
Generative Multi-Robot Task and Motion Planning
Over Long Horizons

by

Enrique Fernández González
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Aeronautics and Astronautics

December 29th, 2017
Certified by. .

Brian C. Williams
Professor, MIT

Thesis Supervisor
Certified by. .

Leslie P. Kaelbling
Professor, MIT

Thesis Committee Member
Certified by. .

Russ Tedrake
Professor, MIT

Thesis Committee Member
Accepted by .

Paulo C. Lozano
Chairman, Graduate Program Committee

2

Generative Multi-Robot Task and Motion Planning Over

Long Horizons

by

Enrique Fernández González

Submitted to the Department of Aeronautics and Astronautics
on December 29th, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The state of the art practice in robotics planning is to script behaviors manually, where
each behavior is typically precomputed in advance. However, in order for robots to
be able to act robustly and adapt to novel situations, they need to be able to plan
sequences of behaviors and activities autonomously. Since the conditions and effects
of these behaviors are tightly coupled through time, state and control variables, many
problems require that the tasks of activity planning and trajectory optimization are
considered together.

There are two key issues underlying effective hybrid activity and trajectory plan-
ning: the sufficiently accurate modeling of robot dynamics and the capability of
planning over long horizons. Hybrid activity and trajectory planners that employ
mixed integer programming within a discrete time formulation are able to accurately
model complex dynamics for robot vehicles, but are often restricted to relatively short
horizons. On the other hand, current hybrid activity planners that employ contin-
uous time formulations can handle longer horizons but they only allow actions to
have continuous effects with constant rate of change, and restrict the allowed state
constraints to linear inequalities. This greatly limits the expressivity of the problems
that these approaches can solve.

In this work we present Scotty, a planning system for hybrid activity and trajec-
tory planning problems. Unlike other continuous time planners, Scotty can solve a
broad class of expressive robotic planning problems by supporting convex quadratic
constraints on state variables and control variables that are jointly constrained and
that affect multiple state variables simultaneously. In order to efficiently generate
practical plans for coordinated mobile robots over long horizons, our approach em-
ploys recent methods in convex optimization combined with methods for planning
with relaxed planning graphs and heuristic forward search.

The contributions of this thesis are threefold. First, we introduce a convex, goal-
directed scheduling and trajectory planning problem. To solve this problem, we
present the ScottyConvexPath planner, which reformulates the problem as a Second
Order Cone Program (SOCP). Our formulation allows us to efficiently compute robot

3

trajectories with first order dynamics over long horizons. While straightforward for-
mulations are not convex, we present a convex model that does not require state,
control or time discretization. Second, we introduce the ScottyActivity planner, a
state of the art hybrid activity and trajectory planner that interleaves heuristic for-
ward search with delete relaxations and consistency checks using our convex model.
Finally, we present ScottyPath, a qualitative state plan planner that computes control
and obstacle-free state trajectories for robots in order to satisfy the temporally ex-
tended goals and constraints that ScottyActivity imposes. ScottyPath finds obstacle-
free paths in which all robots are guaranteed to always remain within obstacle-free safe
regions, which are computed in advance. We introduce several new robotic planning
domains, that we use to evaluate the scalability of our planning system and compare
the performance of our approach against other prior methods. Our results show that
ScottyActivity performs similarly to other state of the art heuristic forward search
activity planners, while solving much more expressive robotic planning problems. On
the other hand, ScottyPath can generate obstacle-free paths where robots are con-
tained in obstacle-free convex regions more than two orders of magnitude faster than
alternative mixed-integer approaches.

Thesis Supervisor: Brian C. Williams
Title: Professor, MIT

Thesis Committee Member: Leslie P. Kaelbling
Title: Professor, MIT

Thesis Committee Member: Russ Tedrake
Title: Professor, MIT

Thesis Reader: Erez Karpas
Title: Assistant Professor, Technion

Thesis Reader: Richard Camilli
Title: Principal Investigator, WHOI

4

Acknowledgments

As cliché as it may sound, completing my PhD at MIT is a dream come true. MIT is

a wonderful place, and I am eternally thankful for my time here. For over five years,

I have had the fortune to work and share my time with incredible people that have

supported me over the years. This thesis has been shaped in part by them.

First of all, I would like to thank my advisor, Brian Williams, for accepting me in

the group and, hence, giving me the opportunity of a lifetime, even when I did not

have any experience in the field. I would like to thank him for challenging me everyday

and for his endless efforts in attempting to make me a better researcher. I would also

like to thank my committee members and readers, Leslie Kaelbling, Russ Tedrake,

Erez Karpas and Rich Camilli, for their constructive feedback and their guidance

in this thesis. I would like to thank Leslie and Russ, whose classes I have had the

fortune to take, for being an example on how to lead groundbreaking research groups

with a contagious passion. I would like to thank Rich for his patience explaining

over and over the real way in which underwater robotic missions take place. I could

gladly spend hours listening to his expedition stories. Special thanks to Erez, for all

his help throughout these years. His stay in our group made a big difference in my

work. Erez guided me when I felt lost, taught me to write my first paper and was

always available to talk, regardless of whether he was in Boston or Israel, or I was in

Singapore or California. His part in this thesis cannot be overstated.

I would like to thank all the members of the MERS group: Ameya, Andreas,

Andrew, Askhan, Brian, Ben, Christian, Claudio, Cyrus, Dan, David, Erez, Eric,

James, Jingkai, Jonathan, Larry, Marlyse, Matt, Nick, Nikhil, Pedro, Peng, Sang,

Sean, Simon, Shawn, Spencer, Steve, Szymon, Tiago, Yuening. Thank you for cre-

ating a great environment where everyone always helped each other. I could not

have asked for better teammates and I will miss our daily interactions. Thank you

Andreas, Tiago, Christian and Ashkan for your guidance and advice throughout the

years. Special thanks to Steve, for being a great neighbor, with a contagious enthusi-

asm for creating cool stuff and who always kept our robots alive; Peng, for being the

5

nicest, most generous teammate I have ever had; Simon, for always trying to keep

the group social, and for being, for many years, the only other guy in the lab that

enjoyed soccer; Pedro, for being annoyingly smart and somewhat funny, but always

right; and James, for the great two years we spent as labmates and for flying all the

way from South Africa to show up at my wedding in Spain.

I would also like to thank ‘Obra Social La Caixa’, for giving me the fellowship that

brought me here, and for inspiring generations and generations of young Spaniards to

dream high. I would also like to thank the SUTD-MIT Graduate Fellows Program,

for their financial support and, especially, for the wonderful opportunity of spending

a semester teaching Math in Singapore. My gratitude goes well to Boeing and Exxon,

for their generous financial support throughout the years.

Over the last five and a half years I have had the fortune to meet incredible

talented, humble and generous people that have made this an amazing experience.

Thank you to my friends from the Spain@MIT club, for winning more soccer cham-

pionships than I can remember, and for making Boston feel a home far away from

home. Special thanks to Paula, Maite, Noel, Ferran, Juanito, Enrique, Alex, Joel,

Hasier, Adriana, and Jordi. Thank you to my dear friend Julian, whose arrival in

Boston provided me with a great support, and who is still every bit of an amazing

roommate today, as he was in a tiny town in Denmark seven years ago.

I would also like to thank the MIT Sport Taekwondo Club, which has been an

essential part of my life at MIT. The workouts, tournaments, defeats, victories and

friendships constitute one of my fondest memories. Thank you to my co-instructors,

co-captains, and teammates for teaching me so much, not only about taekwondo, but

specially about recovering from failure, defeat and injury. I will miss you dearly. Spe-

cially, thank you Master Chuang, for making me an athlete, for giving me confidence,

for turning me into an ECTC all-star and for trusting me to be a team captain and

lead classes.

I would like to thank my family and friends at home and around the world for

their love and support, no matter how far I have been or for how long. You know

who you are. Thank you, specially, for making me feel like nothing has changed every

6

time I am home. It means the world to me.

Special thanks, of course, to my parents, for their endless love, and whose sacrifices

have provided me with the best opportunities. I thank them for their constant caring

advice, and for their unwavering support, no matter what I have decided to do or

how far away I have moved. This thesis is dedicated to them.

Most importantly, I would like to thank my wife, Anna. Thank you for being

always there for me. Thank you for comforting and encouraging me when I felt I was

unable to continue. Thank you for always believing in me more than I do. Thank

you for leaving everything in Barcelona to come with me to start this adventure, and

for supporting me every step in the way. I wouldn’t have made it without you. I wish

to dedicate this thesis to her as well.

7

8

Contents

1 Introduction 29

1.1 Thesis Goals . 34

1.2 Thesis Contributions . 36

1.3 Organization of This Thesis . 37

2 Related Work 39

2.1 Temporal and Hybrid Discrete-Continuous Planning 39

2.2 Optimization-based Approaches for Robotics Planning 45

2.3 Combined Task and Motion Planning Approaches (TAMP) 46

3 The Scotty System:

An Architecture for Hybrid Activity and Trajectory Planning 51

3.1 Example Motivating Scenario . 52

3.2 The Scotty Planning System . 55

3.2.1 ScottyActivity . 57

3.2.2 ScottyPath . 58

3.2.3 MPCScotty . 58

3.2.4 Example Usage of the Planning Architecture 59

4 Problem Statement 63

4.1 The PDDL-S Problem . 64

4.1.1 Hybrid Durative Activities . 65

4.1.2 State . 66

9

4.1.3 State Constraints . 67

4.1.4 Control Variables and Continuous Effects 69

4.1.5 Objective . 72

4.2 Solution to a PDDL-S Problem . 73

4.2.1 PDDL-S Plans with Piecewise Constant Control 74

4.2.2 Qualitative State Plans . 76

I ScottyConvexPath 77

5 Efficient Satisfaction of Convex Conditions Over Arbitrarily Long

Horizons Through Piecewise Constant Control Trajectories 81

5.1 Typical Maintenance Convex Conditions in Robotic Applications . . . 85

6 ScottyConvexPath: Trajectory Planning for Skeleton Plans Over

Long Horizons With Convex Optimization 89

6.1 Plan Skeletons . 92

6.2 Preliminary Definitions and Decision Variables 95

6.3 Temporal Constraints . 96

6.4 State Constraints . 96

6.5 State Change . 97

6.6 Control Variables and Continuous Effects 97

6.6.1 CLTE Effects . 100

6.6.2 RNE Effects . 100

6.7 Partial Skeleton Plans . 103

6.8 Objective . 103

II ScottyActivity 106

7 Expressing ScottyActivity PDDL-S Problems 109

7.1 Control variables and global constraints on control variables 109

7.2 Continuous change with CLTE and RNE effects 110

10

7.3 Objectives . 111

7.4 Representing Advanced Convex State Constraints Through State Space

Regions . 112

7.4.1 Primitive Regions . 114

8 ScottyActivity: Joint Activity and Trajectory Planning with Heuris-

tic Forward Search 117

8.1 ScottyActivity In a Nutshell . 117

8.2 Generation of Successor States . 121

8.3 Relaxed Hybrid Plan Heuristic . 124

8.4 Search strategies . 130

9 ScottyActivity Experimental Results 135

9.1 Synthetic Benchmarks . 135

9.1.1 Discretization of time . 136

9.1.2 Discretization of control variables 137

9.2 Evaluation in Robotic Domains . 139

9.2.1 The AUV Domain . 140

9.2.2 The ROV Domain . 141

9.2.3 The Air Refueling Domain . 141

9.2.4 Results . 143

9.3 Comparison With a Mixed Integer Approach 147

III ScottyPath 153

10 Geometric Path Planning Through Convex Obstacle-free Regions 157

10.1 Problem Formulation . 161

10.2 Approach . 164

10.2.1 In a Nutshell . 164

10.2.2 Shortest Path through Convex Regions 166

10.2.3 Connectivity Graph of Safe Regions 167

11

10.2.4 Informed Search over Convex Safe Regions 169

10.3 Alternative Mixed-Integer Approaches 177

10.3.1 A simple MISOCP encoding 177

10.3.2 A MISOCP encoding using the connectivity graph and a warm

start . 180

10.4 Experimental Results . 182

10.5 Generation of Convex Safe Regions 191

10.5.1 Automatic Generation of Convex Safe Regions 192

11 ScottyPath: Path Planning Through Convex Obstacle-free Regions

for Qualitative State Plans 195

11.1 Example problem . 197

11.2 Problem Statement . 200

11.2.1 Qualitative State Plans . 201

11.2.2 Solution Plan . 213

11.2.3 Piecewise Constant Solution 214

11.3 Relation Between tQSPs and Other Problems 216

11.3.1 SSPos and tQSPs . 216

11.3.2 Scotty Skeleton Plans, PDDL-S Problems and tQSPs 218

11.4 Planning Approach . 219

11.4.1 In a Nutshell . 219

11.4.2 Search Algorithm . 226

11.4.3 Computing Optimal Trajectories Through Convex Safe Regions

using Convex Optimization 229

11.5 Chapter Summary . 236

12 ScottyPath Experimental Results 237

12.1 Description of the Experiments . 237

12.1.1 Benchmark Domains . 239

12.1.2 Domain Instances . 240

12.1.3 Number of Safe Regions and Obstacles 240

12

12.1.4 Heuristic Weight . 242

12.2 Generation of Problem Instances . 242

12.3 Results . 242

12.4 Chapter Summary . 250

IV Conclusions 251

13 Conclusions 253

13.1 Summary of Contributions . 253

13.2 Future Work . 256

A Proofs of Completeness and Optimality of PDDL-S Plans with Piece-

wise Constant Control 263

A.1 Completeness of PDDL-S Plans with Piecewise Constant Control . . 263

A.2 Optimality of PDDL-S Plans with Piecewise Constant Control 269

B An Example Scenario in PDDL-S Syntax 273

C Benchmark Domains 277

C.1 The AUV Domain . 277

C.2 The ROV Domain . 279

C.2.1 Original (quadratic) version 279

C.2.2 Simplified, linearized version 283

C.3 The Air Refueling Domain . 284

Bibliography 291

13

14

List of Figures

3-1 Robotic scientific exploration mission to the Kolumbo caldera. 52

3-2 Our motivation scenario exhibits interesting constraints such as the

maximum distance constraint between the ship and the ROV (b). Our

planner is able to select the best position for deploying and recover-

ing the AUV and the ROV that satisfies all the constraints without

requiring discretization of either time or state (a). 53

3-3 Scotty Architecture . 55

3-4 Example that illustrates how the Scotty Planning System is used to

solve a hybrid activity and trajectory planning problem with obstacles. 60

5-1 Interesting convex conditions that arise in robotic planning problems.. 85

5-2 Complex condition defined by the intersection of simple convex sets. . 87

6-1 Example plan skeleton when the start of navigate, the start and end

of visit-A and the start and end of visit-B events have been added but

the end of navigate is not part of the plan yet. 93

6-2 Resulting state and control trajectories for the example problem. The

optimization chooses the switch points in order to satisfy the con-

straints and obtain the best objective of maximum 𝑥 and 𝑦 with min-

imum time. 94

15

8-1 Informal diagram describing the overall flow of the ScottyActivity plan-

ner. The blue box indicates that ScottyConvexPath is used as a module

that is queried at different stages of the planning process and is not

part of the flow. 118

8-2 A plan skeleton is given by an ordered sequence of start and end events,

𝑒𝑗. Plan skeletons do not have an assigned control or state trajectory,

or event execution times. A mathematical program is used to test the

consistency of plan skeletons by finding feasible values for the control

trajectory c(𝑡), state trajectory x(𝑡) and event execution times, 𝑡𝑗. . . 119

8-3 The shaded region is a flow tube that represents the reachable region for

state variable 𝑥 when subject to a linear time-varying effect(∆𝑥(𝑡) =

𝑣(𝑡) · 𝑡) for a duration between 𝑑𝑙 and 𝑑𝑢 125

9-1 Example scenario that shows the problems of discretizing time. Plan-

ning time is shown in seconds. 136

9-2 Trajectories of the discretization example. In this domain, the solution

returned by ScottyActivity is optimal (a). With 4 navigate actions, the

solution is worse than optimal and harder to find (b). Adding more

actions, the problem becomes much harder to solve, and the solution

returned gets worse (c) . 139

9-3 Trajectories of ship (blue) and ROV (orange) in problem 06 of the

ROV-regions domain. Note how the planner selects ship positions so

that the ROV can take samples at multiple regions without having to

reposition the ship and while observing the tether range constraint. . 142

9-4 Example solution for instance 15 of the refueling domain with a tanker

plane (blue) and two UAVs (orange and green). Note that the planner

finds a trajectory for the tanker that allows it to refuel both UAVs as

needed. 143

16

9-5 Plans found by ScottyActivity for problem 9 of the ROV domain using

EHC search (a) and obj-EHC (b). The objective is a combination of

the plan makespan and the distance traveled by ship. obj-EHC finds

a better plan than EHC, with a 21% improvement in the objective, by

taking samples at closer regions first. 144

9-6 Plans found by ScottyActivity for problem 9 of the Air Refueling do-

main using EHC search (a) and obj-EHC (b). The objective is a com-

bination of the plan makespan and the distance traveled by tanker

plane. Note how the plan found by obj-EHC is much better (77%

improvement in the objective). 145

9-7 Planning time for ScottyActivity (obj-EHC algorithm) and the MIP

approach in the AUV (a) and ROV (b) domains. The planning time

for the first MIP solution (green) and optimal to 5% tolerance (red)

