THETA FUNCTIONS AND DIVISION POINTS ON ABELIAN
VARIETIES OF DIMENSION TWO

by

David R. Grant
-
A.B., Princeton University

(1981)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS OF THE
DEGREE OF

DOCTOR OF PHILOSOPHY
IN MATHEMATICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1985
@ David R. Grant 1985

The author hereby grants to M.I. T, permission to reproduce and to
distribute copies of this thesis document in whole or in part.

Signature redacted

Signature of Author

Department of Mathematics
May 20, 1985

Signature redacted

Certified by

Harold M. Stark
Thesis Supervisor

Signature redacted

Accepted by

Nesmith C. Ankeny
Chairman, Departmental Committee on Graduate Students

ARCHIVES
JUL 0 3 1985

LIBRARIES



Acknowledgment

I want to express my gratitude to my teacher, adviser, and
friend, Harold Stark, who shared not only his time and insight, but

also his home,

Dedication
This thesis is dedicated to an earlier teacher, adviser, and

friend -- my father,

ii



THETA FUNCTIONS AND DIVISION POINTS ON ABELIAN

VARIETIES OF DIMENSION TWO

by
DAVID R. GRANT

Submitted to the Department of Mathematics
on May 20, 1985 in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in
Mathematics

ABSTRACT

The fields generated by torsion points on abelian varieties defined
over a number field have long been an object of interest. For ellip-
tic curves, these fields are generated by the Weierstrass p -func-
tion and its derivative restricted to p-division points and play a
crucial role in the Coates-Wiles theorem. Stark and Gupta pro-
duced a version of the theorem which utilizes rational primes and
implicitly uses the modular properties of the p -function.

For Jacobians of curves of genus two we introduce a generalization
of the D-function and express it in terms of theta functions, extend-
ing to genus two a classical elliptic formula. We discuss its modu-
lar properties when restricted to p-division points and relate it to
the discriminant of the curve.

For abelian varieties of dimension two with complex multiplication
by certain number fields, we generalize some of Gupta's results in
the elliptic case, calculating discriminants in the tower of fields of
p”-division values. We also derive a character equation which
governs the relations between these discriminants and those in a

tower generated by a pP-division value of a point of infinite order in
the Mordell-Weil group.

Thesis Supervisor: Dr, Harold M. Stark

Title: Professor of Mathematics
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Introduction

A destiny that leads the English to the Dutch is
strange enough; but one that leads from Epsom into
Pennsylvania, and thence to the hills that shut in
Altamont over the proud coral cry of the cock, and the
soft stone smile of an angel, is touched by that dark
miracle of chance which makes new magic in a dusty
world.

- Thomas Wolfe, Look Homeward, Angel [W]

It may appear a strange destiny that combines the mathe-
matics of two centuries into one thesis: From an earlier era, we
have the theory of theta functions, and from more recent times, the
algebraic theory of complex multiplication. Our work, though not
complete, is consistent, For our driving interest has been in the
fields generated by torsion points -- and points whose multiples are
a point of infinite order -- on an abelian variety of dimension two
defined over a number field, and for this quest both theories can
play a role,

The study of such fields is quite classical, and arises, for
instance, in the proof of the Mordell-Weil theorem., For elliptic
curves with complex multiplication, Coates and Wiles [CW] have
exploited these fields to make a dent in the conjectures of Birch and
Swinnerton-Dyer, Subsequently, Stark [St] and Gupta [G] gave
another version of their proof. For abelian varieties of dimension
two with complex multiplication by certain number fields, we extend

some of Stark and Gupta's results, principally in the calculation of
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discriminants in towers of fields generated by torsion points -- and
the derivation of a character equation which governs the relations
between this tower and a tower of fields generated by points dividing
a point of infinite order in the Mordell-Weil group, This is done in
chapter two where more details are provided in a separate intro-
duction,

Stark and Gupta's version utilizes rational primes which re-
main inert in the field of complex multiplication, Their results make
use of the fact that the towers of fields in question are basically gen-
erated by the Weierstrass p-function evaluated at p-division points
-= which is an elliptic modular form of level p, If an elliptic curve
E is analytically isomorphic to C/A, A a lattice generated by 1
and T, then Stark found [St]:

Mo

uftvE€—\
u, v # o*

-2p°-3) , ) 07 -1p%-3)/6
(pt)-p(v)) =xp i A(E)p -1)p -3

where A(E) is the discriminant of the curve in its Weierstrass
form, This equation between modular forms can be viewed as an
analytic explanation of the role of primes of bad reduction of the
elliptic curve in the fields generated by p-division points,

Besides elliptic curves, those of genus 2 are best understood,
They are all hyperelliptic, and their moduli space (over C) is dense

in the fundamental domain of the Siegel upperhalf plane modulo the



action of the symplectic group. This often allows one to extend func-
tions on the moduli space to Siegel modular functions, In particular,
the discriminant of the curve is a modular form of weight 10,

This enables us to pose many questions by analogy with the
elliptic case, Are there functions defined on the Jacobians of curves
of genus 2 which:

1) take on algebraic values at torsion points when the curve is
defined over a number field;

2) are modular forms of a certain level when restricted to p-
division points; and

3) have the discriminant of the curve arising in the symmetrized
product of the difference of the function evaluated at all p-division
points ?

There are two functions which we study in an attempt to meet
these criteria, We denote them by p(u) and p(u,v) (86). The former
is to our tastes the nicer generalization of the Weierstrass p-function.
It meets criterion 1, and it behaves like a meromorphic modular
form on the moduli space of curves of genus 2, but we do not yet have
a meromorphic continuation of it to the whole Siegel upper-half plane,.
The latter, p(u,v) -- closely allied with p(u) -- is the determinant of
the difference of functions and is not a difference of functions itself,
Yet, we have a meromorphic continuation of it to the whole Siegel

upper-half plane, and we are able to isolate the role of the
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discriminant in the product of p (u,v) over pairs of p-division
points,

In the first section of chapter 1 we review the classical theory
of hyperelliptic curves and their Jacobians as they relate to curves
of genus 2, In section 2 we gather certain facts about theta functions
and their role in building up functions on the Jacobian, Mumford
[M1] is a general reference for these sections, The function theory
on the Jacobian is discussed more carefully in section 3, while in
section 4 we cull together some analytic expressions for functions on
the Jacobian which seem to put genus 2 practically on equal footing
with genus 1, The chief reference is a wonderful old text by Baker
[Bak]. In particular, we isolate a function, p(u), which is the
"unique'' even function with a pole of precisely order three along the
theta divisor,

Some standard facts about modular forms are culled together
in section 5, Exploiting the role of a change in symplectic basis on
our curve, in section 6 we determine the "modular' properties of
p(a) and its allied function p(u,v). In sections 7 and 9 we provide
plu,v) with an expression in terms of theta functions which is anal-
ogous to the one which holds for the difference of the Weierstrass

p-function evaluated at two points, We take a break in section 8 to

%
I wish to thank several members of the Harvard English Department,
all named Rosenberg, for getting this material into my hands,
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see how one of these formulae relates to the addition law on the
Jacobian., Finally, in section 10 we write p(u,v) as the ratio of two
modular forms, N’ (u,v), D’ (u,v), and discuss how the discriminant
function appears in both when a product is taken over pairs of p-
division values.

It seems a tradition among writers on theta functions to note
that although the multitude of identities may seem at first chaotic,
with a little time and patience they assume a logical pattern, I too
believe this, but make no pretense that our calculations in sections 7
and 9 are anything less than unwieldy, The symmetry and coherence
of the resulting formulae, however, seem to bear some testimony
to the worth of the undertaking. Whether these will have any arith-
metic application remains to be seen, They certainly have the appli-

cations enunciated by Landau [Land, p. 33].
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Chapter 1

81: Curves of Genus Two and Their Jacobians

Let C be a curve of genus 2 defined over €, Topologically,
C is a 2-1 covering of IP1 , branched at six points. The isomorphism
class of C is determined only up to projective equivalence of the six
branch points; henceforth we will assume one branch point is at the

point at infinity, ® , and the other five at points e, i=1 5.

y vy

In that case, C has a model as an affine curve

5
110 P =160 =[] &-a)=x"+b

-+ 3 &
- - +b x +
A x bzx b3x b4x b

1 B

where x and y are functions on C, with poles only at » of orders
2 and 5, respectively, and a, = x(ei). We think of points P on C
as solutions (x,y) to (1.1.0). C is endowed with an automorphism
of order 2, the hyperelliptic "flip, " mapping P = (x,y) to P = (x, -y).

For hyperelliptic curves there is an explicit way to choose a
symplectic basis for the first homology group, HI(C, Z), We "cut"
the surface between e and e,, €5 and e, and e and © . Con-
sider the following paths on iPl :




1
We 1lift these paths to form a basis for H (C, Z). The B paths follow
1
different sheets over [P as they traverse the cuts. If we let

denote intersection multiplicity, then by construction

A . A=A .B =B, .B =0 for i#j ,
A i J i ]

and if we defined intersection with the correct orientation, Ai . Bi =1,
If we now ''cut'" C along the basis, we are left with a simply-

connected domain. A basis for the differentials of the first kind on C

is given by:

and we define

’
w,. = . W.. = .
ij j‘; Hi oo ij f Y

Standard calculations show:
i) detw # 0,
¢ T
11 12 -1
1) T = (T . ):w w’  is in 53(2)
12 22
the Siegel upper-half plane of degree two. That is, T is a symmetric
matrix with positive definite imaginary part.

We will often want to normalize the differentials of the first

kind by defining



then
T e e
i ij B 1 ij
j

Algebraically, we define the Jacobian of C, denoted J(C), as
the group of divisors of degree zero modulo linear equivalence. Since
C is of genus 2, every divisor of degree zero is linearly equivalent

to one of the form

+ — .
(1.1.1) P1 P2 2

The expression (1.1.1) is almost unique. In fact, letting ~ denote

linear equivalence,

+ - . ~ + - « @
P1 P2 2. = P3 P4 2

if and only if {Pl,Pz} ={P3,P4}, or P2=P1 and P4=P3;

P+P ~ 2. for all P. So the Jacobian can be considered C xC
modulo the action switching Pl and P2 in (1.1.1), with the locus
(P, P) "blown down'' to a single point at the origin of J(C) [M2].

Analytically, we think of J(C) as GZ modulo the lattice A
generated by the period columns

o) < G (). (=)

3
12 Tas



v
The map from divisor classes to € /A is given by

131 PZ
. - . @ it
& P1 g P2 2 r—-)-/ f (vl,vz) modulo A

We embed C into J(C) by

P
P-ow |—>/ (vl,vz)modulo A

"- " denotes set-

We will now explicitly give J(C) -  (C) (here
theoretic difference) the structure of an affine variety.

The idea is to define a set of auxiliary polynomials for the
divisor classes which correspond to J(C) - &(C). We then coordinatize
the polynomials to endow J(C) - &(C) with the structure of an affine
variety. The idea goes back to Jacobi, and we will follow the exposi-
tion of Mumford [M1]. The divisors which correspond to J(C)-&(C)
are Div = PR, =2 =R P,#P,}. ¥D=P +P,-2.

is such a divisor, P, = (x_,vy.), we define:
i if =%

(il 20 t) = (t-xl)(t-xz)

ap
( t =i t-x
2 ik
bYl(xl-XZ) +Y2 (xz-x ) oF x1#x2
VD(t) = 4 ) :
P (f (xl)) x, & @)
_ )t - —
S a2y




d

so that v (x.) =y, , == vnlt) = & . By
o s | 1'd¢ "D dt « £(t) i
1

t=x1

. 2 "
construction: f£(t) - YD (t) = uD(t) wD(t) for some polynomial wD(t).

Let

2
(1.1, 3) uft) =t +u1t+u2

= =+
v (t) Vlt v2

where the u;, u,, vy, V, are undetermined coefficients. Then per-

forming the division:
f(t) - V(t)z =u(t) [cubic polynomiall + Rl(ui’ Vj)t + R2 (ui, vj)

We see that the equations Rl(ui’ vj) = R2 (ui, vj) = 0 turn the set of

polynomials (u, v), u monic quadratic, v linear, such that

f-y2 = uw , into an affine variety. We've shown (uD, VD) lie on

+
this variety, and in fact, there is a bijection between Div and such
+
pairs (u,v) [MI1, II, p, 3.19], This is how we endow Div with the
structure of an affine variety,
We note that:
b M X Y, =X, ¥
1 1
(1.1.4) u, = -(x,*+x), u_=x.x L sese

1 L] L] 1 = » =
] 2 7 12 x1 x2 & X, xZ

Therefore we find that the ring of regular functions on J(C) - &(C) is:



(1.1.5) A(J(C) - &(C)) = c[ul,u A

2, Vl! Vz

i ¥ Edy T lez:l

=C[x X XX ;
1 2 12 xl-xz xl-xz

Since a finite number of translates of J(C) - &(C) cover all of J(C),
we can form an atlas that gives J(C) the structure of an algebraic
variety. The details are in [M1, II.]. We note that this implies the
field of functions on J(C) is given by the field of fractions of (1.1.5).
We return to this field in §3. First we want to come up with another

characterization of &(C).



§2: Theta Functions

(2) g% .
Tet T €0 ", 2z = in Cl and a,b column vectors in

=9

Qz. We define the (2-dimensional) theta function with characteristic
a
b
[b] L
. b . E
a . Ti (nta)T(nta) + 2Ti (nta)(z+b)
(1.2.0) e[b] (z,7) = 8
e

where n is written as a column vector. The function converges
absolutely and uniformly on sets of bounded im z, and im T > c IZXZ

(2)

2
for some c > 0. As such, it is analyticon C X9 i

Translational Formulae (1.2.1). Let p,q be column vectors in Zz.

-TTitpr- ZTTitp(z‘i'b) +2mi taq el:aj' (z )
b o

i) e[g] (z+Tp+q) = e
[

t
- a+p ¥ 271 aq
0 o[p Pl e - . o[2] =1

e[;] ZFapta) e[‘zi};] ) e'ZTTitPCb-b')

9[2:] (z+Tp +q) ] [E:Iz] (z)

We will use these freely throughout chapter 1, As already
should be apparent, we frequently drop T from the notation.

4
When 2 [,::I € Z , we call [;] a theta characteristic (when

considered as such, we usually only worry about a,b modulo 1).

For such an [2] L



E

6[2] (-z, 1) = e41'ri 3k 6[:] (z,T)

t
T
and [,:] is called odd or even depending on whether e4 Loab is

a
b

] (0,7)=0 for [2] odd. We will see later

minus or plus one (i.e., whether © [ ] (z) is an odd or even func-

a
b

that e[a] (0,7) # 0 for [a

tion). Of course, 8 [
b b] even and T a period matrix (this is
peculiar to genera 1 and 2)., There are 6 odd and 10 even theta char-
acteristics, We note that by (1.2.1), for [;:’ a theta characteristic,
) [,:;]2(z) depends only on [g] modulo 1. Theta functions can be used

in several ways to build up functions on J(C), when T is a period

matrix of C. To wit:

(1.2.2) For a, b a' b € ZZ : Za, = Za.’, Zb_ =Zb_’ modulo 1
1 gk 1 1 1 1 1 |

il e[ai} (z,7)

. b.
B

I.T e[ai] (z, )

'
i b.
i

is a function on 032/1\ by (1.2.1), as is

62 a
aziazj log © [b] (z, T)

(1.2;3)

where i,j =1 or 2. In fact, all functions on a complex abelian

variety can be built from the ratio of theta functions. We want to



express the regular functions on J(C) - &(C) which we found in §1
in terms of theta functions. Perhaps the key ingredient is the

Riemann vanishing theorem, which states that there is an odd theta

!

6”] , such that 6[87] (z, T) vanishes to the first

characteristic & =[
order precisely along &(C). Which odd theta characteristic plays the
role of & depends on the choice of basis for HI(C, Z) employed to

define the Jacobian. One of the reasons we picked our basis so care-

fully is that we can identify & for our embedding. The calculation

is tedious, laborious, and classical [Bak; M1, II]. The result is

2

1
5 = ?) The other five odd theta characteristics also play a
1

central role in the function theory. There are 16 points T of order

two in J(C); the origin, a -, i=1,...,5; and ai+ aj -2 .

i,j=1,...,5, i# j. Applying &, we get

d 2
=T 7 + " A ! " E =
a(T) Np ¥ Np mod (A), for some Nps Nop > Z

This defines an isomorphism from points of order two on J(C) to

theta characteristics. By a similarly painstaking calculation [MI1, II]
'

n
uE

one can calculate ['ﬂ ,,_J for T = a,i - ® . which we denote by
i



1

=
I

o Mk o vH
I

J

(1.2.4) n’ =

(= e Rl i
|
o NN o

r

L

r

(I
w

J
1
1
J
1
J

|
- - PR o
=
|
wFoH © ©

L

—
(%)

L

r

[

When T is the origin, we denote 1 =[0] by n.. Itis

i o 0

[ellele e

easy to show that &+ i i=1l,...,5, are precisely the other five

odd theta characteristics. For [E] a theta characteristic:

] [5+2] (0,7T)=0 <> 0[68] (Ta+b, T) = 0

<> Tatb ison &(C)
[a] = n. for some i
= 5 i .

It's important to note that two of these n, are distinguished

by being odd theta characteristics themselves, 'n2 and ﬂ4 . How-

ever, the terminology of ordering is so strong that a o will

2t g

be called even branch points, and ay, 24, 3 odd branch points.

