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Background: Interest in the behavior of nucleon electromagnetic form factors at large momentum transfers has
steadily increased since the discovery, using polarization observables, of the rapid decrease of the ratio G

p
E/G

p
M

of the proton’s electric and magnetic form factors for momentum transfers Q2 � 1 GeV2, in strong disagreement
with previous extractions of this ratio using the traditional Rosenbluth separation technique.
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Purpose: The GEp-III and GEp-2γ experiments were carried out in Jefferson Laboratory’s (JLab’s) Hall C from
2007 to 2008, to extend the knowledge of G

p
E/G

p
M to the highest practically achievable Q2 given the maximum

beam energy of 6 GeV and to search for effects beyond the Born approximation in polarization transfer observables
of elastic �ep scattering. This article provides an expanded description of the common experimental apparatus and
data analysis procedures, and reports the results of a final reanalysis of the data from both experiments, including
the previously unpublished results of the full-acceptance dataset of the GEp-2γ experiment.
Methods: Polarization transfer observables in elastic �ep → e �p scattering were measured at central Q2 values
of 2.5, 5.2, 6.8, and 8.54 GeV2. At Q2 = 2.5 GeV2, data were obtained for central values of the virtual photon
polarization parameter ε of 0.149, 0.632, and 0.783. The Hall C High Momentum Spectrometer detected and
measured the polarization of protons recoiling elastically from collisions of JLab’s polarized electron beam
with a liquid hydrogen target. A large-acceptance electromagnetic calorimeter detected the elastically scattered
electrons in coincidence to suppress inelastic backgrounds.
Results: The final GEp-III data are largely unchanged relative to the originally published results. The statistical
uncertainties of the final GEp-2γ data are significantly reduced at ε = 0.632 and 0.783 relative to the original
publication.
Conclusions: The final GEp-III results show that the decrease with Q2 of G

p
E/G

p
M continues to Q2 = 8.5 GeV2,

but at a slowing rate relative to the approximately linear decrease observed in earlier Hall A measurements. At
Q2 = 8.5 GeV2, Gp

E/G
p
M remains positive but is consistent with zero. At Q2 = 2.5 GeV2, Gp

E/G
p
M derived from

the polarization component ratio R ∝ Pt/P� shows no statistically significant ε dependence, as expected in the
Born approximation. On the other hand, the ratio P�/P

Born
� of the longitudinal polarization transfer component

to its Born value shows an enhancement of roughly 1.7% at ε = 0.783 relative to ε = 0.149, with ≈ 2.2σ

significance based on the total uncertainty, implying a similar effect in the transverse component Pt that cancels
in the ratio R.

DOI: 10.1103/PhysRevC.96.055203

I. INTRODUCTION

Electron scattering is of central importance to the character-
ization of nucleon and nuclear structure, because of the relative
weakness of the electromagnetic interaction (compared to
a strongly interacting probe), the structureless character of
the leptonic probe, and the availability of electron beams
of high intensity, duty cycle, energy, and polarization. The
field of elastic electron-nucleus scattering started with the
availability of electron beams with energies up to 550 MeV
at the High Energy Physics Laboratory (HEPL) in Stanford in
the mid-1950s. One notable result of these early experiments
was the first determination of a proton radius [1], which,
together with the anomalous magnetic moment of the proton,
discovered in 1933 by Stern [2], completed the picture of the
proton as a finite-size object with an internal structure.

The utility of electron-nucleon scattering as a probe of
nucleon structure derives from the validity of the single
virtual photon exchange (Born) approximation, up to radiative
corrections that are modest in size compared to the leading
(Born) term, and precisely calculable in low-order QED
perturbation theory, due to the small value of the fine
structure constant α = e2

4πε0h̄c
≈ 1/137.036 [3]. This allows

for a theoretically “clean” extraction of the electromagnetic
structure of the target from the measured scattering observables
such as cross sections and polarization asymmetries. In the
Born approximation, the effect of the proton’s internal
structure on the Lorentz-invariant elastic ep → ep scattering
amplitude is completely specified by two form factors (FFs),
which encode the interaction of the pointlike electromagnetic
current of the electron with the proton’s charge and magnetic
moment distributions. The Dirac form factor F1 describes
the charge and Dirac magnetic moment interactions, while

the Pauli form factor F2 describes the anomalous magnetic
moment interaction. F1 and F2 are real-valued functions of the
Lorentz-invariant four-momentum transfer squared between
the electron and the nucleon, defined as Q2 ≡ −q2 = −(k −
k′)2, with k and k′ being the four-momenta of the incident
and scattered electron. In fixed-target electron scattering, q2

is a spacelike invariant that is always negative. The reaction
kinematics and physical observables are thus typically
discussed in terms of the positive-definite quantity Q2. A
detailed overview of the theoretical formalism of the Born
approximation for elastic ep scattering is given in Ref. [4].

An equivalent description of the nucleon electromagnetic
form factors (EMFFs) is provided by the so-called Sachs form
factors [5,6] GE (electric) and GM (magnetic), defined as
the following experimentally convenient independent linear
combinations of F1 and F2,

GE ≡ F1 − τF2, (1)

GM ≡ F1 + F2, (2)

in which τ ≡ Q2

4M2
p
, with Mp being the mass of the proton. In

terms of the Sachs form factors, the differential cross section
for elastic ep scattering in the Born approximation is given
in the nucleon rest frame (which coincides with the labo-
ratory frame in fixed-target experiments) by the Rosenbluth
formula [7]:

dσ

d	e

=
(

dσ

d	e

)
Mott

εG2
E + τG2

M

ε(1 + τ )
, (3)

(
dσ

d	e

)
Mott

= α2 cos2 θe

2

4E2
e sin4 θe

2

E′
e

Ee

, (4)

055203-2

https://doi.org/10.1103/PhysRevC.96.055203


POLARIZATION TRANSFER OBSERVABLES IN ELASTIC . . . PHYSICAL REVIEW C 96, 055203 (2017)

FIG. 1. G
p
E/GD extracted from cross section measurements vs

Q2. The data from before 1980 are shown by open triangle [6],
multiplication sign [8], open circle [9], filled diamond [10], filled
square [11], crossed diamond [12], crossed square [13], and open
square [14]. The SLAC data from the 1990s are shown by filled
star [15] and open diamond [16]. The JLab data are shown by
asterisk [17] and filled triangle [18]. Figure adapted from Fig. 3
of Ref. [4].

in which ( dσ
d	e

)
Mott

represents the theoretical Born cross
section for electron scattering from a pointlike, spinless target
of charge e, Ee is the beam energy, E′

e is the scattered
electron energy, θe is the electron scattering angle, and ε ≡
(1 + 2(1 + τ ) tan2 θe

2 )
−1

is the longitudinal polarization of the
virtual photon. The expression (3) provides a simple technique
for the extraction of G2

E and G2
M known as Rosenbluth or

L-T (for longitudinal-transverse) separation, in which the
differential cross section is measured at fixed Q2 while varying
the parameter ε. A plot of the ε dependence of the “reduced”
cross section, obtained by dividing the measured, radiatively
corrected cross section by the Mott cross section and the
kinematic factor in the denominator of Eq. (3), yields a straight
line with a slope (intercept) equal to G2

E (τG2
M ).

Until the late 1990s, all (or most) form factor measurements
suggested that both G

p
E and G

p
M decreased like 1

Q4 at large Q2

and that the ratio μpG
p
E/G

p
M was approximately equal to one,

regardless of Q2. It also appeared that the dipole form GD ≡
(1 + Q2

�2 )
−2

, with �2 = 0.71 GeV2, provided a reasonable
description of G

p
E , G

p
M/μp, and Gn

M/μn, as illustrated in
Figs. 1 and 2 (for G

p
E and G

p
M ). Gn

E was expected to have
an entirely different Q2 dependence, given the zero net charge
of the neutron, which imposes Gn

E = 0 at Q2 = 0.
The helicity structure of the single-photon-exchange ampli-

tude also gives rise to significant double-polarization asymme-
tries, with different sensitivities to the form factors compared
to the spin-averaged cross section. Nonzero asymmetries
occur in the case where the electron beam is longitudinally

FIG. 2. G
p
M/μpGD extracted from cross section measurements

vs Q2. The symbols are the same as in Fig. 1. Additional data points
at the highest Q2, open square [19] and open star [20], were extracted
from cross sections assuming μpG

p
E/G

p
M = 1. The solid (dashed)

line is a fit by Ref. [21] (Ref. [22]). Figure adapted from Fig. 4 of
Ref. [4].

polarized,1 and either the target nucleon is also polarized or the
polarization transferred to the recoiling nucleon is measured.
The polarization transferred to the recoil proton in the
scattering of longitudinally polarized electrons by unpolarized
protons has only two nonzero components, longitudinal, P�,
and transverse, Pt , with respect to the momentum transfer and
parallel to the scattering plane [23,24]:

Pt = −hPe

√
2ε(1 − ε)

τ

GEGM

G2
M + ε

τ
G2

E

,

P� = hPe

√
1 − ε2

G2
M

G2
M + ε

τ
G2

E

, (5)

GE

GM

= −Pt

P�

√
τ (1 + ε)

2ε
.

Here h denotes the sign of the electron beam helicity, and
Pe is the electron beam polarization. The observables for
scattering on a polarized proton target are related to those
for polarization transfer by time-reversal symmetry [25–27].
Specifically, the transverse asymmetry At = Pt , while the
longitudinal asymmetry A� = −P�. The sign change between
A� and P� is caused by the proton spin flip required to absorb
transversely polarized virtual photons.

1The effects of transverse polarization of the electron beam are
suppressed by factors of me/Ee, leading to asymmetries of order 10−5

in experiments with ultrarelativistic electrons at GeV-scale energies.
In the context of electromagnetic form factor measurements in the
Q2 regime of this work, these effects are negligible compared to the
asymmetries for longitudinally polarized electrons and the precision
with which they are measured.
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The interest in measuring these double-polarization ob-
servables is multifaceted. First, the ratio GE/GM is directly
and linearly proportional to the ratio Pt/P� in the recoil
polarization case or, equivalently, the ratio At/A� of the beam-
target double-spin asymmetries in the polarized target case.
Compared to the Rosenbluth method, polarization observables
provide enhanced sensitivity to GE (GM ) at large (small)
values of Q2. Moreover, polarization observables provide
an unambiguous determination of the relative sign of GE

and GM , whereas the Rosenbluth method is only sensitive
to the squares of the form factors. Finally, because of the
ratio nature of the asymmetries, radiative corrections tend to
be negligible, whereas they can and do affect the cross sec-
tion measurements and Rosenbluth separations significantly,
especially in kinematics where the relative contribution of
either the εG2

E or the τG2
M term to the Born cross section

(3) is small. The polarization transfer method in particular
is highly attractive, as a simultaneous measurement of both
recoil polarization components in a polarimeter facilitates a
very precise measurement of GE/GM in a single kinematic
setting, with small systematic uncertainties resulting from
cancellations of quantities such as the beam polarization, the
polarimeter analyzing power, and the polarimeter instrumental
asymmetry.

In recent years, the nucleon’s elastic form factors have
attracted steadily increasing attention, due in part to the unex-
pected results of the first polarization transfer measurement of
the ratio G

p
E/G

p
M at JLab. This increasing attention is evident

in the number of reviews of the subject published in the
past 15 years [4,33–40]. The first measurement of G

p
E/G

p
M

by recoil polarization took place in 1994, at the MIT-Bates
laboratory, at Q2 values of 0.38 and 0.50 GeV2, with 5%
statistical uncertainties [41]. The first two polarization transfer
experiments at JLab, hereafter denoted GEp-I [28,29] and
GEp-II [30,42], consisted of measurements of the ratio R ≡
μpG

p
E/G

p
M for 0.5 � Q2 (GeV2) � 5.6. Together, the results

of GEp-I and GEp-II, shown in Fig. 3, established conclusively
that the concept of scaling of the proton form factor ratio had to
be abandoned. There is a clear discrepancy between the values
of G

p
E/G

p
M extracted from double polarization experiments

and those obtained from cross section measurements. Among
possible explanations for this discrepancy, the most thoroughly
investigated is the hard two-photon exchange (TPEX) process,
the amplitude for which does not “factorize” from the
underlying nucleon structure information, cannot presently
be calculated model independently, and is neglected in the
“standard” radiative corrections to experimental data. A recent
overview of the theory, phenomenology, and experimental

FIG. 3. The ratio μpG
p
E/G

p
M from the first two JLab experiments

are shown as filled circle [28,29] and filled square [30,31], compared
to Rosenbluth separation results, shown as open diamond [16], open
circle [17], filled diamond [18], and open square [6,9–15,32]. The
curve shows the linear fit to the polarization data from Ref. [30].
Figure adapted from Fig. 9 of Ref. [4].

knowledge of TPEX effects in elastic ep scattering is given in
Ref. [43].

In the general case, elastic eN scattering can be described
in terms of three complex amplitudes [44–46], which can
be written as G̃M , G̃E , and F̃3, the first two chosen as
generalizations of the Sachs electric and magnetic form
factors, GE and GM , and the last one, F̃3, beingO(α) relative to
the Born terms and vanishing in the Born approximation. The
“generalized form factors” G̃M and G̃E can be decomposed
into sums of the real-valued Sachs form factors appearing
in the Born amplitudes and depending only on Q2, plus
O(α) complex-valued corrections that vanish in the Born
approximation and depend on both Q2 and ε as follows:

G̃M (Q2,ε) ≡ GM (Q2) + δG̃M (Q2,ε), (6)

G̃E(Q2,ε) ≡ GE(Q2) + δG̃E(Q2,ε). (7)

In terms of the generalized complex amplitudes, the reduced
cross section σR ≡ ε(1+τ )

τ
σ/σMott and polarization observables

are given at next-to-leading order in α by

σR = G2
M + ε

τ
G2

E + 2GMRe
(
δG̃M + εν

M2
F̃3

)
+ 2ε

τ
GERe

(
δG̃E + ν

M2
F̃3

)
, (8)

Pt = −hPe

σR

√
2ε(1 − ε)

τ

[
GEGM + GMRe

(
δG̃E + ν

M2
F̃3

)
+ GERe(δG̃M )

]
, (9)

P� = hPe

σR

√
1 − ε2

[
G2

M + 2GMRe

(
δG̃M + ε

1 + ε

ν

M2
F̃3

)]
, (10)
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Pn =
√

2ε(1 + ε)

τ

1

σR

[
−GM Im

(
δG̃E + ν

M2
F̃3

)
+ GEIm

(
δG̃M + 2ε

1 + ε

ν

M2
F̃3

)]
, (11)

R ≡ −μp

√
τ (1 + ε)

2ε

Pt

P�

= μp

GE

GM

Re

[
1 − δG̃M

GM

+ δG̃E

GE

+ νF̃3

M2

(
(1 + ε)GM − 2εGE

(1 + ε)GEGM

)]
, (12)

in which ε and τ are defined as above, Re and Im denote
real and imaginary parts of the amplitudes, and

ν

M2
≡

√
τ (1 + τ )

1 + ε

1 − ε
. (13)

The reduced cross section and the polarization transfer
components Pt and P� are defined only by the real parts of
the two-photon amplitudes. The normal polarization transfer
component, Pn, which is zero in the Born approximation, is
defined by the imaginary parts of the two-photon exchange
amplitudes.

There are several noteworthy features of Eqs. (8)–(12).
The corrections to the reduced cross section beyond the Born
approximation are additive with the Born terms, implying
that even a small TPEX correction can seriously obscure the
extraction of G2

E (G2
M ) at large (small) Q2 when the relative

contribution of either Born term to σ Born
R is small enough to

be comparable to the TPEX correction. The ratio R defined
in Eq. (12), on the other hand, is directly proportional to its
Born value: R = μGE/GM [1 + O(α)], and is subject only
to relative O(α) TPEX corrections, in principle. In the limit
GE → 0, however, the TPEX terms can become dominant
even in the ratio R; the limit of Eq. (12) as GE → 0 is R →
RBorn + Re[μδG̃E

GM
+ μ ν

M2
F̃3
GM

], assuming δG̃M/GM � 1.
Whereas the ratio R measured in polarization transfer

experiments only becomes significantly sensitive to TPEX
corrections when RBorn is comparable to α, the reduced cross
section becomes sensitive to TPEX corrections at relatively
low Q2 even for RBorn 	 α. Given the superior sensitivity to
GE at large Q2 of the ratio Pt/P� and its relative robustness
against radiative and TPEX corrections as compared to the
Rosenbluth method, a general consensus has emerged that the
polarization transfer data provide the most reliable determina-
tion of G

p
E in the Q2 range where cross section and polarization

data disagree. Nevertheless, a large amount of experimental
and theoretical effort is ongoing to understand the source of
the discrepancy and develop a maximally model-independent
prescription for TPEX corrections to elastic ep scattering
observables.

The subject of this article is the third dedicated series of
polarization transfer measurements in elastic �ep scattering at
large Q2, carried out in Jefferson Lab’s (JLab’s) Hall C from
October 2007 to June 2008. Experiments E04-108 (GEp-III)
and E04-019 (GEp-2γ ) used the same apparatus and method to
address two complementary physics goals. The goal of GEp-III
was to extend the kinematic reach of the polarization transfer
data for G

p
E/G

p
M to the highest practically achievable Q2,

given the maximum electron beam energy available at the
time. The goal of GEp-2γ was to measure the ε dependence
of G

p
E/G

p
M at the fixed Q2 of 2.5 GeV2 with small statistical

and systematic uncertainties, in order to test the polarization
method and search for signatures of TPEX effects in two
polarization observables.

The results of GEp-III [31] and GEp-2γ [47] have already
been published in short-form articles. The purpose of this
article is to provide a detailed description of the apparatus
and analysis methods common to both experiments and report
the results of a full reanalysis of the data, carried out with
the aim of reducing the systematic and, in the GEp-2γ
case, statistical uncertainties. Our reanalysis of the GEp-2γ
data includes the previously unpublished results of the full-
acceptance analysis at ε = 0.632 and ε = 0.783, for which
the acceptance-matching cuts applied to suppress certain
systematic effects in the analysis of the originally published
data [47] have been removed. The final results reported in
this work supersede the originally published results. Section II
describes the experiment apparatus and kinematics in detail.
Section III presents the details of the data analysis. Section IV
presents the final results of both experiments and discusses
the general features of the data. A brief overview of the
theoretical interpretation of high-Q2 nucleon FF data is given
in Sec. V A, while the implications of the GEp-2γ data for the
understanding of TPEX contributions in elastic ep scattering
and the discrepancy between cross section and polarization
data for G

p
E/G

p
M are discussed in Sec. V B. Our conclusions

are summarized in Sec. VI.

II. EXPERIMENT DESCRIPTION

Longitudinally polarized electrons with energies up to
5.717 GeV produced by JLab’s Continuous Electron Beam
Accelerator Facility (CEBAF) were directed onto a liquid
hydrogen target in experimental Hall C. Elastically scattered
protons were detected by the High Momentum Spectrometer
(HMS), equipped with a double focal plane polarimeter
(FPP) to measure their polarization. Elastically scattered
electrons were detected by a large-solid-angle electromagnetic
calorimeter (BigCal) in coincidence with the scattered protons.
The main trigger for the event data acquisition (DAQ) was a
coincidence between the single-arm triggers of the HMS and
BigCal within a 50-ns window. Details of the coincidence
trigger logic and the experiment data acquisition can be
found in Ref. [48]. Table I shows the central kinematics and
running periods of the GEp-III and GEp-2γ experiments.
The two running periods at Ee ≈ 1.87 GeV were combined
and analyzed together as a single kinematic setting. The
same is true of the running periods at Ee = 3.548 GeV and
Ee = 3.680 GeV. In both cases, the near-total overlap of the
Q2 and ε acceptances of two distinct measurements differing
only slightly in beam energy and HMS central angle justifies

055203-5
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TABLE I. Central kinematics of the GEp-III and GEp-2γ experiments. Q2 denotes the central or nominal Q2 value, defined by the central
momentum setting of the High Momentum Spectrometer (HMS) in which the proton was detected. ε is the value of the kinematic parameter
defined in Eq. (3) computed from the incident beam energy (not corrected for energy loss in the target prior to scattering) and the central Q2.
Ee is the incident beam energy, averaged over the duration of each running period. E′

e is the scattered electron energy at the nominal Q2.
The central angle of BigCal is denoted θe and can differ slightly from the electron scattering angle at the central Q2. pp is the HMS central
momentum setting. θp is the HMS central angle. χ is the central spin precession angle in the HMS, Pe is the average beam polarization, and
Dcal is the distance from the origin to the surface of BigCal.

Dates (mm/dd–mm/dd, yyyy) Q2 (GeV2) ε Ee (GeV) E′
e (GeV) θe (◦) pp (GeV) θp (◦) χ (◦) Pe (%) Dcal (m)

11/27–12/08, 2007 2.50 0.154 1.873 0.541 105.2 2.0676 14.5 108.5 85.9 4.93
01/17–01/25, 2008 2.50 0.150 1.868 0.536 105.1 2.0676 14.5 108.5 85.5 4.94
12/09–12/16, 2007 2.50 0.633 2.847 1.515 44.9 2.0676 31.0 108.5 84.0 12.00
12/17–12/20, 2007 2.50 0.772 3.548 2.216 32.6 2.0676 35.4 108.5 85.8 11.16
01/05–01/11, 2008 2.50 0.789 3.680 2.348 30.8 2.0676 36.1 108.5 85.2 11.03
11/07–11/20, 2007 5.20 0.377 4.052 1.281 60.3 3.5887 17.9 177.2 79.5 6.05
05/27–06/09, 2008 6.80 0.506 5.711 2.087 44.2 4.4644 19.1 217.9 79.5 6.08
04/04–05/27, 2008 8.54 0.235 5.712 1.161 69.0 5.4070 11.6 262.2 80.9 4.30

combining the two settings into a single measurement.2 The
beam energy for each running period quoted in Table I
represents the average incident beam energy during that period
and is not corrected for energy loss in the LH2 target. The ε
value quoted in Table I is computed from the average incident
beam energy and central Q2 value, and differs slightly from
the acceptance-averaged value, hereafter referred to as 〈ε〉, and
the “central” value εc quoted with the final GEp-2γ results,
which is computed from the central Q2 value and the average3

beam energy, corrected event by event for energy loss in the
LH2 target materials upstream of the reconstructed scattering
vertex (see Tables XI and XII).

