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ABSTRACT

The fields generated by torsion points on abelian varieties defined

over a number field have long been an object of interest. For ellip-
tic curves, these fields are generated by the Weierstrass p -func-
tion and its derivative restricted to p-division points and play a
crucial role in the Coates-Wiles theorem. Stark and Gupta pro-
duced a version of the theorem which utilizes rational primes and

implicitly uses the modular properties of the p -function.

For Jacobians of curves of genus two we introduce a generalization
of the p-function and express it in terms of theta functions, extend-
ing to genus two a classical elliptic formula. We discuss its modu-
lar properties when restricted to p-division points and relate it to
the discriminant of the curve.

For abelian varieties of dimension two with complex multiplication
by certain number fields, we generalize some of Gupta's results in
the elliptic case, calculating discriminants in the tower of fields of

pn-division values. We also derive a character equation which
governs the relations between these discriminants and those in a
tower generated by a pn-division value of a point of infinite order in
the Mordell-Weil group.

Thesis Supervisor: Dr. Harold M. Stark

Title: Professor of Mathematics
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Introduction

A destiny that leads the English to the Dutch is
strange enough; but one that leads from Epsom into
Pennsylvania, and thence to the hills that shut in
Altamont over the proud coral cry of the cock, and the
soft stone smile of an angel, is touched by that dark
miracle of chance which makes new magic in a dusty
world.

- Thomas Wolfe, Look Homeward, Angel [W]

It may appear a strange destiny that combines the mathe-

matics of two centuries into one thesis: From an earlier era, we

have the theory of theta functions, and from more recent times, the

algebraic theory of complex multiplication. Our work, though not

complete, is consistent. For our driving interest has been in the

fields generated by torsion points -- and points whose multiples are

a point of infinite order -- on an abelian variety of dimension two

defined over a number field, and for this quest both theories can

play a role.

The study of such fields is quite classical, and arises, for

instance, in the proof of the Mordell-Weil theorem. For elliptic

curves with complex multiplication, Coates and Wiles [CW] have

exploited these fields to make a dent in the conjectures of Birch and

Swinnerton-Dyer. Subsequently, Stark [St] and Gupta [G] gave

another version of their proof. For abelian varieties of dimension

two with complex multiplication by certain number fields, we extend

some of Stark and Gupta's results, principally in the calculation of

iv



discriminants in towers of fields generated by torsion points -- and

the derivation of a character equation which governs the relations

between this tower and a tower of fields generated by points dividing

a point of infinite order in the Mordell-Weil group. This is done in

chapter two where more details are provided in a separate intro-

duction.

Stark and Gupta's version utilizes rational primes which re-

main inert in the field of complex multiplication. Their results make

use of the fact that the towers of fields in question are basically gen-

erated by the Weierstrass p-function evaluated at p-division points

-- which is an elliptic modular form of level p. If an elliptic curve

E is analytically isomorphic to C/A , A a lattice generated by 1

and T, then Stark found [St] :

u$9 ~1 (p(u)-p(v)) = P-2(p 3)A(E)(P 2 -1)(P 2 -3)/6
u +v E -

u,v O '

where A(E) is the discriminant of the curve in its Weierstrass

form. This equation between modular forms can be viewed as an

analytic explanation of the role of primes of bad reduction of the

elliptic curve in the fields generated by p-division points.

Besides elliptic curves, those of genus 2 are best understood.

They are all hyperelliptic, and their moduli space (over C) is dense

in the fundamental domain of the Siegel upperhalf plane modulo the
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action of the symplectic group. This often allows one to extend func-

tions on the moduli space to Siegel modular functions. In particular,

the discriminant of the curve is a modular form of weight 10.

This enables us to pose many questions by analogy with the

elliptic case. Are there functions defined on the Jacobians of curves

of genus 2 which:

1) take on algebraic values at torsion points when the curve is

defined over a number field;

2) are modular forms of a certain level when restricted to p-

division points; and

3) have the discriminant of the curve arising in the symmetrized

product of the difference of the function evaluated at all p-division

points ?

There are two functions which we study in an attempt to meet

these criteria. We denote them by p(u) and p(u, v) ( 6). The former

is to our tastes the nicer generalization of the Weierstrass p-function.

It meets criterion 1, and it behaves like a meromorphic modular

form on the moduli space of curves of genus 2, but we do not yet have

a meromorphic continuation of it to the whole Siegel upper-half plane.

The latter, p(u, v) -- closely allied with p(u) -- is the determinant of

the difference of functions and is not a difference of functions itself.

Yet, we have a meromorphic continuation of it to the whole Siegel

upper-half plane, and we are able to isolate the role of the
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discriminant in the product of p (u, v) over pairs of p-division

points.

In the first section of chapter 1 we review the classical theory

of hyperelliptic curves and their Jacobians as they relate to curves

of genus 2. In section 2 we gather certain facts about theta functions

and their role in building up functions on the Jacobian. Mumford

[Ml] is a general reference for these sections. The function theory

on the Jacobian is discussed more carefully in section 3, while in

section 4 we cull together some analytic expressions for functions on

the Jacobian which seem to put genus 2 practically on equal footing

*
with genus 1. The chief reference is a wonderful old text by Baker

[Bak]. In particular, we isolate a function, p(u), which is the

"unique" even function with a pole of precisely order three along the

theta divisor.

Some standard facts about modular forms are culled together

in section 5. Exploiting the role of a change in symplectic basis on

our curve, in section 6 we determine the "modular" properties of

p(u) and its allied function p(u, v). In sections 7 and 9 we provide

p(u, v) with an expression in terms of theta functions which is anal-

ogous to the one which holds for the difference of the Weierstrass

p-function evaluated at two points. We take a break in section 8 to

*
I wish to thank several members of the Harvard English Department,
all named Rosenberg, for getting this material into my hands.
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see how one of these formulae relates to the addition law on the

Jacobian. Finally, in section 10 we write p (u, v) as the ratio of two

modular forms, N' (u, v), D' (u, v), and discuss how the discriminant

function appears in both when a product is taken over pairs of p-

division values.

It seems a tradition among writers on theta functions to note

that although the multitude of identities may seem at first chaotic,

with a little time and patience they assume a logical pattern. I too

believe this, but make no pretense that our calculations in sections 7

and 9 are anything less than unwieldy. The symmetry and coherence

of the resulting formulae, however, seem to bear some testimony

to the worth of the undertaking. Whether these will have any arith-

metic application remains to be seen. They certainly have the appli-

cations enunciated by Landau [Land, p. 33].
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Chapter 1

1: Curves of Genus Two and Their Jacobians

Let C be a curve of genus 2 defined over C. Topologically,

C is a 2-1 covering of IP1, branched at six points. The isomorphism

class of C is determined only up to projective equivalence of the six

branch points; henceforth we will assume one branch point is at the

point at infinity, w , and the other five at points e. , i= 1,..., 5.
1

In that case, C has a model as an affine curve

5
2 5 4 3 2

(1.1.0) y =f(x) = (x-a.)=x +b1x +b2x +b3x +b4x+b5

where x and y are functions on C, with poles only at c of orders

2 and 5, respectively, and a. = x(e.). We think of points P on C
1 1

as solutions (x, y) to (1. 1. 0). C is endowed with an automorphism

of order 2, the hyperelliptic "flip, " mapping P = (x, y) to P = (x, -y).

For hyperelliptic curves there is an explicit way to choose a

symplectic basis for the first homology group, H1(C, Z). We "cut"

the surface between e and e2 ' e3 and e , and e5 and o . Con-

sider the following paths on P

2 e 3 13 4 e5
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We lift these paths to form a basis for H (C, 2). The B paths follow

different sheets over IP1 as they traverse the cuts. If we let -

denote intersection multiplicity, then by construction

A .A.= A.- B.= B .. B.= 0 for i j
1 J 1 . 1 i ji j

and if we defined intersection with the correct orientation, A. B = 1.
1

If we now "cut" C along the basis, we are left with a simply-

connected domain. A basis for the differentials of the first kind on C

is given by:

dx xdx

y 2 y

and we define

f= Pi

Standard calculations show:

i) det W 0 ,

ii T T11 T12 W-1 W s n (2)ii) T= = o o si
T12 T22

the Siegel upper-half plane of degree two. That is, T is a symmetric

matrix with positive definite imaginary part.

We will often want to normalize the differentials of the first

kind by defining
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then

f v = 6., and fvi T.
A fB i

Algebraically, we define the Jacobian of C, denoted J(C), as

the group of divisors of degree zero modulo linear equivalence. Since

C is of genus 2, every divisor of degree zero is linearly equivalent

to one of the form

(1.1.1) P +P 2 - co

The expression (1. 1. 1) is almost unique. In fact, letting denote

linear equivalence,

P +P2 -2. ~ P +P4-2-co

if and only if (P ,P2 = P ,P or P2 = P1 and P P= 3'

P + P ~ 2 - o for all P. So the Jacobian can be considered C x C

modulo the action switching P and P2 in (1. 1. 1), with the locus

(P, P) "blown down" to a single point at the origin of J(C) [M2]

Analytically, we think of J(C) as C2 modulo the lattice A

generated by the period columns

(T 1 1 9 T 1 2 )
0 (1) ' T *(1) 12) T22
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The map from divisor classes to 02 /A is given by

p 2

+1 (v ,v 2 ) modulo A

We embed C into J(C) by

P

P -f e- (v1 , v2) modulo A

We will now explicitly give J(C) - (D (C) (here "- " denotes set-

theoretic difference) the structure of an affine variety.

The idea is to define a set of auxiliary polynomials for the

divisor classes which correspond to J(C) - 4(C). We then coordinatize

the polynomials to endow J(C) - O(C) with the structure of an affine

variety. The idea goes back to Jacobi, and we will follow the exposi-

tion of Mumford [M1] . The divisors which correspond to J(C) - O(C)

are Div =f(P 2-+P 2-.001P.#a , P2T; 1. If D = P + P2 - 2.

is such a divisor, Pi = (x., y.), we define:

(1.1.2) UD(t) = (t - x 1)(t - x2

(t - x 2)t - x

1 x( - x 2 + 2 ( x 1

vD(t) = f(x 1 ) x1 fI(x

2 y t) - 2 y, +

for x1 # x2

for x1 = x 2

:py + p 2 2. o -
00



(so that v D (X1) 1

construction: f(t) - vD

Let

(1. 1. 3)

d (t)'
dt vD It=x d _ t=xydt A/ fW(t

(t) = uD(t) w D (t) for some polynomial

u (t) = t + u1 t + u2

By

WD (t).

v(t) = v1 t +v

where the u1 , u2 , vil

forming the division:

2
f(t) - v(t) = u (t) Ilcubic

v2 are undetermined coefficients. Then per-

polynomial) + R (u., v.) t + R (u., v.) .
1 1 2 1 j

We see that the equations R1 (u., v.) = R (ui, v.) = 0 turn the set of

polynomials (u, v), u monic quadratic, v linear, such that

f - v2 = uw , into an affine variety. We've shown (uD',vD) lie on

this variety, and in fact, there is a bijection between Div and such

pairs (u, v) [Ml, II, p. 3.19]. This is how we endow Div with the

structure of an affine variety.

We note that:

4) (x+ ),Yi - Y2(1. 1.24) u = -( 2), u2 xx v 1 - 2
1 2

x y2 - x2y 1
V =

2

Therefore we find that the ring of regular functions on J(C) - O(C) is:

S
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(1.1.5) A(J(C) -D(C)) = C[u U2 , v , v12

yCxxi'+x x x 2  x -x ' x .-xl 2
1 2x I 2

Since a finite number of translates of J(C) - CC) cover all of J(C),

we can form an atlas that gives J(C) the structure of an algebraic

variety. The details are in [Ml, II.]. We note that this implies the

field of functions on J(C) is given by the field of fractions of (1. 1. 5).

We return to this field in 3. First we want to come up with another

characterization of (C).



7

2: Theta Functions

Let T E5(2) , z = (i)1 in C2 and a,b columnvectors in
z2

02. We define the (2-dimensional) theta function with characteristic

by

(1.2.0) (z, T) = n e
n EiZ

rr t n+a) T (n+a) + 2r i t (n+a)(z+b)

where n is written as a column vector. The function converges

absolutely and uniformly on sets of bounded im z. and im T > c I2x2

for some c > 0. As such, it is analytic on C2 x (2)

2
Translational Formulae (1. 2. 1). Let p, q be column vectors in 7

) [ (z+T p+q) = e-TTi pTp - Zri tp(z+b) + 2'ri taq
b. ~ z+pq S (Z, T )

t

ii) (z, TLb T = e2 i tabq (z

. a (z + T p + q) + p() 1

( (+ Tp + q) b+I (z) e

, T)

-2Ti tp(b -b')

We will use these freely throughout chapter 1. As already

should be apparent, we frequently drop T from the notation.

When 2 [biE Z ,4we call b a theta characteristic (when

considered as such, we usually only worry about a,b modulo 1).

For such an [ ,]
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[4(-z, T) = e tab e[] ( ,T)

and [a] is called odd or even depending on whether e 4 i tab is

minus or plus one (i.e., whether e [ ](z) is an odd or even func-

tion). Of course, [] (0, T) = 0 for [a] odd. We will see later

that 8[a] (0,T) / 0 for [a] even and T a period matrix (this is

peculiar to genera 1 and 2). There are 6 odd and-10 even theta char-

acteristics. We note that by (1.2. 1), for [a] a theta characteristic,
2b

e (z) depends only on []modulo 1. Theta functions can be used

in several ways to build up functions on J(C), when T is a period

matrix of C. To wit:

(1. 2. 2) For a, b., a',b' E , 'a = aS' , b = b ' modulo 1

b. (zT)

i

is a function on C2/A by (1.2. 1), as is

(1.2.3) a. .log 0[ (z, T)
1 J

where i, j = 1 or 2. In fact, all functions on a complex abelian

variety can be built from the ratio of theta functions. We want to
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express the regular functions on J(C) - D(C) which we found in 1

in terms of theta functions. Perhaps the key ingredient is the

Riemann vanishing theorem, which states that there is an odd theta

characteristic 6 = , such that 0[6] (z,.Tr) vanishes to the first

order precisely along (C). Which odd theta characteristic plays the

role of 8 depends on the choice of basis for H1(C, Z) employed to

define the Jacobian. One of the reasons we picked our basis so care-

fully is that we can identify 8 for our embedding. The calculation

is tedious, laborious, and classical [Bak; Ml, II]. The result is

6 = . The other five odd theta characteristics also play a

central role in the function theory. There are 16 points T of order

two in J(C); the origin, a. -CO, i=l, .... ,5; and a.+a.-o2,
1 1 J

i,j = l,...,5, i # j. Applying 0, we get

T 2

This defines an isomorphism from points of order two on J(C) to

theta characteristics. By a similarly painstaking calculation [Ml, II]

one can calculate T for T = a. - o , which we denote by
T

i 
T



1 0 2 0 3(1.2.4) f = l [:T] } , L"
T 1 23
- 0- - o- - - -o-

4 _ 5 0

fl T a b/isn (C

L 445J

0
When T is the origin, we denote TT 0 [0 by and . It is

T 0 0

easy to showthat w we c si r b g are precisely the other five

odd theta characteristics. Forhein a theta characteristic:

c t +h t (0e o T)0 = a 1 (Ta+b, T 0

-=tP Ta + b is on cD(C)

[aJ I. for some i.

It's important to note that two of these Tj are distinguished

by being odd theta characteristics themselves, r 2 and 71 . How-

ever, the terminology of ordering is so strong that a 2, a ,49 will

be called even branch points, and al , a 3, a 5 -dd branch points.

Although the choice of 6 depends on our homology basis, we

will call its zeroes., that is, C(C), the theta divisor and denote it by

9 . Using (1. 2. 2) and r estricting denominator s to 0 [ 8 1 (zP T )1, it's

easy to imagine how we can start building up regular functions on

J(C) - 0 . The coordinate functions of uD(t) (, UI, u 2 ) can be found

by evaluating uD(t) at three distinct points. We will take as our

choice the three odd branch points al., a 3, a 5

10
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We pull out a theorem from [Ml1, II, p. 3. 113]. Let U =

{1,3,5}, V a set of 3 indices in (1,...,5}, andlet U o V denote

the symmetric difference U o V = U U V - (U f V). Then for k E V,

z = D(D),

(1.2.5)
4 t'1Ti"+ 4  t UI/ vT

UD~k)= (1) k Uov k

iE V
i k

(a'r U o V k2(0) 0 18 + Tk

k [ U O V]2(0) e915] (z)

It is worth a moment to comment about the sign. We first

observe that from (1.2.4), letting s(ki) = (-1) k i

(a - a ) = s(k, i)(a k - a)

where

a -

a 

ak 
-
a 
) 
=a

if k < i

if i< k

Indeed, s(k, i)

8 = 'n2 4 ,

V = {k,i,j }I,

s (i, k) = -1. Note also that modulo 1, T1 + '3 T 5

SO T U oV = V+ .v0 Now let's apply (1. 2. 5) with

z = 'r (Tv' + Ti ' ) + TI" + TI " :
I mm

4kt 't" +4 t (8"+ak- )k )

(a k-a I) (a k-am ) = (-1) k \k (a k-a ) (a -a

B[ 8+,n + 1. k0) a[m + Tk + TI + Ti ]2(0)

q[ + +7.+ T)1.]2 (0)e[01+7-1 +r 12(0)k 1 j I m

s(k,l) s(k,m)
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Since by (1. 2. 1):

e [6 + Ik] 2 (z)

[6] (2z)

0[8 +Tk +1i + T'm] 2 (0)

e [6 + i +-Tr 2

Now

4 t A'Tr k" + 4 t (6 1"+ ,r "
,t(U+TI)/

4 t k4 t
(- 1)

= s(ik) s(j,k)

since both 6 and + rk

(a - a,)(a k-am)

(1.2.6)(a -a ) (ak-a )

are odd theta characteristics. Therefore:

1+ -) 2(0) 9[6+rk+ +11 2

9[8+-I .+,nr.+ r]k(0) 9[8+ -iI
13j k i

This holds independent of coincidence in our choice of i, j, I, m

will return to this later. For now it will suffice to consider the

special case of (1.2.5), where V= , 3,51, (so U o V = 0), k E U.