Although the choice of 8 depends on our homology basis, we

will call its zeroes, that is, &(C), the theta divisor and denote it by
®. Using (1.2.2) and restricting denominators to 8[8] (z, 1), it's
easy to imagine how we can start building up regular functions on
J(C) - 8. The coordinate functions of uD(t) (l,ul, uz) can be found
by evaluating uD(t) at three distinct points. We will take as our

choice the three odd branch points a a

D e W

10



We pull out a theorem from [MI1,1II, p, 3.113], Let U =
{1,3,5}, V a setof 3indicesin {1,...,5}, andlet Uo V denote
the symmetric difference Uo V=U UV - (UN V), Then for k € V,

z = &(D),

£ 7 " t " !
4 8N, +t4 n
3 k UoV 'k
(1-2. 5) uD(ak) = (-1)

2 2
ﬂ e[nUOV+nk] (o)e[5+nk] (z)
(a. -a.)

ey B 2 e[ﬂUovlz 0) 0L 61% (z)
i#k

It is worth a moment to comment about the sign. We first
" 7

N, N,
observe that from (1,2,4), letting s(k,i) = (-1) k1

(ak-ai) = s(k, i) <ak - ai)

where

a -a, 3if k<1

a, -a if i<k

Indeed, s(k,i) s(i,k) = -1, Note also that modulo 1, e N, + Mg =
5= n2+'r]4 » 80 Ny oy = ¢} +7‘1V. Now let's apply (1.2,5) with

V={kij},z=1(, +n’')+n"+n":
i m f m

Cor o tonw "
45 +4 (6" + z
= N ( nv)nk

)
]
»
o
]
o
1l

(a, -a,)(a, -a.)
1

k k

ols+n.+n 1% @) 8ls+n +m +n 72 (0)
i k { m

> > s(k, £) s(k, m)
e[5+nk+ni+nj] (0)9[5+n£+nm] (0)

11



12

Since by (1.2.1):

2 2 . " [ 4 I’
+ +
e[6+nk] (z) _9[6+nk n, +nm] (0) 4mi nk('njZ nm)

o e
e[a]z(z) 9[6+'r1jz +’r1m]2 (0)

Now

n y/ " /4 V4 t ¥/ t ¥/ /s
45 + a5+ m! a5’ +n ) (5" +n" ) -4 58 4t +nm!
(-1) & Vik o1 * - (-1 L

s(i, k) s(j,k)

since both 8 and &6+ n are odd theta characteristics. Therefore:

k

74 2
it (a —aﬂ)zak-am) :9[6+ni+ nj] (0) o[5 +nk+'qjz + nm] (0)
- - AL I 2 2
e L o[s*n +n, +n T(0) 8[6+n, +n T (0)

£

This holds independent of coincidence in our choice of i,j,f{,m . We
will return to this later., For now it will suffice to consider the

special case of (1,2,5), where V ={1,3,5}, (so Uo V= ¢), k € U,

We have:
t " 2 2
4°8'n 8[n.1"(0) e[6+n_ ] (=)
ki k ﬂ’ k k

(L.2.70) uD(a.k) = (=1) (a,k-a.,) 5 >

i€V Y os[0]1%(0) 8[6] (2)

i# k
where z = & (D).

To pull out u.,u,, we resort to a partial fractions decomposi-

Lt

tion



13

u (a) 3
(1.2.8) 2k 3 Z t_t
ﬂ' kEU k
(t-a,)
kEU k
where
up (a,)
“k ” (ak-ai)
i€U
itk

and so (1,2, 8) is equal to (since N is an even characteristic)

o [n, 1 (0 86 + 1 1 (2)
ﬂ s(k, i) 5 > and ,
i€U 8[0]" (0) 8[8]  (z)
itk

t2+u1t+u2 z xk ﬂ t-a)

1§U
iFk
IONEEP R NI R

So Zk X = 1, and therefore:

{1.2.9) Uy ® Z a, X - (Z xk) (a.l+a3+a5) = z 2, X - z a,
k k

k

and uz = Z aiajxk ’ 1,] ?£ e



As for v they'll turn out to be derivatives of u, and

1> Y23 1

u, by a certain differential operator on J(C). We'll pinpoint the

2

operator later, but first we should look more closely at the function

theory of J(C).

14



§3: Functions on the Jacobian

The functions on J(C) are precisely the functions on Cx C
which are invariant under the action of the symmetric group S,. The
functions of C are generated by x,y, so let X, ¥, be the corre-

sponding functions on two copies of C, Ci , i=1,2, Then the function

field of J(C) consists of those elements of G(xl,x ) invariant

2, YI’ y’z

under the transposition of the subscripts 1 and 2. The transposition
is an automorphism of order 2, so K(J), the function field of J(C),

: s . = ot A7
is a subfield of index 2. Clearly, L = C (XIXZ’xl X5, Y1 TV, ylyz)

is contained in K(J), and L(xl)/L is at worst a quadratic extension,

Also, it's easy to see that xz,yi,yg € L(xl). Therefore Y? - yg‘ =

- = - -
(yl Vz)(Vl yz) € L(xl), hence also y, -y, , 80 y,,y,, too. There
= -+ - . -
fore K(J) C(xlxz, X P,y Ty, vy, ) . The discerning reader
will note that the inclusion of y,¥, asa generator is redundant, but
we keep it in tow because we wish to find the subfield E(J) of even

functions on J(C), i.e. those invariant under (x )+ (x )-2 .

1’ Yl 2! Yz

> Bpemy) T oy, ey -2

3 1 = =t
We see just as quickly that E(J) G(xlxz, %, t x5, ylyz),
since K(J)/E(J) is quadratic, and y, * y, is quadratic over

22 e e B
Clyx,, x) tx,, y1,). (ly;*y,) =y ty, t2yy,, and y, ty, =

f(xl) 2 f(xz) which is a symmetric polynomial in x, and xz).

1

2
Finally we note (ylyz) . ‘13(:(1 +x2,x1x2) and x, +x2, X%, are

algebraically independent functions on J(C). Therefore we have the

tower of fields:

15
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Clx;, %5, ¥, Y,)
| 2

= +
K(J) tl'.:(x1 X5, XX, Yl‘l’yz)

| 2
E{T) = (L'(xl i 1 X5, X%, ylyz)
| 2

+
‘I:(x1 X5 xlxz)

Given a divisor D on J(C), let £(D) be the dimension of L(D), the
vector space of functions on J(C) with poles at worst those of D,

i.e., those f such that (f) 2 -D, The theta-divisor © is ample,

so we can apply the Riemann-Roch theorem for abelian varieties,
which states [Lang 1; p. 99] for varieties of dimension 2, and posi-
tive integers r,

L(r©) =r2

(The ©-divisor of a Jacobian is a principal polarization and hence has
a trivial pfaffian.) So L(8) consists only of the constants, and
L(26) has a surplus of three dimensions over L(8), two of which

are made up by the functions u The expressions in (1.2, 8) and

g e

(1.2.9) guarantee their presence in L(28), and they are algebraically,

and therefore linearly, independent. To find a third new dimension,
2 2
9 )
, and >
9
1 z, azz 822

we resort to (1.2, 3): we can apply 82 : to

9z



log ©(z, T) to garner three linearly independent functions in L(28),
We will actually be slightly more careful in picking our differential

operators, First we will introduce the two-dimensional O -function.

L



§4: Two-dimensional ¢ and m functions

This section will cull together some facts from Baker [Bak]
with some generalizations of his definitions.
We define the following two differentials of the second kind on

C (with poles only at = , of orders 4 and 2, respectively).

3x3 + Zblx2 + bzx
€, = dx

Corresponding to the symplectic basis (Ai, Bi)’ (although we won't
show this dependence in our notation), we define the matrices mn and

!

n by

Baker [Bak, pp. 14, 15; our definitions of N and Y differ by a sign

or a factor of 2 here and there] shows:

t
(1.4.0) nfn’ = n'tn, tnw=ten -
and the Legendre-esque

- - T :

wn - mMw —21T1-szz >

a proof of which requires close encounters with differentials of the

third kind., We define for z € Cz

18



19

1

(1,4,1) G[.z:l (z,w,w") = e-%tz ez e[a] (w-lz, w-lw')

When [;] = 5 , we simply denote this by o (z,w,w’), What we've
built into this notation is that O is a function of 2z, the curve, and
two choices: that of a symplectic basis for HI(C, Z), and that of a
basis of differentials of the first kind. The latter choice will be re-
moved sho:ltly; the effect of the former will be discussed in the next
section,

Let L be the lattice generated by the columns of W and W',
For a given z not in L, there is a unique divisor on C,

P.+P. =2 - P =
1 2 » Ty (Xi, yi), such that

Pl PZ
z E[ +[ (p.l,uz)modL .
@ @

2
_ =9 logo(z,w,w")

ij azi azj ’

Letting

Baker shows [Bak, p. 38]

F(xl, xz) = Zylyz

p —
2 1471 2
4(3:1 - xz)

X. X

1
D = — Ar = o =
(1.4.2) 22 "% (xl xz), Pis i

where



2 2
F(xl,xz) = (x1+x2)(x1x2) + 2b1(x1x2)

+ + + + b ) b
bz(x1 xz)(xlxz) st(xlxz) b4(x1 xz) Zb5

2
Remark: Baker considers a '"Weijerstrass'' form y = 4x5 + ous o0

avoid the 1/4's in (1.4.2). P is the genus 2 version of what

22
Mumford calls ''the hyperelliptic p -function,' Compare [MI1, II,

§10] where our 8/3z2 is his D_ . For the record, D_ u, =v,, for
i=1,2,
We can now see that L(28) is generated by
1 . ) F(xl,xz) - 2y,v,
Xt X,, XX, an (_ )2 ,
e S
the latter of which is not redundant since V1Y, g C(xlxz, X, +x2).

F(xl,x ) has a pole of order 6 on &, and (ylyz)z € L(109), so

2
V1Y5 € L(58). Hence the numerator of Py has a pole of order 6

2
or 8., Therefore (xl-xz) has a pole of order 4 on 9.

Let H stand for the Hessian operator

8° 9%
92 2 azl 8z2
1
5% 5%
_azl 9z, azg A

A function we would like to study more carefully is

20



_ & '
D "P“Pzz -plz =det Hlogo (z, w, w')

2 2 2
’-(x1+x2)[(x1x2) (xl+x2)+2b1(x1x2) +----2y1y2]-(x1x2) (xl-x2

)

741

2

iy
4 2
i (xl-xz)

—

3 2
+ L 2 -
4(x, %) + 2b1(x1x2) (x1+x2) ?Ylyz(xl +x2)

o |

2
L () = x,)
which has a pole of order 3 on © since the highest terms of p“pzz

and Plzz cancel in the difference.

Before we commence our study we must extend some defini-

tions. We note that any basis for the differentials of the first kind on

€8
C can be written as m[u1:| for m € GLZ(C). For a given fixed
2

symplectic basis, we write

(Cl(rn)) ) tm_l (Gl)
gz(m) Qz

and correspondingly, we get the integrals

N(mw)

N (mw’)

g
3

which we will extend by linearity to the lattice generated by the

columns of m® and mw’:

=1
NmWwA+mw'B)= m (nw)A+nw’)B), A, B integral matrices,



22

where nw)=mn, nw’)=n’, We can now rewrite (1,4,0) as

(1.4.3) nw) M) = nw)

fym(’) - @’ =27 L

and note that these relations still hold when @, w’ are replaced by

mw, mw’,

Finally we can verify the homogeneity of the ¢ -function:

o [Z’] (mz, mw, mw’)

t -1
2. e-'lg" (mz)ﬂ(mw)(mw) (mz) ) [Z] ((mw)-lmz, (mUJ)-l (mw’))

= c[g] (z,w, w’) ,

So the O -function is independent of the choice of basis of differ-

entials once we normalize z , We write the resulting function as a

function of T:

c‘[,:] (z,w,w’") = U[g] (w-lz, T )

=1 E
and p(w z,T)=H10gc(wlz,'r) .



§5: Modular Forms of Degree Two

We let I' denote the (degree two) symplectic group Sp(2, Z),

A B

C D) where A, B, C, D are 2x2 integral

That is, matrices (

matrices satisfying (where I is the 2x2 identity matrix)

Y(a B\ (o -1\ (A B _[0 -1
C D I 0 C D I 0
or equivalently, writing out these conditions:

(1.5.0) tac = tca, °f

BD = ‘DB and ®AD-*cB -1
I B

0 I) , B integral,

Generators for T are all matrices of the form (
0 -I
o (1 0 ) el
We let T'(p) denote the subgroup of those vy € T', such that

Y = (é 2) modp., [ =T(), T actson 8'3(2) by

-1 B
vyo T = (AT + B)(CT + D) where vy = (é D)

(2)

Let g(T) be holomorphic on © . We say g is a modular form of

level p and weight k if:

glyo t) =det(Cr + D)k g(T) for all y € T(p)

(If g is meromorphic of weight 0 we call it a modular function.)

The ring of modular forms of level 1 was explicitly determined by
Igusa [I2] (subsequently by Hammond and Freitag [H, Fr]). I is

generated by forms of weight 4, 6, 10, 12 and 35. The form of

23



weight 10 is related to the discriminant A (C) of our curve and we'll
discuss its properties in §10,

So far we've been dealing with marked Riemann surfaces —
those with a chosen homology basis. Associated to each basis and
curve is our period matrix T € x'a(z). We will show in the next section
that a change in basis corresponds to the actionof 7 - y o T for
some vy €T, Conversely, given two period matrices T, Rl Y 52(2),
they correspond to the same curve if and only if there existsa vy € T
such that 7' = yo T, The moduli space of curves of genus two — the
space of isomorphism classes of curves — therefore sits inside the

(2)

Siegal fundamental domain F = ©

)

/T, In fact, it is dense. More

precisely, T’/ € % is not a period matrix if and only if 7= v o 7

11 12
4 f

for some vy € I' where T = =
12 22

) satisfies 1'12 = 0, In such

a case, CZIA is isogenous to a product of one-dimensional tori,
Our approach will be to conjure up functions on the moduli

space of curves of genus two and then study their extension to all of
39(2) . Our function P has a couple of problems: first it is not de-
fined for T not in the moduli space, and second, it is not analytic

in 7. The latter is not so horrible, for 8[65]3 (z, T) p(z,T) is analytic
on the moduli space. (The reason why m is analytic is that our basis
can be chosen in a smooth way as T varies [MIl, II, §8], Then the

integrals of differentials along these paths will be holomorphic on the

moduli space,) The first problem is more intractable, for although

24
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we will demonstrate in the next section that p (u) transforms like a
modular function (of weight 2 and level 2p) on the moduli space when
u 1is a point of order p on (132 /A , we unfortunately don't yet have a
good characterization of how T acts as T approaches a point in 53(2)
off the moduli space. Therefore we will focus our attention in the
later sections to a closely allied function which doesn't depend on n,
Igusa [I1] has shown that 8 -functions are the building blocks

of modular forms of any level.

Theta functions transform under T by:

*

a*] (z ,7') = C det(CT+D)

(1.5.1) e[b

% -1
1/2 mi z(Ct+D) "Cz a
e G[b] (z, 7)

where ( =C(y) = a complex number of absolute value 1, independent

of z and T
zZ = yoz = 1:(C.:T+D)-1z
% -1
T =yoT = (AT+B)(CT+D)

a o D =CYla 1 t t
= — + —

vo 5] o] (2 )R]z e, wiey

and where M, denotes the row vector consisting of the diagonal

entries of M,

%
The map [Z’] - [;*} induces an action of T /T (2) on theta

characteristics modulo 1, The action has two orbits, one being the
6 odd theta characteristics, the other the 10 even theta characteris-

tics, [T /T(2)] = 720 and it acts as the symmetric group 56 on



the odd theta characteristics [I2].

Likewise, I' /T (2p) acts on [a

b} module 1 whkers Zps. 2ub € 2°,

Since T (2)/T(2p)=>= T /T (p) for p odd [Il], this action is transitive

2
on all [:] such that 2p [Z] € Z  but 2[;’] £ 7 )

26
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§6: Modular Properties of p(z)

We will investigate the effect of a change of symplectic basis

on 0 and pD.

S * * S

1
Let A, AZ’ B1 , B2 be a new symplectic basis for H (C, Z),

Then
B*
1 B1
B* B
2 il 2 for A, B, C,D 2 X2 integral matrices
* C D A ] £l ?
A1 1
A=== AZ
2
* * * A % %
and the conditions Ai . Aj = Bi . Bj = Ai . Bj =0 for i #j and

b ®

Ai . Bi =1 are precisely equivalent to (1,5, 0); hence

:(AB

s 2)er,

L C=|[C D=|D =
et [ij]’ [ij] Then

el

. x
Ky %(Cjkwik Do)

A, ra G B+ D
j k jk k |3 JkAk
= wtc + wtp
. . l* ’ t t
Likewise: w'" =w’" "A+w B

- * vt t
n =nw)=mnw’) C+n(w) D

n@™) = nw) ta+nw s

=3
]

And therefore:
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-1
(Atw"+ Btw)(th'+ th)

_"
1
_'.
1
=
=
]

(AT +B)(CT +D)-l =yoT

For the convenience of the reader, we'll state a

Hessian Lemma (1,6,0): Let

a2 32
azi. leazz
H —_—
82 82
le Bzz aZZ
3 2 t
where z = (ZZ) € C , A, B2x2 integral matrices, A=A g

analytic, Then

i) Bz A2)

2 A, and

ii) H(g (Bz)) = "B((Hg)(Bz))B .

I

We now calculate, Recall

G[E] (l.U_lz, = e-% “Zn(wol e[g] (w-lz, T)

-1
By (1.4.0) n(®W)w ~ is symmetric, so

(1.6.1) Hlog (c[;‘] (L!J-lz,T)) = -n(w)uu_1+ H log (e [;'] (u}-lz, T))

Now by (1,5,1)

(1.6.2) e[gé] terepy e ls, yor)

o | -1 -1
:Cdet(Cﬁ-D)l/ze T zw (Ct+tD) "Cw "=z e[a:l (w-lz,T)
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where = 5 2] A aeinr, )

We note that

-1 *“1

L = otat D = et unh e e 0t g

tcr+D) Lo

-1
since T = f:'r . We further note that (Cr+D) "C is symmetric, since
-1
its inverse, T+C "D is by (1.5.0). So applying Hlog to (1.6.2)
yields:

B

(1.6.3) Hlog (e [g*] W e o T))

= _21'ritw'1(C"r +D)-1 co !+ H log (e [g] (UJ-lz 'r))

Combining this with (1.6,1) we get

(1,6.4) Hlog (CT [:] (w-lz,’f)) - Hlog (0' [‘2:] (w*_lz, Yo T ))

E 3 N =

= n@w Tt +nE®)w :

: - 2114 tUJ-l(C'r“f'D)-l Cw

However,

123

3

et neHe™ = e (me) e +ne) o)t + otp)!

