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A short note on phase and amplitude tracking for seismic event separation
Yunyue Elita Li and Laurent Demanet, Massachusetts Institute of Technology

SUMMARY

We propose a method for decomposing a seismic record into
atomic events defined by a smooth phase and a smooth am-
plitude. The method uses an iterative refinement-expansion
tracking scheme to minimize the highly nonconvex objective
function. We demonstrate the proposed method on a noisy
synthetic record from the shallow Marmousi model. Finally,
we show an application of our method to low frequency ex-
trapolation on the same record. This note is a short version of
Li and Demanet (2015).

INTRODUCTION

We address the problem of decomposing a seismic record into
elementary, or atomic components corresponding to individual
wave arrivals. Letting t for time and x for receiver location, we
seek to decompose a shot profile d into a small number r of
atomic events v j as

d(t,x)'
r∑

j=1

v j(t,x). (1)

Each v j should consist of a single wave front – narrow yet ban-
dlimited in t, but coherent across different x – corresponding
to an event of direct arrival, reflection, refraction, or corner
diffraction.

In the simplest convolutional model, we would write v j(t,x) =
a j(x)w(t − τ j(x)) for some wavelet w, amplitude a j(x), and
time shift τ j(x). In the Fourier domain, this model would read

v̂ j(ω,x) = ŵ(ω)a j(x)eiωτ j(x). (2)

This model fails to capture frequency-dependent dispersion
and attenuation effects, phase rotations, inaccurate knowledge
of w, and other distortion effects resulting from near-resonances.
To restore the flexibility to encode such effects without explic-
itly modeling them, we consider instead throughout this paper
the expression

v̂ j(ω,x) = ŵ(ω)a j(ω,x)eib j(ω,x), (3)

where the amplitudes a j and the phases b j are smooth in x
and ω , and b j deviates little from an affine (linear + constant)
function of ω .

Finding physically meaningful, smooth functions a j and b j to
fit a model such as Equation 1 and 3 is a hard optimization
problem. Its nonconvexity is severe: it can be seen as a rem-
nant, or cartoon, of the difficulty of full waveform inversion
from high-frequency data. We are unaware that an authorita-
tive solution to either problem has been proposed in the geo-
physical imaging community.

Many methods have been proposed to pick individual seismic
events, such as AR filters (Leonard and Kennett, 1999) (close

in spirit to the matrix pencil method (Hua and Sarkar, 1990)),
cross-correlations (Cansi, 1995), wavelets (Zhang et al., 2003),
neural networks (Gentili and Michelini, 2006), etc. These pa-
pers mostly address the problem of picking isolated arrivals
time, not parametrizing interfering events across traces. Some
data processing methods operate by finding local slope events,
such as plane-wave annihilation (Fomel, 2002). This idea has
been used to construct prediction filters for localized wavelet-
like expansion methods (Fomel and Liu, 2010), which in turn
allow to solve problems such as trace interpolation in a con-
vincing manner. It is plausible that concentration or clustering
in an appropriate wavelet-like domain could be the basis for an
algorithm of event separation. Separation of variables (SVD)
in moveout-corrected coordinates has also been proposed to
identify dipping events, such as in (Raoult, 1983) and (Blias,
2007). Smoothness criteria along reflection events have been
proposed for separating them from diffraction events, such as
in Fomel et al. (2007). These traditional methods fail for the
event decomposition problem as previously stated:

• Because of cycle-skipping, gradient descent quickly
converges to uninformative local minima.

• Because datasets don’t often have useful low frequen-
cies, multiscale sweeps cannot be seeded to guide gra-
dient descent iterations toward the global minimum.

• Because the events are intertwined by possibly destruc-
tive interference, simple counter-examples show that
greedy “event removal” methods like CLEAN or match-
ing pursuit cannot be expected to succeed in general.

• Because wavefront shapes are not known in advance,
linear transforms such as the slant stack (Radon), ve-
locity scan, wavelets/curvelets, or any other kind of
nonadaptive filters, don’t suffice by themselves. The
problem is intrinsically nonlinear.

The contribution of this paper is the observation that tracking
in x and ω , in the form of careful growth of a trust region, can
satisfactorily mitigate the nonconvexity of a simple nonlinear
least-squares cost function, yielding favorable decomposition
results on synthetic shot profiles. We have not been able to
deal with the nonconvexity of this cost function in any other
way.

