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Approximate inversion of the wave-equation Hessian via randomized matrix probing
Pierre-David Letourneau, Stanford University, Laurent Demanet*, Massachusetts Institute of Technology and Henri
Calandra, Total SA

SUMMARY

We present a method for approximately inverting the Hes-
sian of full waveform inversion as a dip-dependent and scale-
dependent amplitude correction. The terms in the expansion
of this correction are determined by least-squares fitting from
a handful of applications of the Hessian to random models —
a procedure called matrix probing. We show numerical indi-
cations that randomness is important for generating a robust
preconditioner, i.e., one that works regardless of the model to
be corrected. To be successful, matrix probing requires an ac-
curate determination of the nullspace of the Hessian, which
we propose to implement as a local dip-dependent mask in
curvelet space. Numerical experiments show that the novel
preconditioner fits 70% of the inverse Hessian (in Frobenius
norm) for the 1-parameter acoustic 2D Marmousi model.

INTRODUCTION

Much effort and progress has been made over the past sev-
eral years to cast reflection seismic imaging as a waveform
inversion problem, and solve it via all-purpose optimization
tools. This shift of agenda has generated two major, as-yet un-
solved challenges of a computational nature, namely (1) solv-
ing the 3D Helmholtz equation with a limited memory imprint
in the high frequency regime, and (2) inverting, or precondi-
tioning the wave-equation Hessian in order to perform high-
quality Gauss-Newton iterative steps to minimize the output
least-squares objective. This paper is concerned with investi-
gating new ideas to solve the second problem.

The importance of “inverting the Hessian” has been known for
a very long time in exploration seismology. To leading order, it
corresponds to the physical idea of correcting for wrong ampli-
tudes in a subsurface image, due to uneven illumination by the
incident waves. While phases are generally accepted as requir-
ing no correction, many factors come into play to degrade the
amplitude resulting from a single migration of the reflectors.
This includes:

• Limited aperture and uneven sampling;
• Shadow zones avoided by the direct wave;
• Band limit of the source signature; etc.

Being able to correct for the amplitude biases inherent in mi-
gration (and in the Hessian) would have other implications.
In a multi-parameter model, it would in principle allow to ad-
equately assign model updates to each of the parameters. For
uncertainty quantification, it would also allow to determine the
local variance due to data uncertainty, hence basic “error bars”
at each pixel/voxel of an image.

The difficulty of inverting the Hessian is due to the fact that
it is too large to be represented as a matrix, and applying it to
a function in model space is in itself a very computationally
intensive operation. To leading order, the wave-equation Hes-
sian is the composition F∗F , where F∗ is the migration op-
erator, and F is the demigration operator (linearized forward
modeling). In large-scale industrial applications, a prestack
depth migration F∗ can take weeks to operationalize on a clus-
ter, since it involves mapping 3D model space (billions of un-
knowns) to possibly 5D data space (trillions of unknowns).
Compressive strategies have recently been proposed to reduce
this burden, such as various forms of source encoding or “su-
pershots”, but they don’t change the fact that applying F or F∗

is still considered a costly operation.

Accordingly, much of the research effort has so far (rightly)
focused on considering inverting the Hessian as a very special
kind of preconditioning problem, constrained by the availabil-
ity of at most a handful of applications of F or F∗. An early im-
portant contribution is that of (Claerbout and Nichols (1994)),
where the illumination is treated as a scalar function, and de-
termined from applying the Hessian to the migrated image. A
refinement of this idea is proposed by (Rickett (2003)). (Her-
rmann (2003); Herrmann et al. (2009)) proposed to approx-
imate the Hessian as a diagonal operation in curvelet space.
(Guitton (2004)) proposed a solution based on a “nonstation-
ary convolution” which essentially models illumination as a
filter rather than a multiplication. (Symes (2008)) proposed
to extend the model for the Hessian by combining the advan-
tages of multiplication and filtering. See also (Bao and Symes
(1996)). (Nammour (2008); Nammour and Symes (2009)) ex-
tended this model yet again through a dip-dependent scaling.
These authors all propose to fit the Hessian or the inverse Hes-
sian from its application to judiciously chosen functions in
model space, such as the migrated image — a fitting proce-
dure that has come to be known either as “scaling method” or
“matrix probing”.

The contribution of this note is twofold. First, we expand
the realization of the inverse Hessian to include additional de-
grees of freedom that allow to model dip-dependent and scale-
dependent scalings in a seamless fashion via pseudodifferen-
tial amplitudes, properly discretized via so-called “discrete sym-
bol calculus”. Second, we explain how probing should be ex-
tended to the randomized case, why this extension is important
for robustness, and why being able to determine the spaces of
the Hessian (nullspace and range space) is an important step
to properly “color” randomness in model space. While the
numerical experiments on the 2D acoustic Marmousi model
are on a very modest computational scale, the potential to ap-
proximate the whole inverse Hessian in a quantitative manner
(as we show, 70% in Frobenius norm) seems to be a first and
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should be of interest to the community. The investigation of
preconditioning for waveform inversion in larger-scale multi-
parameters settings is currently under way and will be reported
elsewhere.