are shown. Figure (c) shows the planning time for both domains as

a function of the required number of start/end actions to solve the

problem. A time limit of 2400 seconds was used. 149

9-8 Objective ratio between the MIP approach and ScottyActivity (obj-

EHC algorithm) in the AUV (a) and ROV (b) domains. The figures

show the ratio achieved by the first MIP solution (green), the optimal

to 5% tolerance (red), and the best MIP solution found before the

timeout (purple). A time limit of 2400 seconds was used. 151

10-1 Motion planning for multiple goal regions can be done independently

when these goal regions are small (a and b). However, when goal

regions are large, better plans can often be found by considering all

goals jointly. Figure (d) shows the suboptimal path to goals 1 and

2 when planning independently (in black) and a better plan, in blue,

when considering both goals jointly. 159

17

10-2 Figure a shows the environment with obstacles (in purple) and goal

regions (in green). Safe regions (shown in red) are generated in advance

(b). The connectivity graph is then computed. This graph (c) shows

the connections between safe regions (white nodes), goal regions (green

nodes) and the starting position (blue). Using 𝐴* we find the optimal

sequence of safe regions to reach goal region D with the shortest safe-

region constrained path (d). 165

10-3 Shortest path going through a sequence of safe regions. 166

10-4 Safe regions and resulting connectivity graph 168

10-5 Computation of g and h for a search node. 173

10-6 Computation of g and h for a search node in the case of unordered

goals. The MISOCP program finds that the optimal order to visit the

remaining goals is D and then A. 175

10-7 Test environments, where obstacles are drawn in blue, goal regions in

green and safe regions in red. The simple map (a) has 10 obstacles and

8 safe regions covering 90.1% of the free space. The medium map (b)

has 50 obstacles and 36 safe regions covering 88.7% of the free space.

The complex map (c) is the same as the medium one, but with 75

regions that cover 95% of the free space. 183

10-8 Example results of a single goal problem in the complex map. The

optimal A* approach finds the shortest path consisting of six segments

in 1.40 seconds (green). Within the same time, the advanced MISOCP

approach can only find a (longer) path with four segments (magenta).

The regions selected by each approach are shown in the same color. . 185

18

10-9 Paths for visiting ordered goals J, D, F and I. Within the timeout,

the advanced MISOCP planner can only find a path with 11 segments

and a length of 78.65 in 210 seconds (magenta). The optimal informed

search approach finds the optimal path consisting of 20 segments and

a length of 75.70 in 14.95 seconds (green). The weighted A* approach

finds a path with 21 segments and a length of 75.87 in 8.26 seconds

(black). 188

10-10Paths for visiting unordered goals A and I. The planners discover that

the optimal order is I and then A. Within the timeout, the advanced

MISOCP planner can only prove an optimality gap of 0.9% with a

path with 10 segments and a length of 44.45 (magenta). The optimal

informed search approach finds the optimal path consisting of 14 seg-

ments and a length of 44.30 in 7.51 seconds (green). The weighted A*

approach finds a path with 10 segments and a length of 44.77 (within

5% optimality) in just 1.92 seconds (black). 190

10-11Paths for visiting six unordered goals. The planners discover that

the optimal order is B, I, F, H, D and J. Within the timeout, the

advanced MISOCP planner can only prove an optimality gap of 61%

with a path with 15 segments and a length of 68.83 (magenta). The

optimal informed search approach finds the optimal path consisting

of 19 segments and a length of 67.00 in 179.73 seconds (green). The

weighted A* approach finds a different path with 19 segments and and

the same length as the optimal in just 29 seconds (black). 190

19

11-1 Figure (a) shows the example scenario with the surface obstacles for

the ship, in black, the ROV sampling regions (A and B) and the end

region (C). Figure (a) also shows the optimal solution of this prob-

lem when obstacles are ignored. In order to avoid the obstacles, the

ship is required to remain in the safe regions (shown in blue) that are

constructed offline (b). The problem objective affects the deployment

position. In Figure (c), position p1 is the optimal ROV deployment

position that minimizes the time until the first sample is taken. On

the other hand, position p2 is the optimal deployment position in the

plan that minimizes the total distance traveled by the ROV. Finally,

the plan that minimizes the total distance traveled by the ship and

the mission duration is shown in Figure (d). This figure also shows, in

blue, the safe regions selected for the ship throughout the mission. . . 198

11-2 Totally Ordered Qualitative State Plan for the example scenario. Events

are represented with circles. The episodes that describe the behaviors

of the vehicles and impose constraints on them are shown as green arcs.

State constraints are shown in blue, control variable constraints and

continuous effects in orange, and episodes with objective terms in pink. 204

11-3 Example scenario environment with surface obstacles (in gray) and

regions of interest, in green (a). Figure (b) shows, in blue, the convex

safe regions for the ship. The ship must always remain within one of

those safe regions. 208

11-4 Diagram showing a tQSP plan with piecewise constant control with

four events. Each consecutive pair of events, 𝑒𝑗 and 𝑒𝑗+1, are connected

by a sequence 𝑗 (green). Each sequence consists of one or more stages

(blue). The control variables vector takes a constant value c𝑖𝑗 during

stage 𝑖 of sequence 𝑗. Each vehicle is assigned one of its safe regions

at each stage, where it must remain for the duration of the stage. . . 214

20

11-5 Figure (a) shows the tQSP for our example scenario (same as Figure 11-

2). Figure (b) shows the optimal trajectories for the ship (blue) and

the ROV (red) in the absence of obstacles. The safe regions for the

ship are shown in blue in Figure (c). Figure (d) shows the connectivity

graph for the ship and the ROV. The starting position is shown in blue

and each safe region is shown as a white node. Since all obstacles are

on the surface, the ROV only has one safe region, which covers the full

environment. 220

11-6 Figure (a) shows the trajectories for the ship (blue) and ROV (red)

for a region assignment where the next event that needs to be con-

nected is the deployment event, 𝑒1. The ship safe regions are shown in

translucent blue. The trajectories shown minimize 𝑓 = 𝑔 + ℎ, where

𝑔, the committed cost, is the part going through safe regions (in solid

lines) and ℎ is the heuristic part ignoring obstacles from that point (in

dashed lines). Figure (b) shows the trajectories for a region assign-

ment in which all events have been connected except for the last one,

𝑒9. Figures (c) and (d) show the final optimal region assignment that

connects all events and its corresponding trajectories. Since the obsta-

cles do not affect the ROV, it is always inside the region that denotes

the full environment, ‘env’. 222

11-7 Events, sequences and stages in a ScottyPath plan and their relation

to ScottyActivity plan skeletons. 230

11-8 Example showing how 𝑔 and ℎ are computed for a search node in

which the ROV deployment event, 𝑒1, is being connected. The part of

each objective term that takes place through the safe regions adds the

committed cost (𝑔) of the search node, while the part that takes place

after the last region contributes to the heuristic value (ℎ). A search

node can connect the next event if it is possible to assign a duration

of 0 to the reaching stage. 234

21

11-9 Figure (a) and (b) show two different region assignments of nodes try-

ing to connect event 1 through safe regions. Left of figure (a) shows

the trajectories resulting from optimizing for 𝑓 = 𝑔 + ℎ, while the

right hand side figure shows the trajectories minimizing the distance

between the last point going through safe regions and the point that

satisfies event 1 constraints. Since the distance between those points

is not zero, the region assignment in (a) cannot connect event 1. On

the other hand, Figure (b) shows a region assignment that is able to

connect event 1 (right figure). 235

12-1 This figure shows the ‘easy’, ‘medium’ and ‘hard’ environments for the

AUV, ROV and Air Refueling domains. Target regions are shown in

green, obstacles in gray and safe regions in blue. The red dots show

the starting points of vehicles across all problem instances. 241

12-2 This diagram shows how the tQSP problems used in this chapter are

generated. 243

12-3 Results for problem 9 of the ROV domain. (a) shows the solution

found by ScottyActivity, in the absence of obstacles, using obj-EHC.

(b) shows the arrangement of the surface obstacles and safe regions for

the ship, for the ‘medium’ environment. Finally, (c) shows the obstacle

free plan found by ScottyPath, with the ship path and the chosen safe

regions in blue, and the ROV path in red. 246

12-4 Results for problem 9 of the AirRefueling domain. (a) shows the so-

lution found by ScottyActivity, in the absence of obstacles, using obj-

EHC. (b) shows the arrangement of the no-fly zones and safe regions

for both the tanker and the UAV, for the ‘medium’ environment. Fi-

nally, (c) shows the obstacle free plan found by ScottyPath, with the

tanker path and its safe regions in red, and the UAV path and its safe

regions in blue. 248

12-5 Results for instance 20 of the AUV domain using the ‘hard’ environment.249

22

12-6 Results for instance 8 of the Air Refueling domain using the ‘easy’

environment. 249

12-7 Results for instance 4 of the ROV domain using the ‘hard’ environment.249

23

24

List of Tables

9.1 Comparison between Kongming and ScottyActivity in several domains.

Results show planning time in seconds. 137

9.2 Discretization example results. A: number of navigate actions in the

domain; t: Planning time in seconds; S: Number of nodes expanded;

L: Plan length in number of actions; O: Makespan (objective value) of

the plan returned; 𝑙: Length of the path traveled; 𝑣𝑎𝑣𝑔: Average speed

of the vehicle throughout the plan. The diagrams on the right show

the discretization performed in some of the problem instances. Each

black dot represents a navigate activity with its given 𝑣𝑥 and 𝑣𝑦. For

ScottyActivity, any velocity value within the square is allowed. 138

9.3 Benchmarking results. t: Planning time in seconds; L: Plan length

in number of actions; S: Number of nodes expanded; N: Number of

optimization problems solved; T: Mean optimization time for each

optimization problem in milliseconds; O%: Relative objective value

achieved by obj-EHC compared to EHC. Values with ‘-’ denote prob-

lems that could not be solved in 1200 seconds. 144

9.4 Benchmarking results for simplified domains t: Planning time in sec-

onds; L: Plan length; S: Number of nodes expanded; N: Number of

optimization problems solved; T: Mean optimization time for each op-

timization problem in milliseconds. 146

25

10.1 Single goal results. Each row shows the planning results for the speci-

fied number of segments. Informed search approaches find the needed

number of segments for the optimal path automatically. Column T

shows the planning time in seconds and L the length of the returned

path. For the MISOCP approaches, results in parenthesis show the

MIP optimality gap that the solver was able to prove before the timeout.184

10.2 Results for multiple ordered goals. Each row shows the planning results

for the specified number of segments. Informed search approaches find

the needed number of segments for the optimal path automatically.

Column T shows the planning time in seconds and L the length of

the returned path. For the MISOCP approaches, results in parenthesis

show the MIP optimality gap that the solver was able to prove before

the timeout. Results with ’-’ denote that the MISOCP solver was not

even able to find a feasible solution within the allowed time of 600

seconds. 187

10.3 Results for multiple unordered goals. Each row shows the planning re-

sults for the specified number of segments. Informed search approaches

find the needed number of segments for the optimal path automatically.

Column T shows the planning time in seconds and L the length of the

returned path. For the MISOCP approaches, results in parenthesis

show the MIP optimality gap that the solver was able to prove before

the timeout. Results with ’-’ denote that the MISOCP solver was not

even able to find a feasible solution within the allowed time of 600

seconds. 189

12.1 Benchmarking results for simplified domains t: Planning time in sec-

onds; L: Plan length; S: Number of nodes expanded; N: Number of

optimization problems solved; T: Mean optimization time for each op-

timization problem in milliseconds. 244

26

12.2 ROV Benchmarking results for simplified domains t: Planning time in

seconds; L: Plan length; S: Number of nodes expanded; N: Number

of optimization problems solved; T: Mean optimization time for each

optimization problem in milliseconds. 244

12.3 AirRefueling Benchmarking results for simplified domains t: Planning

time in seconds; L: Plan length; S: Number of nodes expanded; N:

Number of optimization problems solved; T: Mean optimization time

for each optimization problem in milliseconds. 245

27

28

Chapter 1

Introduction

Due to advances in mechanical design and control, the capabilities of robots have been

improving at a dramatic rate over the last few years. However, most robots operating

in the real world are not autonomous. For example, in the recent DARPA Robotics

Challenge [55], participants demonstrated impressive humanoid robot behaviors, such

as walking and climbing stairs, grabbing and using power tools to drill holes and even

driving cars [35]. However, all of these behaviors were controlled remotely by human

operators. Other robots are used routinely in scientific missions, such as the ones

performed by Woods Hole Oceanographic Institution (WHOI) and others, in which

autonomous underwater vehicles (AUVs) are sent to collect data of scientific interest

determined by experts. AUVs have been used, among others, to track hydrocarbon

plumes [18], explore ancient shipwrecks [9] or even ice-covered Arctic ocean regions

[57]. Although these robots operate mostly on their own while the mission is under-

way, they often execute fixed scripts that are hand-written by experts in a tedious,

time-consuming and error-prone way. Teleoperation or script-based methods do not

scale in a cost efficient way and are not appropriate for situations with long commu-

nication delays (e.g. space) or where not all the information is known in advance. For

this and other cases it is desirable to have autonomous robots capable of reasoning

about their goals and the environment they operate in.

In order to plan missions for autonomous robot vehicles with state-dependent

goals that are subject to temporal deadlines and coordination constraints, it becomes

29

essential to model their dynamics with sufficient accuracy. Planners handling these

missions need to consider, at a minimum, the allowed velocities that these vehicles

can travel with, as well as be able to subject these robots to complex state constraints,

such as being inside regions or maintaining certain distances with other robots. Plan-

ning for these missions involves reasoning over discrete and continuous conditions and

effects, as well as the previously mentioned robot dynamics, coordination constraints

and temporal deadlines. As a consequence, it becomes necessary to consider activity

execution times, state and control variables jointly. The problem is, therefore, a hy-

brid activity and trajectory planning problem. Finally, the typical robotic missions

that we consider often span many hours or days. Some of the activities in such mis-

sions are short, such as the activation or deactivation of sensor suites. Others execute

over long durations, such as the traversal of long distances between regions of interest.

Therefore, it is essential to handle short and long term activities efficiently over long

horizons.