We have:

4 t 
,T

(1. 2. 7) uD(ak ) = (-) k
[T ]2 0)

k
g (ak-a.)

i k

8[8+ r ]z)

2 2
e[o] (0) e [8] (z)

where z = <D (D).

To pull out uJ, u2 , we resort to a partial fractions decomposi-

tion

4 -r i 'r " ('
e

+ ' )

+ ]2 (0)

We



uD(ak

(t -ak)

kEU

xk

t- a

where

uD (ak

xk q (ak-a.)

iEU
i k

and so (1.2.8) is equal to (since Ik is an even characteristic)

e ['k1 2 e) 9[+ k1 (z)
s(k, i) 2 2

G[O] 2(0) O[ 2 (Z)iEU

i + k

u2 uit + U2
kEU

xk)t2

k

i k

(t - a.)

-a)
xkt

i, j k a aJxk

So Ek Xk = 1, and therefore:

u =
k

ak'k - (Ik
k

u = axk
k

(a +a3 +a5 ) =Z
k

, i, jk.

(1. 2.8)

13

and ,

(1.2. 9)

and

akxk 
-

k
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As for v, v 2 ' they'll turn out to be derivatives of u and

u2 by a certain differential operator on J(C). We'll pinpoint the

operator later, but first we should look more closely at the function

theory of J(C).
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3: Functions on the Jacobian

The functions on J(C) are precisely the functions on C x C

which are invariant under the action of the symmetric group S2 . The

functions of C are generated by x, y, so let xi., yi be the corre-

sponding functions on two copies of C, C. , i = 1, 2. Then the function

field of J(C) consists of those elements of C(x1 , x2 ' y1, Y 2 ) invariant

under the transposition of the subscripts 1 and 2. The transposition

is an automorphism of order 2, so K(J), the function field of J(C),

is a subfield of index 2. Clearly, L = C (x 1 x2 x 1 + x2 ,y 1 + y2 ,y 1Y 2 )

is contained in K(J), and L(x1)/L is at worst a quadratic extension,

Also, it's easy to see that x 2 E L(x 1 ). Therefore 2 2

(y-y2)(y1+y 2 ) E L(xl), hence also y1 - y2  so yl, y2 , too. There-

fore K(J) = C(x x 2 , x 1 2+x y1  2 2+y2  The discerning reader

will note that the inclusion of yly 2 as a generator is redundant, but

we keep it in tow because we wish to find the subfield E(J) of even

functions on J(C), i. e. those invariant under (x,y 1 )+(x 2 , Y2 ) - 2 - C

x is y 1i +(x 2 P -y 2 ) -2 -O.

We see just as quickly that E(J) = C(x1x2, x1 + X2 9 y1 y2 ),

since K(J)/E(J) is quadratic, and y1 + y2 is quadratic over

2 2 2 2 2
1 2  2  1y 2). ((y1 +y2) y1 +Y 2 + 2yy2, and y1 + y2

f(x ) + f (X2) which is a symmetric polynomial in x1 and x2 )

Finally we note (yy2)2 E C(x1 +x2 'x1x2 ) and x 1 +X2 ' x 1x 2 are

algebraically independent functions on J(C). Therefore we have the

tower of fields:



16

C(x 1 , x2 , yl' Y2

12

K(J) = C(x 1 2+x2 Px1 X2 1 1 2+y2

12

E(J) =C(x1 +2 x21 x 2' 1 2

12

C(x1 + x2' x1 x2

Given a divisor D on J(C), let I (D) be the dimension of L(D), the

vector space of functions on J(C) with poles at worst those of D,

i.e., those f such that (f) Z -D. The theta-divisor e is ample,

so we can apply the Riemann-Roch theorem for abelian varieties,

which states [Lang 1; p. 99] for varieties of dimension 2, and posi-

tive integers r,

I(re) = r2

(The @-divisor of a Jacobian is a principal polarization and hence has

a trivial pfaffian. ) So L(G) consists only of the constants, and

L(2e) has a surplus of three dimensions over L(O), two of which

are made up by the functions ul,u2 . The expressions in (1.2.8) and

(1.2. 9) guarantee their presence in L(20), and they are algebraically,

and therefore linearly, independent. To find a third new dimension,

a 82 82
we resort to (1.2. 3): we can apply -a2-, , and -2 to

az 1 D1z O z2 2z2
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log e(z, T) to garner three linearly independent functions in L(20).

We will actually be slightly more careful in picking our differential

operators. First we will introduce the two-dimensional a -function.
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4: Two-dimensional a and r1 functions

This section will cull together some facts from Baker [Bak]

with some generalizations of his definitions.

We define the following two differentials of the second kind on

C (with poles only at o, of orders 4 and 2, respectively).

3 2
3x + 2b x + b2

1 = dx
14y

2

2 4 y

Corresponding to the -symplectic basis (A., B.), (although we won't

show this dependence in our notation), we define the matrices Tr and

T'rI by

A.B.
J 3

Baker [Bak, pp. 14, 15; our definitions of T1 and W differ by a sign

or a factor of 2 here and there] shows:

(1.4.0) t TI = T jt ,I T = W1

and the Legendre-esque

tw, _ UtJ' = 2TTi . I2X2

a proof of which requires close encounters with differentials of the

third kind. We define for z E C2
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(1.4.1) a ] (z,w ,W ') = e - tz 'r -l z - .9, - 1 ,W-*

When [bJ = 8 , we simply denote this by a (z, W, w'). What we've

built into this notation is that a is a function of z, the curve, and

two choices: that of a symplectic basis for H1(C, 2), and that of a

basis of differentials of the first kind. The latter choice will be re-

moved shortly; the effect of the former will be discussed in the next

section.

Let L be the lattice generated by the columns of W and W'.

For a given z not in. L, there is a unique divisor on C,

P1 + P2 - 2 - O , P = (xy), such that

z P +f (P1, P2)mod L

Letting

2
_ -8 log a(zwW')

ij Oz. 8z.'
1 J

Baker shows [Bak, p. 38]

11 Fl' 1 , 2 ) - 2 y y2
(1.4.2) P I (x + FxIs) ) Y

22 4 1 2 12 - - 4 P1 1  2
4(x1 - x2 )

where
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1',2 1 2 1x2 2 + 2b 11 x2)2

+ b (x +x 2x x 2)+2b31x 2) + b (x1+x)+2b5

Remark: Baker considers a "Weierstrass" form y2 = 4x + - to

avoid the 1/4's in (1.4.2). p22 is the genus 2 version of what

Mumford calls "the hyperelliptic p -function. " Compare [MI, II,

10] where our /0z 2 is his D 0,. For the record, D u = v.,for

i=1, 2.

We can now see that L(28) is generated by

F(xx2)- 2yyy
1,x 1+ x ,9x1 x2  and 21 2'(x - x2)

the latter of which is not redundant since yy 2  C(X 1X 2 x 1 + 2

F(x1, x2) has a pole of order 6 on 0, and (yly2)2 E L(100), so

yly 2 E L(50). Hence the numerator of p11 has a pole of order 6

or e . Therefore (x1-x2 )2 has a pole of order 4 on 0.

Let H stand for the Hessian operator

a2 a2

z2 Oz az21

a2  a2

Oz1 az2 3z2
2-

A function we would like to study more carefully is



2
p =p1 1 p2 2 -P 1 2

S[1 2
4

= det H log a- (z, w, w')

2 2 2
1 x2 ) ( 1 + 2 )+2b 1 1i2 -- 2212 1~2

(x - x2 )

4 (x ~(x ) 3+2 Xx)2(X+)+ 2y (x +x)
1 1 2 +2b 1 12 1 2 )+2y1y2 1+ 2 ]
4 2(x-x2 )2

which has a pole of order 3 on e since the highest terms of p lip22
2and P12 cancel
12

in the difference.

Before we commence our study we must extend some defini-

tions. We note that any basis for the differentials of the first kind on

C can be written as m

symplectic basis, we write

for m E GL2(C). For a given fixed

( C2 M
t m -lI )
-mC

and correspondingly, we get the integrals

t -1
'rI (m U) =m 'rI

'ri (mw') = m 'r

which we will extend by linearity to the lattice generated by the

columns of mw and mW':

T1 (mw A + mw'B) =AmBntg(a(r) A + ie(s') B),

21

I

AB integral matrice s,
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where 'ri(W)T= ', T(') = Ti' . We can now rewrite (l.4.0) as

(1.4.3) T(w) r W')t = T W ) tT(W)

t , _(W ' r) - n(W)W' = 2TTi I2x2

and note that these relations still hold when WI, uW' are replaced by

mw, m'.

Finally we can verify the homogeneity of the a -function:

a [] (mz, mI, mw')

= -it (mz) T(mw) (MW) (mz) 0 a] (m)- 1 ,()-I w,)

= Ca] )(zW)W)( )

So the 0 -function is independent of the choice of basis of differ-

entials once we normalize z * We write the resulting function as a

function of T:

a] (zOw') = a] (WI1zT).

and p(W- 1 -T H log a (W-1 z, T
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5: Modular Forms of Degree Two

We let F denote the (degree two) symplectic group Sp(2, Z).

That is, matrices C D) where A, B, C, D are 2x2 integral

matrices satisfying (where I is the 2 x 2 identity matrix)

t (A B) 0 -I) (A B) 0 -I)

\C D 1\ 0 C D/ \I0/

or equivalently, writing out these conditions:

(1.5.0) tAC = t CA, tBD = tDB and AD - t CB = I

Generators for P are all matrices of the form ( IB) , B integral,(0(-I\
and 0- 1)[Ma].

We let f(p) denote the subgroup of those y E F, such that

(I od\ (2)
~ 1 mod p. P = F(l). P acts on D by

yo T = (AT + B)(CT + D)- 1

Let g(T) be holomorphic on (2)

level p and weight k if:

where y = ( B)

. We say g is a modular form of

g(yo T ) = det(CT + D)k g(T) for all y E T'(p)

(If g is meromorphic of weight 0 we call it a modular function.)

The ring of modular forms of level 1 was explicitly determined by

Igusa [I2] (subsequently by Hammond and Freitag [H, Fr]). It is

generated by forms of weight 4, 6, 10, 12 and 35. The form of
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weight 10 is related to the discriminant A (C) of our curve and we'll

discuss its properties in 10.

So far we've been dealing with marked Riemann surfaces -

those with a chosen homology basis. Associated to each basis and

curve is our period matrix T E ;b(2) We will show in the next section

that a change in basis corresponds to the action of T -> y o T for

some y E Tr. Conversely, given two period matrices T , T ' in 0(2)

they correspond to the same curve if and only if there exists a y E I

such that T ' = y 0 T . The moduli space of curves of genus two -the

space of isomorphism classes of curves - therefore sits inside the

Siegal fundamental domain F = (2) /r. In fact, it is dense. More

precisely, T ' E S(2) is not a period matrix if and only if T" '= y o T

for some y E P where T =(Ti1 T12) satisfies T12 = 0. In such
21222

a case, C2/A is isogenous to a product of one-dimensional tori.

Our approach will be to conjure up functions on the moduli

space of curves of genus two and then study their extension to all of

(2)
S) .Our function P has a couple of problems: first it is not de-

fined for T not in the moduli space, and second, it is not analytic

in T. The latter is not so horrible, for 0[6]3 (z,T) p (z,T ) is analytic

on the moduli space . (The reason why 'n is analytic is that our basis

can be chosen in a smooth way as T varies [Ml, II, 8 ]. Then the

integrals of differentials along these paths will be holomorphic on the

moduli space.) The first problem is more intractable, for although
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we will demonstrate in the next section that p (u) transforms like a

modular function (of weight 2 and level 2p) on the moduli space when

u is a point of order p on C2/A , we unfortunately don't yet have a

good characterization of how Ti acts as T approaches a point in55(2)

off the moduli space. Therefore we will focus our attention in the

later sections to a closely allied function which doesn't depend on n

Igusa [Il] has shown that 9 -functions are the building blocks

of modular forms of any level.

Theta functions transform under r by:

S *t + 1
(1.5.[1) a[b*] (z*,T*) = det(CT+D)1/2 eT z(CT+ DCze.[a] (z,'r)

where C = C (y) = a complex number of absolute value 1, independent

of z and T

* t -1
Z = y0Z = (CT +D) z

y* = T = (AT +B)(CT+ D)_1

0[ [ =a (- C-)[a] +_I((C tD) , (A tB)o)

and where Mo denotes the row vector consisting of the diagonal

entries of M.

The map [ - [* induces an action of P /P (2) on theta

characteristics modulo 1. The action has two orbits, one being the

6 odd theta characteristics, the other the 10 even theta characteris-

tics. Ir/P(2)1 = 720 and it acts as the symmetric group S 6 on



the odd theta characteristics [12].

Likewise, I/f (2p) acts on

Since fr(2)/fr(2p)' - I/f'(p) for p

on all a] such that 2p [a] E

[a]
LbJ

odd

but

modulo 1 where 2pa, Zpb E 72

[II], this action is transitive

2 [a] g

26
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6: Modular Properties of p(z)

We will investigate the effect of a change of symplectic basis

on a and p .

* * *
A2 B ,B2 be

1
a new symplectic basis for H (C, 7).

for A, B, C, D 2 x2 integral matrices

and the conditions
* * *

A.-A. = B.
i j 1

* * *
B. =A. - B. =0 for i /j

3 i j
and

* *
A. . B. = 1 are precisely equivalent to (1. 5. 0); hence

1 1

Y A B ) E r.
( C D/

Let C = [C..], D=[D..]. Then

13 1J

w*[f(IC.Ikf w r +D.k w kl
Ck i'jk~

AGCBk k D = [B kCE kvjki 11

SW tC + w tD

Likewise: ' , t A+w tB

* * ,t t
TI = T() =(u')G C + r (W) D

1' = ' )= (w'') = W ) tA + rn (w) B

And therefore:

*
Let A ,

Then

*
B 1

*
B 2

A1

A2

B



t* t * t ,*t*
= (Atw '+BtW)(Ctw'+D

= (ATr+B)(CT+D) 1

For the convenience of the reader, we'll state a

Hessian Lemma (1.6.0): Let

a2

azi2

82

Oz 1O8z2
12

a2

az az2

1z2
a 2

2

where z = (Z) EC2 A, B 2x2 integral matrices, tA = A, g

analytic. Then

i) H(tzAz) =ZA, and

ii) H(g (Bz)) = tB((Hg)(Bz)) B

We now calculate. Recall

o[a (UJz,

By (1.4.0) 'n ( )o1

(1.6. 1) Hlog a]

= e
z r (W)w Z e[

is symmetric, so

(W- z,"T)) = -TI(W) W-

-l , )

+ H log e] (W- Iz, T)

Now by (1.5.1)

(1.6.2) e0a*] ((CT+D) lw z, yoT)

det(CT + D)1/2e TritztW-I CT+D) 1colIza -Iz, T)

28

t -1

T*= yo



where = CD=CJa3 +-((CtD), (AtB)
2 0 0

We note that

t(CT +D)-1w- 1 z =(W(TCt + Dt-lz = (W'Ct+ wD t-lz=W*

since T = t T . We further note that (CT +D)-1C is symmetric, since

its inverse, T + C-1D is by (1. 5. 0). So applying H log to (1. 6. 2)

yields:

z, y 0 1-))

= -2TTti t -1(CTr+D)- 1 1Cw' + H log(,[a]
(w~1 z,

Combining this with (1.6. 1) we get

(1zT)) - Hilog (a[ ( -1
z, y 0 t

= -r(w)W +71(W ) - 2TTi w (Cr+D)-1 Cwo1

However,

-TI (W) W + n )w w -,t ( -+(I') t-C + TI()t1D)(w"tC+ WtD)t1

= (-T(W)W (WtC+WtD)+ i(w') tC+ r(w)tD)(w"tC+LUtD)~

= (-T(W)W 1W,+ '(W1))C(T tC + tD) IW1

= (-Ti(W) t t- I + n(w'))(T + tD tCI) W1

= (-71(W)two'+ () t) t -1(T + CID)- 1 

= 2TT i t -I(CT + D) Cw-1

Hence both sides of (1.6.4) are zero. Therefore:

by (1. 5. 0)

by (1.4. 3)

z

(1.6 3)H log (,[a*] -

(..) H log (ya]



3()

tw-1(H log[a]) (W-1z, T)W = H log a[] (WIz, T)

= H log (a[a -(W*z, y 0 T0)

= t W 1(Hlogoaa)(*-1z, yoT) ) *-

But

(1.6. 5) ~WW * = (CT + D)

so

H log a 1aI -z, IT)

= (CT+D) (H log[])(t(CT +D) (Wz), y o T) (CT + D)

Switching variables (z'= w z) and taking determinants, we have:

det H log a a)(z', 1)

=det H logTaa]) (t(CT +D)-l 1z'y T ) det(CT +D)-2

Since we are taking logarithmic derivatives, by (1.2. 1), the expres-

sion depends only on [a] modulo 1. In particular, when

[ a 8modulo 1,

(1.6.6) p(z', T )=p(yo z', yo T) det(CT+D)- 2

By reasons similar to those of an upcoming argument, if pz E L,

then p transforms like a meromorphic modular form of level 2 p.
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However, as we've lamented before, p is not defined on all of

(2)

Therefore, we shall shift our attention to:.