= (-n(w) w-l(w' tc +LutD)+ nw’) tc+ n(w)tD)(w’tc+ th)-l

= (-n(w)w'lw’ + n' ) terr tc + "D)'1 w™ ]

1 1,-1 -1
W

= (-n) & Wt s ne e+ ptch

= (-1 o’ + ) et +e o)y et by (1.5.0)

= 2mi tu]']‘(c'q-+D)-1Cw-l by (1.4,3)

Hence both sides of (1,6,4) are zero, Therefore:



(a
EI
—
—
o
=
[e]
()]
o]
..
P
=
S —
—
&
i
[o—y
N
=
=
et
1

H log (O [g] (w-IZ, T))

= H log (c[g*] (w

=1 & -
= tm* (H log o[z*])(u}* Iz, vorT)w"

+*
1

1
)

But

1

(1.6.5) W w = “{Ct+ D)

S0

(H log o [;']) (w_lz, T)

*
= (Crt D)-l (H log © [

a

b*:l) (ter+D) tw lz), yo mtcr D)

-1
Switching variables (z'=® "z) and taking determinants, we have:

det (Hlogc[;]) (z', 1)

£
= -
= det (H1ogc [g*]) (Y(cr +D) z’', yoT)det(CT+D) 2

Since we are taking logarithmic derivatives, by (1,2,1), the expres-

sion depends only on [2] modulo 1, In particular, when

[;] = [;*] = 5 modulo 1,

(1.6.6) plz’. vy =Dlye 2’, yo 7)det(CT+D)

By reasons similar to those of an upcoming argument, if pz € L,

then p transforms like a meromorphic modular form of level 2p,



shil

However, as we've lamented before, P 1is not defined on all of

9(2).
Therefore, we shall shift our attention to:

(1.6.7) pla, v, T)

det(H log o(u, T) - Hlog d (v, 7))

det(H log 8[8] (u, T) - Hlog ©[8] (v, 7))

s P ,@-p,0v) polu)-p ()
*lp ,@-p,00 p,,0)-p,, )

2
where u,v € € , In taking the difference, we have cancelled out the

effect of the mn -function and left ourselves within the realm of 8 -

2)

functions, which are defined for all T € ©

We must remember that in (1,6, 7) the differentiation is taking
place with respect to uw and vWw, So letting Hu’ H“r stand for

taking Hessians with respect to u and v, respectively, we have by

the Hessian lemma:
(det w)z pla,v,T) = det(Hu log 8[8] (u, T) - H_log 8[8] (v, T))

This provides us with a meromorphic continuation of (det w)zp (u,v, T)

(2)

to allof © ' . To investigate its modular properties, take v € T

such that v ©° & = 8 (in particular, v € T'(2)) then just as we arrived
at (1,6.6), we find:

2
)

= | -1
p({cr+D) u, (CT+D) v, yo T) = det(CT+D)°p (u, v, 7) .

In particular, if u, v are p-division values, i.e,
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u = T&.'i'E_, V:rr_?_+_c'£’ G.,B,€,CD "~ ZZ
Biisn P P
Then
-1 Da- C -Ba + A
(1,6.8) t(CT+D) u:(YoT)(a’ B)+( s B)
and similarly for v. So if in addition vy € T (p),
p(YoTi-I-E"yoT_e."l'E’yo'r)
p P P P
2
= det(CT + D) p(TE+_B.,TE.+E.D_’T)
P P P P

so (det UJ)2 plu,v), u,v € ‘II? A | is a meromorphic modular form of
level 2p and weight 2.'

We still have only expressed (det w )2 plu,v,T) in terms of
derivatives of theta-functions, We will spend the next three sections
finding another expression just in terms of theta-functions — piece

by piece.

Remark: w is a well-defined (analytic) function on the moduli

space because we made a definite choice of symplectic basis for

2)

1
H (C, Z), Considering the moduli space as sitting inside $ £ AL

then W is a function of T, but only modulo the action of T,



§7: Some Long Calculations

There are two time-honored theta-function identities which we
will employ. One is a special case of Riemann's theta formulae,

which for dimension two states: [M1, I, p, 214]:

Riemann's Theta Formula (1,7.0): For a,b,c,d,e,f,g,h € Qz ,

X’Y!u?v e CZ ]

atbtec+d atb-c-d a-btec-d a-b-c4d
2 xtytutv 2 xty=-u=v 2 x=yHtu-v 2 x=-y~utv
Jon ) () () )

=%a,s€lzxz o~271 Blatbrctd) 0[::;](:) e[}’:‘;] (y) e[‘g:;] () e[::g] (v)

A formula whose beauty, if not immediately apparent, has yet proved

enduring.

The other is due to Thomae, and it relates ''thetanulls, "
e[z] (0, ) for [Z’] a theta characteristic, to the branch points a,
on C,

Let S be a set containing an even number of the branch
points {aik} (we will alternately consider S a set of a.ik or

merely its indices i ). Recall that ng = Ei ¢g M; modulo 1, and

U= {135},

33



Thomae's Formula (1,7.1) [Mumford, II, §8]:

STl e ey ST Vi e s e s
i<j ol ey E
4 i,j€ES0U i,j4SoU
o[n J*(0) = { ) Rl

0 otherwise

2
where d = (det w/2mTi)  , Since we will need this so frequently, we

will make a chart of the 10 non-trivial cases,

(L7, 2) i<j i<j
S SoU n i,j €SoU {,jESoU

[ {1,3,5} (13)(15)(35)(24)
{1,2} | {2,3,5} 3 (23)(25)(35)(14)
{1,4] {3,4,51 ’i (34)(35)(45)(12)
{2, 3} {1,2,5} H (12)(15)(25)(34)
{3,4} {1,4,5} (14)(15)(45)(23)
{2,5} 1.2 3} (12)(13)(23)(45)
(13)(14)(34)(25)

{4, 5} (1, 3,4}

{2,3,4,5} {1,2,4} (12)(14)(24)(35)

LO
0 J

{1,2,4,5} {2, 3,4} % (23X 24)(34)(15)

(1,2,4,4] {2,4,5} g (24)(25)(45)(13)
5




We now can begin to calculate the pieces of p (u,v).

Culling together (1,4.2), (1,1,4) and (1.2, 9) we have

(1.7.3) p,,)

1
22 (v) =Z((x1+x2)(u)- (x1+x2)(v))

=Py

X
= - - a (x (U.) - (V)))
4(k€U Ak K

where

"

stsm’ o [nk]2 (0) o5 + nk]z(z)

(1.7.4) x, () = (-1)

, k=1,3,5
s[017 ()  8[5]% (2)

So we need to calculate

(1,7.5) Xk(u) - xk(v)

tor u 2 2 2 > 5
=(_1)4 M O, 17(0) e[+ n, T (w) 8[5]7(v) - 8[5+m, ]"(v) 8[8]" (w)

ﬁﬂﬁm ehfh)ﬂﬂaw

We resort to (1, 7,0) to tackle the numerator of this last expression.

a b c 3
= + = = — . it

for x, u-v for y, and 0 for u and v. Then we have
2 2
(1.7.6) 8[8] (u) 8[8+n, ] (v)

= %a’ Bgzze_zlni tB(zs,) 8[26+nk+ c’é] (utv) & [—'ﬂ,k‘l' Oé] (u-v) B[%]Z(O)

Now

a5
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znit(za”)(n1:+a)

s[za+nk+°é]=e e[nk+°é] by (1.2.1),

likewise

ot "
ofrgt &= K0, ]

so (1,7.6) becomes

(1.7.7) 8[6T° () O[6 + nk]z(v)
2

:% 21 pignlk, o, B) B[8+7, J(utv) 8[s+n, | (u-v) O [%] (0)
a, B8 EEZ

where

-2mi Cpzs’) +

f " t Vs
n, Fa)s") + 20, )a)
sign(k,a,B) = e k k

In (1,7.7) the six terms with [%] odd can be dropped since

8 [GB'] (0) = 0, We want to take (1, 7, 7) and subtract from it the same
expression with the roles of u and v reversed. The only terms of
the right hand side which will survive will be those for which

e [ﬂk + Gé] (u-v) also changes sign, i.e. those for which M 2 c;

is odd.

(1.7.8) 9[5]2(u) s[6+nk]z(v) - e[a]z(v) o[s + nk]z(u)

2
= ‘;‘ Z sign(k, a, B) 9[6+1’1k] (utv) 9[6+T]k] (u-v) @ [g:' (0)
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Plugging the signs from chart 7.1 into (1, 7,8), and that into (1, 7.5),

and subsequently that into (1,7, 3):

(1.7.9) -8(D,, ) - P, () 8[0]° (0) o[51*(w) 8[51° )

2

3 0
=8 e[g (0) |-o[s +'ﬂ4](u+v) o[58 +n4](u-v) e[g] (0)
0 0

~ ;

-9[5 1, (utv) o[ 1, ]ta-v) 9\:3] (0)
> R
2

2
-OT
1
o[+ n J(atv) 8[6+n J(a-v) 8 ; (0)
Lo
_0—2
0
+8[8 +n Jtutv) 8[8+n Jtw-v) 8|3 | (0)
oy
012 S
3 %
+a3e[%} (0) |- e[5+n4](u+v) 8[s + T]4](u—v) e[b] (0)
0 0
—0—2
+8[8+7, 1 (atv) 85 +n,]f-v) o[ o | (0)
3
PL-Z
2
+8[8 +n J(atv) 8[6+ n Ja-v) 8| ¢ | (0)
L) -
_Oqz
-o[64n  Jwtv) o[+ Ju-v) 8| 7 | (0)
oL
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0% 3°
0 0
=2 e[%:l (0) 8[6+n4](u+v) B[6+'ﬂ4](u-v) el:0j| (0)
Bl P
2 2
-—0-2

+0[6+n, Jfutv) 8[6+m,J(u-v) 8| Z | (0)

-8[8+1 ]ttv) 8[6+n Jfa-v) 8

-0
-e[6+nl](u+v) e[6+nl](u-v) 8 %:\ (0)

3’ 3 07 01° -07° 0
0 : $ 0 0 =
ale{o} (0) 9[%:\ (0) + a39‘:§:| (0) 9|:0} (0) -359 3 (0) 9|:0] (0)
0 3 0 3 [ 5] 0
32 o
+0[6+0 _Jatv) 8[54 J(a-v)(ag-a,) GM (0) ¢ ;‘% (0)
0 L3

+ 9[‘5+ﬂ4](u+v) 9[5+ﬂ4](u—v)

2 2 2 2

3 0 0 3 07°

0 0 3 % 0
ale[o} (0) e{%} (0)-a39[%] (0) e[o} (0)-359[%} (0) e[

0 0 0 0 5

2

J (0)

nE o © N
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o e[6+ﬂ5](u+v) 6[6+T'I5](u-v)(a -a,l) ) (0) 8 (0)

3

o o o ke
o MR o

At this juncture, we would like to employ (1, 7,2) to plug in values for

2
8 [:] (0). Unfortunately, this forces us to choose lots of signs of

square roots, which will affect our summations. We do have some

information on the consistency of the signs, however,

1/2

Let's say we've chosen definite values for (a.i - a.j) , and

pick the square root of d so that

/2 1/2 1/2 152
(al-a.s) (a3-a5) (a,z-a.4)

1/2

8[01%(0) = d (a.l-a.3)1

Then define e(S) by

oinf@=ea’ [ @-2)" T @-a)t?
i< L i< 1)

i,j€SoU ,j€SoU

for S satisfying # So U = 3, Clearly e(S) depends only on Ng
modulo 1. Using induction and (1,2, 6) repeatedly, it's not hard to

show that
i
7
7]
ﬂ [nsi] (0)

7. 005 =

involves no unsquared Z
s

terms (a,,--a..)ll2 i
1 ]

M e, P
i

i=1

= ZT]T modulo 1,

i
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Since every even theta-characteristic is the sum of two even theta
characteristics, and we've normalized e(0) = 1, we find e(S) extends
to a homomorphism of all theta characteristics into £1, In the follow-
ing sections, we will only evaluate Ei['ns]2 (0) when summing terms
with like surds: (1, 7,10) and the fact that e is a homomorphism
guarantee that we can do this unambiguously, We'll demonstrate with
an example,

The coefficient of 6[6+ﬂ2](u+v) 8[s+n 2](u-v) in the last

equality of (1,7.9) is

(1,7, 11} _ -
2
=05 FO- "0“2 FOTZ
3 0 0 3
2 2 3 G 0) 8| ®
0 z LO,] L L% LD
8 (0) €] 3| (0) |a,*a -a
0 1 2 2 2 2
: T ™ P Mt ™
0 % 0 3 0 %
8 5[ @ ® i (0) g (0) ® & (0)
! & £ Lo 3]

and we can utilize (1,2, 6) twice:

B -o~2 FO"Z f 2 0-2 _%_2
= 0 0 0 = 0
=) 9 8 2z
a i (0) 0 (0) 0 (0) & 0 (0) e_% (0) & 0 (0)
-0- -_Jé-i = _0.- ‘. _%.I . -O- —%-‘
2 2 - 2
37 EIRE 2 R i A
0 3 0 0 0 5
8 5 (0) 8 i (0) 8 o (0) 0 (o) #© 5 (0) o 3 (0)
_O-J L%- LO-‘ -%— -0- L%-‘

(al-a4)(a1-a5) (al-as)(az-a3) (al—a5)(a2-a3)

(al-az)(al-a4) (al-a3)(a3-a5) 5 (al-az)(a3-a5)
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A similar calculation shows:

-0 O"2

0 %
9 i (0) © 0 (0)

i 0. i (al-a3)(a2-as)
_%,2 %_2 (al-az)(a3-as)
of o (O)e[? (0)
2
En= %

32 : 2
0 %

we find that the coefficient of 9[6+ﬂ2](u+v) 8[6+'ﬂ2](u-v) in (1,7.9) is

1/2

de(d +n 2)((atl~a.4)(atz-r:14)(3.3-214)(:.=L4-r:~‘.5))

. (al(al-a.z)(a.3-a5) +a3(a1-a.5)(a.2-a3) - a5(a1-a3)(a2-a5))

1/

= e(6+ﬂ2)d((al-a4)(a.2-a.4)(a -a_ )&, -a_))

2
Wi e @,-a;)@;-2,)(@;-2;)

3
=e(6+ﬂ2)d1/2( ﬂ <a.i—a.j>1/2) e[0]2(0)
1,i#2
e(s+n,)a % a(en'’* s(01%0)

ﬂ Lt
b (az aj>




using (1.7.2) again.

= ﬂ (a..~~at.)2 5
2

i<j

Here A(C) is the discriminant of our curve

The calculations for the coefficients of
o[s+ ni] (utv) 0[5 +ni] (u-v)

for i # 2 are no worse, Their verification is left to the masochistic

reader, The result is:

Proposition (1,7, 12):

5

1 1/4 1/2
Pzz(u) —pzz(v) = A(C) d i; Ei(u,v)

where

e(6+n.)8[6 +n ] (utv) 8[6+n ] ta-v)(-1)'""
@i(u,v) = . : :

12 2 2
M <ag-a> o161 @ oo’ v)
j#i
Now that we've laid the groundwork, the calculation of

plz(u) - plz(v) is uniformly but not absolutely horrendous, Combin-

ing (1.4.2), (1.1,4) and (1,2.9) we get:

1 1
p,.,(u)-p. _(v)=-=(x.x (u)-x,x,(v) = - Z (
12 12 4 "1 1%2 el
1

e

Uai) (Xk(U)"ﬁ{(V))
k

Using our calculation of xk(u) - xk(v) from (1,7.6) to (1,7, 9) we

obtain: (all we have to do is replace 2, in (1, 7.9) by a2,
i#3j, k€U):
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2 2 2
(1.7.13) -8(p;, () - P ,(v)) 8[8] (w) ®[6] (v) 8[0]7(0)

2 2

] (0) 9[ J (0)
2 i 02
: 0
:\ (0) + aja; e{%] (0) © [OJ (0)
: 0 3

2 2

0 0
8 0 8 %
-aja, 01, (0) 0 (0)
% 0
2 2
} (0) 9[ :\ (0)

= 9[6+n1](u+v) 9[6+T11](u-v)a1(a.3-a5) 8[

o vHbFE ©
NHEOF O ©

+ 0[5+ nz](u+v) 6[s +n2](u-—v)

[
w
b
ul
D
e
(oo i o T e 7 o
)
[N}
S
D
)
20j= 2oj- 2ol poft

o O O NP

+ 8[6+M 3] (utv) 8[86+M 3] (u-v)a3(a1-a5) B[

R O ©

+ 6[6+ﬂ4](u+v) 8[6+n4](u-v)

3 2 . - k2
0 0 3 %
a3a5 6\70] (0) 9[_12_1‘ (0) -a1a5 ] . (0) ® 0 (0)
0 0 L0 L
- 0-2 %2
-a,la.39 g (0) g (0)
b I =
L2 o=
2 2

oo o

ol

Again, the coefficient of 9[6+ﬂ2](u+v) 9[6+n2](u-v) in (1, 7,13) will

+ e[5+n5](u+v) o[ 8+ 5](u-v)a5(a1-a3) e[

o PHH o

lead to a worst case analysis, We find that coefficient is



—els 1) dlla-a,)(a,-3,)(a,-a,)a,-a ) /2

. (a a.s(al~a.2)(a3—a.