CEBAF consists of two antiparallel superconducting radio-
frequency (SRF) linear accelerators (linacs), each capable
(ca. 2007–2008) of approximately 600 MeV of acceleration,
connected by nine recirculating magnetic arcs, with five at
the north end and four at the south end. With this “racetrack”
design, the electron beam can be accelerated in up to five passes
through both linacs, for a maximum energy of approximately
6 GeV before extraction and delivery to the three experimental
halls. Polarized electrons are excited from a “superlattice”
GaAs photocathode using circularly polarized laser light.
Details of the CEBAF accelerator design and operational
parameters are described in Refs. [49,50], while more details
specific to the running period of the GEp-III and GEp-2γ
experiments can be found in Ref. [48]. The typical beam
current on target during the experiment was 60–100 μA, while

2In this context, combining the data from two distinct measurements
means combining all events from each of the two kinematically
similar settings in a single unbinned maximum-likelihood extraction
of Pt and P�, in which the small differences in central kinematics are
accounted for event by event. This amounts to the assumption that Pt

and P� are the same for both settings. The data were also analyzed
separately and found to be consistent with this assumption.

3Where data from kinematically similar settings have been com-
bined, the “central” ε value quoted with the final result represents a
weighted average of the “central” values from each of the combined
settings.

the typical beam polarization was 80–86%. The beam helicity
was flipped pseudorandomly [51] at a frequency of 30 Hz
throughout the experiment.

During normal operations, the Hall C arc magnets, which
steer the beam extracted from the CEBAF accelerator to Hall
C, are operated in an achromatic tune. For a measurement of the
beam energy, the arc magnets are operated in a dispersive tune.
The central bend angle of the arc is 34.3◦. The field integral of
the arc magnets has been measured as a function of the power
supply current. The beam position and arc magnet current
setting information are used in the feedback system, which
stabilizes the beam energy and position. This system has been
calibrated using dedicated arc beam energy measurements
from Halls A and C and is used for continuous monitoring
of the beam momentum.

Table II shows the Hall C arc measurements of the
beam energy performed during the GEp-III and GEp-2γ
experiments. The arc energy of Ee = 5.717 GeV measured
at the beginning of the Q2 = 8.5 GeV2 running in April 2008
differs slightly from the average beam energy for this run
period and the subsequent 6.8 GeV2 running, shown in Table I.
During the 8.5 GeV2 running, a number of slight changes in
accelerator tune to optimize the performance of CEBAF in the

TABLE II. Arc measurements of the beam energy (Earc) taken
during the GEp-III and GEp-2γ experiments. No dedicated Hall C
arc measurement was performed during the period December 17–20,
2007, during which the nominal beam energy was 3.548 GeV. The
data at a central Q2 of 6.8 GeV2 were collected at the same nominal
beam energy as the Q2 = 8.5 GeV2 data during April–June 2008.

Date Q2 (GeV2) Number of passes Earc (MeV)

11/19/2007 5.2 5 4052.34 ± 1.38
11/28/2007 2.5 3 1873.02 ± 1.09
12/11/2007 2.5 4 2847.16 ± 1.19
1/6/2008 2.5 4 3680.23 ± 1.31
1/23/2008 2.5 2 1868.13 ± 1.09
4/6/2008 8.5 5 5717.32 ± 1.64
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context of simultaneous delivery of longitudinally polarized
beam to Halls A and C at different passes resulted in several
slight changes in beam energy at the 1- to 2-MeV level. While
no additional arc energy measurements were performed, the
small, occasional changes in beam energy were detected by
the online beam energy monitoring system and also confirmed
by shifts in the elastic peak position in the variables used for
elastic event selection in the offline analysis (see Sec. III A).
These small changes were included in the final beam energy
database for the offline analysis. Except for the first few days
at 8.5 GeV2, during which the beam energy was 5.717 GeV,
the actual incident beam energy varied between 5.710 and
5.714 GeV during most of the 8.5 GeV2 running, averaging
5.712 GeV. The incident beam energy was stable at 5.711
GeV during the 6.8 GeV2 running. As discussed in Sec. III A
and Ref. [52], the contribution of the systematic uncertainty
in the beam energy to the total systematic uncertainties in the
polarization transfer observables is a small fraction of the total.

The target system used for this experiment consists of
several different solid targets and a three-loop cryogenic target
system for liquid hydrogen (LH2). The solid targets include
thin foils of carbon and/or aluminum used for spectrometer
optics calibrations and to measure the contribution of the
walls of the cryotarget cell to the experiment background.
The spectrometer optics calibrations and systematic studies
are described in detail in Ref. [52], while details of the solid
targets are described in Ref. [48]. For the first kinematic point
taken during November 7–20, 2007, a 15-cm LH2 cryotarget
cell was used. For all of the other production kinematics
of both experiments, a 20-cm cryotarget cell was used. The
center of the 20-cm cell was offset 3.84 cm downstream of
the origin along the beamline to allow electrons scattered by
up to 120 deg to exit through the thin scattering chamber
exit window and be detected by the calorimeter. The liquid
hydrogen targets were operated at a constant temperature of
19 K and nominal density of ρ ≈ 0.072 g/cm3 throughout the
experiment. The size of the beam spot on target was enlarged
to a transverse size of typically 2 × 2 mm2 by the Hall C
fast raster magnet system, to minimize localized heating and
boiling of the liquid hydrogen and resulting fluctuations in
target density and luminosity. More details of the cryogenic
target system can be found in Ref. [48].

A. Hall C HMS

The High Momentum Spectrometer (HMS) is part of the
standard experimental equipment in JLab’s Hall C. It is a su-
perconducting magnetic spectrometer with three quadrupoles
and one dipole arranged in a QQQD layout. The HMS has a
25-deg central vertical bend angle and point-to-point focusing
in both the dispersive and nondispersive planes when operated
in its “standard” tune. The HMS dipole field is regulated by
an NMR probe and is stable at the 10−5 level, while the
quadrupole magnet power supplies are regulated by current and
are stable at the 10−4 level. The HMS solid angle acceptance
is approximately 6.74 msr when used with the larger of its
two retractable, acceptance-defining octagonal collimators, as
it was in this experiment. The HMS momentum acceptance
is approximately ±9% relative to the central momentum

CH2 analyzer blocks

FPP drift chamber pairs

S1X+S1Y trigger plane

HMS drift chambers

S0 trigger plane

FIG. 4. Design drawing of the FPP installed in the HMS detector
package, with the HMS drift chambers and the trigger planes.

setting. The maximum central momentum setting is 7.4 GeV/c.
The HMS detector package and superconducting magnets are
supported on a common carriage that rotates on concentric
rails about the central pivot of Hall C. The detector package is
located inside a concrete shield hut supported on a separate
carriage from the detector and magnet supports. With the
exception of small air gaps between the scattering chamber
exit window and the HMS entrance window and between the
HMS dipole exit window and the first HMS drift chamber,
the entire flight path of charged particles through the HMS is
under vacuum, minimizing energy loss and multiple scattering
prior to the measurement of charged particle trajectories.

As shown in Fig. 4, the HMS detector package was
modified by removing the gas Cherenkov counter and the
two rearmost planes of scintillator hodoscopes from the
standard HMS detector package to accommodate the focal
plane polarimeter (FPP), leaving only the two upstream planes
of scintillators (“S1X” and “S1Y”) to form a fast trigger.
The HMS calorimeter was not removed, and its signals were
recorded to the data stream, but it was not used either in the
trigger or in the offline analysis, except for crude pion rejection
in the analysis of the HMS optics calibration data, for which the
HMS was set with negative polarity for electron detection. The
standard HMS drift chambers, described in detail in Ref. [53],
were used to measure the trajectories of elastically scattered
protons. The measured proton tracks were then used to
reconstruct the event kinematics at the target and to define the
incident trajectory for the secondary polarization-analyzing
scattering in the CH2 analyzers of the FPP. Because the two
rear planes of scintillators had been removed, the “S1X” and
“S1Y” planes could not, by themselves, provide an adequately
selective trigger for most kinematic settings of the experiment.
To overcome this challenge, two additional 1-cm-thick plastic
scintillator paddles were installed between the exit window
of the HMS vacuum and the first HMS drift chamber, with
sufficient area to cover the envelope of elastically scattered

055203-7



A. J. R. PUCKETT et al. PHYSICAL REVIEW C 96, 055203 (2017)

protons for all kinematic settings. These two paddles were
collectively referred to as “S0.” The S0 plane reduced the
trigger rate to a manageable level by restricting the acceptance
to the region populated by elastically scattered protons and
suppressing triggers due to inelastic processes that occur at
a much higher rate for large Q2 values. During most of the
experiment, the HMS trigger required at least one paddle to
fire in each of the S1X, S1Y, and S0 planes. During part of the
measurement at Ee = 2.847 GeV and the entire duration of the
measurements at Ee = 3.548 and Ee = 3.680 GeV, for which
the HMS was located at relatively large scattering angles, the
trigger was based on S1X and S1Y only, as the rates were
low enough to use this less-selective trigger in coincidence
with the electron calorimeter. The price to pay for installing
the S0 trigger plane upstream of the drift chambers is that the
angular resolution of the HMS was significantly degraded due
to the additional multiple scattering in S0 [48]. More details
of the custom HMS trigger logic used for these experiments
are given in Ref. [48].

B. Focal plane polarimeter

A new focal plane polarimeter (FPP) was designed, built,
and installed in the HMS to measure the polarization of the
recoiling protons. It consists of two CH2 analyzer blocks
arranged in series to increase the efficiency, each followed
by a pair of drift chambers. A design drawing of the HMS
detector package with the FPP, the HMS drift chambers, and
the trigger scintillator planes is shown in Fig. 4.

1. FPP analyzer

The FPP analyzer is made of polyethylene (CH2). It consists
of two retractable doors, each made of two blocks, allowing for
the collection of “straight-through” trajectories for calibration
and alignment studies. Each pair is 145 cm (tall)×111 cm
(wide)×55 cm (thick) and made of several layers of CH2 held
together by an outer aluminum frame. To reduce the occurrence
of leakage through the seam when the doors are inserted, an
overlapping step was designed into the edge of both doors.
Given their substantial weight, the CH2 blocks were supported
on a different frame than the detector and attached directly to
the floor of the shield hut, ensuring that the other detectors did
not move while inserting or retracting the doors.

The choice of CH2 as the analyzer material was driven by a
compromise among the analyzing power and optimal thickness
of the material on the one hand, and the cost and space
constraints within the HMS hut on the other. Measurements
of the analyzing power of the reaction �p + CH2 → X at
Dubna [54] showed that the overall figure of merit of the
polarimeter does not increase when the analyzer thickness is
increased beyond the nuclear collision length λT of CH2. With
this result in mind, the HMS FPP was designed as a double
polarimeter with two analyzers, each approximately one λT

thick and followed by pairs of drift chambers to measure
the angular distribution of scattered protons. The analyzers
and the drift chambers were designed to be large enough to
have 2π azimuthal angular acceptance for transverse momenta
pT ≡ p sin ϑ up to 0.7 GeV/c, beyond which the polarimeter
figure of merit essentially saturates.

TABLE III. Characteristics of the wires used in the FPP drift
chambers. The sense wires are gold-plated tungsten, while the cathode
and field wires are made of a beryllium-bronze alloy.

Type Diameter (μm) Tension (g)

Sense 30 70
Field 100 150
Cathode 80 120

2. FPP drift chambers

The tracking system of the FPP consists of two drift cham-
ber pairs, one after each analyzer block. All four chambers
are identical in design and construction. The active area of
each chamber is 164 cm (tall) ×132 cm (wide). Each chamber
contains three detection planes sandwiched between cathode
layers. Each detection layer consists of alternating sense wires
and field wires with a spacing of 2 cm between adjacent
sense wires (1 cm between a sense wire and its neighboring
field wires). The wire spacing in the cathode layers, located
0.8 cm above and below the detection layers, is 3 mm. The
characteristics of the different wires are given in Table III. The
sense wire planes have three different orientations, denoted U,
V, and X. The stacking order along the z axis of the planes in
each chamber is VXU. The V wires are strung along the +45◦
line relative to the x axis and thus measure the coordinate
along the −45◦ line, i.e., v ≡ x−y√

2
. The X wires are strung

perpendicular to the x axis and thus measure the x coordinate.
The U wires are strung along the −45◦ line relative to the x
axis and thus measure the coordinate u ≡ x+y√

2
. The U and V

layers have 104 sense wires each, while the X layers have 83
sense wires. Each layer within each chamber has a sense wire
passing through the point (x,y) = (0,0), the geometric center
of the chamber active area.4

Each drift chamber is enclosed by 30-μm-thick aluminized
mylar gas windows and a rigid aluminum frame. Each pair of
chambers is attached to a common set of rigid spacer blocks
(two on each side of the chamber frame) by a set of two
aligning bolts per block penetrating each chamber. Each of
the two spacer blocks along both the top and bottom sides of
the chamber frame is also attached to a third threaded steel
rod that goes through both chambers in the pair. The chamber
pair is then mounted to the FPP support frame via C-shaped
channels machined into the top spacer blocks that mate with
a cylindrical Thomson rail attached to the top of the support
frame, and via protrusions of the bottom spacer blocks with
guide wheels that slide into a U channel on the bottom of the
FPP support frame. After installation, each chamber pair was

4The symmetry created by this common intersection point and the
relative lack of redundancy of coordinate measurements, with only
six coordinate measurements along each track, creates an essentially
unresolvable left-right ambiguity for a small fraction of tracks passing
through the region near the center of the chambers at close to normal
incidence, for which two mirror-image solutions of the left-right
ambiguity exist with identical combinations of drift distances that
are basically indistinguishable in terms of χ2.
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bolted to a hard mechanical stop built into the support frame.
The design ensures that the relative positioning of the two
chambers within a pair is fixed and reproducible.

The FPP drift chambers used the same 50:50% argon:ethane
gas mixture as the HMS drift chambers. The basic drift cell
in the FPP drift chambers has the same aspect ratio as the
HMS drift cell, but the dimensions are twice as large. The
cathode and field wires were maintained at a constant high
voltage of −2400 V, while the sense wires were at ground
potential. This operational configuration gives the FPP drift
chambers similar, but not identical, electric field and drift
velocity characteristics to the HMS drift chambers. The main
difference is that the HMS drift chambers were operated
with a different electric field configuration in which three
different high-voltage settings were applied to the field and
cathode wires according to their distance from the nearest
sense wire, leading to nearly cylindrical equipotential surfaces
surrounding each sense wire. This in turn means that the drift
time measured by the HMS chambers is a function of the
distance of closest approach of the track to the wire, rather than
the in-plane track-wire distance. Since the tracks of interest in
the HMS drift chambers are very nearly perpendicular to the
wire planes, the difference between these two distances is small
in any case.

The FPP wire signals are processed by front-end amplifier-
discriminator (A-D) cards attached directly to the chambers.
Each A-D card processes the signals from eight sense wires.
The amplified, discriminated FPP signals are digitized by
TDCs located close to the chambers within the HMS shield
hut. A significant advantage of the Hall C FPP DAQ system
compared to previous experiments using the Hall A FPP
[29,42] is that each sense wire was read out individually
by a dedicated multihit TDC channel, whereas the straw
chamber signals in the Hall A FPP were multiplexed in groups
of eight wires by the front-end electronics to reduce the
number of readout channels required, effectively preventing
the resolution of multitrack events in which two or more
tracks create simultaneous signals on straws located within the
same group of eight. As discussed in Sec. III B 7, the ability
to isolate true single-track events significantly increased the
effective analyzing power of the Hall C FPP relative to the
Hall A FPP for equivalent analyzer material and thickness.
From the start of the experiment in October 2007 to February
2008, VME-based F1 TDC modules [55] housed in a pair
of VME crates in the HMS shield hut were used to read out
the FPP signals. For the high-Q2 data collection from April
to early June of 2008, the FPP signals were read out using
LeCroy 1877-model Fastbus TDCs. The FPP data acquisition
was changed from VME to Fastbus TDCs due to relatively
frequent malfunctions of the VME DAQ system encountered
during the GEp-2γ production running, especially for the data
taken at the relatively forward HMS central angle of 14.5 deg,
for which the detector hut was fairly close to the beam dump
and the hit rates in the FPP chambers were relatively high.
Since no such problems were observed with the Fastbus TDCs
used concurrently to read out the HMS drift chambers, a second
Fastbus crate equipped with LeCroy 1877 TDC modules was
installed in the HMS shield hut during the planned two-month

accelerator shutdown5 in February and March of 2008 in
preparation for the high-Q2 running at an HMS angle of
11.6 deg. As expected based on the experience with the HMS
drift chamber readout, the Fastbus TDC readout for the FPP
drift chambers functioned fairly smoothly throughout the 2008
high-Q2 running.

C. Electron calorimeter

Elastically scattered electrons were detected by an elec-
tromagnetic calorimeter, named BigCal, built specifically for
this experiment. The calorimeter was made of 1,744 lead-
glass blocks (TF1-0 type) stacked with a frontal area of
122×218 cm2. The array was constructed from blocks of two
different sizes. The bottom part of the calorimeter consisted of
a 32×32 array of blocks with dimensions of 3.8×3.8×45 cm3

originating from the IHEP in Protvino, Russia, while the top
part of the calorimeter consisted of a 30×24 array of blocks
with dimensions of 4×4×40 cm3 from the Yerevan Physics
Institute in Yerevan, Armenia, used previously in a Compton
scattering measurement in Hall A [56]. The 45-cm (40-cm)
depth of the Protvino (Yerevan) blocks corresponds to 16.4
(14.6) radiation lengths, sufficient to absorb the total energy
of elastically scattered electrons. The Cherenkov light created
in the glass by relativistic particles from the electromagnetic
cascade was registered by photomultiplier tubes (PMTs) of
type FEU-84, coupled optically to the end of each block with
a 5-mm-thick transparent silicon “cookie” to compensate for a
possible misalignment between the two elements. The blocks
were optically isolated from each other via an aluminized
mylar wrapping. For each kinematic setting, the calorimeter
was positioned at an angle corresponding to the central Q2

value and beam energy. The distance from the origin to the
surface of BigCal was chosen to be as large as possible,
consistent with matching between the solid angle acceptance
of BigCal for elastically scattered electrons and the fixed solid
angle of the HMS for elastically scattered protons. For the
kinematics at Ee = 3.548 and 3.680 GeV (see Table I), BigCal
was placed closer to the target than the acceptance-matching
distance due to limitations imposed by the signal cable length
and the location of the BigCal readout electronics, as well
as the available space in Hall C. At Q2 = 8.5 GeV2, the
electron solid angle for acceptance matching was 143 msr,
or about twenty times the solid angle acceptance of the HMS.
Figure 5 shows BigCal with the front shielding plates removed,
revealing the array of lead-glass blocks.

The analog signals from the PMTs were sent to specialized
NIM modules for amplification and summing, with eight input
channels each. The outputs included copies of the individual
input signals amplified by a factor of 4.2, and several copies
of the analog sum of the eight input signals. The amplified
analog signals from the individual PMTs were sent to LeCroy
model 1881M charge-integrating Fastbus ADCs for readout.

5The purpose of this accelerator down was to install refurbished
cryomodules in CEBAF to reach the maximum beam energy of
5.7 GeV needed for the high-Q2 running of GEp-III.
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FIG. 5. BigCal calorimeter with its front aluminum shielding
plates removed, exposing the stack of 1744 lead-glass blocks.

One copy of each “first level” sum of eight blocks was sent to
a fixed-threshold discriminator, the output of which was then
sent to a TDC for timing readout. Additional copies of each
sum of eight were combined with other sums of eight into
second-level sums of up to 64 blocks using identical analog
summing modules. These level-2 sums, of which there are a
total of 38, were also sent to fixed-threshold discriminators,
and a global logical “OR” of all the second-level discriminator
outputs was used to define the trigger for BigCal. The
groupings of blocks for the level-2 sums were organized
with partial overlap to avoid regions of trigger inefficiency,
as detailed in Ref. [48]. Because there was no overlap in
the trigger logic between the left and right halves of the
calorimeter, the trigger threshold was limited to slightly less
than half of the average elastically scattered electron energy. A
higher threshold would have resulted in significant efficiency
losses at the boundary between the left and right halves of the
calorimeter.

Four 1-inch-thick aluminum plates (for a total of about one
radiation length) were installed in front of the glass to absorb
low-energy photons and mitigate radiation damage to the
glass. This additional material degrades the energy resolution,
but does not significantly affect the position resolution. All
four aluminum plates were used for all kinematics except the
lowest ε point of the GEp-2γ experiment, for which only
one plate was used. For this setting, the calorimeter was
placed at the backward angle of θe ≈ 105◦, for which the
elastically scattered electron energy was only E′

e ≈ 0.54 GeV,
the radiation dose rate in the lead-glass was low enough that

the additional shielding was not needed, and the better energy
resolution afforded by removing three of the four plates was
needed to maintain high trigger efficiency at the operating
threshold.

The glass transparency gradually deteriorated throughout
the experiment due to accumulated radiation damage. The
effective signal strength signal strength in the BigCal blocks
was monitored in situ throughout the experiment using the
known energy of elastically scattered electrons, reconstructed
precisely from the measured proton kinematics. The PMT high
voltages were periodically increased to compensate for the
gradual decrease in light yield and maintain a roughly constant
absolute signal size, in order to avoid drifts in the effective
trigger threshold and other deleterious effects. However, as
discussed in Ref. [52], the reduced photoelectron yield caused
the energy resolution to deteriorate. With the 4-inch-thick
aluminum absorber in place, the energy resolution worsened
from about 10.9%/

√
E following the initial calibration to

roughly 22%/
√

E at the end of the experiment. During
the early 2008 accelerator shutdown, the glass was partially
annealed using a UV lamp system but it did not fully recover
to its initial transparency and energy resolution prior to the
start of the high-Q2 running in April 2008, at which point the
transparency resumed its gradual deterioration. The achieved
energy resolution, while relatively poor for this type of
detector and dramatically worsened by radiation damage, was
nonetheless adequate for triggering with the threshold set at
half the elastically scattered electron energy or less. In contrast
to the energy resolution, the position resolution of BigCal,
estimated to be roughly 6 mm using the Q2 = 6.8 GeV2 data
collected at the end of the experiment [48,52], did not change
noticeably during the experiment. The achieved coordinate
resolution of BigCal was significantly better than needed given
the experimentally realized angular, momentum, and vertex
resolution of the HMS, and proved essential for the suppression
of the inelastic background, especially at high Q2, as discussed
in Sec. III A. More details of the calibration and event recon-
struction procedures for BigCal can be found in Refs. [48,52].