This note is organized as follows. We first define the objective
function and derive its gradient. We point out that the objective
function is severely nonconvex and explain an explicit initial-
ization scheme with MUSIC and the expansion and refinement
scheme for phase and amplitude tracking. Finally, we demon-
strate our separation method on a noisy synthetic data record.
We illustrate the potential of event separation for extrapolation
to unobserved low frequencies.
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METHOD

Cost function and its gradient

We consider the nonlinear least-squares optimization formula-
tion with cost function

J({a j,b j}) =
1
2
||û(ω,x)− d̂(ω,x)||22 +λ ||∇2

ω b j(ω,x)||22 (4)

+µ||∇x b j(ω,x)||22 + γ||∇ω,x a j(ω,x)||22,

where d̂ is the measured data in the frequency domain, ∇k and
∇2

k , with k = ω,x, respectively denote first-order and second-
order partial derivatives, and ∇ω,x denotes the full gradient.
The prediction û is

û(ω,x) =
r∑

j=1

ŵ(ω)a j(ω,x)eib j(ω,x),

with ŵ(ω) assumed known. The constants λ , µ , and γ are
chosen empirically.

It is important to regularize with ∇2
ω b j(ω,x) rather than

∇ω b j(ω,x), so as to penalize departure from dispersion-free
linear phases rather than penalize large traveltimes.

The cost function is minimized using a gradient descent within
a growing trust region. The gradients of (4) with respect to a j
and b j are computed as follows:

∂J
∂a j

=
1
2
( ∂u

∂a j
δ û∗+δ û

∂u∗

∂a j

)
+2ν∇

2
ω,xa j, (5)

∂J
∂b j

=
1
2
( ∂u

∂b j
δ û∗+δ û

∂u∗

∂b j

)
+2λ∇

2
ω ·∇2

ω b j +2µ∇
2
xb j,

where
∂ û
∂a j

= e−ib j ,
∂ û∗
∂a j

= eib j (6)

∂ û
∂b j

=−ia je−ib j ,
∂ û∗
∂b j

= ia jeib j

δ û = û− d̂.

The notation ∇2
ω,x refers to the Laplacian in (ω,x). All the

derivatives in the regularization terms are discretized by cen-
tered second-order accurate finite differences.

Initialization

The objective function in equation (4) is highly nonconvex due
to the oscillatory nature of seismic data. We initialize the itera-
tions by making use of an explicit solution of the minimization
problem in a very confined setting where

• we pick a single (most informative) seed trace x,

• we pick a subset of (most informative) seed frequen-
cies ω ,

• and we assume a simplified model where the ampli-
tudes are constant, and the phases are linear in ω . In
other words, we return to the convolutional model

d̂(ω)'
r∑

j=1

a jeiωτ j (7)

of equation (2) in order to locally approximate equation
(3).

In this situation, the problem reduces to a classical signal pro-
cessing question of identification of sinusoids, i.e., identifica-
tion of the traveltimes τ j and amplitudes a j. There exist at
least two high-quality methods for this task: the matrix pen-
cil method of Hua and Sarkar (1990), and the Multiple SIg-
nal Classification (MUSIC) algorithm (Schmidt, 1986). We
choose the latter for its simplicity and robustness.

Assume for the moment that the number r of events is known,
though we address its determination in the sequel. The MUSIC
algorithm only needs data {d̂(ωi)} at m = 2r+ 1 frequencies
in order to determine the arrival times and amplitudes for r dif-
ferent events. In practice, the number m of frequencies may be
taken to be larger than 2r+ 1 if robustness to noise is a more
important concern than the lack of linearity of the phase in ω .
In either case, we sample the data d̂(ωk) on a grid of spac-
ing ∆ω around the fundamental frequency ω f of the source
wavelet, where the signal-to-noise ratio is relatively high.

The variant of the MUSIC algorithm that we use in this pa-
per requires building a m-by-m Toeplitz matrix by collecting
translates of the data samples as

Tk` = d̂(ωk−ω`+ω f ), (8)

where k, ` = 1,2, ...,m. After a singular value decomposition
of T, we separate the components relative to the r largest sin-
gular values, from the others, to get

T = UsΣsVT
s +UnΣnVT

n .

