{Rs}]}{dt} = s_R m_R \sigma_+ - d_{Rs} \sigma_- - d_{Rs} \gamma_d \tag{2-12}
\]

\[
\frac{d[m_R]}{dt} = P_T \eta_T - m_R \gamma m_R - s_R m_R \sigma_+ + d_{Rs} \sigma_- \tag{2-4M}
\]

Decoy operator-based sequestration was modeled by adding two equations to the original NOT gate model (Eqs 2-1 – 2-9) and modifying Eq 2-5. These equations (2-13 – 2-14 with 2-5M) simulate 1,000 decoy operator sequences that the repressor R binds to with the same affinity as the promoter P_r.

\[
\frac{d[O]}{dt} = O_R \delta_R - OR \alpha_R + O_R \delta_R \tag{2-13}
\]

\[
\frac{d[O_R]}{dt} = OR \alpha_R - O_R \delta_R - OR \gamma_{R^+} \tag{2-14}
\]
\[\frac{dR}{dt} = mR \tau_R - R\gamma_R - RP_R \alpha_R + P_{R+R} \delta_R - OR\alpha_R + O_R \delta_R \]

(2-5M)

Figure 2-4: Architecture of the NOT gate with sRNA or decoy operator regulation.

Inputs and parameters/initial conditions are the same as in Fig 2-3. (A) NOT gate with sRNA regulation. Pc is a constitutive promoter driving expression of the sRNA. (B) NOT gate with decoy operators added to tune the response function.

The next set of equations, 2-15 – 2-31 describe the oscillator model, with parameters in Table 2-2.

\[\frac{dP_1}{dt} = P_1 \delta_R - P_1dR \alpha_R + P_1A \delta_A - P_1dA \alpha_A + P_{1R} \gamma_{PR} + P_{1A} \gamma_{PA} \]

(2-15)

\[\frac{dP_{1R}}{dt} = P_1 \delta_R - P_1dR \alpha_R + P_{1R} \gamma_{PR} - P_{1R} \gamma_{PR} \]

(2-16)

\[\frac{dP_{1A}}{dt} = P_1 \delta_R - P_1dR \alpha_R - P_{1A} \gamma_{PA} - P_{1A} \gamma_{PA} \]

(2-17)

\[\frac{dm_A}{dt} = P_1 \eta_A - P_{1A} \eta_{A+} - m_A \gamma_{mA} \]

(2-18)

\[\frac{dA}{dt} = m_A \tau_A - A \gamma_A + d_A \gamma_{dA} - d_A \gamma_{dA} - A \gamma_A \]

(2-19)

\[\frac{dP_2}{dt} = P_2 \delta_R - P_2dR \alpha_R + P_2A \delta_A - P_2dA \alpha_A + P_{2R} \gamma_{PR} + P_{2A} \gamma_{PA} \]

(2-20)

\[\frac{dP_{2R}}{dt} = P_2 \delta_R - P_2dR \alpha_R + P_{2R} \gamma_{PR} - P_{2R} \gamma_{PR} \]

(2-21)

\[\frac{dP_{2A}}{dt} = P_2 \delta_R - P_2dR \alpha_R - P_{2A} \gamma_{PA} - P_{2A} \gamma_{PA} \]

(2-22)

\[\frac{dm_A}{dt} = P_2 \eta_A - P_{2A} \eta_{A+} - m_A \gamma_{mA} \]

(2-23)

\[\frac{dA}{dt} = m_A \tau_A - A \gamma_A + d_A \gamma_{dA} - d_A \gamma_{dA} - A \gamma_A \]

(2-24)
\[
\frac{dd_A}{dt} = AA\sigma_A - d_A\sigma_A - d_A\gamma + A_P_1_a_A + P_1 \delta_A - P_2 d_A a_A + P_2 \delta_A - P_3 d_A a_A + P_3 \delta_A
\]

(2-26)

\[
\frac{dp_3}{dt} = P_3 \delta_R - P_3 d_R a_R + P_3 \delta_A + P_3 \gamma_{PR} + P_3 \gamma_{PA}
\]

(2-27)

\[
\frac{dp_3}{dt} = P_3 d_R a_R - P_3 \delta_R - P_3 \gamma_{PR}
\]

(2-28)

\[
\frac{dp_3}{dt} = P_3 d_A a_A - P_3 \delta_A - P_3 \gamma_{PA}
\]

(2-29)

\[
\frac{d_m_y}{dt} = P_3 \eta_{y} - P_3 \delta_A + \gamma_{m_y}
\]

(2-30)

\[
\frac{d_y}{dt} = m_y \tau_y - \gamma_y
\]

(2-31)

Here P₁, P₂, and P₃ are identical promoters that can be activated or repressed by dimers of activator (A) or repressor (R) proteins, respectively. The model assumes monomers of the activator and repressor cannot bind the DNA and that a single promoter cannot be bound by both repressors and activators simultaneously. Activator binding to the promoters increases transcription rate 50-fold.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Parameter value</th>
<th>Species</th>
<th>Species description</th>
<th>Initial value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R dissociation w/promoter (δ_R)</td>
<td>0.001</td>
<td>R</td>
<td>Repressor</td>
<td>0.804</td>
</tr>
<tr>
<td>R association w/promoter (α_R)</td>
<td>5000</td>
<td>d_R</td>
<td>Repressor dimer</td>
<td>0</td>
</tr>
<tr>
<td>R degradation on promoter (γ_{PR})</td>
<td>0.0005</td>
<td>m_R</td>
<td>Repressor mRNA</td>
<td>0.31</td>
</tr>
<tr>
<td>A dissociation w/promoter (δ_A)</td>
<td>0.01</td>
<td>P₁</td>
<td>Repressor promoter</td>
<td>0</td>
</tr>
<tr>
<td>A association w/promoter (α_A)</td>
<td>0.1</td>
<td>P₁_R</td>
<td>P₁ bound by repressor</td>
<td>25</td>
</tr>
<tr>
<td>A degradation on promoter (γ_{PA})</td>
<td>0.0005</td>
<td>P₁_A</td>
<td>P₁ bound by activator</td>
<td>0</td>
</tr>
<tr>
<td>m_A transcription (η_{R})</td>
<td>0.1</td>
<td>A</td>
<td>Activator</td>
<td>0.32</td>
</tr>
<tr>
<td>m_A transcription + activator (η_{R+})</td>
<td>5</td>
<td>d_A</td>
<td>Activator dimer</td>
<td>0.05</td>
</tr>
<tr>
<td>m_A degradation (γ_{mR})</td>
<td>0.01</td>
<td>m_A</td>
<td>Activator mRNA</td>
<td>0.021</td>
</tr>
<tr>
<td>R translation (τ_R)</td>
<td>0.15</td>
<td>P₂</td>
<td>Activator promoter</td>
<td>0.0182</td>
</tr>
<tr>
<td>R degradation (γ_R)</td>
<td>0.008</td>
<td>P₂_R</td>
<td>P₂ bound by repressor</td>
<td>25</td>
</tr>
<tr>
<td>m_A transcription (η_{A})</td>
<td>0.1</td>
<td>P₂_A</td>
<td>P₂ bound by activator</td>
<td>0</td>
</tr>
<tr>
<td>m_A transcription + activator (η_{A+})</td>
<td>5</td>
<td>Y</td>
<td>YFP</td>
<td>126</td>
</tr>
<tr>
<td>m_A degradation (γ_{mA})</td>
<td>0.01</td>
<td>m_Y</td>
<td>YFP mRNA</td>
<td>0.2</td>
</tr>
<tr>
<td>A translation (τ_A)</td>
<td>0.05</td>
<td>P₃</td>
<td>YFP promoter</td>
<td>0.0182</td>
</tr>
<tr>
<td>A degradation (γ_A)</td>
<td>0.008</td>
<td>P₃_R</td>
<td>P₃ bound by repressor</td>
<td>25</td>
</tr>
<tr>
<td>m_Y transcription (η_{R})</td>
<td>0.1</td>
<td>P₃_A</td>
<td>P₃ bound by repressor</td>
<td>0</td>
</tr>
<tr>
<td>m_Y transcription + activator (η_{R+})</td>
<td>5</td>
<td>Y</td>
<td>sRNA promoter</td>
<td>50</td>
</tr>
<tr>
<td>m_Y degradation (γ_{mY})</td>
<td>0.01</td>
<td>P₃</td>
<td>sRNA</td>
<td>0</td>
</tr>
</tbody>
</table>

22
Table 2-2: Base parameters for the oscillator ODE model.

Parameters were altered to simulate tuning knobs as described in the main text.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y translation (τ_y)</td>
<td>2.5</td>
</tr>
<tr>
<td>Y degradation (γ_y)</td>
<td>0.008</td>
</tr>
<tr>
<td>R dimerization (σ_R^+)</td>
<td>0.1</td>
</tr>
<tr>
<td>R dimer dissociation (σ_R^-)</td>
<td>0.001</td>
</tr>
<tr>
<td>A dimerization (σ_A^+)</td>
<td>0.01</td>
</tr>
<tr>
<td>A dimer dissociation (σ_A^-)</td>
<td>0.01</td>
</tr>
<tr>
<td>sRNA transcription (η_b)</td>
<td>0.001</td>
</tr>
<tr>
<td>sRNA/mRNA hybridization (σ_s)</td>
<td>0.02</td>
</tr>
<tr>
<td>sRNA/mRNA dissociation (σ)</td>
<td>0.001</td>
</tr>
<tr>
<td>sRNA degradation (γ_s)</td>
<td>0.01</td>
</tr>
<tr>
<td>RNA duplex degradation (γ_d)</td>
<td>0.05</td>
</tr>
<tr>
<td>sRNA mRNA duplex</td>
<td>0</td>
</tr>
<tr>
<td>Operator</td>
<td>1000</td>
</tr>
<tr>
<td>O bound by repressor</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2-5: Methods of Modifying Oscillator Behavior.

Every panel displays circuit outputs with original parameter values (black) or tuning knob variations (grey).

(a) Architecture and ideal response functions for the oscillator. (b) Promoter strength is increased (dashed grey line) or decreased (solid grey line) by a factor of two. (c) Enzymatic degradation of the reporter protein was modeled as a five fold increase in the protein degradation rate. (d) Gene dosage. The circuit is moved between a high copy plasmid (dashed grey line) and the genome (solid grey line) to tune...
expression. The high copy plasmid is assumed to be ten times more abundant than the original circuit. (e) Ribosome binding site strength. Repressor RBSs (RBS1) are increased (dashed grey line) or decreased (solid grey line) by a factor of five. Altering the reporter RBS would shift the output of the circuit vertically (not pictured). (f) Small RNA designed to bind repressor mRNA are modeled with the introduction of a new species that binds repressor mRNA with the same affinity as a ribosome (this value was chosen arbitrarily and can be modulated to change circuit dynamics). In this model, small RNAs are produced constitutively and sRNA/mRNA duplexes are degraded faster than either RNA alone. (g) Decoy operators that bind repressor proteins. Decoy operators were modeled by introducing a new species that binds repressor protein with the same Kd as the repressible promoter. The model has 25 decoy operator sites, however circuits can be tuned with more or less as needed.

In an oscillator, parts that impact the rate of gene expression change the amplitude of the response and can shift the period (Fig 2-5be). Rapid protein degradation is critical for dynamic circuits to function correctly. If proteins are slow to degrade, then the circuit may slow down or stop functioning altogether (Fig 2-5c). Protease tags can be used to decrease the degradation rate from several hours to ~20 minutes, which will increase the rate at which a gate switches\(^{197,13,12,55}\). Cooperativity is critical for obtaining robust oscillators because it increases the region of phase space that produces oscillations\(^{205}\). Therefore, sequestration approaches (e.g., sRNA or dummy operators) are predicted to have a large impact on the period and amplitude of oscillations (Fig 2.5fg)\(^{212}\).

sRNA-based mRNA sequestration was modeled by adding three equations to the original oscillator model (Eq 2-15 – 2-31) and modifying Eq 2-18. These equations (Eq 2-32 – 2-34, with 2-18M) describe a constitutively expressed sRNA that irreversibly binds mRNA encoding the repressor, leading to increased degradation (Fig 2-6).

\[
\frac{dPC}{dt} = 0 \tag{2-32}
\]

\[
\frac{dSR}{dt} = PC\eta_S - sRmRsR_s + dRsRsR_s - sRdYs \tag{2-33}
\]

\[
\frac{ddRS}{dt} = sRmRsR_s - dRsRsR_s - dRsYd \tag{2-34}
\]

\[
\frac{dmR}{dt} = P_1\eta_R - P_1\deltaR + mRmR - sRmR\sigma_+ + dRs\sigma_- \tag{2-18M}
\]

Decoy operator-based sequestration was modeled by adding two equations to the original oscillator model (Eq 2-15 – 2-31) and modifying Eq 2-20. These equations (2-35 – 2-36 with 2-20M) simulate 1,000 decoy operator sequences that the repressor dimer \(d_R\) binds to with the same affinity as the promoters \(P_1, P_2,\) and \(P_3,\)

\[
\frac{dO}{dt} = O_R\deltaR - O_R\deltaR\alpha + O_R\gammaPR \tag{2-35}
\]

24
\[
\frac{dO_R}{dt} = O_d R_a - O_d R_s - O_R y_{PR} \quad (2-36)
\]
\[
\frac{dR}{dt} = R R_R + d_R d_R - d_R y_{dR} - P_1 R_u R_1 R_2 + P_2 R_u R_2 + P_3 R_u R_3 - P_R y_{PR} - O_R R_u - O_R R_s \quad (2-20M)
\]

Figure 2-6: Architecture of the oscillator with sRNA or decoy operator regulation.
Inputs and parameters/initial conditions are the same as in Fig 2-5. (A) Oscillator with sRNA regulation. \(P_c \) is a constitutive promoter driving expression of the sRNA. (B) Oscillator with decoy operators added to tune the response function.

2-4. COMMON FAILURE MODES FROM CONNECTING CIRCUITS

Gates can be combined to build larger circuits that implement more sophisticated computational operations. To connect transcriptional gate, the output promoter of one circuit is used as the input promoter to the next. This method applies for all transcriptional circuits, including digital, analog and dynamic circuits or a combination of types. To connect circuits, they have to broken up into their component parts and then combined in a particular order (Fig 2-7a). Reorganizing the parts places them in new local contexts that are different from those where they were characterized. This can be problematic because circuit components can behave differently in new genetic contexts and small circuits may have identical component parts (e.g., terminators) that interfere with each other in the larger circuit. In this section, we discuss failure modes that can arise when building larger circuits, show the impact that each failure has on circuit function, and discuss engineering approaches to mitigate these problems.

When connecting circuits, a common problem is that the upstream circuit’s output does not span the dynamic range required to stimulate next circuit in series (Fig 2-7b). In digital logic, this ‘mismatch’ manifests as either a decrease in the dynamic range of the complete circuit or a loss of function. Connectivity mismatches can be corrected by selecting parts that shift the thresholds of individual gates. For example, RBSs can be mutated to force the threshold of a gate
to fall within the dynamic range produced from an upstream circuit. Mismatches in an oscillator can dampen oscillations or force the system outside the functional parameter space (Fig 2-7b). Mathematical models could be used to streamline circuit design by predicting the functional parameter space and selecting appropriate RBSs and promoters to achieve the required expression levels.

Genetic parts are often context dependent, meaning their functions change when the DNA sequences on either side of the part are altered. Context dependencies complicate part substitutions because part characterizations are often carried out in isolation and their activity in a new context may not match the measured strength. For example, promoters are that are defined as DNA sequences <50 bp may behave differently in new contexts because the α-domain of E. coli RNAP can contact the DNA ~100 bp upstream of the transcription start site. In a digital circuit, reducing promoter efficiency attenuates the response of individual gates and reduces the output of the complete circuit (Fig 2-7c). Promoter attenuation can increase the amplitude of an oscillator and elongate the period, by reducing repressor expression. Insulator sequences can relieve some compositional context effects by standardizing the DNA sequences flanking promoters.

Context effects can also occur when promoters are fused to different RBSs. Promoters are sensitive to the DNA sequences near the transcription start site because that region can alter promoter melting and polymerase escape frequency. Transcription start sites can also fluctuate based on the local sequence context, which can impact RBS strength by altering the length of the 5'-UTR and changing mRNA secondary structure. Tandem promoters can generate especially long 5'-UTRs that exacerbate this effect by base pairing with the RBS or sequences in the open reading frame. Circuits can fail completely when mutations in the 5'-UTRs cause hairpins completely occlude the RBSs and prohibit translation (Fig 2-7d). To solve these problems, the 5'-UTR can be cleaved with ribozymes or CRISPR processing to standardize RBS accessibility. Catalytic insulator elements serve dual functions by standardizing both the 5' end of mRNA and the promoter region downstream of the transcription start site. RBSs can be further insulated from the local context using bicistronic designs, which prime the mRNA for translation with an upstream RBS that keeps the mRNA unfolded.
Figure 2-7: Common failure modes and their impact on circuit dynamics.
(a) An AND gate11 and oscillator13 are used as model systems to demonstrate the assembly of parts to build more complex circuits. Repression is indicated with a blunt ended connector and activation is indicated with an arrow. For the AND gate, the input promoters are P_{IN1} and P_{IN2} and the output promoter is P_{R3}. Promoters are named by the repressor to which it responds (e.g., P_{R1} is repressed by $R1$). The steady-state response to different combinations of inputs is shown as a bar graph, where the OFF states are grey and the ON state is black. For the oscillator, the promoters P_{A-R} are repressed by R and activated by A. The impact of various failures (red lines) are shown for the AND gate (left) and oscillator (right) with expected dynamics shown in black. Models were used to simulate the $R2$ NOT gate, the AND gate14, and oscillator. Oscillator model equations are identical to those used to create 2-5. Unless indicated otherwise, Input 2 is the input to the NOT gate transfer function. (b) Mismatched response functions. In the AND gate, $R3$ was modeled as a different repressor: Betl ($k_d = 0.2$, $n = 2.4$, max = 13, min = 0.4) instead of Orf2 ($k_d = 0.4$, $n =$
6.1, \(\text{max} = 16, \text{min} = 0.2 \). \(R2 \) is the input for the \(R3 \) transfer function. In the oscillator, the \(R \) translation rate is increased ten-fold. (c) Promoter context. Strength of the indicated promoters is reduced by 50% in both circuits. (d) RBS context. The translation rates of \(R2 \) (AND gate) and \(R \) (oscillator) are set to zero. Input 1 is the input for the \(R2 \) transfer function. (e) Transcriptional read-through. 30% read-through from upstream operons through the red terminator is simulated in both circuits. (f) Part-junction interference. A new constitutive promoter (AND gate) is simulated as approximately 20% of the strength of \(P_{\text{up}} \). New terminator (oscillator) decreases transcription 40%. (g) Orthogonality. \(R3_{\text{ma}} \) is set as \(R2_{\text{mi}} \) to simulate repression of \(P_{R3} \) by \(R2 \). Additional equations are added to the oscillator model to simulate repressor-activator complex formation. (h) Recombination. \(R2 \) and \(R \) were removed from the AND gate and oscillator models, respectively.

Transcriptional read-through can be a problem in genetic circuits with monocistronic designs, where every gene has its own promoter and terminator. These designs require strong terminators to insulate against read-through from neighboring promoters. Failure to fully insulate each cistron can link the expression of genes that are supposed to be regulated independently (Fig 2-7e) and can contribute to the leaky expression of uninduced genes. Strong, tandem terminators can be placed on either side of each gene to ensure isolated expression of individual operons. Large libraries of rho-independent terminators were recently built and characterized to enable the construction of large circuits that are robust to read-through and homologous recombination (described below).

DNA sequences are information rich, therefore connecting two parts can create a new functional sequence at the junction. New regulatory elements, such as promoters or terminators, can be generated at a part junction if the combination creates a sequence of DNA that resembles a regulatory element. For large circuits, many parts have to be combined in a new order and unexpected parts that interfere with gene expression can be generated (Fig 2-7f). One way to scan for unintended functional sequences is to use computer algorithms that search for various regulatory elements.

Crosstalk, which occurs when regulators interact with each other’s targets, can change the topology of a circuit and can lead to errors in the desired operation. For example, crosstalk between a repressor and non-cognate promoter can inappropriately decrease expression of a gene and cause a circuit to fail (Fig 2-7g). Avoiding crosstalk requires that parts be screened for orthogonality via combinatorial experiments that test every combination of promoter and regulatory element.

Many of the circuits built to date re-use the same regulatory parts, which can lead to homologous recombination. Homologous recombination deletes DNA between repeated
sequences and can result in the loss of circuit components and circuit failure (Fig 2-7h)222. In general, the rate of recombination increases with circuit toxicity232 and homologous DNA length, with the threshold occurring between 20-30bp233. Homologous recombination can be avoided with large libraries of parts with redundant functions that have enough sequence diversity to avoid recombination222,234.

2-5. Interactions between Synthetic Circuits and the Host Organism

Genetic circuits are based on biochemical interactions within living cells. Most circuits use host resources to function, including transcription/translation machinery (e.g., ribosomes and RNAP), DNA replication equipment, and metabolites (e.g., amino acids). The availability of these resources and the details of the intracellular environment change significantly in different strain backgrounds, environmental conditions, media, growth rate, and cell density. When the first synthetic circuits were built, they were fragile and it was unclear why they would only work in specific conditions20,21. Now, there is a more precise understanding of the ways in which circuits break due to interactions with the host104. A better understanding of these failure modes are and the methods natural systems use to overcome them will lead to new design rules for composing synthetic circuits.

A common observation is that some synthetic regulators can cause growth defects. Yet it remains unclear why certain regulators can be expressed at high levels with no noticeable impact whereas others in the same class are very toxic. This was evident in analyzing large libraries of TetR and s factor homologues sourced from diverse organisms and transferred into \textit{E. coli}114,143. Expression of some of regulators slowed \textit{E. coli} growth, but the origin of this effect is unclear as it does not correlate with the number of predicted binding sites in the genome or off-target gene expression measured using RNA-seq. T7 RNAP is another part that can be very toxic when combined with a strong T7 promoter145. It is also unclear how this toxicity arises, but it could be due to the difficulty terminating T7 RNAP, which could cause circular transcription on a plasmid or expose mRNA by decoupling RNAP and ribosome progression. Circuits based on protein-protein interactions can also exhibit toxicity when the proteins bind to off-target partners. We observed this with anti-s factors, which appear to bind and titrate native s factors143. Small RNA with RBS-like sequences can also cause toxicity by titrate ribosomes, increasing expression...
variability, and reducing growth (Fig 2-8a)90. Larger circuits are particularly sensitive to the toxicity that can arise from individual regulators because their effects are compounded when they are expressed together235.

Circuits can also decrease growth rate by monopolizing host resources and slowing essential protein/RNA production (Fig 2-8a)236. A small reduction in the growth rate can be a problem when using a circuit for industrial applications that rely on high product yields. A decrease in growth rate can reduce the dilution rate of circuit components and lead to unintended build up of proteins or RNA that can cause a circuit to fail. In fact, circuits can appear to function better when growth is impeded because slow dilution increases the observed concentration of transcription factors and reporters. Slow growth can also put pressure on the host organism to evolve away the burdensome circuit, either via homologous recombination, point mutations/deletions, or copy number reduction.