III. DATA ANALYSIS

The analysis of the data proceeds in three phases:

(1) Decoding of the raw data and the reconstruction of
events.

(2) The selection of elastic ep events and the estimation
of the residual contamination of the final sample by
inelastic backgrounds and accidental coincidences.

(3) The extraction of the polarization transfer observables
from the measured angular distributions of protons
scattered in the FPP.

The raw data decoding and the event reconstruction procedure,
including detector calibrations and reconstruction algorithms,
are described in the technical supplement to this article [52] as
well as Ref. [48]. The elastic event selection and background
estimation procedure are discussed in Sec. III A. The extraction
of polarization observables is presented in Sec. III B. The
detailed evaluation of systematic uncertainties is presented
in Refs. [48,52].
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A. Elastic event selection

Elastic events were selected using the two-body kinematic
correlations between the electron and the proton. Accidental
coincidences were suppressed by applying a loose, ±10 ns
cut to the time-of-flight-corrected difference �t between the
timing signals associated with the electron shower in BigCal
and the proton trigger in the fast scintillator hodoscopes of
the HMS. The resolution of the coincidence time difference
�t is dominated by the timing resolution of BigCal, which
varied from 1.5 to 2 ns depending on the electron energy. The
contamination of the data by accidental coincidences within
the ±10-ns cut region was less than 10% before applying the
exclusivity cuts described below and negligible after applying
the cuts. The transferred polarization components for the
accidental coincidence events were found to be similar to those
of the real coincidence events for the inelastic background [57],
such that the accidental contamination of the inelastic back-
ground sample at the level of 10% or less did not noticeably
affect the corrections to the elastic ep signal polarizations,
which were essentially negligible except at Q2 = 8.5 GeV2.

The beam energy is known with an absolute accuracy
�E/E � 5 × 10−4 from the standard Hall C arc measurement
technique. The per-bunch beam energy spread under normal
accelerator operating conditions is typically less than 3×10−5

and is continuously monitored using synchrotron light inter-
ferometry [58], while the CEBAF fast energy feedback system
maintains the long-term stability of the central beam energy at
the 10−4 level [59]. The spread and systematic uncertainty in
the electron beam energy is significantly smaller than the HMS
momentum resolution of σp/p ≈ 10−3, and its contribution to
the systematic uncertainty in the determination of the reaction
kinematics is small.

The scattering angles and energies/momenta of both outgo-
ing particles are measured in each event. Because the energy
resolution of BigCal was too poor to provide meaningful
separation between elastic and inelastic events for any cut
with a high efficiency for elastic events, no cuts were applied
to the measured energy of the electron, beyond the hardware
threshold imposed by the BigCal trigger and the software
threshold imposed by the clustering algorithm. This leaves
the proton momentum and the polar and azimuthal scattering
angles of the electron and proton as useful kinematic quantities
for the identification of elastic events.

Figure 6 shows a simplified version of the procedure
for isolating elastic ep events in the GEp-III data using
the two-body kinematic correlations between the electron
detected in BigCal and the proton detected in the HMS.
Similar plots for the GEp-2γ kinematics can be found in
Ref. [52]. The proton momentum pp and scattering angle θp

in elastic scattering are related by

pp(θp) = 2MpEe(Mp + Ee) cos(θp)

M2
p + 2MpEe + E2

e sin2(θp)
. (14)

The difference δpp ≡ 100 × pp−pp(θp)
p0

, where p0 is the central
momentum of the HMS, provides a measure of inelasticity for
the detected proton independent of any measurement of the
electron kinematics. The δpp spectra exhibit significant inelas-

tic backgrounds before applying cuts based on the measured
electron scattering angles, especially at Q2 = 8.5 GeV2.

The scattered electron’s trajectory is defined by the straight
line from the reconstructed interaction vertex to the measured
electron impact coordinates at the surface of BigCal. The
correlation between the electron polar scattering angle θe

and the proton momentum pp was expressed in terms of the
difference δpe ≡ 100 × pp−pp(θe)

p0
, where pp(θe) is calculated

from elastic kinematics as follows:

E′
e(θe) = Ee

1 + Ee

Mp
(1 − cos θe)

,

Q2(θe) = 2EeE
′
e(θe)(1 − cos θe), (15)

pp(θe) =
√

Q2(θe)[1 + τ (θe)],

with τ (θe) ≡ Q2(θe)
4M2

p
. Finally, coplanarity of the outgoing

electron and proton is enforced by applying a cut to δφ ≡
φe − φp − π . The azimuthal angles of the detected particles
are defined in a global coordinate system in which the
distribution of φe (φp) is centered at +π/2 (−π/2), such
that coplanarity implies φe = φp + π for all elastic ep events
within the detector acceptances.

The simplified elastic event selection procedure shown in
Fig. 6 corresponds to fixed-width, ±3σ cuts centered at zero
for all variables. It should be noted, however, that for the
final analysis, cuts of variable width (mean) were applied
to δpp (δφ) to account for observed variations of the width
(position) of the elastic peak within the HMS acceptance (for
details, see Ref. [52]). While the differences in statistics and
analysis results between the full procedure and the simple
procedure of Fig. 6 are small for sufficiently wide cuts, the full
procedure optimizes the effective signal-to-background ratio
and efficiency of the elastic event selection procedure and
suppresses cut-induced systematic bias in the reconstructed
proton kinematics.

In contrast to δpp and δφ, the resolution of δpe is approxi-
mately constant within the acceptance and mostly dominated
by the HMS momentum resolution. In general, the observed
correlations of δpe with the reconstructed proton kinematics
are small compared to experimental resolution. Moreover, the
extracted polarization transfer observables are generally less
sensitive to the systematic error in the reconstructed proton
momentum than to the errors in the reconstructed proton
angles, which dominate the experimental resolution of δpp

and δφ. The results are thus less susceptible to systematic
bias induced by the δpe cut than that induced by the δpp

and δφ cuts, given the experimentally realized angular and
momentum resolution of the HMS. Therefore, a fixed-width,
±3σ cut centered at zero was applied to δpe for all kinematics,
which has the added benefit of simplifying the estimation of
the residual background contamination of the final elastic event
sample, as shown in Fig. 7 and discussed below.

For electron scattering from hydrogen, elastically scattered
protons have the highest kinematically allowed momenta for
positively charged particles at a given θp. Events at δpp < 0
are dominated by inelastic reactions on hydrogen, including
π0 photoproduction (γp → π0p) near the bremsstrahlung end
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FIG. 6. Simplified illustration of elastic event selection for the GEp-III kinematics: Q2 = 5.2 GeV2 (top row), Q2 = 6.8 GeV2 (middle row)
and Q2 = 8.5 GeV2 (bottom row). Exclusivity cut variables are δpp ≡ 100 × pp−pp (θp )

p0
(left column), δpe ≡ 100 × pp−pp (θe)

p0
(middle column),

and δφ ≡ φe − φp − π (right column). The distribution of each variable is shown for all events (red empty circles), events selected by applying
±3σ cuts of fixed width to both of the other two variables (black filled squares), and events rejected by these cuts (blue empty triangles).
Vertical dotted lines indicate the ±3σ cut applied to each variable. Similar plots for the GEp-2γ kinematics can be found in Ref. [52]. Note
that the horizontal axis range in each plot is a fixed multiple of the elastic peak width, which varies with Q2 and Ee.

point (Eγ → Ee), with one or both π0 decay photons detected
by BigCal, and, to a lesser extent, π0 electroproduction (ep →
e′π0p) near threshold, with the scattered electron detected
in BigCal. At the multi-GeV energies characteristic of these
experiments, the kinematic separation between the ep and π0p
reactions in terms of δpp is comparable to the experimental
resolution, such that there is significant overlap between the
π0p and ep reactions in the vicinity of the elastic peak. The
20-cm liquid hydrogen target is itself a ∼ 2.2% radiator,
creating a significant “external” bremsstrahlung flux along
the target length in addition to the real and virtual photon
flux present in the electron beam independent of the target
thickness.6

6For example, at Q2 = 8.5 GeV2, the observed fractional contami-
nation by inelastic backgrounds of the final sample of events selected

Events at positive δpp (the so-called superelastic region)
originate from quasielastic and inelastic scattering in the
aluminum entry and exit windows of the liquid hydrogen
target cell, and from non-Gaussian tails of the HMS angular
and/or momentum resolution. Because the aluminum window
thickness is only ∼5% of the total target thickness by mass
(12% by radiation length), and the exclusivity cut variables
are smeared by Fermi motion of the nucleons in aluminum,
the contribution of scattering from the target end windows to
the total event yield is essentially negligible (� 10−3) after the
cuts.

The residual peaks at zero in the δpe and δφ spectra
of rejected events result from radiative effects and non-
Gaussian tails of the experimental resolution. In particular,

as elastic increases by a factor of 1.6 from the upstream end of the
target to its downstream end.
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FIG. 7. Example of the Gaussian sideband fit of the δpe dis-
tribution used to estimate the residual background contamination
of the final elastic event selection cuts at Q2 = 8.5 GeV2. Data
(black filled circles) are shown after applying ±3σ cuts to both
δpp and δφ. In this example, the estimated fractional background
contamination, integrated within the ±3σ cut region (black vertical
lines), is f ≡ B

S+B
= (4.89 ± 0.01)%, where S and B refer to the

signal and the background, respectively, and the quoted uncertainty
is statistical only. See text for details.

the remnant peaks in the δφ distributions of rejected events
contain significant contributions from the elastic radiative
tail, because events affected by radiation from the incident
electron beam (coherent or incoherent with the hard scattering
amplitude) are strongly suppressed by both the δpe and
δpp cuts without affecting the coplanarity of the outgoing
particles.

Figure 7 illustrates the procedure for estimating the residual
background contamination in the final sample of elastic
events. By far the worst case for background contamination
after applying exclusivity cuts is Q2 = 8.5 GeV2, for which
the contamination approaches 5% for ±3σ cuts. The δpe

distribution of the background in the vicinity of the elastic
peak after applying cuts to δpp and δφ is well approximated
by a Gaussian distribution, as was confirmed by examining
the events rejected by the δpp and/or δφ cuts, as well as by
Monte Carlo simulations of the main background processes.
The shape of the elastic ep radiative tail in the δpe distribution
was also well reproduced by Monte Carlo simulations with
radiative corrections to the unpolarized cross section following
the formalism described in Ref. [60]. In Fig. 7, the δpe

distribution of the background was fitted with a Gaussian
by excluding the region −1.6% � δpe � 0.5% in which the
elastic peak and radiative tail contributions are significant.
The residual background contamination was then estimated
by extrapolating the Gaussian fit of the background into the
elastic peak region.

Table IV shows the estimated, acceptance-averaged frac-
tional background contamination of the final, ±3σ cuts used
for all six kinematics. The inelastic contamination estimates
shown in Table IV are determined directly from the data
but are not used directly in the final analysis, because the
background contamination and the transferred polarization
components of the background both vary strongly as a function
of δpp within the final cut region, as the dominant background

TABLE IV. Estimated fractional background contamination f ≡
B

S+B
(where B and S refer to the background and the signal,

respectively) within the final, ±3σ cut region of the δpe distribution,
for all the kinematics of the GEp-III and GEp-2γ experiments. The
estimates shown are obtained after applying ±3σ cuts to δpp and δφ.
The quoted uncertainties are statistical only. The quoted beam energy
Ee is the value from Table I, which is averaged over the duration
of the running period, and not corrected for energy loss in the LH2

target.

Q2 (GeV2) Ee (GeV) (f ± �fstat) (%)

2.5 1.873 0.435 ± 0.002
2.5 1.868 0.512 ± 0.001
2.5 2.847 0.161 ± 0.002
2.5 3.548 0.198 ± 0.002
2.5 3.680 0.208 ± 0.001
5.2 4.052 1.018 ± 0.004
6.8 5.711 0.748 ± 0.004
8.5 5.712 4.89 ± 0.01

process evolves from π0p photo- and electroproduction to
quasielastic Al(e,e′p). The π0p contribution rises rapidly for
negative δpp values as the kinematic threshold is crossed,
whereas the δpp distribution of the (very small) target
endcap contamination is relatively uniform within the cut
region. The recoil proton polarization for the inelastic π0p
reaction on hydrogen generally differs strongly from that
of the elastic ep process, while the proton polarization in
quasielastic Al(e,e′p) is generally similar to elastic ep, since
it is basically the same process embedded in a nucleus (see
Figs. 16 and 17). Figure 8 shows the δpp dependence of the
fractional background contamination f for Q2 = 8.5 GeV2,
the setting with (by far) the greatest residual background
contamination. Details of the background subtraction proce-
dure are given in Sec. III B and the systematic uncertainties
associated with the background subtraction are presented in
Ref. [52].

 (%)
p

pδ
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2 = 8.5 GeV2Q

FIG. 8. Fractional background contamination f as a function of
δpp at Q2 = 8.5 GeV2, with ±3σ cuts applied to δpe and δφ. The
horizontal error bars represent the rms deviation from the mean of
the δpp values of all events in each bin. The uncertainties �f are
statistical only and are smaller than the data points.
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The stability of the transferred polarization components
with respect to the width of the elastic event selection cuts and
the amount of background included in the final event sample
was checked by varying the width of the δpp, δφ, and δpe cuts
independently between ±2.5σ and ±3.5σ and observing the
variations in the background-corrected results. The observed
variations of Pt , P�, and the ratio Pt/P� were compati-
ble with purely statistical fluctuations for all kinematics.
Therefore, no additional systematic uncertainty contributions
were assigned. The cut sensitivity study also confirmed
that the application of cuts that were adequately loose and
carefully centered with respect to the elastic peak eliminated
any cut-induced systematic bias of the reconstructed proton
kinematics. This was a nontrivial concern for this analysis,
given the exaggerated effect of multiple scattering in S0

on the event-by-event errors in the reconstructed proton
angles and the very high sensitivity of the spin transport
calculation to systematic errors in these angles, particularly
the nondispersive-plane angle φtar (see Ref. [52] for a detailed
discussion).

B. Extraction of polarization transfer observables

1. FPP angular distribution

An expression for the general angular distribution in the
polarimeter is given by

N±(p,ϑ,ϕ) = N±
0

ε(p,ϑ)E(ϑ,ϕ)

2π

× [
1 ± Ay

(
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

)
+Ay

(
P FPP

y,ind cos ϕ − P FPP
x,ind sin ϕ

)]
, (16)

where N±
0 is the number of incident protons corresponding

to a ±1 beam helicity state, ε(p,ϑ) is the fraction of protons
of momentum p scattered at a polar angle ϑ and producing
one single track, E(ϑ,ϕ) represents the angular dependence
of the combined effective polarimeter acceptance-detection
efficiency, which factorizes from the differential nuclear scat-
tering cross section, Ay = Ay(p,ϑ) represents the analyzing
power of �p + CH2 → one charged particle + X scattering,
and P FPP

x,tr/ind and P FPP
y,tr/ind are the transverse components of the

proton polarization at the focal plane, with Ptr (Pind ) denoting
transferred (induced) polarization. As explained below, only
the ϕ dependence of the detector acceptance and efficiency is
relevant for polarimetry.

Note that for all kinematics of the GEp-III and GEp-2γ
experiments, N+

0 = N−
0 = Ntotal/2 to within statistical uncer-

tainties. This is a consequence of the beam-helicity indepen-
dence of the elastic �ep scattering cross section for an unpolar-
ized target (in the one-photon-exchange approximation), and
the rapid (30-Hz) helicity reversal, which cancels the effects
of slow drifts in experimental conditions such as luminosity
and detection efficiency.

As described in Ref. [48], the azimuthal scattering angle ϕ
was defined in a coordinate system that is comoving with the
incident proton, in which the HMS track defines the z axis,
the y axis is chosen to be perpendicular to the HMS track but
parallel to the yz plane of the fixed TRANSPORT coordinate

system (see Ref. [52]), and the x axis is defined by x̂ = ŷ × ẑ.
In this coordinate system, ϕ is the azimuthal angle of the
scattered proton trajectory measured clockwise from the x axis
toward the y axis. Note that this convention for the definition of
ϕ differs from the convention used in the analysis of the GEp-I
and GEp-II experiments [29,42]. In the GEp-I and GEp-II
analyses, ϕ was defined such that ϕ = 0 for scattering along
the +y axis, and ϕ was measured counterclockwise from the y
axis toward the x axis (see Eq. (4) of Ref. [42]). With ϕ defined
as in the GEp-III/GEp-2γ analysis, the sin(ϕ) asymmetry is
dominant, whereas the cos(ϕ) asymmetry is dominant using
the GEp-I/GEp-II convention.

In the one-photon-exchange approximation in elastic ep
scattering, the induced polarization terms are identically
zero due to time-reversal invariance. When two photons
are exchanged, a nonzero induced polarization of elastically
scattered protons can occur at subleading order in α due
to the interference between the one-photon and two-photon-
exchange amplitudes. Because it is subleading order in α,
it is not expected to exceed �1–2% in magnitude [45], and
must be normal to the ep scattering plane due to parity
invariance of the electromagnetic interaction. The helicity-
independent azimuthal asymmetry resulting from a small
induced polarization at this level is smaller yet as the analyzing
power does not exceed roughly 20% at any (p,ϑ) in these
experiments.

The “false” or instrumental asymmetry resulting from the
effective acceptance and efficiency function E(ϕ) can be
expressed in terms of its Fourier expansion:

E(ϕ) = C

{
1 +

∞∑
m=1

[cm cos(mϕ) + sm sin(mϕ)]

}

≡ C[1 + μ0(ϕ)], (17)

with an overall multiplicative constant C that is ultimately
absorbed into the overall normalization of the distributions
when integrating over the dependence on kinematic variables
other than ϕ. A clean extraction of the transferred polarization
components is obtained from the difference and/or the differ-
ence/sum ratio between the angular distributions for positive
and negative beam helicities, integrated over all momenta
within the HMS acceptance and a limited ϑ range chosen
to exclude small-angle Coulomb scattering and large-angle
scatterings for which Ay ≈ 0. The helicity difference and sum
distributions are given by

f + − f − ≡ π

�ϕ

[
N+(ϕ)

N+
0

− N−(ϕ)

N−
0

]

= Āy

[
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

]
[1 + μ0(ϕ)]

≈ Āy

[
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

]
, (18)

f + + f − ≡ π

�ϕ

[
N+(ϕ)

N+
0

+ N−(ϕ)

N−
0

]
= [1 + μ0(ϕ)]

×[
1 + Āy

(
P FPP

y,ind cos ϕ − P FPP
x,ind sin ϕ

)]
≈ 1 + μ0(ϕ), (19)
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where �ϕ is the bin width in ϕ and Āy is the average analyzing
power within the range of ϑ considered.7

The difference-sum ratio is given by

f+ − f−
f+ + f−

= Āy

(
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

)
1 + Āy

(
P FPP

y,ind cos ϕ − P FPP
x,ind sin ϕ

)
≈ Āy

(
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

)
, (20)

2f±
f+ + f−

= 1 ± Āy

(
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

)
1 + Āy

(
P FPP

y,ind cos ϕ − P FPP
x,ind sin ϕ

)
≈ 1 ± Āy

(
P FPP

y,tr cos ϕ − P FPP
x,tr sin ϕ

)
, (21)

where in Eqs. (20) and (21), the induced polarization terms in
the denominator are neglected. Equations (18)–(21) show that
the false asymmetries and/or the induced polarization terms
are canceled by the beam helicity reversal in the different
asymmetry observables. The helicity-difference distribution
cancels the induced polarization terms but is sensitive at second
order to the false asymmetry μ0, while the difference-sum ratio
cancels the false asymmetry terms, but is sensitive at second
order to any induced polarization terms. The helicity-sum
distribution cancels the transferred polarization terms but
includes contributions from false asymmetries and any induced
polarization terms, if they exist. The transferred polarizations,
the induced polarizations, and the false asymmetry terms can
all be rigorously separated, in principle, via Fourier analysis
of the distributions (18)–(21), assuming infinite statistical
precision. In practice, however, it is very statistically and
systematically challenging to separate the induced polarization
terms from the false asymmetry terms when both are small, as
is the case in this experiment, especially for the induced polar-
ization terms. For the transferred polarization components, on
the other hand, it can be shown [61] that the false asymmetry
effects are canceled exactly to all orders by the beam helicity
reversal in the linearized maximum-likelihood estimators for
Pt and P� defined in Sec. III B 6 below, given sufficient
statistical precision that the sums over all events entering
the maximum-likelihood estimators are a good approximation
to the corresponding weighted integrals over the azimuthal
angular distribution discussed in Ref. [61].

2. FPP event selection criteria

Useful scattering events for polarimetry were selected
according to several criteria, detailed in Ref. [52]. First, only
single-track events were included in the analysis of each
polarimeter, as the analyzing power for events with two or
more reconstructed tracks in either polarimeter was found to be
much lower than that of the single-track events, such that even a
separate analysis of the multitrack events did not meaningfully
improve the polarimeter figure of merit in a weighted average
with the single-track events. Second, cuts were applied to the
parameters sclose, defined as the distance of closest approach

7Note also that in the context of Eqs. (18) and (19), N±
0 is the

total number of incident protons corresponding to beam helicity ±1
producing a detected scattering event within the accepted ϑ range.

between incident and scattered tracks, and zclose, defined as
the z coordinate of the point of closest approach between
incident and scattered tracks. A loose, ∼ 10σ upper limit for
sclose was chosen to optimize the statistical precision of the
analysis, by excluding events at large sclose values with low
analyzing power. The zclose ranges considered for FPP1 and
FPP2 events correspond to the physical extent of the CH2

analyzers (LCH2 = 55 cm) plus a small additional tolerance
(�z = ±2.5 cm) to allow for the resolution of zclose while
excluding the unphysical region close to (and including) the
drift chambers themselves.