Over the last few years, the robotics community has had tremendous success with

trajectory optimization and other sophisticated methods to control robots with many

degrees of freedom and complicated dynamics. It is now common to see, not only in

simulation, but even more impressively, in real hardware, demonstrations of robots

walking in complex terrains, climbing stairs, running and even jumping [26, 56, 3, 77].

However, as impressive as these demonstrations are, the robotics community has

not often considered the activity planning problem, and researchers have resorted to

sequencing these complex behaviors computed using trajectory optimization by hand.

These approaches have been, in general, restricted to limited horizons in which fixed

time discretization works well. Therefore, these methods do not address the problem

of planning missions of robot vehicles over long horizons in which activity planning

is required.

Model-based generative planners have been applied successfully to space missions

[95]. For example, the Remote Agent system was able to reason with temporal and

resource constraints in order to autonomously diagnose and repair failures on-board

the Deep Space 1 spacecraft [72]. Other planners have been used to plan science

30

activities for rovers on Mars [5]. However, these planners have, in general, considered

only discrete conditions and effects and relied on domain-specific ‘planning experts’

to solve their problems. These approaches are, therefore, not suitable to solve the

joint activity and motion planning problems that we seek to address in this thesis.

In order to reason effectively with both the discrete and continuous behaviors that

robots exhibit, Kongming [64, 63] was introduced as the first approach that merged ac-

tivity planning and trajectory optimization to generate practical plans for real robots.

By reasoning with both discrete and continuous effects depending on control variables,

Kongming made important advances in merging both worlds, and demonstrated its

practical usefulness in real underwater robot missions. Unfortunately, Kongming’s

approach requires a fixed time discretization that hinders its ability to scale well to

missions with long horizons in which short and long lived activities coexist.

On the other hand, heuristic forward search (HFS) approaches for activity plan-

ning have shown over the last two decades immense progress in the scale of the

problems that they can solve. A large part of their success comes from the effective-

ness of new heuristics, such as delete-relaxations [47] or, more recently, landmarks

[81], together with the adequacy of greedy search. Some of these approaches have

been extended to support continuous time-dependent effects. This is the case for the

COLIN planner [23], that uses an approach based on heuristic forward search with

delete relaxations to handle both temporal planning and continuous time-dependent

effects. Like previous planners such as LPSAT [96] and LPGP [69] that interleaved

linear programming with discrete search, COLIN relies on linear programs to test the

consistency of partial states. Many of these planners do not discretize time and can,

therefore, handle long horizons with short and long activities well. However, these

approaches are not sufficiently expressive for solving robot hybrid activity and tra-

jectory planning problems. These planners support only continuous time-dependent

effects with constant rates of change and state variable constraints that are simple

linear inequalities. While some robotic hybrid activity and trajectory planning prob-

lems can be modeled with this restriction, this requires defining many activities with

multiple discretized values for the different desired rates of change of the continuous

31

effects (such as the velocities of each robot). This does not scale well to the practi-

cal robotic problems that we aim to solve. Moreover, many typical robot planning

problems, like the ones that we study in this thesis, cannot be modeled with that

approach since the state constraints are only limited to simple linear inequalities.

Finally, over the last few years, the robotics community has shown a great interest

in the combined Task and Motion Planning problem (TAMP) [90, 16, 41, 70]. Many

of these approaches combine state of the art discrete activity planners with specialized

motion planners for robotic applications. In order to do that, these approaches often

discretize the robot states on demand as they need to, and commit early to these

discretized states as soon as a feasible one is found. Most of the work in TAMP has

focused on manipulation tasks, where planners need to handle complex and highly

non-linear and non-convex constraints over many degrees of freedom. While these

approaches have shown promising results, they are often limited to classical activity

planning, with no temporal constraints, and in which dynamics are largely ignored.

They often use discretized steps and are limited to short horizons, and therefore

these approaches are generally not applicable to the robot vehicle mission planning

problems that we target in this work.

This thesis delivers the Scotty Planning System. Scotty is a hybrid activity and

trajectory planner that plans missions that involve the coordination of multiple robot

vehicles over long horizons. By supporting convex, non-linear state constraints and

control variables that often model controllable rates of change or robot velocities,

Scotty can model a wide range of real robotic missions. By using a continuous time

formulation, Scotty scales efficiently to missions with long durations, even in the

presence of both short and long lived activities. Scotty exploits recent advances

in convex optimization and avoids discretizing state or control variables, which in

turn prevents early commitment to inadequate discretization choices. Scotty uses

continuous convex optimization to choose continuous states, control variables and

times, but leaves this choice open until the final plan is found, allowing a great amount

of flexibility to the optimizer until the end, which others have shown to provide great

advantages [92].

32

In order to solve the hybrid activity and trajectory planning problem, Scotty

divides the problem in two subproblems that are each solved with a different module.

First, the ScottyActivity module solves the hybrid activity and trajectory planning

problem in the absence of obstacles. ScottyActivity uses heuristic forward search

and a convex model that does not discretize time or state variables that scales well

to long horizons. The solution that ScottyActivity finds is a Qualitative State Plan

(QSP) that describes the constraints on continuous state and motion trajectories that

each robot is subject to at different steps of the mission, as well as the activities and

behaviors that need to be executed and when. The QSP returned by ScottyActivity is

flexible, in that it does not enforce specific values of states or activity execution times,

but it provides, instead, a collection of continuous time, state and motion constraints

that a feasible plan needs to satisfy.

Second, ScottyPath takes the QSP that ScottyActivity generates and returns a

plan consisting of the schedule of activities, and the control and state trajectories

of each vehicle that are guaranteed to be obstacle free. Instead of considering the

obstacles directly, ScottyPath solves the dual problem in which vehicles need to remain

inside convex safe regions, which are computed in advance. This allows ScottyPath

to use an approach based on informed search and convex optimization in order to

compute multi-vehicle obstacle-free trajectories with coordination constraints over

long horizons.

Both planners solve problems that require highly combinatorial discrete choices:

the selection of the activities and their order, in the case of ScottyActivity; and

the sequence of convex safe regions that each robot must traverse, in the case of

ScottyPath. In both cases, we make the discrete choices by using heuristic forward

search, and a subplanner that solves a relaxed problem in order to test the consis-

tency and compute the heuristic value of candidate plans. By leveraging informed

heuristics, our approach performs two orders of magnitude faster than mixed-integer

approaches using branch and bound search. Both ScottyActivity and ScottyPath use

the same subplanner, ScottyConvexPath. The problem that ScottyConvexPath solves

is a relaxed problem in which the activities and their order are fixed and the envi-

33

ronment is obstacle-free. Under those conditions, the combinatorial discrete choices

are eliminated and the problem can be solved very efficiently using convex optimiza-

tion. ScottyConvexPath is a core contribution of this thesis and the component that

allows us to plan over long horizons. It is possible thanks to three insights. First,

due to recent advances in optimization, a restricted form of quadratically constrained

programs, called Second Order Cone Programs (SOCPs), can be solved efficiently for

real world problems. Second, nearly all of the requirements of the robot vehicle mis-

sions that Scotty targets can be encoded with cone constraints, with the exception of

a non-convex term resulting from the product of control variables and time. Third,

an encoding trick allows us to eliminate this non-convex term, resulting in a SOCP

encoding that is very fast to solve and that our planners repeatedly use to test the

consistency and compute the heuristic value of partial plans. Our SOCP encoding

allows us to impose upper bound constraints on the norm of vectors of control vari-

ables (e.g. 𝑣2𝑥 + 𝑣2𝑦 ≤ 𝑣2𝑚𝑎𝑥), enforce convex quadratic state constraints (such as being

inside ellipsoidal regions or ensuring a maximum distance between objects) and use

the same control variables in as many simultaneous effects as needed. We do this

without resorting to time, state or control variable discretization, which allows us to

efficiently scale to long horizons.

Throughout the rest of this chapter, we describe the goals that this thesis ad-

dresses, we present a summary of our contributions and we describe the organization

of this thesis.

1.1 Thesis Goals

In this thesis, we aim to solve activity and motion planning problems for multiple

robotic vehicles over long horizons. Such problems commonly arise during the plan-

ning of scientific missions, such as the ones involving multiple coordinated underwater

robots, which Woods Hole Oceanographic Institute routinely executes.

This thesis aims to solve planning problems with the following requirements.

1. Sufficiently accurate modeling of mission constraints and robot dy-

34

namics. While planning for missions over long horizons, it is often possible

to neglect low level detailed dynamics. However, in order to ensure that tem-

poral deadlines and coordination constraints can be satisfied, it is essential to

consider, at a minimum, the velocity limits that each robot is subject to. Fur-

thermore, in order to express the operating requirements of the robots, it is

necessary to consider sufficiently rich state constraints, which should allow, for

example, to require a robot to remain inside a region or to enforce a maximum

distance constraint.

2. Multiple robot vehicles subject to coordination constraints. Robotic

oceanographic science missions involve, at a minimum, an underwater or sur-

face robot and a vessel. Moreover, due to the high cost of operating a vessel,

some missions benefit from having multiple underwater robots achieve different

mission goals simultaneously. There are often coordination constraints between

the locations of the robots and the vessel. For example, it is often desirable to

ensure that the robots are always within a maximum distance that allows for

ultrasound communications between the vehicles.

3. Plan over long horizons, with missions involving both short and long

lived activities. Typical oceanographic missions range from 10 and 20 hours to

weeks. Certain activities, such as transits, involve long periods of time. Other

activities, such as the engagement or disengagement of sensor suites, can be

executed in short periods of time. It is important that our planner is able to

reason over all mission activities jointly, for the duration of the mission.

In Chapter 3, we provide an example scenario that illustrates these requirements,

and that we use to describe our problem statement and approach in later chapters of

this thesis.

35

1.2 Thesis Contributions

In order to address the robotic planning problems with the requirements that we

describe in Section 1.1, this thesis makes the following contributions.

1. An architecture for hybrid activity and trajectory planning for mobile

coordinated robots.

We introduce a planning architecture in Chapter 3 that decomposes the planning

and execution of missions involving multiple coordinated robots into multiple

subproblems that are solved by specialized planners.

2. A goal-directed scheduler and trajectory planner over long horizons

We present ScottyConvexPath, a planner for relaxed problems in which the activ-

ities and their order are fixed and the environment is obstacle-free. ScottyCon-

vexPath reformulates the problem as a second order cone program (SOCP) that

is efficiently solved in order to compute control and state trajectories for mul-

tiple coordinated robots along with the execution times of the activities. Since

our encoding does not require discretization of either time, state or control, it

scales to arbitrarily long horizons. ScottyConvexPath computes optimal tra-

jectories involving first order dynamics and convex quadratic state constraints.

ScottyActivity and ScottyPath use ScottyConvexPath to efficiently test the con-

sistency of partial plans and compute their heuristic value.

3. A hybrid activity and trajectory planner.

We present ScottyActivity, a heuristic forward search activity and trajectory

planner that computes plans for coordinated mobile robots over long horizons.

Our novel planner exploits advances in planning with delete relaxations in order

to achieve scalable performance, while enabling planning formulations that are

more expressive than prior art thanks to the presence of control variables and

convex quadratic state constraints.

4. A goal-directed path planner over convex safe regions.

36

Our final contribution is ScottyPath, a path planner for goal-directed problems

given as qualitative state plans (QSPs). ScottyPath finds control and state tra-

jectories for mobile coordinated robots. ScottyPath guarantees that the robot

trajectories are collision-free by ensuring that each robot always remains within

a convex safe region. ScottyPath uses a novel approach that interleaves in-

formed search with calls to ScottyConvexPath, that is used to simultaneously

compute the consistency, cost and heuristic of candidate partial plans. Our

approach simultaneously assigns sequences of safe regions to each robot and

computes control and state trajectories that satisfy temporally extended goals.

While ScottyPath is designed to operate in conjunction with ScottyActivity,

it has also be used on its own to solve manually defined QSPs that describe

missions oceanographic with multiple underwater robots.

1.3 Organization of This Thesis

The Scotty Planning system consists of three modules. This is reflected in the or-

ganization of this thesis. In Chapter 2, we describe the prior work in activity and

trajectory planning related to this thesis. In Chapter 3, we describe the architecture

of the Scotty Planning System, and we provide an example scenario based on a real

underwater robotic science mission that we use to inspire our thesis and to illustrate

the concepts throughout the rest of the chapters. The problem statement addressed

by this thesis is described in Chapter 4.

Part I describes the first of Scotty’s modules: ScottyConvexPath. This relaxed

planner is the core component used in the remaining two other Scotty modules:

ScottyActivity and ScottyPath. Before describing the convex model that Scotty-

ConvexPath uses, Chapter 5 details the restriction of piecewise constant control tra-

jectories that we require in order to efficiently satisfy conditions over arbitrarily long

horizons. The convex optimization model is then described in detail in Chapter 6.

Part II describes ScottyActivity : the hybrid activity and trajectory planning mod-

ule in the Scotty system. ScottyActivity selects robot activities and behaviors in order

37

to generate a qualitative state plan that satisfies the problem constraints. ScottyAc-

tivity solves a relaxed problem in which obstacles are not considered. Chapter 7

describes the extension to PDDL that we define in order to specify PDDL-S prob-

lems, the input problems to the ScottyActivity planner. Our heuristic forward search

planning approach is detailed in Chapter 8. Finally, Chapter 9 presents the experi-

mental results of the ScottyActivity planner.

Part III covers the last module of the Scotty Planning System: ScottyPath. Scot-

tyPath takes the qualitative state plan generated by ScottyActivity and produces an

activity schedule and control and collision-free state trajectories for each vehicle. For

pedagogical purposes, Chapter 10 describes a simpler, independent geometric path

planner that explains the core concepts used by ScottyPath. ScottyPath’s approach

is described in Chapter 11. Finally, Chapter 12 shows the experimental results for

the ScottyPath planner.

This thesis concludes with Chapter 13, which presents a summary of contributions

and avenues for future work.

38

Chapter 2

Related Work

In this chapter we discuss relevant literature in hybrid planning that inspires this

thesis and that we leverage in our approach.

2.1 Temporal and Hybrid Discrete-Continuous Plan-

ning

Since the creation of the Planning Domain Definition Language (PDDL) [71] and

the advent of the International Planning Competitions, the planning community has

made immense progress in the scale of the classical planning problems that can be

solved. A significant part of this progress comes from the success of heuristic forward

search and very effective heuristics, such as delete-relaxations [47] or, more recently,

landmarks [81]. Very recently, researchers have developed incomplete width-based

search techniques that can run in polynomial time and present an empirical perfor-

mance that is better than prior state of the art in classical planning problems [67, 66].

Classical planning problems only involve discrete conditions and effects. Very

early, researchers extended classical planning problems with the ability to reason

with durative actions where each action could have a different duration. For exam-

ple, the TGP planner [89] represents mutual exclusions between actions of different

duration in the planning graph and Sapa [32] uses a heuristic forward chaining ap-

39

proach in order to handle durative actions and deadline goals. However, these ap-

proaches reduce durative actions to compressed action representations and can not

solve problems with ‘required concurrency’ [25]. The PDDL2.1 standard [39] extends

classical planning with new semantics that allow temporal durative activities, metric

variables and, even, continuous effects. One of the first planners capable of planning

with the full temporal semantics of PDDL2.1, including required concurrency and

Timed Initial Literals [46], was CRIKEY3 [24]. This planner uses an approach that

interleaves heuristic forward search with the scheduling of action starts and ends,

which is done by solving a Simple Temporal Problem [27]. Later, the Temporal Fast

Downward planner [34] demonstrated increased performance in temporal planning

problems by using a context-enhanced additive heuristic. Apart from the temporal

extension to classical planning, researchers also extended the classical formulation to

support metric variables, which have commonly been used to model resources. For

example, Metric-FF [45] extends the delete-relaxation heuristic by storing, in each

layer of the planning graph, the minimum and maximum values that each variable

could reach. We discuss in Section 8.3 that the ScottyActivity heuristic uses a similar

approach that is inspired by this concept.