3 Jtajagla;-a la,-a,)-aa,0,-2,)(,-a,))

5
G e T
==ei0T T, IGR) ~B Ry 8 IR g mR, e, T

. (-az(al-a3)(a1-a5)(a3-a5))

/ /4

- ety a'2a@ a, oot T (ay-a71

j#2
Again we leave the other coefficients, which are equally pleasant, to

the reader, We get

Proposition (1,7, 14)

5
1 1/4 1/2
plz(u) - _plz(v) =3 A(C) d / iZI (-ai)§i(u, v)

Comparing this with (1.7.12), one might be led to conjecture

We caution such a reader that we have no such formulae as (1,1,4)
with which to tackle this expression, However, there is a beautiful
formula by Baker which will allow us to show that this ain't so very

far from wrong. To wit: [Bak, p. 100]

o p..v) p.. ()
(1,7, 15) S0l k) =h(PZZ(u)Plz(v)-pzz(v)plz(uH- 11 11 )

o (o (v) % *

for some constant h, We will calculate h and more fully explain this

formula in the next section,
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§8: Interlude

If for the moment, P is the Weierstrass p -function, o the
one-dimensional O-function then (for proof and definitions, see
[Lang 2]).

(1.8.0) IR s Bo o s [ROR ST SN

o? (u)oz(V)

Formulae (1,7.12) and (1, 7, 14) are attempts to generalize this result
by modifying the right-hand side of (1,8,0), Formula (1, 7,15), how-
ever, is more directly a generalization of (1,8,0) from the left-hand
side., Let 0 and p revert to their previous definitions,

Define

8[8] (utv) 8[8] (u-v)
o[51% (w) 8[5]% (v)

g (u,v) =
o

which, as a function of u on J(C), has a pole of order 2 on ©, and
zeroes of order one on 8% v, Likewise, as a function of v, it has a
pole of order 2 on 6, and zeroes of order one on 8+ u, Therefore,
as a function of u, letting 1, P110 P12+ Pap be a basis b b, of

preeesby
L(29),

éo(u,v) = Z Ai(V) bi(u)

But since the bi are linearly independent, we can pick values for u
which let us solve for Ai(v), and show that A _(v) € L(28), So
i

A (v) = v,.b.(v) and § (u,v)=Z v, b (a)b.(v). Since & (v,u) =
1 13 3 o 35 P ¢ ] le]
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- Eo(u,_v), in = - Y5 89 lio(u, v) = Zi<j Yij("bi(u)bj (v) -bi(v)bj (u)),
This is how we were first led to (1, 7.15),

Baker apparently had several proofs in his day, the one in
[Bak] is basically the one we have detailed so far [he figures the
constants by finding a differential equation for ¢ and then expanding.
We prefer to plug in 2-division points for u and v, as we will do
shortly]. We would like to follow a different tack, one which relates
to the addition law on J(C), Since (1,7.15) enjoyed several proofs
nearly a century ago, we will seek merely to outline another proof,

A general point of J(C) is of the form P1+P2 -2+, The

addition law states that given 2 points, P1 +Pz -2.o2 P +P4 -2 @,

3

there is a unique point P5 +P6 -2 « ® sguch that

P AP, =22 +P.+P, =2+ ~ P .+P, =20 =
1 TP, P3P42 P5P62

+P_ +P. +P +P_ +P, -6 e ~
or, P,tP P3 P4 P5 P6 6« 0

1 2

To determine P_. and P,, we can do the following: Given P

5 6 1’P2’p31

P4, find a function g on C such that g has a pole of order 6 at =
and zeroes on Pi , i=1,...,4. Then the other two zeroes of g will
determine P5 and P - Such a g must be a polynomial in x and vy,
and since these enjoy poles of orders 2 and 5, respectively, at =,

the general such g is of the form g = ay - Bx3 - yxz -8x -€, or

allowing a, b, ¢, d to be meromorphic on J(C),

2
(1.8.1) g=y-ax3-bx -cx-d,
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Assume P,, i=1l,...,4 are not ® , and are distinct, Then if
i

B (xi, yi) we have:
y. :ax_3 ‘|'bx,2 Sexrd civlagl g
i i i i

so we can solve for the coefficients by Cramer's rule., For example:

2 1 3 1
AT ] S IS B |
2 1 3 1
) 5 % 2 T2 g
3 1 3 x 1
e T g g
2 1 3 1
Y4 X4 %4 1% Y4 %4
a = D , b= D , Wwhere
3 2
X X, % 1
x3 x2 X 1
B 2 a2 a
D=
3 2 .
=3 3 g
3 2 ]
¥ ¥4 %4

To find X and X, » we take solutions to (1,8.1) for a,b,c,d and

equate

Z 202
(ax3+bx+ cextd) =y =x5+b xél.'i*bzx3 +b3x2 +b4x +b5

1
This results in a sextic

2
a x6 + (Za.b-l)x5 o (dz-bs): 3 1N

Then
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6 6 2
d -b
1-2
8.2} z x, = 2 ﬂ x, = ——? etc.
o i 2 ot e i 2 ’
i=1 a i=1 a
This allows us to solve for x_+x, and x_x Suppose that

5 7B 56"
U=P1+Pz-2-°ﬂ,a.nd V=P3+P4~2-°° are variables

’
on J(C), We will alternately consider u or v fixed and the other
variable, This should provide(a) little confusion, For example, when
we speak of the zeroes of a function in u and v we encompass ''the
zeroes of u with v fixed' and vice versa. For the following we

will always take u and v off © so that the P.i are finite, i=1,...,4.
We continue to assume Pi ¥ Pj for i # j, For such u,v, utv ison

@ if and only if a is zero., The poles of a are given by the zeroes

of D which are just x, = X i#j (D is Vandermonde). That is,

a has a pole if ﬁi = 53_ for some i=1,2, j=3,4. We can't have

P1=§2 or P3=P4 since we took u,v off 6, Both D and aD are

for

zero when P, = Pj . Therefore for u, v noton 8, Pi # PJ

i#ij:

2
Y *3 ¥ !
: 1
¥5 " =g Ry
2 1
Ty ®3 %3
: 1
e T g
0[8] (utv) =0 <= D ¥

Switching v to -v (note v is on 9, if any only if -v is)



2
Yy Ey L ky
2

Yy Ay A O
- xz x 1

3 T3 "3
-y xz %x 1

o[ 5] (a-v) =0 o=> —21 22

where the right-hand side has poles for Pi = Pj , i=1,2; j=3,4.
Therefore

_ O[8] (utv) 8[5] (u-v)

A
8[61°(w) O[5]" (v)

has the same zeroes as

2 2
y, x; x 1 y, * x 1
2 " 2 .
A T Yo %2 %3
xz X 1 z 1
fg =3 =g L
= = 1 2 1
g -1’4 Fa %4 Y4 T4 T4
b

for these u and v, and A has these zeroes to order 1, B, how-

ever, has poles when Pi = Pj or f’-J for i=1,2, j=3, 4 (in short,
when X, = xj , i=1,2; j=3,4), To cancel these poles we consider

B(xl-x3)(x1-x4)(x2-x3)(x2-x4), which is nothing more than

i F(xl,xz)-Zy'lyz F(x3,x4)-2y

2 2
e, e yx,)

374

i & -
(x1 ::2):c3x4 xlxz(x3

p.,u) p.. ()
16( 11 Ii

" 'pzz(“)pm(‘”+p22(")p12(“)) :

+x4)
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Therefore, A and C have poles of precisely order 2 on @ (in u
and v), and nowhere else, Further C has zeroes for u* v on 9
off the support of (xl-x3)(x1-xé)(x2~x3)(x2-x4). Therefore C/A is
analytic in u and so is a constant depending only on v — but is
analytic in v so is a constant independent of v - and is therefore,
just a constant.

To evaluate this constant, let

(1.8.3)

() - p,,(v)
8[8](utv) 8[8](u-v) _ (pll 11 )
=h -p,,)p. (V) +p_(v)p . (
o[51 (w) e[a]z(v) 4 4 227712 e Sl

i L(F'(xl,xz)—Zylyz F(:r:3,x4)-2y3y'4
16 = 2

2
(xl-xz) (x3-x4)

+

(:':1 +x2)(x3x4) - xlxz(x3+x4))

We will plug in (x ) = (a.l,O), (x )=(a,,0), hence u=r ('n1+n ¥

2t ¥y
) = (al,O), (x

1° Y1 2 2

+(n; +7?2)” , and (x ) = (a;,0), hence v =

32 Y3 1Yy

T(n t n3)' t(n + n3)” . To calculate the right-hand side of (1,8, 3)

we will use

F(Xl,xz) -2y1Y, . f(xl) 0 f(xz) - 2y,v,

(xl-lez (xl-xz)2

3 2
- ;2 + - + = + -
(xl xz) +(x1 xz)xlxz bl(:v:1 XZ) 1:)2(x1 xz) b3

which follows directly from the definitions and long division.

For Pi , 1=1,...,4, as above we find



Flx),x,)-2y;y, Flxg,x,)-2y,y,
2 2

by -x,) (ey-x,)

1

3 2
= + = = -
(a.1+a2) +(a~.1 a.z)ala.2 bl(al+a2) bz(a1+a2) b3

+

3 2
+ -(a.+ + + +a )+
(a.1 a3) (a.1 3.3)3.1.?’.3 bl(a.1 a3) +b2(a.1 a3) b3

) 2 2 20
—(a2 a3)[— 3a1- 3a1(a2+a3)-a - 8.3 -a3+a1

2 &3
+a,(a, a3) b,(2a, +a, a.3) b, ]
2 Z 2
- (az-a3) -Zal - Za.la.2 - 2a1a3 -a, -a, - 2,3,

5
+a_ +ta_) - z
+ (.Zlai) (Za.1 a, a3) a.a,
1=

1<i#j<5 !
= - - -
(a2 a )[ala a,a; - a a.s]

So the right-hand side of (1,8, 3) is

(1,8.4)

=

- =+ - + T -
((a2 a.3)(a1a. a.a_=-a as) (a.1 az)a.la a

+
4 15 g 3= 213, 12,))

o B 4 "
=57 (212-3.3)(&11 614)(3.1 as)

As for the left hand side of (1,8, 3), we note that from the definition

of 8:

for c,d € QZ

t t
a atc -T{ ¢Tc-2Ti c(b+d)
+ =0
(1.,8.5) G[b] (te +d) [b+d]

so the left hand side of (1. 8. 3) reduces to



e[5+2n1+n2+n3] (0) 9[6+'ﬂ2-ﬂ3] (0) 4mi t(ﬂ

4 ! "
1 n3) 5
2 2 =
+n. + +m +
8[6+mn, +n,]°(0) 8[8 +n,+ n_]" (0)
and using (1,2,1) this becomes
2 < N ’ ' ret
o[s+ n, + rr i +n/+n’)+ (n, +
[8+m, +n,]°(0) 64 i[(n]+N3)(6"+ notn )+ (n +n,) 6" ]

o[s+n,+n,12(0) 6[s +n  +n 1 (0)

the exponential is just -1,

We can determine this by Thomae's formula (1, 7.2):

0 2
0
0 0 (0)
3
?2 0 2
8|1 (0) 8 g (0)
3 5
i -e(6)((al-a4)(al-35)(a2-a3))l/2
‘d1/

2((a1—a2)(a3-a4)(a /2

1
3-a5)(al-a3)(a2-a4)(a2-a5)(a4—a5))
Combining (1.8,4) and (1.8.5) we get miraculously:

Proposition (1,8, 7):

e(s)d / A(C) / %o(u,v) =16( e 1;1 -Pzz(u)plz(\r) +pzz(v)p12(u)

We will now apply this to find pll(u) - p“(v).
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§9: Long Calculations, continued

In order to utilize proposition (1,8, 7) in our search for

pll(u) -p“(\r), we're going to have to calculate:

(1.9.0) -16(p22(v)p12(u) - pzz(u) Plz(v))

= ((x1 +x2)(u)x1x2(V) - (xl +x2)(V)x1x2(u))

= a, x. (u) - a ) ( a,a x (V))

(% k k Z k % ij k

5 (% akxk(v) - Ek: ak) (Ek: aia.jxk(u))

e ] T A T
where
E = (; akxk(u)) (Z’ aiajxk(v)) - (Z akxk(v)) (Z aiajxk(u))
and

i (% ak) by, () = x 3, ()

All summations are over the odd branch points, We have
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2 2
(1,9.1) E = i;j (xi(u)xj(v) - xi(v)xj (u))(ai -aj)ak

55

= 2, sln%o)eln 12 o)els 01w el +n 12w - 0[5+, 1P () ofs +n, )

i<

4%, M +n") :
(-1) & (a, -a.)a
i j k

8[01*(0) o[81% () O[5)° (v)

This is clearly a case for Riemann's Formula! We apply (1, 7.0) with

[a]:za+n.+n., [b:‘ =n,-1., [c] =[d] =0, utv and u-v
e i j f i j g h

plugged in for x and 'y, and zero plugged in for u and v,

gives us:
2 2
(1,9.2) ©[s+ n.i] (u) 8[5 +nj] (v)

-2mi BB(28+2n ")

1 1 [ (1]
= e elzg+n +n. + . [+v)
1 - -
40,,86522 1) B
8 [n . +a'](u-v) 8 [a]Z(O)
i~ "7 8 B
But
o 2mi(28“)n!i+n!+a) .
e[za+n.+n.+ ]:e -« 9[1’1,+n_+ ]
i j B £ 5§ B
and

2Ti(-2n /) (n’+n’ + q)
: D A

9[ﬂ.+ﬂ.-2n.+gJ=e e[n_+n_+“}
1 J § i A -



So the sign (1,9.2) synthesizes to

4mi BN ) HATIE -0 W0 Nl + a)
R " i : e
sign(i,j,a, B) = e

We are interested in calculating

(1.9.3) 8[s+ ni]Z(u) O[5 + ﬂj]z(v) - o[s+ ni]z(v) o[s +nj]2(u)

1

2 z Sign(i.j.@,a)

. e[ni+ n, +g] (wtv) [ni+ my+ g'] (u-v) e[g]z(g)

2
where the only [g‘] in the sum (1,9, 3) are those for which 8 [c,] (0)

B
is non-zero, and those for which © [ﬂi+ ﬂj # g] (u-v) changes
signs when u and v are transposed, i.e., ?’Ii * 1.+ is odd.
We need another chart:
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=
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=

+
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Therefore: 2E8[5]°(u) 8[5]°(v) 8[0]%(0)

2

0
2 2 0
=_(ai-a§)a5 G[nl] (O)G[n3] (0) | - 8[8](utv) &[5](u-v) 9[%] (0)
5
3 2 02
2 5
+ e[5+n2](u+v) 6[6+'n2](u-v) e[gj\ (0) -8[8+ 'n4](u+v)9[6 +Tl4](u-v)9[§:l (0)
3 0
+ e[a+n5](u+v) e[a+n5](u-v) 6[0]2(0)
2

17653

o vFk ©

+(a2-a2)a 000, 1°(0) 8 1%(0) | -8[6](atv) ol 5]fa-v) e|:

312

te[s+n, J(utv) 8[8+n,](-v) e[%o] (0)-9[6+ﬂ3](u+v)6[6+ﬂ3](u-v)9[0]2(0)
0
2

] (0)

_(ai-a.:) ale[ﬂ3]2(0) B[nS]Z (0) | -8[8](utv) 8[6](u=-v) 9[

MO © O

B B[6+n4]2(u+v) G[6+T14](u-v) 9[

2

o

+0[s+ n,Jtv) 8[s+n, J-v) 6[0]2(0) -6[5+ n, J(utv) o[+ n,J(u-v) el:

S oo b

2

:| (0)

oMo o

&

] o

ol 2fH roj ol

+0[8 +ﬂ4](u+v) e[6+n4](u-v) 8[



= 8[8](utv) 8[8]f-v)

i z L
5 0 0
202 2 2 22 0 % 0
. ((a.l—a3)a5 - (al—as)a3+(a3-a5)a1) G[O:\(O) 8[%] (0) © 3 (0)
0 0 [ 2
g_z e
2 2 2
= e[5+n1](u+v)9[6+n1](u-v)(a,3—a5)a.1 8[0] (0) G[% (0) ® g (0)
0 [
_%ﬂz _%72 B
2 2 0 0 z
+G[6+ﬂ2](u+v)9[6+ﬂ2](u-v) -(a.l-a3)a.5 8 o (0) © 0 (0) © 3 (0)
L% ] Lo— L0
31% 32 072
+(a§-ag)a.3 o % (0) © 8 (0) © g (0)
Lo Lo- (3]
-0 ig_z i
2 2 0 0
+(a3-a5)a1 8 x (0) 8 3 (0) 9[%] (0)
5. Lo 3
%_2 -
2 2 2 0 0
-8[6+n, Jutv) 8[6+ N, J(u-v)a -a ) a, 8[0]"(0) e[o (0) e[% (0)
0 %.1
i _%12 L
3 2 2 3 0 3
9[6+ﬂ4](u+v)9[5+7'i4](u-v) (al-a3)a59 0 (0)ef 51 (0 % (0)
' 0 L 04 L0
_sz 312 iy B
+(af-a:)a3 8 g s3] © 9[%0] (0)
L%_ Lo z
-1 2 012 5 2
-(2- 2) 8 %W(o 8 3 0
L34 0 1




1.2
-3 0
O[5+ M. J(atv) 8[8+1_Jfu-v)(a2-a2)a_ 0[01%0) 8| | (©) 8|2 | (0)
- g Jluty 'ﬂ5uva,1 3)2g 0 i
0 0

Let's calculate some of these coefficients, The coefficient of

e[s](utv) 6[6](u-v) is
( )a, -a_)( ) 8[n.12(0) 8[n .17 (0) 8[n .12
-la;-a,)@;-a.)(a, -2, [Tll] [n 3] ['ﬂs] (0)

/2

= —et8)a'’? ate)** opojtio)

»
using Thomae's formula,

The coefficient of e[a+n1](u+v)9[6+n1](u-v) is

1/ /4

e(6+ﬂ1)a1(a.3+a5) 9[0]4 d ZA(C)I

M ¢ -aylf?
j£#1 t J

The coefficients for T]3 ;1 : are the same as for 7 with the

1

indices {1,3,5} permuted. The calculation of the coefficient of

s[5 +n2](u+v)e[6+n2](u-v) is nastier. After using Thomae's formula and

simplifying we get:

/2 /

e +n,)a 2 a)* el01*(0) 2,0, +a, ta, -2y

ARy Sy
T . - k317
j;ré:zzJ

The coefficient for T]4 is the same as for 1N 2 with the indices 2

and 4 transposed.