A cone test was applied to each candidate scattering event,
to minimize instrumental asymmetries in the ϕ distribution
arising from the geometrical acceptance of the FPP, and to
guarantee full 2π azimuthal acceptance over the full range of
(ϑ,zclose) values included in the analysis. Simply defined, the
cone test requires that the projection of the cone of opening
angle ϑ from the reconstructed interaction vertex zclose to the
rearmost wire plane of the FPP drift chamber pair that detected
the track lie entirely within the active area of the chamber
for all possible azimuthal scattering angles ϕ. This in turn
guarantees that the effective range of ϑ integration is the same
for all ϕ values, such that the average analyzing power is ϕ
independent. As a result, the analyzing power, which depends
strongly on ϑ , cancels reliably in the ratio of polarization
components P FPP

y /P FPP
x at the focal plane and Pt/P� at the

target, regardless of the range of ϑ included in the analysis. Due
to the large active area of the FPP drift chambers, the efficiency
of the cone test is close to 100% for scattering angles up to
about 30 degrees. The details of the cone test calculation are
given in Ref. [48].

The useful range of ϑ varies with Q2, because the width
of the multiple-Coulomb-scattering peak at small ϑ and the
angular distributions of both the scattering probability and
the analyzing power are observed to scale approximately as
1/pp. The useful range of ϑ was selected for each Q2 by
applying a cut to the “transverse momentum” pT ≡ pp sin ϑ ,
where ϑ is the proton’s polar scattering angle in the FPP,
and pp is the incident proton momentum. The value of pp

used in the definition of pT is corrected for the mean energy
loss along the path length in CH2 traversed by the incident
proton prior to the scattering. For all three ε values at Q2 =
2.5 GeV2, the range of pT included in the analysis was 0.06
GeV � pT � 1.2 GeV for both polarimeters. A slightly wider
range 0.05 GeV � pT � 1.5 GeV was used for the GEp-III
kinematics, for which the uncertainties are statistics limited.
For all kinematics, the low-pT cutoff is large compared to the
intrinsic angular resolution of the FPP drift chambers, which
is about 1.9 (2.1) mrad in the x (y) direction. In the worst case,
at 8.5 GeV2, the 0.05 GeV minimum pT corresponds to a
minimum ϑ of about 9 mrad or 4.5σ . More details of the FPP
event selection criteria, pT distributions, track multiplicities
per event, and closest approach parameters can be found in
Ref. [52].

3. Focal plane azimuthal asymmetries

Figure 9 shows the ratio of the helicity-difference
and helicity-sum azimuthal distributions A ≡ [f+(ϕ) −
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FIG. 9. Focal-plane helicity difference/sum ratio asymmetry
(f+ − f−)/(f+ + f−), defined as in Eq. (20), for the GEp-2γ (Q2 =
2.5 GeV2) kinematics, for single-track events selected according to
the criteria discussed in Sec. III B 2. 〈ε〉 is the acceptance-averaged
value of ε. The left (right) column shows the asymmetries for
events scattering in the first (second) analyzer. Asymmetries are
shown for 〈ε〉 = 0.153 (top), 〈ε〉 = 0.638 (middle), and 〈ε〉 =
0.790 (bottom). Red curves are fits using (f+ − f−)/(f+ + f−) =
c cos(ϕ) − s sin(ϕ). Asymmetry fit results are shown in Table V.

f−(ϕ)]/[f+(ϕ) + f−(ϕ)], defined in Eq. (20), for each of the
GEp-2γ kinematics, for each polarimeter separately, fitted
with a function A = c cos ϕ − s sin ϕ. The fit results are shown
in Table V. The asymmetries are consistent with a pure
sinusoidal ϕ dependence, and Fourier analysis including a
constant term and higher harmonics up to 8ϕ showed no
statistically significant evidence for the presence of terms
other than cos ϕ and sin ϕ, as expected from Eq. (20). This
suggests that the beam helicity reversal does an excellent
job of suppressing the instrumental asymmetries, which are
significant at certain values of ϑ and zclose. The FPP1 and
FPP2 asymmetries are mostly consistent with each other and
are always consistent in terms of the ratio c/s = P FPP

y /P FPP
x ,

or equivalently, in terms of the phase of the asymmetry, since
the analyzing power cancels in this ratio. For the GEp-2γ
kinematics, the use of identical event selection criteria for
all three ε values eliminates, in principle, point-to-point
systematic variations of the effective average analyzing power
arising from the cuts on the scattering parameters ϑ,sclose, and
zclose.

Figure 10 shows the difference/sum ratio asymmetry (f+ −
f−)/(f+ + f−) for the GEp-III kinematics, for both polarime-
ters combined. For the GEp-III kinematics, the combined
asymmetries are also compatible with a purely sinusoidal ϕ
dependence, albeit with much lower statistical precision. The
asymmetry amplitude at Q2 = 8.5 GeV2 is larger than for
the other two kinematics despite the lower analyzing power,
because of the precession of the proton spin in the HMS. The
central precession angle at Q2 = 8.5 GeV2 is close to 270
deg, and the asymmetry magnitude is maximal at sin χ = ±1.
In contrast, the central precession angle for Q2 = 5.2 GeV2 is
close to 180 deg, such that the acceptance-averaged asymmetry
is close to zero. However, as shown in Fig. 12 and discussed
below, the χ acceptance of the HMS for each Q2 point is wide
enough to provide sufficient sensitivity to P�, and the precision
of the form factor ratio extraction is not dramatically affected
by the unfavorable precession angle, since P� is quite large
(58–98%) in all the kinematics of these experiments. Table V

TABLE V. Focal plane helicity difference/sum ratio asymmetry fit results for GEp-2γ (Q2 = 2.5 GeV2, top table) and GEp-III kinematics
(bottom table). The fit function is f+−f−

f++f− = c cos(ϕ) − s sin(ϕ). To first order, c = ĀyP
FPP
y and s = ĀyP

FPP
x . FPP1 and FPP2 asymmetries

are shown separately for GEp-2γ , while the combined asymmetries are shown for GEp-III. 〈ε〉 is the acceptance-averaged value of ε.

Nominal Q2 2.5 2.5 2.5
〈ε〉 0.153 0.638 0.790

FPP1 c ± �cstat −0.01728 ± 0.00033 −0.02179 ± 0.00031 −0.01831 ± 0.00022
FPP1 s ± �sstat −0.11489 ± 0.00033 −0.08586 ± 0.00030 −0.07046 ± 0.00022
FPP1 χ 2/ndf 162/178 188/178 137/178
FPP2 c ± �cstat −0.01760 ± 0.00046 −0.02183 ± 0.00047 −0.01827 ± 0.00032
FPP2 s ± �sstat −0.11360 ± 0.00045 −0.08553 ± 0.00046 −0.06990 ± 0.00032
FPP2 χ 2/ndf 173/178 145/178 167/178

Nominal Q2 (GeV2) 〈ε〉 Combined c ± �cstat Combined s ± �sstat Combined χ 2/ndf

5.2 (all) 0.382 −0.0040 ± 0.0009 −0.0030 ± 0.0009 23.9/34
5.2 (χ < π ) 0.382 −0.0034 ± 0.0012 −0.0177 ± 0.0012 29.8/34
5.2 (χ � π ) 0.382 −0.0047 ± 0.0013 0.0137 ± 0.0013 22.2/34
6.8 0.519 −0.0006 ± 0.0012 0.0267 ± 0.0012 26.1/34
8.5 0.243 −0.0010 ± 0.0013 0.0415 ± 0.0012 29.5/34
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FIG. 10. Focal plane helicity difference/sum ratio asymmetry
(f+ − f−)/(f+ + f−), defined as in Eq. (20), for the GEp-III
kinematics, for FPP1 and FPP2 data combined, for single-track events
selected according to the criteria discussed in Sec. III B 2. Asymmetry
fit results are shown in Table V. The asymmetry at Q2 = 5.2 GeV2 is
also shown separately for events with precession angles χ < π and
χ � π , illustrating the expected sign change of the sin(ϕ) term.

summarizes the focal-plane helicity-difference asymmetry fit
results. For each of the Q2 = 2.5 GeV2 kinematics, the
FPP1 and FPP2 asymmetries are fitted separately, while the
results shown for the GEp-III kinematics are for FPP1 and
FPP2 combined. For Q2 = 5.2 GeV2, the asymmetry results
are also fitted separately for precession angles χ < π and
χ � π , illustrating the expected sign change of s, the − sin(ϕ)
coefficient of the asymmetry. If Q2 were chosen such that
the HMS acceptance were centered exactly at χ = π , and if
the effects of quadrupole precession were absent, we would
expect the values of s for χ < π and χ � π to be equal and
opposite. However, the central value of χ for Q2 = 5.2 GeV2

is 177.2◦, such that the HMS acceptance extends to slightly
greater | sin(χ )| for χ < π than for χ � π (see also Fig. 12).
Moreover, as discussed in Ref. [52], the mixing of Pt and P�

due to quadrupole precession shifts the “expected” location of
the zero crossing of the − sin(ϕ) coefficient of the asymmetry
to about 180.4 deg instead of the nominal 180 deg. Both of
these effects lead to the expectation of a slightly larger sin(ϕ)
asymmetry for χ < π than for χ � π , as observed.

Figure 11 shows the raw ϕ distributions f+, f−, f+ + f−,
and 2f±/(f+ + f−) for the GEp-2γ kinematics. Similar re-
sults with lower statistical precision are obtained for the GEp-
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FIG. 11. Azimuthal angular distributions for FPP1 (left column)
and FPP2 (right column) for the GEp-2γ kinematics, for events
selected according to the criteria discussed in Sec. III B 2. The
helicity-sum distribution (black filled triangles) cancels the asymme-
try due to the proton’s transferred polarization. The raw ϕ distributions
for the + (pink empty circles) and − (green empty squares) helicity
states include contributions from the transferred polarization and
the false asymmetry. The corrected ϕ distributions 2f+/(f+ + f−)
(red filled circles) and 2f−/(f+ + f−) (blue filled squares) exhibit
pure sinusoidal behavior and include only contributions from the
transferred polarization terms, assuming the induced polarization
terms are small.

III kinematics. The normalized distributions 2f±/(f+ + f−)
are consistent with the pure sinusoidal behavior predicted by
Eq. (21) for all kinematics and for both polarimeters separately.
The helicity sum distribution f+ + f−, which cancels the
asymmetry due to the transferred polarization, exhibits a
characteristic instrumental asymmetry with several notable
features common to all kinematics. The dominant feature of the
false asymmetry is a cos(2ϕ) term that is roughly independent
of kinematics, negative, and about 2–3% in magnitude when
averaged over the useful ϑ acceptance at Q2 = 2.5 GeV2.
This asymmetry appears at small ϑ as a consequence of the
x/y resolution asymmetry of the FPP drift chambers and at
large ϑ due to acceptance/edge effects, and is generally small
at intermediate ϑ values near the maximum of the analyzing
power distribution (see Sec. III B 7). Although the “cone test”
(see Sec. III B 2) is designed to eliminate acceptance-related
false asymmetries, it cannot do so completely because it is
applied based on the reconstructed parameters of the incident
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TABLE VI. Experimentally realized effective global FPP efficiencies. “Total elastic events” is the number of events passing the elastic
event selection cuts, including the requirement that a definite beam helicity state was recorded for the event. The FPP1 (FPP2) efficiency is the
fraction of the total number of elastic events passing all the event selection criteria from Sec. III B 2 for FPP1 (FPP2). Note that the efficiencies
quoted here do not include single-track events in FPP2 reconstructed as having scattered in the first analyzer, that failed the event selection
criteria for FPP1. These events were included in the GEp-III analysis, but excluded from the GEp-2γ analysis. Note also that the “efficiencies”
are not corrected for data runs that were rejected due to data quality issues in either FPP1, FPP2, or both. See text for details.

Q2 (GeV2) 〈ε〉 Total elastic events (×106) FPP1 efficiency (%) FPP2 efficiency (%) Combined efficiency (%)

2.5 0.153 99.2 20.5 11.5 32.0
2.5 0.638 96.8 23.8 10.6 34.4
2.5 0.790 161.2 26.1 12.8 38.9
5.2 0.382 9.15 16.8 8.6 25.4
6.8 0.519 4.96 17.1 8.0 25.1
8.5 0.243 5.01 15.0 7.0 22.0

and scattered tracks, which are affected in a ϕ-dependent way
by the FPP x/y resolution asymmetry.

The other prominent feature of the false asymmetry is the
presence of small peaks at 45-deg intervals corresponding to
the FPP drift chamber wire orientations. The peaks are absent
at ϕ = 0, 180, and 360 deg angles corresponding to scattering
along the dispersive (x) direction. These artificial peaks are
caused by incorrect solutions of the left-right ambiguity due
to the irreducible ambiguity in the drift chambers’ design,
resulting from the symmetry of the wire layout and the lack
of redundancy of coordinate measurements. These incorrect
solutions occur primarily for small-angle tracks traversing the
chambers at close to normal incidence near the center of the
drift chambers, where the x, u, and v wires share a common
intersection point in the xy plane. When an incorrect left-right
assignment occurs for events in the Coulomb peak of the ϑ
distribution, the reconstructed track position at one or both
sets of drift chambers is incorrectly placed on the opposite
side of all three wires that fired in that drift chamber. If the
left-right assignment of the hits in one chamber (but not the
other) in a pair is incorrect, the reconstructed point of closest
approach “collapses” to the location of the chamber for which
the left-right combination was correctly assigned, and the value
of ϕ collapses to one of the three different wire orientations
depending on the topology of the event and the measured drift
distances of the incorrectly assigned hits. The overwhelming
majority of these mistracked events are rejected by the zclose

cut, which excludes the unphysical region corresponding to the
drift chambers themselves. However, for zclose values within
the analyzer region but close to the chambers, some of these
mistracked events leak into the “good” event sample due to
detector resolution, producing the pattern of small, residual
artificial peaks observed in (f+ + f−)(ϕ). These “mistracked”
events have low or zero analyzing power and tend to dilute the
asymmetry in the zclose region closest to the drift chambers. In
principle, they can be further suppressed by excluding the part
of the analyzer region closest to the drift chambers. In practice,
this is unnecessary, because the instrumental asymmetry they
generate is canceled by the beam helicity reversal, and the
resulting dilution of the effective average analyzing power
cancels in the ratio of polarization components, such that
they cause no systematic effect whatsoever on the extraction
of R. The effect of the mistracked events on the average

analyzing power, which is important for the extraction of the ε
dependence of P�/P

Born
� , is measured and accounted for, and

is the same for all three ε values at 2.5 GeV2. The sensitivity
of the measured P�/P

Born
� ratio to the range of zclose and pT

included in the analysis was examined and found to be small
compared to the statistical and systematic uncertainties in this
observable.

4. FPP efficiency

Table VI summarizes the total elastic ep statistics collected
and the effective “efficiency” of the FPP, defined as the fraction
of incident protons producing a useful secondary scattering
for polarimetry. The raw FPP wire efficiencies and angular
distributions were examined on a run-by-run basis, and runs
with data quality issues in either FPP1 or FPP2 (or both) were
rejected for the polarimeter in question. The total number
of elastic events shown in Table VI, which serves as the
denominator for the efficiency determination, is not corrected
for runs rejected from the analysis because of FPP data quality
issues. In other words, FPP-specific data losses due to transient
malfunctioning of the data acquisition system for either set (or
both sets) of FPP drift chambers during runs of otherwise
good data quality are included in the effective efficiencies
shown.8 These data losses are responsible for reducing the
experimentally realized efficiency for FPP1 by several percent
for the Q2 = 2.5 GeV2 data at 〈ε〉 = 0.153, compared to what
it would have been in the ideal case, and by smaller amounts
for other kinematic settings. Overall, the combined efficiency
per incident proton for producing a scattering event passing all
the event selection criteria ranges from 22% at Q2 = 8.5 GeV2

to nearly 39% at (Q2,〈ε〉) = (2.5 GeV2,0.79). The use of two
polarimeters in series, each with an analyzer thickness of one
nuclear interaction length λT , leads to an efficiency gain of
approximately 50% relative to the use of a single polarimeter
with one λT analyzer thickness, regardless of pp.

8Since the FPP1 and FPP2 drift chambers were read out by different
VME crates during most of the experiment prior to the switch to
Fastbus DAQ during the high-Q2 running from April–June 2008, a
somewhat common occurrence was a data acquisition run with only
one of the two sets of drift chambers providing usable data.
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FIG. 12. Normalized focal-plane asymmetry AFPP
x

〈Ay 〉PeP�
, integrated

over the accepted ϑ range, vs precession angle χ ≡ γ κpθbend, for all
six kinematics. The black solid curve is − sin χ , which is the expected
value of the normalized asymmetry in the ideal dipole approximation
to the spin transport in the HMS.

5. HMS spin transport

The asymmetries measured by the FPP are proportional
to the transverse components of the proton polarization at
the HMS focal plane [see Eq. (20)], which are related to the
reaction-plane transferred polarization components Pt and P�

by a rotation due to the precession of the proton polarization in
the HMS magnetic field. The HMS is a focusing spectrometer
characterized by its 25-deg central vertical bend angle and
relatively small angular acceptance in both the dispersive and
nondispersive directions. The precession of the polarization
of charged particles with anomalous magnetic moments
moving relativistically in a magnetic field is described by the
Thomas-BMT equation [62]. The spin transport for protons
(anomalous magnetic moment κp ≈ 1.79) through the HMS
is dominated by a rotation in the dispersive plane by an
angle χ ≡ γ κpθbend relative to the proton trajectory, where
γ ≡ Ep/Mp is the usual relativistic γ factor and θbend is the
trajectory bend angle in the dispersive plane. In this so-called
“ideal dipole” approximation, the dispersive plane component
of the proton polarization precesses by an angle χ , and the
nondispersive plane component does not rotate, such that
P FPP

x ≈ − sin χPeP� and P FPP
y = PePt .

Figure 12 illustrates the dominant dipole precession of the

proton spin using the ratio AFPP
x

〈Ay 〉PeP�
, where AFPP

x = AyP
FPP
x is

the − sin ϕ coefficient of the asymmetry (f+ − f−)/(f+ + f−)
[see Eq. (20)], 〈Ay〉 is the average analyzing power within
the accepted range of scattering angles, and Pe is the average
beam polarization. In the ideal dipole approximation, AFPP

x =
−〈Ay〉PeP� sin χ . The ideal dipole approximation accounts
for most of the observed χ dependence of the asymmetry.
The Q2 = 5.2 GeV2 data show how it is possible to achieve
good precision on the ratio Pt/P� even when the acceptance-
averaged asymmetry is close to zero; due to the large value
of P� and the relatively large χ acceptance of the HMS, the
relative statistical uncertainty �P�/P� is almost a factor of
four smaller than �Pt/Pt .

Deviations from the ideal dipole approximation arise due
to the quadrupole magnets and the finite angular acceptance

of the HMS. The forward spin transport matrix of the HMS
depends on all the parameters of the proton trajectory at the
target and must be calculated for each event. Owing to the
relatively simple magnetic field layout and small angular and
momentum acceptance of the HMS, it was not necessary to
perform a computationally expensive numerical integration
of the BMT equation for each proton trajectory. Instead, a
general fifth-order expansion of the forward spin transport
matrix in terms of all the trajectory parameters at the target
was fitted to a sample of random test trajectories populating
the full acceptance of the HMS that were propagated through
a detailed COSY INFINITY [63] model of the HMS including
fringe fields. Unlike the parameters describing charged particle
transport through the HMS, which are independent of the
central momentum setting for the standard tune, the spin
transport coefficients had to be computed separately for each
central momentum setting, since the spin precession frequency
relative to the proton trajectory is proportional to γ . The use
of the same central momentum setting for all three kinematics
at Q2 = 2.5 GeV2 ensures that the magnetic field and the spin
transport matrix are the same for all three kinematics. This in
turn minimizes the point-to-point systematic uncertainties in
the polarization transfer observables, which is essential in the
accurate determination of their ε dependence.

The fitted expansion coefficients of the COSY spin transport
model express the matrix elements of the absolute total rotation
of the proton spin in the fixed TRANSPORT coordinate
system. The total rotation of the proton spin relevant to the
extraction of the polarization transfer observables also includes
a rotation from the reaction plane coordinate system in which
Pt and P� are defined to the TRANSPORT coordinate system
that is fixed with respect to the HMS optical axis at the target,
and a rotation from the fixed TRANSPORT coordinate system
at the focal plane to the coordinate system comoving with the
proton trajectory, in which the polar and azimuthal scattering
angles ϑ and ϕ are defined. Details of the calculation of the
total rotation matrix for each event are given in Ref. [48].

6. Maximum-likelihood extraction of Pt , P�, and R

The transferred polarization components Pt and P� are ex-
tracted from the measured FPP angular distributions using an
unbinned maximum-likelihood estimator. Neglecting induced
polarization terms, the likelihood function is defined up to an
overall normalization constant independent of Pt and P� as

L(Pt ,P�) =
Nevent∏
i=1

E(ϕi)

2π

×{
1 + hiPeA

(i)
y

[(
S

(i)
yt Pt + S

(i)
y�P�

)
cos ϕi

−(
S

(i)
xt Pt + S

(i)
x�P�

)
sin ϕi

]}
, (22)

where E(ϕi) ∝ 1 + ∑
n [cn cos(nϕi) + sn sin(nϕi)] is the

false/instrumental asymmetry for the ith event,9 hi = ±1 is
the beam helicity state for the ith event, Pe is the beam

9In principle, the false asymmetry Fourier coefficients can depend
on ϑ , p and any other parameters of the event such as sclose, zclose.
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polarization, A(i)
y ≡ Ay(pi,ϑi) is the analyzing power of

�p + CH2 scattering, which depends on the proton momentum
pi and scattering angle ϑi , and the S

(i)
jk ’s are the forward

spin transport matrix elements relating polarization component
Pk in reaction-plane coordinates to component Pj in the
comoving coordinate system of the secondary analyzing
reaction measured by the FPP.