(1.6.7) p(u,V,T) = det(Hloga (upT) - Hlog O (v, T))

= det(H log 0[6] (u, T) - H log 0[6](v, T))

p1 1 (u) -p I I (v) p 1 2 (u)-p 12 (v)

p 12 (u) -p 12(v) P2 2 (u) - p2 2 (v)

where u,v E C . In taking the difference, we have cancelled out the

effect of the i -function and left ourselves within the realm of e -

functions, which are defined for all T E Z(2)

We must remember that in (1.6. 7) the differentiation is taking

place with respect to uw and vW. So letting H , H stand for
u v

taking Hessians with respect to u and v, respectively, we have by

the Hessian lemma:

2
(det W) p(u, v, T) = det(H log e [8] (u, T) - H log 9[8] (v, T))

uv

2
This provides us with a meromorphic continuation of (det W) p(u, v, T)

(2)
to all of ) * To investigate its modular properties, take y E r

such that y 0 6 = 8 (in particular, y E 1(2)) then just as we arrived

at (1.6.6), we find:

p(t (CT+D)_1u, t(CT +D)_1 v , y o T) =det(CT + D)2pP(u,v, V ).

In particular, if u, v are p-division values, i.e.



u= - ,
p p

t -1
(C'r+D) U

p p
p p

Cf,,e,fP E

(Da- -c ) (-B + A$)
(y OT)

p p

and similarly for v. So if in addition y E r (p),

P(yoT +_, yo Te+-, y 0T
p p p p

=det(CT +D)P (T -+-,T +-,T
p p p p

2 1
so (det W) p(u, v), upv E - A, is a meromorphic modular form of

p

level 2p and weight 2.

We still have only expressed (det w)2 p(u, V, T ) in terms of

derivatives of theta-functions. We will spend the next three sections

finding another expression just in terms of theta-functions - piece

by piece.

Remark: W is a well-defined (analytic) function on the moduli

space because we made a definite choice of symplectic basis for

H 1(C, Z). Considering the moduli space as sitting inside I(2)T1

then W is a function of T , but only modulo the action of r.

Then

32

(1.6.8)
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7: Some Long Calculations

There are two time-honored theta-function identities which we

will employ. One is a special case of Riemann's theta formulae,

which for dimension two states: [Ml1, I, p. 214]:

Riemann's Theta Formula (1. 7. 0): For abc,d, e, f, g, h E 0 2 P

x,y,u,vE C

[a+b+ ( _--da-b+c-d a-b-c4d
{x"y +v 2 X+Y-U- 2 x-y-+u-v\ 2 X-y-U+V\

e+f+g+h \ 2 0 --h 2 -L fTg- \ / e- f-g+h \ 2
2 1 2- 2

1 -antI$(a+b+c+d) B [ a+,( X b+] a c + a d+oa
4 a 1+0 f +0 g+B )ah+0

A formula whose beauty, if not immediately apparent, has yet proved

enduring.

The other is due to Thomae, and it relates "thetanulls,"

al
0 (0, T) for [bJa theta characteristic, to the branch points a.

on C.

Let S be a set containing an even number of the branch

points ta. } (we will alternately consider S a set of a. or

merely its indices ik). Recall that TI-s= E SIi modulo 1, and

U = [lP3,5 }1.



Thomae's FormulaI

e[TI ]4 ( ) =

d
i<j

i,jESoU

0

(1. 7. 1) [Mumford, II, 8]:

(a. - a.)
1 J i<j

ij 7s oU

(a.- a.)
I J

if #SoU=3

otherwise

where d = (det W /2Ti)2 Since we will need this so frequently, we

will make a chart of the 10 non-trivial cases.

i <j i <j
S S oU T1s ij E S oU ijiSoU

(13)(15)(35)(24)

(23)(25)(35)(14)

(34)(35)(45)(12)

(12)(15)(25)(34)

(14)(15)(45)(23)

(12)(13)(23)(45)

(13)(14)(34)(25)

(12)(14)(24)(35)

(23X 24)(34)(15)

(24) (25) (45)(13)

34

(1.7.2)

(1,3,5)

(2, 3,51

(3,495]

(1, 2,5}

(1, 4, 5]

(1,2,3}

(1,3,43

(1,2,4}

(2, 3, 4)

(2, 4, 5}

(1,2}]

(1,4]

[2, 3]

(3,4}

(2,95)

(4, 5)

(2,3,4,5

(1,2,4,5}

(1, 2, 3,4}

01

0][4]
El]

El][I[0

[01]
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We now can begin to calculate the pieces of p (u, v).

Culling together (1. 4. 2), (1. 1. 4) and (1. 2. 9) we have

1

(1. 7. 3) p2 2 (u) - p2 2 (v = (x 1 +x2)(u) - (x 1 +x 2 )(v))

= - k (a k (u) - x k(v))

where

(1.7.4) xk(Z) = (-1) k
S[Ik ] 2 (0) 0[8 + -kr ] 2 (z)

2 2
e[o ] (0) e[]2 (z)

Sk= 1,3,5

So we need to calculate

(1. 7.5) x k(u)-xk(v)

4t 8- [)k 2 (0) 0[8+TIk1 2 (u) e[O] 2 (v) - e[8+rlk1 2(v) [] 2 (U)

0[0] (0) 9[5] (u) 9[5]2(v)

We resort to (1. 7.0) to tackle the numerator of this last expression.

Let [a] = 28 + '1 k [b] = k [c] = [d] = 0, and plug in u+v

for x, u -v for y, and 0 for u and v. Then we have

(1. 7.6) e[6]2 (u) [s+-rnk]2 (v)

- 1 e -2Ti tP( 2 ') [] ( ) -r k+ (u-v)e[ ] 2 (0)9[ c'k CL ( e E-T +OI CL

Now



2TT i t (28")(T) ' + a)
S[25 + a+ = e k

likewise

2TT i t (2T " )
e [-ik + = e

so (1. 7.6) becomes

S[k + by (1'2 1),

e r k+op

(1. 7. 7) [8]2 (u) [ + Tlk] (v)

2
= sign(k,ca, P) [8+Tlk](u+v) e[6+ ?Ik](u-v) 2(0)4 1 k k [LJ

where

-2 (t (28') + t ' + a)(28 ") +t(2-n "))
sign(k, a,)= e k k

In (1. 7. 7) the six terms with [C]Iodd can be dropped since

e[] (0) = 0. We want to take (1. 7. 7) and subtract from it the same

expression with the roles of u and v reversed. The only terms of

the right hand side which will survive will be those for which

e Lrlk + (u-v) also changes sign, i.e. those for which TIk +

is odd.

(1. 7.8) 0[5]2 (u) [8 + Tk] 2 (v) - [(V) e[s+TrIk 2 (u)

1 sign(k, a.,) e[s+7k] (u+v) 9[s+rIk] (u-v)9 (0)

W even

Tj+ [ odd

36



37

Chart 7. 1 O,] even, 7k + [']1odd sign(k, a, )

k =1,

1
1
'I

i~j

-11]

0
0

-0

2

1-I

0

0
0

0

[2[I

[ITI I

Ti

TI 
I-

3
k = 30 fl

TI 3
L J L 0 J
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Plugging the signs from chart 7. 1 into (1. 7. 8), and that into (1. 7. 5),

and subsequently that into (1. 7. 3):

(1. 7. 9) -8(p 2 2 (u) - P2 2 (v)) 9[0]2 (0) e[O]2(u) O[5] (v)

0 (0) -[[[ +,n4](u+v) e[ +r14 ](u-v) 8

- 9[5 +r12 ](u+v) 9[6 +Tl 2](u-v) 8

+0[8+T 5 ](u+v) [6+T 5 ](u-v) 8

+0[6 +'T 3](u+v) 8[6+T 3 ](u-v)

+a3
3 -02

(0)

LJ2

0-

lo(0)
02 1

L (0)

- 8[6+ 7 4 ](u+v) 8[6 + Ti 4 ](u-v) 9

+[5+TI 2 ,](u+V) 8[8+Ti2](u-v) e

+8[8 +T1 5 ](u+v) a[8+ 1 5 ](u-v) e

0 2

LJ

10LgJ
0- 2

1](u-v)

(0)

(0)

1.-2

0L

(0)

(0)

(0 )

rw

-0[8+,nl](u+v) 0[8+,n1



(0) e[5+n 4 ](u+v) e[+r1 4 ](u-v) e

+e[8+T 2 ](u+v) G[8+T3 2 ](u-v) e

-e[6+1 3 ](u+v) e [6+ 3](u-v) 6

-6[8+fl 1 ](u+v) 6[8+vi 1 ](u-v) 6

0 2

[] (0)

0

..- 2

0 (0)
0-

02 2

(0)

= 0[6 +1 1](u+v) e[8+71
1 ](u-v)(a 5 -a 3 ) 6

0-

LoJ

-0- 
2

(0 .

+ I[s+ ri2 ](u+v) 9[8+ r 2 ](u-v)

(0) 9] J

0-2

(0 +a0~ 00

2-

(0 9a 0~

+ .a -2

+ [6+7) 3](U+V) 0[8+ rl ](u-v)(a5-a ) 0 0(0 ) 0 0(0)
3 3 51 0-

+ 0[6+71 4 ](u+v) ([+71 4 ](u-v)

a 12

L0-

02

(o) e[2
0-

0-22

(0)-a
3-

-0- 2

.E.0
5 21

0)- iJ2~
(0) (

0
(0) 9 ()

-0-2

a U J[]

39

1_2

l (0)

(0)

1 2

(a

-0- 
2

I

0 7 (0)
0

LOJ
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. 2 - .2
0 t

+ e[8+r1 5 ](u+v) e[6+ Tl 5](u-v)(a 3 -a )() 0)

At this juncture, we would like to employ (1. 7.2) to plug in values for

[ a 2(0). Unfortunately, this forces us to choose lots of signs of

square roots, which will affect our summations. We do have some

information on the consistency of the signs, however.

1/2
Let's say we've chosen definite values for (a. - a.) , and

1 J

pick the square root of d so that

0[0] 2(0) = d 1/2 (a -a3) 1/2 (a -a ) 1/2 (a3-a ) 1/2 (a-a ) 1/2

Then define e (S) by

0[,nS]2(0)= e(S) d1 2(a.a.) (a.-a.)1/2

i<j i3i<j
i,jES o U ij q SoU

for S satisfying # S o U = 3. Clearly e(S) depends only on 'n

modulo 1. Using induction and (1.2.6) repeatedly, it's not hard to

show that

r

0[ r S]2 (0)

(1.7.10) i= eI i( involves no unsquared
r 2.. terms (a.-a.)1/2

8 [7TI T 0)
i=l i

S 71T modulo1.
i
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Since every even theta-characteristic is the sum of two even theta

characteristics, and we've normalized e(0) = 1, we find e(S) extends

to a homomorphism of all theta characteristics into 1. In the follow-

ing sections, we will only evaluate ([03]2(0) when summing terms

with like surds: (1. 7. 10) and the fact that e is a homomorphism

guarantee that we can do this unambiguously. We'll demonstrate with

an example.

The coefficient of e[6+11 ](u+v) 9[5+71 2 ](u-v) in the last

equality of (1. 7. 9) is

(1.7.11) 0 2 -0- 2 0- 2 0- 2

2 29 (0) 0 (0) 90 (0) 8 1 (0)]

0~~~ 1 3. 2520 0 .(.) e[ (0) a 1 +(a3e ( ) (0) [ ()

.
J L-J0- t 0 -

and we can utilize (1. 2. 6) twice:

0-2 -0 2 -2 0-2 0- 2 2

) (0)a-a(0)a- (0) 9(-(0) 0 (0)(aa (0)
0 .0 .0.. 0t 0.
2 2 2 . 2 - 2 2

1415 1323152
0 0 0 0%O_ 4 _ m-O t-.0 .

(a -a 4)(a I-a 5) (a1- a 3)(a2- a3) (a-a 5)(a 2- a3
(a1- a 2) (a 1- a4 ) (a1- a3)(a 3- a5) (a1- a 2)(a 3-a 5
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A similar calculation shows:

-0- 2 -0- 2

01
S(0) 0 (0)

0

2. 2

f (0) e (0)
0 --

(a -a 3 )(a 2 - a5
(a 1 -a 2 )(a3 )- a5

Plugging these back into (1. 7. 11), and using (1. 7.2) to evaluate

2 .12

0 (0) 0 (0) ,
01

we find that the coefficient of e[5+ri 2 ](u+v) e[5+'n2 ](u-v) in (1. 7. 9) is

de (6 +T1 2)( 1a a)(a2-a4)(a3-a )(a -a5) 1/2

- (a1 (a -a2)(a3-a5)+ a3(a1-a5)(a2-a3)- a5 (aI-a 3 )(a2-a5

= e(6+T, 2 )d((a -a )(a2-a )(a3-a )(a -a5))(/2(al-a3)(a3-a5)(aI-a5

e(8+.2)dl/2 2
\is, j #2

<a.-a.)1/2 /9[0] 0)

e(+l 2 )dl/2(A(C)) 9[0] (0)

q2a.1/2
j 2
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using (1. 7. 2) again. Here A (C) is the discriminant of our curve

= (a. - a.) 2

i<jI i

The calculations for the coefficients of

0[6+ Ti.] (u+v) e[8+Inl.](u-v)

for i # 2 are no worse. Their verification is left to the masochistic

reader. The result is:

Proposition (1. 7. 12):

5

P2 2 (u) -P 2 2 (v) 1A(C)14 d1 2(uv)
1i

where

e (8+-l.i) 0[6 +'1.]I(u+v) e[8+Tl .]I(u-v) (-1)

C.(u, v) =1/ 221T(a. - a.) 1/2 ] 2 (u) 9[]2 (v)
j 1i

Now that we've laid the groundwork, the calculation of

P 12 (u) - P1 2 (v) is uniformly but not absolutely horrendous. Combin-

ing (1. 4. 2), (1. 1. 4) and (1. 2. 9) we get:

P2(u) - P(v) 11f(u) - x x2(v)) = -a. (xk(u) -z(v))p12 (u)p1 2 (v 4x1x2 ux 1x2())kEU EU

i /k

Using our calculation of xk(u) - xk(v) from (1. 7.6) to (1. 7.9) we

obtain: (all we have to do is replace a. in (1. 7. 9) by a. ak

i # j, k E U):



(1.7.13) -8(p12 (u) - p12(v)) 0[8]2 U) 0[6]2 V) G[0]2(0)

= e[6+T 1 ](u+v) e[6+r11 ](u-v) al(a3 -a 5 ) e

.0-2 -0- 22 2

(0) j (0)

.0--k

+ e[6 + 1 2 ](u+v) 0[6-+Tr 2 ](u-v)

+ aa5

02

Lij

-0-2

a [0

'0 2

(0) e ]

L#J

(0)

(0) 2

( 1 (0)

LJ

12 -00 (0)+ 9[8+r1 3](u+v) 9[8+ 13] (u-v) a3 (a1-a5) ea

2

(0 )

+e[6+Tl 4 ](u+v) e[8+rT14 ](u-v)

/ 2

j~a 3a 0 1

0-2

( 0 (0)-a a 5 0 2

LtJ 0 2
(0)e[J

-0_

-a a 3  ]
+ L-

+ [8+T 5 ](u+v) 0[8+T 5 ](u-v) a5

Again, the coefficient of e[ 8 +n 2 ](u+V) e[6+vTl 2 ](u-v) in (1. 7. 13) will

lead to a worst case analysis. We find that coefficient is

44

0
I Oe9 I(a 

3a5
(0)(

(0)

2 (02

-a3)e

i

0-

2

(0)

-0 

(0) 9
-0.
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-e(6 +'1 )d((a - a)(a2- a)(a3- a)(a -a51/2

. (a3a5(a1 -a2)(a3-a5) + a I a5(aI-a5)(a2-a3)-a a a3(a1-a3)(a2-a5

-e(8+T1 2 )d((a-a)(a 2 -a 4 )(a3- 4 )(a4 -a 5 ))1/2

- (-a2(a1-a3)(a 1-a5)(a3-a5

= -e(8+T2 ) dl/2 A(C) A a2 9[0] (0) (a2 - a)1/2
j # 2

Again we leave the other coefficients, which are equally pleasant, to

the reader. We get

Proposition (1. 7. 14)

5

P12(u) -pr2( II A (C) 1Adl/2 (-a )C(U, v)
12 1= 8

Comparing this with (1. 7. 12), one might be led to conjecture

5

P y (u) - P (v)=d/'AC1/2 1C)A a2g(upv)81 11181=1

We caution such a reader that we have no such formulae as (1. 1. 4)

with which to tackle this expression. However, there is a beautiful

formula by Baker which will allow us to show that this ain't so very

far from wrong. To wit: [Bak, p. 100]

a (u+v) a(u-v) P 1 1 (v)11(u)(1.715) U) 2 (v) = h p2 2 (u)p 1 2 (v) -p 2 2 (V)P 1 2 (u)+ 4 4

for some constant h. We will calculate h and more fully explain this

formula in the next section.
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8: Interlude

If for the moment, p is the Weierstrass p -function, a the

one-dimensional a-function then (for proof and definitions, see

[Lang 2]).