Circuits can diverge from their expected behavior when they use a limited resource that is shared with other cellular processes. Overburdening resources causes queuing, which results in a delay or reduction in circuit activity237. For example, when s factors are overexpressed, they can occupy the entire pool of free core RNAP. When this happens, sigma factors must compete to bind to the core, which indirectly couples their activity and can disrupt host processes238. Native s factors are able to avoid queuing by pulsing their expression such that they alternate the usage of core RNAP over time239. A similar coupling effect has been observed when the ClpXP protease is shared by regulators that have been modified to contain C-terminal tags for fast degradation. If too many proteins are targeted for degradation, the enzymatic machinery can become overwhelmed and force substrates to wait for processing211. The rapid degradation of regulators is important for dynamic circuits, such as oscillators, which will fail if the regulatory proteins accumulate (Fig 2-8b).
Figure 2-8: Circuit performance within the context of a living cell.
(a) Recombinant protein expression can cause a growth defect by reducing the availability of host resources (e.g., RNAP and ribosomes). Here, synthetic sRNAs compete with mRNA for ribosomes to illustrate the impact of exogenous protein expression on host resource allocation. When sRNAs are produced (left graph, grey bars), ribosomes are titrated away from fluorescent protein mRNA and observed fluorescence is...
reduced relative to no sRNA (left graph, white bars)51. Center graph, colored circles represent the overexpression of different proteins in \textit{E. coli} (blue: \textit{Pu} promoter b-Galactosidase, red: T7 promoter b-Galactosidase, black: \textit{tac} promoter DEF-Tu, green: \textit{bla} promoter b-Lactamase)50. Right graph, colored circles represent growth of different bacterial strains as a function of rRNA supply (blue: \textit{E. coli} 30°C, green: \textit{A. aerogenes} 37°C, red: \textit{C. utilis} 25°C, orange: \textit{C. utilis} 30°C, black: \textit{N. crassa} 30°C)201. (b) Queuing as a result of overloading the ClpXP protease machinery with proteins from a synthetic oscillator. The graph shows the difference between expected (black) and measured (red) dynamics for an oscillator affected by queuing311. (c) An additional output (\textit{P}_{\text{R2}}) on a high copy plasmid is added to the NOT gate. This causes retroactivity, which alters the activation dynamics of the original output (\textit{P}_{\text{R1}}) (black line: original dynamic response, orange line: retroactive effect)241. (d) One plasmid with two reporter proteins is transformed into different \textit{E. coli} strains. The ratio of expression varies in some strains (left graph: wild type \textit{E. coli} strains, right graph: KEIO collection knockouts)252. (e) Different media impact the performance of an AND gate based on T7 RNAP260,145. Data are shown for the circuit in the absence (white) and presence (black) of both inputs in different medias (LB: luria broth, Min: minimal media, \#T and/or \#L: minimal media supplemented with tryptone (\#T = \#g/L) or yeast extract (\#Y = \#g/L).

Retroactivity can also interfere with circuit activity. Retroactivity is defined as the influence that a downstream genetic element can have on an upstream one and it describes the changes in circuit behavior that result from connecting new downstream modules to a circuit186. Downstream modules may affect the performance of upstream circuits by titrating regulators away from the original circuit. For example, connecting a second output to a NOT gate may cause retroactivity by titrating the repressor away from the original output promoter (Fig 2-8c). Retroactivity will impact the NOT gate's dynamics by increasing the time it takes to build up an adequate amount of protein to repress promoter activity241. Retroactivity that delays a circuit's response to input stimulation can be alleviated by increasing expression of the problematic circuit component; however, increasing expression can lead to other trade-offs, including toxicity.

Strain variation can affect circuit performance in different ways. Differences in growth rate, ribosome concentration, and induction lag time have been identified as the main contributors to strain dependent variations in circuit performance242. In recent studies, these phenotypes have been correlated with specific genes by studying growth and circuit performance across single gene knockouts (Fig 2-8d)242,243. Media and growth conditions can also impact circuit performance by altering promoter activity, protein stability, and regulator dilution244,245. These effects can be so severe that switching from LB to minimal media can cause circuits to fail (Fig 2-8e)40.

One approach to reduce strain- and media-based variation is to use reference standards to report circuit performance. To this end, the Relative Expression Unit (REU) was introduced as a
standard for reporting promoter measurements4,24. REUs report the promoter activity by normalizing measurements to a constitutive promoter standard in a strain that is treated identically and measured simultaneously. REU measurements have yielded reliable, reproducible data when compared across labs, strains, and media, which is important for transcriptional circuits that use promoters as inputs and outputs. In the future, this will facilitate the computer-aided design of large circuits.

2-6. CONCLUSIONS

The first circuits were built by repurposing a small number of regulators and genetic parts from other areas of genetic engineering. After early success90,131, these parts were put together in different combinations to explore the range of circuit functions that could be performed in the cell. We are now in a phase where there are >100 new regulators98,114,121-123,125,126,144,191,225 that are orthogonal and could theoretically be used to build synthetic regulatory networks at the scale of natural networks in bacteria247.

Figure 2-9: Conceptual circuit for a therapeutic bacterium.
This therapeutic bacterium colonizes a niche in the human microbiome and delivers a drug. This circuit demonstrates how the different classes of regulators and circuits described in this review could be combined into a single system. The leftmost panel shows genetically modified bacteria that have colonized the interior of a human gastrointestinal tract. The upper right panel focuses on the conceptual circuit that
the bacteria use to regulate their growth and deliver drugs to the human patient. An analog circuit (left) and irreversible recombinases (right) are highlighted in the insets to emphasize the diverse biochemistries used to build this circuit.

There are several key advances that have to happen before we can build and debug genetic circuits this large. First, computational tools have to be developed to aid the design process. These programs need to be able to simulate the dynamics of a circuit and convert the designs into a linear assembly of genetic parts. Insulating DNA sequences will be critical in future circuits because the majority of parts will be in new contexts. Second, new approaches to whole cell omics measurements have to be integrated into the debugging cycle. Currently, there is an over-reliance on fluorescent proteins as the output of circuits. However, transcriptomics is now sufficiently inexpensive such that it could be used to infer polymerase flux on many of the parts internal to a circuit. Other single molecule approaches, such as ribosome and RNAP mapping, will become powerful when the experiments become more routine. Third, new approaches need to be developed that can rapidly test circuits under conditions that are difficult to control in the cell. Circuits are sensitive to parameters like the number of ribosomes, RNAP, redox, temperature, and ATP all of which change in different cell types and conditions. However, these are difficult to measure in the cell without broadly impacting the host. To this end, the development of in vitro cell-free methods to debug circuits will be valuable for designing circuits that are robust to these changes.

New biochemistries, tuning knobs, and troubleshooting methods are now converging for the sophisticated design and construction of genetic circuits. In these circuits, different classes of regulators can be used in a single circuit to fulfill specialized functions. In this vision, each regulator has found a niche within the larger circuit that exploits their strengths (Fig 2-9). For example, digital circuits can be used to integrate sensors and respond to a particular set of conditions, whereas analog circuitry can perform arithmetic function functions with a small number of regulators. Integrases can store memory or cause an irreversible commitment. CRISPRi can regulate essentially any gene in the genome. A vision of this marriage is shown in Figure 6, which is an example of a commensal bacterium that has been engineered to produce a pharmaceutical while colonizing the gut. In it, repressor-based logic gates respond dynamically to environmental states and invertases record these observations. Analog circuits can be used to
calculate a dosage rate and, if surpassed, CRISPRi knocks down specific host genes to arrest growth and avoid overmedication. Collectively, these new circuits and the tools and knowledge to connect and debug them will enable a new era of cellular programming and the applications that come with this capability.
Chapter 3: Antisense transcription as a tool to tune gene expression

A surprise that has emerged from transcriptomics is the prevalence of antisense transcription, which occurs counter to gene orientation in genomes. While frequent, the roles of antisense transcription in regulation are poorly understood. We built a synthetic system in *Escherichia coli* to study how antisense transcription can change gene expression and tune the response characteristics of a regulatory circuit. We developed a new genetic part that consists of a unidirectional terminator followed by a constitutive antisense promoter and demonstrate that antisense transcription represses gene expression and the magnitude of repression is proportional to the antisense promoter strength. Chip-based oligo synthesis was applied to build a large library of 5,668 terminator-promoter combinations. This library was used to control the expression of three repressors (PhlF, SrpR, and TarA) in a simple genetic circuit (NOT gate). Using the library, we demonstrate that antisense promoters can be used to tune the threshold of a regulatory circuit without impacting other properties of its response function. We also determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression. Finally, we constructed a biophysical model of transcriptional interference to capture the impact of RNA polymerase collisions on gene repression. This work quantifies the role of antisense transcription in regulatory networks and introduces a new method for controlling gene expression that has been previously overlooked in genetic engineering.

3-1. INTRODUCTION

Genetic engineers typically follow a simple scheme for controlling gene expression: a promoter and terminator flank the gene and all parts are orientated in the same direction. Larger designs consisting of multiple genes and promoters often are organized similarly, where transcription is designed to proceed in one direction. This organization avoids potential interference between promoters that can arise due to RNA polymerase (RNAP) collisions, supercoiling, non-coding RNAs, and conflicts with the replication machinery. Promoters that are oriented in the opposite direction of genes produce antisense transcription and although this is generally regarded as a nuisance, it can be useful for reducing leaky
expression of toxic proteins276-279 and generating genetic switches280-282. Here, we propose that promoters oriented opposite to a gene can be used to reliably tune gene expression and control the input threshold of genetic switches.

Increased use of transcriptomics has demonstrated that antisense transcription is surprisingly common across all organisms, including archaea283, prokaryotes284-288, and eukaryotes289-291. For example, in \textit{E. coli} \textasciitilde30\% of all transcription start sites were found to be antisense and internal to, or just after, genes292-294. Similarly in \textit{H. pylori}, about half the genes have at least one antisense promoter274. Although some of this antisense transcription is the result of inefficient termination by intrinsic and rho-dependent terminators295, it is often driven by promoters with well-defined regulatory motifs, such as housekeeping sigma factor binding sites24,294,296. Depending on the organism, antisense transcription can be constitutive or regulated under different environmental conditions297,298.

While prevalent, the role of most antisense transcription in regulation is unclear299,300. Some have postulated that the majority of antisense transcription is non-functional and is background due to pervasive transcription296. However, antisense transcription is known to be an important component of the genetic switches that control bacterial competence280 and virulence301, as well as \textit{Saccharomyces cerevisiae}'s entry into meiosis282. Antisense transcription also occurs frequently for genes that require tight expression control under defined conditions, such as toxic or virulence proteins279,302-304. One role of antisense transcription may be to impact the threshold of a switch305, defined as the amount of input signal required to reach half maximal activity. As outlined in Chapter 2, the input thresholds of synthetic systems can be tuned by mutating ribosome binding sites, adding small regulatory RNAs, or sequestering the proteins using dummy operators or protein-protein interactions306-309. There is evidence that antisense promoters can similarly change regulatory circuits by controlling expression of repressors, activators, s factors and anti-s factors310,311.

There are two classes of mechanisms for how antisense promoters regulate gene expression. The first involves the antisense RNA (asRNA) that is generated, which can regulate gene expression by binding to the mRNA to change its stability or translation, or act as a transcriptional regulator312,313. The second is transcriptional interference, where the sense and antisense promoters interact directly or via the RNAPs to cause the down regulation of a gene305.
There are four mechanisms by which transcriptional interference can occur: 1. competition (promoters overlap and only one RNAP can bind at a time), 2. sitting duck (an RNAP that is slow to elongate is dislodged), 3. occlusion (one RNAP elongates over a promoter transiently blocking the other), and 4. collision (two actively transcribing RNAPs collide). Of these, modeling suggests that when promoters are >200 bp apart and oriented convergently, the dominant mechanism of interference is collision. Regulation by asRNA and transcriptional interference are not mutually exclusive. Examples have been described where regulation occurs due to only one mechanism or they work in concert.

In this work, we harness antisense transcription as a reliable “tuning knob” for the construction of genetic circuits. We introduce a new composite part to the 3’-end of the gene of interest that consists of a unidirectional terminator followed by a reverse constitutive promoter. We demonstrate that the antisense promoter represses gene expression in accordance with its strength and that the antisense transcription can cause a change in the threshold of inducible systems. A large library of promoter-terminator combinations was constructed via chip-based oligo synthesis and screened using flow-seq to identify terminators and promoters that can be used to construct reliable antisense regulation. This approach has been used previously to elucidate how translation rates affect mRNA stability and codon bias influences RNA structure and translation. Finally, we determined the relative contributions of antisense RNA and transcriptional interference to repressing gene expression and introduce a biophysical model to parameterize RNA polymerase collisions. This work contributes to a larger effort to expand on the classic concept of an “expression cassette” to include additional parts that utilize genetic context to fine-tune expression levels.

3-2. RESULTS

3-2-1. Repression correlates with the strength of the antisense promoter

A simple system was designed to quantify the impact of an antisense promoter on gene expression (Fig 3-1). The isopropyl b-D-1-thiogalactopyranoside (IPTG) inducible promoter P_{lac} was used as the forward promoter to drive the expression of red fluorescent protein (RFP). Downstream of rfp, there is a constitutive antisense promoter P_{a} whose RNAPs will be fired.
Four constitutive promoters of different strength26,320 were selected to serve as the antisense promoters and the impact on RFP expression was quantified. The strengths of \(P_R \) and \(P_{\text{tac}} \) were determined using a separate plasmid system and normalized by a reference standard to estimate promoter strengths as polymerase firing rates (Fig 3-2ab) (Methods). The full cassette was placed on a plasmid containing the p15A origin.

\[\theta = \frac{[\text{RFP}]_0}{[\text{RFP}]} \]

(3-1)

Figure 3-1: A schematic showing the antisense transcription reporter system.
A constitutive promoter (red) at the 3'-end of \(rfp \) represses gene expression by firing polymerases at the forward promoter \(P_{\text{tac}} \) (black).

The addition of an antisense promoter changes the response curve for the IPTG induction of RFP in three ways (Fig 3-2c). First, expression is reduced over the entire range of inducer concentration. We defined a parameter \(\theta \) that captures the magnitude of repression,

where the subscripts +/- represent the presence/absence of an antisense promoter. Plotting \(\theta \) versus inducer concentration shows that the impact of the antisense promoter is stronger when \(P_{\text{tac}} \) is less active (Fig 3-2d). This biased repression is consistent with previous findings that weak promoters are more susceptible to repression via transcriptional interference and asRNAs than strong promoters267,314,316. Second, the maximum repression increases with the strength of the antisense promoter (Fig 3-2e, exponential regression; \(R^2 = 0.99737 \)). Notably, the strongest promoter tested (apFAB96) is unable to completely repress expression. This promoter is among the strongest from a large synthetic library320 and of comparable strength to the \textit{E. coli} \textit{rrn} promoters324. Finally, the threshold for induction increases as a function of the strength of antisense promoter (Fig 3-2e, linear regression; \(R^2 = 0.9876 \)).
Figure 3-2: Impact of antisense transcription on gene expression

(A) Antisense transcription reporter plasmids used to quantify repression. Not1/Sbf1 multiple cloning sites were used to digest the plasmid and insert promoters (apFAB49, apFAB140, apFAB78, apFAB96) at the 3’end of rfp (B) Strengths of the forward and antisense promoters. The reference promoter (Pbla) used to calculate promoter strength in units of RNA polymerase firings per second is shown in grey. Strengths of the constitutive promoters used as PR (colors) and forward promoter (Ptac) at different inducer concentrations (black). (C) Response functions for P_tac with different antisense promoters located at the 3’end of RFP: no promoter, black; antisense promoters of different strength, colors as in (B). The inset is the log_{10} transform of the same data normalized by min and max. (D) The fold repression (Equation 3-1) is shown as a function of the induction of the forward promoter. The colors correspond to antisense promoters of different strength. (E) Maximum fold repression and threshold as a function of antisense promoter strength. The induction threshold K was calculated by fitting Equation 2 to the data in part C. The lines are linear and exponential fits to the threshold (R^2 = 0.9876) and repression (R^2 = 0.99737) data, respectively. In all panels, data represents the mean of three experiments performed on different days and the error bars are the standard deviation of these replicates.
Interestingly, the shape of the induction curve remains similar for the different antisense promoters and the overall response to IPTG follows approximately the same dynamic range (Fig 3-2c, inset). The cooperativity ($n = 1.7 \pm 0.12$) is also unaffected by different antisense promoters. Thresholds and Hill coefficients were calculated by fitting the response functions in Fig 3-4a to the Hill Equation:

$$y = y_{min} + (y_{max} - y_{min}) \frac{x^n}{K^n + x^n}$$

(3-2)

where x is the concentration of IPTG, y is the activity of P_{OUT}, n is the Hill coefficient, and K is the threshold level of input where the output is half-maximal. *E. coli* growth rates were unaffected by the addition of antisense promoters (data not shown). Fluorescence histograms of bacteria harboring the antisense reporter plasmids are also very narrow (Fig 3-3). This indicates very little variation between cells harboring the same genetic construct, therefore antisense transcription is affecting gene expression in all cells nearly equally. Thus, altering gene expression with constitutive antisense promoters does not cause a growth defect or alter RFP expression profiles.

Figure 3-3: Fluorescence histograms corresponding to the data in Fig 3-2.

3-2-2. Multiplexed characterization of antisense promoters

Experiments were designed to quantify the impact of an antisense promoter on the function of a simple genetic circuit. We chose to characterize NOT gates, where an input promoter drives the expression of a repressor that turns off an output promoter\(^{325}\). This creates a response function that is inverted, as compared to an inducible system alone. Our design adds antisense promoters to the 3’end of the repressor (Fig 3-4), which reflects natural motifs where regulatory proteins are controlled by antisense promoters\(^{326}\). The design also adds unidirectional terminators between the 3’end of the repressor and the antisense promoter to demonstrate that antisense promoters can alter gene expression when added to outside of complete expression cassettes.

![Figure 3-4: Construction and characterization workflow of a library of terminator/antisense promoter pairs.](image)

Library construction and flow-seq screening used to measure the impact of terminator/antisense promoter pairs on regulatory circuit performance. All combinations of 52 unidirectional terminators and 109 promoters were constructed to create a library of 5,668 transcriptional interference constructs. The terminator and promoter strengths shown were measured previously\(^{26,27,320}\). The library was synthesized as oligonucleotides then cloned into genetic NOT gates at the 3’ end of the repressor gene (red box). Each library was transformed into \(E.\ coli\), grown with 100mM IPTG, and sorted into bins of varying YFP fluorescence to find constructs with increased induction thresholds. Bacteria from each bin were plated on solid media and individual colonies were selected to measure the full response function of sorted variants. Plates were scraped to isolate plasmids from bacteria in each bin and plasmid DNA was barcoded and deep sequenced (Methods).

Advances in chip-based DNA synthesis have made it possible to simultaneously synthesize 10,000s of unique \(~200\) bp oligos\(^{327}\). This length is appropriate to encode a terminator and antisense promoter. A library was constructed based on 52 terminators\(^{27}\) and 109 constitutive promoters\(^{26,320}\), paired combinatorially to produce 5,668 unique composite parts (Fig 3-4). All of the promoters are synthetic and their strengths fall within a range of 0.0047 au to 21 au, with an average of 3.6 au\(^{320}\). All of the terminators are naturally occurring sequences from the \(E.\ coli\)
K12 genome and were selected to encompass a wide range of terminator strengths. The majority of these terminators are unidirectional and allow RNAPs fired from the antisense promoter to proceed while blocking those from the forward promoter. The composite parts were synthesized and cloned into three NOT gates made from TetR homologues (Fig 3-5a) (Methods). The NOT gate repressors (PhIF, SrpR, TarA) were selected to represent different response function shapes (Fig 3-5b).

Figure 3-5: Response functions of NOT gates with antisense promoters.
(A) NOT gate plasmids used in this study. All NOT gate plasmids have Notl/Sbf1 multiple cloning sites used to insert terminator/antisense promoter oligonucleotide library. (B) Response functions of NOT gates built with TetR homologs: PhIF (left), SrpR (center), TarA (right). Response functions are measured using \(P_{\text{lac}} \) activity as the input and YFP as the output. Fluorescence measurements are converted into REU with a reference standard (methods). Vertical lines (red) demarcate \(P_{\text{lac}} \) activity with 100 \(\mu \)M IPTG, the inducer concentration used to sort libraries. (C) Fluorescence histograms of the starting NOT gates and libraries before sorting. Each NOT gate was grown with 0 \(\mu \)M (light grey) and 100 \(\mu \)M (dark grey) IPTG to set upper and lower bounds for sorting, respectively. Libraries (green) were sorted into four bins, shown as colored vertical bars and numbered by increasing fluorescence. (D) Response functions of randomly selected clones from the sorted libraries. Response functions are colored by the bin in which the clones were found: Bin 1: blue, Bin 2: green, Bin 3: yellow, Bin 4: red. The response functions of the NOT gates lacking antisense promoters are shown in black.
The NOT gate libraries were screened using flow-seq, a technique where fluorescence-activated cell sorting (FACS) is used to sort the cells into bins, the contents of which are determined using next-generation sequencing (Methods). Here, we sorted the cells by NOT gate threshold, i.e., the input promoter activity at which the output fluorescence is reduced to half-maximum. To do this, each library was grown with 100 μM IPTG and sorted by fluorescence into four log-spaced bins (Fig 3-5c). At 100 μM IPTG, all of the gates lacking antisense promoters are OFF (Fig 3-5b) and library members that are ON are likely to have increased induction thresholds. NOT gates without antisense promoters were grown with 0 μM and 100 μM IPTG to set upper and lower bounds for sorting, respectively. 6.5%, 18.3%, and 4.9% of the cells from the PhIF, SrpR, and TarA libraries have increased fluorescence relative to the gates without antisense promoters.

![Figure 3-6: Thresholds and Hill coefficients of sorted NOT gate constructs.](image)

(a) Average thresholds K and (b) Hill coefficients n for NOT gates sorted into each bin of the PhIF (Left), SrpR (Middle), and TarA (Right) libraries. Thresholds and Hill coefficients were calculated by fitting NOT gate response functions to the repressor Hill Equation (Eq. 3). Error bars are the standard deviation between the thresholds or Hill coefficients of the eight NOT gates characterized from each bin. Brackets indicate two-sample Student t tests with P values <0.05 (*).

After sorting, cells were plated onto solid agar medium and eight colonies from each bin were randomly selected and their full response functions were measured (Fig 3-5d). As expected, the response functions cluster according to bins and the most fluorescent bins (bins 3 & 4)
captured gates with the largest increase in threshold (Fig 3-5d, yellow & red). To quantify the effects of the antisense promoter/terminator parts, each response function was fit to a repressor Hill Function

\[y = y_{\text{min}} + (y_{\text{max}} - y_{\text{min}}) \frac{K^n}{K^n + x^n}, \]

where \(x \) is the activity of \(P_{\text{in}} \), \(y \) is the activity of \(P_{\text{out}} \), \(n \) is the Hill coefficient, and \(K \) is the threshold level of input where the output is half-maximal. High fluorescence bins have increased thresholds \(K \) relative to lower fluorescence bins, but the Hill coefficient \(n \) does not show a consistent trend across bins (Fig 3-6). After individual colonies were analyzed, we pooled the remaining cells from each bin (50,000 – 200,000 colonies) and measured their response functions in aggregate. Analysis of pooled constructs shows that the ON and OFF states of all library members are essentially constant and threshold differences between the bins are statistically significant (Fig 3-7, one-way ANOVA).

Figure 3-7: Fluorescence histograms and statistics of sorted bins.

(a) The fluorescence histogram of cells from the PhIF (Left), SrpR (Center), and TarA (Right) libraries. Fluorescence was measured using flow cytometry in ON (0mM IPTG - top), threshold (100mM IPTG - middle), and OFF (1000mM IPTG - bottom) conditions. Histograms are colored by bin: 1-purple, 2-green, 3-yellow, 4-orange. One hundred randomly selected individual cells from each data set were used as input to one-way ANOVA tests. There were no statistically significant differences between group means for the PhIF ON (\(F(3,396) = 1.06, p = 0.36 \)) and OFF (\(F(3,396) = 1.54, p = 0.20 \)) conditions, the SrpR ON...
After sorting, the bins were sequenced to identify the promoter/terminator combinations responsible for shifting gate thresholds. Briefly, plasmid DNA was isolated from bacteria in each bin, the composite parts were amplified from the plasmids and barcoded for multiplexed sequencing. Paired end reads were used to ensure complete sequencing of each promoter/terminator pair (Methods). For the following analysis, we removed any sequencing reads that did not perfectly match the designed promoter/terminator pairs. The percent of perfect sequences from the pools was 32.38%, which is consistent with the error rate of chip-based oligo synthesis (Table 3-1).7

Table 3-1: Illumina sequencing results.

3-2-3. The response threshold correlates with antisense promoter strength

Previously measured values of the promoter and terminator strengths were used to analyze the parts identified in each bin during deep sequencing (Fig 3-4). In all three libraries, antisense promoter strength increases as a function of bin fluorescence (Fig 3-8a, linear regressions; $R^2 = 0.87421 - 0.96112$). The high fluorescence bins (bins 3 & 4) contain constructs with greater median antisense promoter strength than lower fluorescence bins (bins 1 & 2) (Fig
In contrast, there is no consistent trend in the forward or antisense terminator strengths across the sorted libraries (Fig 3-8ab).

Figure 3-8: Correlations between bin fluorescence and part strength.