The product over all events in Eq. (22) was converted
to a sum by taking the logarithm, and then the problem
of maximizing lnL as a function of the parameters Pt and
P� was linearized by truncating the expansion of ln(1 + x)
at quadratic order in x; i.e., ln(1 + x) = x − x2

2 + Ox3. In
this context, x represents the sum of all the ϕ-dependent
terms in Eq. (22). The largest acceptance-averaged helicity-
dependent “raw” asymmetry observed in either experiment
was about 0.12 (see Fig. 9), while the largest raw asymmetry
observed at any ϑ was about 0.16. The acceptance-averaged
helicity-independent false/instrumental asymmetries are at the
few-percent level.10 It is therefore estimated that the maximum
truncation error in �(lnL)/ lnL due to the linearization
procedure is | x−x2/2

ln(1+x) − 1| � 0.82% at any ϑ , and smaller when
averaged over the full ϑ acceptance.

The linearized maximum-likelihood estimators for Pt and
P� are given by the solution of the following linear system of
equations:

∑
i

[(
λ

(i)
t

)2
λ

(i)
t λ

(i)
�

λ
(i)
t λ

(i)
�

(
λ

(i)
�

)2

][
P̂t

P̂�

]
=

∑
i

[
λ

(i)
t

λ
(i)
�

]
, (23)

where λ
(i)
t and λ

(i)
� given by

λ
(i)
t ≡ hiPeA

(i)
y

(
S

(i)
yt cos ϕi − S

(i)
xt sin ϕi

)
,

λ
(i)
� ≡ hiPeA

(i)
y

(
S

(i)
y� cos ϕi − S

(i)
x� sin ϕi

)
(24)

are the coefficients of Pt and P� in the equation for the
likelihood function (22).

Note that the false asymmetry E(ϕ) does not enter the
definition of the estimators. Up to the effects of spin precession,
the estimators defined by Eq. (23) are equivalent to the
“weighted sum” estimators of Ref. [61]. In Ref. [61], it was
shown that these estimators are unbiased and efficient, and in
particular that the instrumental asymmetries are canceled to
all orders by the beam helicity reversal, which provides an
effective detection efficiency that is 180-deg symmetric; i.e.,
E(ϕ) = E(ϕ + π ). The equation for the maximum likelihood
estimators can be rewritten in matrix form as AP = b, the
solution of which is P = A−1b. The symmetric 2×2 matrix
A−1, with A defined by the 2×2 matrix on the left-hand side
(LHS) of Eq. (23), is the covariance matrix of the parameters
P. The standard statistical variances in Pt and P� are given by
the diagonal elements of A−1, while the covariance of Pt and

10The magnitude of the cos(2ϕ) false asymmetry arising from
the x/y resolution asymmetry and the acceptance of the FPP drift
chambers rises to the ∼10% level at the extremes of the accepted ϑ

range.

P� is given by the off-diagonal element:

�Pt =
√

(A−1)t t , (25)

�P� =
√

(A−1)��, (26)

cov(Pt ,P�) = (A−1)t� = (A−1)�t . (27)

The ratio R ≡ −μp

√
τ (1+ε)

2ε
Pt

P�
≡ −K Pt

P�
, which equals μp

G
p
E

G
p
M

in the one-photon-exchange approximation, is computed from
the results of the maximum-likelihood analysis for Pt and
P�. The uncertainty in R is computed using the standard
prescription for error propagation using the covariance matrix
A−1 discussed above:(

�R

R

)2

=
(

�Pt

Pt

)2

+
(

�P�

P�

)2

− 2cov(Pt ,P�)

PtP�

. (28)

Although it is not immediately obvious from Eq. (23), both
the beam polarization and the analyzing power cancel in the
ratio Pt/P�. All of the matrix elements on the LHS of (23) are
proportional to (PeAy)2, while the components of the vector
on the RHS of (23) are proportional to PeAy . The estimators
P̂t and P̂� are thus proportional to (PeAy)−1, and the statistical
variances in Pt and P� are proportional to (PeAy)−2. Strictly
speaking, the cancellation of Ay in the ratio Pt/P� requires
that the effective range of integration in ϑ (or equivalently pT )
be independent of ϕ, which is guaranteed in principle by the
application of the cone test. According to the χ2 of a constant
fit, the extracted ratio R showed no statistically significant pT

dependence for any of the six kinematic settings, as detailed
in Ref. [52].

Figure 13 shows the Q2 dependence of Pt , P�, and R within
the HMS acceptance for the GEp-2γ kinematics. As discussed
below, Pt and P� are equal to their Born approximation values
for 〈ε〉 = 0.153 by definition, since this point is used for the
analyzing power calibration at 2.5 GeV2. At a fixed central
Q2 of 2.5 GeV2, the fixed angular acceptance of the HMS
corresponds to a Q2 acceptance that is roughly three times
greater at 〈ε〉 = 0.790 than at 〈ε〉 = 0.153. The observed Q2

dependence of R within the acceptance of each kinematic
setting is statistically compatible with both the expected R(Q2)
and a constant R value. The observed Q2 dependences of Pt

and P� are also similar to those of P Born
t and P Born

� , providing
important added confirmation that both the HMS spin transport
and the momentum dependence of Ay (see Sec. III B 7) are
accounted for correctly. The P� values at 〈ε〉 = 0.790 show
a clear excess over P Born

� . The curve for R(Q2) shown in
Fig. 13 is obtained from the global fit to proton form factor
data described in the Appendix.

The kinematic factors τ , ε, and K are computed from the
beam energy Ee and the proton momentum pp for each event.
The value of K is averaged over all events in computing the
acceptance-averaged R value from the acceptance-averaged
unbinned maximum-likelihood estimators for Pt and P�. Q2

and ε are one-to-one correlated within the acceptance at each
setting due to the fixed beam energy. Pt and P� depend on both
Q2 and ε, and can vary significantly within the acceptance of
a single measurement. R depends only on Q2 (in the Born ap-
proximation), and its expected variation within the acceptance
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FIG. 13. Q2 dependence of R (a), Pt (b), and P� (c) for the
GEp-2γ kinematics. Uncertainties shown are statistical only. R is
compared to R(Q2) from Global Fit II described in the appendix,
which includes the GEp-2γ results reported in this work. Transferred
polarization components are compared to their Born approximation
values, which are also computed in each bin from Global Fit II. Note
that for 〈ε〉 = 0.153, Pt and P� are equal to their Born approximation
values by definition, because this setting is used to determine the
analyzing power Ay . See text for details.

is generally smaller than that of Pt or P�. The correlated (ε,Q2)
acceptances of all kinematic settings are small enough that, to
within experimental precision, Pt , P�, and R vary linearly with
Q2 within the acceptance, and the acceptance-averaged values
of Pt , P�, and R equal their values at the acceptance-averaged
kinematics.

The choice to use the measured quantities Ee and pp to
compute Q2 and ε is not unique; the reaction kinematics in
ep → ep are fixed by choosing any two of Ee,E

′
e,θe,θp,pp.

The choice of any two of these five variables gives equivalent
results; radiative effects on the average kinematics of the final
elastic ep sample are suppressed to a negligible level by the
tight exclusivity cuts. The use of the beam energy Ee and
the proton momentum pp to compute the event kinematics
is optimal because the beam energy is known with a high
degree of certainty, Q2 depends only on the proton momentum
in elastic ep scattering, and the systematic uncertainty in pp

is easily quantifiable and independent of ε for a fixed HMS
central momentum setting and nominal Q2 value.

7. Analyzing power calibration

The analyzing power Ay is not a priori known. However,
the elastic ep process is “self-calibrating” with respect to the
analyzing power, as it can be extracted directly from the mea-
sured asymmetries, provided the beam polarization is known.
The Møller measurement of the electron beam polarization
is subject to a global uncertainty of approximately 1% and
point-to-point uncertainties of (�Pe/Pe)ptp = 0.5%. The ratio
R = −K Pt

P�
does not depend on the beam polarization or

the analyzing power because both of these quantities cancel
in the ratio Pt/P�. Moreover, in the one-photon-exchange
approximation, the values of Pt and P� depend only on the
ratio r ≡ GE/GM ≡ R/μp, and not on GE or GM separately.
In terms of r , Eq. (5) becomes (for Pe = 1):

P Born
t = −

√
2ε(1 − ε)

τ

r

1 + ε
τ
r2

,

P Born
� =

√
1 − ε2

1 + ε
τ
r2

. (29)

The average analyzing power in a particular bin of ϑ and/or
pp is determined by computing the maximum-likelihood
estimators P̂t and P̂� assuming Ay = 1, with Pe taken from
the Møller measurements, and forming the ratios to P Born

t and
P Born

� :

P̂
(Ay=1)
t = ĀyPt , (30)

P̂
(Ay=1)
� = ĀyP�, (31)

Āy = P̂
(Ay=1)
t

P Born
t

= P̂
(Ay=1)
�

P Born
�

. (32)

The value of Ay in any kinematic bin is computed from
a weighted average of Ay(P̂t ) ≡ P̂t /P

Born
t and Ay(P̂�) ≡

P̂�/P
Born
� , that is usually dominated by Ay(P̂�). Although Pt

and P� are determined with comparable absolute precision, P�

is determined with a much better relative precision than Pt ,
because the magnitude of P� is several times greater than that
of Pt for all kinematics.

Figure 14 shows the angular dependence of Ay , expressed in
terms of the “transverse momentum” pT , for all four Q2 values.
The shape of Ay(pT ) is qualitatively similar for all four HMS
central momentum settings. The maximum Amax

y (pT = pmax
T )

was estimated by fitting each Ay(pT ) curve with the following
simple parametrization:

Ay(pT ) =
{

N
(
pT − p0

T

)α
e−b(pT −p0

T )β , pT � p0
T

0, pT < p0
T

}
,

(33)

which is positive definite, vanishes at asymptotically large
pT and pT < p0

T , and is sufficiently flexible to describe the
data with reasonable accuracy. An adequate description of the
GEp-III data is achieved by fixing the exponents (α,β) = (1,2)
and the zero-offset p0

T = 0 and varying only the normalization
constant N and the “slope” b of the exponential. The data
at 2.5 GeV2 are precise enough that all five parameters
had to be varied to achieve a good description, and in
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FIG. 14. Analyzing power Ay vs pT ≡ pp sin ϑ for the four
different Q2 values from GEp-III/2γ . Data are from both polarimeters
combined. Curves are the fits to the data, used to estimate the position
and value of the maximum in Ay(pT ). See text for details.

contrast to the GEp-III data, strongly favor a “zero offset”
p0

T ≈ 0.05 GeV. Table VII shows the best-fit parameters and
their uncertainties, and the resulting values for Amax

y and pmax
T ,

defined, respectively, as the maximum value of the analyzing
power and the pT value at which it occurs. The pmax

T values
exhibit some variation with Q2 but are statistically compatible
with a constant value pmax

T ≈ 0.4 GeV (see Table VII).
Figure 15 shows the proton momentum dependence of Amax

y

and Āy , the average analyzing power within the accepted pT

range, compared to selected existing measurements in �p +
CH2 scattering in the few-GeV momentum range, including
GEp-II [42] in JLab’s Hall A and dedicated measurements
performed at the JINR in Dubna, Russia [54]. It is worth
remarking that the GEp-II data were obtained with two
different analyzer thicknesses; the lowest-Q2 (largest p−1

p )
measurement used a CH2 thickness of 58 cm, which is similar
to the thickness used in Hall C for each of the two FPPs,
while the three measurements at higher Q2 used a thickness
of 100 cm, leading to an apparent reduction in Ay that was at
least partially offset by an increase in the efficiency. The linear
fits to the GEp-II data shown in Fig. 15 only include the three
highest Q2 points, which used the same analyzer thickness.
It is also worth noting that the Dubna measurements [54]

0.0 0.2 0.4 0.6
)-1 (GeV-1

p
p

0.0

0.1

0.2

0.3

y
A

 (This work)max
yA

 (GEp-II)max
yA

 (Dubna05)max
yA
 (This work)yA
 (GEp-II)yA

FIG. 15. Maximum (Amax
y ) and average (Āy) analyzing power

as a function of 〈pp〉−1, compared to existing data from Refs. [42]
(GEp-II) and [54] (Azhgirey 2005). The average Ay values for GEp-
III/GEp-2γ and GEp-II are computed for 0.06 � pT (GeV) � 1.2.
Curves are linear fits to the data. See text for details.

do not correspond to constant analyzer thickness; the Dubna
measurement at pp = 1.75 GeV used a CH2 thickness of
37.5 g/cm2, significantly less than the thickness used in either
the Hall C or Hall A polarimeters. The Dubna measurements
at higher proton momenta correspond to a range of analyzer
thicknesses generally lying between the ∼ 50 g/cm2 thickness
used for each of the two analyzers in the Hall C double-FPP and
the ∼ 90 g/cm2 thickness of the GEp-II polarimeter. While the
Dubna data appear to have a significantly greater slope than
the JLab data, the difference is not statistically significant,
given the large uncertainty of the Dubna measurement at
pp = 1.75 GeV and the fact that this measurement corresponds
to a CH2 thickness of approximately half the thickness used
for the other measurements at higher pp.

For the GEp-III/2γ experiments, Amax
y and Āy depend

linearly on p−1
p . Notably, the extrapolated values of Amax

y and
Āy at asymptotically large proton momentum (1/pp → 0)
are nonzero and positive for the conditions of GEp-III/2γ ,
although in the case of Āy , the asymptotic value is only ∼ 3σ
different from zero. The experimentally realized effective
analyzing power for the Hall C double-FPP is substantially
greater than that of the GEp-II or Dubna polarimeters at similar

TABLE VII. Ay(pT ) fit results. Fit parametrization is as in Eq. (33). Uncertainties in fit parameters are statistical only. Parameters with
no uncertainties are fixed at the quoted values. Amax

y is the maximum value of Ay occurring at pT = pmax
T . Uncertainties in derived quantities

Amax
y and pmax

T are computed from the full covariance matrix of the fit result and the gradient of the fit function with respect to the parameters
evaluated at the maximum. Āy values are for 0.06 � pT (GeV)� 1.2.

Q2 (GeV2) 2.5 (〈ε〉 = 0.153) 5.2 6.8 8.5

N 0.44 ± 0.02 0.48 ± 0.03 0.44 ± 0.02 0.35 ± 0.01
α 0.48 ± 0.02 1 1 1
β 1.89 ± 0.05 2 2 2
b 2.05 ± 0.03 2.4 ± 0.2 2.8 ± 0.2 2.3 ± 0.1
p0

T (GeV) 0.053 ± 0.002 0 0 0
Amax

y 0.2027 ± 0.0006 0.134 ± 0.005 0.114 ± 0.004 0.098 ± 0.003
Āy 0.1471 ± 0.0003 0.085 ± 0.003 0.073 ± 0.003 0.061 ± 0.002
pmax

T (GeV) 0.38 ± 0.03 0.46 ± 0.09 0.42 ± 0.08 0.47 ± 0.08
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pp. The difference is attributable to the Hall C drift chambers’
ability, given their overall performance characteristics and the
trigger and DAQ conditions specific to Hall C, to separate
true single-track events from multiple-track events, revealing
the significantly higher analyzing power for true single-track
events compared to the totally inclusive sample. In the straw
chambers of the Hall A FPP, for example, groups of eight
adjacent wires in a plane were multiplexed into a single
readout channel by the front-end electronics [29], preventing
the resolution of multiple-track events in which two or more
tracks pass through the same group of eight straws within a
plane simultaneously.

The effective analyzing power of a given sample of
�p + CH2 scattering events is clearly sensitive to experimental
details such as the analyzer thickness, the momentum distribu-
tion of incident protons, the tracking resolution and efficiency,
the background rate and occupancy of the detectors, the trigger
and data acquisition conditions, and the cuts applied to select
events. For this reason, it is generally not possible to predict
Ay using previous measurements such as in Refs. [29,42,54]
with sufficient accuracy for an absolute determination of P�

commensurate with the statistical precision of the GEp-2γ
data.

Nonetheless, the relative variation of P�/P
Born
� with ε can

be precisely extracted from the GEp-2γ data by exploiting
the fact that the experimental conditions which influence the
effective average analyzing power are the same across all three
kinematics measured at Q2 = 2.5 GeV2. In particular, the
application of identical cuts on the FPP scattering parameters
ensures that the effective average analyzing power is the same
for all three ε values, up to differences in the momentum
distribution of incident protons. As shown in Fig. 15, the
average analyzing power for a given pT range is inversely
proportional to the proton momentum pp, while the pT distri-
bution of the analyzing power is approximately independent
of pp. Given these experimental realities, the momentum
dependence of Ay can be accounted for on an event-by-event
basis in the maximum-likelihood analysis by assuming that the
overall momentum dependence factorizes from the ϑ and/or
pT dependence,

Ay(pp,pT ) = A0
y(pT )

p̄p

pp

, (34)

where A0
y(pT ) and p̄p are, respectively, the acceptance-

averaged values of Ay(pT ) and pp. For the extraction of
the ratio R, the analyzing power calibration is only relevant
insofar as it optimizes the statistical figure of merit of the
maximum-likelihood analysis by properly weighting events
according to Ay . The extraction of the ε dependence of
P�/P

Born
� in the GEp-2γ analysis relies on the assumption

that Ay is the same for all three measurements, up to a global
p−1

p scaling that factorizes from the pT dependence according
to Eq. (34). The lowest-ε data (〈ε〉 = 0.153) were used to
determine the common A0

y(pT ) for the GEp-2γ analysis for
several reasons. First, the value of P Born

� approaches one
as ε → 0 as a simple consequence of angular momentum
conservation and is highly insensitive to r at 〈ε〉 = 0.153,
such that the relative statistical uncertainty �P Born

� /P Born
� due

to the uncertainty in r is more than three times smaller at the
lowest ε than at either of the two higher ε values, and negligibly
small compared to the statistical uncertainty in P� itself (see
Table XI). Moreover, despite the fact that the measurement at
〈ε〉 = 0.153 has the worst relative statistical precision for the
ratio Pt/P�, it has the best relative precision for P� due to the
large magnitude of P�.

8. Background subtraction

The maximum-likelihood estimators are modified by the
residual inelastic contamination of the elastic ep sample as
follows:

∑
i

[(
λ

(i)
t

)2
λ

(i)
t λ

(i)
�

λ
(i)
t λ

(i)
�

(
λ

(i)
�

)2

][
P̂t

P̂�

]
=

∑
i

[
λ

(i)
t

(
1 − λ

(i)
bg

)
λ

(i)
�

(
1 − λ

(i)
bg

)
]
. (35)

The coefficients λ
(i)
t , λ

(i)
� defined by Eq. (24) become

λ
(i)
t → (

1 − f
(i)
bg

)
λ

(i)
t , λ

(i)
� → (

1 − f
(i)
bg

)
λ

(i)
� , (36)

with f
(i)
bg denoting the fractional background contamination

evaluated at the reconstructed kinematics of the ith event,
estimated according to the procedure discussed in Sec. III A.
The background asymmetry term appearing on the right-hand
side (RHS) of Eq. (35) is defined as

λ
(i)
bg ≡ f

(i)
bg hiPeA

(i)
y

[(
S

(i)
yt cos ϕi − S

(i)
xt sin ϕi

)
P inel

t

+ (
S

(i)
y� cos ϕi − S

(i)
x� sin ϕi

)
P inel

�

]
, (37)

where P inel
t and P inel

� are the transferred polarization compo-
nents of the inelastic background, which are measured using
the inelastic events as described below.

The residual inelastic contamination of the final selection
of elastic ep events is estimated directly from the data using
the procedure described in Sec. III A. Averaged over the
acceptance of the final cuts, the fractional contamination f
ranges from 0.16% for Q2 = 2.5 GeV2, ε = 0.638 to 4.89%
for Q2 = 8.5 GeV2 (see Table IV). The measured polarizations
P obs

t,� are related to the signal and background polarizations by

P obs
t,� = (1 − f )P el

t,� + f P inel
t,� , (38)

where P el
t,� and P inel

t,� are, respectively, the transferred polariza-
tions of the elastic signal and the inelastic background.

Figures 16 and 17 show the δpp dependence of P inel
t,�

for the GEp-2γ and GEp-III kinematics, respectively. The
background polarizations are extracted directly from the data
by applying the maximum-likelihood method described above
to the inelastic events, using the analyzing power resulting
from the elastic events. Background events were selected by
excluding a two-dimensional region of (δpe,δφ) in which the
elastic peak and radiative tail contributions are significant. The
background polarizations exhibit a strong δpp dependence
in the region of the elastic peak, a behavior explained
by the different background processes involved and their
relative contributions. In the inelastic region (δpp < 0), which
is dominated by π0p events, the background polarizations
are approximately constant and differ strongly from the
signal polarizations. The polarization transfer observables for
�γp → π0 �p, measured rather precisely as a by-product of
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FIG. 16. Transferred polarization components of the inelastic
background vs δpp for the GEp-2γ kinematics. Panel (a) shows the
transverse component P inel

t , while panel (b) shows the longitudinal
component P inel

� . Vertical lines illustrate the approximate final cut
regions for ε = 0.153 (black dotted), ε = 0.638 (red dot-dashed),
and ε = 0.790 (blue double dot-dashed).

this experiment, are interesting in their own right and were
already the subject of a dedicated publication [57], which also
addressed the induced polarization, which is non-negligible for
the �γp → π0 �p process. The induced polarization of the π0p
background is ignored here, as its effect on the extraction of the
transferred polarization of the elastic signal is negligible. In
the region of overlap with the elastic peak, the background
polarizations evolve rapidly toward values that are similar
(but not identical) to the signal polarizations. This transition
reflects the sharp kinematic cutoff for π0p production and
the transition to a regime in which the dominant background
process is quasielastic Al(e,e′p) scattering in the end windows
of the cryotarget. The δpp dependences of the contamination
f and the background polarizations P inel

t,� are accounted
for in the final, background-subtracted maximum-likelihood
analysis. The total corrections to R, Pt , and P� are dominated
by the lowest δpp bins within the final-cut region and are
slightly smaller than would be implied by correcting the
acceptance-averaged results using the acceptance-averaged
values of f and P inel

t,� using Eq. (38). Table VIII shows
the effect of the background subtraction on Pt , P�, and R.
The uncertainties associated with the background subtraction
procedure are discussed in Ref. [52]. In all cases, the correction
to Pt (P�) is negative (positive), and the resulting correction to
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FIG. 17. Transferred polarization components of the inelastic
background vs δpp for the GEp-III kinematics. Panel (a) shows the
transverse component P inel

t , while panel (b) shows the longitudinal
component P inel

� . Vertical lines illustrate the approximate final cut
regions for Q2 = 5.2 GeV2 (black dotted), Q2 = 6.8 GeV2 (red
dot-dashed), and Q2 = 8.5 GeV2 (blue double dot-dashed).