Except for time, all the planners discussed so far are only able to reason with

discrete conditions and effects. However, may problems, such as the robotic missions

that we study in this thesis, require reasoning with continuous change. One of the

first planners capable of planning with continuous change was ZENO, a least commit-

ment planner that combines first-order logic, constraint satisfaction and first order

continuous effects. ZENO was impressively advanced for its day, but its approach

only scales to problems with a handful of actions.

In order to support planning for robotic applications, Kongming [64] was one of

the first planners able to reason with hybrid activities, which consist of discrete and

continuous conditions and effects. Kongming’s continuous effects are very expressive,

as they can model k-th order discrete-time dynamics. Kongming uses an approach

that mixes an analog to the Planning Graph from Graphplan [11] and mixed integer

optimization. Due to the features it supports, Kongming is perhaps the planner that is

40

closest to ScottyActivity in the type of problems that both can solve. Kongming is the

first activity planner that supports control variables (such as controllable velocities in

moving robots) affecting continuous effects. One of the main innovations introduced

by Kongming is its representation of continuous effects with flow tubes [48, 49], that

are abstractions of the infinite number of trajectories that a continuous action can

produce. Another key innovation introduced by Kongming is the Hybrid Flow Graph,

the continuous analog to Graphplan’s Planning Graph. Hybrid actions connect initial

state regions to goal regions after some fixed duration using the flow tubes generated

from the system dynamics. Kongming expands the Hybrid Planning Graph with

alternating action and fact layers until the goal conditions are non-mutex in the last

fact layer. The problem is then encoded as a mixed logic linear program (MLLP)

that contains both the continuous constraints representing the dynamics and the

logic constraints on binary variables that describe the discrete conditions and effects

and the mutexes in the planning graph. This approach is a continuous analog to

Blackbox [54], which combines the advantages from both Graphplan and SATPLAN

[53] by encoding the planning graph as a SAT problem. Kongming alternates between

trying to solve the MLLP and adding additional layers to the graph until the MLLP

solver returns a solution. Later, the Kongming planner was extended to support

temporally-extended goals by reformulating them into durative actions with effects

that add specific predicates that need to hold at the end of the plan. This extension

also added the capability of supporting actions with flexible durations [63, 62].

Kongming is an innovative planner that can solve expressive hybrid planning prob-

lems. However, it suffers from performance degradation issues in medium to large

problems due to the fixed time-step discretization that its graph layers are subject to.

In problems in which the planning horizon is moderately large and where short and

long lived activities coexist, this involves creating many layers. As the number of lay-

ers increases, identifying mutex relations becomes exponentially more complicated.

This also slows down significantly the MLLP solver, as each additional layer adds

significantly more additional variables and constraints. Kongming inspires Scotty in

its representation of continuous effects that depend on continuous control variables.

41

Instead of resorting to time discretization, the COLIN planner [21, 23] extended

CRIKEY3’s continuous-time, heuristic forward search approach to support problems

with linear time-varying processes. COLIN solves temporal planning problems with

continuous effects as defined in PDDL 2.1. Continuous effects are limited to constant

rates of change, that are specified by a fixed value. In order to solve the mixed

discrete-continuous planning problem, COLIN tests the consistency of partial plans

by solving a linear program. This approach was first introduced by other planners

such as LPSAT [96] and LPGP [69]. COLIN’s heuristic is based on the Temporal

Relaxed Planning Graph and delete relaxations. Although COLIN is an efficient and

capable planner, it is not expressive enough to solve the kind of robotic problems that

are the focus of this thesis. This is the case since the continuous effects that COLIN

supports are limited to fixed rates of change, according to the following equation:

𝑥(𝑡𝑒𝑛𝑑) = 𝑥(𝑡𝑠𝑡𝑎𝑟𝑡) + rate-of-change · (𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡𝑎𝑟𝑡)

COLIN’s formulation cannot represent continuous controllable rates of change

(control variables), that are required to model, for example, the controllable velocities

of moving vehicles. Although an arbitrary number of actions can be defined having

each a different discretized rate of change, we show in Chapter 9 that this approach

does not scale well.

COLIN was later extended by POPF [22], that improves its performance by using

a partial order representation of the underlying state. A further extension, OPTIC

[6], was introduced to support preferences, a capability added in PDDL3 [42]. Al-

though these planners lack the ability to represent robot behaviors naturally (due

to, among others, the absence of control variables), they have been used in multiple

robotic applications due to their robustness and scalability. For example, POPF was

used to find automated inspection plans of underwater installations [19] and OPTIC

was used to plan surveillance missions for low-cost quadcopters [7]. However, in these

cases the planners did not explicitly consider the continuous motions of the robot,

but instead chose a mission path by selecting discrete waypoints that were either

42

previously generated using random sampling motion planning techniques, or manu-

ally specified. Other researchers have approached the problem of controlling hybrid

systems with linear time-invariant dynamics by discretizing the control inputs and

presolving the solutions to the linear dynamic equations for a fixed time step [68].

Solutions for each discretized control input are then encoded as actions with numeric

effects that a state of the art planner, such as Temporal Fast Downward [34], uses to

find a state and control trajectory. However this approach is not likely to scale well

due to the fixed discretization required in time and control inputs.

In some situations, it is necessary to consider explicitly the robot motions during

planning to ensure, for example, that temporal and spatial constraints are satisfied

at all times during the mission. This is the reason why we developed the Scotty1

planner [36, 37], the previous version of the ScottyActivity planner presented in this

thesis. Scotty1 extends the expressivity of previous heuristic forward search planning

approaches by adding support for continuous control variables, that are essential to

model robotic domains. Scotty1 combines the advantages of Kongming and COLIN.

In particular, continuous effects support controllable rates of change, and are modeled

with flow tubes. Scotty1’s approach is inspired by COLIN, and consists of heuristic

forward search combined with linear programs for testing the consistency of partial

plans. The cqScotty planner [38], which we call ScottyActivity in this thesis, improves

Scotty1 by supporting convex quadratic constraints and by allowing control variables

to appear in multiple continuous effects simultaneously.

Other planners have recently explored planning with control parameters. For

example, POPCORN [85] formalized the notion of continuous control parameters as

an additional element of actions that are chosen by the planner. Contrary to Scotty,

POPCORN’s control parameters can only be used in discrete numeric effects and not

as rates of change in continuous effects. Other recent approaches have also considered

continuous control parameters, but are limited to discrete time and change [76].

Most of the planning approaches discussed previously are limited to linear con-

tinuous effects. However, over the last few years the planning community has made

attempts to use the previous planning formalisms in non-linear settings. One popular

43

approach consists in interleaving temporal planning with an external domain-specific

solver capable of reasoning with complex non-linear change. This is often known as

planning with ‘semantic attachments’ [33]. This approach has been used successfully

to solve power balancing problems in an electricity network [78]. Another approach

extends COLIN to handle a limited form of non-linear continuous monotonic effects

using an iterative convergence method that repeatedly solves linear programs [4].

However, the assumptions required by this approach are not compatible with typi-

cal robot behaviors. While most semantic attachment techniques treat the external

solver as a black box, a recent approach uses approximations of external complex

numeric calculations in order to compute informative heuristic values that guide the

search more efficiently than prior methods [8].

In order to significantly increase the capabilities of PDDL, PDDL+ was introduced

in 2006 [40]. PDDL+ enhances the expressivity of PDDL by introducing processes,

events and must-happen semantics. While non-linear change can also be represented

with PDDL2.1, the rich semantics of PDDL+ processes and events, that make it eas-

ier to specify must-happen physical behaviors, has encouraged researchers to support

non-linear effects in most PDDL+ planners. One of the first PDDL+ planners was

TM-LPSAT [88], a planner that compiles PDDL+ problems into propositional atoms

and linear constraints over numeric variables that are then solved with LPSAT. An-

other PDDL+ planner, UPMurphi [31], uses an uninformed discretize and validate

approach. The DiNo planner [79] recently extended this approach with a novel heuris-

tic that vastly improves UPMurphi’s performance. Lately, the planning community

has also explored model-checking [13, 12] and SAT Modulo Theories (SMT) [15, 20]

based techniques to solve PDDL+ planning problems with promising results. An-

other recent approach generalized interval-based relaxations [1, 2] to solve PDDL+

problems with non-linear processes [86]. Most PDDL+ planners are, in general, more

expressive than our planner in several ways, like their support of processes, events,

must-happen semantics and continuous change that is non-linear in time. However,

their semantics do not represent robot dynamics accurately, since they do not support

control variables and are unable to model, for example, the motivating scenario that

44

we describe in Section 3.1. Several of these planners also suffer from scalability issues

since they require time and state discretization.

2.2 Optimization-based Approaches for Robotics Plan-

ning

Over the last few years, advances in trajectory optimization due to better performing

solvers and more efficient encoding techniques have led to impressive results in the

control of underactuated robots. While we do not intend to provide an extensive

review of the vast field of trajectory optimization, we limit ourselves to highlight a

few examples of optimization-based planning approaches for robotics applications and

their relation with this thesis.

Since the advent of sampling-based algorithms, the most widely used approach

for solving manipulation motion planning problems has been the rapidly-exploring

random tree (RRT) algorithm [59] or one of its many variants, such as the asymp-

totically optimal RRT* [52]. However, over the last few years, promising alternative

approaches to motion planning for manipulation problems based on optimization

methods have emerged. For instance, the CHOMP [80] planner uses covariant gra-

dient descent to refine continuous paths. On the other hand, TrajOpt [87], which

uses sequential convex optimization, has demonstrated impressive results. Part of

the success of these planners is due to a clever encoding of collision constraints, that

uses computer graphics techniques to compute the minimum distance to obstacles,

and the use of penalty collision coefficients that are iteratively increased as needed.

Trajectory optimization has also been used extensively to control robots with com-

plex dynamics in real environments. For example, the MIT team that participated

in the DARPA Robotics Challenge [55] made extensive use of trajectory optimiza-

tion for solving most of the competition tasks [35]. For example, they were able to

demonstrate whole-body motion planning with centroidal dynamics and full kine-

matics using trajectory optimization [26] with similar collision constraints as the ones

45

used by CHOMP and TrajOpt.

Other optimization techniques, such as sum of squares programming (SOS), have

been applied to planning collision-free maneuvers for quadcopters in cluttered environ-

ments [28, 58]. This was achieved by exploiting the differential flatness of quadcopters

and using a mixed-integer formulation that forced the robots to remain in obstacle-

free convex regions that were computed in advance with the IRIS algorithm [30].

Similar approaches were used to plan the footstep placements of MIT’s Atlas robot

and were demonstrated during the DRC competition [29]. The ScottyPath planner,

presented in Part III of this thesis, also finds obstacle-free trajectories in which robots

are forced to remain in obstacle-free safe regions computed, in advance, with the IRIS

algorithm. However, our approach relies on informed search and convex optimization,

as opposed to integer programming, which allows us to scale to significantly larger

problems.

Optimization-based techniques have also been used extensively to control robots

using Model Predictive Control (MPC). These techniques have been extended to

reason with risk and uncertainty. For example, the PSulu planner [74, 10, 73, 75] uses

linear programming and iterative risk allocation (IRA) to generate chance-constrained

plans that provide guarantees about the safety of the robot.

This thesis leverages advances in trajectory optimization, and is inspired by all

these approaches that have successfully applied optimization techniques to the plan-

ning and control of mobile robots.

2.3 Combined Task and Motion Planning Approaches

(TAMP)

Over the last few years, the robotics community has recently expressed a significant

interest in the combined task and motion planning problem, and many interesting

approaches have emerged. One of the most interesting ones integrates off-the-shelf

task and motion planners by using a novel representational symbolic abstraction

46

[90]. The architecture of this planner alternates between solving discrete symbolic

planning problems with abstracted poses, verifying and refining those plans using a

motion planner and generating additional discrete poses when needed. This approach

is innovative in that whenever the motion planner is unable to find collision free

paths between poses, objects are removed one by one in order to discover which one

is responsible for the plan failure. This information is then passed to the symbolic

planner, which can decide, for example, that an object in the way should first be

moved to a different location. A related approach [16] interweaves a symbolic planner

(MetricFF) with a roadmap motion planner. In this case the symbolic planning

formulation is extended to include geometric constraints and a roadmap for each

movable element is maintained and extended as necessary.

On the other hand, the FFRob planner [41] approaches this problem by extending

the heuristic ideas of the symbolic FF planner to motion planning by using a semantic

attachments strategy. A search state, for FFRob, is composed of traditional literals

and domain-dependent literals, such as reachability conditions, whose boolean value

is determined by a test function that is evaluated lazily on demand. As an example,

FFRob maintains a conditional reachability graph that represents the connectivity of

configurations that are sampled during search.

Another interesting approach by Lozano-Perez et al frames this problem as a ge-

ometric constraint-satisfaction problem [70]. In this case, the search aims to find a

sequence of activities forming a plan skeleton in which the specific robot and object

poses are not bound until the CSP is solved by an off-the-shelf constraint satisfaction

solver. However, the domains of the unbound variables need to be arbitrarily dis-

cretized in advance. Most of the planners discussed above approach the problem by

bringing the continuous world of motion planning into the discrete symbolic planning

formulation. This is often done by discretizing the continuous space either in advance

or lazily during runtime as needed. The main advantage of this idea is that it allows

the use of slightly modified off-the-shelf symbolic and motion planners. An important

disadvantage, though, is the need to perform a discretization whose size needs to be

chosen in advance.

47

Alternative approaches have attempted to follow the opposite direction by bring-

ing the discrete symbolic world into the continuous space. These approaches use

symbolic planning to generate sequences of actions in which the values of the contin-

uous variables are not bound. The values of the continuous variables are then found

by solving a large optimization problem. The main advantage of these methods is that

no arbitrary discretization is required and that the solver can choose the best values

for the continuous variables at the end in order to optimize for some criteria. This

approach would have seemed intractable a few years ago, but impressive advances in

trajectory optimization and non-linear solvers have made this a real possibility. For

instance, Toussaint describes in [92] a logic-geometric approach that he demonstrates

in a manipulation problem in which a robot picks and places cylinders and plates

from a table in order to assemble the highest possible stable tower. Abstract plans

defined by action sequences are generated using a relatively simple symbolic plan-

ning approach. The parameters of the solution abstract plan are found by solving

a large optimization problem at the end. The solution to this optimization problem

defines the best final and intermediate positions of all the objects in order to assem-

ble the highest tower. This approach was recently extended with a more complex

search method that combines ideas from branch and bound and Monte Carlo tree

search (MCTS). Another related approach uses sequential quadratic programming to

jointly optimize parameters in an abstracted task plan in which the actions are simple

STRIPS operators [44]. Both planners presented in this thesis, ScottyActivity and

ScottyPath, use a similar approach in which a sequence of activities defines a plan

skeleton, whose parameters are found by solving a large optimization problem. In

the same spirit, we do not reuse the solutions to intermediate optimization problems,

which prevents our planners from committing to inadequate intermediate values and

provides the solver with the maximum possible flexibility until the end.

Most of the TAMP approaches discussed so far have dealt almost exclusively

with manipulation problems, which present on itself very complicated domain specific

challenges. These planners often neglect temporal constraints or robot dynamics as

these are not necessary to solve common manipulation problems.

48

On the other hand, the Scotty planner presented in this thesis considers problems

where the robot behaviors are subject to dynamics and where temporal and state

constraints are tightly coupled. Scotty solves a hybrid planning problem that requires

robot behaviors, tasks and control plans to be computed jointly. We discuss this

hybrid activity and motion planning problem in Chapter 3, where we provide an

example scenario that we use throughout the rest of this thesis.