(1. 8. 0)
O (u+v) (u-v)

- 2 2 p(u) -p(v)
a (u)a (v)

Formulae (1. 7. 12) and (1. 7. 14) are attempts to generalize this result

by modifying the right-hand side of (1. 8. 0). Formula (1. 7. 15), how-

ever, is more directly a generalization of (1. 8. 0) from the left-hand

side. Let a and p revert to their previous definitions.

Define

(up V) [6] (U+V) 9[8] (U-v)
S(u, v) = e8uve~~-
008[5] (u)O[5] (v)

which, as a function of u on J(C), has a pole of order 2 on e, and

zeroes of order one on e* v. Likewise, as a function of v, it has a

pole of order 2 on 9, and zeroes of order one on e9t u. Therefore,

as a function of u, letting 1, p ilP 1 2 P 2 2 be a basis b ,.. b4 of

L(29),

to(u,v) = A.(v) b.(u)

But since the b. are linearly independent, we can pick values for u

which let us solve for A.(v), and show that A.(v) E L(20). So

A. (v) = y .. b. (v) and 90(usv) = E y* b.(u) b. (v). Since t0(v,u) =
1 1J iji 3
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- (u, V), Y . = -Y .. s o C(U, V) = E .. .. (b. (u) b. (v) - b. (v) b. (u)).
0 . j ij 0 1< j 13 1 J I J

This is how we were first led to (1. 7.15).

Baker apparently had several proofs in his day, the one in

[Bak] is basically the one we have detailed so far [he figures the

constants by finding a differential equation for a and then expanding.

We prefer to plug in 2-division points for u and v, as we will do

shortly]. We would like to follow a different tack, one which relates

to the addition law on J(C). Since (1. 7. 15) enjoyed several proofs

nearly a century ago, we will seek merely to outline another proof.

A general point of J(C) is of the form P +P - 2 . co. The

addition law states that given 2 points, P 1+P2 - 2. co, P +P - 2 -CO ,

there is a unique point P +P6 - 2 . ' such that

P +P - 2 +P +P - 2.C~ P +P -2.O
1 2 3 4 5 6

or, P1 +P+P +P +P +P -6.O 0

To determine P5 and P6' we can do the following: Given PP2PP3'

P find a function g on C such that g has a pole of order 6 at co49

and zeroes on P. 4. Then the other two zeroes of g will

determine P5 and P6 . Such a - g must be a polynomial in x and y,

and since these enjoy poles of orders 2 and 5, respectively, at c,

the general such g is of the form g = aLy - xY3 _X2 -x-:,or

allowing a, b, c, d to be meromorphic on JC),

g= y-ax3 -bx2 -cx-d.(1.8.1)



Assume P., i=1,..., 4

P. = (x., y.) we have:
1 1 1

are not o , and are distinct.

3 2
y. ax. + bx. + cx+ d,i j 1

Then if

i= 1, ... ,4

so we can solve for the coefficients by Cramer's rule. For example:

a

To find x

equate

2
Yi x xii

2
Y2 '2 '2

3
y x 3 x

3 3 3
2x

y4 x4 x4

D

and x6 ,t

3 2 2 2 5
(ax +bx + cx +d) = y = x

This results in a sextic

b

3
xl

3
x2
3

x3
3

x4

3
x1 Y1 x 1

1 1
3
2 Y2 X2
3
3 3 3 1

33

x4  y4 x4
D

2
xl

2
x 2

2
x3

2
x4

x2"1

"21

x
3

x 4

1

1

where

we take solutions to (1. 8. 1) for a, b, cod and

4 3 2
+byx + bx + bx + bx + b

2 6 5 2
a x + (2ab -1) x + ... +(d -b b)= 0

Then

48

,p

.
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2d-b5
1 -2ab d b5(1.8.2) x = 2 , 11 x 2 ,etc.

j=1 a j=1 a

This allows us to solve for x 5 + x6 and x5x6 . Suppose that

U =P 1 + P2 -2. , and V=P3 +P 4 - 2 . , are variables

on J(C). We will alternately consider u or v fixed and the other

variable. This should provide(a) little confusion. For example, when

we speak of the zeroes of a function in u and v we encompass "the

zeroes of u with v fixed" and vice versa. For the following we

will always take u and v off e so that the P are finite, i = 1,0.0,4.

We continue to assume P. P. for i j. For such u, v, u+v is on
1 J

e if and only if a is zero. The poles of a are given by the zeroes

of D which are just x. = x., i # j (D is Vandermonde). That is,

a has a pole if P. = P. for some i = 1,2, j =3,4. We can't have

P =P or P P since we took uv off 0e. Both D and aD are1 2 3 4

zero when P. = P. . Therefore for u, v not on 0, P. IP. , for
1 J 1 J

i j:
2

Y x x 11 1
2

y2 x 2  2  1

2
y3 x3 x3  1

2
y4 x4 x4 1

[6] (u+v) = 0 4 D -40

Switching v to -v (note v is on e , if any only if -v is)



9[ 8] (u-v) =0 =>

where the right-hand side has poles

Therefore

for P = P
i j'

i=1, 2; j=3,4 .

A - G[6] (u+v) e[5] (u-v)

9[8] (u) 9[8]2(v)

has the same zeroes

B =

as

Y,

Y2

Y3

Y 4

2

2
x2
2

x3
2

x4

x2

x
3

x
4

1

1

1

Y,

Y2

-Y3

- Y 4

2

2
x2

2
x3

2
x4

x
2

x
3

x
4

1

1

1

1

for these u and v, and A has these zeroes to order 1. B , how-

ever, has poles when P. = P. or P. for i = 12, j = 3, 4 (in short,

when x = x , i= 1, 2; j 3, 4). To cancel these poles we consider

B(x -x3)( 1 4-x4)x 2-x 3)(X 2-x ) which is nothing more than

'F(x1 9X 2 )-2yly2  3'F(xx4 )-2y3 4
C 2 2 +4(x1+x)X3x4 -x x (X+4

(x1-x2 ) (X3-x 4

16 (Pi(u) P (v) - p2 2 (u)P1 2 (v) + P (v)P (u))

50

2
x

2

x2
x3

2
x4

y 1

-Y 3

-Y 4

x 2

x
3

x
4

D
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Therefore, A and C have poles of precisely order 2 on e (in u

and v), and nowhere else. Further C has zeroes for u v on e

off the support of (x 1 -x 3 )(X-x 4 )(X 2 -x 3 )(X 2 -x 4 ). Therefore C/A is

analytic in u and so is a constant depending only on v - but is

analytic in v so is a constant independent of v - and is therefore,

just a constant.

To evaluate this constant, let

(1. 8.3)

e[8](u+v) e[8](u-v) ( 1 1 (u) - p(v)2)

2 () (V) h -p 2 2 (u)p 1 2 (v) +p22(v)p12(U)

h F(x1 'x 2 ) - 2yyY2  F(x 3 'X 4 ) -2y 3 y4

-16 (x1-x
2  (X3-x4 2

+ (x1 +2 34 1 23+4)

We will plug in (xi, yl) = (a1,O), (x2,y 2 ) = (a., 0), hence u

+ (+ Tj2 )#.and(x 3 ' 3 ) =(a1,10), (x ,y4 ) = (a3 0), hence

Tr(rj + 'n33 + (I + n 3 )" . To calculate the right-hand side

we will use

= T (T182

of (18. 3)

F(x1 , x2 ) -2yy2 _ f(x 1) + 2f(x) - 2y y2

x 2 1 2

- (x1+ 23 +(x +X2 )X1x2 -b (x +x 2 -b ( +X)-b3

which follows directly from the definitions and long division.

For P , i =l,,., 4, asabove we find
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F(x,x2 )-2yy 2 _ F(x3 x4) -2y3 4
2

(x1 -x2 (34-x 2

= -(a+a3 +(a+a2)aa-b(a +a )2-b2(a+a2)-b3

+ (a1 +a 3 )3-(a1 +a3 )aya3 +b1 (a1 +a3) 2+b 2 (a1 +a3)+b3

= (a 2 -a 3 )[- 3a2 - 3a (a 2 +a 3 ) - a - a2a3 -a 3 + a

+ aI(a2 +a3) - b 1 (2a 1 + a2 +a 3 ) -b 2 ]

22 2
(a2- a3)-2a2- 2a a2 -2a a3 -a 2 - a 3 - a2 a 3

S 
5

( = 1
a.) (2a 1 +a2 +a 3 ) -
-3 [1 a4 + a-a

a a
jsigj5 1

= (a2- a3)[a1a4 + a1a5 - a4 5

So the right-hand side of (1. 8. 3) is

(1.8.4) -((a2-a3)(a a +a a - a a )+(a +a2)aa3 -a a2(a +a3
16 2 3 1 4 1 5 4 5 1 2 1 3-1 21 3

h
=7- (a.2-a 3 )(a1 - a 4) (a 1 -a 5

As for the left hand side of (1.8. 3), we note that from the definition

of e :

(1.8.5) (Tc +d) = e a
-M cTc - 2fti tc(b +d)

, for cd E

so the left hand side of (1. 8. 3) reduces to
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0[8+ 2Ti1 + 2 +r 3 ] (0)0[8 +,n 2 -I3 ](0) 4TT i t ( r1 + "3

8[8 + 7T 1 +n2 ]2 (0) 0[8 +Ti1+ n3 2(0)

and using (1. 2. 1) this becomes

0[6 + T,2+ + rI] 2 (0)

[5+n 1 +r 2 ] 2 (0) 9[8+r 1 +1 3
2 (0)

4TTi [(i"+Ti")('+ r -+ ni') + (Ti +
1 32 33e

the exponential is just -1.

We can determine this by Thomae's formula (1. 7.2):

- 2

0 0 (0)

LUJ

2

0
( UJ9 (0

- e(6) ((a)-a )(a 1 -a 5 )(a 2 -a 3 ))1/2

d(1/2 a 2 )(a 3 1a )3(a 3 )2(a - )2(a - )(a - (a -a5 1/2

Combining (1. 8. 4) and (1. 8. 5) we get miraculously:

Proposition (1. 8. 7):

( 1 1 (u) p+(v)
4 - 4 -p 2 2 (u)p1 2 (v) +p2 2 ( 1 2 (u)

We will now apply this to find p1 1 (u) - pI(V).

d 1/) d A (C) 1/4 (u, v) = 16
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9: Long Calculations, continued

In order to utilize proposition (1. 8. 7) in our search for

Pi y(u) - Pi (v), we're going to have to calculate:

(1.9.0) -16(p22 (v) P12 (u) - P22 (u) p 12(v))

= ((x 1 +X)(u)x1x2 (v) - (x1 +x)(v)x 1x2(u))

= akxk(u) - ak) I aiajxk(v))

- (I1akxk(v) - >I ak) ( a a axk(u))

= E+D'

where

E = (Ia kk (u)) a a jxk(v)) -(I a k xk(v) a a x k (U)

and

D = (I ak) (x1x2(u) - xix2(v))

All summations are over the odd branch points. We have
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1(x (U) x (v) - x1(v) x (u))(a -_a ) a

e[nj 12(0 )(0[8+ Ti ] (u)9[8+T, ]2 (v)-9[6+ni I12 29[8 + I 2 )

4 8
(-1)

(TI. + 'f/)j 2(a2 a)a
1 J

9[0] 4(0) []2 (u) 9[8]2 (v)

This is clearly a case for Riemann's Formula!

= T - Ti., [:1=W
plugged in for x and -y, and zero plugged in for

gives us:

(1. 9.2) 0[8+ .]2(U) 9[6+T).(v)

-2TT
=e

4L $E2

We apply (1. 7. 0) with

= 0, u+v and u- v

u and v. This

1 e2z8+m.+.+ (u+v)

e - + a](u-v) e[0 2 (0)

But

+ cL)27i(28")(T2'+ T-n
+L = e i 3 S T + Ti +

2Tri(-2n.")(-lw.+ ' +
- 2 T -J 1 J

a)
e -ri + Ti

i<j

9 [28 +n11+n i

and

0

0 [,n + 1 + "

=28 + 1+n7
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So the sign (1. 9.2) synthesizes to

-4TT i t P(6'+ r')n+4TTi("-T")(' + .' + )
sign(i, j, a, ) = e 11

We are interested in calculating

(1. 9. 3) 9[8 +T1] 2 (u) 9[8 + Ti.]2 (v) - 9[5 + ]2 (v) [8+T1.] 2 (u)

sign(i, j, a, )

- [7T1+ r .+ ] (u+v) e [n + -n. + (u-v)

where the only in the sum (1. 9. 3) are those for which e 2 (0)

is non-zero, and those for which 9 [,.+ T. + (u -v) changes

signs when u and v are transposed, i.e., Ti. + 71. + is odd.

We need another chart:
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Chart 9.1 [ even, T.+ Ti. + []odd sign (ij, a, 5)

j,j = 1, 3

is j 3

L-

i, j = 1, 5

'1. + 1. =
1 35

i,j = 3, 5

~ L0J

0-
0
0
0

0
0

L 1

ii0 -

0

0

0

0
[0-0

0

[I][!]

0

i

0

0

0-

0

0

0

i
0

I

0

0

1

1

-1

-1

-1

1

-1

-1

1

I



Therefore: 2E9[]2 (u) e[8]2(v) e[o]4(0)

a )a
35 a[ri1

2 (0) e[I13]2 (0)

+ [8+r 12 ](u+v) e[8+1l2 ](u-v) a

- 9[8](u+v) e[5](u-v) e

1 2

+ e[8+T1 5 ](u+v) 0[8+71 5 ](u-v) [O]2(0)

(0) [r

I
5]0) 

[

+0[6+l T2 ](u+v) e[6+nT 2](u-v) e

-01

(0)

-0 2

l 1(0)
L01

0- 2

Lo-
(0)

2
(0) e[- +ln (u+v)[+l]I(u-v)e[o] 2(0)

+ [8+v 4]2(u+v) 9[8+r1 4](u-v) e0

-(a 2-a 2 ) a9[n1 2 (0)eO[F1 2 (0)3 5 1 1 1 3 r 5 J -e[b](u+v)9[8](u-v) e

+ [ 1(u+v) e[8+vT](u-v) 9[o] (0) -e[6+ T12](u+v) e[6+r- 2](u-v)I

+ 8[8+ 4 ](u+v) [8+ In](u-v) e L 2 J

2-(a2
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+(a -a)a3 1 2
15 a3e~

0L 2j

0 (0)

lo )

2

(0)

-01
10

e1 1

(0) [6+n 4 ](U+v) G[8 + Tl4]I(u-v)

-0[8](U+v) 0[8](U-V) 0

I &d
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= 0[8](u+v) 8[6](u-v)

((a -a )a
135

- (a -a )a3 (2- a2 )a ) e[0 ]0) 0~l
0)[0)

- e[8+Tll](u+v) 8[8+r 1 ](u-v)(a2-a )a 9[0]2 (0) 0 (
3 [521

-02

0) e ]

+ [ 2+r2 ](u+v) 0[8+-n 2 ](u-v)

-e[6+r13](u+v) e[8+Tl3

-(a -a2)as

+(a -a )a

+(a -a )a3 51

3](u-v)(a-a5 ) a3

+ 6[8+r1](u+v) 0[6+f1 4 ](u-v) (a -_a 2)asL 2
+(a -a )a

35 -)

- (a -_a 2)a
3 51

{ (0) {]

e 0e

[0]2 []2
2

i 2

lol
L0J

0 04

0'

8LJ () * ]

-02
:0) e[ (0)

0

1) (0)

0) (0)

2

(0 e (0)

0 2

(0) e0i

2

(0) e ]

(0)

(0)

e[I1(0) e

(0)

wo

0
Ia - I
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1-2 -2

-0[6+Tl5](U+V)6[6+Tl5](u-v)(aaC)a G[]2(0) 8 (0) a1 (0)

T[6](u+v)eo[fi(u-v) is

- (a1- a 3 )(a 1-a 5)(a 3- a 5 ) 2 (0) [In 132 (0) 8 [,n112 (0)

-e(8) dl/2 A(C)1/4G[1]/41(0)/4

using Thomae's formula.

The coefficient of e[8+ Tl1 )(U+V) G[ + 1,1(u-v) is

e(8+T11 )a (a3+a5 ) e[O] d1/2 A (C)14

1/2
(a-a.

j#1 1

The coefficients for Tr 3 5' are the same as for 71 1with the

indices (1, 3, 5} permuted. The calculation of the coefficient of

9[8+1 21(u+v)e[6+ri2 ](u-v) is nastier. After using Thomae's formula and

simplifying we get:

e(8 + TI2) d1/2 A(C)1/4 d014d(0) a2(a 1+ a3+ a5 - a2

a - 1/2
j#2 2 j

The coefficient for 14 is the same as for TI2 with the indices 2

and 4 transposed.