We interpret the range space of Us as the signal space, and
the range space of Un as the noise space, hence the choice of
indices. The orthogonal projector onto the noise subspace can
be constructed from Un as

Pn = UnUT
n . (9)

We then consider a quantitative measure of the importance of
any given arrival time t ∈ [0, 2π

∆ω
], via the estimator function

α(t) =
1

||Pnei~ωt ||
. (10)

In the exponent, ~ω is a vector with m consecutive frequencies
on a grid of spacing ∆ω . In the noiseless case, the estimator
function has r sharp peaks that indicate the r arrival times τ j
for the r events. In the noisy case, or in the case when the
phases b j are nonlinear in ω , the number of identifiable peaks
is a reasonable estimator for r, and the locations of those peaks
are reasonable estimators of τ j, such that the signal contains r
phases locally of the form ωτ j+ const. Once the traveltimes
τ j are found, the amplitudes a j follow from solving the small,
over-determined system in equation (7). Each complex ampli-
tude is further factored into a positive amplitude and a phase
rotation factor, and the latter is absorbed into the phase.

In practice, it is sometimes worthwhile to apply this procedure
on a handful of nearby traces, as an initial guess (seed) for the
next step.
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Tracking by expansion and refinement

The phases and amplitudes generated by the initialization give
a local seed that needs to be refined and expanded to the whole
record:

• The refinement step is the minimization of (4) with the
data misfit restricted to the current trust region Ω in
(ω,x) space.

• The expansion step consists in growing the region Ω to
include neighboring samples in ω and x.

These steps are nested rather than alternated: the inner refine-
ment loop is run until the value of J levels off, before the algo-
rithm returns to the outer expansion loop. The expansion loop
is itself split into an outer loop for (slow) expansion in x, and
an inner loop for (rapid) expansion in ω . The nested order-
ing of these steps is crucial for convergence to a meaningful
minimizer.

A simple trick is used to speed up the minimization of J in
the complement of Ω, where only the regularization terms are
active: a j(ω,x) is extended by a constant, while b j(ω,x) is
extended by a constant in x, and by a linear + constant in ω .
These choices corespond to the exact minimizers of the Eu-
clidean norms of the first, respectively second derivatives of a j
and b j, with zero boundary conditions on the relevant deriva-
tives at the endpoints. This trick may be called “precondition-
ing” the regularization terms.

At the conclusion of this main algorithm, the method returns
r phases b j(ω,x) that are approximately linear in ω and ap-
proximately constant in x; and r amplitudes a j(ω,x) that are
approximately constant in both x and ω; such that

d̂(ω,x)'
r∑

j=1

ŵ(ω)a j(ω,x)eib j(ω,x). (11)

Application: frequency extrapolation

Frequency extrapolation, a.k.a. bandwidth extension, is a tan-
talizing test of the quality of a representation such as (11). A
least-squares fit is first performed to find the best constant ap-
proximations a j(ω,x)' α j(x), and the best affine approxima-
tions b j(ω,x) ' ωβ j(x) + φ j(x), from values of ω within a
useful frequency band. These phase and amplitude approxi-
mations can be evaluated at values of ω ∈ [ω0 ω1] outside this
band, to yield synthetic flat-spectrum atomic events of the form

v̂e
j(ω,x) = α j(x)ei(ωβ j(x)+φ j(x)), for ω ∈ [ω0 ω1], (12)

where the superscript e denotes the extrapolation. These syn-
thetic events can be further multiplied by a high-pass or low-
pass wavelet, and summed up, to create a synthetic dataset.
This operation is the seismic equivalent of changing the pitch
of a speech signal without speeding it up or slowing it down.

Extrapolation to high frequencies should benefit high resolu-
tion imaging, whereas extrapolation to low frequencies should
help avoid the cycle-skipping problem that full waveform in-
version encounters when the low frequencies are missing from
the data.

Notice that extrapolation to zero frequency is almost never ac-
curate using such a simple procedure: more physical infor-
mation is required to accurately predict zero-frequency wave
propagation.

NUMERICAL EXAMPLES

We test our method on a noisy shot gather. The shot gather
is generated from a shallow part of the Marmousi model us-
ing finite difference modeling. The finite difference scheme
is second-order accurate in time and forth-order accurate in
space. We use a 20 Hz Ricker wavelet as the source wavelet.
Receiver spacing is 40 m.