So E can now be written as:
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5
L/2 1/4
[- ; ?‘C) izl ai(al+a3+35-ai) Ei(u, V):|- i dl/ZA(C)1/4 go(u’ =
dI/ZA(C)1/4 2 >
= = z g . (u v)-(a +a +a )(xx (u)-xX(v))
e 3 3 1

. pll(u) Pll(v)
o 4 4

- -Pzz(u)Plz(v) +P22(v)p12(u))

by (1,7.11) and (1.8.7). Therefore, reinserting D clears a term

and (1,9,0) becomes:

Pll(u) pll(v)
8 - ) f8(p22(v)P12(u) -Pzz(u)Plz(v))

4 4

5
=% 142 A(C)I/4 Z 5w, v)

we now add this to (1,8, 7) multiplied by one-half to obtain:

Proposition (1, 9.4):

5
P, w-p, ) =5a 8@ * e g (o, v) .Zlaizﬁi(u.v)
&
2
- e(d) %O(u,vH Z a, %i(u,v) - Zai ii(u,v)
_dA(Q)
pla,v) = 22020
4
- Nt D8 f,v)

where the sums extend over i=1,...



A most satisfying simplification occurs after expansion of the
determinant and infinite application of Thomae's formula. The

determinant of (1,9,4) is

5 5 5
(1.9.5) o(8)%_(a,v) D, &.(w,v) + D a2 & (a,v)
i=1 i=1

E.(,v)
= o= i
i=

i=1

5
= e(é)go(u,v) Z §i(u,v) + z (a,i-a.j)2 %i(u, v) € (u, v)

i=1 l<i<j=5

We want to plug in the definitions of EO § @i into (1, 9.5) and multiply

2
by dA(C)” . We'd better take this in pieces, Write

5

64p(u,v) = z Ai + Z B_.
=1

i l<i<j<s5 Y
We first note:

B..
ij
6[8+n, Ttwtv) 8[6+n Ja-v) 6[s+n Jaatv) 8[8+n Jlu-v)

1T olsn) elstn e ~atd Il Ca -2
i i 1 <3 i j

L 1/2
3 e i
(kgi’j <a.i ak) a,j ak) ) (ai aj)
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23 y
- (-1 e +n,)a ((a.-a.>1/2 T (ay-a) /2)
{5 IR B e

L #k

ﬂ ((a.i-aj)<a.i-ak)(aj-ak)(ai-am>)1/2; £, m#i,j,k, L #m

k#1i,j
ﬁ 2
$+i o
= (-1 efn, +M.)4 e(n ,...)8[n ,. 17(0)
i g=1 s(13)q S(lJ)q
where
(U o [1,5,k} q9=1,2,3
X PEXR
s(ij) =<
4 U o f2,m,n} q=4
\{,m,n 7 i,j
So
4
ﬂe(ﬂ .y )= e z (6+ﬂ.+ﬂ.+ﬂk)+6+ z 'ﬂk) =e(n,+n.)
q=1 s(ij)y k 71, j to] k 71, j N
Therefore:
4
Bij = (-1)1+J d"1 ﬂ [ns(ij) ](0)8[5+ﬂi](u+v) 9[6+ﬂi](u-v)
q=1 q

. 8[8+1 J_](u‘l'v) o[ &+ T]J.](u-v)

We subsequently note:



A,
i

8[6+n, J(atv) G[6+ni](u-v) G[6+1‘1j](u+v) G[6+ﬂj](u-v)

where

Therefore

Hence

(i dtby e mnm g L e —a

ﬂ (a -a.)l/z
0 R

:(-1)ie(ni)d_ﬂ(<ai-aj>”2 il <ak-a.>1/2)

i #1 k, £ #1,3 :
k #4
4
L = 2
= (-1 e(n,)d T_f e(n 4y ) 8N 4 1700
q=1 q q

S(i)q= {0 {2} ,q=1,234,
ik, L#i

n ) L ﬂj n ; modulo
q j#i

4

qu oy ) =ony)

A rather pleasant thing has occurred, Letting Wa = 0, we find

A =B .! Thatis, (-1)
i oi

1
defined d 4

I+0 -
YU e1)'; e(n +n.)= eM.) (since we
o i i

by e(0) =1); and s(i)Cl = S(Oi)q once we note
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Thien 5, 1) i o e RN g @ 4, 5) (where the bar denotes
taking the complement in the set of indices {o,1,j,k,2,m}). There-
fore the asymmetry of fixing a point at ® 1in (1,1,0) has disappeared

from the 'mumerator' of p(u,v) — as has our need to determine the

signs e(n S). Completing our calculation we have:

Proposition (1.9.7):

_ Nfu,v) _
64dp(u,v) = -]j-'(a':';j- =
4
(e1)i+J9[6+n.](u+v)9[6+n.](u-v)e[ﬁ'i'ﬂ.](u+v)9[6+'ﬂ.](u-v)ﬂ e[n (19) ]2(0)
0<i<j <5 e ! : A q=1 Mg

-4 4
8[8] (u) 8[8] (v)
where N(u,v) and Df(u,v) are the numerator and denominator of the
fraction on the right.
It is also worth noting that by (1,7, 1):

-
dp(u, v) =——l2 (det UJ)Z Plu,v) .
417



§10, Modular Properties of p(u,v) and Discriminants

We are finally ready to study the modular properties of

_ N(u, v)

64dp(u, V) o D(u V) °

Both Nfu,v) and Dfu,v) are analytic, and
(2)

being expressed by theta functions, are defined on all of ® ', We
will even be able to adjust D and N so that each is modular in its
own right,

For what follows, we need to have a better understanding of the

factor { of absolute value 1 in the transformation formula for

A B

b CD

[Il, P. 176]

G[a] (z, 7). In particular, if z=0, ( ) €T then (1,5.1) becomes

PO

(1.10.1) e[g;] (0, yo 1) = ¢ det(Cr+ D)/% & [a] 0,7)

b
where
miffatBDa-2%h B+ tack + (tatD-tth)(AtB)o]
Cly) = olyle '
p(y) is an eighth root of unity,
a 2] - L5 “2][f] +7 ucpy, @a'm)
an [b*] -B A b] 2 0° 0

If v € T(2) then p(y) is a fourth root of unity [M, I, pp. 194,
1 P
207]. Also note that by (1.2,1), if a,b € — ZZ then 8|>| (z,T)
? ’ p ] b ’

depends only on [2] modulo 1, Therefore from (1,10, 1) we get:
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I -2
Lemma (1,10,2), For a,b € 5 Z , p odd:

4 2
e [z] (0,7) is a modular form of level 2p~ and weight 2.

4p
ii) 8 [E’] (0,7) is a modular form of level 2p and weight 2p,

Proof: i) Since T(sz) & (2], p4 will be 1 in the transformation,
4 a’ a
so it's easy to see that C~ will be 1, too, Further, [b*] = [b] mod p,
so by (1,2,1), the characteristic is left unchanged.
4
ii) Here we only find that C  is a pth-root of unity, but this

FS
is why we raise to the pth-power, Also [‘2*] = [g] mod 1, but that's

all that matters since we have raised to the pth-power, Q.E.D,

Let p be odd, vy €T (2p). We showed in §6 that
2

(det w) p(u,v) is a modular function of level 2p when u,v are points
2

of order p in € /A, and T is restricted to being a period matrix,
. . y 2 (2)

The meromorphic continuation of (det W) p(u,v) to all of pro-

vided by (1,9, 7) lends us a verification of its modular properties

directly from those of the theta function, If we consider the action

of v on (1,9,7) we see for starters that since y € T'(2), it pre-

serves the theta characteristics. In addition, if we write

2

e+%l G'JB!E'CDGZ

v=T—
P

(1,10,3) u=r &4 B
P P

then the actionof y €T(p) on u and v doesn't change a,B8,€,®
modulo p (1.6,.8), and therefore doesn't affect p(u,v) which is

periodic with respect to A in both u and v, The coup de grace is
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delivered by the realization that v € I'(2) implies that p(y) is a

fourth root of unity, as is ((y).

Remark 1, We can go further along this line, If we now only assume
v €T(p), vy no longer fixed the denominator of 64dp(u, v) but it

leaves the numerator "fixed,' This is because of the symmetry in

I+ -
the summation of (1,9, 7) and the weighted sign (1Y) . Tobe pre-

a a4 a1t
cise, if we let D[b] (u,v) denote e[b] (u) B[b] (v), then for

Yy € T (p),

N(u, v)
D[5] (u, v)

N(u, v)

D[y o 3] (u,v) (r)

(-Yo T) = %

where v o & denotes the action on the theta characteristic, We have
a rather unilluminating proof of this fact and will therefore omit it,
a a eoaa 5
Now D [b] (u, v) ([b] a theta charactemstlc) is almost

modular on its own, In fact

D'[;] (u,v) = W([:;], I E:,q)) D[g] (u, v)
4

o[s1e) @iz e

2
is modular of level 2p by (1,10,2), where u,v are as in (1,10, 3)

and

(1,10.5) W([z] ,a, B, ¢, cp)

2
_ @mi/p)Caratlere +2%am+8) + 2% m + o)



which is never zero,
Therefore, N'(u,v) = N(u,v) W([8],a, B, €, ®) is a modular
N'(u, v)

2
form of weight 6 and level 2p , and 64dp(u,v) = st 4

D (u,v)

Our goal is to build up a ''discriminant-like' object by multi-
plying 64dD (u,v) over all pairs (u,v) € -;—A , u and v # 0 (to avoid
points where it has poles identically in T) and u # £v (points where
it is identically zero). This product will be of level 2 — we are in
effect taking a norm from the field of modular functions of level 2p
to those of level 2, It's difficult to nail down what modular function
we obtain in general, but we can gauge what part of it is made up of
discriminants of our curve,

We need to gather some facts about the lone (up to constants)

modular form of weight 10, In terms of theta functions, it is given

by [12]
2

am) = T of?] w0, )
[g}even [b] :

The reason for the A symbol is that this function is essentially the
discriminant of the curve for which T 1is the period matrix,
Thomae's formula gives us this precisely:

abp) = ] fay=a)® = PAlD
s 1 ]
J
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Hammond [H] shows A(1/)=0<= 7'= yo T for some
T1y. 'Y

Yy ET, T = ( ), and that A(7r) has a zero of precisely

0 722

order 2 along these divisors,

11 Tz
Y12 T2z
level m and weight k, and g(y o T) has a zero of order 2n along

Therefore, if g(T) ('r = ( )) is a modular form of

Too 0 for all v € I'/T (m), then g(T)/A(T)n is a modular form of
level m and weight k-10n,
To see how many discriminants are 'lurking'' within modular

forms built out of theta functions, we will use the following identity

among power series, which follows directly from (1,2,0):

1
D

(1,10.6) © (z, T) g(zl’Tll) th(zz, Too)

o 0Q th @
®

where

T T
112
e,f,g,hEQ,Z:(Zl,Zz), i (Tl T ) ’
IZA 22
and eeg is the genus 1 theta function:

0 (z,7) = Z eTTi(n+e)2T+2TTi(n+e)(z+g)
n€Z

2,7 €€, 9wt >0

We need the following fact from genus 1 theta functions. Let [1,T]

denote the lattice generated in € by 1 and T, then
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1t
2 > = = +
{1, 10,7) eeg(Z,T) 0 ztertg >

™| =

T anodulo [L.7].

Theorem (1,10, 8): Let [a.] be an odd theta characteristic

b
. vl 2] _ ﬂ " 2 p 4 :
i) Dp wll= 1D b (u,v) is a modular form of weight
u#tv €—A
u,v?éO P

(p4-1)(p4-3)4p and level 2,

Z
ii) DI; [:] has a zero of order at least 8p(p4-3)(p -1) along

'r12=0.

’

4 2
)] = am*e 3ty

jii) D' [ where f is a modular form
p Lb P

2
of weight 4p(p4-3)[(p4-1) - 10 (p7-1)] and level 2,

Proof: i) If v €T, and u,v# 0, u #+v, then writing u,v as in
(1,10, 3), we see by (1.6.8) that You, yov #0, and Y o u #

£y o v, So vy acts merely to permute the p-division values, Since

a

b
level 2, There are (p4-1)(’p4-3) terms in the product, each of weight

each D'[ ]p(u, v) is of level 2p, the symmetrized product is of

4p,

e
=[]
ii) By (1,10,6), © f (0,7) has a zero along T., =0 only

g 12
+
b+ (§]

when either {a; te, b, +g} or {a, *f, b2+h} {1/2,1/2} modulo 1,

where a = (a.l,az), b = (bl’bZ)’ ai,bi,e,f, g,h € Q. For each

a

odd [b

] , precisely one of [ai’bi} = {1/2,1/2} modulo 1, Then

there are precisely pz-l non-zero u € %A s =T (?) + (i), such
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e
f

that {e,g} or {f,h} = {0,0}. Since each © 4 (0, T) appears
h

in the product 8p(p4-3) times, we see that DI; |:§:\ has a zero of order

2
at least 8p(p*-3)(p -1) along 7, = 0.

a
iii) To see how many times A(T) divides DI; [b} , we must count

its order of zero along T _ =0 and all its translates under vy € T,

12

But DI; [2:\ (T) has a zero to a given order along vy © (T., = 0) if

12

and only if DI; [;j (yo T) has a zero of the same order along T._ =0,

12

But D’ [a

5 b] (y o 1) differs by a non-zero function from DI; |:y-10 [;:H(‘T),

-1
and we know y © [,ﬂ is another odd theta characteristic, so it also

2
has a zero there of order at least 8p(p4-3)(p -1) by (ii), Q.E,D,

Corollary (1,10, 9) D; [2} = K A74880 for some constant K and is

therefore of level 1,

Proof: Indeed the only modular form of weight 0 and level 2 is a
constant,
1872
Remark 2: Since D;[é] = ( ﬂ 1 8[6](u)) we observe that
0OZu€—A
p
D?‘;[é] being a power of A(r) is a modular affirmation that there are
no 3-division points along the theta-divisor of the Jacobian of any
curve of genus two, In arithmetic applications, the proof of the
Manin-Mumford conjecture shows that for any curve of genus 2 de-

fined over a number field, there are only finitely many torsion points



which lie upon the theta divisor of its Jacobian [Ra],
We can also tell when N'(u,v) is zero along Tyse O
Writing u = (ul,uz), v = (vl, vz) we claim that this happens whenever,
- o i is i —
Uy, 8y, v, V5,0 £ vy, oru, tv, is zero, To show this is a pleasant
yet lengthy —exercise in the manipulation of elliptic theta function

identities, so we will not present the proof, We only note that the
"invariance' of N(u,v) under the action of I'(p) (remark 1) implies

that the test for the number of times A(r) divides ﬂ 1 N'(u, v)
u#tvE=A

need only be done along T, =0, u, v#0

12
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Chapter 2

Notation

We let Z, @, R, C denote the integral, rational, real, and
complex numbers, If R is a ring, R>< denotes its multiplicative
group of invertible elements, If A is a group (ring, field) we let
End(A), Aut(A) stand for its ring of endomorphisms or automorph-
isms, respectively,

If A/B is an extension of number fields, 9(A/B) will denote
its different, D(A/B) its discriminant, and DP(A/B) its '"p-part'' or
local discriminant at p, where p is a prime of B, We will let h(A)
denote the class number of A, 6, will denote the ring of integers

A

of A, andif p is a prime of A, 6 and Ap will denote the p -

A,p

adic completions of 6, and A, We will drop the subscript ""A'" when

A
the reference field is clear, I G is a finite group, we let é denote
its group of one-dimensional characters, Hom(G,GX).

If A is an abelian variety defined over a number field F, we
let Am denote its group of points of order m, and A(K) its group of
K-rational points for any F < K, We denote addition on the variety
by @, subtraction by ~ , and any complex multiplications by *,

We let O denote the origin on the variety,

We let gp denote a primitive pth-root of unity., I f is a

divisor of a number field K (formal product of finite and real primes,

the latter with multiplicity zero or one); we let I(f) denote the group

of fractional ideals of K prime to £ , and P(f) the subgroup of
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principal ideals with a generator q, a =1 mod” f. f B is a class-
field of A of conductor f, and H is the subgroup of I{f) correspond-
ing to B by class field theory (in particular, Gal(B/A) = I(f)/H), we
say H ''belongs to B,"

When we talk of adjoining to a field the coordinates of a point

in projective space, we mean adjoining the ratios of the coordinates,
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§1: Introduction

Our goal is to emulate results that are well known about
towers of fields of division points of an elliptic curve with complex
multiplication, The situation is rather more complicated in dimen-
sions greater than one, Fortuitously, we have been able to isolate a
class which embodies many of the special properties of the elliptic
case, namely that of an abelian variety A of dimension 2 with com-

plex multiplication by a number field K which satisfies:

(2.1.0) i) [K:Q] is a cyclic extension, necessarily of order 4,
)} BiK) = I,
iii) The only roots of unity of K are +1,
iv) The endomorphisms of A are the full ring of integers
of K,

We want to make certain calculations about towers of fields
generated by division values of a point of infinite order in the
Mordell-Weil group of A over K, A(K). The corresponding calcu-
lations in the elliptic case were powerfully exploited by Coates and
Wiles in their work on the conjectures of Birch and Swinnerton-Dyer
[CW]. The jump from varieties of dimension 1 to dimension 2 carries
with it technical difficulties which we will have to tackle in turn. The
worst problem is that fields of division points ''collapse, '' that is,
they are not as large as we would have liked, had we our druthers.