(A) Median strengths of the composite parts sorted into bins in the PhIF (left), SrpR (center), and TarA (right) libraries as a function of median bin fluorescence. Antisense promoter strengths correlate positively with bin fluorescence; PhIF $R^2 = 0.87421$, SrpR $R^2 = 0.96061$, TarA $R^2 = 0.96112$ (logarithmic regression). Forward and reverse terminator strengths do not show consistent trends across the libraries; PhIF FW $R^2 = 0.84079$, PhIF RV $R^2 = 0.78599$, SrpR FW $R^2 = 0.8628$, SrpR RV $R^2 = 0.16902$, TarA FW $R^2 = 0.71405$, TarA RV $R^2 = 0.74852$ (logarithmic regression). (B) Strengths of antisense promoters and terminators sorted into each bin. Previously measured values (Fig 3-4) were used to calculate the strength of parts sorted into each bin. Box plots display the median, with hinges indicating the first and third quartiles. The unsorted library is marked “U.”

The parts responsible for shifting gate thresholds were further explored by enrichment analysis. Enrichment identifies the parts that are selected for, or against, in each bin during sorting (Methods). Since high fluorescence bins (bins 3 & 4) have an increased threshold relative to lower fluorescence bins (bins 1 & 2) (Fig 3-7), composite parts that are enriched in high fluorescence bins are more likely to generate large shifts in gate thresholds than those enriched in lower fluorescence bins. To visualize trends in the data, enrichment was used to assign each composite part to the one bin (1-4) that best reflects its ability to shift gate thresholds (Fig 3-9). Most composite parts with strong antisense promoters are maximally enriched in bins 3 and 4 (Fig 3-9, top). However, when strong promoters are paired with bidirectional terminators that
have significant antisense termination efficiencies (T_s antisense > 10), the composite parts are incapable of shifting circuit thresholds (Fig 3-9, left). In contrast, strong antisense promoters are sorted into high fluorescence bins when paired with unidirectional terminators.

These terminators (T_s antisense <10) most likely facilitate greater shifts in gate thresholds than bidirectional terminators by allowing more RNAPs fired from the antisense promoter to interfere with gene expression. In addition, terminators that are predicted to destabilize mRNA or contain cryptic antisense promoters also facilitate large shifts in gate thresholds (Fig 3-9, right). Changes in mRNA stability can result in a large shift because the mRNA produces less protein before it is degraded, thus more transcripts are required to produce the threshold amount of repressor protein. Similarly, terminators with cryptic antisense promoters increase the gate threshold by increasing the basal level of antisense transcription.
Figure 3-9: Heat map of the bins in which terminator/promoter pairs were most enriched.

Promoters are rank ordered by their strength (Part A), with the strongest at the top. The terminators were grouped based on known or predicted terminator features and sorted by the predicted strength of a cryptic antisense promoter or impact on mRNA stability, if relevant (Methods). Unidirectional terminators were sorted based on similarity in their profiles across the promoter set. Terminator/promoter combinations that are not enriched in any of the bins are colored grey. Columns and rows >90% grey were removed from the enrichment grid.
3-2-4. Characterization of terminator/promoter pairs as “parts”

One of our goals is to use antisense transcription to reliably change the expression level of a gene or shift the threshold of a genetic circuit. Ideally, the impact of an antisense promoter on these functions would be predictable and a set of promoters of different strengths could be used to tune expression. When building multi-gene systems, it is desirable to use different terminators to control each gene in order to avoid homologous recombination. Therefore, we sought to identify a set of strong terminators that could be used in conjunction with a set of antisense promoters to reliably tune gene expression. Predictability would require that the promoters impart their effect independent of the terminator to which they are paired.

Some terminators may have mechanisms that impact the effectiveness of the antisense promoter. As such, we eliminated those with known features (cryptic promoters, bidirectional termination, hairpins that impact mRNA stability) from the set (Fig 3-9). Then, terminators and promoters were systematically removed until there remained a core set of both where the promoters produced a reliable response when combined with any of the terminators. This set, shown in Figure 3-10a, provides nine strong terminators that can be fused to different genes or operons and twenty antisense promoters that can be added to control their expression (Fig 3-10b). To confirm predictability, several terminator-promoter pairs were tested in the reporter construct (Fig 3-10a). The repression produced by these pairs collapse onto a single curve, independent of the identity of the terminator used (Fig 3-10c, exponential regression; \(R^2 = 0.9275 \))(Table 3-2).
Figure 3-10: Composability of unidirectional terminators and antisense promoters.

(A) The flow-seq data was used to identify a subset of promoters and terminators that could be combined to obtain a reliable reduction of gene expression. (B) Each graph shows a terminator (name at top) and each point is a promoter from the list in Part A. The x-axis (<Bin#>) is the average for the promoter across the complete terminator set and the y-axis (Bin#) is the bin for the specific terminator. The Bin# is calculated as described in Fig 2F. (C) Repression was explicitly measured for a subset of terminator/promoter pairs selected from Part A. The pairs were cloned into the plasmid from (a) and fold-repression (Equation 1) was measured as a function of the forward promoter activity (see Table 3-2 for terminator/promoter combinations tested). Maximum fold repression is plotted against the previously measured promoter activities\(^{230}\), \(R^2 = 0.9275\). Composite parts are marked by terminator (ECK120035132, circle; ECK120010831, square; ECK120034435, triangle; ECK120021270, diamond; ECK120010793, star; ECK120030221, x; ECK120010815, +).

<table>
<thead>
<tr>
<th>Terminator</th>
<th>Promoter</th>
<th>Maximum repression ± s.d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECK120035132</td>
<td>apFAB71</td>
<td>61.86 ± 33.25</td>
</tr>
<tr>
<td>ECK120010831</td>
<td>apFAB71</td>
<td>36.60 ± 12.32</td>
</tr>
<tr>
<td>ECK120021270</td>
<td>apFAB67</td>
<td>23.08 ± 1.50</td>
</tr>
<tr>
<td>ECK120010793</td>
<td>apFAB61</td>
<td>17.94 ± 2.29</td>
</tr>
<tr>
<td>ECK120034435</td>
<td>apFAB341</td>
<td>12.84 ± 1.54</td>
</tr>
<tr>
<td>ECK120030221</td>
<td>Bba_J23119</td>
<td>7.05 ± 0.63</td>
</tr>
<tr>
<td>ECK120010815</td>
<td>apFAB345</td>
<td>7.16 ± 0.75</td>
</tr>
<tr>
<td>ECK120010831</td>
<td>apFAB345</td>
<td>1.49 ± 0.02</td>
</tr>
<tr>
<td>ECK120035132</td>
<td>Bba_J23102</td>
<td>1.51 ± 0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.44 ± 0.06</td>
</tr>
</tbody>
</table>
Table 3-2: Terminator promoter pairs tested in Figure 3-10.
Maximum repression is the average of three replicates collected on different days.

3-2-5. Repression occurs due to a combination of asRNA activity and transcriptional collisions

To determine the relative contributions of asRNA and transcriptional interference to repression generated by antisense promoters, we built a set of plasmids to express asRNA corresponding to the reporter gene (Fig 3-11a). These plasmids each have one of the four antisense promoters (apFAB49, apFAB140, apFAB78, or apFAB96) driving expression of the reverse compliment of RFP followed by a strong bi-directional terminator (ECK120034435). The cassette is placed on a plasmid containing the colE1 origin, which is maintained at a copy number approximately two times higher than p15A331. The asRNA plasmids were co-transformed into *E. coli* along with the original RFP reporter plasmid (pJBT1241, Fig 3-2a).

Using these data, the fold-repression due to antisense RNA θ_{asRNA} is calculated as in Equation 1, where the subscripts +/0 now represent the presence or absence of *trans* encoded asRNA. θ_{asRNA} should be viewed as an upper bound on the contribution from asRNA to total fold repression θ. This is because its expression in *trans* causes the asRNA to be longer (relative to the asRNAs generated at the 3'-end by RNAP collisions) and expressed at a higher level (due to absence of RNAP collisions and the higher copy number plasmid). Fold repression generated by transcriptional interference θ_{TI} can then be determined by dividing the total fold repression θ by θ_{asRNA}. Thus, θ_{asRNA} and θ_{TI} reflect the relative contributions of asRNA and transcriptional interference to total repression generated by antisense transcription. Plotting θ, θ_{asRNA}, and θ_{TI} versus inducer concentration shows that asRNA and transcriptional interference generate approximately equivalent contributions to repression (Fig 3-11b). When the forward promoter is strongly induced, the predicted *cis* contribution declines, which is consistent with models of transcriptional interference316 (Fig 3-11b).
Figure 3-11: Repression generated by asRNA.
(A) Plasmids to measure repression generated by asRNA produced in \textit{trans}. These plasmids were co-transformed with pJBT1241 and RFP fluorescence was measured to test repression generated by asRNA in \textit{trans}. (B) Total fold-repression θ generated by apFAB96 (a), apFAB78 (b), apFAB140 (c), apFAB49 (d) antisense promoters are shown as a function of forward promoter activity using the characterization system in Fig 4a (black line). This is compared to the repression observed when the same promoter is used to drive the transcription of asRNA in \textit{trans} from a separate plasmid (dashed red line). The repression due to transcriptional interference θ_{T} (solid red line) is inferred from the total and \textit{trans} asRNA repression data (see text for details).

It is noteworthy that strong repression cannot be achieved through either transcriptional interference or asRNA alone. They each contribute equally in a multiplicative way to the total repression that can be achieved using antisense promoters. The \textit{cis} regulation is likely most important for achieving maximal repression when the asRNA does not have specific regulatory
qualities, such as RNA-RNA or RNA-DNA interaction hairpins332,333, Hfq binding motifs334, or RNase processing sites304,335.

A differential equation model was developed to explore collision interference and parameterize the repression that arises for different forward and antisense promoter firing rates (ϕ_F and ϕ_R) and gene length N. The model and parameters are shown in Figure 3-12 and Table 3-3. Polymerases that originate from the forward promoter P_F transcribe a gene at a constant velocity v unless they collide with polymerases from the interfering promoter P_R on the opposing strand of DNA. In the event of a collision, polymerases dissociate from the DNA.

Collision interference can be captured by two differential equations that track the steady-state concentration of polymerases on the forward C_F and reverse C_R strands as a function of the distance from the start site x (in bp):

$$\frac{dC_F}{dx} = -\varepsilon_F C_F C_R$$ \hspace{1cm} (3-4) \\
$$\frac{dC_R}{dx} = \varepsilon_R C_F C_R$$ \hspace{1cm} (3-5)

Here, the ε_F and ε_R are parameters that reflect the possibility that RNAPs fired from the forward and antisense promoters could have different propensities to encounter collisions and dissociate from the DNA. Transcriptional bursting could prevent RNAPs from encountering head-on collisions by increasing the time between transcription events initiated at the opposing promoter. In addition, RNAPs fired from the forward and antisense promoters could have different propensities to dissociate from the DNA following collision. In vitro experiments show that head-on RNAP collisions result in stalling and backtracking of the enzymes336, which leaves them vulnerable to clearance337,338. However, co-translating ribosomes339 and actively transcribing RNAPs340,341 have been shown to rescue stalled/backtracked complexes by realigning the 3'termini of the RNA transcript with the enzyme’s active site. In addition, there are active mechanisms that favor the termination and release of RNAPs transcribing non-coding RNA342. Therefore the model was built to accommodate differences in dissociation for RNAPs fired from forward and antisense promoters of different strengths.
Figure 3-12: Schematic of the transcriptional interference model. A forward \(P_F \) and antisense \(P_R \) promoter are located on either side of a gene, \(N \) bases apart. The promoters fire at rates \(\phi_F \) and \(\phi_R \) RNAP/second. Polymerases transcribe at a constant velocity \(v \) unless they collide with polymerases fired from opposing promoter. Polymerases collide and dissociate from the DNA with a probability \(\epsilon \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N)</td>
<td>Distance between transcription start points (bp)</td>
<td>841</td>
<td></td>
</tr>
<tr>
<td>(v)</td>
<td>Speed of transcription (bp/s)</td>
<td>40</td>
<td>Sneppen et al, 2005</td>
</tr>
<tr>
<td>(\phi_F)</td>
<td>Rate of RNAP production from (P_F) (s-1)</td>
<td>pBla: 0.031</td>
<td>Liang et al, 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [1]: 0.001439</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [5]: 0.001548</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [10]: 0.002232</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [20]: 0.003643</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [50]: 0.006778</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [70]: 0.025262</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [100]: 0.03976</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [200]: 0.18756</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [500]: 0.35764</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pTac [1000]: 0.41141</td>
<td>this study</td>
</tr>
<tr>
<td>(\phi_R)</td>
<td>Rate of RNAP production from (P_R) (s-1)</td>
<td>apFAB49: 0.15345</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apFAB140: 0.64814</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apFAB78: 1.01410</td>
<td>this study</td>
</tr>
<tr>
<td></td>
<td></td>
<td>apFAB96: 1.23185</td>
<td>this study</td>
</tr>
<tr>
<td>(\epsilon_F)</td>
<td>Ejection factor for RNAP fired from (P_F)</td>
<td>0.104 ± 0.031</td>
<td>fitted</td>
</tr>
<tr>
<td>(\epsilon_R)</td>
<td>Ejection factor for RNAP fired from (P_R)</td>
<td>0.494 ± 0.027</td>
<td>fitted</td>
</tr>
</tbody>
</table>

Table 3-3: Parameters in the transcriptional interference model.

Boundary conditions are defined by the rates that polymerases are fired, i.e. begin elongating, at the forward \(C_F(x=0) = \phi_F/v \) and reverse \(C_R(x=N) = \phi_R/v \) promoters. The polymerase velocity \(v = 40 \) bp/s is held constant. The equations are numerically solved for each \(\phi_F \) and \(\phi_R \) combination (Methods). We chose to model \(P_F \) as \(P_{\text{lec}} \) with ten different IPTG concentrations and \(P_R \) as four different constitutive promoters: apFAB49, apFAB140, apFAB78, and apFAB96 (Fig 3-2). Simulated repression can be calculated as the ratio of full-length (\(x = N \)) transcripts produced from \(P_F \) with and without an antisense promoter.
\[\theta = \frac{C_{F|}\varepsilon_F=0}{C_{F|}\varepsilon_F>0} \], \hspace{1cm} (3-6)

providing a prediction that can be compared with measurements (Equation 3-1). For each combination of forward and antisense promoters, \(\theta \) is calculated and compared with that derived from experiments.

Repression due to asRNA is not included in the model. Rather, our approach was to fit the model predictions to the two bounds that we measured. First, results were fit to total repression \(\theta \), which assumes there is no contribution from asRNA to the observed repression. Next results were fit to \(\theta_{\text{min}} \), which represents the minimum amount of repression attributable to transcriptional interference. These bounds were then used to fit the underlying biophysical parameters and provide a range of values that reflect the possible contribution of transcriptional interference to gene repression.

We first simulated collision interference with \(\varepsilon_F = \varepsilon_R = 1 \), since previous models of transcriptional interference assume that actively transcribing polymerases never survive head-on collisions \(^{280,281,316}\) (Fig 3-13a). However, assuming \(\varepsilon_F = \varepsilon_R = 1 \) predicts too much repression and results in a poor fit to our experiments.

![Figure 3-13: Comparison of model predictions to experimental data.](image)

Each data point shows experimentally measured repression (\(\theta \) – white, \(\theta_{\text{min}} \) – grey) for each \(P_F/P_R \) pair plotted against model predictions generated with the same promoter combinations. Repressions predicted by the model were calculated using Equation 6 with (a) \(\varepsilon_F = \varepsilon_R = 1 \) or (b) optimal \(\varepsilon_F \) and \(\varepsilon_R \). The optimal \(\varepsilon_F \) and \(\varepsilon_R \) values simulate repression closest to the experimentally measured value (Methods).

To optimize \(\varepsilon_F \) and \(\varepsilon_R \), the model was solved where these parameters are varied in the range \([0,1]\) in increments of 0.01 (Fig 3-14). This was repeated for each value of \(\phi_F \) and \(\phi_R \) in our data set and the values of \(\varepsilon_F \) and \(\varepsilon_R \) that generate repression closest to the experimentally
measured θ_{T1} were determined. This yielded a set of 88 optimal values of ε_F and ε_R, corresponding to all of combinations of forward and antisense promoter activities (44 pairings) fit to either θ or θ_{T1}. The optimal values of ε_F and ε_R produced behavior that closely matches the experimental data (Fig 3-13b, linear regression; $m = 1$, $R^2 = 0.84082$). Values of $\varepsilon < 1$ are interpreted as cases where polymerases either avoid or survive collision and continue transcribing. Importantly, the model does not assume that one RNAP must dissociate in order for the RNAP on the opposing strand of DNA to survive collision. This assumption that polymerases can bypass is supported by \textit{in vitro} experiments done with viral344 and yeast345 RNA polymerases.

\textbf{Figure 3-14: Model results when ε_F and ε_R are varied between 0 and 1 at increments of 0.01.} Graphs show density of polymerases fired from either the forward (F - blue) or interfering promoter (R - red) along the DNA. Forty different forward/interfering promoter combinations were simulated, which model P_F as pTac + ten IPTG concentrations (1, 5, 10, 20, 50, 70, 100, 200, 500, 1000 μM; across) and P_R as apFAB49 (top row), apFAB140 (second row), apFAB78 (third row), or apFAB96 (bottom row).

The optimum values of ε_F and ε_R are surprisingly constant across the dataset and are independent of the identity of the antisense promoter or the firing rate of the forward promoter (Fig 3-15a). ε values fit using θ represent the probabilities that polymerases collide and dissociate when transcriptional interference is assumed to be the sole mechanism for gene repression. In contrast ε values fit using θ_{T1} reflect the smallest possible contribution of transcriptional interference to gene repression. Thus we find a range of ε values that reflect the potential contributions of collision interference to gene repression. We find that the probability that a polymerase dissociates due to a competing enzyme is significantly larger for RNAPs fired from
the antisense promoter ($\langle \epsilon_R \rangle = 43\text{-}54\%$) as compared to those from the forward promoter ($\langle \epsilon_F \rangle = 7\text{-}15\%$) (Fig 3-15b). In addition, the model predicts that fold repression due to transcriptional interference increases exponentially as a function of the antisense promoter strength and distance between the two promoters (Fig 3-16). To test repression as a function of distance between the forward and antisense promoters, we modified our antisense reporter system and inserted yfp between the 3'eend of rfp and the antisense promoter (Fig 3-25b). This increases the distance between the two promoters from 850bp to 1,500bp. Measuring repression of RFP and YFP using this system shows that repression increases as the distance between the two promoters grows.

![Figure 3-15: Best fit values of ϵ as a function of forward P_F and antisense P_R promoter strength.](image)

Figure 3-15: Best fit values of ϵ as a function of forward P_F and antisense P_R promoter strength.

Relationships between forward promoter strengths, ϕ_F and ϕ_R, and the probabilities that polymerases fall off the DNA after collision, ϵ_F (blue circles) and ϵ_R (red squares). Graphs show the best ϵ_F and ϵ_R for each promoter combination from the ϵ parameter sweep and experimentally measured ϕ_F and ϕ_R. ϵ_F and ϵ_R were fit to experimental data of fold repression generated by transcriptional interference alone θ_{T} (a) or by maximum fold repression (b). The highest scoring ϵ_Fs and ϵ_Rs for each ϕ_F and ϕ_R are averaged, y-error bars show the s.d. between these values. x-error bars show the s.d. of three replicates collected on different days. (C) Range of optimal ϵ values that result from fitting the model to θ or θ_{T}. Box plot extends from the median optimal ϵ_F and ϵ_R when the model is fit to θ_{T} ($\langle \epsilon_F \rangle = 0.07$, $\langle \epsilon_R \rangle = 0.52$) to median optimal ϵ_F and ϵ_R when the model is fit to θ ($\langle \epsilon_F \rangle = 0.14$, $\langle \epsilon_R \rangle = 0.47$). In all figure parts, the data represents the mean of three experiments performed on different days and the error bars are the standard deviation of these replicates. In all panels, fold repression θ is the magnitude of gene expression produced by forward promoter in the absence of an antisense promoter divided by the amount of gene expression produced in the presence of an antisense promoter.
Figure 3-16: Model predicts an exponential increase in repression.
The collision interference model was used to predict fold repression with wide range of antisense promoter
strength P_R values and different distances between promoters. (a) Top: schematic showing the antisense
transcription reporter system. Bottom: model simulations where θ_R is varied from 0 to 2 at increments of
either 0.01 or 0.1 (1/s), ϵ_F is set to the median value fit by θ_T ($\epsilon_F = 0.07$, white circles) and θ ($\epsilon_F = 0.14$,
grey circles). For these simulations, ϵ_R was held constant at 0.515. Experimental results for θ (black
squares) and θ_T (red squares) are also shown as a function of antisense promoter strength. Data from Fig 3-
19. (b) Top: Schematic showing the antisense transcription reporter system with longer distance between P_F
and P_R. A second fluorescent protein yfp was added between the 3’end of rfp and PR to increase the
distance between promoters from 841bp to 1,500 bp. Plasmid maps in Appendix Fig S8. Bottom: model
simulations where N is varied from 200 - 5,000bp in increments of 50, 100, or 1,000 bp. P_R was simulated
as apFAB49, apFAB140, apFAB78 and apFAB96 by setting ϕ_R to values of 0.15345 RNAP/s (blue circles),
0.64814 RNAP/s (green circles), 1.014108 RNAP/s (purple circles), and 1.231852 RNAP/s (red circles),
respectively. For all simulations in this figure, ϕ_F was held constant at 0.03976 (to simulate $P_{pac} + 100\mu M$
IPTG) and ϵ_F and ϵ_R were set at the median optimum values: 0.07 and 0.515, respectively. Experimental
results show RFP and YFP repression with four different antisense promoters: apFAB49 (blue squares),
apFAB140 (green squares), apFAB78 (purple squares), and apFAB96 (red squares). For all figure panels,
repression is measured when Ptac is induced with 100μM IPTG.

3-3. CONCLUSIONS

This work demonstrates that antisense promoters can be reliably used to tune gene
expression. The degree of repression is proportional to the strength of the antisense promoter
over a >30-fold range. This builds on the modern revisiting of the classical “expression cassette”
to incorporate additional non-canonical parts to tune expression, insulate against context, and
provide for rapid debugging via –omics techniques. In this paradigm, there are alternative
means to control the expression level of a gene, such as by changing the forward promoter,
the RBS, small RNA, and 3’-hairpins for mRNA stability. While some of these
approaches can achieve greater ranges of expression control, antisense promoters have some unique features that are advantageous for some applications. Notably, they offer a means of control external to the expression cassette. This is particularly valuable when the forward control elements (promoter and RBS) have been engineered to integrate additional regulatory information32,350-352. In these cases, it is not simple to adjust the overall expression level without interfering with how the signals are integrated. Exploiting antisense transcription allows for control without changing the inputs to the system or the sequence of the forward transcript. The flow-seq data demonstrate that the impact of the antisense promoter is largely context-independent. From this, we derive a set of unidirectional terminators that can be combined with the antisense promoter in a modular manner. Thus, implementing this control is simple and modular and can be done with existing promoter libraries.

The performance of antisense transcription is derived from its unique synergy between its impact on transcription from the forward promoter and post-transcriptional impact on protein expression. For our system, we find that antisense RNA and collision between actively transcribing RNA polymerases contribute roughly equally to repress gene expression. This synergy is important because transcriptional interference implements its control at the transcriptional level and would not be able to repress mRNAs made by RNAPs that avoid collision. Antisense RNAs prohibit escaped mRNA transcripts from being translated. For asRNAs with weak affinity for the target mRNA, cohesion between the two mechanisms may facilitate greater repression of target genes than the asRNA alone.

The model predicts some mechanistic details about collision interference. Most strikingly, polymerases transcribing translated mRNA survive or avoid ~85% of their head on collisions, which may explain the inability to completely abolish gene expression with transcriptional interference alone, despite the use of very strong interfering promoters. Polymerase survival rates are not as high if the polymerase is fired from the antisense promoter (~50% survival). This imbalance may be due to differences in the kinetic properties of the two promoters, \textit{e.g.} burstiness, or differential dissociation of the RNAPs. Single molecule experiments that measure polymerase survival rates directly could be done to differentiate between these two mechanisms. Additional experiments can also refine our understanding of antisense transcription by parameterizing additional mechanisms. The model presented here is
limited to collision interference as the mechanism of repression in cis, however several additional factors, such as r-loop formation353, changes in DNA topology269, differences in local asRNA concentration354, and occlusion interference415, could also be considered. Direct measurement of asRNA activity in cis and trans, as well as measurement of RNA duplex formation and degradation rates, r-loop formation, and other modes of transcriptional interference would facilitate the construction of a more detailed mechanistic model of repression mediated by antisense transcription.