So E can now be written as:
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d- d1 / 2 A 1(C) ala1 aA(5)1/2 1/4
- 1a (a1+a3+a5- a ) C (U V) - 2 /2A C) 0 (u V)

1/2 1/4 5
= d A(C) a (u, v) - (a1 +a 3 +a 5) 1 x 2 (u)-x1 x 2 (v))2 i=1

-8 (U) -

)p(U) p(V)+p(V)p(U)I
- 4 22 12 22 12)

by (1. 7. 11) and (1.8.7).

and (1. 9. 0) becomes:

Therefore, reinserting D clears a term

(P 1 1 (u) p1 1 (v)\
8 - 4 -8 (p2 2 ( 1 2 (u) -p 2 2 (u)P1 2 (v))

1 d1/2 14C)1
2

2
a,

1 9.(uv)

we now add this to (1.8. 7) multiplied by one-half to obtain:

Proposition (1. 9. 4):

/2 A(C)1/ 4
e(8) 0 (u,v) + a 2 (upv)

( . ) ,V) + a 2 (uV)

- a g (u, v)

- Za.8 (u, v)

C (u, v)

where the sums extend over i =1,...f, 5.

P (u, v)=dA(C41/2

P (U) -P Iyv)=d
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A most satisfying simplification occurs after expansion of the

determinant and infinite application of Thomae's formula. The

determinant of (1. 9. 4) is

(1. 9. 5) e(6)

5 5 5

(u, v) .(u, v) + a C(u, v) (u, V)

r, 2

a ( (uv))

5

= e (6) (u, v) 1 .(u,v) +0 i=l1 1 isj :g5(a.i-a.i) 2 g .u, V) 9 (u, V)s52

We want to plug in the definitions of 9 , 1 into (1. 9.5) and multiply

by dA(C)*1/2 We'd better take this in pieces. Write

5

64 p (u, v)Z A. + B..
i=11 1:g i<jg5 1J

We first note:

B..

e[6+r i.](u+v) e[6+T.](u-v) e[8+'rl .](u+v) e[8+r1 .](u-v)
1 1 J J

(-1) e(8 +rT.) e (6+ T.)(a. -a.) 2 d di(a.-a.i Ii ii <a. I a1 J 1 3 1 3

( a. ak) 1 /2 < a.i - a k )1/2 a. -a.
k i, j



= (-1)1e(T

k is, j

= (-1 )+j

1.+Tm.) d ((a. - a.)
J

1/2

IAk

(a - ak1/2)

((a.-a>)(a.-ak)(a -a )(a -a ))1/2; ilm

4

e(1+ T d- 1

q=1
s (ij)

q

i,j,k, I Im

s (ij) 2(0)
q

where

U 0 (i, j,k}

k # i, j

U o f,m,n)

I,m,n / i,j

= e (I (8+i1.+T1.+71 )+8+
\Tki,j 1 j k

q = 1,2,3

q =4

I
k i,

j k) = e(v1.+V.)
1 J

Therefore:

B*. = (~l)i+j ~1
1J

. e[8+Ti.](u+v) e[8+nT.](u-v)
J J

We subsequently note:

63

s (ij)
q

So

4

9
q=1

e ( ij)
~jq

4

[,ns(ij)]0[8+T ](U+V) 0[8+T ](U-V)
q= -- q
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A.
1

1 J

(6a.-
j f 1

.d (a. .
i i<j 3

a )1/2
aj

((a. -a.)1/2 9 (a.->a 1/2
kv I i,j k I

k #

4

= (-1 e(rTj)d'd q' e(T ()) [r (i) 2(0)
q =1 q q

where

s() = u 0 (j,k, } , q = 1,2,3,4.

j , k, I i

Therefore

I s (i) = I Ij modulo 1
q j i

Hence

4

e(T )W=q e (, )
9 = 1q

A rather pleasant thing has occurred. Letting T 0 = 0,

A = B o ! That is, (-1) = (-1)i ; e(T0 +'n.) = e (TI) )

1/2defined d by e(0) = 1); and 5(i) = s(oi) once we
q q

we find

(since we

note

i

j~i



IUo ij, k :IU o (i,0j, k= 7Uo (tm,o) (where the bar denotes

taking the complement in the set of indices (o, i, j, k, 1, ml ). There -

fore the asymmetry of fixing a point at co in (1. 1. 0) has disappeared

from the "numerator" of p(u, v) - as has our need to determine the

signs e('ri s). Completing our calculation we have:

Proposition (1. 9. 7):

=N(u v)
64dp (u, v) = D(u, v)

4

(-1) 9+-r+i ](U+y)8[6+-l](U-V)e[8+-rl ](U+V)9[8+'r I](u-v)ff ['Isj)2 (0)
O&i<j g5 3 q=l s(ij)q

e[5]4(u) e[O]4(v)

where N(u, v) and D(u, v) are the numerator and denominator of the

fraction on the right.

It is also worth noting that by (1. 7. 1):

t1 2
dp~u v)= g (detwo) p (u, v).

417
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10. Modular Properties of p(u, v) and Discriminants

We are finally ready to study the modular properties of

64dp (u, v) = D(uv) Both N(u, v) and D(u, v) are analytic, and

being expressed by theta functions, are defined on all of ?(2)We

will even be able to adjust D and N so that each is modular in its

own right.

For what follows, we need to have a better understanding of the

factor C of absolute value 1 in the transformation formula for

[] (z, T). In particular, if z = 0, ( ') E r then (1.5.1) becomes

[I1, p. 176]

(1.10.1) e[ a (0, y o )= det(C + D)1 /2 e (Of, T)

where

C (-y) = (y) e-[t _ a tBDa- 2 ta tBCb+tb tACb +(aD - t1tC)(AtB)]01

p (y) is an eighth root of unity,

and a*] = -C + _I((C tD), (A tB))
lb [B Aj bJ 2 0

If y E r (2) then p(y) is a fourth root of unity [M, I, pp. 194,

207]. Also note thatby (1.2.1), if a,b E LZ, then 0E]1(zT)
pd.(

depends only on [a] modulo 1. Therefore from (1. 10. 1) we get:
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1 2
Lemma (1. 10. 2). For a, b ET- , p odd:

ap

i) [a 40, T) is a modular form of level 2 p2 and weight 2.

ii) ]4p(O, T) is a modular form of level 2p and weight 2p.

Proof: i) Since r(2p2) c 1(2), p4 will be 1 in the transformation,

so it's easy to see that C4 will be 1, too. Further, a*[ aa]modp,

so by (1.2. 1), the characteristic is left unchanged.

ii) Here we only find that C4 is a pth-root of unity, but this

is why we raise to the pth-power. Also a*1 E.[a] mod 1, but that's

all that matters since we have raised to the pth-power. Q. E. D.

Let p be odd, y E r (2 p). We showed in 6 that

(det w)2p(u, v) is a modular function of level 2 p when u, v are points

of order p in C2/A , and T is restricted to being a period matrix.

The meromorphic continuation of (det W)2 p(u, v) to all of b>(2) pro -

vided by (1. 9. 7) lends us a verification of its modular properties

directly from those of the theta function. If we consider the action

of y on (1. 9. 7) we see for starters that since y E F (2), it pre-

serves the theta characteristics. In addition, if we write

(1. 10. 3) U = T -+ V, = T - + O ,S cp E Z2
p p p p

then the action of y E f(p) on u and v doesn't change a., , e ,CP

modulo p (1.6.8), and therefore doesn't affect p(u, v) which is

periodic with respect to A in both u and v. The coup de grace is
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delivered by the realization that y E F (2) implies that p (y) is a

fourth root of unity, as isC Cy).

Remark 1. We can go further along this line. If we now only assume

y E l(p), y no longer fixed the denominator of 64dp (u, v) but it

leaves the numerator "fixed. " This is because of the symmetry in

the summation of (1. 9. 7) and the weighted sign (-1)'j . To be pre-

cise, if we let D [b] (u, v) denote a](u) e [a] (v), then for

y E 1- (p),

N(u,v) _ 
T N(u, v) (T)

D[6] (u, v) D[y o 6] (u, v)

where y o 6 denotes the action on the theta characteristic. We have

a rather unilluminating proof of this fact and will therefore omit it.

Now D[a] (u, v) ([a a theta characteristic is almost

modular on its own. In fact

De,[=,Cp D[ (u,v)

4 [b4
= a + oL/p] () a + - /pl 0

lb + P/pJ +Qp /PJ

is modular of level 2p2 by (1. 10. 2), where u, v are as in (1. 10. 3)

and

(1.e10.)5)(WTa+++Cp

= e(4Tr i/p 2 t O a+t e T + 2 t O b +) + 2 t E + CP)
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which is never zero.

Therefore, N'(u, v) = N(u, v) W ([6], , P, e , Cp) is a modular

2 N'(u v)
form of weight 6 and level 2p , and 64dp(u,v) =N '(V

D'(upv)

Our goal is to build up a "discriminant-like" object by multi-

1
plying 64d P (u, v) over all pair s (u, v) E -A, u and v $ 0 (to avoid

p

points where it has poles identically in T) and u v (points where

it is identically zero). This product will be of level 2 - we are in

effect taking a norm from the field of modular functions of level 2p

to those of level 2. It's difficult to nail down what modular function

we obtain in general, but we can gauge what part of it is made up of

discriminants of our curve.

We need to gather some facts about the lone (up to constants)

modular form of weight 10. In terms of theta functions, it is given

by [I2]

A(T) = a](OT
a]Ieven

The reason for the A symbol is that this function is essentially the

discriminant of the curve for which T is the period matrix.

Thomae's formula gives us this precisely;

A (T) = d 5q (a. -a.)2 = dA(C)
i<j 1 J

since a e([a])

[a] even
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Hammond [H] shows A(T') = 0 4> T' = y o T for some

y E P, T = 11 ) , and that A(T) has a zero of precisely

order 2 along these divisors.

Therefore, if g(T) = (11 12)) is a modular form of
(12 T22

level m and weight k, and g(y o T) has a zero of order 2n along

T12 = 0 for all y E P/Pr(m), then g(T)/A (T)n is a modular form of

level m and weight k-10n.

To see how many discriminants are "lurking" within modular

forms built out of theta functions, we will use the following identity

among power series, which follows directly from (1.2. 0):

-e-

(1.10.6) e[l (z,T) e (z pT1 )1 fh(z2'T22

Lh J T 12=0

where

(T 1 1 T 1 2 \
e,f,g,h E Q0, z=(ziz 2 )v T T111 T )

2T12 22

and e is the genus 1 theta function:

e (z,T) = I eri(n+e) 2 T + 27Ti(n+e)(z+g)

eg E Z

z,'T E C, im T > 0

We need the following fact from genus 1 theta functions. Let [1, T ]

denote the lattice generated in C by 1 and T , then
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1 1
(1.10.7) e (z,T)=0 z +eT+g I+.T modulo [1,T].

eg 2 2

Theorem (1.10. 8): Let [a] be an odd theta characteristic

i) D[ D'[ (u, v) is a modular form of weight
u#v E-A

u,v/0 '

(p 4-1)(p4-3) 4 p and level 2.

ra]4_ 2
ii) D [bJhas a zero of order at least 8 p(p -3)(p2-1) along

T12 =0 .

iii) D ,] = A(T)4p(p 4-3)(P- f, where f is a modular form
p p- p p

of weight 4p(p 4-3) [(p1- 1) - 10 (p -1) ] and level 2.

Proof: i)

(1. 10. 3),

y o V.

each D'

level 2.

If y E 1, and u, v / 0, u # v, then writing u, v as in

we see by (1.6.8) that Y o u, y o v 0, and y o u

So y acts merely to permute the p-division values. Since

[] p(u, v) is of level 2p, the symmetrized product is of

There are (p -1)(p4-3) terms in the product, each of weight

4p.e

ii) By (1. 10.6), e I (O, T

b + [

when either (a 1+e, b1 +g} or (a + f,

where a = (a , a2), b = (b lb2), a, b,

odd [a, precisely one of fa, b I

there are precisely p2-1 non-zero u

has a zero along T 12 = 0 only

b2 +h} =

e,f,gh E

(1/2, 1/2

1
E -At U
p

[1/2, 1/21 modulo 1,

0. For each

modulo 1. Then

T (e) + (g), such
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a +e

that (e, g ) or ff, h } = (0,O. Since each e a(0,T) appears

Lb +g]_
4 ,Fal

in the product 8p(p4-3) times, we see that D'[b has a zero of order

at least 8p(p4-3)(p2-1) along T 1 2 = 0.

iii) To se e how many times A (T) divides D [ we must count

its order of zero along T12=0 and all its translates under y E 1.

But D (T) has a zero to a given order along y 0 (T 12 =0) if

and only if D' [a](y o T) has a zero of the same order along T12= 0.

But D'"[a] (y o T) differs by a non-zero function from D' [~10[a []a()

-1 Fa]
and we know y b- is another odd theta characteristic, so it also

has a zero there of order at least 8p(p -3)(p2-1) by (ii). Q.E.D.

Corollary (1. 10, 9) D3 [] = K A 7 4 8 8 0

therefore of level 1.

for some constant K and is

Proof: Indeed the only modular form of weight 0 and level 2 is a

constant.

Remark 2: Since D =( 11'=[6] (u)) we observe that
0 u E1

p

D'[6] being a power of A(T) is a modular affirmation that there are

no 3-division points along the theta-divisor of the Jacobian of any

curve of genus two. In arithmetic applications, the proof of the

Manin-Mumford conjecture shows that for any curve of genus 2 de-

fined over a number field, there are only finitely many torsion points
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which lie upon the theta divisor of its Jacobian [Ra].

We can also tell when N'(u, v) is zero along T12 -= 0.

Writing u = (u , u '), v 2) we claim that this happens whenever,

u, u2 V 1 1 9v 2 , UI v1 , or u2  V is zero. To show this is a pleasant -

yet lengthy - exercise in the manipulation of elliptic theta function

identities, so we will not present the proof. We only note that the

"invariance" of N(u, v) under the action of Lip) (remark 1) implies

that the test for the number of times A(T) divides T 1 N'(u, v)
u v E -A

need only be done along T12 = 0. u, v#0
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Chapter 2

Notation

We let Z, Q, R, C denote the integral, rational, real, and

complex numbers. If R is a ring, RX denotes its multiplicative

group of invertible elements. If A is a group (ring, field) we let

End(A), Aut(A) stand for its ring of endomorphisms or automorph-

isms, respectively.

If A/B is an extension of number fields, b (A/B) will denote

its different, D(A/B) its discriminant, and D (A/B) its "p-part" or
p

local discriminant at p, where p is a prime of B. We will let h(A)

denote the class number of A. 0A will denote the ring of integers

of A, and if p is a prime of A, & and A will denote the p -
A, p p

adic completions of 0A and A. We will drop the subscript "A"l when

the reference field is clear. If G is a finite group, we let G denote

its group of one-dimensional characters, Hom(G, CX).

If A is an abelian variety defined over a number field F, we

let A denote its group of points of order m, and A(K) its group of
m

K-rational points for any F c K. We denote addition on the variety

by (1, subtraction by , and any complex multiplications by *.

We let 0 denote the origin on the variety.

We let C denote a primitive pth-root of unity. If f is a

divisor of a number field K (formal product of finite and real primes,

the latter with multiplicity zero or one); we let I(f) denote the group

of fractional ideals of K prime to f , and P(f) the subgroup of
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principal ideals with a generator x, cx 1 mod f. If B is a class-

field of A of conductor f, and H is the subgroup of I(f) correspond-

ing to B by class field theory (in particular, Gal(B/A) - I(f)/H), we

say H "belongs to B. "

When we talk of adjoining to a field the coordinates of a point

in projective space, we mean adjoining the ratios of the coordinates.
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1: Introduction

Our goal is to emulate results that are well known about

towers of fields of division points of an elliptic curve with complex

multiplication. The situation is rather more complicated in dimen-

sions greater than one. Fortuitously, we have been able to isolate a

class which embodies many of the special properties of the elliptic

case, namely that of an abelian variety A of dimension 2 with com-

plex multiplication by a number field K which satisfies:

(2.1.0) i) [K :Q] is a cyclic extension, necessarily of order 4.

ii) h(K) = 1.

iii) The only roots of unity of K are t 1.

iv) The endomorphisms of A are the full ring of integers

of K.

We want to make certain calculations about towers of fields

generated by division values of a point of infinite order in the

Mordell-Weil group of A over K, A(K). The corresponding calcu-

lations in the elliptic case were powerfully exploited by Coates and

Wiles in their work on the conjectures of Birch and Swinnerton-Dyer

[CW]. The jump from varieties of dimension 1 to dimension 2 carries

with it technical difficulties which we will have to tackle in turn. The

worst problem is that fields of division points "collapse, " that is,

they are not as large as we would have liked, had we our druthers.

But we have lost our druthers long ago, and the speciality of our
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choices (2. 1. 0) reflect the concessions we will make in order to

render our calculations feasible. Indeed, ii), iii), iv) of (2. 1. 0) were

assumed by Coates and Wiles, and i) is attractive to our purposes for

a plethora of reasons. Prominant among these is a desire to have

rational primes that remain inert in K. This will allow us to mimic

much of the approach of Stark [St] and Gupta [G], who utilized ration-

al primes in their versions of the tower -of-fields-of-division-points

calculations used by Coates and Wiles. After we accumulate some

basic facts about the special properties of our selected K's -- not the

least of which is their existence -- we will develop that part of the

theory of abelian varieties with complex multiplication that we need

for our calculations. Our chief source for this is Lang's, Complex

Multiplication [Lang 3], to which we will continually refer the reader

for further details. Our notation will be Lang's. We then start our

calculations, closely following the methods which proved fruitful in

the elliptic case.
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2: Biquadratic Cyclic Fields: Class number one &K

We will now establish certain properties of the fields K which

satisfy (2. 1. 0). These K are totally complex quadratic extensions of

a totally real subfield -in the general parlance, a CM-field. There is

a rich literature concerning the class numbers of such fields, and we

will now exploit some of it.