R is always positive. In general, the corrections to R and
P� are very small, except in the case of Q2 = 8.5 GeV2,
for which the size of the correction to R is comparable to
the total systematic uncertainty. Despite the similar levels of
inelastic contamination between 〈ε〉 = 0.638 and 〈ε〉 = 0.790
at 2.5 GeV2, the corrections at 〈ε〉 = 0.790 are significantly
smaller, because of the smaller differences between the signal
and background polarizations.

C. Radiative corrections

The standard, model-independent O(α) radiative correc-
tions (RC) to polarized elastic �ep scattering have been

TABLE VIII. Inelastic background corrections to Pt , P�, and R.
Systematic uncertainties associated with the background correction
are discussed in Ref. [52].

Q2 (GeV2) 〈ε〉 �Pt �P� �R

2.5 0.153 −0.0013 0.0024 0.0043
2.5 0.638 −0.0008 0.0005 0.0023
2.5 0.790 −0.0002 0.0002 0.0007
5.2 0.382 −0.0010 0.0015 0.0043
6.8 0.519 −0.0009 0.0030 0.0036
8.5 0.243 −0.0060 0.0096 0.0419
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TABLE IX. Estimated model-independent relative radiative cor-
rections to R = μpG

p
E/G

p
M and the longitudinal transferred polar-

ization component P�, calculated using the approach described in
Ref. [65]. Note that a negative (positive) value for the radiative
correction as presented below implies a positive (negative) correction
to obtain the Born value from the measured value for the observable in
question. These corrections have not been applied to the final results
shown in Tables X and XI. See text for details.

Q2 (GeV2) Ee (GeV) umax (GeV2) Robs

RBorn
− 1

Pobs
�

P Born
�

− 1

2.5 1.87 0.03 −1.4 × 10−3 1.2 × 10−4

2.5 2.848 0.08 −2.8 × 10−4 6.2 × 10−4

2.5 3.548 0.1 −1.6 × 10−4 8.3 × 10−4

2.5 3.680 0.1 −1.5 × 10−4 8.4 × 10−4

5.2 4.052 0.08 −5.0 × 10−4 2.2 × 10−4

6.8 5.710 0.12 −3.3 × 10−4 3.2 × 10−4

8.5 5.712 0.1 −8.0 × 10−4 1.3 × 10−4

discussed extensively in Refs. [64–67] and include standard
virtual RC such as the vacuum polarization and vertex
corrections, and emission of real photons (bremsstrahlung).
Radiative corrections to double-polarization observables, such
as the beam-target double-spin asymmetry in scattering on a
polarized target, or polarization transfer as in this experiment,
tend to be smaller than the RC to the unpolarized cross sections,
because polarization asymmetries are ratios of polarized and
unpolarized cross sections, for which the factorized, virtual
parts of the RC tend to partially or wholly cancel in the
expression for the relative RC to the asymmetry. Moreover,
the effect of bremsstrahlung corrections can be suppressed by
the exclusivity cuts used to select elastic events. The ratio of
transferred polarization components Pt/P�, which is directly
proportional to G

p
E/G

p
M in the Born approximation, is a ratio of

ratios of cross sections, and is subject to RC that are typically as
small as or smaller than the RC to the individual asymmetries,
depending on the kinematics and cuts involved.

The model-independent RC to the ratio R were estimated
using the formulas described in Ref. [65]. The results for the
relative RC to R and P�/P

Born
� are shown in Table IX. The

corrections are very small in all cases. For the ratio R, the
correction is negative for every kinematic. The corrections
to P� are also negligible in magnitude and do not exceed
10−3 for any kinematic. The upper limit on the Lorentz-
invariant “inelasticity” u ≡ (k1 + p1 − p2)2, with k1, p1, and
p2 denoting the four-momenta of incident electron, target
proton, and recoil proton, respectively, was chosen according
to the effective experimental resolution of u by plotting the
distribution of u for events selected by the exclusivity cuts
described in Sec. III A. It is assumed in the calculations that
only the outgoing proton is observed, and the kinematics of
the unobserved scattered electron and/or the radiated hard
bremsstrahlung photon are integrated over. In reality, the tight
exclusivity cuts applied to the kinematics of both the electron
and proton angles and the proton momentum are such that
bremsstrahlung corrections are even more strongly suppressed
than in the case of a simple cut on u reconstructed from the
measured proton kinematics. The “true” model-independent

FIG. 18. Final results of GEp-III (black filled triangles) for
μpG

p
E/G

p
M , with selected existing data from cross section and

polarization measurements. The error bars shown are statistical.
The band below the data shows the final, one-sided systematic
uncertainties for GEp-III. The originally published results [31] (black
empty triangles) are shown for comparison, offset slightly in Q2

for clarity. The final weighted-average result of GEp-2γ for R at
Q2 = 2.5 GeV2 is shown as the pink empty star. Existing polarization
transfer data are from Refs. [29] (blue filled circles) and [30,42] (red
filled squares). Rosenbluth separation data are from Refs. [17] (green
empty circles), [16] (green empty diamonds), and [18] (green filled
diamonds).

RC to the ratio could be expected to be even smaller than those
reported in Table IX, which can be regarded as conservative
upper limits. No radiative corrections have been applied to the
final results for R and P�/P

Born
� reported in Sec. IV below,

as the estimated values of the RC are essentially negligible
compared to the statistical and systematic uncertainties of the
data. Note also that no hard TPEX corrections are applied to the
results, as there is presently no model-independent theoretical
prescription for these corrections. Existing calculations give a
wide variety of results, varying both in sign and magnitude,
but are in general agreement that these corrections are small.

IV. RESULTS

A. Summary of the data

The final results of the GEp-III and GEp-2γ experiments
are shown in Fig. 18 and reported in Tables X and XI. The
acceptance-averaged values of the relevant observables can
be considered valid at the acceptance-averaged kinematics
(Q2 and ε). The final results of the GEp-III experiment
for R = μpG

p
E/G

p
M are essentially unchanged relative to

the original publication [31], showing small, statistically and
systematically insignificant increases for all three Q2 points,
despite nontrivial modifications to event reconstruction and
elastic event selection in the final analysis. The statistical
uncertainties of the GEp-III data are also slightly modified,
as it was discovered during the reanalysis of the data that
the effect of the covariance term expressing the correlation
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TABLE X. Final results of the GEp-III experiment. These results supersede the originally published results from Ref. [31]. The central Q2

value is defined by the HMS central momentum setting. The average beam energy 〈Ebeam〉 is the result of correcting the incident beam energy
event by event for the mean energy loss in the target materials upstream of the reconstructed interaction vertex. The kinematics of each setting
are described by the average, rms deviation from the mean, and total accepted range of Q2 and ε. The ratio R = μpG

p
E/G

p
M is quoted with

its statistical and total systematic uncertainty. The polarization transfer components Pt and P� are quoted with their statistical uncertainties to
illustrate the relative statistical precision with which the two components are simultaneously measured.a The quoted values of Pt and P� are
the maximum-likelihood estimators obtained after calibrating the analyzing power at each Q2 as in Sec. III B 7. The value of P Born

� is quoted
with its statistical uncertainty, which is due solely to the uncertainty in R. ρ(Pt ,P�) is the correlation coefficient between Pt and P� resulting
from the maximum-likelihood analysis. See text for details.

Central Q2 (GeV2) 5.200 6.800 8.537
〈Ebeam〉 (GeV) 4.049 5.708 5.710

〈Q2〉 ± �Q2
rms (GeV2) 5.17 ± 0.12 6.70 ± 0.19 8.49 ± 0.17

(Q2
min,Q

2
max) (GeV2) (4.90,5.47) (6.20,7.21) (8.14,8.87)

〈ε〉 ± �εrms 0.382 ± 0.026 0.519 ± 0.027 0.243 ± 0.028
(εmin,εmax) (0.32,0.44) (0.45,0.59) (0.18,0.30)
R ± �Rstat ± �Rsyst (final) 0.448 ± 0.060 ± 0.006 0.348 ± 0.105 ± 0.010 0.145 ± 0.175 ± 0.024
Pt ± �statPt −0.090 ± 0.012 −0.063 ± 0.019 −0.020 ± 0.024
P� ± �statP� 0.918 ± 0.034 0.842 ± 0.027 0.970 ± 0.026
P Born

� ± �statP
Born
� 0.918 ± 0.002 0.851 ± 0.002 0.970 ± 0.001

ρ(Pt ,P�) −0.167 −0.076 0.052

aThe difference between the absolute statistical errors �Pt and �P� is entirely explained by spin precession.

between Pt and P� was not included in the originally published
statistical uncertainties, whereas it is included in this work.
The effect of the covariance term on �Rstat is only significant
for Q2 = 5.2 GeV2, for which the correlation coefficient is
ρ(Pt ,P�) ≈ −0.17. Because Pt and P� are opposite in sign at

this Q2, a negative correlation coefficient tends to reduce the
magnitude of the statistical error [see Eq. (28)]. The larger
correlation coefficient observed at 5.2 GeV2 compared to all
the other kinematics is related to the unfavorable precession
angle centered near 180 deg and the reduced sensitivity of the

TABLE XI. Final results of the GEp-2γ experiment. These results supersede the originally published results from Ref. [47]. Average
kinematics and ranges are defined as in Table X. The central ε value corresponds to the average beam energy and the central Q2 of 2.5 GeV2.
The results at 〈ε〉 = 0.790 are obtained by combining the data collected at Ee = 3.549 GeV and Ee = 3.680 GeV (see Table I) and analyzing
them together as a single setting, which is justified by the very similar acceptance-averaged values of Q2 and ε at these two energies. The

acceptance-averaged values of the ratio R ≡ −μp
Pt

P�

√
τ (1+ε)

2ε
and the longitudinal polarization transfer component P� are quoted with statistical

and total systematic uncertainties. Rbcc is the “bin-centering-corrected” value of R at the central Q2 of 2.5 GeV2 (see Table XII and discussion
in Sec. IV B). Pt is quoted with its statistical uncertainty only.a The total systematic uncertainty in P� is dominated by the beam polarization
measurement. The point-to-point systematic uncertainties are defined relative to ε = 0.790(0.153) for R(P�/P

Born
� ). ρ(Pt ,P�) is the correlation

coefficient between Pt and P� resulting from the maximum-likelihood analysis. See text for details.

Central Q2 (GeV2) 2.500 2.500 2.500
Central ε 0.149 0.632 0.783
〈Ebeam〉 (GeV) 1.867 2.844 3.632

〈Q2〉 ± �Q2
rms (GeV2) 2.491 ± 0.032 2.477 ± 0.074 2.449 ± 0.105

(Q2
min,Q

2
max) (GeV2) (2.42,2.58) (2.33,2.68) (2.18,2.75)

〈ε〉 ± �εrms 0.153 ± 0.015 0.638 ± 0.018 0.790 ± 0.017
(εmin,εmax) (0.11,0.19) (0.59,0.67) (0.73,0.83)
R ± �Rstat ± �Rtotal

syst (final) 0.6953 ± 0.0091 ± 0.0079 0.6809 ± 0.0070 ± 0.0040 0.6915 ± 0.0059 ± 0.0039
�R

ptp
syst (cf. 〈ε〉 = 0.790) 0.0043 0.0002 0.0001

Rbcc ± �statRbcc 0.6940 ± 0.0091 0.6776 ± 0.0070 0.6837 ± 0.0059
Pt ± �statPt −0.1481 ± 0.0019 −0.1881 ± 0.0019 −0.1622 ± 0.0013
P� ± �statP� ± �total

syst P� 0.9750 ± 0.0020 ± 0.0042 0.7335 ± 0.0020 ± 0.0051 0.5816 ± 0.0014 ± 0.0040
P Born

� ± �statP
Born
� 0.9753 ± 0.0003 0.7295 ± 0.0008 0.5720 ± 0.0006

P�

P Born
�

± �stat(
P�

P Born
�

) ± �total
syst ( P�

P Born
�

) N/A 1.0055 ± 0.0029 ± 0.0070 1.0167 ± 0.0027 ± 0.0071

�
ptp
syst(

P�

P Born
�

) (cf. 〈ε〉 = 0.153) N/A 0.0053 0.0061

ρ(Pt ,P�) 0.019 0.009 0.006

aAs in Table X, the quoted values of Pt and P� correspond to the maximum-likelihood estimators obtained using the results of the analyzing
power calibration of Sec. III B 7, performed at 〈ε〉 = 0.153 under the assumption P� = P Born

� and applied to all three kinematic settings.
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measured asymmetry to P�. The final systematic uncertainties
of the GEp-III data are also smaller than those originally
published, as a result of more thorough analysis of the data
from the study of the nondispersive plane optics of the HMS
[52], which reduced the uncertainty in the total bend angle in
the nondispersive plane to �systφbend ≈ 0.14 mrad.

The values of P Born
� quoted in Tables X and XI are

acceptance-averaged values, computed event by event from
Eq. (29) using the parametrized global Q2 dependence of R
resulting from Global Fit II of the appendix, which includes the
final results of GEp-III and GEp-2γ reported in this work. The
statistical uncertainty �P Born

� is computed at each kinematic
by propagating the statistical uncertainty in R through Eq. (29)
and is basically negligible compared to the uncertainty in
P� itself. The use of a global parametrization of R(Q2) to
calculate P Born

� is necessary for a self-consistent extraction of
the ε dependence of P�/P

Born
� at 2.5 GeV2. For the GEp-III

kinematics and the lowest ε measurement from GEp-2γ , which
is used for the analyzing power calibration, the differences
between P Born

� computed from the global parametrization of
R(Q2) and P Born

� computed directly from the measurement
result for R are negligible.

The results in Tables X and XI are the product of a thorough
reanalysis of the data, aimed at reducing the systematic and
statistical uncertainties of the final results. The most significant
difference between the analysis reported here and that of the
original publications is that this work uses the full dataset of
the GEp-2γ experiment to achieve a significant reduction in
the statistical uncertainties. The original analysis, published
in Ref. [47], applied acceptance-matching cuts to the data at
〈ε〉 = 0.638 and 〈ε〉 = 0.790 to match the envelope of events
at the HMS focal plane populated by the 〈ε〉 = 0.153 data,
and further restricted the proton momentum to |δ| � 2% for
all three settings. These cuts selected subsamples of the data
with essentially the same average Q2, and thus the same
average analyzing power, and suppressed possible ε-dependent
systematic effects, resulting from the different phase space
regions populated by elastically scattered protons, including
the momentum dependence of the analyzing power, “bin
centering” effects, and the quality of the reconstruction of
the proton kinematics and the calculation of the spin transport
matrix elements.

The acceptance matching and δ cuts applied in the original
analysis [47] reduced the total number of events by a factor
of approximately 2.5(3.4) at ε = 0.638(0.790) relative to
the full-acceptance dataset. Subsequent analysis has shown
that the momentum dependence of the analyzing power is
adequately accounted for by the global p−1

p scaling of Eq. (34),
and that the HMS optics and spin transport are well calibrated
within the wider phase space regions populated by the two
higher-ε settings (see Fig. 13 and additional discussion in
Ref. [52]). As a result, the statistical uncertainties in R
and P�/P

Born
� are significantly reduced relative to Ref. [47],

without increasing the systematic uncertainty. Other changes
in the final analysis common to both experiments are mainly
related to event reconstruction and elastic event selection.
Details of the improvements in event reconstruction and
elastic event selection, and the final evaluation of systematic
uncertainties, can be found in Ref. [52].
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FIG. 19. Final, acceptance-averaged results of the GEp-2γ ex-
periment, without bin-centering corrections, as a function of ε,

for the ratio R ≡ −μp
Pt

P�

√
τ (1+ε)

2ε
(a), and the ratio P�/P

Born
� (b),

compared to the originally published results [47] (Meziane11), and
the GEp-I result [29] (Punjabi05) at Q2 = 2.47 GeV2. Error bars on
the data points are statistical only. For R, the (one-sided) total and
point-to-point (relative to ε = 0.79) systematic uncertainty bands
are shown, while only the point-to-point (relative to 〈ε〉 = 0.153)
systematic errors are shown for P�/P

Born
� (also one-sided). The

originally published points from Ref. [47] have been offset by −0.03
in ε for clarity. Note that P�/P

Born
� ≡ 1 at 〈ε〉 = 0.153.

Figure 19 shows the final results for the ε dependence
of R and P�/P

Born
� . The data collected at Ee = 3.548 GeV

(〈ε〉 = 0.779) and Ee = 3.680 GeV (〈ε〉 = 0.796) were also
analyzed separately and found to be consistent. The statistical
compatibility of the separately analyzed results, the similarity
of the average kinematics of the two settings, and the near-total
overlap of their Q2 and ε ranges justifies combining these
two measurements into the single result reported in Table XI
and shown in Fig. 19. For both observables, the final results
are consistent with the originally published results, but with
significantly smaller statistical uncertainties at the two highest
ε values. Notably, the enhancement of P�/P

Born
� at 〈ε〉 = 0.790

relative to 〈ε〉 = 0.153 persists in the full-acceptance analysis
and is consistent with the ∼2% enhancement seen in the
original publication. The deviation from unity of the final
result is 6.2 times the statistical uncertainty, 2.7 times the
point-to-point systematic uncertainty, and 2.2 times the “total”
uncertainty defined as the quadrature sum of the statistical
and total systematic uncertainties. The ∼0.6% enhancement
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at ε = 0.638 is roughly a 2σ effect statistically but also
consistent with no enhancement within the point-to-point
systematic uncertainty. The total and point-to-point systematic
uncertainties in P�/P

Born
� are dominated by the point-to-point

uncertainty �Pe/Pe = ±0.5% in the beam polarization. It
is worth noting that the global ±1% uncertainty of the
Møller measurement of the beam polarization is irrelevant
to the determination of the relative ε dependence of P�/P

Born
� ,

because a global overestimation (underestimation) of the beam
polarization is exactly compensated by an equal and opposite
underestimation (overestimation) of the analyzing power at
〈ε〉 = 0.153.

B. “Bin centering” effects in R at Q2 = 2.5 GeV2

In contrast with the original publication [47], the
acceptance-averaged results of the full-acceptance analysis
of the GEp-2γ data are quoted at significantly different
average Q2 values (see Table XI), such that the expected
variation of R with Q2 can noticeably affect its apparent ε
dependence, even in the absence of significant two-photon-
exchange effects in this observable. The expected variation of
R with Q2 within the acceptance of each point is much larger
than its expected ε dependence, which is zero in the Born
approximation and small in most model calculations of the
hard TPEX corrections widely thought to be responsible for the
cross-section-polarization transfer discrepancy. For example,
R(Q2) from the global fit described in the appendix varies
by approximately seven times the statistical uncertainty of the
acceptance-averaged result for R within the Q2 acceptance of
the measurement at ε = 0.79 (see Fig. 13).

In order to correct the results for R to a common central
Q2 of 2.5 GeV2, a bin-centering correction to R is computed
for each kinematic under the assumption that R depends only
on Q2, or, equivalently, under the weaker assumption that
the global Q2 dependence of R factorizes from any potential
ε dependence of R, at least within the acceptance of each
kinematic. The corrected value of R is obtained by multiplying
the acceptance-averaged result, which corresponds to the
average Q2 and ε, by the ratio R(2.5 GeV2)/R(〈Q2〉), where
R(Q2) is evaluated using the results of the global proton
form factor fit11 described in the Appendix. The corrected
results are then plotted at the value of ε corresponding to
the central Q2, as opposed to the acceptance-averaged value
of ε. The bin-centering correction to R is always negative,
because the slope of R(Q2) is negative and the average Q2

is less than the “central” Q2 for all three settings (due to the
Q2 dependence of the acceptance-convoluted cross section).
Table XII shows the results for R corrected to the “central”
kinematics at Q2 = 2.5 GeV2. The magnitude of the correction
is small but noticeable compared to the uncertainties for the
two higher ε points, while being essentially negligible for
ε = 0.153. The differences between the average and central

11The corrections shown in Table XII are computed using the results
of Global Fit II of the Appendix. The corrections obtained using
Global Fit I are indistinguishable.

TABLE XII. Summary of bin-centering corrections to R at Q2 =
2.5 GeV2. 〈Q2〉 and 〈ε〉 are the acceptance-averaged kinematics.
εc is the central ε value computed from the central Q2 value and
the average beam energy. Rbcc is the bin-centering-corrected value
of R with statistical uncertainty. Rbcc − Ravg is the bin-centering
correction relative to the results for the average kinematics reported
in Table XI.

〈Q2〉 (GeV2) 〈ε〉 εc Rbcc ± �statRbcc Rbcc − Ravg

2.491 0.153 0.149 0.6940 ± 0.0091 −0.0013
2.477 0.638 0.632 0.6776 ± 0.0070 −0.0033
2.449 0.790 0.783 0.6837 ± 0.0059 −0.0078

ε values are small. Table XIII shows the results of linear and
constant fits to the ε dependence of R for both the average
and central kinematics. While the corrected and uncorrected
data both favor a slightly negative slope for R as a function
of ε, the slope is also compatible with zero in both cases.
Indeed, the constant fits actually give higher p values than
the linear fits, although the comparison of these values is not
particularly meaningful given the small number of degrees of
freedom and the dramatically different shape of the theoretical
χ2 distributions for ν = 1 and ν = 2.

Figure 20 shows the final, bin-centering-corrected values
of R as a function of ε at 2.5 GeV2. The linear fit quoted in
Table XIII is also shown in Fig. 20 with its 68% confidence
band. The full-acceptance data, which are significantly more
precise at the two highest ε values than the originally published
data [47], slightly favor a small, negative slope dR/dε =
−0.017 ± 0.017 (see Table XIII), after correcting the data to
the common central Q2 of 2.5 GeV2. The uncertainty in the
slope dR/dε is dominated by the statistical uncertainties of the
data, as the point-to-point systematic uncertainties are small.
The observed slope is consistent with zero but is more likely to
be negative than positive. No bin-centering corrections were
necessary for the ratio P�/P

Born
� , other than to quote the results

at the central kinematics as opposed to the average kinematics.
This is because the observed Q2 dependence of P� closely
follows the predicted Q2 dependence of P Born

� (see Fig. 13),
such that the Q2 dependence of the ratio P�/P

Born
� is consistent

with a constant within the acceptance of each kinematic.