Considering natural genomes, antisense promoters could be a simple evolutionary mechanism to reduce gene expression. This is especially true of housekeeping sigma factors – such as s\textsubscript{70} – whose binding sites are relatively information poor, and mutagenesis is expected to cause promoters to frequently arise spontaneously during evolution296. The particular location of the antisense promoter would not matter and it could even occur within the gene itself, as is often observed285,292,294,305,355. Constitutive promoters arise quickly and this would provide a simple mechanism to reduce gene expression that could be rapidly discovered during an evolutionary search. This is consistent with the lack of conservation of antisense promoters between species296,297, where they may appear and disappear quickly in evolutionary time to fine tune expression. This would be an easier solution to find than making mutations to the sense promoter, which can be significantly constrained by needs of regulatory signal integration356. Thus, the total expression of a gene could be tuned without disturbing the integration of signals. The rate of evolution around any individual promoters may not be high296 because there are many similar solutions that can be found.

Here, we show how antisense transcription can be integrated into a simple NOT gate, that has been a common motif in building larger synthetic genetic circuits. This provides a mechanism where the switching threshold can be tuned without impacting other characteristics of the gate, such as the cooperativity. More complex circuits could be built by exploiting antisense transcription in both prokaryotic and eukaryotic systems, where antisense regulation is known to occur280,285,361 and additional tuning knobs can help improve performance of synthetic systems323,357,358. The simple constitutive promoters we employ here could be exchanged for dynamic promoters that respond to inducers or cellular/environmental conditions or implement negative feedback. This motif occurs in natural regulatory networks, for example many of the
antisense promoters in *B. subtilis* are regulated by alternative sigma factors that respond to different environmental conditions\(^\text{207}\). This gets more complex as the sigma factors themselves are regulated by antisense transcription\(^\text{326}\). Even more interesting architectures have been observed in nature, for example there are many that involve overlapping 5’- and 3’-UTRs. The overlap can include entire genes; for example, divergent operons have been observed where the promoter for each occurs one gene into the other\(^\text{280,359}\). These motifs would enable mutually exclusive switch-like changes between the sets of genes that are expressed\(^\text{300}\). Collectively, this points to antisense transcription as something that should be routinely incorporated into engineered systems, as opposed to being avoided.

3-4. MATERIALS AND METHODS

3-4-1. Strains and media.

E. coli strains NEB10β (Δ(ara-leu)7697 araD139 fhuA ΔlacX74 galK16 galE15 e14-f80dlacZΔM15 recA1 relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ (mrr-hsdRMS-mcrBC)) and DH10B (F- Δ(ara-leu)7697 araD139 ΔlacX74 galE15 f80dlacZDM15 recA1 endA1 nupG rpsL mcrA D(mrr-hsdRMS-mcrBC) l-) were used for all experiments. Cells were grown in either LB Miller Broth (Becton Dickinson 244630) or M9 minimal medium supplemented with glucose ((6.8 g/L Na\(_2\)HPO\(_4\), 3 g/L KH\(_2\)PO\(_4\), 0.5 g/L NaCl, 1 g/L NH\(_4\)Cl; Sigma M6030), 2mM MgSO\(_4\) (Affymetrix 18651), 100 mM CaCl\(_2\) (Sigma C1016), 0.4% glucose (Fisher scientific M10046), 0.2% casamino acids (Becton Dickinson 223050), 340 mg/mL thiamine (vitamin B1) (Alfa Aestar A19560). Carbenicillin (100 mg/mL) (Gold Bio C-103), kanamycin (50 mg/mL) (Gold Bio K-120) and/or chloramphenicol (35 mg/mL) (USB Corporation 23660) were added to growth media to maintain plasmids when appropriate. Isopropyl b-D-1-thiogalactopyranoside (IPTG) (Gold Bio I2481C) was used as the inducer for all constructs.

E. coli strains were grown for 16 h in LB media containing antibiotics in 96-deep well blocks (USA Scientific 1896-2000) at 37°C and 250 r.p.m in an INFORMS-HT Multitron Pro. After 16 h, the cultures were diluted 1:200 into M9 medium with antibiotics and grown for 3 h with the same shaking and temperature settings as the overnight growth. Next, the cultures were diluted
1:700 into fresh M9 medium with antibiotics and different concentrations of isopropyl β-D-1-thiogalactopyranoside (IPTG). These cultures were grown for 6 h then diluted 1:5 into phosphate buffered saline (PBS) containing 2mg/mL kanamycin or 35μg/mL chloramphenicol to arrest protein production and fluorescence was measured using a flow cytometer.

3-4-3. Cytometry measurement and data analysis.

Cells were analyzed by flow cytometry using a BD Biosciences Fortessa flow cytometer with blue (488 nm) and red (640 nm) lasers. An injection volume of 10 μL and flow rate of 0.5 μL/s were used. Cytometry data was analyzed using FlowJo (TreeStar Inc., Ashland, OR) and populations were gated on forward and side scatter heights. The gated populations consisted of at least 30,000 cells. The median fluorescence of the gated populations was used calculated using FlowJo and used for all reporting. Auto-fluorescence of white cells (NEB10β without plasmids) was subtracted from all fluorescence measurements.

3-4-4. Promoter strength calculations.

Promoter firing rates (RNAP/second) were estimated using NEB10β cells harboring one of the following plasmids: pJBTI26, pJBTI264, pJBTI265, pJBTI266, pJBTI267, pJBTI136 (Fig 2-17). Fluorescence of each strain was measured as described above. Fluorescence produced by the strain harboring plasmid pJBTI136 (<YFP> = 528 au) was used to define a promoter-firing rate of 0.031 RNAP/second, which has been reported for promoter P_bla59. Fluorescence of strains carrying the other plasmids were divided by fluorescence produced by the strain harboring pJBTI136 and multiplied by 0.031 RNAP/second to obtain promoter firing rates. The hammerhead ribozyme insulator Ribof56 was used to standardize the 5’UTR of YFP mRNA so that changes in fluorescence could be attributed solely to differences in polymerase firing. To convert promoter-firing rates (RNAP/second) back to arbitrary units reported by the cytometer, multiply the firing rates by 17,032.
Figure 3-17: Plasmids to measure promoter firing rates (RNAP/second). Promoter P_{bla} was used to define a polymerase firing rate of 0.031 s^{-1}. NotI/SbfI multiple cloning sites were used to digest the reference plasmid and insert other promoters (apFAB49, apFAB140, apFAB78, apFAB96, P_{ptc}) for promoter strength measurement.

Relative expression units (REUs) were calculated using DH10B cells harboring one of the following plasmids: ORFP2, pAN1717 (Fig 3-18a). Strains harboring ORFP2 and pAN1717 were grown and measured in parallel with experimental strains. To convert raw RFP fluorescence measurements into REU, RFP produced by experimental strains was divided by red fluorescence produced by the strain harboring ORFP2. To convert our reported RFP measurements (REU) back to arbitrary units, multiply the REU value by 2295. To convert raw YFP fluorescence measurements into REU, YFP produced by experimental strains was divided by YFP produced by pAN1717. To convert our reported YFP measurements (REU) back to arbitrary units, multiply the REU value by 550. When measuring NOT gate response functions, input promoter (P_{ptc}) activity was measured using plasmid pJBTI26 (Fig 3-18b) and converted into REUs as described here.
Figure 3-18: REU standard plasmids used in this study.
(a) Plasmids used to convert YFP (pAN1717) and RFP (ORFP2) fluorescence measurements into Relative Expression Units (REUs). (b) Plasmid used to measure input (P_\text{in}) promoter activity for NOT gate response functions.

Promoter strength measurements reported throughout the paper as au are from the RNA-seq experiments of Kosuri et al., 201334. In these experiments, promoter strengths are calculated using RNAseq read depth of mRNA produced by each promoter driving expression of green fluorescent protein.

3-4-5. Classification of terminators.
Terminators that encode cryptic antisense promoters or destabilize mRNA when placed at the 3' end were identified by analyzing data from Chen et al.'s study of E. coli intrinsic terminators63. In this study, termination strength was measured by observing the changes in GFP and RFP expression that occur when a terminator is placed between two fluorescent proteins (5' GFP and 3'RFP). Strong terminators resulted in a large drop in RFP fluorescence relative to a control plasmid with no terminator (pGR). Chen et al. measured several terminators in both the forward and reverse orientation, which allowed us to identify unidirectional terminators for this study. We classified terminators as unidirectional if they have termination strength <10 in the reverse orientation and >10 in the forward direction.
Average levels of GFP and RFP fluorescence produced by plasmids carrying Chen et al.’s library of terminators were used to identify terminators that encode cryptic antisense promoters or destabilize mRNA. Terminators that decreased GFP expression relative to the average were assumed to destabilize mRNA. Similarly, terminators that increased RFP expression when measured in the reverse direction, were assumed to encode cryptic antisense promoters. We classified terminators that decreased GFP expression more than one standard deviation below the mean as destabilizing mRNA and terminators that increased RFP expression more than one standard deviation as encoding cryptic antisense promoters.

3-4-6. Library design and construction.
The terminator/antisense promoter library was built as described previously320. The library was constructed based on 52 terminators27 and 109 constitutive promoters26,320, paired combinatorially to produce 5,668 unique composite parts. We used 90 promoters from an existing library26 and 19 from the Anderson promoter library on the BioBricks Registry. The terminators are naturally occurring sequences from the \textit{E. coli} K12 genome that were previously characterized by Chen et al.27 and selected to encompass a wide range of terminator strengths. The composite parts were checked for restriction sites (NotI and SbfI) and none were found. To generate the final library, all sequences were flanked by restriction enzyme sites (NotI and SbfI) and PCR primer binding sites: (1) ATATAGATGCCCCTCTTAGCG and (2) AAGTATCTTTCCTGTGCCCA.

The oligonucleotide library was constructed by CustomArray, Inc. using their CMOS semiconductor technology. The library was delivered as a 1 fM oligonucleotide pool and amplified using specific PCR primers: oj1299 and oj1300 (Table 3-4). The PCR products were then digested with NotI (New England Biolabs R3189) and SbfI (New England Biolabs R3642) restriction enzymes and cleaned with DNA Clean & Concentrator columns (Zymo Research C1003). Plasmid backbones encoding repressor-protein based NOT gates (PhIF, SrpR, TarA; maps in Fig 2-9) were amplified by PCR with primers to add NotI and SbfI restriction sites to the 3’end of the repressor gene. Plasmid backbones were then digested with the same restriction enzymes and cleaned using DNA Clean & Concentrator columns. After digestion, the library inserts and plasmid backbones were ligated using T4 DNA Ligase (New England Biolabs M0208) and cloned into \textit{E. coli} NEB10β electrocompetent cells (New England Biolabs
C3020K), resulting three libraries (PhIF, SrpR, and TarA) of ~160,000 clones each and >20 fold coverage of the designed sequence space. Each library was scraped from solid media plates and frozen at -80°C in 200 µL aliquots with 15% glycerol for subsequent analysis.

3-4-7. Library growth and fluorescence activated cell sorting (FACS).

To grow libraries for flow cytometry analysis or cell sorting, one aliquot of each library was thawed and 10µL of the sample were added to 3 mL of LB media supplemented with carbenicillin in 15mL culture tubes (Fischer Scientific 352059). Once thawed, the remaining library aliquot was discarded to avoid cell death from repeated freeze-thaw cycles. The inoculated libraries were grown for 12 h at 30°C and 250 r.p.m. in a New Brunswick Scientific Innova 44. NEB10β control strains, containing unmodified NOT-gate plasmids (Fig 3-2a) were inoculated from single colonies into 3 mL of LB supplemented with carbenicillin and also grown at 30°C and 250 r.p.m. After 12 h, both library and control strain cultures were diluted 1:200 into 25 mL of M9 medium with carbenicillin in 250mL Erlenmeyer flasks (Corning 4450-250) and grown at 37°C and 250 r.p.m. for 3 h. Next, the cultures were diluted to 0.001 OD600 in 25 mL of M9 medium with carbenicillin and either 0µM or 100µM IPTG. These cultures were grown for 6 h to obtain exponential phase growth. At the end of 6 h, cultures were diluted to OD600 ~0.05 into PBS containing 35 µg/mL chloramphenicol to arrest cell growth and protein production until sorting. Aliquots of each library were also frozen at -80°C with 15% glycerol (VWR BDH1172) to serve as ‘unsorted’ controls.

Cell sorting was done on a BD Biosciences FACSaria II with a blue (488 nm) laser. Each NOT gate library was sorted into four non-adjacent log-spaced bins based on YFP fluorescence. Control strains grown with 0µM and 100µM IPTG defined the upper and lower boundaries for bin placement, respectively. One million cells were sorted into the lowest fluorescence bin (Bin 1; Fig 3-10, blue), which captured 9.8-13.9% of each library. 50,000 – 200,000 cells were sorted into all other bins, which captured 0.2-4.4% of the cells in each library. After sorting, cells were plated on solid media to minimize the effect of growth rate differences on library representation. Each bin was then scraped from the solid media plates and frozen at -80°C in 200 µL aliquots with 15% glycerol (VWR BDH1172) for subsequent analysis.
3-4-8. Sorted library sequencing.

Plasmids were isolated from cells in each bin using a miniprep kit (Qiagen 1018398) by thawing one aliquot of each frozen sorted bin and using the entire sample as input to the kit. For deep sequencing, 30ng of each miniprepped sample was amplified for thirty cycles of PCR with Phusion High-Fidelity Polymerase Master Mix (New England Biolabs M0531). This PCR step added barcodes to each sample using primers oj1302, 1334 - oj1348 (Table 3-4). Amplification of samples was verified with gel electrophoresis and quantified using a NanoDrop spectrophotometer (ND-1000). Unsorted control samples were identically processed and sequenced. 13.1M constructs were sequenced in a single MiSeq 150 paired-end lane with the sequencing primers oj1301, oj1303, and oj1356 (Table 3-4). To correct for the fact that fewer cells are sorted into the later bins (BIN2-4), the samples were mixed such that the ‘unsorted’ and ‘BIN1’ samples were present in equimolar ratios and made up 90% of the final sequenced mixture. The ‘BIN2’, ‘BIN3’, and ‘BIN4’ samples, which were also mixed in equimolar ratios, constituted the last 10% of the final sequenced mixture. This resulted in 1.7-2.2 million sequencing reads from the each of the ‘unsorted’ and ‘BIN1’ samples and 100,000 – 180,000 sequencing reads from each of the ‘BIN2’, ‘BIN3’, and ‘BIN4’ samples (Table 3-1).

Amplify oligonucleotides from chip synthesized pool:

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>oj1299 FW</td>
<td>Amplification primer: ATATAGATGCCGTCTAGCGGCG</td>
</tr>
<tr>
<td>oj1300 RV</td>
<td>AGATACGGAAAGATACTTCTCCTTG</td>
</tr>
</tbody>
</table>

Add deep sequencing barcodes:

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>oj1302 FW</td>
<td>Amplification primer: CAAGCAGAAGAGCAGATACGAGATGTGTGTTTGTgettcg</td>
</tr>
<tr>
<td>oj1303 RV</td>
<td>ccaTGGGGGTATGGCCTGAGG</td>
</tr>
<tr>
<td>oj1334 RV</td>
<td>CAAGCAGAAGAGCAGATACGAGATAGGTGTgettcgccTaTAGGCTATGCGGCTGAGG</td>
</tr>
<tr>
<td>oj1335 RV</td>
<td>gccaTGGGGGTATGGCCTGAGG</td>
</tr>
<tr>
<td>oj1336 RV</td>
<td>CAAGCAGAAGAGCAGATACGAGATTCGTGTgettcgccaTGGGGGTATGGCCTGAGG</td>
</tr>
<tr>
<td>oj1337 RV</td>
<td>gccaTGGGGGTATGGCCTGAGG</td>
</tr>
<tr>
<td>oj1338 RV</td>
<td>CAAGCAGAAGAGCAGATACGAGATGTTCTCCTGAGG</td>
</tr>
<tr>
<td>oj1339 RV</td>
<td>gccaTGGGGGTATGGCCTGAGG</td>
</tr>
<tr>
<td>oj1340 RV</td>
<td>CAAGCAGAAGAGCAGATACGAGATGTAGGTgettcgcTaTAGGCTATGCGGCTGAGG</td>
</tr>
<tr>
<td>oj1341 RV</td>
<td>gccaTGGGGGTATGGCCTGAGG</td>
</tr>
</tbody>
</table>
Table 3-4: Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV SrpR BIN4 amplification primer</td>
<td>ccaTGGGGGTATGGCCTGCAGG</td>
</tr>
<tr>
<td>RV SrpR Unsorted amplification primer</td>
<td>CAAGCAGAAGACGGCATAACGAGATAGTCTCattctcg</td>
</tr>
<tr>
<td>RV TarA BIN1 amplification primer</td>
<td>ccaTGGGGGTATGGCCTGCAGG</td>
</tr>
<tr>
<td>RV TarA BIN2 amplification primer</td>
<td>CAAGCAGAAGACGGCATAACGAGATTTCTCTCattctcg</td>
</tr>
<tr>
<td>RV TarA BIN3 amplification primer</td>
<td>ccaTGGGGGTATGGCCTGCAGG</td>
</tr>
<tr>
<td>RV TarA BIN4 amplification primer</td>
<td>CAAGCAGAAGACGGCATAACGAGATGCAGAattctcg</td>
</tr>
<tr>
<td>RV TarA Unsorted amplification primer</td>
<td>gccaTGGGGGTATGGCCTGCAGG</td>
</tr>
<tr>
<td>FW seq primer:</td>
<td>gacatTAACTAGGCGCGCCGC</td>
</tr>
<tr>
<td>RV seq primer:</td>
<td>gettctcgccaTGGGGGTATGGCCTGCAGG</td>
</tr>
<tr>
<td>Barcode read:</td>
<td>CCTGCAGGCCATACCCCCAaggccagaagc</td>
</tr>
</tbody>
</table>

3-4-9. Deep sequencing analysis.

Custom software ('IlluminaSeqAnalysis.m') was written to combine paired end reads and identify composite parts with perfect sequence identity to designed constructs. Each set of paired 150bp reads was aligned and merged into a contig based on overlapping sequence. NotI and SbfI restriction enzyme sites were identified and all sequences (including adapter and constant primer sequence) outside the restriction sites were trimmed from both ends of the contig. Reads that did not pair or did not have both restriction sites were discarded since all composite parts were under 200bp, thus paired reads should have overlapping sequence and yield contigs with both restriction sites. Of the 13.1M constructs sequenced, 11.2M (85.30%) yielded paired reads with overlapping sequence and both restriction sites. Once paired, all remaining contigs with mismatches (insertions, deletions, or substitutions) to designed constructs were discarded. Of the 11.2M contigs, 3.6M (32.28%) are perfect matches to the designed library. This is consistent with the error rate of chip-based oligo synthesis37.

Analysis of the perfect sequences shows that 70.0 – 77.5% of the composite parts appear at least once in each of the unsorted libraries (Fig 3-19, Table 3-1). When we select for library members that alter the NOT gate response functions, coverage of the library decreases to 50.2 – 74.8% in Bin 1, 38.5 – 50.0% in Bin 2, 25.0 – 26.1% in Bin 3 and 15.8 – 25.3% in Bin 4 (Fig 3-
19). This is expected since a limited subset of the constructs will be capable of shifting the gate thresholds. Indeed, >50% of the composite parts encode promoters weaker than apFAB49, which generated less than a two-fold change in RFP expression in our original experiments (Fig 3-4).