But we have lost our druthers long ago, and the speciality of our
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choices (2,1.0) reflect the concessions we will make in order to
render our calculations feasible, Indeed, ii), iii), iv) of (2,1, 0) were
assumed by Coates and Wiles, and i) is attractive to our purposes for
a plethora of reasons, Prominant among these is a desire to have
rational primes that remain inert in K, This will allow us to mimic
much of the approach of Stark [St] and Gupta [G], who utilized ration-
al primes in their versions of the tower -of -fields-of -division-points
calculations used by Coates and Wiles, After we accumulate some
basic facts about the special properties of our selected K's -- not the
least of which is their existence -- we will develop that part of the
theory of abelian varieties with complex multiplication that we need
for our calculations, Our chief source for this is Lang's, Complex

Multiplication [Lang 3], to which we will continually refer the reader

for further details. Our notation will be Lang's, We then start our
calculations, closely following the methods which proved fruitful in

the elliptic case.



§2: Biquadratic Cyclic Fields: Class number one @K

We will now establish certain properties of the fields K which
satisfy (2.1.0). These K are totally complex quadratic extensions of
a totally real subfield —in the general parlance, a CM-field, There is
a rich literature concerning the class numbers of such fields, and we
will now exploit some of it.

Let Gal(K/@) = (o). We will also denote complex conjuga-

&
Hon =0 , by p.

Proposition 2,2,0: Let K be a totally complex, cyclic, class number

one extension of @ of degree 4, which contains only the roots of
unity +1,
i) The units of K are of the form + gl , 1 € Z, where
C € K7, the real quadratic subfield of K .
ii) h(K') =1, and N , © = -1
K /Q
iii) The subfields of index 3, 7, and 13 of Q(C, 5)s Q(QZC)) and

Q(§53) are examples of such K,
Note: Uchida has shown that only finitely many such K exist [U].

Proof: i) Since [K:@Q] = 4, K totally complex, the units are of the

form :};gl , 1 € Z, where ( is a unitin 6 We need only show (

K°

is real, We have o(() = (-1)agi , where a=0,1, and i € Z.
5 N

Therefore p(() = oz(g) = (-l)a(IAH)Q1 , and C = U4(€) =

a(1+'+‘z+'3) i 4
(-1 TR el 58017 = 1., Thatis, i=£1 and p(¢) =C;
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hence ( isin K ,

ii) We lift a lemma from [Wa, p.184]. Suppose the exten-

sion of number fields E/F contains no unramified abelian subex-

tensions L/F with L #F., Then h(F) divides h(E), In our case,

K/K+ is a totally ramified extension (at least at the archimedean
places of K+) so the lemma applies, Therefore h(K+) Ih(K); hence
nK = 1.

Now suppose N

Kt/@

corresponding to the product of the two real places of K+ , wWe see

C=1. Letting col wz denote the divisor

that II@ /P | = 2, since all ideals are principal, and '"half"

120 %y

are ideals all whose generators have different signs at each of the
two real embeddings. So by class-field theory, there is a correspond-
ing quadratic extension L [K+ , unramified at all finite places. We
deduce that KL |K is an abelian extension unramified at all finite
places, But h(K) = 1, and K is totally complex, therefore KL = K,
and L € K, It now suffices to show K/K+ is ramified at a finite
place., For then we would have K+ = L, a contradiction forcing
NK*'/(DQ to be -1,

That K/K+ is ramified at a finite place follows from the fact

that K+/Q is (totally!) ramified at a finite place, and the following

lemma:
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Lemma (2,2.1): Suppose K/E is a cyclic extension of number fields,

and F a subextension which is totally ramified over a prime p of
E, and such that [K:F] |[F:E]. Then K/E is totally ramified

at p.

Proof: Let Go be the inertia group of p for K/E, and L its fixed

field, By assumption, [F :E]]| ‘Go ; a fortiori [K:F]| ]Go| , so
L c F since K/E is cyclic., But L/E is unramified at p, while
F/E is totally ramified at p. Therefore L = E and p is totally

ramified in K/E,

iii) In each of these cases, we have K C Q(gp), P a prime,
CD(QP)/K is totally ramified, so h(K) |h(Q(§p)) by our aforementioned
lifted lemma, If we can show h(K) = 1, then our K clearly fit the
criteria; for we would have K/Q cyclic of order 4, and since the
indices 3,7, and 13 are odd, K would be totally complex, Further,
we took p >5 so each of these K would have only +1 as roots of
unity,

The following data on cyclotomic fields is taken from [Wa,

p. 353]. (All these fields have B(R( ) = "h" = h(CD(gP)+)).

I) p

1135 h(Q(gp)) =N SO {EE= N1

II) p

1

29, h(@(gp) - 23. It suffices to show 2 4 h(K). We

lift another lemma: If Gal(L/Q) is a p-group, and at most one finite

prime is ramified, then p +h(L) [Wa, p. 185]. In our case, K/@




is ramified at only the finite prime (29), and K/@Q is a 2-group.
Hence 2 * h(K).

I p =53, h(Q(gP)) = 4889, a prime, If h(K) # 1, then h(K)
would be ridiculously large. We now apply a general theorem on

CM-fields [Wa, p. 42].

h™(K) = h(K)/h(EK") = Qw ” (‘ % By X)

X odd
where: Q = |units of (K) /units of (K+)| = 1 by (i)
w = # roots of unity of K = 2
P e
v € Gal(K/Q), here of conductor 53
and
B, | =

-51— 2 x(a) a

a=1

s

<1

There are two such odd % so we get:

h™(K) = h(K)/h(K') < % 27% - 4889

The result now follows from ‘h(K+) = h(R (N53)) [BS, p. 422].
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§3: Abelian Varieties with Complex Multiplication

Let A be an abelian variety of dimension n defined over the
complex numbers, Then A is analytically isomorphic to c” modulo
a lattice A of dimension 2n over R, If a is an endomorphism of
Cc" /A, then  lifts to a C-linear map & of ¢ 5 €. The mapping
o et &' gives a representation Rc(a) of End{Cn/A) as nxn com-
plex matrices known as the complex representation, However, a
must also map A into itself, giving a representation RQ(Q) (the
rational representation) of g by 2nx2n integer matrices, The
rational representation is equivalent to the direct sum of the complex
representation and its-conjugate representation I_{G . These repre-
sentations extend by Q-linearity to En-:l(l’\.)‘D = End(A) @ Q. Let F
be a CM field of dimension 2n over @Q. If we have an embedding
i:F & End(A)(D , then the complex and rational representations of
End(A)gD restrict to representations of i(F'). Since F is abelian,
RQ is equivalent to the direct sum of 2n one-dimensional repre-
sentations of i(F')., These consist of the embeddings cpi : F<> C that
preserve Q. Since RQ(i(F)) is @-valued, we must have that RQ

is the direct sum of each of the 2n distinct tpi . However, since

® R » we must have that R

R __ is equivalent to RG C C

Q

n

to & P, where the P, are distinct and no two are complex con-
=t j

is equivalent

jugates of each other, Let & = [cpi s J=1,i06,0 )} In this guise

J
we say that the abelian variety A with the embedding i admits



complex multiplication by F with CM-type &, We will abbreviate

this by saying that the pair (A,i) is of type (F, &).

We call an abelian variety simple if it has no abelian subvarie-
ties, If (A,i) is of type (¥, @), then when F is Galois over Q we
can tell easily whether A is simple [Lang 3, p. 13]. To wit, A
is simple if and only if the only 0 € Gal(F/@Q) such that &c= & (that

is, the set {p;. } equals the set {cpijc }) is the identity, We call
J

such an (F, ®) a simple type.

Note: In particular, if (A,i) is of type (K,®) where K satisfies
(2.1.0), then A is simple., This follows since & =(1,0) , (1, 03 5.
(p,a) or (p, 03) and it is easily verified that @O’i = & only for

i =0, In what follows we will always use F to denote a general CM-
field, reserving K for one which satisfies (2. 1. 0),

Associated to a type & is its type norm N@ , and type trace,

T@ , defined (for F/Q Galois) by:

{2:3.0) N@(x) = ﬂ P (x) for x € F
P eEP

T = D ok
P ED

The images of these maps will be of great importance, Attached to
a type & (for F/Q Galois) is its reflex type, defined by &’ =

ug
{p|lo ~ €@®}. Associated to a CM-field F and type & we now

define its reflex field F’ by:
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(2. 3.1) F' = QT (F))

Remark: For F/@Q non-Galois, we use the Galois closure of F to

extend these definitions,

Note: K/Q is Galois, so K’c K. Therefore K’ is Galois over @,
and K’ c K’ ¢ K, The statement that {K, &} is simple is equiva -
lentto K=K [Lang 3, p. 24], so we have K = K/, This will
greatly simplify the general theorems of complex multiplication,

We shall always assume for technical simplicity that
i(F) N End(A) = i(@F) (recall that the range of i is End(A)Q). Such
an (A,i) is called principal, Condition (2,1, 0)(iv) simply states
that we require any (A,i) of type (K,®) to be principal. In practice
we will usually identify @F with End(A).

Given an (A,i) of type (F, &), there is a lattice )\ in F so
that the analytic expression of A as a complex torus is given by
9:C"/8(\) > A, where &(a) = (9 (@)oeen®; () in c,a e

and © commutes with the action of i , that is:

(2302 i(a) o 8= 06 o ®(a)

We then say that (A,i) is of type (F, &, \). The reason for incor-
porating the lattice A\ into our framework is that (F, ®) determines
(A,i) up to isogeny (isogeny for the pair being an isogeny of A which
commutes with the action of i ; for A simple, all isogenies of A

are isogenies of (A,i)). However, (A,i) and (B,j) of types
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(F,®, \) and (F, ®, u) are isomorphic if and only if X\ = py for
some vy € F, Therefore there are h(F) pairwise non-isomorphic
classes of isogenous (principal) (A,i) of type (F, &). This result is
implicitly used in lemma (2,4, 2) [Lang 3, pp. 17, 59, 60 ], and this
is why we restrict ourselves to K of class number one,

One of our main goals is to study fields generated by points of
finite order on A. Our main tool will be to use the explicit charac-
terization of the class fields generated by the images of points of
finite order in a certain quotient variety of A, To discuss that quo-
tient, we are going to have to consider polarized abelian varieties,
that is, a triplet (A, C, i) where C is a polarization of A, What
basic definition we take for polarization will not prove critical to our
needs. But for specificity, we will take as our definition of polariza-
tion a class of divisors on A, C = C(X), where X is an ample divis-
or on A, and such that Y € C if and only if there are integers m
and n so that mX is algebraically equivalentto nY., If o € End A
then we say a is an endomorphism of (A,C) if (1-1((,") c C, where
c,-l is the induced map on divisors. The beauty of introducing the
polarization is that while Aut(A) is generally infinite (the units of F),
Aut(A, C¢) is finite [Lang 3, p. 71]. So Aut(A,C) is contained with-
in the roots of unity of F,.

What is important for our needs (for details, see [ Lang 37)

is that to every polarization is associated a Riemann Form E(3 on




C xc¢”. Two polarizations are the same if and only if they deter-
mine the same Riemann for:fn. There is an explicit characterization
of the change of a Riemann form E under an endomorphism a of
A, when ap(a) is rational, Letting E ! denote the Riemann form

on q(A), we have [Lang 3, p. 74]
E’= ap(a)E

Since all roots of unity have absolute value one, they all preserve the
Riemann form. In short, we have precisely that Aut (A, C) corre-
sponds to the image of the roots of unity in End(A) N i(@F). For
(A,i) principal, Aut (A, C) is precisely the set of roots of unity of
F. This is the chief technical convenience afforded by our restric-
tion to K containing only +1 as roots of unity.

Given a Riemann form E determined by a polarization C
we say the triplet (A, C,1i) is of type (F, &, \, E) (with respect to
the map 6 : we needed it to define E). An isogeny of (A, C,1i) into
(B, 8, j) is an isogeny of (A,i) into (B, j) whose induced map on
divisors maps § into C. We included E into our type data be-
cause (F, ®, A\, E) determines the triplet (A, C,1i) up to iso-
morphism,

There is one more technical point to worry about., A
Riemann form determines an involution of End(A)Q , and the theo-
rems of complex multiplication demand that the set i(F) be stable

under this involution, For A simple this condition is always met,
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§4: Fields of Definition

Since we are restricting ourselves to principal (A,i) of type
(F, ®, \), we can say that (A,i) is defined over a field L ¢ ¢ when-
ever A is, and when all i(a) are defined over L (a € F), When A
is simple and defined over L, then (A,i) is defined over the com-
positum LF’ [Lang 3, pp. 54-55]. If A is defined over L, we
say a polarization C is defined over L if 0(C) = C for every
o € Gal(C/L). We say (A, C,i) is defined over L whenever (A,i)
and C are, For A simple, C is defined over any field of defini-
tion for (A,i). Soif (A, C,i) is of type (K, &, A\, E), then (A, C,1)
is defined over LK, vcfhere L 1is the field of definition of A (recall

K:K')

Let 0 be any automorphism of €. Then o acts on A,

a

(A,i) or (A, C,i) by A- A7, (4,i) > (A7,17), or (A, C,1) -

A%, ¢%, 1), where i7 is defined by the commutivity of
e TR
io-\ l 5
End(A%)

The downward arrow being the map induced by o. We define the

field of moduli of A, (A,i), or (A, C,i) (denoted by M(A), M(A,i),

or M(A, C,1i)) as the fixed field of precisely those o € Aut(C) for

which there exists an isomorphism s over C; such that:



8: Ao Ac
8 : (A,i) - (A,i)°

o et {h, €, 3Y = (A e,

These fields of moduli always exist [ Lang 3, p. 1237], When A is
simple, M(A, C, i) = M(A,i) (but M(A) = M(A, C) is not always
true). For example, when A is an elliptic curve, M(A) = (D(j(A)).,
where j is the j-invariant of A, It is always the case (complex
multiplication or not) that an elliptic curve is defined over its field
of moduli., This is not always so for an abelian variety, However,
for certain abelian varieties with complex multiplication (of which

those of dimension 2 are just a subset), Shimura has found [Sh]:

Theorem (2.4.0): Let (F, ®) be a simple type for F a CM-field,

[F:@1=4, Then any (A, C,i) of type (F, &, A, E) has a model

defined over its field of moduli, M(A, C, i).

In studying the fields generated by points of finite order on

A, we must first introduce the Kummer Variety, the quotient of A

by Aut(A, C,i). For A simple, Aut(A, C) = Aut(A, C,i) [Lang 3,
p. 135 ]. For (A, C,i) of type (K, ®, )\, E), we determined in the
last section that Aut(A, C) = £1, The Kummer variety is obtained
therefore by identifying a point on A with its negative, Let W be
the resulting variety; h: A - W the natural projection, Then the

field of functions of W 1is just the subfield of even functions on A,
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From now on we shall restrict ourselves to the case in question:
(A, C,i) of type (K, ®, A, E), where K satisfies (2.1,0) and
i(K) = End(A) (that is, (A, i) is principal). Then we have already
noted:
(2.4.1) i) A is simple.
ii) (A, C,1i) is defined over its field of moduli M(A, C,i).
iii) K = K’, its reflex field.

iv) Aut(A, C,i) = 1.

We will now lift an important application of the main theorems of

complex multiplication [ Lang 3, p. 1377,

Lemma (2.4,2): If A is principal, M(A, C, i) is contained in the

Hilbert class field of K’

Corollary (2.4.3): M{A, C,1) = K,

Proof: Indeed K = K’, and the class number of K is 1, (This is
the great simplification from the assumption h(K) = 1,) Therefore
M(A, C,i) ¢ K, It's always the case that K’ c M(A, C, i) [ Lang 3,

p. 125 ], so we have M(A, C,i) = K.
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§5: Fields Generated by Division Values

In this section, as in the sequel, p will be an odd rational
prime which remains inert in K, and such that A has good reduc-
tion over K at p. There are infinitely many such p. For the sake
of specificity, we will take & = (1, 0) where Gal(K/Q)= (o) .

Then &’ = {1,0-1

}. This choice is of no consequence except to
simplify discussion,
Let m be any integer. Then Am, the group of points of

order m on A, is isomorphic to the additive group @K/m(QK

[Lang 3, p. 138]. Let t be a primitive point, i,e. one such that

@K * tm encompasses all the m-division points, Recall that h is
the map from A onto the Kummer variety, We care to study the
field generated over K by the coordinates of h(Am). (That is, the
field generated by the even functions of A evaluated at points of
order m,) Since all the endomorphisms of A are defined over K,
this will be identical to the field K('h(tm)), i,e., the field obtained
by adjoining to K the coordinates of the point h(tm).

Our main tool will be another application of the main theorems
of complex multiplication: the adjunction of division values gener -
ates class fields, We quote the following from [ Lang 3, p. 1387,

tailoring the result to adjust for the conditions (2. 4. 1) and corollary

(2. 4. 3):
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Theorem (2,5, 0): K(h(tm)) is a classfield over K of conductor

dividing m, It belongs to the group of ideals H(m) consisting of all
ideals B prime to (m), such that:

There exists a B € K satisfying;

i) N_,®) = 807 ®) = (8).

i) Npoo (B) = Bo(B)

iii) 8 = 1 mod(m).

Let's massage these conditions a bit, First of all, 8 is
principal, say equal to (a). Then (i) reduces to (ao” la) = {B) or
ac'l(a) = + gia, for some i € Z, Then (ii) implies NK/Q((a)) -
Cau alap & = Bp(B): which holds oedy whent (26 J (it =
(£ C '1)2 = 1, So we must have ac-l(a) = +8. Finally, condition (iii)
translates into ac'-l(a.) =+1 (m)., We note that NK"’ Q(Q) = =1
implies gc'l(g) = -1 (m), so an ideal B has a generator a such
that ac-l(a) = +1 (m) if and only if it has a generator a such that
ao-l(a) =F 1 (m). Moreover, (ﬂ:Qia)c-l(iQia) = (--1)-l ac_l(a).,

Summarizing we have:

Corollary (2,5,.1): K(h(tm)) is a classfield of K, of conductor divid-
ing m, that belongs to the group H(m), consisting of those ideals

B prime to (m), with generator a such that ac-l(a) = ] (mod m).
Moreover, if B has one generator a with the property: a,cr-l(a) =

+1 (mod m), then all its generators have that property,



Recall that p is a fourth degree prime in @K . Therefore
@K/pGK is a fourth degree extension of Z/pZ with Galois group (o)
and a lone intermediate quadratic extension, @K+ /p@K+ . We will now

investigate the classfields obtained when m=pn . We denote K(h(tpn))

by K(En).