SETUP

A common high-level formulation of the inversion problem
of exploration seismology is the minimization of the least-
squares misfit J[m] = 1

2 ||d −F [m]||22, where the waveform
data d is a function of source position, receiver position, and
time; the model m is a function of x,y,z that stands for isotropic
wave speed (in this note), or other parameters such as elastic
moduli and density; and the (nonlinear) forward modeling op-
erator F results from simulating wave equations forward in
time and sampling the wavefields at the receivers. We denote
by F the linearization of F about a background model veloc-
ity, and by F∗ the corresponding migration (imaging) operator.
A gradient descent step for minimizing J yields a model update
of the form δm = αF∗(d−F [m]) (for some scalar α), while a
Gauss-Newton step would give δm = (F∗F)−1F∗(d−F [m]).
The Gauss-Newton step solves the linearized problem exactly
in a least-squares sense, but it is of course much harder to com-
pute than a gradient step. The product F∗F is called normal
operator: it is the leading-order approximation to the wave-
equation Hessian H = ∂ 2J

∂mi∂m j
. (A true Newton step would in-

vert the full Hessian.) In this note we slightly abuse notations
and continue using the letter H for the normal operator.

Iterative methods such as conjugate gradients or LSQR can
solve the linear system Hδm = F∗(d−F [m]), although they
require an unreasonably large number of iterations when the
matrix H is ill-conditioned. That is always the case in reflec-
tion seismology, for the same reasons as listed in the 3 bullets
in the introduction. Quasi-Newton methods such as LBFGS
help, but not by much. A preconditioner is a matrix P which
pre-multiplies H either on the left or on the right, in order to
partially invert it and hence require less work from the linear
algebra solver. This paper is concerned with defining a good
preconditioner P' H−1.

MATRIX PROBING

Given a single model m1, and the result m2 = Hm1 from having
applied H once, what can be determined about H? Since m1 =
H−1m2, we have enough information to ask the same question
of H−1. “Inverse matrix probing” works when the matrix H−1

is simple enough that the knowledge of m1 and m2 completely
determines it. (Chiu and Demanet (2012)) have shown (see
also Demanet et al. (2012)) that this will be the case provided

H−1 '
pX

i=1

ciBi, (1)

where ci are scalar coefficients, Bi are adequate basis matri-
ces, and p is sufficiently small compared to n, the number of
rows of the matrix H — for us, the number of pixels/voxels in

model space. The required assumptions on Bi is that they are
of high rank and almost orthogonal in the sense of matrices. In
practice, p can be as large as n/5 when H is well-conditioned.

The linearized reflection seismology problem lends itself well
to an approximation of the form (1), at least when the model
velocity is smooth. This observation results from a large body
of work which establishes that both H and H−1 are pseudod-
ifferential operators under simple kinematic assumptions, see
at least (Beylkin (1985)), (Rakesh (1988)), (ten Kroode et al.
(1998)), (Symes (1995)). In that case, we write Hm(x) =R

e−2πıx·ξξξ a(x,ξξξ )m̂(ξξξ )dξξξ , where x =(x,y,z) and ξξξ is the Fourier
wave-vector variable. The symbol a(x,ξξξ ) obeys very specific
smoothness properties. Because it s a function of both space
and wave-vector, we can refer to H as a dip-dependent and
scale-dependent scaling. Under this pseudodifferential model,
it is possible to define Bi from elementary symbols, by adapt-
ing the “discrete symbol calculus” approach of (Demanet and
Ying (2011)). In other words, each Bi is a pseudodifferen-
tial operator with a symbol that uses a single basis function
such as Fourier sine or cosine. See (Demanet et al. (2012)) for
many missing details. With the Bi known, the scalar coeffi-
cients ci are obtained from the least-squares solution of m1 =Pp

i=1 ciBim2. If several models m1,k are used instead, then we
consider the concatenated system m1,k =

Pp
i=1 ciBim2,k. Ap-

plying each Bi can be done in low complexity (Demanet et al.
(2012)). In the sequel we keep referring to m1,k and m1,k as
“models” although they really are model perturbations (reflec-
tors).

At this stage however, there are obvious issues with the method.
First, there is no guarantee that a good approximation of H−1

on a single model m2 (or a few such models m2,k) represents
a good approximation of the inverse on any other model. Sec-
ondly, if the operator H possesses a non-trivial (approximate)
null-space and m1 happens to belong to this null-space, it is
hopeless to try to recover it since Hm1 ' 0. Trying to overfit
m1 would give rise to unacceptable instabilities.

To alleviate the first issue, we make use of one or several ran-
dom models m1,k. The use of random functions is the key to re-
covering an approximation to the whole matrix H−1. The nu-
merical experiments below confirm this observation. A com-
plete theoretical understanding of this phenomenon is in (Chiu
and Demanet (2012)). The same result would not hold in the
deterministic case.