Figure 3-19: Composite part frequencies in each library by bin.
Sequencing read counts for each composite part in the PhIF (top), SrpR (middle), and TarA (bottom) libraries. Only reads that are perfect matches to the designed sequences are shown. Promoter and terminator ordering is the same for all heatmaps. Promoters are ordered by strength from 1 (weakest) to 109 (strongest). Reference spreadsheet is Table 3-5.
<table>
<thead>
<tr>
<th>Terminator number</th>
<th>Terminator Name</th>
<th>Promoter number</th>
<th>Promoter Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ECK120010843-R</td>
<td>1</td>
<td>apFAB46</td>
</tr>
<tr>
<td>2</td>
<td>ECK120010802</td>
<td>2</td>
<td>apFAB101</td>
</tr>
<tr>
<td>3</td>
<td>ECK120010813-R</td>
<td>3</td>
<td>apFAB96</td>
</tr>
<tr>
<td>4</td>
<td>ECK120010780</td>
<td>4</td>
<td>apFAB47</td>
</tr>
<tr>
<td>5</td>
<td>ECK120029530-R</td>
<td>5</td>
<td>apFAB42</td>
</tr>
<tr>
<td>6</td>
<td>ECK120015446-R</td>
<td>6</td>
<td>apFAB95</td>
</tr>
<tr>
<td>7</td>
<td>BBa_B0051</td>
<td>7</td>
<td>apFAB36</td>
</tr>
<tr>
<td>8</td>
<td>ECK120030672</td>
<td>8</td>
<td>apFAB68</td>
</tr>
<tr>
<td>9</td>
<td>ECK120035132</td>
<td>9</td>
<td>apFAB31</td>
</tr>
<tr>
<td>10</td>
<td>ECK120015439-R</td>
<td>10</td>
<td>apFAB93</td>
</tr>
<tr>
<td>11</td>
<td>ECK120026315-R</td>
<td>11</td>
<td>apFAB54</td>
</tr>
<tr>
<td>12</td>
<td>ECK120010831</td>
<td>12</td>
<td>apFAB92</td>
</tr>
<tr>
<td>13</td>
<td>ECK120010841-R</td>
<td>13</td>
<td>apFAB52</td>
</tr>
<tr>
<td>14</td>
<td>ECK120020528</td>
<td>14</td>
<td>apFAB81</td>
</tr>
<tr>
<td>15</td>
<td>ECK120010796</td>
<td>15</td>
<td>apFAB71</td>
</tr>
<tr>
<td>16</td>
<td>ECK120010874</td>
<td>16</td>
<td>apFAB67</td>
</tr>
<tr>
<td>17</td>
<td>ECK120020622</td>
<td>17</td>
<td>apFAB70</td>
</tr>
<tr>
<td>18</td>
<td>ECK120010857</td>
<td>18</td>
<td>apFAB79</td>
</tr>
<tr>
<td>19</td>
<td>ECK120030802</td>
<td>19</td>
<td>apFAB100</td>
</tr>
<tr>
<td>20</td>
<td>ECK120021270</td>
<td>20</td>
<td>apFAB45</td>
</tr>
<tr>
<td>21</td>
<td>ECK120011170-R</td>
<td>21</td>
<td>apFAB61</td>
</tr>
<tr>
<td>22</td>
<td>ECK120010852</td>
<td>22</td>
<td>apFAB341</td>
</tr>
<tr>
<td>23</td>
<td>ECK120020525</td>
<td>23</td>
<td>apFAB80</td>
</tr>
<tr>
<td>24</td>
<td>ECK120010832-R</td>
<td>24</td>
<td>apFAB29</td>
</tr>
<tr>
<td>25</td>
<td>ECK120010833</td>
<td>25</td>
<td>apFAB32</td>
</tr>
<tr>
<td>26</td>
<td>ECK120010812-R</td>
<td>26</td>
<td>apFAB40</td>
</tr>
<tr>
<td>27</td>
<td>ECK120010836-R</td>
<td>27</td>
<td>apFAB30</td>
</tr>
<tr>
<td>28</td>
<td>ECK120010871</td>
<td>28</td>
<td>apFAB56</td>
</tr>
<tr>
<td>29</td>
<td>ECK120010806</td>
<td>29</td>
<td>j23119</td>
</tr>
<tr>
<td>30</td>
<td>ECK120030221</td>
<td>30</td>
<td>apFAB50</td>
</tr>
<tr>
<td>31</td>
<td>ECK120010825</td>
<td>31</td>
<td>apFAB85</td>
</tr>
<tr>
<td>32</td>
<td>ECK120015457-R</td>
<td>32</td>
<td>apFAB53</td>
</tr>
<tr>
<td>33</td>
<td>ECK120010840</td>
<td>33</td>
<td>apFAB318</td>
</tr>
<tr>
<td>34</td>
<td>ECK120010781</td>
<td>34</td>
<td>apFAB44</td>
</tr>
<tr>
<td>35</td>
<td>ECK120010864</td>
<td>35</td>
<td>apFAB76</td>
</tr>
<tr>
<td>36</td>
<td>ECK120010793</td>
<td>36</td>
<td>apFAB65</td>
</tr>
<tr>
<td>37</td>
<td>ECK120010856</td>
<td>37</td>
<td>apFAB140</td>
</tr>
<tr>
<td>38</td>
<td>ECK120010867</td>
<td>38</td>
<td>apFAB66</td>
</tr>
<tr>
<td>39</td>
<td>ECK120010815</td>
<td>39</td>
<td>apFAB75</td>
</tr>
<tr>
<td>40</td>
<td>ECK120010863</td>
<td>40</td>
<td>apFAB345</td>
</tr>
<tr>
<td>41</td>
<td>ECK120010782</td>
<td>41</td>
<td>apFAB103</td>
</tr>
<tr>
<td>42</td>
<td>ECK120016882</td>
<td>42</td>
<td>apFAB347</td>
</tr>
<tr>
<td>43</td>
<td>ECK120023928</td>
<td>43</td>
<td>apFAB39</td>
</tr>
<tr>
<td>44</td>
<td>tonB/P14</td>
<td>44</td>
<td>apFAB94</td>
</tr>
<tr>
<td>45</td>
<td>ECK120035133</td>
<td>45</td>
<td>apFAB323</td>
</tr>
<tr>
<td>46</td>
<td>ECK120010855</td>
<td>46</td>
<td>apFAB97</td>
</tr>
<tr>
<td>47</td>
<td>ECK120017009</td>
<td>47</td>
<td>apFAB78</td>
</tr>
<tr>
<td>48</td>
<td>ECK120015170</td>
<td>48</td>
<td>apFAB57</td>
</tr>
<tr>
<td>49</td>
<td>ECK120026481-R</td>
<td>49</td>
<td>apFAB72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>50</td>
<td>BBa_B0062</td>
<td>50</td>
<td>apFAB62</td>
</tr>
<tr>
<td>51</td>
<td>ECK120010858-R</td>
<td>51</td>
<td>apFAB48</td>
</tr>
<tr>
<td>52</td>
<td>ECK120034435</td>
<td>52</td>
<td>apFAB55</td>
</tr>
<tr>
<td>53</td>
<td>j23100</td>
<td>53</td>
<td>j23100</td>
</tr>
<tr>
<td>54</td>
<td>apFAB77</td>
<td>54</td>
<td>apFAB77</td>
</tr>
<tr>
<td>55</td>
<td>j23104</td>
<td>55</td>
<td>j23104</td>
</tr>
<tr>
<td>56</td>
<td>apFAB33</td>
<td>56</td>
<td>apFAB33</td>
</tr>
<tr>
<td>57</td>
<td>apFAB339</td>
<td>57</td>
<td>apFAB339</td>
</tr>
<tr>
<td>58</td>
<td>apFAB321</td>
<td>58</td>
<td>apFAB321</td>
</tr>
<tr>
<td>59</td>
<td>apFAB115</td>
<td>59</td>
<td>apFAB115</td>
</tr>
<tr>
<td>60</td>
<td>apFAB125</td>
<td>60</td>
<td>apFAB125</td>
</tr>
<tr>
<td>61</td>
<td>apFAB82</td>
<td>61</td>
<td>apFAB82</td>
</tr>
<tr>
<td>62</td>
<td>j23102</td>
<td>62</td>
<td>j23102</td>
</tr>
<tr>
<td>63</td>
<td>apFAB346</td>
<td>63</td>
<td>apFAB346</td>
</tr>
<tr>
<td>64</td>
<td>apFAB317</td>
<td>64</td>
<td>apFAB317</td>
</tr>
<tr>
<td>65</td>
<td>apFAB63</td>
<td>65</td>
<td>apFAB63</td>
</tr>
<tr>
<td>66</td>
<td>apFAB64</td>
<td>66</td>
<td>apFAB64</td>
</tr>
<tr>
<td>67</td>
<td>apFAB322</td>
<td>67</td>
<td>apFAB322</td>
</tr>
<tr>
<td>68</td>
<td>apFAB150</td>
<td>68</td>
<td>apFAB150</td>
</tr>
<tr>
<td>69</td>
<td>apFAB69</td>
<td>69</td>
<td>apFAB69</td>
</tr>
<tr>
<td>70</td>
<td>j23101</td>
<td>70</td>
<td>j23101</td>
</tr>
<tr>
<td>71</td>
<td>apFAB104</td>
<td>71</td>
<td>apFAB104</td>
</tr>
<tr>
<td>72</td>
<td>apFAB89</td>
<td>72</td>
<td>apFAB89</td>
</tr>
<tr>
<td>73</td>
<td>apFAB306</td>
<td>73</td>
<td>apFAB306</td>
</tr>
<tr>
<td>74</td>
<td>apFAB338</td>
<td>74</td>
<td>apFAB338</td>
</tr>
<tr>
<td>75</td>
<td>apFAB58</td>
<td>75</td>
<td>apFAB58</td>
</tr>
<tr>
<td>76</td>
<td>apFAB302</td>
<td>76</td>
<td>apFAB302</td>
</tr>
<tr>
<td>77</td>
<td>apFAB73</td>
<td>77</td>
<td>apFAB73</td>
</tr>
<tr>
<td>78</td>
<td>j23118</td>
<td>78</td>
<td>j23118</td>
</tr>
<tr>
<td>79</td>
<td>apFAB342</td>
<td>79</td>
<td>apFAB342</td>
</tr>
<tr>
<td>80</td>
<td>apFAB87</td>
<td>80</td>
<td>apFAB87</td>
</tr>
<tr>
<td>81</td>
<td>j23106</td>
<td>81</td>
<td>j23106</td>
</tr>
<tr>
<td>82</td>
<td>apFAB49</td>
<td>82</td>
<td>apFAB49</td>
</tr>
<tr>
<td>83</td>
<td>apFAB38</td>
<td>83</td>
<td>apFAB38</td>
</tr>
<tr>
<td>84</td>
<td>apFAB130</td>
<td>84</td>
<td>apFAB130</td>
</tr>
<tr>
<td>85</td>
<td>apFAB98</td>
<td>85</td>
<td>apFAB98</td>
</tr>
<tr>
<td>86</td>
<td>apFAB312</td>
<td>86</td>
<td>apFAB312</td>
</tr>
<tr>
<td>87</td>
<td>apFAB129</td>
<td>87</td>
<td>apFAB129</td>
</tr>
<tr>
<td>88</td>
<td>apFAB311</td>
<td>88</td>
<td>apFAB311</td>
</tr>
<tr>
<td>89</td>
<td>j23107</td>
<td>89</td>
<td>j23107</td>
</tr>
<tr>
<td>90</td>
<td>j23105</td>
<td>90</td>
<td>j23105</td>
</tr>
<tr>
<td>91</td>
<td>apFAB277</td>
<td>91</td>
<td>apFAB277</td>
</tr>
<tr>
<td>92</td>
<td>apFAB300</td>
<td>92</td>
<td>apFAB300</td>
</tr>
<tr>
<td>93</td>
<td>j23110</td>
<td>93</td>
<td>j23110</td>
</tr>
<tr>
<td>94</td>
<td>j23116</td>
<td>94</td>
<td>j23116</td>
</tr>
<tr>
<td>95</td>
<td>j23114</td>
<td>95</td>
<td>j23114</td>
</tr>
<tr>
<td>96</td>
<td>j23108</td>
<td>96</td>
<td>j23108</td>
</tr>
<tr>
<td>97</td>
<td>apFAB259</td>
<td>97</td>
<td>apFAB259</td>
</tr>
<tr>
<td>98</td>
<td>j23115</td>
<td>98</td>
<td>j23115</td>
</tr>
<tr>
<td>99</td>
<td>j23109</td>
<td>99</td>
<td>j23109</td>
</tr>
<tr>
<td>100</td>
<td>apFAB139</td>
<td>100</td>
<td>apFAB139</td>
</tr>
</tbody>
</table>
Table 3-5: Promoter and Terminator ordering for Figure 3-28.

<table>
<thead>
<tr>
<th>101</th>
<th>j23113</th>
</tr>
</thead>
<tbody>
<tr>
<td>102</td>
<td>j23112</td>
</tr>
<tr>
<td>103</td>
<td>apFAB134</td>
</tr>
<tr>
<td>104</td>
<td>j23103</td>
</tr>
<tr>
<td>105</td>
<td>apFAB114</td>
</tr>
<tr>
<td>106</td>
<td>j23117</td>
</tr>
<tr>
<td>107</td>
<td>apFAB109</td>
</tr>
<tr>
<td>108</td>
<td>apFAB149</td>
</tr>
<tr>
<td>109</td>
<td>apFAB124</td>
</tr>
</tbody>
</table>

3-4-10. Sorted-parts strength analysis.

Custom software (‘IlluminaPerfSeqAnalysis.m’) was written to analyze the perfect oligonucleotides, *i.e.* sequences that are perfect matches to the designed library, sorted into each bin. Analysis relied on previously measured terminator\(^{27}\) and promoter\(^{26,320}\) strengths, therefore all sequences with mutations were disregarded because they could change a part’s activity and convolute the analysis. Occurrences of each promoter and terminator were counted per bin and used to calculate the median promoter, forward and reverse terminator strengths for each bin.

3-4-11. Enrichment calculation.

To calculate enrichment for each composite part, we normalized the counts of each composite part in a bin to the total number of perfect sequences in that bin. We defined the frequency of a composite part \(f_{ijx} \) in a bin as

\[
 f_{ijx} = \frac{c_{ijx}}{\sum_i c_{ijx}}
\]

where \(c_{ij} \) is the number of occurrences of composite part \(i \) in bin \(j \) for library \(x \), where \(x = \text{PhIF}, \text{SrpR} \) or \(\text{TarA} \). Then we defined enrichment \(E_{ijx} \) as the ratio of the frequencies of a composite part \(i \) in a sorted bin \(j \) to the frequency of that composite part in the unsorted pool \((f_{ux}) \).

\[
 E_{ijx} = \frac{f_{ijx}}{f_{ux}}
\]

If a composite part did not appear in the unsorted library at least once \((f_{ux} = 0) \), \(c_{ux} \) was set to one, indicating one count of the part in the unsorted library. This correction was used to ensure that none of the enrichments were infinite. Enrichment \(E_{ij} \) for each composite part was then
averaged by bin across all three libraries. We defined the average enrichment $\overline{E_{ij}}$ for a composite part as

$$\overline{E_{ij}} = \frac{\sum x E_{ijx}}{N}$$

where $N = 3$, the total number of libraries. To ensure that composite part behavior is consistent across all three libraries, any composite parts that did not appear in all three libraries for a given bin were assigned an enrichment of zero for that bin, i.e. if $E_{ijx} = 0$ for any x, $\overline{E_{ij}} = 0$.

Next each composite part was assigned to the bin where its average enrichment was highest. Maximum average enrichment E_{max} for each composite part i was calculated as

$$E_{maxi} = \max_{1 \leq j \leq 4}(\overline{E_{ij}})$$

Then the composite part i is assigned to the bin j where $\overline{E_{ij}} = E_{maxi}$. If the maximum enrichment is less than one, the composite part is depleted in the sorted library and is not assigned to a bin (Fig 3-16, grey). Depletion of a composite part in all of the sorted bins relative to the unsorted pool may be the result of biases in cell recovery after sorting or in amplification of the DNA for deep sequencing. The matrix of bin assignments was generated using custom software ('IlluminaEnrichmentGrid.m') and used to create Fig 3-16.

3-4-12. Measurement of growth curves.

E. coli strains were grown for 16 h in LB media containing antibiotics, when appropriate, in 96-deep well blocks (USA Scientific 1896-2000) at 37°C and 250 r.p.m in an INFORS-HT Multitron Pro. After 16 h, the cultures were diluted 1:200 into M9 medium with antibiotics and grown for 3 h with the same shaking and temperature settings as the overnight growth. Next, the cultures were diluted to $OD_{600} = 0.001$ into fresh M9 medium with antibiotics and 100μM IPTG. 150 μL of these cultures were grown in black 96-well optical bottom plates (Thermo scientific 165305) at 37°C and 1mm orbital shaking in a BioTek Synergy H1 plate reader. Optical density measurements at 600nm wavelength (OD_{600}) were made every 20 minutes for 12 h.
3-4-13. Construction and testing of the transcriptional interference model.

Custom MATLAB software was written to solve the model ODEs (Equations 3-7 & 3-8) with mixed boundary conditions. Initial mesh for the MATLAB boundary solver bvp4c were formed using MATLAB function bvpinit with general solutions for the model ODEs derived in Wolfram Alpha's Mathematica:

\[C_F(x) = \frac{c_1}{\epsilon_R + c_2e^{c_1x}} \]
(3-7)

\[C_R(x) = \frac{c_3}{\epsilon_F} \left(\frac{c_2e^{c_1x}}{\epsilon_R + c_2e^{c_1x}} \right) \]
(3-8)

Integration constants were approximated using boundary conditions \(C_F(x=0) = \phi_F/v \) and \(C_R(x=N) = \phi_R/v \). \(\epsilon_F \) and \(\epsilon_R \) were input directly into the model for \(\epsilon_F = \epsilon_R = 1 \) or parameter sweep experiments. Model results were reported as polymerase concentrations \(C_F(x) \) and \(C_R(x) \). Full-length transcript production is assumed to be proportional to \(C_F \mid _{\epsilon_F=0} \), which should be a measure of polymerases fired from \(P_F \) that successfully transcribe the entire stretch of DNA between promoters. Fold repression \(\theta \) is calculated using Eq. 3-6, which compares \(C_F \) in the absence of interference \((C_F \mid _{\epsilon_F=0}) \) to \(C_F \) with an interfering promoter \((C_F \mid _{\epsilon_F>0}) \). Model results for each forward/interfering promoter pair were scored by simple comparison to experimental data:

\[s = \left[\text{abs}(\theta_{TL,m} - \theta_{TL,p}) \right]^{-1} \]
(3-9)

where \(s \) is the score for a specific promoter pairing, \(\theta_{TL,m} \) and \(\theta_{TL,p} \) are measured and predicted repression, respectively, for that pair. The best \(\epsilon_F \) and \(\epsilon_R \) values were calculated for each forward/interfering promoter pair using a weighted average, were each \(\epsilon \) was weighted by its score.

3-4-15. Data availability

Brophy, JAN, Voigt, CA (2015). Antisense library. NCBI Sequence Read Archive SRP065456
Chapter 4: Stable Engineering of Undomesticated Bacteria using a Miniaturized Integrative Conjugative Element (ICE)

Engineering probiotics to optimize human or plant health will require robust bacteria that are capable of surviving in harsh, competitive environments. Here, we present an Integrative Conjugative Element from *Bacillus subtilis* (ICEBs1) as a tool to deliver synthetic programs to diverse collections of undomesticated bacteria isolated from valuable microbiomes. We demonstrate that ICEBs1 can be used to deliver synthetic programs to >X species of Gram-positive bacteria isolated from the human gut and soil microbiomes (e.g., *Bacillus* sp., *Enterococcus* sp., *Staphylococcus* sp.). We develop a miniature ICE, which irreversibly integrates DNA into recipient bacteria's genomes, to deliver therapeutically relevant biosynthetic pathways (e.g., nitrogen fixation, indole-3-acetic acid production) to the bacteria. We measure the performance of these pathways across species and demonstrate that species variation can be used to optimize the desired phenotypes. This work produces an easy to use tool for stably engineering diverse species of undomesticated bacteria.

4-1. INTRODUCTION

Advancements in microbiome analysis techniques have revealed the importance of microbial communities for human, plant, and animal health. The bacteria that inhabit these ecosystems help maintain fitness by producing molecules that eliminate pathogens, function as nutrients or hormones, or educate the immune system. Importantly, the strains of bacteria that have essential roles in human, plant, and animal health produce their effect while competing with tens to thousands of other bacterial species. Deep sequencing studies find that the human gut, oral, and skin microflora are composed of 500 - 25,000 species worldwide. Similarly, a gram of soil may contain 2,000 – 8.3M microorganisms representing 5,000 – 20,000 different operational taxonomic units (OTU). In addition to being diverse, bacteria in these environments are highly variable. The most prevalent bacteria vary significantly from sample to
sample, indicating a great flexibility in the combinations of species that make up a functional microbiome.364,365

Bacteria’s ability to alter human, plant, and animal health has inspired researchers to create designer probiotics that leverage genetic engineering to optimize the fitness of these systems. These efforts have largely been focused on moving simple phenotypes, such as therapeutic protein secretion, into a few well-established probiotic strains (\textit{e.g.}, \textit{Lactococcus lacis} and \textit{Escherichia coli Nissle 1917} (EcN))366. These strains, though effective for specific applications, such as secreting interleukin 10 (IL-10) to treat irritable bowel disease (IBD)367, have limited potential in applications that require different colonization patterns, immune interactions, or other innate behaviors. Consequently, researchers are developing toolkits for new strains that are well adapted for specific applications, such as long-term human gut colonization368.

However, broadly applicable tools that can be used to engineer multiple species are lacking. These tools could be used to accelerate probiotic development by eliminating the need to generate specific toolsets for each new organism of interest. They could also impact industrial bio-production by allowing metabolic engineers to work with bacteria that have advantageous features, such as solvent tolerance, leading to increased yields369 or streamlined manufacturing370. Unfortunately, even the basic tools required for genetic engineering, such as transformation methods, growth medias, and functional plasmids, are underdeveloped or unknown for the vast majority of bacterial species worldwide. Transformation is especially difficult for Gram-positive bacteria, which are often electroporated despite poor performance30,371. Electroporation creates stable tears in the peptidoglycan wall of Gram-positive bacteria, which leads to cell death and transformation efficiencies at least four orders of magnitude worse than commercially available Gram-negative cloning strains372,373. These low transformation efficiencies (\(10^2 - 10^6\) transformants/\(\mu\)g DNA) prohibit library construction and deter high throughput engineering in Gram-positive bacteria. Vectors for introducing new DNA to bacteria, such as plasmids, are also unknown for most bacterial species. Plasmids often have narrow host ranges374 and can vary in copy number/stability375, which make them difficult to use without extensive species-specific characterization. Additionally, plasmids are prone to horizontal gene transfer and often require constant selection for maintenance376, which make them inappropriate for \textit{in vivo} applications.
where a synthetic program can be unintentionally lost or spread to other bacteria in the target environment.

Integrative conjugative elements (ICEs) have great potential as tools for engineering diverse bacteria. ICEs are unique mobile genetic elements (MGE) that reside in bacterial genomes and encode all of the proteins needed to excise from the chromosome, replicate, conjugate into a neighboring cell, and integrate into the recipient’s genome (Fig 4-1). ICEs are found across the bacterial domain and a single element can often transfer into a diverse range of recipient species. Tn916, an ICE first identified in Enterococcus faecalis, appears in tetracycline resistant clinical isolates, as well as unrelated species of soil and skin bacteria. Similarly, ICEBsl, an ICE from the Gram-positive model organism Bacillus subtilis, was shown to conjugate into four different bacterial species in a laboratory setting (B. subtilis, B. anthracis, B. licheniformis, and L. monocytogenes). The success of these elements across species and their ability to integrate into the host genome make them attractive candidate tools for introducing DNA to a broad range of bacterial species for advanced engineering applications.

Figure 4-1: Typical Integrative Conjugative Element (ICE) life cycle.
ICEs reside in bacterial chromosomes bound by specific sequences on the right (attR) and left (attL) ends. When stimulated, ICEs will excise from the chromosome to form a covalently closed circle. Circularized ICE will then be nicked by a relaxase protein and will replicate via a rolling circle mechanism. If an ICE-cell is in contact with the donor, a single strand of ICE DNA will be transferred to the recipient during replication. Once in the recipient, the ICE will circularize and the complementary strand will be synthesized to regenerate double-stranded ICE. This circularized form will then integrate into the host chromosome via a recombination event between attP (in the ICE) and attB (in the chromosome).

Natural ICEs (natty ICEs) carry a wide range of useful phenotypes between species. Several natty ICEs facilitate bacteria survival by moving antibiotic and heavy metal resistance cassettes into new species. Other natty ICEs carry more complex traits, such as the ability to colonize a eukaryotic host or promote virulence and biofilm formation. ICEMISym is one
notable example that encodes 0.5 Mb of pathways sufficient for transferring plant symbiosis, including root nodule formation and nitrogen fixation, between cells383.

ICE\textsubscript{Bs1}, the integrative conjugative element from \textit{Bacillus subtilis}, is unusual because it conjugates at an extremely high efficiency (~0.2 \textit{Bacillus subtilis} transconjugates/donor) compared to other Gram-positive conjugation systems (e.g., ~10-5 transconjugates/donor (Tn916), 10-7 – 10-8 transconjugates/donor (pRK212)385) (Fig 4-2). During growth, ICE\textsubscript{Bs1}-encoded repressor protein ImmR prohibits transcription of the ICE conjugation proteins. However, when ICE+ \textit{B. subtilis} encounter DNA damage or a high density of ICE- cells, anti-repressor protein ImmA cleaves ImmR and stimulates expression of the ICE conjugation and excision proteins386. Excision is mediated by tyrosine recombinase Int and directionality factor Xis387. After excision, ICE circularizes and the relaxase protein NicK nicks ICE\textsubscript{Bs1} DNA at the origin of transfer ori\textsubscript{T}388. This is followed by rolling circle replication, facilitated by the ICE\textsubscript{Bs1}-encoded helicase HelP389. During replication, the relaxase associates with the coupling protein (putatively ConQ) and a single strand of ICE\textsubscript{Bs1} DNA is conjugated into a neighboring cell. The structure of the conjugation apparatus is unsolved, however ATPase ConE, peptidase/muramidase CwlT, and putative transmembrane proteins ConB, ConC, ConD and ConG are known to be essential for conjugation390. Once in the recipient cell, ICE re-circularizes, its second strand of DNA is synthesized by host factors from a single stranded origin (sso)391. In the recipient, Int and ImmR are expressed to integrate ICE into the recipient chromosome and repress further conjugation/superinfection. Beneficial phenotypes encoded in ICE\textsubscript{Bs1} are currently unknown, however the high conjugation efficiency, potentially broad host range, and integrative phenotype make it an attractive tool to deliver DNA to diverse bacterial species.

\textbf{Figure 4-2: Schematic of wild type ICE\textsubscript{Bs1}.}

Proteins are color coded by function: regulatory proteins, red; integration/excision proteins, beige; conjugation proteins, blue; unknown, white.
Here, we develop ICEBs1 as a tool for engineering a diverse range of undomesticated bacteria. First, we demonstrate control over ICEBs1 conjugation by creating a miniature element that is incapable of self-transfer. Second, we broaden the known host range of ICEBs1 by compiling a collection of 82 strains of Gram-positive bacteria isolated from several important environments (e.g., human gut, human skin, organic fertilizer, crop rhizospheres). Using the collection, we show that a miniature ICE can be used to introduce heterologous DNA into 16 different bacterial species from 5 different genera. Finally, we utilize miniature ICE to deliver a functional heterologous nitrogen fixation pathway to the soil-dwelling species. These engineered soil bacteria should promote plant growth by delivering bioavailable nitrogen to plant roots. This work contributes to a larger effort to facilitate engineering of real-world applicable organisms for the transition of genetically modified probiotics from lab concepts to useable and effective products.

4-2. RESULTS

4-2-1. Engineering control over ICEBs1 conjugation: small molecule inducers

Controlling ICEBs1 conjugation will make it easier to use ICEs as an engineering tools by allowing researchers to dictate the conditions under which DNA is delivered to recipient species. ICEBs1 conjugation is stimulated by high concentrations of ICE- B. subtilis cells and DNA damage\(^{380}\). Over expression of the quorum sensing protein RapI using a heterologous inducible promoter can also cause ICEBs1 excision and conjugation\(^{383}\). We carefully tested several different RapI induction cassettes to identify the inducible promoter that gave us low uninduced and high induced conjugation rates. For these experiments, we used a \(\Delta\)rapIphr1 ICEBs1 and over expressed RapI using inducible promoters integrated at amyE (Fig 4-3).
Figure 4-3: Schematic for inducible ICEBs1 strains.
Quorum sensing proteins RapI and PhrI are removed from wild type ICEBs1. RapI induction cassettes are integrated at amyE in the B. subtilis chromosome with a spectinomycin cassette. Here R and P\textsubscript{ind} are generic repressor and inducible promoter and the dark circle represents the B. subtilis chromosome with lines pointing to approximate locations of ICEBs1 and amyE.