As preprocessing, we remove the direct arrival from the shot
record, because it has the strongest amplitude that would over-
whelm the record. We apply an automatic gain control (AGC)
to the remaining events so that the amplitudes on the record are
more balanced. We mute the later arrivals in the data so that
we resolve a limited number of events at a time. We transform
the data to the frequency domain, bandlimit the data between
7 and 40 Hz, and finally add white Gaussian noise to the data.
The noise has zero phase and its maximum amplitude is set to
30% of the maximum amplitude of the clean data.

Figure 1(a) shows the noisy shot record with 6 major events.
We choose three seed traces at the center of the record where
the events are well separated. In order to identify six differ-
ent atomic events, we apply the MUSIC algorithm using 13
frequencies around the dominant frequency. To our inversion
method, the data record in Figure 1(a) contains two types of
noise. Besides the additive random noise, the scattering events
that do not fit into our six atomic events model also pose a
challenge to our inversion algorithm.

Figure 1(b) shows the inverted shot profile using the proposed
tracking method. The inversion has clearly separated the six
strong reflection events from the record, ignored the scatter-
ing events with smaller amplitudes and cleaned up the random
noise from the record significantly. This demonstrate the ro-
bustness of our method. Figure 2 shows the corresponding
well-separated atomic reflection events.

For each atomic events j, we estimate the two parameters β j(x)
and φ j(x) at each trace x within the data bandwidth. We then
extrapolate the data to frequencies within [1,90] Hz using Equa-
tion 12. The waveforms are more compact (not shown). The
high resolution data could be used for broadband high resolu-
tion seismic imaging.

In order to evaluate the accuracy of low frequency extrapola-
tion, we model the seismic profile using a broadband source
wavelet, whose amplitude spectrum is mostly flat between 1
and 7 Hz. We then compare the modeled data with the low
frequency data obtained by frequency extrapolation within the
same bandwidth. Figure 3 compares the two low frequency
shot records. Note that the amplitudes differ quite substan-
tially between the two records, while the phase information is
rather similar.

There are (at least) two reasons why the extrapolated low-
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frequency data do not exactly match the modeled low frequency
data (even in phase). First, the unmodelled scattering events
contribute to the low frequencies and overlap with the low fre-
quency signal from the modeled reflection events. Second,
There are numerical dispersion effects on the modeled low fre-
quency data, whereas the extrapolated record is constructed us-
ing a nondispersive assumption. The second order finite differ-
encing scheme we use here has a relatively lower phase speed
at low frequencies than at high frequencies (Tong, 1994). The
simulated low frequency data arrives later in the shot record
(compare Figures 1a and 3a). Consequently, the phase differ-
ences due to numerical dispersion effects are more significant
at far offsets than near offsets.
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Figure 1: Comparison of the original shot record in (a) and the
inverted shot record in (b).
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Figure 2: The six well-separated atomic event.
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Figure 3: Comparison of the shot record modeled with a low
frequency broadband ([1 7] Hz) wavelet in (a) and the shot
record after frequency extrapolation to [1 7] Hz in (b).

DISCUSSIONS AND CONCLUSIONS

We propose a data-driven method for decomposing seismic
records into individual, atomic events that correspond to iso-
lated arrivals. The only piece of physical information needed
to define these events is the fact that the acoustic or elastic
wave equations are mostly dispersion-free, i.e., that they give
rise to solutions with mostly linear phases in the frequency do-
main. The method is otherwise robust to random noise and
unmodeled physical effects that create a departure from this
model.

The success of the proposed iterative method for the noncon-
vex optimization formulation hinges on a delicate interplay
between refinement of phases and amplitudes within a trust
region, vs. slowly growing this trust region. If the region is
grown too fast, the iterations will converge to an undesirable
local minimum.

The most important limitation of the tracking method is the
deterioration of the accuracy in phase (hence traveltime) esti-
mation in the presence of unmodeled or splitting events. Our
solution for the determination of the number of events further
depends on the availability of a trace where the MUSIC es-
timator correctly categorizes them. Extrapolation to low fre-
quencies is also limited by the inability of the phase-amplitude
model to capture the physics of “zero-frequency radiation” due
to the generic presence of a scattering pole in the Green’s func-
tion at ω = 0. Finally, we observe a mild ill-conditioning of
low-frequency extrapolation when comparing the wobbles of
events in Figure 3(b), to those in Figure 1(b).
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