Let Gal(K/Q) = (a >. We will also denote complex conjuga-

tion =0r2 , by p .

Proposition 2. 2. 0: Let K be a totally complex, cyclic, class number

one extension of Q of degree 4, which contains only the roots of

unity 1.

i) The units of K are of the form * , i E Z, where

C E K+, the real quadratic subfield of K.

ii) h(K+) = I, and N+(0 = -1.

iii) The subfields of index 3, 7, and 13 of Q(C13). 29) and

Q(C53) are examples of such K.

Note: Uchida has shown that only finitely many such K exist [U].

Proof: i) Since [K : Q] = 4, K totally complex, the units are of the

form C , i E Z, where C is a unit in 0K . We need only show C

is real. We have a(C) = (- 1 )a C , where a = 0,1, and i E 2.

2 4
Therefore p(C) = a (C) = (-1)al) , and C = a (C) =

2 3 4
(-1)a~l~i ) C ; so i4 = 1. Thatis, i= 1 and p(C) =C;
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hence C is in K+

ii) We lift a lemma from [Wa, p. 184]. Suppose the exten-

sion of number fields E/F contains no unramified abelian subex-

tensions L/F with L # F. Then h(F) divides h(E). In our case,

K/K+ is a totally ramified extension (at least at the archimedean

places of K+) so the lemma applies. Therefore h(K+) Ih(K); hence

h(K+) = 1.

Now suppose NK/ = 1. Letting co denote the divisor

corresponding to the product of the two real places of K+, we see

that IC / P = Go 2, since all ideals are principal, and "half"

are ideals all whose generators have different signs at each of the

two real embeddings. So by class-field theory, there is a correspond-

ing quadratic extension L IK+ , unramified at all finite places. We

deduce that KL IK is an abelian extension unramified at all finite

places. But h(K) = 1, and K is totally complex, therefore KL = K,

and L c K. It now suffices to show K/K+ is ramified at a finite

place. For then we would have K+ = L, a contradiction forcing

N K+/Q Cto be -1.

That K/K+ is ramified at a finite place follows from the fact

that K+/Q is (totally!) ramified at a finite place, and the following

lemma:
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Lemma (2.2. 1): Suppose K/E is a cyclic extension of number fields,

and F a subextension which is totally ramified over a prime p of

E, and such that [K: F] I [F: El. Then K/E is totally ramified

at p.

Proof: Let G0 be the inertia group of p for K/E, and L its fixed

field. By assumption, [F : E]I IG0 |; a fortiori [K:F]I |G0 1, so

L c F since K/E is cyclic. But LIE is unramified at p, while

F/E is totally ramified at p. Therefore L = E and p is totally

ramified in K/E.

iii) In each of these cases, we have K c (p ), p a prime.

Q(C )/K is totally ramified, so h(K) Ih(Q(C )) by our aforementioned

lifted lemma. If we can show h(K) = 1, then our K clearly fit the

criteria; for we would have K/Q cyclic of order 4, and since the

indices 3,7, and 13 are odd, K would be totally complex. Further,

we took p > 5 so each of these K would have only t 1 as roots of

unity.

The following data on cyclotomic fields is taken from [Wa,

p. 353]. (Allithese fields have h((C p)) = "h" = h((Cp ))+

I) p = 13. h((C )) = 1 so h(K) = 1.

3
II) p = 29. h((Cp ) = 23. It suffices to show 2 th(K). We

lift another lemma: If Gal(L/Q) is a p-group, and at most one finite

prime is ramified, then p +th(L) [Wa, p. 185] . In our case, K/Q



81

is ramified at only the finite prime (29), and K/O is a 2-group.

Hence 2 + h(K).

III) p = 53. h(Q(C )) = 4889, a prime. If h(K) 1, then h(K)

would be ridiculously large. We now apply a general theorem on

CM-fields [Wa, p. 42].

h (K) ah(K)/h(K+) = Qw - B
)( odd 2 1, X)

where: Q = units of (K) /units of (K+)| = 1 by (i)

w= #roots of unity of K = 2

x E Gal(K/Q), here of conductor 53

and

53

IB1 X (a)ia 53+1 = 27 by Ix(a)I s 1
a=l

There are two such odd x so we get:

h~(K) = h(K)/h(K+) -.27 2 <4889

The result now follows from h(K+) = h(Q (45-)) = 1 [BS, p. 422].
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3: Abelian Varieties with Complex Multiplication

Let A be an abelian variety of dimension n defined over the

complex numbers. Then A is analytically isomorphic to Cn modulo

a lattice A of dimension 2n over R. If a. is an endomorphism of

n ~%- n n
C /A, then a lifts to a C-linear map aT of C -> C . The mapping

a - a gives a representation RC(a) of End(Cn/A) as n x n com-

plex matrices known as the complex representation. However, a

must also map A into itself, giving a representation R0( a.) (the

rational representation) of a by Znx 2n integer matrices. The

rational representation is equivalent to the direct sum of the complex

representation and its conjugate representation R These repre-

sentations extend by 0-linearity to End(A), = End(A) 0 0. Let F

be a CM field of dimension Zn over Q. If we have an embedding

i :F C-+o End(A), then the complex and rational representations of

End(A)Q restrict to representations of i(F). Since F is abelian,

RQ is equivalent to the direct sum of Zn one-dimensional repre-

sentations of i(F). These consist of the embeddings cp. : FQ-C that
1

preserve Q. Since RQ(i(F)) is Q-valued, we must have that RQ

is the direct sum of each of the 2n distinct cp. . However, since

RQ is equivalent to RC , we must have that R is equivalent

n
to E Cp. where the cp. are distinct and no two are complex con-

j= 1 .J1.

jugates of each other. Let 0 = [cp. , j=lp...,n}. In this guise

J
we say that the abelian variety A with the embedding i admits



83

complex multiplication by F with CM-type 1 . We will abbreviate

this by saying that the pair (A,i) is of type (F, D).

We call an abelian variety simple if it has no abelian subvarie-

ties. If (A, i) is of type (F, 4D), then when F is Galois over Q we

can tell easily whether A is simple [ Lang 3, p. 13 ]1. To wit, A

is simple if and only if the only a E Gal(F /0) such that Ia = D (that

is, the set {Cpi. } equals the set {cpi. o }) is the identity. We call

such an (F, '0) a simple type.

Note: In particular, if (A,i) is of type (K,'() where K satisfies

(2. 1. 0), then A is simple. This follows since D = (1,a) , (1,a3 )>

(p ,c) or (p, a3 ) and it is easily verified that D a = 4 only for

i = 0. In what follows we will always use F to denote a general CM-

field, reserving K for one which satisfies (2. 1. 0).

Associated to a type 4 is its type norm N , and type trace,

T , defined (for F/Q Galois) by:

(2. 3.0) N (x) = cp (x) for x E F
cp E 4

TD(x) =Zcp (x)
cp E (D

The images of these maps will be of great importance. Attached to

a type D (for F/Q Galois) is its reflex type, defined by 0' =

{cp I p E ( }3. Associated to a CM-field F and type D we now

define its reflex field F ' by:
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(2.3.1) F' = Q(T ,(F))

Remark: For F/f non-Galois, we use the Galois closure of F to

extend these definitions.

Note: K/ is Galois, so K 'c K. Therefore K' is Galois over Q,

and K" c K' c K. The statement that [ K, (D} is simple is equiva-

lentto K"= K (Lang 3, p. 24], so we have K = K'. This will

greatly simplify the general theorems of complex multiplication.

We shall always assume for technical simplicity that

i(F) n End(A) = i(0F) (recall that the range of i is End(A)Q). SUch

an (A,i) is called principal. Condition (2. 1. 0)(iv) simply states

that we require any (A,i) of type (K,-) to be principal. In practice

we will usually identify 0F with End(A).

Given an (A, i) of type (F, @), there is a lattice X in F so

that the analytic expression of A as a complex torus is given by

n nI: /G(x) -> A, where 4D(a) = (cpi (a),...,pi (a)) in C , a E X;
1 nl

and 0 commutes with the action of i , that is:

(2.3.2) i(a) o 0 = 9 o c(a)

We then say that (A,i) is of type (F, 4, x). The reason for incor-

porating the lattice X into our framework is that (F, D) determines

(A,i) up to isogeny (isogeny for the pair being an isogeny of A which

commutes with the action of i ; for A simple, all isogenies of A

are isogenies of (A,i)). However, (A,i) and (B, j) of types
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(F, m, x) and (F, 4, p) are isomorphic if and only if X = p y for

some y E F. Therefore there are h(F) pairwise non-isomorphic

classes of isogenous (principal) (A,i) of type (F, 0). This result is

implicitly used in lemma (2. 4. 2) [Lang 3, pp. 17, 59, 60 ], and this

is why we restrict ourselves to K of class number one.

One of our main goals is to study fields generated by points of

finite order on A. Our main tool will be to use the explicit charac-

terization of the class fields generated by the images of points of

finite order in a certain quotient variety of A. To discuss that quo-

tient, we are going to have to consider polarized abelian varieties,

that is, a triplet (A, C, i) where C is a polarization of A. What

basic definition we take for polarization will not prove critical to our

needs. But for specificity, we will take as our definition of polariza-

tion a class of divisors on A, C = C(X), where X is an ample divis-

or on A, and such that Y E C if and only if there are integers m

and n so that mX is algebraically equivalent to nY. If a E End A

then we say a is an endomorphism of (A, C) if a- (C) c_ C, where

-l
a1 is the induced map on divisors. The beauty of introducing the

polarization is that while Aut(A) is generally infinite (the units of F),

Aut(A, C) is finite [Lang 3, p. 71]. So Aut(A, C) is contained with-

in the roots of unity of F.

What is important for our needs (for details, see [Lang 3])

is that to every polarization is associated a Riemann Form E on



86

Cn X Cn . Two polarizations are the same if and only if they deter-

mine the same Riemann form. There is an explicit characterization

of the change of a Riemann form E under an endomorphism a of

A, when a p ( a) is rational. Letting E ' denote the Riemann form

on a(A), we have [Lang 3, p. 7411

E = cap(a)E

Since all roots of unity have absolute value one, they all preserve the

Riemann form. In short, we have precisely that Aut (A, C) corre-

sponds to the image of the roots of unity in End(A) n i(F). For

(A,i) principal, Aut (A, C) is precisely the set of roots of unity of

F. This is the chief technical convenience afforded by our restric-

tion to K containing only 1 as roots of unity.

Given a Riemann form E determined by a polarization C

we say the triplet (A, C, i) is of type (F, iD, X, E) (with respect to

the map e : we needed it to define E). An isogeny of (A, C, i) into

(B, b ,j) is an isogeny of (A,i) into (B, j) whose induced map on

divisors maps b into C. We included E into our type data be-

cause (F, b, X, E) determines the triplet (A, C, i) up to iso-

morphism.

There is one more technical point to worry about. A

Riemann form determines an involution of End(A)Q,. and the theo -

rems of complex multiplication demand that the set i(F) be stable

under this involution. For A simple this condition is always met.
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4: Fields of Definition'

Since we are restricting ourselves to principal (A,i) of type

(F, m, X), we can say that (A,i) is defined over a field L c C when-

ever A is, and when all i(a) are defined over L (a E F). When A

is simple and defined over L, then (A,i) is defined over the com-

positum LF' [Lang 3, pp. 54-55 ]. If A is defined over L, we

say a polarization C is defined over L if a(C) = C for every

U E Gal(C/L). We say (A, C, i) is defined over L whenever (A,i)

and C are. For A simple, C is defined over any field of defini-

tion for (A,i). So if (A, C, i) is of type (K, iD, X, E), then (A, C,i)

is defined over LK, where L is the field of definition of A (recall

K = K').

Let a be any automorphism of C. Then a acts on A,

(A,i) or (A, C, i) by A -> AU, (Ai) -> (A , i a), or (A, C, i) ->

(A , C , i ), where i C is defined by the commutivity of

F > End(A)

End(AU)

The downward arrow being the map induced by U . We define the

field of moduli of A, (A,i), or (A, C, i) (denoted by M(A), M(A,i),

or M(A, C, i)) as the fixed field of precisely those a E Aut(C) for

which there exists an isomorphism s over C; such that:
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: A ->A

s : (A, i) (A, i)a

or s (A, C, i) , (A, Ci)"

These fields of moduli always exist [Lang 3, p. 123]. When A is

simple, M(A, C, i) = M(Ai) (but M(A) = M(A, C) is not always

true). For example, when A is an elliptic curve, M(A) =(j(A)),

where j is the j-invariant of A. It is always the case (complex

multiplication or not) that an elliptic curve is defined over its field

of moduli. This is not always so for an abelian variety. However,

for certain abelian varieties with complex multiplication (of which

those of dimension 2 are just a subset), Shimura has found [Sh]:

Theorem (2. 4. 0): Let (F, '4) be a simple type for F a CM-field,

[F : Q I = 4. Then any (A,C, i) of type (F, i, X, E) has a model

defined over its field of moduli, M(A, C, i).

In studying the fields generated by points of finite order on

A, we must first introduce the Kummer Variety, the quotient of A

by Aut(A, C, i ). For A simple, Aut(A, C) = Aut(A, C, i) [Lang 3,

p. 135 ]. For (A, C, i) of type (K, i, X, E), we determined in the

last section that Aut(A, C) = + 1. The Kummer variety is obtained

therefore by identifying a point on A with its negative. Let W be

the resulting variety; h : A -+ W the natural projection. Then the

field of functions of W is just the subfield of even functions on A.
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From now on we shall restrict ourselves to the case in question:

(A, C, i) of type (K.D, X, E), where K satisfies (2. 1, 0) and

i(K) = End(A) (that is, (A, i) is principal). Then we have already

noted:

(2. 4. 1) i) A is simple.

ii) (A, C, i) is defined over its field of moduli M(A, C,i).

iii) K = K', its reflex field.

iv) Aut(A, C, i) = 1.

We will now lift an important application of the main theorems of

complex multiplication [Lang 3, p. 137].

Lemma (2. 4. 2): If A is principal, M(A, C, i) is contained in the

Hilbert class field of K'.

Corollary (2. 4. 3): M(A, C, i) = K.

Proof: Indeed K = K', and the class number of K is 1. (This is

the great simplification from the assumption h(K) = 1.) Therefore

M(A, C, i) g K. It's always the case that K' c M(A, C, i) [Lang 3,

p. 125], so we have M(A, C, i) = K.
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5: Fields Generated by Division Values

In this section, as in the sequel, p will be an odd rational

prime which remains inert in K, and such that A has good reduc -

tion over K at p. There are infinitely many such p. For the sake

of specificity, we will take D = ( 1, a ) where Gal(K/1) = (a ) .

Then D'= { i, a~ 1 1. This choice is of no consequence except to

simplify discussion.

Let m be any integer. Then Am, the group of points of

order m on A, is isomorphic to the additive group &K/ K

[Lang 3, p. 138]. Let t be a primitive point, i. e. one such that

K * t mencompasses all the m-division points. Recall that h is

the map from A onto the Kummer variety. We care to study the

field generated over K by the coordinates of h(A ). (That is, the
m

field generated by the even functions of A evaluated at points of

order m.) Since all the endomorphisms of A are defined over K,

this will be identical to the field K(h(t )), i. e. , the field obtained

by adjoining to K the coordinates of the point h(t ).

Our main tool will be another application of the main theorems

of complex multiplication: the adjunction of division values gener -

ates clas s fields. We quote the following from [Lang 3, p. 138],

tailoring the result to adjust for the conditions (2. 4. 1) and corollary

(2. 4. 3):



Theorem (2.5. 0): K(h(t )) is a classfield over K

dividing m. It belongs to the group of ideals H(m)

ideals !B prime to (m), such that:

There exists a p E K satisfying;

i) N (D. ) = a )= (1.

ii) NK/O(3) =

iii) P a 1 mod(m).

of conductor

consisting of all

Let's massage these conditions a bit. First of all, is

principal, say equal to (a). Then (i) reduces to (aa1a) = ( ) or

ao~ (a) = t , for some i E 2. Then (ii) implies NK/O((a)) =

p (aa a) aO a = p(p), which holds only when ( C ) p(t ') =

(t C )2 = 1. So we must have ao 1(a) = P . Finally, condition (iii)

translates into aa (a) = 1 (m). We note that N (C) = -1

implies Ca-1(C) = -1 (m), so an ideal M has a generator a such

that aa (a) = 1 (m) if and only if it has a generator a such that

-1 i -1 i i -1
ac1 (a) = F 1 (m). Moreover, ( a)a ( C a) = (-1) aa (a).

Summarizing we have:

Corollary (2. 5. 1): K(h(t )) is a classfield of K, of conductor divid-

ing m, that belongs to the group H(m), consisting of those ideals

8 prime to (m), with generator a such that aao(a) 1 (mod m).

Moreover, if B has one generator a with the property: aa (a)

1 (mod m), then all its generators have that property.

91
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Recall that p is a fourth degree prime in K Therefore

0K K O is a fourth degree extension of Z/p2 with Galois group (a )

and a lone intermediate quadratic extension, .K+ pqK+ - We will now

n
investigate the classfields obtained when m=p . We denote K(h(t n))

p

by K (En).

1 3n-3 2
Theorem (2.5.2): K(En) is an extension of degree Fp ((p +1)

(p - 1)) over K.