First, we expressed RapI using isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoters P\textsubscript{spank} and P\textsubscript{spank(hy)} (Fig 4-4a). IPTG is a non-hydrolyzable molecular mimic of allolactose that is used to induce expression of genes under control of lac repressor (LacI). The P\textsubscript{spank(hy)} promoter is ~10 fold stronger than P\textsubscript{spank} in B. subtilis (Fig 4-4a). Full induction of P\textsubscript{spank} and P\textsubscript{spank(hy)} with 1mM IPTG lead to high levels of conjugation (~0.2 transconjugates/donor) (Fig 4-4c). However, uninduced (0mM IPTG) conjugation frequencies were at least 50 fold higher than the ΔrapI control.

Figure 4-4: Inducible B. subtilis promoters for RapI expression/conjugation.
(A) Promoter sequences. Lac operators shown in blue (wt) or pink (synthetic inverted repeats), xylose operator in green, -10 and -35 recognition sequences in orange. Transcription start site (+1) indicated with an arrow. (B) P\textsubscript{spank} and P\textsubscript{spank(hy)} transfer functions measured using GFP\textsubscript{mut2}. (C) Conjugation efficiencies
+/− 1mM IPTG for Pspank(hy) (JMA168) and Pspank (JAB221) and +/− 2% xylose for Pxyl (JAB785). Control strain is ΔrapI (JMA8). (D) New IPTG-inducible promoter transfer functions measured using GFPmut2.

To reduce leaky expression of RapI, we attempted to build new IPTG-inducible promoters by replacing the wild type lac operators with perfect inverted repeats (lacO^{syn}) (Fig 4-4a, pJ3, pJ3m, pJ4). These synthetic lac operators have been shown to produce tighter OFF states in <i>Escherichia coli</i> (data not shown). We added these lac operators to a strong constitutive promoter from <i>Bacillus licheniformis</i> Pe3. Unfortunately, our best inducible promoters did not provide substantial improvement in leaky expression when compared to the Pspank promoter (Fig 4-4d).

Next, we tried using xylose inducible promoter Pxyl to express RapI. Pxyl is a modified version of the xylA promoter from <i>Bacillus subtilis</i> subsp. spizizenii W23 (Fig 4-4a). This promoter is catabolite repressed in rich media, which reduces leaky expression. Unfortunately, catabolite repression can also inhibit full induction. We quantified xylose-inducible conjugation in rich media (LB) using a Pxyl_{rapI} cassette and found ~4,500 fold induction of conjugation (Fig 4-4b). Pxyl results in a much tighter OFF state than the IPTG-inducible promoters (>10 fold less leaky than Pspank) with only ~3.5 fold reduction in transconjugates/donor when fully induced. Thus we chose to use Pxyl to drive expression of RapI and control ICEBs₁ conjugation.

4-2-2. Engineering control over ICEBs₁ conjugation: miniature elements

We gained further control over conjugation by building miniature ICEs (mICEs) that are incapable of self-transfer. These ICEs are designed to conjugate once (from <i>B. subtilis</i> donor into neighboring recipient) and then become stuck in the recipient cell’s genome. mICEs can be used for stabilizing engineering target strains and should reduce the unintended spread of synthetic DNA through microbial populations. mICEs do not encode all of the proteins necessary to excise and conjugate themselves into neighboring cells. Instead, the proteins that mediate ICEBs₁ excision and conjugation are expressed ectopically from the threonine synthase locus thrC (Fig 4-5a). These genes, collectively referred to as locked-in ICEBs₁ (liICE), complement the missing components of mICE in the <i>B. subtilis</i> donor strain. Consequently, mICE can conjugate from a <i>B. subtilis</i> strain containing liICE into any recipient cell, but cannot conjugate further.
We built two different mICE/liICE systems. In the first system (1.0) (Fig 4-5a), liICE encodes all of the essential conjugation proteins except the relaxase NicK. The nicK gene was not included in liICE 1.0 because its coding region includes the origin of transfer oriT. During a normal ICE life cycle (Fig 4-1), the relaxase nicks the ICE DNA at oriT after it excises from the chromosome to initiate replication and transfer. However, when oriT is suck in the genome, nicking leads to single-stranded breaks and donor cell death (data not shown). Thus, NicK and oriT were encoded in mICE 1.0 instead of liICE (Fig 4-5a). All genes upstream of nicK in wild type ICEBsJ were kept in mICE 1.0 to maintain the original context for expression of NicK. In total, mICE 1.0 is 8.7 kb (reduced from 22 kb of wild type ICEBsJ) and its conjugation efficiency of is ~50 fold less than wild type ICEBsJ under identical conditions (Fig 4-5b). This drop in efficiency is probably due to the elimination of secondary transfer, which is known to occur for wild type ICEBsJ in chains of B. subtilis cells\(^\text{304}\), and not a deficiency expression of ICE conjugation proteins.

In the second system (2.0) (Fig 4-5a), liICE includes a recoded version of nicK that does not contain oriT. mICE 2.0 is reduced to 2.4 kb and only encodes ImmR, to silence P\(_\text{int}\) in the recipient, and parts that are essential for transfer: oriT for recognition by the relaxase, Int for integration in the recipient cell, and kanR for selection of transconjugates. This tiny ICE is

![Figure 4-5: Miniature ICE schematics and conjugation efficiencies.](image_url)

(A) Schematic for mICE and liICE versions 1.0 and 2.0 Here the dark circle represents the B. subtilis chromosome with lines pointing to approximate locations of the liICE/mICE. (C) Conjugation efficiencies for mICE 1.0, 2.0, and wild type ICEBsJ.
approximately 3.5 orders of magnitude less efficient than wild type ICEBsI (Fig 4-5b). The severe drop in efficiency is likely attributable to the lack of ICE components that enable replication in the recipient, such as NicK, the sso, and HeliP. ICE DNA can get lost during cell division if it is unable to replicate, thereby reducing the conjugation efficiency. Truncations of important, yet ill defined, sequences such as attL, attR, or oriT, may also contribute to the poor conjugation efficiency of mICE 2.0. Int and Xis may recognize more than the 60 bp att sites in mICE 2.0 to catalyze excision, circularization, or integration of ICEBsI. Similarly, the 100 bp fragment of nicK that we used as oriT may be insufficient for NicK recognition/cleavage. Additional mICE variants will need to be constructed to test these hypotheses and identify the minimum number of components needed for efficient conjugation.

4-2-3. High throughput mating conditions

One goal of this project is to find conjugation conditions that enable efficient DNA delivery. ICEBsI conjugations are typically performed using cells grown in large volume flasks that are concentrated onto analytical filters and incubated for 3 hours on agar plates (Fig 4-6a, filters). These mating conditions simulate biofilms and increase cell-cell contact for maximal mating efficiency. However, the protocol is not ideal for high throughput screening. Several steps in the mating protocol, including incubation time, media, temperature and donor/recipient growth phases, could be tuned to increase throughput and alter mating efficiencies. We compared conjugation efficiencies using different medias for the solid agar support in filter matings, e.g., Spizizen minimal media salts, TSS salts, +/- magnesium chloride (MgCl₂). Then we used the best medias to compare conjugation techniques, e.g., liquid, spots, filters, with different potentials for high-throughput adaptation (Fig 4-6a).

While screening medias, we confirmed previous results that MgCl₂ increases conjugation efficiency (Fig 4-6b). We compared TSS + MgCl₂ to Spiz + MgCl₂ and found similar conjugation efficiencies with the two salt solutions (Fig 4-6b). Although the previous study hypothesized that MgCl₂ increases ICEBsI conjugation efficiency by affecting the activity of cell surface components involved in conjugation or stabilizing mating pairs, it is possible that MgCl₂ increases conjugation efficiency by neutralizing unfavorable interactions between the DNA (negatively charged) and charged portions of macromolecules on the bacteria’s outer surface.
This is the mechanism by which another multivalent cations (calcium) increase transformation efficiency. Thus, we tested a conjugation null (ΔconG) strain to make sure that the MgCl₂ mediated increase in conjugation efficiency was not the result of increased donor cell lysis and natural competency. Based on our results, MgCl₂ specifically increases conjugation efficiency and does not facilitate recipient acquisition of ICEBsI DNA via donor cell lysis and natural competency (Fig 4-6b).

To streamline ICEBsI conjugation, we sought to eliminate filters and reduce the volume of cell culture needed for matings by conjugating in spot or liquid conditions. Spot matings are commonly for Gram-negative conjugations and, like filter matings, spots increase donor-recipient contacts by concentrating a large number of cells into a small area. Spot matings were performed by concentrating 150 μL each of donor and recipient cell culture ten-fold and spotting the dense cell mixture onto agar plates. Spots were allowed to dry before incubation. Liquid matings were performed by mixing 150 μL of donor and recipient cell culture. The cells were either allowed to conjugate in LB, or were harvested and resuspended in an equivalent volume of Spiz + MgCl₂. For all comparisons, matings were incubated for 3 h at 37°C.

Spot matings were just as efficient as filter matings, whereas liquid matings were >1,000 fold less efficient than filter matings (Fig 4-6c). These findings are unsurprising since matings require direct contact between donor and recipient cells. Spots, like filters, concentrate cells into a small area and yield high conjugation efficiencies by increasing cell-cell contact. In liquid, cells are too disperse for donor strains to encounter as many recipients. To fix this ‘large volume’ problem, Enterococcus faecalis conjugative plasmid pCF10 encodes a surface protein called aggregation substance (PrgB) during conjugation that increases cell stickiness and helps donors bind to recipient cells to increase conjugation efficiency. As far as we know, ICEBsI does not encode a similar surface protein, therefore liquid matings, which likely decrease cell-cell contacts are less efficient than spot or filter matings. Although spot matings were only X fold less efficient than filter matings, the hit in conjugation efficiency means that low frequency conjugation events (such as those between B. subtilis and unrelated recipient strains) may be missed. Thus we will use filter matings to define a baseline for conjugation into diverse recipient
species. Once conjugation is established, we can use spot matings for more economical engineering.

Figure 4-6: High throughput conjugation methods optimization. (A) Schematics for each conjugation method. (B) The effects of different salt solutions (Spiz or TSS +/- 125 mM MgCl₂) in the solid agar support were compared using filter matings. (C) Conjugation method variations. Liquid and spot matings were compared to filter matings with LB or Spiz + 125 mM MgCl₂. For all assays, donor strain is JAB785 and recipient is JAB299.

4-2-4. D-alanine auxotrophy as a counter selection to streamline transconjugate isolation

Isolating transconjugates requires a unique selectable marker in the recipient bacterium that is used to kill donor cells after mating (Fig 4-7a). Typically researchers rely on identifying a unique naturally-occurring antibiotic resistance in the recipient to select for transconjugates. If no suitable antibiotic resistance can be found, resistance to spectinomycin can be generated by plating a large number of cells on spectinomycin selective plates. Specinomycin resistance frequently arises via mutations in the 16S rRNA and resistant strains can often be isolated...
quickly400,401. If no spectinomycin resistant recipients can be created, medias or growth temperatures that are inhospitable to the donor strain can also be used to isolate transconjugates after mating.

![Diagram](image)

Figure 4-7: Transconjugate isolation using a D-alanine auxotrophic donor.
(A) Typical mating selection scheme. Donor is D-alanine auxotroph (\(\Delta\)alr), recipient is wild type, ICE carries a tetracycline resistance marker (tet(M)). After mating, cells are plated on rich media with tetracycline. Only the recipients that received ICE (transconjugates) survive. (B) Alanine racemase schematic. Alr is the alanine racemase in \(B.\) subtilis. (C) Conjugation efficiencies are the same for wildtype (JMA168) and \(\Delta\)alr (JABXX) donor strains. Error bars are the s.d. of three replicates collected on different days.

Each selection method requires a significant amount of recipient strain characterization and often yields mediocre results. Innate resistance phenotypes can be unreliable, making it difficult to select for transconjugates using dual antibiotic selections. Generating spectinomycin resistance becomes more difficult as the number of rRNA operons increases. Plus, 16S rRNA mutants can are often much less robust than their spectinomycin sensitive parents. Crafting new growth medias to isolate specific strains is tedious and may lower the observed conjugation efficiency if it is difficult for the recipient strain to survive in the selective media. Ideally, one would be able to isolate transconjugates using rich media and a single antibiotic to select for acquisition of the conjugated element.
We introduced a D-alanine auxotrophy to our *B. subtilis* donor strain to streamline transconjugate isolation. D-alanine is an essential cell wall component that is either taken directly from the environment or made by isomerizing L-alanine using a dedicated racemase\(^\text{402,403}\) (Fig 4-7b). Alanine racemases have been used previously for cloning plasmids into auxotrophic strains\(^\text{404}\). Here, we knocked out the *B. subtilis* D-alanine racemase encoded by *alr* to generate donor strains that require D-alanine to grow. These strains do not grow in any of the rich media tested (luria broth (LB), nutrient broth (NB), tryptic soy broth (TSB), brain heart infusion (BHI), or deMan, Rogosa and Sharpe media (MRS)) without 100 μg/mL D-alanine. This auxotrophy simplifies transconjugate isolation by allowing us to select for transconjugates on rich media with a single antibiotic. Δ*alr* donor strains conjugate with the same efficiency as *alr+* strains (Fig 4-7c).

4-2-5. Compilation and characterization of recipient bacteria collection

Bacteria were isolated from several different environments to test the ICEBs1 host range. In total, 82 strains were collected from >6 different sources, including the American Type Culture Collection (ATCC), Bacillus Genetic Stock Center (BGSC), research groups at MIT and the Broad Institute, and Epsoma soil products (Table 4-1). All potential recipient strains are Gram-positive aerobic (or facultatively aerobic) bacteria. We focused on collecting commensal strains from humans and agricultural soils. These organisms are of particular interest for generating human probiotics (human isolates) and modulating plant growth (soil isolates). Several of the strains in our collection have been well characterized as plant growth promoting bacteria (*e.g.*, *Paenibacillus macerans*, *Bacillus amyloliquefaciens* subsp. *plantarium* FZB42), human probiotics (*e.g.*, *Bacillus coagulans* GBI-30, *Bacillus clausii* domuvar, *Lactococcus lactis*), insecticide producers (*e.g.*, *Bacillus thuringensis*), or living concrete additives (*Bacillus cohnii*) (Table 4-1). Others were added to the collection because they are known colonizers of interesting microbiomes (*e.g.*, *Lactobacillus reuteri* – human gut, *Staphylococcus epidermis* – human skin, *Bacillus megaterium* - soil). Finally, some bacteria were simply isolated from the target environments (*e.g.*, commercially available organic fertilizer), though their rolls and persistence in these settings are unknown. Table 4-1 lists some notable features of the recipient strains. 16S rRNA sequencing was used to identify bacterial strains isolated from commercial
products during this study (strain names with BT# or CP#, Table 4-1). A phylogenetic map of the recipient collection was also generated using the 16S rRNA sequences (Fig 4-8). Altogether, the collection spans 56 distinct species from 15 different genera.

<p>	Strain Source Isolation Known Functions Ref
Enterococcus mundtii MOI-7 JAB432 Alm Feces -	
Lactobacillus sp CD12 JAB487 Alm Feces -	
Lactobacillus sp S1 JAB488 Alm Feces -	
Pediococcus pentosaceus JAB482 Alm Feces -	
Bacillus cereus 55000 JAB564 ATCC Soybean Biological control R. solani	
Corynebacterium ammoniagenes 6871 JAB51 ATCC Feces Industrial chemical production	405,406
Enterococcus caviae BAA-1240 JAB509 ATCC Feces -	407
Enterococcus durans 6056 JAB518 ATCC Feces -	
Enterococcus faecalis 19433 JAB510 ATCC Feces Gut commensal, probiotic	408
Lactobacillus brevis 14869 JAB513 ATCC Feces Gut commensal, Biological control B. cereus	409
Lactobacillus gasseri 33323 JAB514 ATCC Feces Gut commensal, Immunostimulant	410,411
Lactobacillus paracasei 27092 JAB515 ATCC Feces Gut commensal, Beverage production	412
Lactobacillus reuteri 23272 JAB512 ATCC Feces Modulate cytokine responses	413
Streptococcus infantarius coli BAA-103 JAB517 ATCC Feces -	414
Streptococcus infantarius infantarius BAA-102 JAB516 ATCC Feces -	416
Lactobacillus plantarum BAA-793 JAB480 ATCC Saliva Gut commensal, probiotic	415
Peenibacillus rhizohabitans BAA-94 JAB560 ATCC Maize soil Nitrogen fixation	416
Paenibacillus tropicalis BAA-414 JAB559 ATCC Maize soil -	417
Bacillus sp 53935 JAB563 ATCC Maize soil Biological control of root rot	418
Paenibacillus brasiliensis BAA-413 JAB558 ATCC Maize soil Nitrogen fixation	419
Paenibacillus graminis BAA-95 JAB561 ATCC Maize soil -	420
Paenibacillus polymyxa 39564 JAB552 ATCC Potato roots Biological control of Verticillium sp.	421
Lactococcus lactis JAB481 ATCC Probiotic Food fermentation	422,423
Paenibacillus macerans 8244T JAB801 ATCC Soil Nitrogen fixation	424
Paenibacillus polymyxa 842 JAB508 ATCC Soil Nitrogen fixation	425,426
Bacillus amyloliquefaciens BAA-390 JAB557 ATCC Wheat soil Biological control of blight/tan spot	427
Paenibacillus durus 35681 JAB802 ATCC Wheat roots Nitrogen fixation	427
Bacillus circulans 16A1 JAB252 BGSC - Industrial ab production	428
Bacillus megaterium 7A16 JAB768 BGSC Soil Industrial enzyme production	428
Bacillus thuringiensis alesti 4C1 JAB240 BGSC - Agricultural insecticide	429
Bacillus thuringiensis andalousiensis 4AW1 JAB767 BGSC - Agricultural insecticide	430
Bacillus thuringiensis finitimus 4B1 JAB239 BGSC - Agricultural insecticide	431
Bacillus thuringiensis israeliensis 4Q1 JAB550 BGSC - Agricultural insecticide	432
Bacillus thuringiensis subspp. kurstaki 4D1 JAB549 BGSC - Agricultural insecticide	433
Bacillus thuringiensis mexicanensis 4AC2 JAB551 BGSC - Agricultural insecticide	434
Bacillus thuringiensis thuringiensis 4B1 JAB239 BGSC - Agricultural insecticide	435
<table>
<thead>
<tr>
<th></th>
<th>Strain</th>
<th>Source</th>
<th>Plant tissue</th>
<th>Biological control of</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Bacillus_subtilis_BSn5_3A35_JAB547</td>
<td>BGSC</td>
<td>Plant tissue</td>
<td>Biological control of Erwinia sp.</td>
<td>429</td>
</tr>
<tr>
<td>38</td>
<td>Bacillus_subtilis_Inaquasorum_3A28T_JAB766</td>
<td>BGSC</td>
<td>Desert soil</td>
<td>-</td>
<td>430</td>
</tr>
<tr>
<td>39</td>
<td>Bacillus_subtilis_GB03_3A37_JAB548</td>
<td>BGSC</td>
<td>Douglas fir</td>
<td>foliage</td>
<td>Enhances vegetable growth, photosynthesis, iron uptake, disease resistance</td>
</tr>
<tr>
<td>40</td>
<td>Brevibacillus_laterosporus_40A4_JAB556</td>
<td>BGSC</td>
<td>Maize soil</td>
<td>-</td>
<td>432</td>
</tr>
<tr>
<td>41</td>
<td>Bacillus_amyloliquefaciens_plantarium_10A6_JAB552</td>
<td>BGSC</td>
<td>Maize roots</td>
<td>Auxin production</td>
<td>433, 434</td>
</tr>
<tr>
<td>42</td>
<td>Bacillus_pumilus_Biosubtyl_BA1_JAB171</td>
<td>BGSC</td>
<td>Probiotic</td>
<td>Immunostimulant,</td>
<td>435, 436</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>diarrhea treatment</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Bacillus_methylotrophicus_10A23_JAB553</td>
<td>BGSC</td>
<td>Rice soil</td>
<td>ACC deaminase production</td>
<td>437</td>
</tr>
<tr>
<td>44</td>
<td>Bacillus_glycinifermentans_51A1_JAB770</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>438</td>
</tr>
<tr>
<td>45</td>
<td>Bacillus_lentus_60A1_JAB771</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>439</td>
</tr>
<tr>
<td>46</td>
<td>Bacillus_licheniformis_5A2_JAB242</td>
<td>BGSC</td>
<td>Soil</td>
<td>Biological control of Sclerotinia sp.</td>
<td>440</td>
</tr>
<tr>
<td>47</td>
<td>Bacillus_licheniformis_5A24_JAB249</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>441</td>
</tr>
<tr>
<td>48</td>
<td>Bacillus_megaterium_7A1_JAB170</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>442</td>
</tr>
<tr>
<td>49</td>
<td>Bacillus_subtilis_Nm-1_3A25_JAB546</td>
<td>BGSC</td>
<td>Soil</td>
<td>Ozone resistance in Brassica sp.</td>
<td>443</td>
</tr>
<tr>
<td>50</td>
<td>Lysinibacillus_saperiticus_13A1_JAB253</td>
<td>BGSC</td>
<td>Soil</td>
<td>Mosquito larvae toxin</td>
<td>444, 445</td>
</tr>
<tr>
<td>51</td>
<td>Paenibacillus_macerans_22A1_JAB174</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>446</td>
</tr>
<tr>
<td>52</td>
<td>Paenibacillus_vorticalis_31A1_JAB555</td>
<td>BGSC</td>
<td>Soil</td>
<td>Pattern formation</td>
<td>447</td>
</tr>
<tr>
<td>53</td>
<td>Rummeliibacillus_pycnus_24A1_JAB769</td>
<td>BGSC</td>
<td>Soil</td>
<td>-</td>
<td>448</td>
</tr>
<tr>
<td>54</td>
<td>Bacillus_shakletonii_102A1_JAB772</td>
<td>BGSC</td>
<td>Volcanic soil</td>
<td>Thermophile</td>
<td>449</td>
</tr>
<tr>
<td>55</td>
<td>Bacillus_clausii_Domuvar_17A1_JAB554</td>
<td>BGSC</td>
<td>Probiotic</td>
<td>Antidiarrheal, B vitamin production</td>
<td>450, 451</td>
</tr>
<tr>
<td>56</td>
<td>Arthrobacter_creatinolyticus_BT9_JAB452</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Bacillus_amyloliquefaciens_BT3_JAB397</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Bacillus_amyloliquefaciens_BT16_JAB570</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Bacillus_cereus_BT1_JAB395</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Bacillus_flexis_BT7_JAB409</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Bacillus_licheniformis_BT2_JAB396</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Bacillus_megaterium_BT12_JAB566</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Brevibacillus_laterosporus_BT8_JAB451</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Oceanobacillus_sojae_BT6_JAB400</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Rummeliibacillus_stabekisii_BT20_JAB574</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Sporosarcina_sp_BT19_JAB573</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Compost_bacterium_BT10_JAB453</td>
<td>Biotone</td>
<td>Soil</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Bacillus_anthracis_UM44-1C9</td>
<td>Grossman</td>
<td>Lab strain</td>
<td>Non-virulent</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Bacillus_subtilis_AG174</td>
<td>Grossman</td>
<td>Lab strain</td>
<td>-</td>
<td>448</td>
</tr>
<tr>
<td>70</td>
<td>Bacillus_subtilis_PY79</td>
<td>Grossman</td>
<td>Lab strain</td>
<td>-</td>
<td>449</td>
</tr>
<tr>
<td>71</td>
<td>Bacillus_coagulans_GBI-30_JAB565</td>
<td>DA</td>
<td>Probiotic</td>
<td>Immunomodulatory, C. difficile treatment</td>
<td>450</td>
</tr>
<tr>
<td>72</td>
<td>Enterococcus_faecalis_(IMI28)_JAB790</td>
<td>Vlamakis</td>
<td>Feces</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Enterococcus_faecalis_(IMI29)_JAB791</td>
<td>Vlamakis</td>
<td>Feces</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Enterococcus_faecium_(IMI27)_JAB789</td>
<td>Vlamakis</td>
<td>Feces</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Pediococcus_acidilactici_(IMI36)_JAB798</td>
<td>Vlamakis</td>
<td>Feces</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Streptomyces_laendulae_(IMI39)_JAB800</td>
<td>Vlamakis</td>
<td>Feces</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Streptococcus_salivarius_(IMI33)_JAB795</td>
<td>Vlamakis</td>
<td>Mouth</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Streptococcus_vestibularis_(IMI34)_JAB796</td>
<td>Vlamakis</td>
<td>Mouth</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Staphylococcus_captitis_(IMI32)_JAB794</td>
<td>Vlamakis</td>
<td>Skin</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Staphylococcus_epidermis_(IMI31)_JAB793</td>
<td>Vlamakis</td>
<td>Skin</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Streptococcus_dysgalactiae_(IMI30)_JAB792</td>
<td>Vlamakis</td>
<td>Skin</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Escherichia_coli_MG1655_JAB410</td>
<td>Voigt</td>
<td>Lab strain</td>
<td>Cloning</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-1: Complete list of potential recipient bacteria.