49

50

Chapter 3

The Scotty System:

An Architecture for Hybrid Activity

and Trajectory Planning

Common robotic applications require reasoning with continuous and discrete robot

behaviors. These behaviors specify, for example, how robots move according to their

dynamics and are often subject to state constraints. Mission goals often involve a

combination of temporal and continuous and discrete state constraints in order to

specify, for example, that a robot needs to visit a certain location before the deadline,

or that a sample has to be acquired by the end of the mission. In order to satisfy

the mission, a hybrid plan needs to specify not only what robot behaviors have to

be executed and when, but also how to execute them by providing a control plan.

Since the robot behaviors and mission specifications are tightly coupled by temporal

and state constraints, the selection of the robot behaviors, their schedule and their

control plans and trajectories need to be determined jointly. For example, a ship

may need to meet an autonomous underwater vehicle (AUV) to pick it up. The

location where the pickup takes place may not matter as long as it happens within

the temporal deadlines and before the AUV runs out of battery. By jointly considering

the mission constraints and the the dynamics and actuation constraints of the vehicles,

we can determine the appropriate location where the pickup should take place and the

51

Underwater Obstacles

Surface Obstacles
ROV Goals

AUV Target Regions

Sh
ip

AUV

ROV

Mission Start

End Region

Figure 3-1: Robotic scientific exploration mission to the Kolumbo caldera.

trajectories of the vehicles in order to minimize the distance traveled by the ship. The

previous is an example of a hybrid activity and trajectory planning problem, in which

the behaviors/activities that need to be selected, their schedule and their associated

control plans are selected jointly.

This thesis presents Scotty, an architecture for solving this type of hybrid activity

and trajectory planning problems. In this chapter we start by describing, in Sec-

tion 3.1, a motivating scenario based on a scientific ocean exploration mission that

will take place in 2019. We then describe the Scotty Planning System along with its

main components in Section 3.2.

3.1 Example Motivating Scenario

Our example scenario is modeled after a real underwater science mission to the

Kolumbo volcano off the coast of Santorini (Greece) that will take place in 2019.

52

B

A

C

start
ship AUV ROV

destination
region

ship-navigate

deploy-ROV
deploy-AUV

AU
V-

na
vig

at
e

ROV-navigate ROV-sample-region

tether range

AUV-take-images

recover-ROV

recover-AUV

(a)

ḃAUV (t) = �k · kvAUV k

kxROV � xShipk2 R2
tether

v2
xi

+ v2
yi
 v2

maxi

Vehicle motions

AUV Battery decrease

Max velocity constraints

ROV tether constraint

Recover constraints

Region constraints

kxAUV � xShipk2 d2
recover

xj 2 Ri

ẋi(t) = vxi

ẏi(t) = vyi

(b)

Figure 3-2: Our motivation scenario exhibits interesting constraints such as the max-
imum distance constraint between the ship and the ROV (b). Our planner is able
to select the best position for deploying and recovering the AUV and the ROV that
satisfies all the constraints without requiring discretization of either time or state (a).

The Kolumbo volcano is an active submarine volcano that is geologically and biologi-

cally very interesting due to the hydrothermal vents present in its caldera. Moreover,

subsea 𝐶𝑂2 pools not known to exist before were recently discovered nearby [17]. In

2019, Woods Hole Oceanographic Institute (WHOI) will lead an expedition to the

Kolumbo caldera in which autonomous planning algorithms developed at the MIT

MERS lab will be used to coordinate and plan the activities and trajectories of mul-

tiple vehicles. This mission is funded, in part, by the NASA PSTAR program as an

analog mission to explore issues such as limited communications and harsh environ-

ments that future robotic missions to Europa and other moons in the Solar System

will experience. In particular, in the third stage of this mission Scotty and other

planners will be used to coordinate the trajectories and scientific activities of an au-

tonomous underwater vehicle (AUV), a ship and a Remotely Operated Vehicle (ROV)

tethered to the ship. We model our example scenario after this stage of the Kolumbo

mission (Figure 3-1).

In our example scenario, the ship is initially transporting both the AUV and the

53

ROV to the science site. The AUV needs to take images at multiple regions, shown

in green, while the ROV needs to take samples in the regions represented by the

yellow circles. All three vehicles need to reach the destination region at the end,

can navigate on their own and have their own 𝑣𝑥, 𝑣𝑦 velocities. The velocities can be

freely chosen, but their norms are upper-bound constrained (𝑣2𝑥𝑖
+ 𝑣2𝑦𝑖 ≤ 𝑣2𝑚𝑎𝑥𝑖

∀𝑖 ∈
{ship,ROV,AUV}). Whenever the ROV is deployed, the ship needs to remain still

at the deployment location until the ROV is recovered again. Moreover, the ROV is

tethered to the ship, and therefore it can only move within a circle centered at the

ship with radius the tether length ((𝑥𝑅−𝑥𝑆)2 + (𝑦𝑅− 𝑦𝑆)2 ≤ 𝑅2
𝑡𝑒𝑡ℎ𝑒𝑟). Both the AUV

and the ROV can be picked up when at most 2 meters away from the ship. The AUV

can navigate on its own once deployed, but it has a finite battery that limits how

long it can travel on its own (�̇�AUV = −𝑘 · ‖vAUV‖). The scenario presents surface

obstacles that the ship needs to avoid. Similarly, there are underwater obstacles that

represent regions that the ROV and the AUV are not allowed to cross.

For clarity purposes, Figure 3-2 shows a valid plan for a simpler version of the

motivation problem, in which the ROV needs to take samples in two regions and

the AUV needs to take images in one region. This plan presents several interesting

characteristics. First, by stationing the ship and deploying the ROV at the appropri-

ate location, both sampling regions can be visited without violating the tether range

constraint, which saves time and fuel. Second, the AUV does not have a sufficiently

large battery to reach the destination region on its own. Therefore, the ship needs

to meet the AUV at a non fixed nor discretized intermediate location, pick it up and

transport it to the destination region. Finally, the battery decrease function is also

interesting, as it depends on the norm of the velocity of the AUV. In this work we

show how Scotty can solve this problem by integrating heuristic forward search and

convex optimization.

The example scenario described in this section showcases the needs of typical

robotic missions that the Scotty Planning System has been designed to solve. First,

we need a way to express the requirements of the robot behaviors that allow them

to move according to their controllable velocities, or the fact that the AUV battery

54

Part I

Part IIIPart II Future Work

Scotty Planning System

hybrid activity and
trajectory planning

problem

PDDL-S Problem QSP

convex safe regions

Obstacle-free
QSP

ScottyActivity ScottyPath MPCScotty

ScottyConvexPath
receding horizon

planning & execution

world state

robot actuation

Figure 3-3: Scotty Architecture

gets drained according to the velocity that the AUV moves at. Moreover we need to

model the state constraints that have to be satisfied at certain points in the mission:

e.g. the ROV always satisfying the tether range and the AUV staying within region

A while the images are taken, to name a few. Third, we need to be able to specify an

objective to minimize, such the total duration of the mission or the distance traveled

by the ship. Finally, each vehicle may need to avoid obstacles in the environment.

3.2 The Scotty Planning System

This thesis presents Scotty, a hybrid activity and trajectory planning architecture

designed to plan for missions like the one described in Section 3.1. Such missions

often involve multiple coordinated robots over long horizons. In order to efficiently

plan long missions in which both short-lived and long-lived activities coexist, Scotty

uses a formulation that is continuous in time, control and state. The continuous time

requirement limits Scotty to reason with simplified first order dynamics in which

the velocities of the robots are considered controllable within their lower and upper

bounds. However, these dynamics are well suited for planning missions that span

long durations, such as the one presented earlier.

The hybrid activity and trajectory planning problem that Scotty solves is hard

due to its highly combinatorial nature. In particular, Scotty needs to make discrete

combinatorial choices to select the activities and their order, and to avoid obstacles.

We solve these two problems separately in order to leverage specialized heuristics, that

55

allow us to solve the problem more efficiently. First, the activity planning problem

is solved in the absence of obstacles. Then, the plan is refined in order to avoid the

obstacles in the environment. Our architecture is shown in Figure 3-3.

The first module in our architecture is ScottyActivity [36, 37, 38], a hybrid gen-

erative activity and trajectory planner that solves the problem in the absence of

obstacles. The solution returned by ScottyActivity forms a qualitative state plan

that describes the activities or behaviors that each robot uses to achieve the goals

and the order in which these are engaged and disengaged. ScottyActivity is described

in Part II of this thesis.

The next module is ScottyPath, a planner for the qualitative state plans (QSPs)

that ScottyActivity founds. Such QSPs do not consider obstacles but describe, qual-

itatively, all the constraints that need to be considered and in which order, including

the behaviors that are active at different points in the mission. ScottyPath takes the

QSPs generated by ScottyActivity and a set of convex safe regions for each vehicle

and returns an obstacle-free plan in which all vehicles are guaranteed to be, at all

times, inside one of such regions. ScottyPath is described in Part III of this thesis.

The last step in our architecture involves the execution of such plans. While

the simple first-order dynamics model using during the first two stages is sufficient

for planning long-term missions, a more accurate model is needed during execution.

The MPCScotty planner is designed for such purpose. MPCScotty uses a receding

horizon approach that jointly combines more accurate dynamics and constraints for

a limited detailed horizon, and the same simpler constraints for the rest of the plan.

MPCScotty, is being developed at the MIT MERS lab, and only a brief discussion of

its approach is described in this thesis.

All the planners in the Scotty Architecture use, as their core component, the

ScottyConvexPath planner. ScottyConvexPath solves relaxed problems in which the

activities and their order are fixed and the environment is obstacle-free. Under those

conditions, the problem does not present discrete combinatorial choices, and is solved

efficiently using convex optimization. The convex optimization model that Scotty-

ConvexPath uses describes the robots first order dynamics and does not require dis-

56

cretization of time, state or control. Our model, described in Part I of this thesis, is

a second order cone program (SOCP), which allows us to represent convex quadratic

constraints, that often arise in robotic planning problems. Since our model does not

discretize time or state, it can be used to efficiently check candidate plans requiring

coordination constraints over long horizons.

In the rest of this section we provide additional details of each of the modules of

the Scotty Planning System and we discuss the application of the architecture to an

example problem.

3.2.1 ScottyActivity

ScottyActivity is a hybrid activity and trajectory planner. ScottyActivity solves

PDDL-S planning problems, which we describe in Chapter 4. PDDL-S problems

augment the well-known PDDL2.1 specification [39] with continuous effects and con-

tinuous control variables that we use to model the robot behaviors present in robotic

missions like the one we describe in Section 3.1.

ScottyActivity is a generative planner that uses heuristic forward search and a

delete-relaxation heuristic to exploit the breakthrough advances in planning achieved

over the two last decades. ScottyActivity uses ScottyConvexPath to efficiently check

the consistency of partial skeleton plans, without resorting to time, state or control

discretization.

ScottyActivity does not consider obstacles at this stage. The solution found by

ScottyActivity contains a grounded plan that consists of an schedule for the chosen

activities and a control and state trajectory for each vehicle. However, the solution

can also be represented as a qualitative state plan (QSP) that contains a sequence that

describes when behaviors are engaged and disengaged along with all the temporal,

state and actuation constraints that a valid plan must satisfy. This QSP is then the

input to the ScottyPath planner.

We describe ScottyActivity in Part II of this thesis. Chapter 7 describes our

extensions to the PDDL2.1 syntax that allow us to express PDDL-S problems. Chap-

ter 8 describes our planning approach. Finally, Chapter 9 describes the experiments

57

performed to evaluate the scalability and performance of ScottyActivity.

3.2.2 ScottyPath

The solution QSPs that ScottyActivity generates do not consider obstacles. Scotty-

Path finds obstacle-free solution plans that satisfy all the constraints in the QSP. In

order to do so, ScottyPath forces each vehicle to always remain inside one of a set of

overlapping convex safe regions. These safe regions, which are generated in advance,

are provided to ScottyPath as another input, besides the QSP.

The path planning problem solved by ScottyPath is challenging because the QSP

does to explicitly define the locations that each robot needs to visit. Instead, it

provides a set of constraints that couple the trajectories of multiple robots during the

full plan. In order to assign safe regions to each robot, ScottyPath uses an informed

search approach that uses ScottyConvexPath to jointly compute the cost and heuristic

of candidate search nodes. We use a novel optimization-based approach to determine

when intermediate goal conditions can be satisfied by candidate search nodes.

ScottyPath is described in Part III of this thesis. For pedagogical purposes, Chap-

ter 10 describes first a simpler geometric path planner that introduces the convex safe

regions and uses a similar approach based on informed search and convex optimiza-

tion. The ScottyPath planning approach, that handles first-order dynamics, as well as

multiple vehicles with coordination constraints, is described in Chapter 11. Finally,

Chapter 12 describes the experiments that we use to evaluate the performance and

scalability of ScottyPath.

3.2.3 MPCScotty

MPCScotty is designed to execute the plans found by the first two stages of the

Scotty architecture. A more accurate dynamics model than the simpler, first-order

model used by ScottyActivity and ScottyPath is needed during execution. Moreover,

this stage also needs to consider vehicle to vehicle collisions as well as new obstacles

detected by the robots as well as changing conditions. All these cannot be represented

58

with a convex, continuous-time model. However, the missions that this stage executes

still span long durations and cannot be efficiently solved with a time discretized

formulation with a small timestep.

MPCScotty solves this problem by using a receding horizon approach that com-

bines, in a single integer program, a limited-horizon discrete-time detailed formulation

with a simpler, continuous-time formulation that spans the full plan. The detailed

part of the model can represent accurate dynamics and complicated non-convex con-

straints, since it discretizes time and is limited to a short horizon. The continuous-

time part of the model uses the same first-order dynamics and constraints from the

convex model that ScottyConvexPath uses. Because this part of the model does not

discretize time, it can model the full plan beyond the detailed horizon, and it provides

guidance over the full plan. Since this planner uses a receding horizon approach, un-

foreseen circumstances, such as changing obstacles or inaccurate robot models, are

considered in further replanning iterations. The innovation of this planner lies on how

the discrete-time and the continuous-time models are joined in a single mixed-integer

second order cone program (MISOCP).

MPCScotty is still being developed at the MIT MERS lab and is, therefore, out

of the scope for this thesis. However, further details about this planner are provided

in Chapter 13.

3.2.4 Example Usage of the Planning Architecture

Figure 3-4 presents an example that illustrates how ScottyActivity and ScottyPath

are used to solve a hybrid activity and trajectory planning problem. The problem

presented in Figure 3-4 is similar to the example scenario described in Section 3.1,

but without the AUV. In this problem, the ROV needs to take samples at regions

A and B, and the ship needs to end at the goal region with the ROV on board. As

shown in the figure, ScottyActivity takes the problem as a PDDL-S problem. The

PDDL-S problem describes the initial conditions of the robots as well as the model

of the activities that can be executed, the goal conditions that need to be satisfied at

the end of the plan and the objective. The plan returned by ScottyActivity, shown

59

00 start-navigate-ship
01 end-navigate-ship
02 start-deploy-rov
03 end-deploy-rov
04 start-navigate-rov
05 end-navigate-rov
06 start-take-sampleA
07 end-take-sampleA
08 start-navigate-rov
09 end-navigate-rov
10 start-take-sampleB
11 end-take-sampleB
12 start-navigate-rov
13 end-navigate-rov
14 start-recover-rov
15 end-recover-rov
16 start-navigate-ship
17 end-navigate-ship
18 start-arrive-port
19 end-arrive-port

event

mission

navigate-ship

deploy-ROV
e0 e1 e2 e3 e4

navigate-ROV

take-sample-A
e5 e6 e7 e8

[",1)

min dist(ship) + ↵T

e19

[",1) [",1)

ScottyPath

ScottyActivity solution

tQSP

Safe Regions

Solution Plan

ScottyActivity

PDDL-S Problem

navigate-ship
navigate-ROV
deploy-ROV
recover-ROV
sample-region-x
arrive-port

xship = (0,0)
xROV = (0,0)

sampleA-taken
sampleB-taken
ship-in-port

Initial conditions

Goals

Domain
(:durative-action
 navigate-ship
 …)

ROV-onboard

Scotty
Planning
System

min dist(ship) + k*T

Figure 3-4: Example that illustrates how the Scotty Planning System is used to solve
a hybrid activity and trajectory planning problem with obstacles.