Proof: n = 1. Here we have a surjection

S: (0K/K- I(p)/H(p)

whose kernel consists of those a E (K /P&K) such that aoI(a) =

1 (p). Wenote aa I(a) = 1 (p) implies a I(a) = a~1 (p) so

p (a) = a-2(a) = t ~I(a- ) = (a) = a (mod p). So a is congruent

to a residue class in (0 +-/PG+) We first count those a such
K K

that aa~(a) = aa(a) = 1 (p). These are those a in the cyclic exten-

sion K /P&K+ over Z/p 2 of norm 1, so by Hilbert's Theorem 90,

-l x 2
a = b(cy(b)) for some b in ( 0+)X, which has order p - 1.

K xK
But b(a (b)) = b' (a (b '))- if and only if b'b- 1 is in (Z/pZ)X,

so there are p + 1 such a. Therefore there are also p + 1 such

Ca satisfying (C a) a-I(C a) = -1 (mod p), so Iker TTri = 2(p + 1), and

[IK(E):KI (P2 +)(p - 1).



93

n > 1: First we need a lenma

Lemma (2. 5. 3): Let G = Gal(( K/P0K)/(Z/pZ)) = (a), cyclic of

order 4. Then for b E(9K (K P

b - c(b)+ a2(b) - a3(b) =0 = 3 c EK/POK such that b = c +a(c).

Proof: The group algebra 2[G 1 [t" , where t is an indeter-

t -1

minant. Clearly for a E ZEG I

2 3
(1+a)CX= 0 = a=(I-+a -a) for some

2 3
(12-+ -a3)a= 0 ==a=(1+U)O for some @

Therefore the following is a projective resolution of 2 as a trivial

2 [G] -module:

e D ND
0+-6Z- -CZ[G] 4 -Z[G ]-Z[G] :-

where D is multiplication by 1 +a, N is multiplication by

2 3 i
1 - a +a -a , and the augmentation e is defined by e: a -> (-1).

Therefore if A is any ZI[G ]-module,

H I(G, A) - AnnA N/DA where AnnAN = {x E AINx=0}.

Now G acts additively on pK K , and (2.5. 3) is just the state-

ment that H1 (G, (K/ K) = 0. But this is true for any Galois

extension [Sel, p. 150].



Back to proof:

We have the following exact diagram:

(2.5. 4) 0 -- {a Iaa- (a)=t1 (pn(K K)

I TT 1 4 T2

I(P)/H(pn) -- 0

1r3

a- I alaa~ (a)=t 1 (pn-1 K/n-1 K --I(p)/H(pn-i

where the maps

mod pn-0

rr.
I

are induced by just considering everything

We will now show TT 1
is surjective. Since again

(Ca)a-I( Ca) = -ao 1(a), we need only show that if

aa I(a) = 1
n-1 

n)

n-i -l n-1
(a +cp )a (a+cp )=l

n
(p ) for some

But this last equation holds if and only if

a a(a) + (ca-1(a) + aa (c)) pn (n

b= -co (a)- aa (c) (mod p)

We note the following identity

-1 2 -1
(2 5 5)aa (a) -a (aa (a))-

which implies

-1(
a (ao (a))

3 -1
-a (aa (a))

1

b-a (b)+ a -2(b)- -(b)

A - - -

0 (mod p).

replaced by a), we have

94

- 0

Then

for b E 0K/K

c E K

i.e.

So by

. .-) :

lemma (Z. 5.-3), (with
I
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b= d +a- 1 (d) (mod p) for some d E &K K

Therefore we are searching for a c such that

-ca )-a ~(c) = d + a (d) (mod p)

-1 - -1
But as before, aa (a) = 1 (p) implies aCY(a) =a0(a) (p) so

c = a(-d/a) does the trick. Therefore, coker (TT = 0. We will now

find ker (7T1).

If a a 1 (pn-i) and aa- 1 (a) a 1 (pn) then we have

n-i n
aa 1 +bp (p ) for some b E (KPK

b +o a1(b) = 0.

-2
= 0 (b) = b, so

b I b + a(b) = 0)}

But then a 1(b) +

b E & + /PK + .
K+ K

,the kernel of the

aa (a)s1+(b+a-1(b))pn-1(p)

a- 2(b) = 0 and consequently

Therefore we seek to find

trace map

Tr : (3+ /P & + -- + /p z .
K K

By the additive version of Hilbert's Theorem 90, Tr(b) = 0 precisely

when b=c-a -~1(c) for some c E & +/P( + - But c isunique
K K

only up to translation by an element of Z/p Z, so lvi = p. Hence,

lker rTr 1 = P.

4
Note we easily have that ker Tr2 = (Z/pZ)4 and coker rr2 = 0'

Now let us apply the snake lemma to the diagram (2. 5. 4):

(2.5.6) 0 -ker T-r1 -Wker Tr2 -ker Tr3- coker r, - coker T2

-wcoker r3 -- 0

and

i. e. ,

2
a (b)



By our results above, this sequence is just:

0 - kerTT -- wkerT2 -- kerr -- w0O-- 0O-- cokerr -
1 2 3 3

So cokerTT3 = 0, and Iker T3 1 = jker T 2 / Iker u | = p

Hence II(p)/H(pn)I =p 3I(p)/H(pn -1)1

4 / 
3

and the result follows by

induction.

Corollary to Proof (2. 5. 7):

Proof:

(Z / p Z)3

Indeed

Gal(K(En)/K(En- M (I(P)/H(pn)) / (I(p)/H(pn -)

M ker r 3 oker Tr2/ker T

ker TT2 (7/p7)4 ; ker n -=/pZ

This corollary is in essence an affirmation that the type

has "rank" 3. See [ Lang 3, pp. 148 -155

An important observation is that since h(K) = 1, K(En)

totally ramified over

K(En ) above p.

Lemma (2.5.8): If

K. We will let

K C L SCK(En)

!n denote the unique prime of

and L has conductor at most

p',then L c K(E.)d.

96

0

And

Remark:

is

Gal(K(E n)/K(E n1))=- 0

.

I.
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Proof: First of all, it suffices to show this for i = n-1. For n = 1,

we note that if K c L ( K(E1 ), then L/K is totally ramified.over

p so has a non-trivial conductor. Hence if L has conductor at most

p n-= p = 1, then L c K, and by convention we'll consider K =

"K(E0). " Now let n > 1. Then the classgroup H belonging to L/K

contains those x E (0K/Pn&K)X such that xa 1 (x) 1 (Pn) as

well as those x = 1 (pn-1). We seek to show that it contains all

-1 n-i
those x such that xa (x) 1 (p ). Butforsuch an x:

xO - (x) :1:1 + bpn-1 (pfn) for some b E CK'/&K

and by the identity (2.5.5):

b - a (b) +a 2(b) 3(b) = 0

so b = c + a~1 (c) for some c E 0K/P0K by lemma (2.5. 3). Further,

n-i n
y = i + cp (p ) is in H as is:

a-I( = 1 + -1 (c) pn-1 n

-i -i -4 -i
Therefore xy a (xy ) = t 1 (p'n), and so xy - and consequently

x- is in H.

n
Remark: In particular, the conductor of K(E ) is precisely p n

n

The "collapsing" of the p-division values is not so pronounced as one

might have first thought.



Lemma (2. 5. 9):

DK(E )/K = p

(p 2 +1)(P-1) np - i(n+1) p+-

I - 2 p 3-1

Proof: Since the extension has conductor a power of p, the dis-

criminant contains no primes outside p

n =_1: K(EI)/K is a totally and tamely ramified extension of degree

12
T (p +1)(p-1). Therefore the power of $, 1 in the different A(K(E )/K)

1 2
is 1 (p +1)(p-1) - 1, and the result follows from NK(E )K(Z1 .

n>1: We proceed by induction. Let H = Gal(K(En)/K).n n

If X E Hn , is the identity on the subgroup

Gal(K(En)/K(En-1)

if and only if x

X E H , we let
n

{0 EHnX(O)=

lemma (2. 5.8)

lies in Hn- under the natural inclusion. For any

K denote the fixed field of its kernel =
X

1 }, and f( x) the conductor of K over K. By
X

X EHni<==>K cK(E ) == f(x) s rn-
Ax n -1

Now by the conductor-discriminant formula:

DK(E )/K - "f

n XEH

DK(E )/Kn-i
EH

XE H 1

98
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So

DK(E )/K/DK(E 1 )/K
X E n f(x) = pn

H H
1

I 2 3n- 3

n 2 (p +1)(p - )p
3n-6

- p)

1 2 3i-3
since jHHI =IH , 1 (p +l)(p- l)p by Theorem (2.5.2). By

the induction hypothesis (letting log stand for taking a logarithm

to the base p)

3n-6 + )
log DK(K(En)/K) =1(p2+1)(P-1) (n-)p3 3 -np

p - 1

12 3n-3 3n-6
+ 1(p? +1)(p-1)(np3n- -np 3 )-

1(p 2 +1)(p-1) f(p3 -1)(np
3n-6 3n-3

-np + (n-1) p

p -1

- np 3n-6 + 1

1 2 [ n3 n 3n - 3
(p 2+1)(p-l) np - (n+l)p + 1 I-

p -1
Q. E. D.

Now that we've determined the structure of the fields generated by

adjoining to K the values of all even functions of A evaluated at

points of order pn , we want to study the structure of the fields gen-

erated by adjoining to K the values of all functions of A evaluated

n n
at points of order p - namely, the fields of p.n-division points of

A over K. We denote these fields by K when the dependence on

p is clear. We note that the field of functions on A is a quadratic

f
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extension of the field of even functions, (odd/odd = even; (odd) 2

even). Therefore [Kn: K(E )] = or 2.n n

Theor em (2. 5. 10):

i) [K : K] = 2 [K(En) :K] = (p2 +1)(p-l)p 3n-3
nn

ii) p ramifies totally in K /K. We let p denote the unique
n n

prime of K over p.n

iii) D (K /K) = (p2
p n

3n 3n - 1
np -(n+l)p +3n .1

3
p -l

Proof: i) Any a E Gal(K /K) is determined by its action on t n
n p

n
a primitive point of order p . Indeed, a (t n) = a. * t n for some

p p

a E ((K n K)X, and the map aF-.a. defines an injection. This

injection is compatible with the taking of inverse limits. That is,

if n I m and a E Gal(K /K), the the following diagram commutes:
m

(2.5.11)- 1

a1K
n

where a denotes the reduction of a. mod pn So we get an

embedding of Gal ( Kn) /Kinto X (the p-adic units, p a

prime of K). Further, we can recover Gal(K /K) by projecting
n

the image of Gal ((U Kn) /K) in onto (OK/pnOK)x. With this

in mind we quote a theorem from [Lang 3, p. 101]. (The theorem
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simplfies when h(K) = 1 and K = K'.) It states that if A has good

reduction at p, (our omnipresent assumption), then:

Gal(U K n /K Ni,1( ) c 0
nP - P

where N,, is the reflex norm we tackled in theorem (2. 5. 2). So

we have:

Gal(K /K) -Image of N ,(0 X)
n p

n(.x -1 2n) n
in PK K Since N ,(p) = pa (P) = p , N( ; (p), hence

Gal(Kn/K) -N , ((K/ K Kin N/PK)

N , is surjective onto its image, so

Gal(K /K) ((K9 nK X/ker No,

where kerN ,= {[a E (K[aK)X Iaa(a) = 1 (pn) * But in the

proof of theorem (2.5. 2) we calculated that this kernel has order

(p+l)p n-, i.e., it consists of half the number of a such that

aa 1(a) t1 (pn). Therefore [Kn:K] = 2 [K(En)K ] .

2
ii) We will first show 10 1 ramifies in K Ito p 1 . Then

from the following diagram:



K
n 2

3n-3 K(En)n

12.r%)3n-3
K p

2 K(E)

we have that the ramification index of F1 in K is even

[K(En) :K(E)] is odd, so % ramifies in K
1 n n

To show that 11 ramifies in K 1 J, we note that the extension

K /K is cyclic, since it embeds as a subgroup in (G X We

can now apply lemma (2.2. 1) since

2 = [K :K(E) ) [K(E) :K ] =(p 2 +1)(p - 1).

Therefore p ramifies totally in K1 .

iii) Since [K :K(E )] is a quadratic extension and

p = NK(En)/KFn) is odd,!Bn ramifies tamely in K . So

D (Kn/K(En )) = . Piecing the following formula with lemma

(2. 5. 9); we have:

D (K /K) = N (D(K /K(En))(D n)
p n K(E)/K n n (En)/K

[ (P + 1) (p1 +
- U-2

(F3n 3n-3

(p2+1)(p 1)np3n - (n+1)p3 +1=p %- p 1
(p2+l)(p -i) n n1

p - 1

p

102
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We can glean even more information from our diagram (*) .

Corollary (2.5. 12): No primes outside !8 ramify in the infinite

extension U Kn) /K 1 . A has good reduction everywhere over K1 .
n

Proof: Looking again at (*), we see that any prime C of K I which

ramifies in K has a factor of p in its ramification index. If c isn

the prime of K(E1 ) lying below E , then c must also ramify to Kn

with a ramification index that is a multiple of p. However, since

[K : K(E )] is two, we must have that c ramifies in K(E ). Butn n n

we know that only !81 ramifies in that extension, so no such p / v

exists. Now by the criterion of Neron-Ogg-Shafarevich, A has good

reduction over K 1 at all primes of KI not above p (considered

as a rational prime). However, p remains prime in K, and p 1 is

the lone prime of K 1 over p. Further, we chose p so that A

over K had good reduction mod p, so A over K1 has good reduc-

tion mod p1 , too.
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6. Points of Infinite Order

Suppose that A has a Mordell-Weil group A(K) of positive

rank; that is, the K-rational points of A, modulo torsion, are gen-

erated freely over Z by some P1 , 0... , P , g >0. Let P be one
Sg

of those generators. Then if n# 1, there is no Q in A(K) such

that n * Q = P. However, there are n4 such Q in A(K), the

points of A in the algebraic closure of K. We will let L denote
n

the field obtained by adjoining to Kn the coordinates of all points Q

n nn
so that p * Q= P. However, pn * Q = P and p * Q'= P imply

Q Q' E A * Since addition is defined over K, if the coordinates
p

of one fixed Q such that pn * Q = P are adjoined to the K , we

get all of L . We will make a permanent choice of such a Q and
n

call it Q
n

Lemma (2. 6. 0): i) L /K is a normal extension. ii) Gal(L /K )n n n

embeds into A n , considered as an additive group.
p

Proof: i) Since multiplication is defined over K, if a E Aut(C/K),

n
p * a(Qn) = a(P) = P, so a(Qn) is a point whose coordinates

already lie in L .n

ii) Let a E Gal(L /K). Then as above,
n n

n
p * (o (Qn ) Qn) = 0 (the identity on A).

So a(Q ~ Q E A . hemap a i-+Pa(Qn Qn is independent
n n n n n
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of the choice of Q , since any two such Q differ by a point in
n n

A n , upon which a acts as the identity.
p

A discussion of Gal(L /K) is facilitated by the following
n

identifications. For any a E Gal(L /K)n

a(Q ) = Q e an n a
where a E A 

and for any R E A n
p

a(R) = *R for some E (0KP K

So we can embed Gal(Ln/K) into GL2(0K/pOK) by

(2. 6. 1)

we identify

K K

on the right

a with its image under the isomorphism

For the embedding, we wiU have to write group

For any a , T in Gal(Ln/K) we verify:

= T(an+0'TP

T) (0 P r 0 $So

which agrees with a (Q e a ) = Q E a G a * . Under thisn a T a

scheme, Gal(L /K ) consists of all matrices in Gal(L /K) of the
n n n

form (0 1/)

Where,

A n
p

actions

a7
C1

T CY
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The main question concerning the embedding of Gal(Ln/Kn)

into A n is whether it is surjective. To employ an overused phrase,
p

is the Galois group "as big as possible?" (Kudos to the logician who

finds content within that statement.) For elliptic curves the answer

is almost always yes [Bas, Se2 ]. For abelian varieties with com-

plex multiplication, Ribet [R] has shown that Gal(L I /K I ) is as big

as possible, for all but finitely many p, even when L is obtained

from K1I by adjoining the division values of any number of inde-

pendent generators of A(K) (K any number field). Lang presents

an argument to reduce the proof for L /K to that of L /K in then n 1 1

elliptic case [Lang 4], and it carries over practically word for

word for abelian varieties.

However, our case of K is sufficiently special that we can

show directly that Gal(Ln/Kn) n A n for all n, and our p (inert
p

in K, odd, good reduction).

We note that Gal(K/K) acts on A n = .K nK by
p

multiplication, and similarly acts on A p K/P&K via its

quotient Gal(K I/K).

Lemma (2. 6. 3). HI(Gal(Kn /K), A ) = 0.