Strains source abbreviations: American Type Culture Collection (ATCC), Bacillus Genetic Stock Center (BGSC), MIT/Broad labs: Alm, Grossman, Vlamakis, Voigt. Biotone is an organic fertilizer produced by Epsoma. Digestive Advantage (DA) is a probiotic pill made by Schiff. All ‘Mouth,’ ‘Skin,’ and ‘Feces’ strains were isolated from humans.

We began characterizing the recipient collection by measuring their growth rates in different commercially available medias. We chose four medias (LB, TSB, BHI, and MRS) and two temperatures (30°C or 37°C) for the growth experiments. The human isolates were grown in BHI and MRS at 37°C, whereas the soil strains, which are typically more tolerant to diverse culture conditions, were grown in both LB and TSB at 30°C and 37°C to find conditions that maximize growth rate. Doubling times were measured using a plate reader and calculated as the slope of the natural log of OD₆₀₀ vs. time (Tables 4-2 & 4-3). From the growth experiments, we found that Bacillus soil strains grew fastest and to the highest optical density (OD₆₀₀) of all strains. Unsurprisingly, MRS, which contains sodium acetate to suppress the growth of non-Lactobacilli, was the least hospitable growth medium for all strains tested except Lactobacillus sp. and Pediococcus sp. A few strains (JAB453, JAB514, JAB796) grew very poorly in all conditions tested and were not analyzed further.

Next, the strains were tested for natural resistance to tetracycline, chloramphenicol, and spectinomycin (Tables 4-2 & 4-3). Tetracycline and chloramphenicol resistance cassettes, tet(M) and cat, were integrated into wild type ICEB_{sl} to create a dual-marker element for screening conjugation into the recipient collection. Tet(M) and cat were cloned from broad host range vectors Tn916 and pC194, respectively. These cassettes were chosen because they have been identified during deep sequencing studies or used for cloning in several different Gram-positive genera (e.g., Bacillus, Enterococcus, Staphylococcus, Clostridium, Lactobacillus)⁴³²⁻⁴⁵⁴. Since isolating transconjugates requires recipients to become resistant to an antibiotic upon receiving ICEB_{sl}, it is nearly impossible to differentiate between strains that have not received ICE and those that received the element, but were unable to utilize the antibiotic resistance marker. Thus, we chose to use two antibiotic resistance markers to enhance our ability to successfully screen for transconjugates. Spectinomycin was used to enumerate donors after conjugation. Each strain was tested for antibiotic resistance by plating serial dilutions of recipient cultures onto selective
media plates. Strains were deemed resistant when bacteria formed colonies on the ten-fold dilution.

<table>
<thead>
<tr>
<th>Human Isolates</th>
<th>Doubling time (m)</th>
<th>Antibiotic resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BHI</td>
<td>MRS</td>
</tr>
<tr>
<td>1 Enterococcus mundtii_MOI-7_JAB432</td>
<td>27.20</td>
<td>34.09</td>
</tr>
<tr>
<td>2 Enterococcus faecium_(JM127)_JAB789</td>
<td>30.45</td>
<td>34.09</td>
</tr>
<tr>
<td>3 Enterococcus durans_6056_JAB518</td>
<td>38.26</td>
<td>ND</td>
</tr>
<tr>
<td>4 Enterococcus_caccae_BAA-1240_JAB509</td>
<td>63.70</td>
<td>ND</td>
</tr>
<tr>
<td>5 Enterococcus faecalis_19433_JAB510</td>
<td>31.48</td>
<td>ND</td>
</tr>
<tr>
<td>6 Enterococcus faecalis_(JM28)_JAB790</td>
<td>41.54</td>
<td>ND</td>
</tr>
<tr>
<td>7 Enterococcus faecalis_(JM29)_JAB791</td>
<td>37.97</td>
<td>ND</td>
</tr>
<tr>
<td>8 Corynebacterium_ammoniagenes_6871_JAB511</td>
<td>62.53</td>
<td>ND</td>
</tr>
<tr>
<td>9 Escherichia coli_MG1655_JAB410</td>
<td>24.62</td>
<td>ND</td>
</tr>
<tr>
<td>10 Lactococcus lactis_JAB481</td>
<td>31.29</td>
<td>43.01</td>
</tr>
<tr>
<td>11 Streptococcus_salivaruis_(JM33)_JAB795</td>
<td>23.39</td>
<td>ND</td>
</tr>
<tr>
<td>12 Streptococcus_vestibularis_(JM34)_JAB796</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>13 Streptococcus_infantarius_infantarius_BAA-102_JAB516</td>
<td>26.75</td>
<td>ND</td>
</tr>
<tr>
<td>14 Streptococcus_infantarius_coli_BAA-103_JAB517</td>
<td>44.37</td>
<td>ND</td>
</tr>
<tr>
<td>15 Streptococcus_dysgalactiae_(JM30)_JAB792</td>
<td>36.34</td>
<td>ND</td>
</tr>
<tr>
<td>16 Lactobacillus_gasseri_33323_JAB514</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>17 Lactobacillus_parasei_parasei_27092_JAB515</td>
<td>87.99</td>
<td>40.84</td>
</tr>
<tr>
<td>18 Lactobacillus brevis_14869_JAB513</td>
<td>35.17</td>
<td>ND</td>
</tr>
<tr>
<td>19 Pediococcus_pentosaceus_JAB482</td>
<td>33.54</td>
<td>33.60</td>
</tr>
<tr>
<td>20 Pediococcus_acidlactici_(JM36)_JAB798</td>
<td>93.30</td>
<td>33.12</td>
</tr>
<tr>
<td>21 Streptomyces_laendulae_(JM39)_JAB800</td>
<td>ND</td>
<td>64.32</td>
</tr>
<tr>
<td>22 Lactobacillus_reuteri_23272_JAB512</td>
<td>ND</td>
<td>60.61</td>
</tr>
<tr>
<td>23 Bacillus_clausii_Domuvar_17A1_JAB554</td>
<td>38.26</td>
<td>ND</td>
</tr>
<tr>
<td>24 Bacillus_coagulans_GBI-30_JAB565</td>
<td>61.78</td>
<td>ND</td>
</tr>
<tr>
<td>25 Staphylococcus_captitis_(JM32)_JAB794</td>
<td>46.99</td>
<td>61.38</td>
</tr>
<tr>
<td>26 Staphylococcus_epidermis_(JM31)_JAB793</td>
<td>46.28</td>
<td>ND</td>
</tr>
<tr>
<td>27 Lactobacillus_sp._CD12_JAB487</td>
<td>33.46</td>
<td>30.33</td>
</tr>
<tr>
<td>28 Lactobacillus_planarius_BAA-793_JAB480</td>
<td>32.39</td>
<td>53.74</td>
</tr>
<tr>
<td>29 Lactobacillus_sp._DLS1_JAB488</td>
<td>33.91</td>
<td>34.67</td>
</tr>
<tr>
<td>30 Bacillus_subtilis_PY79</td>
<td>22.12</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 4-2: Doubling times and antibiotic resistance of human isolates.
Antibiotic concentrations are 100 µg/mL spectinomycin (spec), 10µg/mL tetracycline (tet), and 10 µg/mL chloramphenicol (cam).

<table>
<thead>
<tr>
<th>Soil & Other Isolates</th>
<th>Doubling time (m)</th>
<th>Antibiotic resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LB 37°C 30°C</td>
<td>TSB 37°C 30°C</td>
</tr>
<tr>
<td>1 Arthrobacter_creatinolyticus_BT9_JAB452</td>
<td>56.44</td>
<td>48.12</td>
</tr>
<tr>
<td>2 Paenibacillus_brasilensis_BAA-413_JAB558</td>
<td>56.16</td>
<td>83.11</td>
</tr>
</tbody>
</table>

92
<table>
<thead>
<tr>
<th>No.</th>
<th>Species</th>
<th>Strain Code</th>
<th>% DNA</th>
<th>16S rRNA</th>
<th>23S rRNA</th>
<th>5S rRNA</th>
<th>Species Type</th>
<th>Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Paenibacillus_polyxmyxa_842_JAB508</td>
<td>36.52</td>
<td>35.89</td>
<td>43.98</td>
<td>47.67</td>
<td></td>
<td></td>
<td>S S ND</td>
</tr>
<tr>
<td>4</td>
<td>Paenibacillus_polyxmyxa_39564_JAB562</td>
<td>44.86</td>
<td>49.29</td>
<td>45.62</td>
<td>46.74</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>5</td>
<td>Paenibacillus_graminis_BAA-95_JAB561</td>
<td>57.09</td>
<td>42.93</td>
<td>59.00</td>
<td>51.57</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>6</td>
<td>Paenibacillus_tropicalis_BAA-414_JAB559</td>
<td>58.61</td>
<td>43.98</td>
<td>34.91</td>
<td></td>
<td></td>
<td></td>
<td>ND R S</td>
</tr>
<tr>
<td>7</td>
<td>Paenibacillus_rhizohabitans_BAA-94_JAB560</td>
<td>59.24</td>
<td></td>
<td></td>
<td></td>
<td>59.24</td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>8</td>
<td>Paenibacillus_durans_35681_JAB802</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
<td>ND S S</td>
</tr>
<tr>
<td>9</td>
<td>Paenibacillus_vorticallis_31A1_JAB555</td>
<td>46.27</td>
<td>62.55</td>
<td>51.20</td>
<td>32.64</td>
<td></td>
<td></td>
<td>S R ND</td>
</tr>
<tr>
<td>10</td>
<td>Paenibacillus_macerans_BKM-B-51_JAB174</td>
<td>16.66</td>
<td>37.84</td>
<td>22.71</td>
<td>41.28</td>
<td></td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>11</td>
<td>Brevibacillus_laterosporus_BT8_JAB451</td>
<td>24.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>12</td>
<td>Brevibacillus_laterosporus_53694_JAB556</td>
<td>26.85</td>
<td>38.62</td>
<td>25.46</td>
<td></td>
<td></td>
<td></td>
<td>ND S S</td>
</tr>
<tr>
<td>13</td>
<td>Sporosarcina_sp_BT19_JAB573</td>
<td>67.22</td>
<td></td>
<td>59.64</td>
<td></td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>14</td>
<td>Oceanobacillus_soje_BT6_JAB400</td>
<td>46.77</td>
<td>64.80</td>
<td>51.95</td>
<td>66.60</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>15</td>
<td>Bacillus_circulans_16A1_JAB252</td>
<td>33.54</td>
<td>49.31</td>
<td>32.03</td>
<td>57.96</td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>16</td>
<td>Bacillus_shakletonii_102A1_JAB772</td>
<td>30.16</td>
<td></td>
<td>32.66</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>17</td>
<td>Bacillus_thuringensis_subsp_kurstaki_JAB549</td>
<td>23.16</td>
<td>33.38</td>
<td>23.31</td>
<td>35.73</td>
<td></td>
<td></td>
<td>R S ND</td>
</tr>
<tr>
<td>18</td>
<td>Bacillus_lentus_60A1_JAB771</td>
<td>25.15</td>
<td></td>
<td>27.86</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>19</td>
<td>Bacillus_thuringensis_mexicanensis_JAB551</td>
<td>22.34</td>
<td>31.36</td>
<td>25.01</td>
<td>37.45</td>
<td></td>
<td></td>
<td>R S ND</td>
</tr>
<tr>
<td>20</td>
<td>Bacillus_thuringensis_israelensis_JAB550</td>
<td>24.19</td>
<td>32.76</td>
<td>25.21</td>
<td>36.03</td>
<td></td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>21</td>
<td>Bacillus_thuringensis_andaloussiensis_JAB767</td>
<td>22.92</td>
<td></td>
<td>23.46</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>22</td>
<td>Bacillus_cereus_BT1_JAB395</td>
<td>21.13</td>
<td>30.32</td>
<td>31.92</td>
<td>53.41</td>
<td></td>
<td></td>
<td>R S R</td>
</tr>
<tr>
<td>23</td>
<td>Bacillus_cereus_55000_JAB564</td>
<td>22.08</td>
<td>29.99</td>
<td>22.94</td>
<td>30.73</td>
<td></td>
<td></td>
<td>S S ND</td>
</tr>
<tr>
<td>24</td>
<td>Bacillus_thuringensis_alesti_JAB240</td>
<td>26.78</td>
<td>30.93</td>
<td>26.52</td>
<td>35.14</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>25</td>
<td>Bacillus_streptomyces_BT7_JAB409</td>
<td>21.90</td>
<td>32.69</td>
<td>19.01</td>
<td>31.09</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>26</td>
<td>Bacillus_megaterium_899_JAB170</td>
<td>20.76</td>
<td>20.79</td>
<td>20.81</td>
<td>30.73</td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>27</td>
<td>Bacillus_megaterium_BT12_JAB566</td>
<td>24.40</td>
<td>29.00</td>
<td>25.25</td>
<td>34.06</td>
<td></td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>28</td>
<td>Bacillus_megaterium_BA209_JAB768</td>
<td>22.91</td>
<td></td>
<td>24.59</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>29</td>
<td>Bacillus_pumilus_BT19_JAB409</td>
<td>20.93</td>
<td>28.03</td>
<td>24.04</td>
<td>37.37</td>
<td></td>
<td></td>
<td>R S S</td>
</tr>
<tr>
<td>30</td>
<td>Bacillus_thuringensis_thuringensis_JAB237</td>
<td>22.08</td>
<td>29.99</td>
<td>22.94</td>
<td>30.73</td>
<td></td>
<td></td>
<td>S S ND</td>
</tr>
<tr>
<td>31</td>
<td>Bacillus_subtilis_subsp_inaquosorum_JAB766</td>
<td>21.14</td>
<td></td>
<td>14.80</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>32</td>
<td>Bacillus_subtilis_PY79</td>
<td>21.72</td>
<td>35.79</td>
<td>22.58</td>
<td>34.25</td>
<td></td>
<td></td>
<td>S S S</td>
</tr>
<tr>
<td>33</td>
<td>Bacillus_licheniformis_BT2_JAB396</td>
<td>27.15</td>
<td>23.49</td>
<td>26.52</td>
<td>26.59</td>
<td></td>
<td></td>
<td>S S R</td>
</tr>
<tr>
<td>34</td>
<td>Bacillus_licheniformis_BGSC-5A24_JAB249</td>
<td>40.50</td>
<td>29.02</td>
<td>8.56</td>
<td>27.09</td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>35</td>
<td>Bacillus_subtilis_subsp_inaquosorum_JAB766</td>
<td>21.14</td>
<td></td>
<td>14.80</td>
<td></td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>36</td>
<td>Bacillus_subtilis_BSn5_JAB547</td>
<td>21.78</td>
<td>36.23</td>
<td>18.93</td>
<td>21.96</td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>37</td>
<td>Bacillus_licheniformis_BT2_JAB396</td>
<td>27.15</td>
<td>23.49</td>
<td>26.52</td>
<td>26.59</td>
<td></td>
<td></td>
<td>S S R</td>
</tr>
<tr>
<td>38</td>
<td>Bacillus_licheniformis_BGSC-5A24_JAB249</td>
<td>20.50</td>
<td>29.02</td>
<td>8.56</td>
<td>27.09</td>
<td></td>
<td></td>
<td>ND ND ND</td>
</tr>
<tr>
<td>39</td>
<td>Bacillus_thuringensis_subsp_kurstaki_JAB549</td>
<td>23.16</td>
<td>33.38</td>
<td>23.31</td>
<td>35.73</td>
<td></td>
<td></td>
<td>R S ND</td>
</tr>
<tr>
<td>40</td>
<td>Bacillus_licheniformis_BT2_JAB396</td>
<td>27.15</td>
<td>23.49</td>
<td>26.52</td>
<td>26.59</td>
<td></td>
<td></td>
<td>S S R</td>
</tr>
<tr>
<td>41</td>
<td>Bacillus_licheniformis_BT2_JAB396</td>
<td>27.15</td>
<td>23.49</td>
<td>26.52</td>
<td>26.59</td>
<td></td>
<td></td>
<td>S S R</td>
</tr>
</tbody>
</table>
Using data from the antibiotic and growth screens, we loosely grouped the recipients into three different growth categories: fast (doubling times <30 min), medium (doubling times 30-50 min), and slow (doubling times >50 min). These groupings were used to divide strains into manageable units for the conjugation assays (see next section).

4-2-6. Conjugation of wild type and miniature ICEBs1 into diverse bacterial species

ICEBs1 conjugation has been tested in 44 of the 82 recipient strains (53%) (Fig 4-9b). Of those tested, 20 yielded transconjugates (45%), which were verified by re-streaking on the appropriate antibiotics and colony PCR using ICE-specific primers (Fig 4-9a). Interestingly, there is little correlation between species’ 16S rRNA phylogenetic distance and successful conjugation. Several strains that are closely related to our B. subtilis donor (e.g., Bacillus amyloliquefaciens FZB42, Bacillus subtilis GB03) did not receive ICEBs1 during the conjugation assays. However, all of the Enterococci strains, which are the most distantly related strains in our collection, did receive ICEBs1. Similarly, distinct strains of the same species have different mating abilities. ICEBs1 conjugates into Bacillus thuringensis subsp. fimintus and subsp. kurstaki strains, however we did not detect transconjugates when attempting to mate ICEBs1 into the mexicanensis, israelensis, thuringensis, and alesti subspecies strains.

In addition, some of the recipient strains showed mixed colony morphologies after conjugation (Fig 4-9, starred). We presume that ICEBs1 integrates randomly into the genome of these strains and occasionally disrupts genes that are necessary for robust growth leading to diverse colony sizes. In B. subtilis, ICEBs1 recognizes a specific 60-bp direct repeat sequence (attB) for integration\(^{455}\). When attB is missing, ICEBs1 will integrate randomly into the B. subtilis chromosome. The ICEBs1 attB is in a leucine tRNA (tRNA\(^{\text{eu2}}\)) and although tRNAs are highly conserved across species, it may be missing from many of the recipient bacteria, causing
Figure 4-8: Phylogenetic tree and conjugation proficiencies for recipient bacteria collection.
Tree was constructed using 16S rRNA sequences. Bacteria that successfully receive ICEBs1 are shown in green. Unsuccessful conjugation in black. Untested in grey. Bacillus subtilis donor strain (AG174) in blue.

ICEBs1 to integrate randomly. Although genome sequences are unavailable for the vast majority of our recipient strains, BLAST was used to identify species with potential att sites. BLAST results show that 30 of the 56 recipient species (53.5%) contain sequences with at least some sequence identity to the ICEBs1 attachment site (Fig 4-9). Thus ICEBs1 is likely integrating randomly in the majority of recipient species.

Figure 4-9: ICEBs1 attB site in recipient bacterial species.
Sequences closely related to the ICEBs1 att site were identified through BLAST and aligned using Clustal Omega.

After confirming ICEBs1 conjugation into several recipient species, we began using mICE to deliver exogenous DNA to the bacteria. First, we added a P_spall_GFPmut2 cassette to
mICE 1.0 and delivered it to the recipient bacteria that received wild type ICEBs1 (Fig 4-10a). We measured the response function of this cassette across species. Incredibly, the cassette is functional in all strains tested thus far. All of the bacteria express GFP in an IPTG-dependent manner, however the background fluorescence (Fig 4-10b, blue lines) and fold change in GFP expression +/- IPTG varies significantly across species. The variation in fold change across species is attributable to differences in both leaky expression of GFP and maximum fluorescence.

Figure 4-10: \(P_{spank\cdot GFPmut2} \) response functions in diverse bacterial species.

(A) Schematic of B. subtilis donor strain (JAB402) used to deliver mICE carrying \(P_{spank\cdot GFPmut2} \) to diverse bacterial species. (B) Recipient species engineered with mICE carrying \(P_{spank\cdot GFPmut2} \) and the IPTG-response functions. Engineered strains in red, unmodified recipient bacteria in blue. Error bars are the s.d. of three separate transconjugates from the same conjugation experiment.
4-2-7. Delivery of a functional nif clusters to soil dwelling bacteria

The most famous plant growth promoting bacteria are nitrogen fixers that turn atmospheric nitrogen into a form that plants can easily use. These bacteria are typically endophytes that invade plant roots and, through a complex interaction with plant cells, form oxygen poor nodules in which the bacteria fix nitrogen in return for sugars456. Nitrogen-fixing bacteria can improve crop yields and reduce the application of nitrogen fertilizers, which are bad for the environment. However, nodule-forming nitrogen-fixing bacteria can only interact with specific plant species (\textit{i.e.}, legumes). Thus, fertilizers must be used to produce many of the most prevalent food crops worldwide (\textit{i.e.}, wheat, rice, maize). Fortunately, non-nodule forming nitrogen-fixing bacteria (diazotrophs) can also improve plant growth in nitrogen-limited environments457,458. Thus there is immense interest in identifying diazatrophic bacteria that can be used to improve growth of non-legume food crops.

Here, we use mICE to introduce nitrogen fixation capabilities to diverse soil bacteria and generate new diazatrophs. Most microbial nitrogen fixation is catalyzed by a molybdenum-dependent nitrogenase enzyme that converts \textit{N}_2 into ammonia. The structural subunits of this enzyme are typically encoded in complex nitrogen fixation \textit{nif} gene clusters along with proteins for co-factor biosynthesis and electron transport459. However, a simple single-operon \textit{nif} cluster was recently discovered in \textit{Paenibacillus} sp. WLY78460. This \textit{nif} cluster successfully conferred nitrogen-fixing capabilities to \textit{Escherichia coli} when over expressed in laboratory conditions. We cloned the 10 kb \textit{nif} cluster into mICE in \textit{B. subtilis} AG174 under the control of three different promoters: \(P_{\text{nifA}} \) (the native \textit{Paenibacillus} promoter), \(P_{\text{spur}} \), and \(P_{T7} \) (a promoter recognized by bacteriophage promoter T7 RNA polymerase (T7RNAP)) (Fig 4-11a). Minimal ICEBsJ with the \textit{nif} gene cluster will be referred to as nICE. Then nitrogenase enzyme production was measured using an acetylene reduction assay (methods). Of the three promoters, \(P_{T7} \) produced the most active nitrogenase (Fig 4-11b). In the \(P_{T7,nifWLY78} \) strain, T7RNAP is expressed from a non-ICE locus (\textit{amyE}). However, this configuration is not useful for engineering nitrogen fixation into other bacterial species. Thus, we added T7RNAP to nICE. The cluster is only functional when transcription of all of the genes (\textit{nifWLY78}, T7RNAP, and \textit{lacI}) is co-directional. The first iteration of T7RNAP-nICE that we built had \(P_{\text{spur}} \) oriented convergently with \(P_{T7} \) (Fig 4-11c). However, this nICE produced significantly less functional nitrogenase than the original
I speculate that this architecture leads to repression via antisense transcription and, although no experiments were done to prove this hypothesis conclusively, flipping the \(P_{\text{spank}}-T7\text{RNAP} \) cassette so that the promoters are no longer oriented convergently restores nitrogenase production.