Theorem (2.5.2): K(E ) is an extension of degree %p3n_3((p2+l) .

(p-1)) over K,

Proof: n = 1, Here we have a surjection

ms (@K/’p GK)X — I(p)/H(p)

whose kernel consists of those a € (@K/p @K)X such that ac-l(a) =
+1 (p). We note ac~l(a) =+1 (p) implies G-l(a) = :i:a-l (p) so

p(a) = C’-z(a) = tc-l(a-l) =+(xa) =a (mod p). So a is congruent
to a residue class in (©K+ /p@K+)x. We first count those a such

that aoﬁl(a) =acg(a) =1 (p). These are those a in the cyclic exten-

sion 6 /pG

w+ - over Z/p Z of norm 1, so by Hilbert's Theorem 90,

= X 2
a = b(o(b)) l for some b in (®K+/p ®K+) , which has order p - 1.
-1 =] =
But b(o(b)) =b’(c(®d’) if and only if b’b : is in (Z/PZ)X .
so there are p+1 such a, Therefore there are also p+1 such
Ca satisfying (Ca) c-l(ga) = -1 (mod p), so |ker TTI =2(p+1), and

[K(E): K] =5 +1)(p-1).
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n >1: First we need a lemma

Lemma (2.5.3): Let G = Gal(((SK/p @K)/(Z/p Z)) ={o ), cyclic of

order 4, Then for b € @K/p@K ’

2
b-g(b)+ o (b)-03(b) =0 3 c € @K/p®K such that b=c +ao(c).

Z[t]

t4-1

Proof: The group algebra Z[G] = , where t is an indeter-

minant, Clearly for o € Z[G]

- 3
(l40)a=0<<> a=(l-0+0 -0)B for some B
2 3
(l1-0+0 -0 )a=0=qg=(1+0)B for some B

Therefore the following is a projective resolution of Z as a trivial
Z [G] -module:

0e— Z < Z[G]<2Z[G]< Z2[G] S

where D is multiplication by 1+0, N is multiplication by
3 ’ ’
1-0+4+0 -0 , and the augmentation ¢ is defined by ¢: 01 - (-1)1 .

Therefore if A is any Z[G ]-module,
HYG,A) ~ Amn, N/DA where Ann,N = (x € A|Nx = 0]}.
Now G acts additively on @K/pGK , and (2.5.3) is just the state-

1
ment that H (G, @K/p @K) = 0, But this is true for any Galois

extension [Sel, p. 150],
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Back to proof:

We have the following exact diagram:

(2.5.4) 0 —{ajac” (a)=%1 (p)}— (6, /p" 6, — I(p)/H(p") = 0

I I |n

0= falac M @)=21 (D} ~(e /5" o) ~IE)/HE" ) —~ 0

where the maps m, are induced by just considering everything

-1
mod pn -

We will now show 1. is surjective,

1 Since again

-1 -1

(Ca)o "(Ca) = -ac (a), we need only show that if

ar L@l =1 150 4 for B ES fub

a)=1+bp (p or K P K’
Then
= 5

(a ~T»cpn )o (a.+cpn l) = i (pn) for some c € @K/p@K 5

But this last equation holds if and only if

a.c-l(a) + (cc_l(a) +a.c:'-1(<:))l-'ﬁnn1 =1 (pn)

1]

ie. b= -eo”la) - ag” ) mod p)

We note the following identity

(2.5.5) aO-l(a) . cz(ao'l(a))
O‘(ac'l(a)) - 03(ac'1(a))

= I

< = =
which implies b -0 X(b) +o (b) - o (b)= 0 fmod p). So by

lemma (2, 5. 3), (with 0—1 replaced by o), we have



95

be d +0_1(d) (mod p) for some d € @K/p@)K

Therefore we are searching for a ¢ such that
-1 -1 - -1
-co0 (a)-ac (¢) =d+o "(d) (mod p)

But as before, a.O'-l(a.) = 1 (p) implies G-l(a.) = g(a) (p) so
c =o(-d/a) does the trick. Therefore, coker (TTl) =0, We will now
find ker (TTI).

+1 i
I a=1 (pn }) and ac 1(a.) = ¢1 (pn) then we have

IR b€ 6. /pb
a=1+bp P or some kPO

e ac tals 1+ ro BN B

- =2
i.e., b+o (b) =0, Butthen o l(b) + g (b) = 0 and consequently

~2
Uz(b) =g (b)=b, so bEGB /p®K+ . Therefore we seek to find

K+
V={b|b +0o() =0}, the kernel of the trace map

Tr: 6 ,/p& , —> Z/pZ .
K K

By the additive version of Hilbert's Theorem 90, Tr(b) = 0 precisely
when b =c-o—1(c) for some c € 6 +/p©K+ . But c is unique
only up to translation by an element of Z/pZ, so ]v| = p. Hence,
|ker ll = Pp.

Note we easily have that ker m, = (Z/p 2)4 and coker 1, = 0,

2
Now let us apply the snake lemma to the diagram (2.5.4):

(2.5.6) 0 —ker U —ker Trz—-ker Tr3—-coker ™ coker m,

—coker m, — O

3



By our results above, this sequence is just:

0 — ker Trl—"ker rrz—-ker TT3—"0 — 0 — coker TT3—" 0

So coker Ty = 0, and [ker TT3‘ = |ker 1Tz1 / |ker rr1| = ];)4/p=p3

Hence |I(p)/H(p )| =p3 [I(p)/H(pn-l)[ and the result follows by

induction,

Corollary to Proof (2.5.7): Gal(K(En)/K(Enul)) == (Z/pz)3

Proof: Indeed

Gal(K(E_)/K(E__|) = (I(p)/H(p )/ ae)/HE" )

>~ ker M, = ker TTZ/ker 1'rl

And ker m, = (Z/pZ)4 ; ker m = Z/pZ .

Remark: This corollary is in essence an affirmation that the type &

has ''rank'' 3, See [ Lang3, pp. 148-155 ].

An important observation is that since h(K) =1, K(En) is
totally ramified over K, We will let SBn denote the unique prime of

K(En) above p.

Lemma (2:5:.8): If Kel, = K(En) and L has conductor at most

pl » then I./c K(Ei) ,
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Proof: First of all, it suffices to show this for i =n-1, Forn-=1,
we note that if K ¢ L < K(El), then L/K is totally ramified.over

p so has a non-trivial conductor. Hence if L has conductor at most
n-1 o : : a

p =p =1, then L c K, and by convention we'll consider K =
”K(EO). " Now let n > 1, Then the classgroup H belonging to L/K

+ n X -1 n

contains those x € (@K/p @K) such that xo (x)= +1 (p ) as

well as those x = 1 (pn'l). We seek to show that it contains all

those x such that xcrnl(x) = x1 (pn-l). But for such an x:
=1 n-1 n
x0 (x) =1 +bp P) for some b € @K/p®K
and by the identity (2.5.5):
2
b-o()+0o (b)- 03(b) =0

so b=c + o-l(c) for some c € @K/p@ by lemma (2.5, 3)., Further,

K

n
vy=1+cp (pn) isin H asis:

c'Hy)==l4-0'HC)pn"1(pn).

] v
Therefore xy 10 xy )= =1 (pn), and so xy — and consequently

Remark: In particular, the conductor of K{En) is precisely pn .
The ''collapsing'' of the p-division values is not so pronounced as one

might have first thought.

2
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Lemma (2.5.9):

3n 3n-3
2 - (n.
_[%(p +1)(p-1) (np (n_?;l)p L4 1) - 1]
_ p -1
DK(En)/K o

Proof: Since the extension has conductor a power of p, the dis-

criminant contains no primes outside p .

=13 K(El)/K is a totally and tamely ramified extension of degree
%(p2+1)(p-1). Therefore the power of ‘ﬂl in the different ;s(K(El)/K)
N
is 3 (p +1)(p-1) - 1, and the result follows from NK(El)/K (551) = P.
n>1: We proceed by induction, Let Hn = Gal(K(En)/K).

If ¥ € fin , X 1is the identity on the subgroup

Gal(K(E_)/K(E_ )

if and only if v lies in ﬁn 1 under the natural inclusion., For any

x € H_, we let K, denote the fixed field of its kernel =
{oc € Han(G) =11}, and f(y) the conductor of KX over K., By

lemma (2,5,8)

n-1
(:)KX = K(En-l) <> f(y) <p

Now by the conductor-discriminant formula:

M e

D
K A
ern

(E /K

D = ﬂ - £(x)
K(]*::nnl)/K' N Hn-l



So
K(En)/K/ K(En_l)/K B I;In £) = b
X Hn—l
1 3n-3 _3n-6
a2 P +HP-1)P -P )
=(p)
since [I:I1| = |Hl[ =%(p2+1)(p- l)psi-3 by Theorem (2.5.2). By

the induction hypothesis (letting ].ogp stand for taking a logarithm

to the base p)

1, 2 (n-l)p?’nq3 5 np3n-6 + 1
log | Dy (K(E)/K) = 5 (p"+1)(p-1) ( 55 ) 45
] . 2 3n-3 3n-6
+3(p +1)(p-1)(np N -np Ty
3 3n-3 3n-6 3n-3 3n-6
- 2 (p%+1)(p-1) [‘p = s “]-1
p -1
3n n-3
2 .
:%(p +1)(p-1) l:np (n;I)P = 1} e Q.E. D.
p -1

Now that we've determined the structure of the fields generated by
adjoining to K the values of all even functions of A evaluated at
points of order pn , we want to study the structure of the fields gen-
erated by adjoining to K the values of all functions of A evaluated
at points of order pn — namely, the fields of pn—division points of
A over K, We denote these fields by Kn when the dependence on

p is clear, We note that the field of functions on A is a quadratic

9%
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extension of the field of even functions, (odd/odd = even; (odd)2 =

even), Therefore [Kn: K(En)] = lor 2,

Theorem (2.5, 10):

) (K K] =2[K(E):K] = a7 +1)E-1p >,

ii) p ramifies totally in Kn/K. We let p denote the unique

prime of Kn over p.

2 np™ - @s1)p P73 41
iii) D (K _/K) = (p~+1)(p-1) | =2 =P A
P n p -1

Proof: i) Any g € Gal(Kn/K) is determined by its action on tpn ’
a primitive point of order pn . Indeed, O(tpn) =g tpn for some
o € ((SJK/pn @K)x , and the map o+»q defines an injection, This
injection is compatible with the taking of inverse limits, Thatis,

if n |m and o € Gal(Km/K), the the following diagram commutes:

l

o] ol ®]

<« Q

(2.5.11)

0l —>
n
where g denotes the reduction of 5 mod pn . So we get an
embedding of Gal ((U Kn) /K) into @px (the p-adic units, p a

n
prime of K), Further, we can recover Ga.l(Kn/K) by projecting

. . X n X s .
the image of Gal ((LDJ‘ Kn) /K) in @p onto (@K/p @K) . With this

in mind we quote a theorem from [Lang 3, p. 101]., (The theorem
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simplfies when h(K) =1 and K = K’.) It states that if A has good

reduction at p, (our omnipresent assumption), then:

I X X
Gal((g Kn)/K) Ngi(6X) < o
where N _, is the reflex norm we tackled in theorem (2.5.2). So

we have:

X

Ga.l(Kn/K) = Image of N@, (@p)
. n X . ¥ -1 _ .2 n n
in (6, /p 6,)". Since N_,(p)=pc (p)=p , Ng,() < (p), hence

‘ n X ¢ n X
Gal(Kn/K) Ny ((@K/p @K) in (@K/p @K) -
NQ, is surjective onto its image, so
Gal(K_/K) ~ (6, /p"6. )" /ker N
e g8 gt ISR

where ker N_, = {a € (@K/pn@K)" lac l@) =1 (p*)}. But in the
proof of theorem (2.5, 2) we calculated that this kernel has order
(p+1)pn_1, i.e., it consists of half the number of a such that
a.o_l(a) = +1 (pn). Therefore [Kn:K] =12 [K(En) L el

ii) We will first show B ramifies in Kl to pl2 . Then

1

from the following diagram:
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p31&—3 K(En)
(%)
3n-3
Kl \ P
2 K(EI)

we have that the ramification index of 251 in Kn is even ,
[K(En) :K(El)] is odd, so iBn ramifies in Kn X

To show that SBI ramifies in KI , we note that the extension
KI/K is cyclic, since it embeds as a subgroup in (@K/p @K)X . We

can now apply lemma (2,2, 1) since
2 - (K K(E )] | [KE) K] =5 +1)p-1)
= L SRSy 2 \P gt

Therefore p ramifies totally in K.1 .

iii) Since [Kn :K(En)] is a quadratic extension and
p = NK(En)/K(Bn) is odd, %n ramifies tamely in Kn . S0
Dp(Kn/K(En)) = ?Bn . Piecing the following formula with lemma

(2.5.9); we have:

2
Dp(Kn/K) = NK(En)/K (D(Kn/K(En))(DK(En)/K)
3n 3n-3 2
= +1)(p-1) (“P diidl 1) =
=plp Pies
3n 3n-3
(p2+1)(p-1) np = (n-;l)p +1 o

=%
:P P
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We can glean even more information from our diagram (%) ,

Corollary (2.5.12): No primes outside 551 ramify in the infinite

extension (U Kn) /I:{1 . A has good reduction everywhere over Kl’
n

Proof: Looking again at (*), we see that any prime €& of K1 which

ramifies in Kn has a factor of p in its ramification index, If c is
the prime of K(El) lying below &, then c¢ must also ramify to Kn
with a ramification index that is a multiple of p. However, since

[Kn:K(En)] is two, we must have that ¢ ramifies in K(En). But

we know that only B ramifies in that extension, so no such G # D

1 1

exists, Now by the criterion of Neron-Ogg-Shafarevich, A has good
reduction over K1 at all primes of K1 not above p (considered
as a rational prime)., However, p remains prime in K, and pl is

the lone prim= of K, over p. Further, we chose p so that A

1

over K had good reduction mod p, so A over Kl has good reduc-

tion mod pl 5 too,



§6. Points of Infinite Order

Suppose that A has a Mordell-Weil group A(K) of positive
rank; that is, the K-rational points of A, modulo torsion, are gen-
erated freely over Z by some Pl" .y Pg , 8 >0, Let P be one
of those generators, Then if n#+1, thereisno Q in A(K) such
that n* Q = P, However, there are n4 such Q in A(K), the
points of A in the algebraic closure of K, We will let Ln denote
the field obtained by adjoining to Kn the coordinates of all points Q
so that pn* Q = P, However, pn* Q=P and pn* Q/’=P imply
Q~0Q’€E A n Since addition is defined over K, if the coordinates
of one fixedpQ such t'hat pn * Q = P are adjoined to the Kn y We

get all of Ln . We will make a permanent choice of such a Q and

call it Q. .
n

Lemma (2,6,0): i) Ln/K is a normal extension, ii) Gal(Ln/Kn)

embeds into A [ , considered as an additive group.
P

Proof: i) Since multiplication is defined over K, if ¢ € Aut(C/K),
pn * G(Qn} = o(P) = P, so O(Qn) is a point whose coordinates

already lie in Lr1 .

ii) Let o € Gal(Ln/Kn). Then as above,

P * (o (Q)~ Q) =0 (the identity on A),

So G{Qn) = Qn € Apn . The map o +>»0 (Qn) ~ Qn is independent

104



of the choice of Q,n , since any two such Qn differ by a point in

A , , upon which ¢ acts as the identity,
P

A discussion of Gal(Ln/K) is facilitated by the following

identifications, For any 0 € Gal(Ln/K)

Q'(Qn) = Qn 2] G’U where 0;0_ € Apn

and for any R € A
P

= n X
o(R) = Bo R for some BO’ € (@K/p ®K)

. n
So we can embed Gal(Ln/K) into GLZ(GK/p @K) by

(2.6.1) g —>

Where we identify a with its image under the isomorphism

n

P
actions on the right, For any g, T in Gal(Ln/K) we verify:

A = @K/Pn 6 . For the embedding, we will have to write group

1 o TRy 1 B e [3
(2.6-2) TO —» T = - 2 e

0 BT 0 BO‘ 0 BTBU

which agrees with 0(Q ® g ) = Q & o_® a_ * B_ . Under this
n T g T a

scheme, Gal(Ln/Kn) consists of all matrices in Gal(Ln/K) of the

form (10 I) .

105
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The main question concerning the embedding of Gal(Ln/Kn)

into A , is whether it is surjective. To employ an overused phrase,
P
is the Galois group '‘as big as possible?'" (Kudos to the logician who

finds content within that statement,) For elliptic curves the answer
is almost always yes [Bas, Se2]. For abelian varieties with com-
plex multiplication, Ribet [R] has shown that Gal(Ll/Kl) is as big

as possible, for all but finitely many p, even when Ll is obtained

from K1 by adjoining the division values of any number of inde-

pendent generators of A(K) (K any number field). Lang presents
an argument to reducg the proof for Ln/Kn to that of LI/Kl in the
elliptic case [Lang4 ], and it carries over practically word for
word for abelian varieties,

However, our case of K is sufficiently special that we can
show directly that Gal(Ln/Kn) ~ Apn for all n, and our p (inert
in K, odd, good reduction),

We note that Ga.l(Kn/K) acts on Apn B @K/pn @K by
multiplication, and similarly acts on AP 34 GK/p ®K via its
quotient Gal(KlfK).