Proof: n = 1. Note that A is a p-group, so HI(Gal(K /K), A )p 1 'p

is a p-group, too. However, Gal(K1/K) is cyclic of order d

21
(= (p +1)(p-1)) prime to p, so by [Se1, p. 130] H (Gal(K /K),A)

1 p

must by annihilated by d. Hence H 1(Gal(K /K), A ) = 0.
1 p
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n>1: Gal(K /K) is isomorphic to T x N , the product of its p-
n p p

tor sion subgroup T and its non-p-torsion subgroup N . N acts
p p p

on A through its image under the projection onto Gal(KI/K). In
p

fact, N is isomorphic to Gal(K /K) under this projection since
p1

the groups have the same order and any element of Gal(K /K) that
n

is congruent to 1 mod p is a p-torsion element. Hence, H (N , A )
p p

- H 1 (Gal(K 1 /K), A ) = 0. Furthermore, the only element of A
' p p

fixed under the action of N is the origin.
p

Corresponding to the exact sequence:

0 -- N -- Gal(K /K) -- Gal(Kn/K)/N -- 0
p n n p

we get the restriction-inflation sequence [Se 1, p. 117 )

N
0 -- H I(Gal(K /K)/N ,A P) -H 1(Gal(K /K),A) H 1(N ,A)n p p n p p p

N
where A N denotes the elements of A fixed under the action of

p p

N , and hence is trivial. So H (Gal(K /K), A ) is sandwiched
p n p

exactly between two zero terms, and therefore is zero.

Corollary (2.6.4): L /K is a non-trivial extension.n n

Proof: We chose P so that there were no Q in A(K) such that

p * Q = P. Therefore the extension M/K obtained by adjoining to K

the coordinates of any such Q is non-trivial. If L /KI were a

trivial extension, then we would have M C KV , and in fact it's easy
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to see that K I would be equal to K adjoined with the coordinates

of all the points Q such that p * Q = P. For any such Q we get

a map

fQ: Gal(K 1/K) - A
Qe 1 p

by fQ(a) = a =a(Q) ~ Q

By the relation (2.6.2), this is easily seen to be a one-cocycle, so

a (Q) ~ Q = (a - 1)a for some fixed a = a(Q) in A , and any
p

a E Gal(K /K). If a = 0 for some Q, then Q E A(K), a contradic-

tion. But if a # 0, then every Q has (p2+1)(p-1) = [KI:K ] con-

jugates over K, an impossibility since (p2+1)(p-1) + p4 . There-

fore L /K1 is non-trivial. Equivalently, there is an element ( L

of Gal(L 1 /K1 ), where ci 0. Then for any (0 a) in Gal(L /K)

(1 C)1 C 1 +a

(1 Ct 0 ct)( ci8

()C 
y+ a a +

( 0 1 / 0 / 0 P/

Since a $0 and we can choose 1, we see that Gal(L /K) is

not abelian. As a result, we can now see that Ln/K is non-trivial.n n

For Gal(L /K) is a quotient of Gal(L /K), the latter which would be1 n

abelian were L c K .
n - n



Lemma 2.6.5: Identifying Gal(Kn/K)

there is an a. E Gal(K /K) such that

with its image in (0K K '

K K

Corollary 2.6.6. Every element of K /PK can be written as a
K K

sum of elements of Gal(Kn/K).

Proof of lemma: Since Gal(K 1 /K)| = (p2+1)(p-1) > (p2-1)

+ /P+&'I , there is an E E Gal(K /K) which is not in the "real
K+ K+

subfield" K /P(+ Of ®K K/P Since K/p Kis a cyclic ex-
K KK K* K K

tension of order 4 over Z/p Z the real subfield is the only inter -

mediate field, sowe musthave that GK/K = Z/pZ[ ]. Let a

be any element of Gal(K /K) which projects onto Z, and let a
n

be any element of &K, p (the p-adic completion of 0K, p a prime

3 n
of K) such that a reduces to a modulo p . Then a aa mod p,

and since 0 over Z is unramified, we must have thatK, p p

9 = Z [a]. Hence
K, p p

[nIn [1=S/P =z [t]/P" CL zP~za
K K p p

Following the approach in [G ] we show:

Lemma (2.6.7): Let H = a E Gal(L/K) M . Then H

is a non-zero ideal in &K/Pn &K

Proof: H is non-zero by corollary (2.6.4).

109



Clearly H

check that

(2.6.6), it

Given such

y and y -1

is an additive subgroup of .Kpn 0K ,so

y a E H for any a E H, y E &KpnK.K K*

suffices to show y a E H just for those y

a y, there are elements of Gal(L /K) wk
n

,say

we need only

But by corollary

E Gal(K /K).

hich project onto

M 1 = (1 I-) and M =

(0 yY0

Computing M1m2 and M2MI we find

(2.6.8)
2+ p iy ,

Note further that if a' E H ,

(t Y 1)(o
a'

1 / ( 10

pi + p 2 Y-EI

y 

l

so the choice of P1 (and P2) in (2.6.

element of H. Therefore, for any a

8) can be translated by any

E H we have:

P~ 2Y1 + a E H, and P2 + [(P +(-P 1 - 2y~ 1 +a)1y = ay E H.

We now have enough preliminaries to show:

Theorem (2.6.8): Gal(L /K ) A
n n n

p

Proof: By the previous lemma, we have Gal(L /K ) Hn n

c K /p(9 K A n , where H is a non-zero ideal in (Kn K/p
p

110
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For n = 1, we have immediately that L /K A , since K /P9K

is a field and hence has no proper ideals. For n >1, (K/p nK is a

local ring with maximal ideal (p), so H = (p)m for some m 0.

We wish to show m = 0, so postulate contrarywise that m > 1. Then

for any a E Gal(K /K), and any , E E Gal(L /K) which project
n n

onto a , we have the identifications:

_a=

-10(Cy

00l I 1
and

(ad- a=) 0
a1/

Therefore a ag (p) (recall a E (0K/Pn&K) ). Hence

Sa- a (p) is a well-defined map of Gal(K /K) into A . We
a a np

denote any of the i modulo p by a . This defines a one-cocycle

f : Gal(K /K) - A since (2.6.2) implies a = aa+ $ a .
n p a

(recall that multiplication by P7 is the action of a on A n and

therefore, via its quotient, is the action on A ). Now by lemma
p

(2.6. 3) we have a .y in A such that
p

a = y - p y , hence

(2.6.9)

We have

( = 1 (p) =:> a =0 (mod p)
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Gal(K 1/K) = Gal(Ln/K)

and Gal(L 1 /K) = Gal(Ln/K)

/

/

KI(
1( 1(0)p

1 0 = 1 (p)

1, CL 0 (p
So by (2. 6. 9), L /KI would be a trivial extension, a contradiction.

Therefore m = 0 and Gal(L /K ) A n 0
p
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7: Some Character Relations

Now that we know Gal(Ln/K) n(Z/p ) , we can make the

following diagram of field extensions, letting Mn = K(Q ) (that is, K

adjoined with the coordinates of Q ).
n

S Ln

4n

I KZ 4

M 9K
n ,- n

3K2

M K p

4 K (p2 +1)(p-1)

In our identification (2.6. 1), Gal(L /Mn) corresponds to matrices of

the form ( 0). Our goal is to relate the conductors of characters

on Gal(Ln/Kn) to relative discriminants in the towers of M's and

K's.

First let's calculate the character on Gal(L /K) induced

from the unit character on Gal(Ln/Mn); we will denote it by

*
1 (L /M ). Then

n n

Ln LM (#(1 u) E Gal(L /K)( ( (a u E Gal(Ln/M)

We calculate that
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( 1 u\'1 1 L l u) (i u+ av -Bu)
0 v/J\0 p/J\0 v/ = 0 /

so we need to find the number of (u, v) E (0K/Pn K) x Gal(Kn/K) such

that (l - 6)u + av a 0 (p ).

Let 0 : m s n be such that pm 11(1 - @) (precisely divides).

Then there are no solutions unless pm1 C, in which case we are

searching for solutions to

1 -( a + ) 0 (P n-m

p m) pm

For any of the [Kn:K] choices for v, there is a unique choice for

n-rn 4m n
u modulo p ,and therefore p choices for u modulo pn So

for pm jj(1-P), 0 sgm ! n ,

1*(L /M ) (1 =p{4m

mp CL

otherwise

( 10
the

Note that Gal(L /Mn- 1 ) consists of matrices of the form

where (x= 0 (p-). We will now investigate the induction of

unit character on Gal(Ln /M ) to all of Gal(Ln /K).

Iu a (Ln/Mn-I1a)

[L:M ] #I~ E Ga(n/K)IEOGaJ(Ln/Mn -
n n-i

That is, we need count the number of (u, v) in & pn K x Gal(Kn/K)

n-i
such that (1 - )u + CLv 0 (p ).
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Let 0 s m n-i be such that p mI( 1 - 0), and set m=n-I

if p = 1. Then there are no solutions unless pm a, in which case

we are searching for solutions to

( a- ) 0 n-m-l
fu + nip

p p

For every v there is a unique u modulo pn-m-, and therefore

p 4m+4choices for u modulopn . So for pm |1 (1- P), 0 sgmsn-1,

(4) 4
n-1)( ) 0 otherwise.

**
Comparing these results, we note 1 (L /M ) and I (L /M )

n n-i n n

differ only when a 1 (pn). Let t be the character equal to their

* *
difference, I (L /M )- 1 (L /M ). Then

n n n n-i

@= 1, ct= 0

= n, n -i
otherwise

4n 4n-4
Let x be any of the p - p first

n-i
H = Gal(Ln/Kn) such that Xp # 1. Let (

product of characters on the group H, and let

stricted to H.

4n4n
(p H1 ' '~4n (p -

_p p L

4n-+4 4n-4)

degree characters on

, H denote the inner

4 H denote Lj re-

n-I
p~ I|

X0 1)

4n 4n-4
p -P

(2. 7. 0) = .p 4n-4

0
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We rewrite a as
n-i

where b E XK (CL # 0), and evaluate

the sum

X 0 bp

b E(IK/p )

n-1
since?

b E (K /p.K

was chosen to be nontrivial. Hence

x)H =1p4n
4n

p

4n-4 4n-4
-p +p -1

4n-
We note tat the degree of iI is p - p

that many x such that
n-1

xp

4n-4 , and there are precisely

# 1. Therefore we find

n-1

x p

x

# 1

denote induction to all of Gal(L /K)n

*
(iI jH 0

n-1

xp

*

/ 1

But since tI(x) = 0 for x q H, we verify for

1
[L :K ]

n n

[L :K ]

g
g E Gal(L /K)

n

g EGal(L n/K)

= [K :K] q(x)

n-1
xp b) =

- I

(4) $ H = 1

Letting

(2.7.1)

(2.7.2)

xE H

IH)*( -1

kp,(x)

(1 H)
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And by Frobenius reciprocity

*
(2.7.3) , Gal(L/K) = H' H 1n

So we can conclude:

*
i) Any irreducible character on Gal(L /K) contained in xn

must be contained in tj , ((2. 7. 1), (2. 7. 2)).

ii) Hence by (2. 7. 3), x is irreducible.

iii) So again by (2.7. 1) and (2.7.2), * is a sum of different

X 's, perhaps with multiplicities.

4n 4n-4
Comparing degrees: *(1) = p -p

* 3n-3 2
x (1) =3p (p +1)(p-1)

**
We conclude 4 = E(x ). m. where the (x*)i denotes an indexed set

1n-i
of distinct induced characters, and Em. = pn-1(p+1), m. > 0. But

11

we can calculate from (2. 7. 0)

2 1 4n 4n.4)2

Zm. = ( Gal(L /K) =p7n-3 2 +(pP-pn p (p +l)(p-l)

+(-P4n-42 
4

8n 8n-4

=7n-2 2 -p (p+i)
p (p +1)(p-i)

Hence all the m. = 1. Summarizing
1

Theorem (2.7.4): The (p4-1)p4n-4 first degree characters x on

*
Gal(L /K ) each induce to a x on Gal(L /K) where

n n n



* 3n -
i) y is irreducible, and there are p3n

*
which induce to each of the distinct (x ). , 1 si

n-i Pl
pi -n(p+1)

* *
ii) 1 (L /M ) - (L /M )= 0n n n n-i

3 2+1)(p-1) x
n-1i

s p (p+l).

*
(x)~

Corollary (2.7.5):

D(M /K) = D(M_ /K)(D(Kn/K))p

n-1
n-i p (p+l)

(p+i)

i =i1

N K /K(f(Xi))
n

where x. is any character on Gal(L/Kn) which induces to (x).

Proof: We recall some standard properties of conductors, namely

for A D B D C number fields, A/C Galois, X a character on

*
Gal(A/B), X its induction to Gal(A/C),

1) f(XI + x2) =2

2) f(X*) = D(B/C)X(1)NB/C(f(X))

3) f(1) = 1

We now apply these in turn to calculate the conductor of both sides of

part (ii) of Theorem (2.7. 4).

Our calculations with corollary (2.7.5) will be local, involving

only the p-part of the discriminants. This will result in no diminution

in our knowledge of the f( X), since we have the following:

118
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Lemma (2.7.6): L /K is unramified outside p
n nn

Proof: By corollary (2.5.12), A has good reduction at any prime b

of K . Take b 4 pn. If L /K were ramified at some -- and
n n n n

therefore every -- 8 over b, and a an element of the inertia group

of b, then a (Qn ) Qn(f). But then the reduction of A mod b would

4n -n - -
have fewer than p points 5 such that p * Q = P (a bar denotes

reduction modulo b); impossible if A has good reduction at b. Q. E. D.

We hope to determine later whether for some n, L /K is
n n

ramified over pn. We now note that it would suffice to show that the

local extension Ln /K is non-trivial for any (and therefore all)
qnn
q pn

primes q of L above p . (In other words, the residue class
n n

degree of q over p is 1.) For were L /K non-trivial and
nn n

q pn
unramified, then L /K would be the unique unramified extensionn n

q pn
of K of degree [L : K ]1. But [Kn :K I is totally rami-

n n nn p
n n En

fied, and letting N be the unique unramified extension of K of
p

degree [L :K we would have Ln =K N, the latter of
n n n n

q pn q pn
which is abelian over K . However in the proof of corollary (2.6. 4)

p
we showed that no non-trivial element of Gal(L /K ) could commuten n

with all of Gal(K /K) = Gal(K /K ) .
n n~ p

n
Under the supposition that L /K is ramified for some n,

n n

let i be the index such that L /K ,. , L. /K. are unramified and
1 + r i

L+ /Ki+ is ramified.



Theorem (2.7.7): L. +/K +I L is totally ramified at any of the

primes q in Ki+L above pi+1 *

Proof: The preliminary remarks guarantee that pi+1 splits into

primes q. in K+1 L. , and since L i+1/Ki+1 is abelian, if onec

the q. is totally ramified then all of them are. Fix one such q

By the assumption on i, the inertia group I of q in L +1/K

non -trivial.

So we need to exclude the following three cases:

L.a i+1

T
4-a

p

K. L.
i+l '

III = p , a=1,2, 3.

L(y)L.

4i L(x)

K

Let T be the fixed field of I . Then T/K +1. , an exten-

sion of degree p4-a , is unramified at q . We want to count the
i

number of characters x on Gal(L +1/Ki+1), X # 1, such that

f(X) = 1. If x is any character on Gal(L i+1 /K i+1 Xp 1,we

have that L( x), the fixed field of the kernel of X, is not contained in

K +1. , and that L(X) L. is the fixed field of the kernel of X

120

4i
p

Of

is

Gal(L i+1/K +1 L ) )) -(O(9K K=- 1
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restricted to Gal(Li+1/K +1L.). Since L.K +1/K +I is unramified,

L( x)/K . is unramified if and only if L( X) L .I/K.+ L . is, and
i +1 +

L( X) L ./K. L . is unranified if and only if it is contained in T.
i i+1

Further, there are precisely p4 x which have a given restric-

tion to Gal(L. /K. L.), and (p-1) restrictions which define the
i+1 i+1 i

4-a
same L(X) L. . Of these L(X) L. , (p - 1)/(p-1) are contained

in T. Therefore precisely (p4-a _-l)p4i of the characters X on

Gal(L. /K #)x 1, have f(X)=1. But of the p4i+4P4i
i+1 i+1~'~-

characters x on Gal(Li+l /K +), x 1, there are (p2 +1)(p-1)p 3i

*
which induce the same x on Gal(L 1/K), and therefore have the

i+1

same conductor.

Since (p2+l)(p-1)p 3 p (4ip4 - 1) for a = 1, 2, 3, we have

that q is totally ramified in L i+1 '

Lemma (2.7.8): Let L/K be

totally ramified at a prime p

n Te 2(2/2) .Then p If(x) for

Proof: Let

The inertia

Letting G 1

G, = 2/pZI

a normal extension of number fields,

of norm p , such that Gal(L/K) =

every X / 1 in Gal(L/K).

L(x) be the fixed field of x; then Gal(L(X)/K) = Z/pz.

group G of p in L(X)/K is Z/pZ by construction.

be the next ramification group; (IG0 /G |, p) = 1 so

too. Hence p 2P-2 ID(L(x)/K) = f(x)Pl
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Corollary (2.7. 9): Assume Ln/K is ramified for some n, and let

i + 1 be the first index at which ramification occurs. Then we have

2 pp INK. /K (f(X)), where x E Gal(L + /K +1 X

Proof: Let L( x) be the fixed field of x, and q any prime of

K. +L. over p *. By theorem (2.7.7), L(X)L./K. +L. is totally

ramified over q, hence L(X)/K +1 is totally ramified over P +1
2

Therefore by lemma (2.7.8), p i +lf (X) , and taking norms,

p I NK. x/K ).
L+1

Lemma (2.7. 10): Keeping the same definition of i, for n i

D (M /K) = p
p n

E 4np -(n+1)p + 1
4_

p -1l

p 4n+ (Pn - )p(p+l) - ]

3_Jp -1

Proof: For n = 1 this is just Dp(K /K)P+1. It follows by induction

from corollary (2. 7. 5).
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