Once we had a functional T7RNAP-nICE donor, we conjugated the T7RNAP-driven \(nif \) cluster into several of the soil bacteria species and measured nitrogen fixation (Fig 4-11e). X out of X bacteria tested were able to fix nitrogen. Importantly, none of the strains fix nitrogen in the

\[P_{T7-nifWLY78} \]

strain (Fig 4-11d).
absence of IPTG, therefore the diazatrophic phenotype is due to expression of the genes carried on nICE. We also tested the $P_{\text{spank-nifWLY78}}$ nICE in the other bacterial species and found that although some of the *Bacillus licheniformis* strains are able to fix nitrogen using $P_{\text{spank-n ICE}}$, addition of the orthogonal viral polymerase improves the nitrogen fixation phenotype.

4-3. Discussion

Here, we present ICEBs1 as a tool for engineering diverse bacterial species. We created a miniature version of ICEBs1 that is incapable of self transfer and demonstrate that it can be used to introduce foreign DNA to at least twenty different strains spanning sixteen bacterial species and five genera (*Bacillus, Enterococcus, Paenibacillus, Streptococcus, Staphylococcus*). We use this minimal ICE to test an inducible promoter system across species and demonstrate that a single cassette is functional across all strains tested. Since our interest in developing this tool is to enable the construction of sophisticated probiotics, we demonstrate that mICE can be used to transform non-nitrogen fixing soil bacterium into diazatrophs with potential for improving plant growth. We use mICE to deliver a minimal *nif* cluster to six different soil bacteria and show that the best nitrogen fixation results are achieved when a viral polymerase (T7RNAP) is used to drive expression of the cluster. Future work will focus on testing the remainder of the recipient bacteria collection and modifying mICE 1.0 to improve reliability of the tool and potentially expand host range further.

Although our current data shows ICEBs1 conjugation $>45\%$ of the bacterial species tested, there are several modifications that could be made to the element that may expand its host range. There are several potential points of failure that may be easily addressed by modifying the mICE (or full length ICE) delivered to the recipient bacteria. Each modification should be preceded by simple assays to elucidate the point(s) of failure in the recipient. The first point of failure may be degradation of ICE DNA in the recipient bacteria by an incompatible restriction modification system. If the ICE DNA is digested by restriction enzymes in the recipient, it will be immediately lost before transconjugates can form. There are several ways to circumvent restriction modification (R/M) systems, however a straightforward method used by other mobile genetic elements is expression of antirestriction proteins. One (or more) of these antirestriction proteins could be added to ICEBs1 to prevent digestion of the delivered DNA by recipient R/M
systems. Alternatively, the element could be recoded to remove all known restriction enzyme recognition sequences or the *B. subtilis* donor strain could be engineered to express more DNA modification enzymes to methylate tDNA before it is transferred to the recipient cell.

A second point of failure could be integration of the ICEBsl DNA into the recipient bacteria’s genome. Failure to integrate is most likely due to insufficient expression of the Int protein in the recipient (since we know the protein itself is capable of integrating ICE DNA in the absence of attB)\(^5\). Promoter and RBS engineering could potentially be used to boost expression of the integrase in the recipient cell. Synthetic biologists have recently published mixed feedback control loops and software tools for developing ‘universal’ RBSs that may help drive expression of Int in organisms with distant transcription/translation machinery\(^6\). Failure to integrate may also be due to insufficient second strand synthesis in the recipient. tDNA needs to be double stranded in order for host RNAP to transcribe the *int* gene and for the Int protein to catalyze recombination. To ensure second strand synthesis in the recipient, additional single strand origins (sso) could be added to ICEBsl. Ssos from broad host range rolling circle plasmids may increase the amount of double stranded DNA in the recipient and facilitate integration\(^7\).

Failure to maintain ICEBsl may be due to disregulation of *int* and *xis* in the recipient species. If too much excisionase is expressed, ICEBsl will continually excise and eventually get lost. This can be fixed by eliminating *xis* from the transferred DNA so that once ICE has integrated into the recipient’s genome it cannot excise and become lost. Integration of ICE DNA into essential genes may lower the observed conjugation efficiency. Random integration of ICEBsl could be prevented by swapping the native integrase for one with a known recognition sequence in the target strain\(^8\). Unfortunately, this requires genome sequence information in the target, which may be difficult to acquire. CRISPR/Cas systems could also be used to target integration of ICE DNA to specific locations in the host chromosome\(^9\), though this would also require knowledge of genome sequences and expression of more genes in the target strain.

Several additional strains, including anaerobics, thermophiles, and isolates from other important microbiomes (*e.g.*, aquatic bacteria, animal commensals), could be tested as ICEBsl recipients in future studies. *B. subtilis* is capable of anaerobic growth and can withstand very high temperatures (it can still *grow* at 65\(^\circ\)C). Thus, it may be amenable to conjugation experiments in more extreme environments. Being able to engineer anaerobic strains would be
especially useful for manipulating gut microbes. Several of the most important gut bacterial species, including *Bifidobacterium* and *Clostridia* are obligate anaerobes with very few tools available for genetic modification.

![Figure 4-12: Methods for engineering bacteria with ICE.](image)

ICEs could be used to genetically modify bacteria either *in vitro* (A) or *in situ* (B). Bacteria can be extracted from the target environment, modified, and reintroduced (A). Or a donor strain of bacteria can be introduced to the target environment to modify bacteria *in situ* (B).

Most excitingly, ICE could be used in the future to modify recipient bacteria *in situ*. During this project, we brought bacteria out of their environments and into the lab in order to modify them (Fig 4-12a). However taking bacteria out of their environment(s) and into lab is not necessary if the synthetic DNA is delivered to bacteria via conjugation. Horizontal gene transfer via conjugation is known to occur in almost all environments. Thus, instead of bringing bacteria into the lab, donor strains of *B. subtilis* could introduced to the environment to spread target synthetic programs to the bacteria already living in these environments (Fig 4-12b). This would eliminate the need to find culture conditions for target bacterial species or clear out bacteria from specific niches to prevent colonization competition. *In situ* engineering may
instigate a new paradigm for treating disease in which donor bacteria are consumed or distributed, like probiotics to deliver ‘smart’ therapeutic pathways, instead of bioactive molecules, to the native cells.

4-4. MATERIALS AND METHODS

4-4-1. Media and growth conditions.

Escherichia coli strains were grown at 37°C in Luria Broth (LB) (Becton Dickinson 244630). *Saccharomyces cerevisiae* strains were grown at 30°C in yeast extract peptone dextrose (YPD) or uracil dropout synthetic defined media (SD-URA). *Bacillus subtilis* donor strains were grown at 37°C in LB medium. Media and growth conditions for all other strains are listed in Table X. Starter cultures were generated for all assays by streaking out the appropriate strains from freezer stocks onto solid media and incubating overnight. In the morning, one colony was inoculated into 2mL of medium in 15mL culture tubes (Fischer Scientific 352059) and incubated for 2h at 30°C or 37°C and 250 r.p.m. in a New Brunswick Scientific Innova 44.

Antibiotics and other chemicals were used at the following concentrations: carbenicillin (*E. coli* - 100 μg/mL) (Gold Bio C-103), kanamycin (*E. coli* - 50 μg/mL, *B. subtilis* - 5 μg/mL) (Gold Bio K-120), tetracycline (*B. subtilis* - 10 μg/mL), spectinomycin (*B. subtilis* - 100 μg/mL), erythromycin (*B. subtilis* - 0.5 μg/mL), lincomycin (*B. subtilis* - 12.5 μg/mL), chloramphenicol (*B. subtilis* - 5 μg/mL), isopropyl β-D-1-thiogalactopyranoside (IPTG) (1mM) (Gold Bio I2481C), xylose (2% wt/vol), D-alanine (100 μM) (Sigma A7377). For the nitrogenase activity assay, all strains were incubated in modified BB medium (20 g sucrose, 0.25 g MgSO4·7H2O, 1 g NaCl, 0.1 g CaCl2·2H2O, 2.9 mg FeCl3, 0.25 mg NaMoO4·2H2O, 2.5 g Na2HPO4, 0.3 g KH2PO4, 1.5 mL 10% serine; per liter).

4-4-2. Strains.

Escherichia coli strain NEB10β (Δ(ara-leu)7697 araD139 fhuA ΔlacX74 galK16 galE15 e14-f80lacZΔM15 recA1 relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC)), *Escherichia coli* strain XL10Gold (endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac Hte Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 tetR F’proAB lacI97ΔM15 Tn10(TetR Amy 103
Cm^R)]) (Agilent Technologies 200314), and Saccharomyces cerevisiae were used for all plasmid constructions. Bacillus subtilis subsp. subtilis strain JH642 was used as the base strain for all donors. All recipient strains in this study are listed in Table 4-1.

4-4-3. 16S rRNA sequencing.

Colony PCR was performed to amplify and sequence 16S rRNA. To perform colony PCR, single colonies were inoculated into 35 μL of Bio-Rad InstaGene Matrix (Bio-Rad 7326030) and incubated at X for X min, then boiled at X for X min. InstaGene Matrix beads were removed via centrifugation and 1 μL of supernatant was added to a PCR reaction using Integrated DNA Technologies ReadyMade Primers for 16S rRNA amplification (IDT 51-01-19-06 and 51-01-19-07).

4-4-4. Growth rate measurement.

Strains are struck out on the appropriate solid media and incubated at 25°C, 30°C, or 37°C overnight. The next day, colonies are picked into 200 μL of the appropriate media in 96-deep well blocks (USA Scientific 1896-2000) and incubated for 3 h at 25°C, 30°C, or 37°C and 250 r.p.m. in an INFORS-HT Multitron Pro. After 3 h, the cells are diluted 1:500 into 150 μL of fresh media in black 96-well optical bottom plates (Thermo Scientific 165305) and incubated at the same growth temperature with 1 mm orbital shaking in a BioTek Synergy H1 plate reader. Optical density measurements at 600-nm wavelength (OD_{600}) were made every 20 min for 12 h.

To calculate growth rates, a standard curve was made to correlate plate reader measurements with OD_{600} measurements from the BioRad XX spectrophotometer used for all other assays. Briefly, OD_{600} of B. subtilis PY79 cultures (in the same media as the test strains) were measured using the BioRad XX spectrophotometer. These cultures were serially diluted (OD_{600} = 1.6, 0.8, 0.4, 0.2, 0.1, 0.05, 0.025, 0) into fresh media with 50μg/mL chloramphenicol to prohibit growth. 150μL of each were added to the 96-well optical bottom plates and measured concurrently with test strains. Growth rates (min/doubling) were calculated using the slope of the linear portion of the exponential agrowth curves.
4-4-5. Conjugation assays.

Conjugation assays were performed on filters as previously described. Briefly, starter cultures are diluted to OD\textsubscript{600} 0.025 in 20mL of medium in 250 mL Erlenmeyer flasks (Corning 4450-250) and grown at the same temperature and speed as starter cultures. After 1 h, 2% xylose (wt/vol) is added to the donor culture to induce expression of RapI and the cells are grown for an additional hour. Next, 2.5mL of donors and recipients at OD\textsubscript{600} 0.9 are mixed, collected on a mating filter (Thermo Scientific 145-0020) by vacuum, and placed on a solid mating support consisting of 1.5% agar with Spiz+MgCl\textsubscript{2} (0.2 g NH\textsubscript{4}SO\textsubscript{4}, 1.4 g K\textsubscript{2}HPO\textsubscript{4}, 37.5 mg KH\textsubscript{2}PO\textsubscript{4}, 0.1 g Na\textsubscript{3}citrate-2H\textsubscript{2}O, 20 mg MgSO\textsubscript{4}-7H\textsubscript{2}O per liter + 125mM MgCl\textsubscript{2}) for 3 h at 37°C. Cells were then rinsed off the filter, diluted, and spread on plates with selective antibiotics and/or D-alanine to determine the numbers of transconjugates, donors, and recipients. For all conjugation assays, donor starter cultures and O/N plates contain antibiotics to prevent ICE\textsubscript{Bs1} excision/loss.

Slight modifications to the filter mating protocol were made for spot and liquid matings. For spot and liquid matings, starter cultures are diluted into 2 mL of medium in 15 mL culture tubes. 150 μL of donor and recipients at OD\textsubscript{600} 0.9 are mixed and either incubated at 37°C for 3 h (liquid mating) or centrifuged at 12,000 r.p.m. for 1 min, resuspended in 15 μL of media, and spotted onto agar plates.

4-4-6. Nitrogenase activity assay.

Nitrogenase activity was determined by acetylene reduction as previously described. Starter cultures are diluted to OD\textsubscript{600} 0.025 in 2mL of medium in 24-deep well blocks and grown for 2.5 h at 250 r.p.m in an INFORS-HT Multitron Pro. The cells were then collected by centrifugation (1 min, 12000 r.p.m.) and resuspended in 2mL BB minimal media in 10mL glass vials with PTFE-silicone septa screw caps. Headspace in the bottles was repeatedly evacuated and flushed with argon gas using a vacuum manifold equipped with a copper catalyst O\textsubscript{2} trap. Acetylene gas was freshly generated from CaC\textsubscript{2} in a Burris bottle and 1mL was injected into each bottle to start the reaction. Cultures were incubated at 30°C, 250 r.p.m. for 22 h. Ethylene production was analyzed by gas chromatography on an Agilent 7890A GC system (Agilent Technologies, Inc.) equipped with a PAL headspace autosampler and flame ionization detector as follows. 250mL
headspace preincubated to 35°C was sampled and separated on a GS-CarbonPLOT column (0.32 mm x 30 m, 3 micron; Agilent) at 60°C and a He flow rate of 1.8 mL/min. Detection occurred in a FID head heated to 300°C with a gas flow of 35 mL/min H2 and 400 mL/min air. Under these conditions, acetylene eluted at 3.0 min after injection and ethylene at 3.65 min. Ethylene production was quantified by integrating the 3.65 min peak using Agilent GC/MSD ChemStation Software.

4-4-7. Fluorescence measurement.

Starter cultures are diluted to OD600 0.025 in 2mL of medium in 15 mL culture tubes and grown for 2.5 h at the same temperature and speed. After 2.5 h, the cells are diluted 1:200 into 200 μL media with different concentrations of IPTG (0, 1, 5, 10, 20, 50, 70, 100, 200, 500, 1000 μM). These cultures are grown for 3 h, then diluted 1:15 into phosphate buffered saline and measured using a BD Biosciences Fortessa flow cytometer with blue (488 nm) and red (640 nm) lasers. An injection volume of 10 μL and flow rate of 0.5 μL/s were used. Cytometry data was analyzed using FlowJo (TreeStar Inc., Ashland, OR) and populations were gated on forward and side scatter heights. The gated populations consisted of at least 30,000 cells. The median fluorescence of the gated populations was used calculated using FlowJo and used for all reporting.
Chapter 5: Conclusions

5-1: UTILITY OF SUBTLE REGULATORY METHODS FOR CONTROLLING GENE EXPRESSION

In natural systems, gene expression is regulated by an astounding number of variables, many of which are ignored by synthetic biologists. This is because a few specific regulatory sequences, e.g., RBSs, promoters, terminators, can drastically change gene expression and synthetic biologists have primarily focused on maximizing changes in gene expression. However, as synthetic genetic systems become more intricate, genetic engineers will need to make more nuanced adjustments to transcription/translation. To achieve a finer level of control, additional regulatory mechanisms must be considered. Just as natural genetic systems use multiple mechanisms to precisely control gene expression, genetic engineers could layer regulatory methods to build synthetic genetic programs. Layering subtle regulatory mechanisms may allow genetic engineers to move away from extreme overexpression of protein and/or RNA regulators, e.g., repressor proteins, activator proteins, RNA IN/OUT, CRISPR/dCas9, to create more robust genetic circuits. If genetically engineered bacteria are ever approved for commercial release, they need to be able to survive in the target environment and closely mimicking natural regulation may be the best way to reduce the metabolic burden placed on cells by synthetic programs. This should help genetically modified bacteria compete with wild type organisms. Thus, it will become important to characterize more natural forms of gene expression control so that they can be incorporated into synthetic designs.

One example of a biological variable that affects gene expression is DNA topology466. DNA can change from negatively to positively supercoiled or flip from B-form to Z-form467. Each form of DNA differentially affects transcription initiation and protein binding to DNA466,468,469. However, topology is largely ignored when genetic engineers design DNA. This is surprising because DNA topology can be changed using transcription, protein binding, and DNA looping470, which are all processes dictated by DNA sequence. Therefore, genetic engineers could design DNA sequences that convert between topologies and use DNA structure to tune gene expression. Another biological variable that is largely ignored by genetic engineers is tRNA modification. tRNA modifications can affect the rate and fidelity of translation by altering ribosome-binding affinity and reducing misreads/frame shifts. tRNA modifications can be
induced by cell stress or growth rate and can change the translation rate of specific codons\(^{471}\). Therefore, when synthetic biologists ‘recode’ genes, they may be able to use codons recognized by differentially modified tRNAs to promote translation under specific conditions. Antisense transcription (discussed in Chapter 3) is another form of regulation that could be layered on top of existing modes of regulation to fine tune gene expression. Now that we have started to quantify the affect of antisense promoters on gene expression, we expect that antisense promoters can be used in creative ways to tune gene expression. For example, operon arrangement could now be used as a design parameter. Engineers could design constructs with convergent operons to create antisense transcription and coordinate expression of the two operons\(^{300}\). Alternatively, inducible antisense promoters could be embedded in the coding regions of genes to predictably differentially regulate expression. The advantage of these alternative methods for tuning gene expression is the ability to layer regulation. Antisense transcription, DNA topology, and codon usage can all be considered when designing constructs that use characterized promoters, RBSs, and terminators. As the desire to precisely tune gene expression increases, I believe that features such as DNA topology and tRNA modification rates will become more important.

5-2: ADDITIONAL FACTORS THAT AFFECT ANTISENSE TRANSCRIPTION

As discussed in Chapter 3, promoter strength can affect the amount of repression generated by antisense transcription. However, additional factors, such as RBS strength and promoter firing kinetics, may also affect antisense transcription-mediated repression. The ODE model developed in Chapter 3 predicts that polymerases fired from the forward promoter, i.e., the promoter driving expression of the protein of interest, are more likely to survive collisions than those fired from the antisense promoter. We interpret this result to mean that ribosomes translating the forward mRNA prevent RNAPs fired from the forward promoter from backsliding/stalling and increase the number of RNAPs that survive collision. Therefore, we hypothesize that changes in the RBS alter the amount of repression. Weaker RBSs should increase repression by increasing susceptibility to collisions. Weaker RBSs could also increase fold repression by reducing the number of ribosomes present on the mRNA, thereby leaving more mRNA available for binding by the antisense RNA (asRNA). Preliminary experiments
with different RBSs show that RBS strength is inversely correlated with fold repression (Fig 5-1). However, additional experiments will be needed to identify the mechanism behind RBS-mediated changes in repression. These experiments may include single molecule techniques to measure the frequency of RNAP ejection following collision or additional gene expression experiments in which both the forward and antisense promoters drive expression of translated mRNAs.

![Figure 5-1: Impact of RBS sense on antisense transcription](image)

(A) Antisense transcription reporter plasmids used to quantify repression. Plasmids are the same as in Fig 3-2, except RBS is varied. (B) Fold repression (Equation 3-1) is shown as a function of the induction of the forward promoter. The colors correspond to RBSs of different strength. (C) Maximum fold repression as a function of RBS strength. In all panels, data represents the mean of three experiments performed on different days and the error bars are the standard deviation of these replicates.

Promoter kinetics may also influence repression mediated by antisense transcription. Promoter kinetics can vary widely based on the ability of RNAP to bind, isomerize, and initiate productive transcription at a given DNA sequence\(^{316}\). Promoters that fire RNAPs in bursts may be less susceptible to antisense transcription than those that fire deterministically, \textit{i.e.}, at regular intervals. To visualize why this is true, consider two promoters that both produce the same amount of mRNA in a given period of time (as measured by the amount of fluorescent protein produced in that period of time). One promoter is deterministic and one fires RNAPs in bursts. At the bursty promoter, several RNAPs will initiate transcription in quick succession\(^{472}\). This group of polymerases will transcribe the gene of interest and then fall off the DNA. Eventually the bursty promoter will fire again and another group of RNAPs will traverse the DNA. When compared to a deterministic promoter, the bursty promoter will create longer stretches of time during which no RNAPs are fired and the template strand of DNA is free of RNAP. During this
time, RNAPs fired from the antisense promoter will not cause collisions. Thus, for a given antisense promoter, genes expressed with bursty promoters will be less susceptible to repression via antisense transcription. Additionally, trailing RNAPs, *i.e.*, those closely following another actively transcribing RNAP, may also help prevent backsliding/stalling of the leading RNAP. Thus, promoter dynamics may affect the quantitative effect of antisense transcription.

5-3: MODIFICATIONS THAT MAY EXPAND THE HOST RANGE & CONJUGATION FREQUENCY OF ICEBsJ

There may be several ways to expand the host range of ICEBsJ. We have been able to conjugate ICEBsJ into half of the bacterial recipients tested so far (see Chapter 4). However, it would be better if we could use ICEBsJ to engineer more of the recipient strains. Ideally, we would be able to conjugate ICEBsJ into any Gram-positive bacteria. We believe that the host range of ICEBsJ is limited, in some cases, by mechanisms that can be circumvented with some simple engineering. For example, restriction modification systems may be preventing ICEBsJ DNA from persisting in recipient cells. Restriction modification systems degrade foreign DNA and bacteria these systems to prevent 'infection' by selfish DNA elements473,474. Conjugative plasmids and other broad host range DNA elements often carry use antirestriction modification proteins to avoid degradation by host enzymes475. Wild type ICEBsJ does not encode any antirestriction modification proteins, however one could easily add antirestriction modification proteins, such as Orf18 from Tn916, to the element476. This may increase the recipient host range by preventing DNA degradation.

Insufficient expression of the integrase Int, may be preventing integration of the ICEBsJ element into some of the recipient bacteria's genomes. If ICEBsJ does not integrate, it must rely on its ability to replicate like a plasmid to persist in the recipient bacteria. Unfortunately, the plasmid form of ICEBsJ is not as stable as the integrated form and it may be lost during recipient cell division. To increase expression of Int in the recipient, the integrase gene *int* could be placed under a broad host range promoter, such as Pint from Tn916. A synthetic system designed to
kick start transcription in any bacteria could also be used to express int65. Low integration efficiency may also be due to a dearth of integration sites in the recipient. The ICEBs1 integrase prefers to integrate at a specific DNA sequence (attB). When this sequence is missing in the recipient, ICEBs1 will integrate randomly in the bacteria's chromosome455. ICEBs1's random integration is much less efficient than site specific integration. Thus, poor conjugation efficiency may be due to poor integration efficiency caused by a lack of good integration sites in the recipient strain. To circumvent this, we could replace the integrase in ICEBs1 with a more promiscuous integrase or with a protein that targets a different sequence.

Second strand synthesis may also prevent successful expression of the ICEBs1 integrase. When ICEBs1 conjugates, it enters the recipient cell as single stranded DNA. The second strand of DNA is made by the host DNA polymerase, which recognizes a second strand origin (sso) on ICEBs1. Since double stranded DNA is required for transcription and recombination with the host genome, it is essential for integration. Unfortunately, ssos can have a very narrow host range and we do not know how well the ICEBs1 sso will function in all recipient bacteria462. Additional ssos can be added to ICEBs1 to increase second strand synthesis in diverse bacterial species.

Finally, the antibiotic resistance cassettes that we are using to isolate transconjugates could be altered to potentially increase the known host range of ICEBs1. As discussed in Chapter 4, we selected tet(M) and cat as the antibiotic resistance markers to use for our ICEBs1 conjugation experiments because they are from broad host range elements Tn916 and pC194. However, it is possible that these resistance cassettes are not functional in some of the recipient bacteria. If the resistance proteins are poorly expressed or nonfunctional in a recipient bacteria, we would not be able to isolate transconjugates, even if ICEBs1 was successfully conjugated and integrated, giving us a false positive result. Other antibiotic resistance markers or selection methods could be used to test ICEBs1 conjugation to potentially broaden it's known host range.
Before modifying ICEBs\[I\] to increase host range, it is necessary to identify the mechanism(s) preventing ICEBs\[I\] acquisition by potential recipient strains. If ICEBs\[I\] is getting digested by a recipient's restriction modification system, then a new sso will not improve conjugation efficiency. It will be straightforward to test several hypotheses for inefficient ICEBs\[I\] conjugation and these experiments should be done before building new ICE variants so that one does not waste time building solutions to the wrong problems.
Bibliography

118

121

405. Shukuo, K., Takashi, N. & Masanaru, M. Process for the manufacture of 5'-purine nucleotide by the fermentation method. (1966).