60

on the right, is a QSP that describes the sequence of engaged and disengaged robot

behaviors along with the constraints that need to be satisfied at each step in the

plan. Since the plan found by ScottyActivity ignores obstacles, the trajectory of the

ship collides with surface obstacles. ScottyPath then takes the QSP and a set of safe

regions for the ship in order to find the obstacle-free plan shown at the bottom of the

figure.

61

62

Chapter 4

Problem Statement

In this chapter we define the problem statement that Scotty solves. Scotty is designed

to solve hybrid activity and trajectory planning problems for robotic missions like the

one presented in Section 3.1. Recall that the Scotty Planning System, as described

in Section 3.2, divides the hybrid activity and trajectory planning problem into two

subproblems that are solved sequentially.

The first problem is the activity planning problem, which we solve with the Scotty-

Activity planner. This problem consists of a model of the behaviors or activities that

robots can execute, the goals that each robot must achieve, the initial conditions for

each robot and an objective function. We call this problem a PDDL-S problem.

The second problem that the Scotty Planning System solves is the path planning

problem for the qualitative state plan generated by ScottyActivity. This QSP does

not consider obstacles. However, it describes the robot behaviors used to solve the

problem and the order in which these are engaged and disengaged, as well as the

temporal and state constraints that each robot must satisfy at each step in the plan.

ScottyPath takes the QSP and a set of convex safe regions for each vehicle, and

returns an obstacle-free plan in which each vehicle is guaranteed to always remain

inside one of the safe regions.

The input to the Scotty Planning System consists of two parts: the PDDL-S

problem, and the sets of safe regions for each vehicle. In this chapter we define

PDDL-S problems, along with their solution. We defer describing the safe regions

63

until Part III of this thesis, where they are explained in detail.

4.1 The PDDL-S Problem

Having defined the elements that model robot behaviors, activities and constraints,

we now proceed to define formally the problem that the ScottyActivity planner solves.

ScottyActivity solves a hybrid activity and trajectory optimization planning problem

that we call a PDDL-S planning problem.

A PDDL-S problem describes the hybrid activity and trajectory planning problem

that ScottyActivity solves. The main element of the PDDL-S problem is the hybrid

activity, which describes a behavior that a robot can execute. This consists of the

effects that derive from the execution of such behavior, such as moving in one direction

or enabling or disabling a sensor, and the operating constraints that need to hold at

the start, end or while the behavior is being executed. The PDDL-S problem also

provides the initial conditions for each robot, the goals that need to be satisfied at

the end of the plan and the objective function that should be minimized. We provide

a formal definition for PDDL-S problems next.

Definition 4.1 (PDDL-S Problem). A PDDL-S problem is a planning problem

given by the tuple ⟨𝐼,𝐺,𝐶𝑉,𝐴,𝑂⟩, where:

∙ 𝐼 = ⟨x0,p0⟩ is the initial state, which is a complete assignment to the state

variables, x0 = x(0), and propositional variables, p0 = p(0) at the beginning.

∙ 𝐺 = ⟨𝑆𝐺, 𝑃𝐺⟩ is the goal. The goal consists of a set of state variable constraints,

𝑆𝐺, that need to be satisfied at the end of the plan and a set of propositional

variables 𝑃𝐺 whose value needs to be true at the end of the plan.

∙ 𝐶𝑉 = ⟨c, 𝐶𝐶⟩ is the tuple of the vector of control variables, c, and the convex

quadratic constraints operating on the control variables, 𝐶𝐶, as defined in

Section 4.1.4.

∙ 𝐴 is the set of hybrid durative activities.

64

∙ 𝑂 is the objective function.

N

We provide formal definitions for all the elements that compose a PDDL-S problem

throughout the rest of this section.

Note that PDDL-S problems have similar characteristics to PDDL2.1 problems

[39]. The main differences between PDDL2.1 problems and PDDL-S problems, which

we describe in Section 4.1.1, lie in the definition of the continuous effects and control

variables supported by our hybrid durative activities. These allow us to represent

behaviors with continuously controllable parameters, which we use to model first

order dynamics.

4.1.1 Hybrid Durative Activities

In the course of a typical robotic mission, robot behaviors may need to be engaged

or disengaged at different times and state constraints may become active depending

on the behaviour currently being executed or the goal that the robot is currently

trying to achieve. While the main focus of our planner is dealing with continuous

behaviors efficiently over long horizons, we also need to be able to reason with discrete

conditions and effects in order to find plans for typical robotic missions. We use

durative activities like the ones that have long been used by the activity planning

community to model the switched behaviors described before. In particular, we use

hybrid durative activities, which are similar to PDDL2.1 [39] activities except for some

differences that we highlight below.

Definition 4.2 (Hybrid Durative Activity). A hybrid durative activity 𝑎 is given by

the tuple ⟨dur, pre⊢, eff ⊢, pre↔, eff ↔, pre⊣, eff ⊣⟩, where:

∙ dur is the tuple ⟨𝑑𝑙, 𝑑𝑢⟩ that describes the minimum and maximum duration of

𝑎. As in PDDL 2.1, the duration of the activity is assumed to be controllable

by the planner.

∙ pre⊢(pre⊣) are the conditions that must hold at the start (end) of 𝑎. These

65

conditions can be of two types. First, a propositional condition can require

a proposition 𝑝𝑗 ∈ p to hold. Second, a condition can be a state variable

constraint as defined in Section 4.1.3.

∙ eff ⊢(eff ⊣) are the starting (ending) effects of 𝑎 that indicate the resulting

change in the state as a result of applying the activity. A set of effects eff 𝑥, 𝑥 ∈
{⊢,⊣} consists of:

– eff −
𝑥 , the set of propositions to be deleted (set to false) from the state.

– eff +
𝑥 , the set of propositions to be added (set to true) to the state.

∙ pre↔ are the invariant conditions of 𝑎 that must hold throughout the duration

of the activity. These can also be propositions that need to hold or state

variable constraints.

∙ eff ↔ are the continuous effects of 𝑎 that are active while the activity is being

executed.

N

The main differences between hybrid durative activities and PDDL2.1 durative ac-

tivities are two. First, we support continuous effects that depend on control variables.

Second, we support convex quadratic constraints. While convex quadratic constraints

can be specified in PDDL2.1, we are not aware of any other PDDL2.1 planner that

supports them.

4.1.2 State

The state of the system is given by a set of discrete propositional variables, and a

set of continuous state variables. The discrete variables are boolean variables are

used, for example, to model that a certain sensor or motor is turned on, or whether a

sample has been taking in a certain region. The state variables, which are continuous,

represent the position of the robot, as well as other properties, such as the battery

level of a vehicle.

66

Definition 4.3 (State). The state of the system, s = ⟨x,p⟩, is a tuple of state

variables, x, and propositional variables, p. The state variables are given by a vector

of real valued variables, x = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑛⟩ ∈ R𝑛. The propositional variables are

given by a vector of propositions that can be true or false, p = ⟨𝑝1, 𝑝2, . . . , 𝑝𝑙⟩. N

We further define a special kind of state variables that we call resources. By

imposing some special restrictions on resource variables, we can use them to model

complicated effects such as the velocity-dependant decrease on the battery level. The

special effects that we can subject resources to are defined in Section 4.1.4.2. The nec-

essary restrictions that we impose on resources are explained later, when we describe

our convex model in Chapter 6.

Definition 4.4 (Resource). A resource is a type of state variable that is subject to

the following restrictions:

∙ Resources can only appear with negative coefficients in the objective function.

That is, they can only be maximized.

∙ Resources can only be subject to greater or equal than constraints.

N

In the example scenario presented in Section 3.1, the state variables are the 𝑥

and 𝑦 coordinates of the ship, the AUV and the ROV as well as the battery level of

the AUV. Additionally, the battery level is a state variable that is a resource. The

propositional variables in the example scenario indicate, for example, whether the

images and samples have been taken, or whether the AUV and ROV are deployed or

on-board the ship.

4.1.3 State Constraints

Robots are often subject to state constraints. Some of these constraints may be

intrinsic to their dynamics or modes of operation. For example, the AUV in the

67

example scenario can only continue moving while its battery level is greater than

0. Similarly, the ROV can only separate from the ship a distance smaller than the

length of the tether than connects them. Other state constraints, however, are mission

dependent. For example, in order to successfully capture the images required for the

mission, the AUV needs to be inside region 𝐴 while the pictures are taken.

We restrict the state constraints in our model to convex quadratic constraints.

This restriction allows us to efficiently check constraints that need to be maintained

over arbitrarily long durations, as explained in Chapter 5, and to use an efficient

convex model and a state of the art convex quadratic solver, as explained in Chapter 6.

However, note that convex quadratic constraints are sufficient to express a wide range

of real-world constraints that appear in typical robotic missions, like the ones shown

in the example scenario.

State variable constraints are defined as follows:

Definition 4.5 (Convex Quadratic State Constraint). A convex quadratic state con-

straint is a constraint in the form of 𝑔(x) ≤ 0, where 𝑔 : R𝑛 → R is a convex quadratic

function operating on the vector of state variables, x. N

Recall that any quadratic function 𝑔 : R𝑛 → R can be written as 𝑔(x) = x𝑇𝐴x +

k𝑇x + 𝑏, where 𝐴 ∈ R𝑛×𝑛, k ∈ R𝑛, and 𝑏 ∈ R are constants. Function 𝑔 is convex

if and only if 𝐴 is a positive semidefinite matrix [14]. Note that since any linear

expression is also a convex quadratic expression, it is also possible under our model

to subject state variables to linear inequality constraints. As a consequence, linear

equality constraints are also possible.

As mentioned before, the example scenario presents multiple state constraints.

The ROV tether constraint, for example, is represented with the convex quadratic

constraint: (𝑥𝑅𝑂𝑉 −𝑥𝑠ℎ𝑖𝑝)
2 + (𝑦𝑅𝑂𝑉 − 𝑦𝑠ℎ𝑖𝑝)

2−𝑅2
𝑡𝑒𝑡ℎ𝑒𝑟 ≤ 0. The constraint that forces

the AUV to remain inside the images region is also a convex quadratic constraint. In

particular, the images region is a polyhedron and the constraint is, therefore, a linear

inequality constraint in the form of 𝐴 · x𝐴𝑈𝑉 ≤ b. The battery level of the AUV is a

resource that is subject to always be nonnegative, 𝑏𝐴𝑈𝑉 ≥ 0.

68

4.1.4 Control Variables and Continuous Effects

As most activity planners do, we operate on the assumption that the planner is

the sole agent of change. As a result, state variables can only change their value

through continuous effects operating on them. These continuous effects may be seen

as behaviors that enable or disable robot dynamics. The change on the state variables

due to the presence of continuous effects depends on the control variables that these

effects make use of. Control variables are continuous parameters that are assumed

to be controlled within their lower and upper bounds. The main purpose of control

variables is to model the controllable velocities of robots. However, control variables

can also model, for example, a controllable rate of change of a battery, as long as the

dynamics are represented with the continuous effects that we describe in this section.

Control variables are defined as follows.

Definition 4.6 (Control Variables, c). The control variables vector, c, is a vector of

control variables c = ⟨𝑐1, 𝑐2, . . . , 𝑐𝑚⟩, where each control variable 𝑐𝑗 is a real valued

parameter that is continuously controllable within its fixed lower and upper bounds,

𝑐𝑗 𝑙 and 𝑐𝑗𝑢. N

In the example scenario, the control variables vector is a vector of the 𝑣𝑥, 𝑣𝑦 veloci-

ties of the ship, the AUV and the ROV, c = ⟨𝑣𝑥𝑠ℎ𝑖𝑝, 𝑣𝑦𝑠ℎ𝑖𝑝, 𝑣𝑥𝐴𝑈𝑉 , 𝑣𝑦𝐴𝑈𝑉 , 𝑣𝑥𝑅𝑂𝑉 , 𝑣𝑦𝑅𝑂𝑉 ⟩.
Control variables can be subject to control variable constraints. We restrict the

control variable constraints to convex quadratic constraints for reasons that will be-

come apparent when we describe, in Chapter 6, the convex optimization model that

Scotty uses.

Definition 4.7 (Convex Quadratic Control Variable Constraint). A convex quadratic

control variable constraint is a constraint in the form of 𝑔(c) ≤ 0, where 𝑔 : R𝑚 → R

is a convex quadratic function operating on the vector of control variables, c. N

In the example scenario, there are three convex quadratic constraints operating

on the control variables. These three constraints limit the 𝑙2-norm of the velocities of

each of the three vehicles, ‖v𝑣‖2 ≤ 𝑣𝑚𝑎𝑥𝑣 ∀𝑣 ∈ {ship,ROV,AUV}. Since 𝑙2-norms

69

are convex quadratic functions, the previous constraint can be written as a convex

quadratic constraint: 𝑣2𝑥𝑣
+ 𝑣2𝑦𝑣 − 𝑣2𝑚𝑎𝑥𝑖

≤ 0.

As described in the beginning of this section, continuous effects produce the change

in state variables. Continuous effects are defined as follows.

Definition 4.8 (Continuous Effect). A continuous effect is a tuple ⟨𝑥, 𝑓⟩ where 𝑥

is the state variable that is subject to the effect and 𝑓 : R𝑚 → R is a function of

the control variables vector. An active continuous effect 𝑒𝑓𝑓 on variable 𝑥 induces

a rate of change �̇�𝑒𝑓𝑓 (𝑡) on 𝑥 such that �̇�𝑒𝑓𝑓 (𝑡) = 𝑓(c(t)). N

The change produced in state variable 𝑥 due to continuous effect eff being active

from 𝑡𝑎 to 𝑡𝑏 is given by:

∆𝑥𝑒𝑓𝑓 (𝑡) =

∫︁ 𝑡

𝑡𝑎

𝑓(c(𝜏))𝑑𝜏, 𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏 (4.1)

As described later in this thesis in Chapter 5, the solution that ScottyActivity

finds restricts the control variables vector to follow a piecewise constant trajectory.

This allows us to maintain a continuous time formulation and to efficiently plan for

long horizons. This restriction implies that the rates of change for each state variable

are piecewise constant and, as a consequence,the state trajectory is piecewise linear.

Continuous effects are additive. That is, multiple continuous effects can be oper-

ating on a state variable 𝑥 during an interval of time. In that case, the rate of change

of state variable 𝑥 is the sum of the rates of change induced by each continuous effect:

�̇�(𝑡) =
∑︁

𝑒𝑓𝑓∈𝐸𝑥(𝑡𝑎,𝑡𝑏)

�̇�𝑒𝑓𝑓 , 𝑡𝑎 ≤𝑡 ≤ 𝑡𝑏 (4.2)

𝑥(𝑡) = 𝑥(𝑡𝑎) +
∑︁

𝑒𝑓𝑓∈𝐸𝑥(𝑡𝑎,𝑡𝑏)

∆𝑥𝑒𝑓𝑓 (𝑡), 𝑡𝑎 ≤𝑡 ≤ 𝑡𝑏 (4.3)

where 𝐸𝑥(𝑡𝑎, 𝑡𝑏) is the set of active continuous effects operating on 𝑥 between 𝑡𝑎 and

𝑡𝑏.

Note that, as we described above, state variables only change their value due to

70

the presence of continuous effects operating on them. Therefore, the schedule of the

continuous effects that are applied to each state variable and the times when these

are active, together with the trajectory of the control variables, c(𝑡), fully determine

the trajectory of all state variables, x(𝑡).

While the description for continuous effects that we describe above can be used

with any choice of 𝑓 , we allow two types of continuous effects in this work. These are

described below.