For the second problem, we need to characterize the nullspace
of H. A model typically belongs to the range space (the or-
thogonal complement of the nullspace) of H if it takes the
form of one or several local reflectors, for which there exist
a ray going from a given source to a given receiver and such
that it is reflected in a specular manner on the reflector. Rays
are computed in the smooth background medium by solving
the equations of geometrical optics. Multipathing is allowed.
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An adequate realization of “local reflectors” in terms of ban-
dlimited wavefronts is the curvelet transform. Curvelets are
anisotropic wavelets, well-localized in phase-space (Candes
and Donoho (2003a),Candes and Donoho (2003b)). They can
be used to filter out the null-space components of any given
model as follows,

1. Create a random model m (white noise);

2. Take a forward fast curvelet transform Candes et al.
(2006);

3. Use ray-tracing to remove elements of the null-space
(misaligned local reflectors);

4. Apply the inverse fast curvelet transform to get the fil-
tered random model m1.

A depiction of the result obtained after applying the above al-
gorithm to white noise is shown in Figure 1. Once such vectors
are available, we implement the algorithm introduced earlier
(apply H to m1; solve for the coefficients ci).

Figure 1: White noise model (top), Typical model in the range
space of H: curvelet-masked coloring (bottom)

EXAMPLES

We apply the algorithm presented in the previous section to the
single-parameter isotropic acoustic Marmousi benchmark, and
compare the performance with the Nammour-Symes determin-
istic algorithm. Figure 2 shows (from left to right) the original
Marmousi model; the result of 200 gradient descent iterations
for solving the linearized least-square problem in a regularized
fashion (hereby “expensive inversion”); the migrated image
(F∗d); and the solution obtained after applying our approxi-
mate inverse with 4 random vectors m2,k, k = 1,2,3,4 to F∗d.

This suggests that the computational savings over gradient de-
scent are of a factor at most 50. All experiments presented here
were carried out with a very smooth background velocity. We
found that, for a fixed number of degrees of freedom, the per-
formance mildly degrades as the background becomes rougher.

The migrated image suffers from a lack of illumination at large
depths, and a narrow spatial bandlimit. A single application of
the preconditioner fixes these problems, and goes a long way
toward performing full linearized inversion. Figure 3 shows
the relative mean-squared error (MSE) between the “expen-
sive inversion” and the solution obtained after applying the
preconditioner. Any MSE below 1 means that the precondi-
tioner is working. R1, R3 and R5 refer to the number of ran-
dom models used to fit the inverse Hessian, namely 1, 3 and 5
respectively. NS1 refers to the deterministic Nammour-Symes
algorithm where a single function is used to fit the degrees of
freedom (the migrated image). Performance decreases quickly
when more vectors belonging to the Krylov subspace of H (i.e.
HF∗d, H2F∗d,...) are used to fit the degrees of freedom in the
NS algorithm.

What sets apart randomized matrix probing is that the approx-
imation is robust ; thanks to the randomness of the training
models, we are recovering an approximation to the full in-
verse. Numerical experiments confirm this claim in Figure 4.
In this particular example, we generated several random trial
models (different from the original training functions) and ap-
plied the NS scheme and our algorithm to recover each one.
We present the averaged MSE as a function of the number of
training functions and the number of degrees of freedom in the
preconditioner. In the limit of a large number of trial models,
this average MSE converges to the Frobenius (a.k.a. Hilbert-
Schmidt norm), hence our claim that the inverse Hessian is
approximated with a 30% relative error.

CONCLUSIONS

We have presented a new design for a preconditioner for the
wave-equation Hessian based on ideas of randomized testing,
pseudo-differential symbols, and phase-space localization. The
proposed solution is effective both visually and quantitatively
(error bounds). The precomputation requires applying the Hes-
sian once, or a handful of times. Fitting the inverse Hessian
involves solving a small least-squares problem, of size p-by-
p, where p is much smaller than the size of model space. It
is anticipated that the techniques developed in this paper will
be of particular interest in 3D seismic imaging and with more
sophisticated physical models that require identifying a few
different parameters (elastic moduli, density). In that setting,
properly inverting the Hessian with low complexity algorithms
to unscramble the multiple parameters will be particularly de-
sirable.
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Figure 2: In order from top to bottom : Reference model; “ex-
pensive inversion”; migrated image; preconditioned migrated
image.
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Figure 3: Relative MSE vs number of degrees of freedom for
the Marmousi model. The rank of the Hessian at level 1e− 3
is ∼ 2500, and correspondingly a good number of degrees of
freedom for the preconditioner is in the high hundreds.
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Figure 4: Generalization error (Relative MSE vs number of
degrees of freedom). Performance increases with the number
of training models (randomized strategy, solid lines) but de-
creases with the dimension of the Krylov subspace (determin-
istic strategy, dotted lines).
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