1.amima (2. 6. 3). Hl(Gal(Kn/K), A) = o

Proof: n=1. Note that Ap is a p-group, so Hl(Gal(Kl/K), Ap)
is a p-group, too. However, GaJ.(Kl/K) is cyclic of order d

2
(= (p #1)(p-1)) prime to p, so by [Sel, p.130] Hl(Gal(Kl/K),Ap)

must by annihilated by d. Hence H'(Gal(K /K), a)=o.
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n>1l: Gal(Kn/K) is isomorphic to TPX Np , the product of its p-
torsion subgroup TP and its non-p-torsion subgroup Np . Np acts
on Ap through its image under the projection onto Gal(KI/K). In
fact, Np is isomorphic to Gal(KllK) under this projection since
the groups have the same order and any element of Gal(Kn/K) that
is congruent to 1 mod p is a p-torsion element, Hence, Hl(Np, Ap)
o= Hl(Gal(KllK), Ap) = 0, Furthermore, the only element of Ap
fixed under the action of Np is the origin,

Corresponding to the exact sequence:

0= N — Gal(K /K) — Gal(K /K)/N — 0
P n n P

we get the restriction-inflation sequence [Sel, p. 117 ]

N

0 = HYGal(K /K)/N ,A P) — g!
n p’ ' p

1
B IR, & )=~ ;
(Gal(K, /K), A ) =~ H(N_, A )

N
where Ap P denotes the elements of AP fixed under the action of

Np , and hence is trivial, So Hl(Gal(Kn/K), Ap) is sandwiched

exactly between two zero terms, and therefore is zero,

Corollary (2,6, 4): I_.n/Kn is a non-trivial extension,

Proof: We chose P so that there were no Q in A(K) such that
p * Q = P, Therefore the extension M/K obtained by adjoining to K
the coordinates of any such Q is non-trivial, If LI/KI were a

trivial extension, then we would have M C K and in fact it's easy

1 3
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to see that K1 would be equal to K adjoined with the coordinates
of all the points Q such that p ¥ Q = P, For any such Q we get
a map

fQ: Ga.].(Kl/K) - Ap

by £400) = a_ =0(Q) ~ Q

By the relation (2,6.2), this is easily seen to be a one-cocycle, so
0(RQ) ~ Q=(c-1)a for some fixed a = a(Q) in Ap , and any

g € Gal(KI/K). If a=0 for some Q, then Q € A(K), a contradic-
tion, Butif a # 0, then every Q has (p2+1)(p-1) = [KI:K] con -
jugates over K, an impossibility since (p2+l)(p-1) + p4 . There-

1
fore Ll/Kl is non-trivial, Equivalently, there is an element (0 i‘)

1 e

0 BZ) in Gal(L,/K)

of Gal(Ll/Kl), where o # 0. Then for any (
( . )(1 a)
x ;
0 g, /\o 1
o 1/ \o B 0 B8,

a

1"
——
QO

Q
™ 4

2

q
S —

Since g # 0 and we can choose fBO # 1, we see that Gal(LlfK) is
not abelian, As a result, we can now see that Ln/Kn is non-trivial,
For Ga.l(LllK) is a quotient of Gal(Ln/K), the latter which would be

abelian were L c K .
n n
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n
Lemma 2,6.5: Identifying Gal(Kn/K) with its image in (@K/p ('SK)>< .

n n
there is an q € Gal(Kn/K} such that @K/p @K =Z/p Z[q].

n
Corollary 2.6,6, Every element of @K/p @K can be written as a

sum of elements of Gal(Kn/K).

2
Proof of lemma: Since IGal(KI/KH = (p2+1)(p-1) =P 1) =

le  /pe6 ):_| , thereis an @ € Gal(KllK) which is not in the ''real
K

K+
3 " - - . "
subfield @K+ /p ®K+ of ®K/p (S\K . Since @K/p @K is a cyclic ex

tension of order 4 over Z/pZ the real subfield is the only inter -

meadiate field, so we must have that @K/p@) = Z/PZ[a]. Let a

K
be any element of Gal (Kn/K) which projects onto @, and let a

be any element of @K - (the p-adic completion of @K , P a prime

of K) such that o reduces to @ modulo pn . Then &

il

a mod p,

and since @K 5 over Z 1is unramified, we must have that
’

G = al. Hence
.0 p[a]

6 /P GK—ZP[GLJ/P Zp[a]= zZ/p Z[al].
Following the approach in [G ] we show:

Lemma (2.6.7): Let H= {q

(é Oi) € Gal(Ln/Kn)} . Then H

is a non-zero ideal in (C.aK/pn 6 -

Proof: H is non-zero by corollary (2.6.4),
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Clearly H is an additive subgroup of @K/pn 6y » so we need only
check that yo € H for any a € H, y € @K/pn @K . But by corollary
(2.6.6), it suffices to show ya € H just for those vy € Gal(Kn/K).

Given such a vy, there are elements of Gal(Ln/K) which project onto

=1
y and y , say

1 B 1L B
R
o ! 051 Iy

Computing Mle and MZMI we find
-1
(2.6.8) BZ+Bly, BI+BZY €EH
Note further that if o’ € H,
' [
0 v¥lo 1 0 B
so the choice of Bl (and Bz) in (2.6.8) can be translated by any
element of H, Therefore, for any ¢ € H we have:
B, -B, v +a€H, and B, +[(B,+(-B,-By +0)ly =ay€H
1”72 g 2 1 I f2y Y Y i

We now have enough preliminaries to show:

Theorem (2.6.8): Gal(L /K ) =~ A _ .
n n pn

Proof: By the previous lemma, we have Ga.l(Ln/Kn) = H

B ) . . . n
= ®K/p O Apn , where H is a non-zero ideal in @K/p Gy -
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For n =1, we have immediately that L1/K

L= Ap , since @K/PGK

is a field and hence has no proper ideals. For n >1, @K/pn 6 isa
local ring with maximal ideal (p), so H = (p)m for some m = 0,

We wish to show m =0, so postulate contrarywise that m = 1, Then
for any o € Gal(K /K), and any G, g G Gal(Ln/K) which project

onto ¢, we have the identifications:

!
!

w1
1 - w

£ &3)5
and g s

-1 n X
f -2 gm G
Therefore o s (p) (recall BG € (@K/p K) ) . Hence
8 ok Ec(p) is a well-defined map of Gal(Kn/K.) into Ap . We
denote any of the EO modulo p by a ie This defines a one-cocycle
£ Gal(Kn/K) — Ap since (2.6.2) implies T a,+ Bc a.
(recall that multiplication by B, is the action of ¢ on A = and
P
therefore, via its quotient, is the action on AP). Now by lemma

(2.6.3) we have a .y in Ap such that

= - ’ hen
M T ce

(2.6.9) R I p) == o 0 (mod p)

We have
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Gal(KllK) = Ga.l(Ln/K)/ 3((1) Or“)| B=1 (p);

and Gal(Ll/K) = Gal(Ln/K) / {(; “)le = 1, o=0 <P)1

So by (2.6.9), L1/K1 would be a trivial extension, a contradiction,

Therefore m=0 and Gal(L /K ) = A .
A o Pn
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§7: Some Character Relations

-+
Now that we know Gal(Ln/Kn) =~ (Z/pnz) , we can make the
following diagram of field extensions, letting Mn = K(Qn) (that is, K

adjoined with the coordinates of Qn).

2+1)(p-1)

In our identification (2.6, 1), Gal(Ln/Mn) corresponds to matrices of

1 0

the form (0 A

) . Our goal is to relate the conductors of characters
on Gal(Ln/Kn) to relative discriminants in the towers of M's and
K's,

First let's calculate the character on Ga.l(Ln/K) induced

from the unit character on Gal(Ln/Mn); we will denote it by

*
1 (L /M ). Then
n n

e (5 2

S e l 00N LT P N B T
n n

We calculate that
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e N e

so we need to find the number of (u,v) € (GIK/I:’I1 @K) 5% Gal(Kn/K) such

that (1-g)u+av =0 (pn).

Let 0 €<m < n be such that pm " (1 - B) (precisely divides).
'I‘hén there are no solutions unless pml a, in which case we are
searching for solutions to

5
P P

For any of the [Kn:K] choices for v, there is a unique choice for

- +
u modulo pn o , and therefore p m choices for u modulo pn ¢ S0
for pmH(l-B), 0O<m<n,

m
E fa
otherwise

Note that Ga.l(Ln/Mn 1) consists of matrices of the form

((l) g‘) where o = 0 (pn-l). We will now investigate the induction of

the unit character on Ga.l(Ln/Mn_l) to all of Gal(Ln/K).

1*(Ln/Mn_1) ((1) g)

-1
e (5 3) € s[5 35 6 3 ecmaym,

t
|

That is, we need count the number of (u,v) in @K/pn@KxGal(Kn/K)

-1
such that (1-B)u +av = 0 (pn Js
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et 0 < m < n-1 be such that pmH(l - B), and set m=n-1
if B=1, Then there are no solutions unless pm| a, in which case
we are searching for solutions to

(I;nB)u +( a;n) v =0 (pn-m—l)
P P

I

For every v there is a unique u modulo pn-m-l’ and therefore

p‘hn+4 choices for u modulo p . So for Pm l(1-B), 0 <cm < n-1,
4m m
* 1 0«) . P P |a
: (Ln/Mn-l) (0 gl o otherwise .

® i
Comparing these results, we note 1 (L /M ) and 1 (L /M )
n o n- n n

differ only when g8=1 (pn). Let { be the character equal to their

3 ES
difference, 1 (L /M )-1 (L /M ). Then
n n n n-1
4n 4n -4
P +P =1, a=0
1 a 4n -4 ¥
(2.7.0) 4:(0 B): -p B=1, pPrt e
0 otherwise
Let vy be any of the p4n -pqm-4 first degree characters on
n-1
H = Gal(Ln/Kn) such that xp # 1, Let ( , )H denote the inner

product of characters on the group H, and let |H denote ¢ re-

stricted to H.

Wy 2 =L4_.n‘ (p4n -p4n'4)x(l) + (-P‘Ln-é) z X((IJ T)
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We rewrite o as pn-lb where b € (@K/p @K)x (o # 0), and evaluate

the sum

1 bpn"1

pn-l(l b)_ :
0 1 o

0 1

Ml
b €(6  /pg )" b € (6, /p6,)"

n-1
since )(p was chosen to be nontrivial, Hence

1 4n 4n -4 4n-4

W e 1 0 TR DR ie e i s
P
We note that the degree of y is p4n - p4ﬂ-4, and there are precisely
n-1

that many vy such that Xp # 1. Therefore we find

Letting '"*'" denote induction to all of Gal(Ln/K)

(2.7.1) (¢]H)*= Gy

n-1
¥  #1

But since Y(x) = 0 for x ¢ H, we verify for x € H

* 1 ek
2.7,2 e
( ) Wy @ K], GG%(LH/K) W | @xeg )

1

=T . n Y(x)
[Ln.Kn]

g € Gal(L,_/K)

[K_ K] y(x)
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And by Frobenius reciprocity
2.%.3 Wox ) = )
( . - ) Lp’ X Gal{Ln/K) = ‘-l-’ H, X H = 1

So we can conclude:
i) Any irreducible character on Gal(Ln/K) contained in X*
must be contained in ¢ , ((2.7.1),(2.7.2)).
ii) Hence by (2.7, 3), X* is irreducible,
iii) So again by (2.7.1) and (2.7.2), y is a sum of different
X* 's, perhaps with multiplicities,
Comparing degrees: (1) = 134‘1 -p‘m"4

3n

v () = p2" 3 e piip-1)

ES %*
We conclude ¢ = Z(y )i mi where the (y )i denotes an indexed set

of distinct induced characters, and Emi = pn-l(p+1), m, >0, But

we can calculate from (2, 7. 0)

2 1 4n 4n-42
zm, = (y,P) B [ -p )
i Gal(Ln/K) p?n 3(p2+1)(p~1)
-4 2
+ P %)
8n ) 8n-4 o
= 711::_2 g =P (p+1)

P (P +1)(p-1)

Hence all the m, = 1. Summarizing

Theorem (2,7.4): The (p4-1)p4n-4 first degree characters 7% on

%
Gal(Ln/Kn) each induce toa y on Gal(Ln/K) where
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ES -
i) x is irreducible, and there are p3n 3(p2+1)(p_1) X

* -
which induce to each of the distinct (¥ )i pehih pn 1(p+1),

p" " Hp+1)
» % % %
ii) 1 (Ln/Mn) i} (Ln/Mn-l) = .®1 (x )i x
1=
Corollary (2.7.5):
n-1
n-1 P (p+l)
_ P (p+1)
D(M, /K) = D(M__, /K)(D(K_/K)) Il Ny pae®)
v

where x. is any character on Gal(Ln/Kn) which induces to (X%). b
1

Proof: We recall some standard properties of conductors, namely
for A D B D C number fields, A/C Galois, Xi a character on

ls

Gal(A/B), x; its induction to Gal(A/C),
1) £(x; + x3) = £0x ) £(x,)

2) f(x*) E D(B/C)X(l) N £ (X))

B/C

3) £(1) = 1

We now apply these in turn to calculate the conductor of both sides of
part (ii) of Theorem (2.7, 4).

Our calculations with corollary (2.7.5) will be local, involving
only the p-part of the discriminants, This will result in no diminution

in our knowledge of the f(v), since we have the following:
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Lemma (2,7.6): Ln/Kn is unramified outside P

Proof: By corollary (2.5.12), A has good reduction at any prime b

of K . Take b # D s X Ln/Kn were ramified at some -- and

therefore every -- 8 over b, and ¢ an element of the inertia group

of b, then U(Qn) = Qn(iﬁ). But then the reduction of A mod b would

have fewer than p411 points Q such that pn #* Q = P (a bar denotes

reduction modulo b); impossible if A has good reduction at b, Q. E. D,
We hope to determine later whether for some n, Ln/Kn is

ramified over p, - We now note that it would suffice to show that the

local extension L /Kn is non-trivial for any (and therefore all)
S

primes q of Ln above p, - (In other words, the residue class

degree of q over p  is 1.) For were L /Kn non-trivial and

q p
n
unramified, then Ln /Kn would be the unique unramified extension
q B
of K of degree [L. :K ], But [K:K_] is totally rami-
n n n n P
B 9 By P

fied, and letting N be the unique unramified extension of Kp of

degree [L  :K ], we would have L =K N, the latter of
n n n n

i q P,

which is abelian over Kp . However in the proof of corollary (2.6.4)
we showed that no non-trivial element of Gal(Ln/Kn) could commute

with all of Gal(K_/K) = Gal(K /K ).
n n P

pn

Under the supposition that Ln/Kn is ramified for some n,
let i be the index such that LllKl, o Li/Ki are unramified and

3 K . . .
L1+1/ oy DR ramified,
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Theorem (2,7.7): Li+1/Ki ‘1 Li is totally ramified at any of the

primes q in Ki+1 Li above Piq

Proof: The preliminary remarks guarantee that pi+1 splits into p41

primes q. in Ki-l-l Li’ and since Li+1/Ki+1 is abelian, if one of

the qj is totally ramified then all of them are, Fix one such q,

By the assumption on i, the inertia group I of q in Li+1/Ki+1 is

non-trivial,

i
1 a=0(p) "
Gal(L . /K,  L.)= . 1 s ~(6,/P6,) = (Z/pZ) " .
So we need to exclude the following three cases: |I| = pa w =18, 3,
1.+1
2N
T L(X)L
4- a/
P
K. L(x)

\
i+ \41 /

+1

ILet T be the fixed field of I ., Then T/KH-ILi , an exten-

4-a
sion of degree p , is unramified at q, We want to count the
i
P

number of characters ¥ on Gal(Li+1/Ki+l), x° # 1, such that

1
), xP # 1, we

f(x) = 1. I¥ ¥ is any character on Gal(L“_l/K sl

have that L(v), the fixed field of the kernel of %, is not contained in

Ki+1Li , and that L(¥x) Li is the fixed field of the kernel of ¥



b2
restricted to Gal(Li-’rl/KiHLi)' Since LiKi+1/Ki+1 is unramified,

L()()/Ki+1 is unramified if and only if L(XJLi/KiHLi is, and

L(x) Li/Ki+1 L. is unramified if and only if it is contained in T.

4
Further, there are precisely p ! % which have a given restric-

tion to Gal(L. /K,
1k T+

1 i+l
4.
same L(){)Li . Of these L(x)Li , (p e 1)/(p-1) are contained

Li), and (p-1) restrictions which define the

- 41
in T, Therefore precisely (p4 ok I)p ' of the characters X on

4i+4 41i
-P

i
P X
C‘:a.l(Li+ /Ki+1)' x5 # 1, have £(%) —.1. But of the p

1

l -
characters Y on Ga'l(Li+1/Ki+1)' XP # 1, there are (p2+l)(p—1)p31

sk
which induce the same ¥ on Ga]'(LiH/K)’ and therefore have the

same conductor,

Since (pz+l)(p-1)p31 * p41(p4‘a- 1) for a=1,2, 3, we have

that q is totally ramified in L:_1_1

Lemma (2.7.8): Let L/K be a normal extension of number fields,

totally ramified at a prime p of norm pf , such that Gal(L/K) =

(Z/pZ)n . Then pz |£(x) for every x # 1 in 6&\1(L/K).

Proof: Let L(%) be the fixed field of % ;then Gal(L(¥x)/K) = Z/pZ.
The inertia group Go of p in L(x)/K is Z/pZ by construction,

Letting G. be the next ramification group; (|GO/G1 |,p) =1 so

1
G, = Z/pZ, too, Hence 229 Inen/x) = £60° "
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Corollary (2.7.9): Assume Ln/Kn is ramified for some ri, and let

i+1 be the first index at which ramification occurs., Then we have

2 pi
INg 1 Bygh ¥ # L

s
N K (f(x)), where x € Gal(L,

Proof: Let L(x) be the fixed field of ¥, and q any prime of

e over S i
i i

o By theorem (2.7.7), L(¥) Li/K'H- Li is totally

+1 * 1

ramified over q, hence L( X)/Ki+1 is totally ramified over pi+l -

Therefore by lemma (2.7.8), piz+1 |f( ¥) , and taking norms,

2
p [N E(x)).
Ki.+1/K

Lemma (2,7.10): Keeping the same definition of i, for n g1

4 3

4n +4 4n 4n n
[np —@+)p 41 po 4 (P - )plptl) - 1]
p -1 P

Dp(Mn/K) -p

p+l

Proof: For n=1 this is just Dp(KI/K) It follows by induction

from corollary (2,7.5).
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