4.1.4.1 Controllable Linear Time-varying Continuous Effects

The first type of continuous effect that we describe induces a rate of change that is a

linear combination of the control variables.

Definition 4.9 (Controllable linear time-varying continuous effect, CLTE). A CLTE

is defined by a tuple ⟨𝑥,k⟩, where 𝑥 is the state variable subject to the effect and

k ∈ R𝑚 is a constant vector. A CLTE changes a state variable linearly in time with

a rate of change that is a linear combination of its control variables. The change in

state variable 𝑥 up to time 𝑡 due to an ongoing CLTE that started at time 0 is given

by

∆𝑥𝐶𝐿𝑇𝐸(𝑡) =

∫︁ 𝑡

0

k𝑇 · c(𝜏)𝑑𝜏 (4.4)

N

In the example scenario, the CLTEs allow the vehicles to move according to their

control variable velocities. There are six CLTE effects, one for each position variable

of each of the three vehicles. For example, the two CLTE effects operating each on

𝑥𝐴𝑈𝑉 and 𝑦𝐴𝑈𝑉 induce the rates of change �̇�𝐴𝑈𝑉 = 𝑣𝑥𝐴𝑈𝑉 and �̇�𝐴𝑈𝑉 = 𝑣𝑦𝐴𝑈𝑉 .

4.1.4.2 Resource-constrained Norm Effects

The other type of continuous effects that we allow describe a change in a state variable

that depends on the 𝑙2-norm of a vector of control variables. This type of effect is

useful to model, for example, how the battery of a vehicle decreases as a function

of the magnitude of the velocity that the vehicle moves with. For reasons that will

71

become apparent when we introduce our convex optimization model in Chapter 6, we

restrict this effect to only be applied to state variables that are resources.

Definition 4.10 (Resource-constrained norm effect, RNE). A RNE is given by a

tuple ⟨𝑥, 𝑘, c𝑒, 𝑓⟩, where 𝑘 ∈ R>0 is a positive real constant, c𝑒 is a vector of 𝑚 or

fewer control variables, and 𝑓 : R≥0 → R≥0 is a real nonnegative function. A RNE

decreases the value of a constrained state variable (resource) 𝑥 with a rate of change

proportional to the function 𝑓 of the 𝑙2-norm of c, 𝑓(‖c‖2). N

The change on a continuous state variable 𝑥 up to time 𝑡 due to an ongoing RNE

that started at time 0 is given by:

∆𝑥𝑅𝑁𝐸(𝑡) = −
∫︁ 𝑡

0

𝑘 · 𝑓(‖c𝑒(𝜏)‖)𝑑𝜏, 𝑘 ≥ 0 (4.5)

In this work we consider two types of RNEs. A linear norm effect (LNE),

⟨𝑥, 𝑘, c𝑒, 𝑥 → 𝑥⟩, produces a decrease rate proportional to the norm of c𝑒. A linear

squared norm effect (LSNE), ⟨𝑥, 𝑘, c𝑒, 𝑥→ 𝑥2⟩, produces a decrease rate proportional

to the square of the norm of c𝑒.

In the example scenario, the navigate activity has a LNE effect that makes the

battery of the AUV decrease with a rate proportional to the norm of its velocity

(�̇�𝐴𝑈𝑉 (𝑡) = −𝑘 · ‖vAUV‖). This is equivalent to stating that the battery decrease is

proportional to the distance traveled by the AUV. The same effect depending on the

square of the norm (‖vAUV‖2) can be achieved by using a LSNE effect instead of the

LNE one. Since continuous effects are additive, it is also possible to define a change

in the battery that is a linear combination of these terms and other CLTE effects.

4.1.5 Objective

The objective function of a PDDL-S problem is the function that the planner aims

to minimize. We restrict the objective 𝑂 to a linear combination of one or more of

the following terms:

∙ The total duration of the plan (plan makespan).

72

∙ The value of a state variable at the end of the plan. In the case of resources, their

coefficients are limited to negative values (i.e. resources can only be maximized).

∙ The sumproducts of the norms (or squared norms) of a vector of control variables

and the durations it was active for, i.e.
∫︀ 𝑇

0
‖c𝑒(𝜏)‖{1,2} 𝑑𝜏 .

For example, in the motivating scenario, one of the terms minimized is
∫︀
‖vSHIP‖ 𝑑𝑡,

which minimizes the distance traveled by the ship. A similar term involving, instead,

the square of the norm is also possible. This is useful when the control effort needs

to be minimized.

4.2 Solution to a PDDL-S Problem

The solution to a PDDL-S problem is given by a plan.

Definition 4.11 (PDDL-S Plan). A PDDL-S Plan is a tuple ⟨𝑆, fc : R → R𝑚⟩,
where

∙ 𝑆 is the activity schedule, and is given by a list of triples ⟨𝑎, 𝑡𝑠, 𝑑⟩, where 𝑎

is an activity, 𝑡𝑠 its start time and 𝑑 its duration. The latest end time of all

activities is denoted by 𝑇 and corresponds to the plan makespan.

∙ fc : [0, 𝑇) → R𝑚 is the control trajectory. The control trajectory assigns a

value to all control variables at every time 𝑡 between the start and the end of

the plan.

N

Given a PDDL-S plan, the trajectories of all state variables are fully determined

at all times throughout the duration of the plan. In order to compute the value of a

state variable 𝑥𝑖 at time 𝑡, 𝑥𝑖(𝑡), it suffices to apply from 0 to 𝑡 the continuous effects

of the activities for the durations and values of the control variables specified in the

plan.

A valid PDDL-S plan satisfies all constraints defined by the PDDL-S problem.

73

Definition 4.12 (Valid PDDL-S Plan). A valid PDDL-S plan is a PDDL-S plan

such that:

1. For each activity 𝑎 which starts at time 𝑡, all its discrete and continuous at

start conditions are satisfied right before time 𝑡.

2. For each activity 𝑎 which ends at time 𝑡, all its discrete and continuous at end

conditions are satisfied right before time 𝑡.

3. For each activity 𝑎 which is ongoing at time 𝑡, all its discrete and continuous

over all conditions are satisfied at time 𝑡.

4. The trajectories of the control variables satisfy each global control variable

constraint throughout the duration of the plan.

5. The final state at the end of the plan satisfies the goal constraints.

N

An optimal PDDL-S plan is a valid PDDL-S plan such that objective 𝑂 takes the

minimum possible value. ScottyActivity finds valid PDDL-S plans but it is not guar-

anteed to find optimal PDDL-S plans due to the greedy nature of its search algorithm,

as we explain in Chapter 8.

4.2.1 PDDL-S Plans with Piecewise Constant Control

For reasons explained in Chapter 5, the output of ScottyActivity is a PDDL-S plan

with piecewise constant control.

Definition 4.13 (PDDL-S Plan with Piecewise Constant Control). A PDDL-S Plan

with Piecewise Constant Control is a PDDL-S plan in which the control trajectory

is a piecewise constant function where the change points occur at the start and end

times of the activities in the plan schedule. A PDDL-S plan with piecewise constant

control has the following properties:

74

1. 𝑁 − 1 stages, where 𝑁 is the number of events in the plan, where an event is

the start or end of an activity. Each stage denotes the period of time between

consecutive events in the plan.

2. A control trajectory, c(𝑡), that is piecewise constant. The control variables

vector is constant during each stage in the plan.

N

Since state variables change linearly in time due to continuous effects, the state

trajectory in a PDDL-S plan with piecewise constant control is piecewise linear. The

state variables change linearly in time during each stage in the plan.

This restriction of piecewise constant control variables and piecewise linear state

trajectories does not affect the completeness of ScottyActivity.

Theorem 4.1 (Completeness of PDDL-S Plans with Piecewise Constant Control).

If a PDDL-S problem has a solution, there always exists a solution that is a PDDL-S

plan with piecewise constant control.

Similarly, this restriction does not affect the optimality of the plans that can be

obtained.

Theorem 4.2 (Optimality of PDDL-S Plans with Piecewise Constant Control). The

optimal solution to a PDDL-S problem, if one exists, is a PDDL-S plan with piecewise

constant control.

In effect, our linear time dynamics and the absence of obstacles, curvature con-

straints or other non-convex constraints ensure that any problem solvable with an

arbitrarily changing state trajectory is also solvable with a piecewise linear one. Fur-

thermore, since both the state conditions and the objective are required to be convex,

the piecewise linear restriction of state variables does not have an effect in optimality

either. The optimal solution for a PDDL-S problem is a PDDL-S plan with piecewise

constant control. We present the proof for both theorems in Appendix A.

75

4.2.2 Qualitative State Plans

The PDDL-S plans that ScottyActivity finds can also be represented as qualitative

state plans (QSPs). QSPs describe the behaviors that robots execute and when these

are engaged or disengaged. QSPs also define the state constraints that robots need

to satisfy at different steps in the plan.

We defer the formal description of QSPs, as well as the equivalence between

PDDL-S plans and QSPs to Chapter 11 in Part III of this thesis, where they are

presented in the context of the ScottyPath planner.

76

Part I

ScottyConvexPath

77

78

Table of Contents

5 Efficient Satisfaction of Convex Conditions Over Arbitrarily Long

Horizons Through Piecewise Constant Control Trajectories 81

5.1 Typical Maintenance Convex Conditions in Robotic Applications . . . 85

6 ScottyConvexPath: Trajectory Planning for Skeleton Plans Over

Long Horizons With Convex Optimization 89

6.1 Plan Skeletons . 92

6.2 Preliminary Definitions and Decision Variables 95

6.3 Temporal Constraints . 96

6.4 State Constraints . 96

6.5 State Change . 97

6.6 Control Variables and Continuous Effects 97

6.7 Partial Skeleton Plans . 103

6.8 Objective . 103

80

Chapter 5

Efficient Satisfaction of Convex

Conditions Over Arbitrarily Long

Horizons Through Piecewise

Constant Control Trajectories

This chapter starts Part I of this thesis, which describes ScottyConvexPath, the sub-

planner that both ScottyActivity and ScottyPath use to efficiently check candidate

skeleton plans over arbitrarily long durations. In this chapter we present Scotty’s

approach to satisfying convex state constraints through arbitrarily long durations in

an efficient manner. As described in Chapter 4, state constraints are imposed by

activities as their at start, at end and over all conditions. One issue the planner must

address is to satisfy state constraints throughout continuous time, and not just at

sampled events. The second issue is that the method for satisfying state constraints

must scale computationally to long horizon problems.

Most robotic planning algorithms enforce these constraints by discretizing states

at fixed timesteps and imposing the constraints at each discretized state. Many of

these algorithms ignore the constraints between the discretized points of the trajec-

tory. While this strategy does not guarantee that the conditions are satisfied at all

81

times, this usually works well when the discretization time is sufficiently small. Unfor-

tunately, these approaches do not work well for long time horizons, or when different

activities happen at a different time scale.

One of the advantages of the Scotty Planning System is that it performs equally

well for short and long time horizons and different time scales since time is not

discretized. While avoiding time discretization greatly helps performance, it imposes

the challenge of how to enforce maintenance conditions throughout horizons that can

be arbitrarily long. In order to enforce invariant conditions in an efficient manner, we

restrict the trajectories of the control variables chosen by the planner to be piecewise

constant. We do not restrict how many segments the planner can select. Therefore,

the trajectories of the control variables are given by:

c(𝑡) = [𝑐1(𝑡), 𝑐2(𝑡), . . . , 𝑐𝑚(𝑡)] = c𝑗, 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1, 𝑗 ∈ 0 . . . 𝑁 − 1 (5.1)

, where 𝑁 is the total number of piecewise constant segments, 𝑡𝑗, called a switch

point, is the starting time of segment 𝑗, c(𝑡) ∈ R𝑚 is the vector of values of all control

variables at time 𝑡 and c𝑗 ∈ R𝑚 is the vector of constant values of all control variables

during segment 𝑗, between 𝑡𝑗 and 𝑡𝑗+1.

As described in the problem statement (Chapter 4), continuous change in the state

variables only occurs as a result of the action of continuous effects. Recall that the

change in a state variable 𝑥 subject to a continuous effect from the time the effect

starts, 𝑡𝑎, to time 𝑡 can be expressed as:

∆𝑥𝑒𝑓𝑓 (𝑡) =

∫︁ 𝑡

𝑡𝑎

𝑓(c(𝜏))𝑑𝜏, 𝑡𝑎 ≤ 𝑡 ≤ 𝑡𝑏 (5.2)

, where 𝑓 is a function of the control variables that depends on the type of continuous

effect. Since the control variables are piecewise constant, 𝑔(c(𝜏)) is constant and the

previous equation can be simplified to:

82

∆𝑥𝑒𝑓𝑓 (𝑡) = 𝑓(c𝑙)(𝑡𝑙+1 − 𝑡𝑎) +
𝑙+𝑛−1∑︁
𝑘=𝑙+1

𝑓(c𝑘)(𝑡𝑘+1 − 𝑡𝑘) + 𝑓(c𝑙+𝑛)(𝑡− 𝑡𝑙+𝑛) (5.3)

𝑡𝑙 ≤ 𝑡𝑎 ≤ 𝑡𝑙+1 ≤ . . . ≤ 𝑡𝑙+𝑛 ≤ 𝑡 (5.4)

, where 𝑡𝑙 is the last switch point before 𝑡𝑎 and there are 𝑛 switch points between 𝑡𝑎 and

𝑡. Equation (5.3) shows that the change in state variable 𝑥 is linear in time. Since

all continuous effects can be expressed in this way and are additive, the piecewise

constant restriction on control variables results in state variable trajectories that are

piecewise linear in time. The beginning and ends of the linear segments correspond

to the switch points of the trajectory of control variables.

Therefore, the trajectory of the state variables in the linear segment 𝑙 between

consecutive switch points 𝑡𝑙 and 𝑡𝑙+1 can be written as:

x(𝑡) = x(𝑡𝑙) + Cx(𝑡𝑙 → 𝑡𝑙+1) · (𝑡− 𝑡𝑙), 𝑡𝑙 ≤ 𝑡 ≤ 𝑡𝑙+1 (5.5)

x(𝑡) = [𝑥1(𝑡) . . . 𝑥𝑛(𝑡)]𝑇 (5.6)

Cx(𝑡𝑙 → 𝑡𝑙+1) = [𝐶𝑥1(𝑡𝑙 → 𝑡𝑙+1) . . . 𝐶𝑥𝑛(𝑡𝑙 → 𝑡𝑙+1)]
𝑇 (5.7)

, where 𝐶𝑥𝑖
(𝑡𝑙 → 𝑡𝑙+1) ∈ R is a constant value that represents the constant rate of

change in state variable 𝑥𝑖 due to all the continuous effects operating on the state

variable and that is a function of the constant vector of control variables c𝑙 at segment

𝑙.

The piecewise linear restriction on state variables is very useful for our purposes.

It allows us to impose conditions over long horizons in an efficient way, without

needing to resort to time discretization. We can do this as long as the conditions are

convex, which they are given our problem statement. In effect, convexity properties

ensure that a linear segment is fully contained in a convex set as long as the ends

of the segment are contained in the set. As a consequence, in order to ensure that

an invariant convex state condition is satisfied at all times, we only need to ensure

83

that the convex condition is satisfied at the switch points of the state trajectory. The

switch points can be separated in time arbitrarily and therefore this is an efficient

way to enforce invariant conditions. This is shown with the following lemma and its

corresponding proof.

Lemma 5.1. If the switch points of the piecewise linear state trajectory are contained

in a convex set, the full trajectory is contained in the convex set.