TABLE XIII. Linear and constant fit results for the ε dependence
of R, with and without bin-centering corrections. Quoted uncertain-
ties in fit results are statistical only.

No b.c.c. b.c.c.

Slope dR/dε −0.0076 ± 0.0169 −0.0173 ± 0.0169
Linear fit χ 2/ndf 1.78/1 1.02/1
Linear fit p value 0.18 0.31
Linear fit R(ε = 0) 0.693 ± 0.011 0.694 ± 0.011
Constant fit R 0.6887 ± 0.0040 0.6837 ± 0.0040
Constant fit χ 2/ndf 1.98/2 2.07/2
Constant fit p value 0.37 0.36
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FIG. 20. Bin-centering-corrected results for the ε dependence of
the ratio R at the common central Q2 of 2.5 GeV2 (red filled squares),
with statistical uncertainties only. The red solid line is the linear fit
to the corrected data reported in Table XIII. The red shaded region
indicates the pointwise, 1σ uncertainty band of the linear fit (68%
confidence level). The blue dashed horizontal line is the weighted
average of the three measurements assuming no ε dependence of R.
The blue hatched region indicates the 68% confidence interval (1σ )
for the weighted average. The results of the constant fit are also quoted
in Table XIII. The GEp-I result [29] (empty triangle), corrected to
2.5 GeV2 using the same approach as the GEp-2γ data, is shown for
comparison.

V. COMPARISON TO THEORETICAL PREDICTIONS

A. Theoretical interpretation of G p
E/G p

M at large Q2

Among the primary motivations for measuring nucleon
elastic electromagnetic form factors to larger Q2 values is to
observe the transition from strong coupling and confinement
to the regime of perturbative QCD (pQCD) physics. However,
the applicability of pQCD to hard exclusive processes such
as elastic electron-nucleon scattering may require much larger
momentum transfers than those currently accessible. One fact
that the new proton data have revealed beyond a doubt is
the importance of quark orbital angular momentum to the
understanding of nucleon structure. The role of orbital angular
momentum is also revealed in a global way, by the very fact that
the nucleon magnetic moment is strongly anomalous, differing
from the Dirac magnetic moment by approximately ± 2 units
of the nuclear magneton, for the proton and neutron, respec-
tively. Solving the QCD equations from first principle for the
nucleon is only possible on the lattice; until quite recently, the
feasible Q2 range for lattice calculations of nucleon FFs has
been limited to Q2 � 3 GeV2 by computing power and other
technical issues. The expectation, given increases in computa-
tional power and technical innovations in the methodology of
the calculations, is that lattice QCD will be applicable up to
10 GeV2 or higher in the near future. At the present time, only
phenomenological models which include some but not all of
the fundamental characteristics of QCD are possible. Some of

the most successful models include vector meson dominance
(VMD), the relativistic constituent quark models (RCQM),
generalized parton distributions (GPD), Dyson-Schwinger
QCD, and others. We discuss a selection of these approaches
in more detail here and compare them with the data.

1. Vector meson dominance

The earliest models explaining the global features of the
nucleon form factors, such as their apparent and approxi-
mate dipole behavior, were vector meson dominance (VMD)
models. In this picture, the photon couples to the nucleon
through the exchange of vector mesons. A single vector meson
exchange with simple couplings gives an m2

V /(m2
V − q2)

factor, from its propagator, for the falloff of the form factor.
One can obtain a Q−4 high momentum falloff, in accord with
observation or with pQCD, from cancellations among two or
more vector meson exchanges with different masses, or by
giving the vector mesons themselves a form factor in their
coupling to nucleons.

An early example of a VMD fit to form factor data was
given by Iachello, Jackson, and Lande (IJL) [68]. They had
several fits, but the one most cited is a five-parameter fit with a
more complicated ρ propagator than the form noted above, to
account for the large decay width of the ρ meson. (The ω and
φ are narrow enough that modifying their propagators gives
no numerical advantage.)

The IJL work was improved by Gari and Krümpelmann
[69,70] to better match the power law pQCD expectations at
high Q2, that F1 ∼ Q−4 and F2 ∼ Q−6, but also including
some ln(Q2) corrections to the falloffs based on the running
behavior of the coupling αs(Q2).

Further improvement in VMD fits was made by Lomon
[71], who included a second ρ as the ρ ′(1450), and later also a
second ω as the ω′(1419), and obtained a good parametrization
for all the nucleon form factors. The first of the polarization
transfer measurements [28] became available in time for
Lomon’s 2001 work [71]. Lomon further tuned his fits [71]
when the second set of polarization transfer data became
available [30].

In addition, the original IJL fits [68] were not as good for
the neutron as for the proton. Both the spacelike neutron form
factors and timelike nucleon form factors were addressed in
what may be termed IJL updates, by Iachello and Wan [72]
and Bijker and Iachello [73], both in 2004. Further, Lomon
and Pacetti [74] have updated and analytically continued the
earlier Lomon fits in order to also give a good account of data
in both timelike and spacelike regions. The VMD models are,
of course, fits to existing data, and they have been regularly
updated as new data appeared. It will be interesting to check
the predictions for the neutron form factors as new data appear.
A plot of the existing situation for the proton is given in
Fig. 21.

VMD models are a special case of the more general disper-
sion relation approach which relates the nucleon form factors
in the spacelike (q2 < 0) region accessible in fixed-target
electron scattering to the timelike (q2 > 0) region accessible
in annihilation experiments e+e− → pp̄ (or pp̄ → e+e−).
The analytic properties of FFs justify a common interpretation
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FIG. 21. Several VMD fits compared to the JLab G
p
E/G

p
M data.

The solid curve (black) is the fit of Lomon [71], the dashed curve
(blue) is that of Iachello et al. [68], and the dotted curve (red) is that
of Bijker and Iachello [73]. Data are from Refs. [29] (blue circles),
[42] (red squares), and the present work (black triangles for GEp-III
and pink star for GEp-2γ ). The GEp-2γ result shown is the weighted
average of the three ε points without bin-centering corrections (see
Table XIII). Figure adapted from Fig. 23 of Ref. [4].

of scattering and annihilation experiments and the precision
reachable at colliders requires a unified description of form
factors for both spacelike and timelike q2. Although the
separation of GE and GM has been challenging in the timelike
region due to the low luminosities of e+e− colliders relative
to fixed-target experiments, some data on the form factor ratio
in the timelike region do exist, mainly from the study of the
initial-state radiation (ISR) process e+e− → pp̄γ . The most
recent and precise data in the timelike region come from the
BABAR Collaboration [75,76].

2. Constituent quark models

The early success of the nonrelativistic constituent quark
model was in explaining static properties, including magnetic
moments and transition amplitudes. Examples are the models
of De Rújula et al. [77] and Isgur and Karl [78]. However,
to describe the data presented here in terms of constituent
quarks, it is necessary to include relativistic effects because
the momentum transfers involved are much larger than the
constituent quark mass.

Constituent quark models (CQMs) have been used to
understand the structure of nucleons, beginning when quarks
were first hypothesized and predating the emergence of QCD
as the theory of the strong interaction. In the CQM, ground-
state nucleons (and other baryons in the lowest-lying spin-1/2
octet and spin-3/2 decuplet) are composed of three valence
quarks, selected from the three lightest flavors, up (u), down
(d), and strange (s), and described using SU(6) spin-flavor
wave functions and a completely antisymmetric color wave
function. Figure 22 compares a selection of CQM calculations

FIG. 22. The JLab G
p
E/G

p
M data compared to the results of a

selection of constituent quark models. The short dashed curve (blue)
is from Boffi et al. [79], the solid (orange) from de Melo et al. [80], the
long dashed (magenta) from Gross et al. [81], the dotted (red) from
Chung and Coester [82], and the dash-dotted (cyan) from Cardarelli
et al. [83]. Data are the same as in Fig. 21. Figure adapted from
Fig. 24 of Ref. [4].

to the polarization transfer data for μpG
p
E/G

p
M from the GEp-I,

GEp-II, GEp-III, and GEp-2γ experiments.
A crucial question for a form factor calculation, since the

nucleon must be moving after or before the interaction or both,
is how the wave function in the rest frame transforms to a
moving frame. The relative ease of exactly transforming states
from the frame where the wave functions are calculated or
otherwise given, to any other frame, makes the light-front form
attractive for form factor calculations. The light-front form
in this context was introduced by Berestetsky and Terentev
[84,85] and later developed by Chung and Coester [82]. The
light-front form of the wave function is obtained by a Melosh
or Wigner rotation of the Dirac spinors for each quark.

Chung and Coester [82] used a Gaussian wave function.
They did obtain a falling G

p
E/G

p
M ratio. This is apparently a

feature shared by many relativistic calculations and is caused
by the Melosh transformation [86]. Frank et al. [87,88] used the
light-front nucleonic wave function of Schlumpf [89,90] and
found a decreasing G

p
E/G

p
M ratio, obtaining a zero between Q2

of 5 and 6 GeV2. Cardarelli et al. [83,91] also used the light-
front formalism which used quark wave functions obtained
from a potential of Capstick and Isgur [92]. They made the
point that the one-gluon exchange is crucial to obtaining high-
momentum components in the wave function to explain the
form factor data.

A comparable amount of high-momentum components in
the nucleon wave function can be obtained in the Goldstone-
boson-exchange (GBE) quark model [93,94]. This model relies
on constituent quarks and Goldstone bosons, which arise
as effective degrees of freedom of low-energy QCD from
the spontaneous breaking of the chiral symmetry. The GBE
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CQM was used by Boffi et al. [79] to calculate the nucleon
electromagnetic form factors in the point form. Relativistic
CQM calculations by Wagenbrunn et al. [95] compared us-
ing Goldstone-boson-exchange to one-gluon-exchange in the
point form and found little difference between the calculations
for proton form factors.

De Sanctis et al. [96,97] have calculated the ratio G
p
E/G

p
M

within the hypercentral constituent quark model including
relativistic corrections. Parameters of the potential are fit to the
baryon mass spectrum. With the inclusion of form factors for
the constituent quarks, good fits are obtained for the nucleon
form factors [97] for the latest polarization transfer G

p
E results

[31].
Another type of covariant CQM calculation was done by

Gross et al. [81], partly based on earlier work of Gross
and Agbakpe [98], avoiding questions of dynamical forms
by staying in momentum space. They performed CQM
calculations using a covariant spectator model, where the
photon interacts with one quark and the other two quarks
are treated as an on-shell diquark with a definite mass. They
modeled the nucleon as a system of three valence constituent
quarks with their own parameterized form factors, where the
CQ form factors are obtained with parameters that they fit to
the data. Their fit from the nine-parameter model IV achieves
a rather good description of the existing data, including the
recent higher Q2 data for Gn

E from Ref. [99], which had not
yet been published at the time.

3. Perturbative QCD

In the context of elastic scattering and other hard exclusive
processes, perturbative QCD (pQCD) is only expected to
be applicable at very large momentum transfers [100,101],
perhaps one to several tens of GeV2 in the most optimistic
scenario. In this limit, the virtual photon makes a hard collision
with a single valence quark, which then shares the large
momentum transfer with the other two, nearly collinear quarks
through two hard gluon exchanges. pQCD predicts that Q4F1

and Q2F2/F1 should become constant for asymptotically large
Q2, where the extra power of Q2 for F2 relative to F1 is
a consequence of helicity conservation at high energies. The
predictions were given by Brodsky and Farrar [102,103] and by
Matveev et al. [104]. By a simple rearrangement of Eq. (2), the
ratio of Dirac and Pauli FFs is given in terms of the Sachs ratio
r = GE/GM by F2/F1 = (1 − r)/(τ + r). Figure 23 shows
the JLab polarization data together with selected cross section
data for Q2F

p
2 /F

p
1 . The cross section data (without TPEX

corrections) show flattening for Q2 � 3 GeV2. However, the
GEp-I, GEp-II, and GEp-III data do not yet show the pQCD
scaling behavior.

In 2003, Belitsky et al. [105] investigated the assumption
of quarks moving collinearly with the proton underlying the
pQCD prediction. They reiterated the fact that the helicity
of a massless (or very light) quark cannot be flipped by
the virtual photon of the ep reaction. Instead, the leading
contribution to F

p
2 at large Q2 requires one unit of orbital

angular momentum in either the initial or final-state light-cone
nucleon wave function, leading to a modified logarithmic
scaling behavior Q2F2/F1 ∝ ln2(Q2/�2) at large Q2, with �

FIG. 23. Selected data for Q2F
p
2 /F

p
1 from cross section and

polarization observables. Polarization transfer data and symbols are
the same as in Fig. 18. Cross section data are from Refs. [16]
(filled green circles), [18] (empty green circles), and [17] (empty
green triangles). The cross section data show flattening starting at
Q2 ≈ 3 GeV2. However, the polarization transfer data continue to
rise up to Q2 = 8.5 GeV2.

a nonperturbative mass scale. With � = 0.3 GeV, as shown in
Fig. 24, the polarization data for F2p/F1p agree qualitatively
with such double-logarithmic enhancement.12 Ralston [106]
and Brodsky et al. [107] have also discussed the role of quark
orbital angular momentum in producing a ratio F2p/F1p which
falls more slowly than 1/Q2. While the “precocious” scaling
behavior observed in the proton’s F2/F1 ratio is interesting, it
is important to note that the neutron FF data up to 3.4 GeV2

[99] do not support the logarithmic pQCD scaling behavior for
a cutoff parameter � similar to that which describes the proton
data. The detailed flavor decomposition of the individual
quark contributions to the nucleon form factors [108,109]
suggests that the pQCD-like scaling behavior observed for
the proton’s F2/F1 ratio is probably largely accidental, and
a consequence of the delicate interplay between the u and d
quark contributions to F1 and F2.

In 2006, Braun et al. [110] evaluated leading order
contributions to the nucleon EMFFs within the light-cone sum
rule (LCSR) approach, using both asymptotic distribution am-
plitudes (DAs) and DAs with QCD sum rule-based corrections.
The LCSR approach with asymptotic DAs yields values of
G

p
M and Gn

M which are close to the data in the range Q2 ∼
1–10 GeV2. The electric form factors were found to be much
more difficult to describe, with Gn

E overestimated and G
p
E/G

p
M

nearly constant. The ratio G
p
E/G

p
M was found to be very

sensitive to the details of the DAs. A qualitative description of

12This observation is not particularly sensitive to the choice of
� within a range of values comparable to �QCD and/or � ≈ h̄c

rp
≈

0.235 GeV.
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FIG. 24. Same data as Fig. 23, plotted as (Q2/ ln2(Q2/

�2))F p
2 /F

p
1 as proposed by Belitsky et al. [105], for � = 0.3 GeV.

the proton and neutron electric form factors was obtained by
including twist-3 and twist-4 corrections to the nucleon DAs
within a simple model. More recently, the LCSR approach was
refined by Anikin et al. [111] to include the next-to-leading-
order pQCD corrections to the contributions of both twist-3
and twist-4 operators and a consistent treatment of nucleon
mass corrections. In Ref. [111], the DAs were extracted using
the form factor data and compared to lattice QCD results,
leading to a self-consistent description. The LCSR approach
is, however, not yet able to describe all four nucleon EMFFs
to a degree of accuracy comparable to that of the data.

Kivel and Vanderhaeghen [112,113] investigated the soft
rescattering contribution to nucleon form factors using soft
collinear effective theory (SCET). They have been able to
show that the soft or Feynman process can be factorized into
three subprocesses with different scales: a hard rescattering, a
hard-collinear scattering, and soft nonperturbative modes. For
the Q2 range of the present data, SCET qualitatively predicts
that Q2F2/F1 should not be a constant, but exhibit a slow rise,
as seen in the data.

4. Generalized parton distributions

The elementary hard scattering process in large-Q2

electron-nucleon scattering is virtual photoabsorption by a sin-
gle quark, embedded in the target nucleon as part of a complex,
many-body, relativistic system of valence quarks, sea quark-
antiquark pairs, and gluons, described by the generalized
parton distributions (GPDs). The GPDs provide a framework
to describe the process of emission and reabsorption of a quark
by a hadron in hard exclusive reactions via the “handbag”
mechanism. The GPDs are universal nonperturbative objects
arising in the QCD factorization of hard exclusive processes
such as deeply virtual Compton scattering (DVCS) and deeply
virtual meson production (DVMP). The form factors F1 and
F2 are related to the vector (H ) and tensor (E) GPDs by

model-independent sum rules [114]:∫ +1

−1
dx Hq(x,ξ,Q2) = F

q
1 (Q2) ,

∫ +1

−1
dx Eq(x,ξ,Q2) = F

q
2 (Q2) , (39)

where F
q
1 (Fq

2 ) represents the contribution of quark flavor q
to the Dirac (Pauli) FF of the nucleon. These relations allow
us, if we have complete measurements or good models for
the GPDs, to predict the electromagnetic form factors [115].
Alternatively, the measured form factors at high Q2, when
combined with the forward parton distributions measured in
deep-inelastic scattering, provide fairly stringent constraints
on the GPDs, particularly with respect to their behavior at large
x and/or −t values [116,117]. Early theoretical developments
in GPDs indicated that measurements of the separated elastic
form factors of the nucleon to high Q2 might also shed
light on the nucleon spin decomposition, via Ji’s angular
momentum sum rule [114] for the total (spin and orbital)
angular momentum Jq carried by the parton flavor q:

2Jq =
∫ 1

−1
[Hq(x,0,0) + Eq(x,0,0)]xdx. (40)

The model-independent extraction of GPDs from observables
of hard exclusive processes is an area of high current activity
and interest. Some recent and less-recent reviews of the
subject can be found in Refs. [118–123]. The GPDs can be
represented in impact-parameter space via two-dimensional
Fourier transforms of the t dependence of GPDs at zero
skewness [124], allowing a three-dimensional “tomography”
of the nucleon in two transverse spatial dimensions and one
longitudinal momentum dimension. By forming the charge-
squared-weighted sum over quark flavors and integrating the
impact-parameter-space GPDs over longitudinal momentum
fractions x, Miller [125,126] derived model-independent
expressions for the impact-parameter-space charge and mag-
netization densities of the nucleon in terms of two-dimensional
Fourier-Bessel transforms of F1 and F2:

ρch(b) =
∫ ∞

0

Q

2π
J0(Qb)F1(Q2)dQ, (41)

ρ̃M (b) = b

2π
sin2 φ

∫ ∞

0

Q2

2π
J1(Qb)F2(Q2)dQ, (42)

in which b is the magnitude of the transverse displacement
from the center of the nucleon, and φ is the angle between the
direction of b and the direction of the transverse magnetic
field or, equivalently, the transverse nucleon polarization.
Venkat et al. [127] performed a first extraction with realistic
uncertainty estimation of ρch(b) and ρ̃M (b) for the proton.

5. Lattice QCD

Lattice gauge theory is presently the only known method
for calculating static and dynamic properties of strongly inter-
acting systems from first-principles, nonperturbative QCD in
the regime of strong coupling and confinement. Practical com-
putations in lattice gauge theory involve numerical solutions of
QCD on a finite-volume lattice of discrete space-time points.
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FIG. 25. Lattice QCD results for μpG
p
E/G

p
M obtained using a

method based on the Feynman-Hellman theorem [134] (pink filled
circles), compared to polarization transfer data from Refs. [28,29]
(blue empty circles), [30,42] (red empty squares), the final GEp-III
data (black empty triangles), and the weighted-average of the final
GEp-2γ data (pink empty star). The solid curve is the fit to the data
using Eq. (44) from Ref. [4], and has not been refitted using the final
results reported in this work.

In the recent past, these calculations have often been performed
for unphysically large quark masses due to computational
limitations, whereas modern calculations often work at or near
the physical pion mass. Calculations are typically performed
for several lattice volumes, spacings, and quark masses and
then extrapolated to the infinite-volume, continuum limit and
to the physical pion mass. Early calculations of nucleon
electromagnetic form factors in lattice QCD emphasized
the isovector (p − n) form factors, which are simpler to
calculate since contributions from disconnected diagrams are
suppressed [128]. Until quite recently, most calculations of
nucleon form factors in lattice QCD [128–132] have been
restricted to relatively low momentum transfers Q2 � 3 GeV2,
because the rapid falloff with Q2 of the form factors leads to
very small signal-to-noise ratios in the extraction of hadronic
three-point correlators, and related systematic uncertainties
due to excited-state contamination, among other issues. Lin
et al. [133] employed a technique using anisotropic lattices
with both quenched and dynamical ensembles with mπ �
450 MeV to reach Q2 ≈ 6 GeV2.

The prospects for lattice QCD form factor calculations to
reach high Q2 have recently been improved by application of
the Feynman-Hellman theorem [134], through which hadronic
matrix elements can be related to energy shifts. In the context
of nucleon form factor calculations on the lattice, the Feynman-
Hellman method allows access to the matrix elements relevant
to form factor calculations via two-point correlators as opposed
to more complicated three-point functions, and exploits strong
correlations in the gauge ensembles to enhance the signal-
to-noise ratios for high-momentum states. Figure 25 shows
an initial result from the QCDSF/UKQCD/CSSM Collabo-
rations [134] for μpG

p
E/G

p
M reaching Q2 ≈ 6.5 GeV2 with

uncertainties approaching the precision of the experimental
data.

6. Dyson-Schwinger equations

In recent years, significant progress has also been realized in
the explanation and prediction of static and dynamic properties
of simple hadronic systems such as the pion, the nucleon,
and the �(1232) in continuum nonperturbative QCD, within
the framework of QCD’s Dyson-Schwinger equations (DSEs)
[37]. Where the calculation of nucleon electromagnetic form
factors is concerned, the DSE approach requires the solution
of a Poincaré covariant Faddeev equation. One analytically
tractable, symmetry-preserving truncation scheme that has
achieved considerable success in describing the observed
behavior of the nucleon FFs involves dressed quarks and
nonpointlike scalar and axial vector diquarks as the dominant
degrees of freedom.

In the DSE framework, the nucleon EMFFs at large Q2

values are sensitive to the momentum dependence of the
running masses and couplings in the strong interaction sector
of the standard model [136]. In a recent study, Segovia
et al. [135] achieved simultaneously good descriptions of
the nucleon and �(1232) elastic and transition form factors
using identical propagators and interaction vertices for the
relevant dressed quark and diquark degrees of freedom. One
notable prediction is a zero crossing in the ratio G

p
E/G

p
M

at Q2 = 9.5 GeV2 and in the neutron FF ratio Gn
E/Gn

M

at Q2 ≈ 12 GeV2. In this framework, any change in the
quark-quark interaction that shifts the location of the zero in
G

p
E to larger Q2 implies a corresponding shift in the location

of a zero in Gn
E to smaller Q2. The location of the zero

in G
p
E is particularly sensitive to the rate of transition of

the dressed quark mass function between the nonperturbative
and perturbative regimes, with a slower falloff of G

p
E/G

p
M

corresponding to a faster transition to the perturbative regime,
consistent with the dimensional scaling expectation discussed
in Sec. V A 3. This prediction will be severely tested by
planned near-future precision measurements of G

p
E (Gn

E) to
Q2 ≈ 12 (10) GeV2 at JLab. Figure 26 shows the calculation
of Segovia et al. [135] for μpG

p
E/G

p
M , compared to the

polarization transfer data from Halls A and C.

B. Implications of GEp-2γ for TPEX

Shortly after the publication of GEp-I and GEp-II, two
groups independently suggested that the difference between
cross section and double polarization results might be at-
tributable to previously neglected hard TPEX processes; these
were Guichon and Vanderhaeghen [44] and Blunden et al.
[137]. Notably, some of the earliest polarization experiments
for elastic ep were done to assess the contribution of
the two-photon exchange process [77,138–140]. In general,
cross section data require large radiative corrections, whereas
double-polarization ratios do not [64,65]. Several calculations
and/or extractions of the hard TPEX contribution involving
various models, assumptions, and approximations have been
published over the past decade. A partial list of these efforts in-
cludes Refs. [45,141–145]. Many of the calculations partially
resolve the discrepancy, but a model-independent theoretical
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FIG. 26. Comparison of polarization transfer data for μpG
p
E/G

p
M

with the DSE-based calculation of Ref. [135].

prescription for TPEX corrections constrained directly by data
remains elusive. Recent reviews of the subject can be found in
Refs. [43,146].

In addition to the significant theoretical work to resolve
the discrepancy, major experimental efforts were carried out
over the past decade to search for experimental signatures of
significant TPEX contributions to elastic eN scattering. These
signatures include possible nonlinearities of the Rosenbluth
plot [18,150], a nonzero target-normal single-spin asymmetry
[151] or induced normal recoil polarization, and deviations
from the Born approximation in polarization transfer ob-
servables, as in this work and Ref. [47]. The beam-normal
single spin asymmetries in elastic eN scattering have also
been precisely measured as by-products of a large number of
parity violation experiments [152–158], albeit in a Q2 range
well below the region of the discrepancy. These beam-spin
asymmetries are typically at the few-ppm level and are also
sensitive to the imaginary part of the TPEX amplitudes. The
most direct observable to access the real part of the TPEX
amplitude is a deviation of the e+p/e−p cross section ratio
from unity [141], as the real part of the interference term
between the Born and TPEX diagrams changes sign with
the charge of the lepton beam. Three major experiments with
very different and complementary technical approaches have
recently measured the e+p/e−p cross section ratio [159–162].

Figure 27 shows the final, bin-centering-corrected results
of GEp-2γ for the ε dependence of R, compared to several
theoretical predictions for the hard TPEX corrections to this
observable. Blunden et al. [148] recently evaluated the hard
TPEX corrections to elastic ep scattering within a dispersive
approach, which avoids off-shell uncertainties inherent in
the direct evaluation of loop diagrams [163]. The box and
crossed diagrams for TPEX corrections involving nucleon
and � intermediate hadronic states were evaluated both
algebraically and numerically within the dispersive approach
using empirical parametrizations of the nucleon elastic and
N → � transition form factors. The result including the
contributions of both N and � intermediate states is consistent

FIG. 27. Final, bin-centering-corrected results of GEp-2γ for
the ratio R, compared to several theoretical predictions for the ε

dependence of R at Q2 = 2.5 GeV2 due to TPEX corrections. The
blue solid horizontal line is the weighted average of the corrected data
(see Table XIII and Fig. 20). Curves show calculations from Borisyuk
et al. [147] (cyan dashed), Blunden et al. [148] [green dot-dashed
(N only) and green dotted (N + �)], Bystritskiy et al. [143] (pink
dot-long dashed), Afanasev et al. [45] (black solid), and Kivel et al.
[149] [red dotted (BLW) and red dashed (COZ)]. Note that because
the ratio R is proportional to the Born value of μpG

p
E/G

p
M , each

curve can be renormalized, in principle, by an overall multiplicative
factor. See text for details.

in slope with the final GEp-2γ data, and also achieves a
reasonable description of the e+p/e−p cross section ratios,
which, however, are only measured for Q2 � 2.1 GeV2. At
Q2 = 2.5 GeV2, it appears that a description in terms of
hadronic degrees of freedom with only the nucleon elastic
and � intermediate states is adequate. At higher Q2 values
where the discrepancy between cross section and polarization
data is more severe, the effects of higher mass resonances,
inelastic nonresonant intermediate states including the πN
continuum, and the finite widths of resonances are expected
to increase in importance. Borisyuk et al. [147] also used
the dispersive approach to compute the contribution of the
P33 partial wave of the πN channel to the TPEX amplitude,
which effectively includes the � contribution with realistic
shape, width, and nonresonant background automatically. The
prediction of Ref. [147] for the ratio R is similar to the
calculation of Blunden et al., which is not surprising, given
their similar physics content. Bystritskiy et al. [143] used the
electron structure function method to compute the higher order
radiative corrections to all orders in perturbative QED in the
leading logarithm approximation. Their method predicts no
noticeable ε dependence at the level of precision of the GEp-2γ
data, consistent with our results.

Afanasev et al. [45] approached the TPEX corrections to
elastic ep scattering in a parton-model approach assuming
dominance of the “handbag” mechanism, in which both hard
virtual photons are exchanged with a single quark, embedded

055203-34



POLARIZATION TRANSFER OBSERVABLES IN ELASTIC . . . PHYSICAL REVIEW C 96, 055203 (2017)

)2 (GeV2Q
0 2 4 6 8

p M
/G

p E
 G

pμ

0.5−

0.0

0.5

1.0

1.5

Punjabi05
Puckett12
This work
Christy04
Andivahis94

Global fit I Global fit II
Crawford07 Ron11
Zhan11 Paolone11
Qattan05 )2 = 2.5 GeV2This work (Q

FIG. 28. Global fit results for the proton form factor ratio
μpG

p
E/G

p
M , compared to selected data from measurements of

cross sections and polarization observables, including the final
results of GEp-III (black solid triangles) and GEp-2γ (pink
empty star, weighted average). Other polarization data are from
Refs. [28,29] (Punjabi05), [30,42] (Puckett12), [166] (Crawford07),
[167] (Ron11), [168] (Zhan11), and [169] (Paolone11). Rosenbluth
separation data are from Refs. [16] (Andivahis94), [17] (Christy04),
and [18] (Qattan05). Global Fit I includes the data from Refs. [167–
169], while excluding the data from Ref. [166] and the two lowest
Q2 points from Ref. [29]. Global Fit II excludes the data from
Refs. [167–169]. Shaded regions indicate 1σ , pointwise uncertainty
bands.

in the nucleon via GPDs. This approach is expected to be
valid for simultaneously large values of s, −u, and Q2.
The parton-model evaluation of TPEX corrections predicts
a strong, nonlinear ε dependence for R that is not observed the
in GEp-2γ data. Kivel et al. [149] computed the hard TPEX
correction to elastic ep in a perturbative QCD approach in
which the leading contribution for asymptotically large Q2

involves two hard photon exchanges occurring on different
valence quarks, and a single hard gluon exchange occurring
on the third valence quark. In the pQCD approach, the TPEX
amplitude can be expressed in a model-independent way in
terms of leading-twist nucleon distribution amplitudes (DAs).
In Fig. 27, the calculation of Ref. [149] is shown for two
different models for the DAs: that of Braun et al. (BLW
[110]) and that of Chernyak et al. (COZ [164]). The GPD
and pQCD models for the hard TPEX correction predict a
significant positive slope dR/dε which is disfavored by the
data. It must be noted, however, that the GEp-2γ measurement
at 〈ε〉 = 0.153 in particular lies outside the expected kinematic
range of applicability of a partonic description.

The deviation from unity of P�/P
Born
� at large ε, given the

absence of significant ε dependence of the ratio R, implies
a similar deviation from the Born approximation in Pt that
cancels in the ratio Pt/P�. This deviation was not predicted
by any of the TPEX calculations available at the time of
the original publication [47], which generally expected small

TPEX corrections to this observable. A deviation from unity
in P�/P

Born
� was subsequently predicted within the SCET

approach by Kivel et al. [46]. Guttmann et al. [165] performed
an extraction of the TPEX amplitudes from a global analysis of
elastic ep scattering data including the original GEp-2γ results
[47] and the Hall A “super-Rosenbluth” data at the similar
Q2 of 2.64 GeV2 [18], using the formalism of Eqs. (8)–(12).
Under the assumptions used in their analysis, the observed
deviation from unity of P�/P

Born
� and the constant value

of R imply that the TPEX amplitudes YE ≡ Re(δG̃E/GM )
and Y3 ≡ (ν/M2)Re(F̃3/GM ) [see Eqs. (7)–(13)], which are
mainly driven by the original GEp-2γ data, are roughly equal
in magnitude, are opposite in sign, and approach the 2–3%
level at ε ≈ 0.8 and Q2 = 2.5 GeV2.

VI. CONCLUSIONS

This article has described two proton form factor ex-
periments, GEp-III and GEp-2γ , which utilized the recoil
polarization method in Hall C at Jefferson Laboratory to
measure the ratio of the proton’s electric and magnetic form
factors, R ≡ μpG

p
E/G

p
M . The results of these experiments

were previously published in two separate articles [31,47].
The purpose of this article was to provide an expanded
description of the apparatus and analysis method common to
both experiments and report the results of a full reanalysis of
the data with significant improvements in detector calibration,
event reconstruction, elastic event selection, and the evaluation
of systematic uncertainties.

The final results of GEp-III are essentially unchanged
relative to the originally published results [31]. The new
analysis has resulted in a significant reduction in the systematic
uncertainty, due to a more thorough evaluation of the system-
atic uncertainty in the total bend angle of the proton trajectory
in the nondispersive plane of the HMS. The high-Q2 points
confirmed the results of the GEp-I and GEp-II experiments
from Hall A, namely that R continues to decrease toward zero,
but with clear indication that the rate of this decrease is slowing
down. The impressive agreement of the measurements of R in
GEp-III and GEp-2γ with the previous Hall A measurements
at the same or similar Q2 (but not necessarily the same ε)
demonstrates that the systematic uncertainties of the recoil
polarization method are well understood, and that deviations
from the Born approximation in the extraction of G

p
E/G

p
M

from polarization transfer observables are not large within the
Q2 range presently accessible to experiment.

The GEp-2γ data, originally published in Ref. [47], consist
of measurements for three different ε values at a fixed
Q2 of 2.5 GeV2, obtained by changing the electron beam
energy and the detector angles. The relative ε dependence
of the ratio P�/P

Born
� was also extracted from the GEp-2γ

data with small uncertainties by exploiting the fact that the
polarimeter analyzing power, the proton momentum, and the
HMS magnetic field were the same for all three ε values. The
lowest ε point was used to calibrate the polarimeter analyzing
power, given the large value of P� and its negligible sensitivity
to R at this ε. The results of the reanalysis of the GEp-2γ
data reported in this work include the previously unpublished
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full-acceptance data for the two highest ε points, increasing
the statistics by a factor of 2.5 (3.4) at 〈ε〉 = 0.638(0.790).

The GEp-2γ experiment serves as a precise test of the va-
lidity of the polarization transfer method. Indeed, as expected
from the Born approximation, the GEp-2γ data demonstrate
that R is compatible with a constant for a wide range of ε
between 0.15 and 0.79. The only deviation from the Born
approximation is observed in the longitudinal polarization at
ε = 0.79: P�/P

Born
� = 1.0167 ± 0.0027 ± 0.0071. This devi-

ation is largely compensated by a similar relative deviation in
Pt , such that the form factor ratio remains constant. In addition,
the statistically improved, simultaneous measurements of
the independent observables P�/P

Born
� and R at the same

kinematics provide important tools for testing TPEX models
and constraining the extraction of TPEX form factors.

The accelerator at Jefferson Laboratory has recently been
upgraded to a maximum beam energy of 12 GeV. There are
approved experiments at Jefferson Laboratory that will extend
the knowledge of G

p
E/G

p
M to Q2 = 12 GeV2, Gn

E/Gn
M to

Q2 = 10 GeV2, and Gn
M to 14 GeV2. Dedicated measurements

of the elastic ep unpolarized differential cross section over
a wide Q2 range from 2 to 16 GeV2 with � 2% total
uncertainties have already been completed in Hall A in 2016
and are currently being analyzed. These measurements will
significantly improve upon the existing knowledge of G

p
M

within the entire Q2 range accessible with JLab’s upgraded
electron beam. The program of high-Q2 form factor mea-
surements using the upgraded JLab electron beam will enable
the detailed flavor decomposition of the nucleon EMFFs
to Q2 = 10 GeV2, providing significant constraints on the
predictions of theoretical models and insight into the important
degrees of freedom in understanding nucleon structure across
a broad range of Q2.
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APPENDIX: GLOBAL PROTON FORM FACTOR FIT(S)
USING KELLY PARAMETRIZATION

Several global fits of the proton form factors to measure-
ments of differential cross sections and polarization observ-
ables in elastic ep scattering were performed for this analysis
using a procedure similar to that described in Ref. [170].
The results were used for the GEp-2γ analysis to estimate
the bin centering effects in the ratio R and to calculate the
event-by-event and acceptance-averaged values of P Born

� in the
maximum-likelihood analysis. As in Ref. [170], the first-order

Kelly [21] parametrization was used in which G
p
E and G

p
M/μp

are described as ratios of a polynomial of degree n and a
polynomial of degree n + 2 in τ = Q2/4M2

p (with n = 1).
The Kelly parametrization enforces G

p
E(0) = G

p
M (0)/μp = 1

and also enforces the “dimensional scaling” behavior at
asymptotically large Q2 predicted by perturbative QCD:
Q4F1 ∝ Q6F2 ∝ constant.

Compared to Ref. [170], the fits presented here differ in
a few key respects. The data selection for differential cross
section measurements is largely the same as before, and
includes representative results from twelve different experi-
ments spanning approximately 0.005 GeV2 � Q2 � 31 GeV2

(Refs. [8,9,11–20,171]). However, the database of polarization
observables is modified substantially. First, the final results of
GEp-III and GEp-2γ reported in this work are now included
in the fit, whereas in the original fit, the GEp-III results from
Ref. [31] were used and the GEp-2γ results were not included
at all, as they were not yet published at the time. The three
highest Q2 points from the original GEp-II data [30] have
been replaced by the results of the reanalysis of these data
published in Ref. [42]. The data from Ref. [172] have also
been replaced by the reanalysis results published in Ref. [167].
Finally, the high-precision data from Refs. [168,169] have
been added. Given the apparent inconsistency of the various
polarization experiments at low Q2, an inconsistency which
is not yet explained, two different fits were performed. In
the first fit, hereafter referred to as “Global Fit I,” the recent
precise data from Refs. [167–169] were included, while the
polarized target asymmetry data from Ref. [166] and the two
lowest Q2 points from GEp-I [29] were excluded from the fit.
In the second fit, referred to as “Global Fit II,” the data from
Refs. [167–169] were excluded, while all other Rp data from
polarization observables were included.

The prescription for treating the cross section data, par-
ticularly in the high-Q2 region where the inconsistency with
the polarization transfer data exists, is also slightly modified
here compared to Ref. [170]. As before, three iterations of
the fit are performed, using the resulting parameters and
their uncertainties and correlations from the previous fit as
the starting point for the subsequent fits. In Ref. [170], the
value of G

p
E(Q2) was fixed for Q2 � 1 GeV2 using the

result of the previous fit, or, on the first iteration, Kelly’s
2004 result [21], when computing the χ2 contribution of
individual cross section data, effectively forcing G

p
E to be

entirely determined by polarization data for Q2 � 1 GeV2.
In the fits reported here, GE (GM ) was fixed in the same way
when the fractional contribution of the εG2

E (τG2
M ) term in the

reduced cross section was less than 10%, regardless of Q2. This
prescription removes the influence of individual cross section
measurements on the determination of GE (GM ) at high (low)
Q2 when said measurements have very low sensitivity to
the respective form factors. In particular, a cutoff of 10%
of the reduced cross section excludes all cross section data
for Q2 � 2.2 GeV2 from participating in the determination
of GE , and some lower-Q2 data, depending on ε. The other
significant difference between the fits reported here and those
of Ref. [170] is that in Ref. [170], the overall normalization
uncertainties in the absolute cross section data were essentially
ignored in the χ2 calculation, whereas in the fits presented here,
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the overall normalization of each of the twelve experiments
included in the global fit was allowed to float within a range
of ±2.5 times the quoted normalization uncertainty. All of
the best-fit normalization constants were well within their
allowed ranges in both fits. In Global Fit II, no experiment
was renormalized by more than 3%, whereas in Global Fit
I several experiments were renormalized downward by up to
5%. This result reflects a subtle interplay between the tension
with existing data of the precise polarization measurements
of Rp from Refs. [167–169] in the 0.1- to 1-GeV2 region on
the one hand and the discrepancy between cross section and
polarization data at large Q2 on the other. Allowing the cross
section normalizations to float leads to a reduction of the χ2 per
degree of freedom from 1.78 in Ref. [170] to approximately
1.54 in the fits reported here.

Table XIV summarizes the global fit results. The best-fit
values of the parameters describing G

p
E and G

p
M and their (1σ )

uncertainties are presented together with the implied asymp-
totic values of G

p
E and G

p
M , normalized to a dipole form factor

with a scale parameter �2 = 0.66 GeV2, corresponding to an
rms radius of 0.84 fm, consistent with the proton charge radius
extracted from measurements of the Lamb shift in muonic
hydrogen [173]. As pointed out in Ref. [174], a dipole form
factor with rp = 0.84 fm describes the low-Q2 G

p
E data better

than the standard dipole form factor with �2 = 0.71 GeV2

(corresponding to rp = 0.81 fm). As measured by χ2, the
overall quality of both fits is relatively good, except for the
cross section data in the high Q2 region, for which the χ2 per
datum exceeds two. No attempt was made to correct the high-
Q2 cross section data for the effects of two-photon-exchange
thought to be responsible for the discrepancy, as these
effects are presently only poorly constrained experimentally
and incompletely understood theoretically [175]. Instead, the
“excess” ε dependence of the reduced cross sections observed
in the high-Q2 data (i.e., the excess slope in the Rosenbluth
plot relative to the expectation from polarization transfer data)
is simply averaged over in determining GM , with the ratio
GE/GM fixed by the polarization data. While this procedure
may bias the determination of GM in principle, the potential
size of the effect on GM in the high-Q2 region is mitigated
by the smallness of the fractional contribution of G2

E to the
reduced cross section. The inconsistency among polarization
experiments in the low-Q2 region is another issue that awaits
resolution. While the fits reported here provide an adequate
representation of the proton FFs in the Q2 region in which they
are directly constrained by data, the values and uncertainties

TABLE XIV. Summary of global proton FF fit results. Form
factor parametrization is G(Q2) = 1+a1τ

1+b1τ+b2τ2+b3τ3 , where G(Q2) =
GE(Q2) or GM (Q2)/μp . The uncertainty bands shown in Fig. 28
represent the pointwise, 1σ errors computed from the full covariance
matrix of the fit result. The asymptotic values of the form factors
shown below are normalized to a dipole form GD = (1 + Q2/�2)−2

with scale parameter �2 = 0.66 GeV2 corresponding to an rms radius
rp = 0.84 fm. The total χ 2 and degrees of freedom are shown along
with the breakdown of χ 2 contributions among cross section (σR)
and polarization (Rpol

p ) data. The χ 2 contributions of cross section
measurements are also separated into “low” (Q2 � 1 GeV2) and
“high” (Q2 > 1 GeV2) data. The best-fit normalization constants of
the cross section experiments are omitted for brevity.

Fit Global fit I Global fit II

aE
1 −0.21 ± 0.09 −0.01 ± 0.14

bE
1 12.21 ± 0.18 12.16 ± 0.25

bE
2 12.6 ± 1.1 9.7 ± 1.3

bE
3 23 ± 4 37 ± 7

aM
1 0.058 ± 0.022 0.093 ± 0.025

bM
1 10.85 ± 0.073 11.07 ± 0.08

bM
2 19.9 ± 0.2 19.1 ± 0.2

bM
3 4.4 ± 0.6 5.6 ± 0.7

limQ2→∞
G

p
E

GD (rp=0.84 fm) −0.26 ± 0.15 −0.01 ± 0.11

limQ2→∞
G

p
M

μpGD (rp=0.84 fm) 0.38 ± 0.09 0.47 ± 0.07

χ 2/ndf (all data) 706/460 696/455
χ 2/ndata (σR) 672/427 653/427
χ 2/ndata (Rpol

p ) 34/53 44/48
χ 2/ndata (σR,Q2 � 1 GeV2) 337.7/275 308.4/275
χ 2/ndata (σR,Q2 > 1 GeV2) 334.5/152 344.1/152

in the extrapolation of these fits to larger Q2 should not
be taken too seriously. The high-precision polarization data
for R in both the 0.1- to 1-GeV2 region [29,166–169] and
at 2.5 GeV2, as reported in this work, combine to exert
significant influence on the extrapolation of GE and GM to
Q2 values beyond the reach of existing data, as is evident
from the noticeably different asymptotic behaviors of the two
fits, which differ only in the choice of low-Q2 polarization
data. This is a consequence of fitting a smooth, relatively
inflexible parametrization of the form factors, with no specific
theoretical justification other than its asymptotic behavior, to
high-precision data at significantly different Q2 values.
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