Proof. A set 𝑆 ⊆ R𝑛 is convex if and only if ∀a,b ∈ 𝑆 and ∀𝜆 ∈ [0, 1] we have that

(1− 𝜆)a+ 𝜆b ∈ 𝑆 as well. Since equation (5.5) describes a straight line of a segment

of the piecewise linear trajectory, it can be reformulated in terms of the switch points

(or extreme points of the segments) as x(𝑡) = x(𝑡𝑎) + 𝑡−𝑡𝑎
𝑡𝑏−𝑡𝑎

(x(𝑡𝑏) − x(𝑡𝑎)). Taking

a = x(𝑡𝑎),x = x(𝑡𝑏), 𝜆 = 𝑡−𝑡𝑎
𝑡𝑏−𝑡𝑎

, we get that x(𝑡) = (1− 𝜆)a+ 𝜆b. Since 𝑆 is a convex

set and 𝑎, 𝑏 ∈ 𝑆, from the definition of convexity, x(𝑡) ∈ 𝑆 as well. This is true for

any value of 𝑡 ∈ [𝑡𝑎, 𝑡𝑏] and for any value of the control variables, as long as they are

constant, which they are, given the piecewise constant restriction imposed earlier.

As described in Section 4.2.1, the piecewise constant restriction on the control

trajectory does not affect the completeness or the optimality of the plans that can be

found. This is the case given the first order dynamics restriction, and the presence of

only convex state conditions and a convex objective function. Recall that the proofs

for the completeness and optimality theorems (Theorems 4.1 and 4.2) is provided in

Appendix A.

How the piecewise constant control trajectory is built varies slightly in Scotty-

Activity and ScottyPath. ScottyActivity’s approach places the piecewise constant

control segments between consecutive events in skeleton plans. This is described in

detail in Chapter 8. For now, it suffices to mention that maintenance state conditions

are only added or removed whenever an activity starts or ends (i.e., an event). This

means that the maintenance conditions do not change in between events. Therefore,

our approach places the switch points of the piecewise linear trajectories at the starts

and ends of activities, as this is sufficient to capture the requirements of the problem.

84

x1

x2

x3

x4

x(t)

(a)

xA1

xA2

xA3

xB1

xB2

xB3

x̄1d

xA(t)

xB(t)

(b)

xA1

xB1

xA2

xB2

xC(t)

xC1

xC2 r

x̂1

x̂2

xB(t)
xA(t)

(c)

x1

x2

x3

vi

r

(d)

Figure 5-1: Interesting convex conditions that arise in robotic planning problems..

The piecewise constant control trajectory is slightly different in ScottyPath. In

this case, we allow multiple constant control segments between consecutive events.

This is necessary to avoid obstacles. During each of these segments, vehicles are

constrained to remain inside convex safe regions. We defer all the details about the

approach used by ScottyPath to Part II of this thesis.

5.1 Typical Maintenance Convex Conditions in Robotic

Applications

We now proceed to give examples of useful convex conditions that commonly arise in

robotic planning problems and that, as we have seen, we can enforce efficiently over

long horizons.

85

∙ Remain inside a convex region (Figure 5-1a). As explained in the previous

region, we can enforce that a robot remains inside a convex region while mov-

ing by imposing that the switch points of the trajectory be inside the convex

region. Since trajectories are piecewise linear, ensuring that the switch points

are contained in the convex region guarantees that the full trajectory is also

contained.

∙ Proximity constraint (Figure 5-1b). We can impose that agents 𝐴 and 𝐵

stay within a maximum distance 𝑑 while performing an activity. Let xA(𝑡)

and xB(𝑡) be the piecewise linear trajectories of 𝐴 and 𝐵. Imposing that both

agents are within distance 𝑑 is equivalent to imposing that xA(𝑡)− xB(𝑡) ∈ 𝐶𝑑

where 𝐶𝑑 is a circle of radius 𝑑 centered in the origin. Since 𝐶𝑑 is a convex

set and xA(𝑡) and xB(𝑡) are piecewise linear, x̄(𝑡) = xA(𝑡)− xB(𝑡) is piecewise

linear too, and we only need to impose that x̄(𝑡𝑗) ∈ 𝐶𝑑 at each switch point 𝑗

to ensure that 𝐴 and 𝐵 are always within distance 𝑑.

∙ N vehicles inside a circle of radius 𝑟 (Figure 5-1c). The center of the 𝑛

vehicles is given by x̂(𝑡) =
∑︀𝑛 xi(𝑡)

𝑛
. The condition that all vehicles remain inside

a circle of radius 𝑟 is equivalent to the 𝑛 conditions ||xi(𝑡) − x̂(𝑡)|| ≤ 𝑟. Since

xi(𝑡) − x̂(𝑡) is piecewise linear due to being a linear combination of piecewise

linear trajectories and since the norm constraint defines a convex set, the 𝑛

conditions only need to be imposed at the switch points to ensure that all 𝑛

vehicles are always inside the circle of radius 𝑟 at all times.

∙ Coverage constraint of a polygonal region (Figure 5-1d). We can similarly

impose that a circle of radius 𝑟 centered at a moving vehicle always covers a

fixed polygonal region. This is equivalent to satisfying the convex constraints

||x(𝑡)−vi|| ≤ 𝑟 for each of the v1 . . .v𝑚 vertices of the polygon. Again, since the

𝑚 constraints are convex and the motion of the vehicle is piecewise linear, we

only need to impose the constraints at each of the switch points of the trajectory

of the vehicle.

86

A B

C

R ⌘ x 2 A ^ x 2 B ^ x 2 C

Figure 5-2: Complex condition defined by the intersection of simple convex sets.

Further since the intersection of convex sets is convex, we can represent compli-

cated convex regions by intersecting simple convex primitives. Figure 5-2 shows, for

example, how a complex region can be achieved by intersecting a circle, a triangle

and a rectangle. Ensuring that a vehicle remains inside such region can be achieved

by imposing that the switch points of the trajectories remain inside the circle, the

rectangle and the triangle at the same time.

87

88

Chapter 6

ScottyConvexPath: Trajectory

Planning for Skeleton Plans Over

Long Horizons With Convex

Optimization

An important characteristic of the Scotty Planning System is that it is able to plan

over long horizons. This is made possible by the ScottyConvexPath planner, since

it uses a continuous time formulation. ScottyConvexPath solves its relaxed planning

problem by reformulating it as a convex optimization problem. In this chapter, we

describe in detail the convex model that ScottyConvexPath uses to solve the planning

problem. Both ScottyActivity and ScottyPath repeatedly use ScottyConvexPath as

a subplanner at different steps of their search

In particular, ScottyActivity uses ScottyConvexPath for the following:

∙ To check the consistency of partial plans.

∙ To compute the minimum and maximum bounds that each state variable can

reach at the end of a given partial plan.

∙ To compute the cost of a partial plan if the obj-EHC search algorithm is used.

89

∙ To compute the schedule of the activities and the control and state trajectories

of the solution plan.

On the other hand, ScottyPath uses ScottyConvexPath for the following purposes:

∙ To check the consistency of a candidate partial safe region assignment for the

vehicles.

∙ To jointly compute the cost and heuristic value of a candidate partial safe region

assignment for the vehicles.

∙ To determine whether a candidate partial safe region assignment can satisfy a

given goal in the QSP.

∙ To compute the schedule of the events and the control and state trajectories of

the final obstacle-free plan.

The convex model that ScottyConvexPath uses to solve relaxed problems for

ScottyActivity and ScottyPath has the same decision variables and constraints. How-

ever, it differs in the objective used in each case. We explain, in detail, the purpose

of all these uses of the model when we describe the ScottyActivity and ScottyPath

approach in Chapters 8 and 11, respectively.

The straightforward mathematical model that describes the characteristics of the

continuous effects and other constraints defined in Chapter 4 is non-linear and non-

convex. A key innovation of our work consists in describing an alternative encoding

that is convex and can be represented as a Second Order Cone Program (SOCP), a

class of convex quadratically constrained programs. Being able to use a SOCP model

is important for several reasons. First, there are very efficient solvers for SOCP

problems that are orders of magnitude faster than traditional gradient-based meth-

ods typically used to solve general non-linear problems. Both ScottyActivity and

ScottyPath need to check the consistency of candidate search states using ScottyCon-

vexPath. As a result, thousands of optimization problems are solved while planning

for typical robotic missions. Therefore, the runtime of the solver accounts for the

90

majority of the planning time. Second, unlike general non-linear problems, convex

optimization problems can be solved with complete algorithms. As a consequence,

Scotty’s feasibility check is complete and we are guaranteed to only reject states that

are infeasible. Finally, unlike general non-linear problems, convex problems do not

have local minima. As a consequence, the solution returned by convex solvers is

optimal. This is essential for both ScottyActivity and ScottyPath. In the case of

ScottyActivity, the optimality of the solution returned by the solver guarantees that

the minimum and maximum bounds for each state variable are computed accurately,

which is required to ensure that no valid states are incorrectly pruned. Moreover, it

also guarantees that the solution plan returned is optimal for the sequence of starts

and ends of activities that the heuristic guided search finds. In the case of Scotty-

Path, we need the solver to return optimal solutions to guarantee that the cost and

heuristic computed for each search node is accurate. This allows us to find optimal

obstacle-free paths for the input QSP problems.

SOCPs are harder to solve than LPs. However, they can still be solved in

polynomial-time with interior point algorithms. Moreover, our model only uses cone

constraints when the problem has convex quadratic state or control variable con-

straints, or resource-constrained norm effects. When these characteristics are absent,

our model becomes a linear program. That is, we only suffer the performance degra-

dation of transitioning from LP to SOCP when the problem requires it.

ScottyConvexPath checks the consistency of partial plans that we call plan skele-

tons, and that we define in the next section. Plan skeletons are augmented with

additional activities as the search advances. An important characteristic of our ap-

proach is that the event times and state and control trajectories are computed from

scratch for every plan skeleton, as opposed to reusing the values found for common

part of the plan that is shared with the parent plan skeleton. Therefore, we do not

make early commitments to the event times or values of the state or control variables.

That is, the optimization can make some choices for event times and state variables

at some state in the search, and completely different ones at a later descendant search

node. This is important since it allows us to prevent early bad choices that could lead

91

to infeasible or suboptimal plans later on and it lets us provide as much flexibility as

possible to the solver in order to make the best choice according to the objective [92].

For clarity purposes, this chapter describes the model that ScottyConvexPath uses

from the perspective of the ScottyActivity, where the problem solved is the activity

planning problem. The model that ScottyConvexPath uses to solve ScottyPath re-

laxed problems is slightly different. These differences are explained when we describe

the ScottyPath planner in Part III of this thesis.

In the next section of this chapter, we describe plan skeletons and present an

example that we use throughout the the rest of this section to illustrate the different

parts of the model. The rest of the sections of this chapter describe the decision

variables, the constraints and the objective of our model.

6.1 Plan Skeletons

Our convex model is used to check the consistency and to compute the schedule and

the control and state trajectories of a plan skeleton. A plan skeleton is a qualitative

state plan that defines the activities that are selected and the constraints that need

to be satisfied at every step of the plan. As we describe in Chapter 8, when we detail

ScottyActivity’s approach, each activity is divided into a start and an end activity

that we call event. A plan skeleton is given by a totally ordered sequence of start

and end events. Each search state generated during ScottyActivity’s search contains

a sequence of start and end events that forms a plan skeleton.

We call stage the period of time between consecutive events in a plan skeleton.

Recall that the control trajectory that ScottyActivity finds is piecewise constant. The

constant segments of such trajectory correspond to the stages in the plan skeleton. In

other words, the vector of control variables is allowed to change to a different constant

value at each event, but needs to remain constant during each stage. We briefly

mention here that the main difference between the ScottyActivity convex model and

the ScottyPath model is that in the latter, consecutive events in the plan skeleton are

connected by a sequence of stages, instead of by a single one. This is needed to avoid

92

navigate

visit-B

visit-A

e0 e1 e2 e3 e4

s0 s1 s2 s3 s4t0 tj
x0 xj

cjc0
t

x 2 A

x 2 B

enow

t2 � t1 � 20

�tj
t4 � t3 � 20

tnow

future ends of
activities

possible next
event (“now”)stage

event

ẋ = vx, ẏ = vy, ḃ = �k · kvk2
x 2 SafeRegion, b � 0, v2

x + v2
y vmax

Figure 6-1: Example plan skeleton when the start of navigate, the start and end
of visit-A and the start and end of visit-B events have been added but the end of
navigate is not part of the plan yet.

obstacles. In this case, stages still describe periods of time when the control variables

vector takes a constant value. However, ScottyPath additionally constrains vehicles

to remain inside some safe region for the duration of each stage. This is described in

detail in Chapter 11.

The at start, at end and over all state conditions for the hybrid activities fully

determine the state conditions that need to be satisfied at every event and during

each stage. Similarly, the continuous effects of each activity describe how the state

variables can change during each stage in the skeleton plan. Figure 6-1 shows an

example plan skeleton for an example problem that we describe next. This example

is used throughout the rest of this chapter to describe our convex model.

In our example problem, a vehicle has to visit regions A and B and stay inside them

for at least 20 seconds. While doing so, it must always stay inside the safe region

and travel with a maximum velocity of 2 m/s. The vehicle has a limited battery

that decreases at a rate proportional to the square of the norm of its velocity. For

pedagogical purposes, the objective function in this problem is a linear combination

of terms that aim to minimize the total plan makespan and to maximize the 𝑥 and 𝑦

position of the vehicle at the end of the plan.

This example problem is modeled with three activities: navigate, visit-A and

93

t0

t1 t2

t3 t4

t5

safe region
A

B

sta
ge

s 0

s1

s2

s3

s4

(a)

VISIT-B VISIT-A

t0 t1 t2 t3 t4
∆t0 ∆t1 ∆t2 ∆t3 ∆t4

NAVIGATE

t5s0 s1 s2 s3 s4

stagesevents

State variables

Control variables

(b)

Figure 6-2: Resulting state and control trajectories for the example problem. The
optimization chooses the switch points in order to satisfy the constraints and obtain
the best objective of maximum 𝑥 and 𝑦 with minimum time.

visit-B. Assume, for clarity, that the ScottyActivity search has already found a plan

skeleton with 5 events, in which the start of navigate is the first event and the start

and end of visit-B and visit-A happen sequentially while navigate takes place. As-

sume, however, that the end of navigate has not been placed in the plan yet. The

corresponding plan skeleton is shown in Figure 6-1.

The solution to this example problem, once the search is completed and the final

end-navigate event is placed, is shown in Figure 6-2. Note that our planner automat-

ically chooses the intermediate points and the times of the vehicle state and control

trajectory in order to respect the constraints and minimize the objective. In par-

ticular note that while the objective includes minimizing the total time, the planner

chooses very small velocities during the visit-B and visit-A activities. The reason for

this apparent contradiction is that these activities force the vehicle to remain inside

their regions for at least 20 seconds. Since there is no point in leaving these regions

early, the planner decides to move very slowly since large speeds decrease the vehicle

battery significantly, and this battery is needed to move in the 𝑥 and 𝑦 coordinates

94

at the end of the plan. The solution shown is guaranteed to be optimal with respect

to the given choice of activities. Note, however, that if ScottyActivity had chosen

to visit A before B the solution returned would be very different and the objective

reached would be worse.

We describe throughout the rest of this chapter how our convex model is built.

6.2 Preliminary Definitions and Decision Variables

Recall that the control variables take constant values during stages and, as a conse-

quence, the state variables change linearly in time during these stages. Recall, as well,

that given the event execution times and the piecewise constant control trajectory,

the state trajectory is fully determined.

A plan skeleton with 𝑁 events, 𝑒0, . . . 𝑒𝑁−1, has 𝑁−1 stages, labeled 𝑠0, . . . , 𝑠𝑁−2.

We call stage 𝑗, 𝑠𝑗, the one starting at event 𝑗 and ending at event 𝑗 + 1. Execution

times and state variable values are associated to events, while the constant values of

the control variable trajectory are associated to stages.

The execution times of the events, 𝑡𝑗 ∈ R, are decision variables in our model. The

values of the state variables at each event, x𝑗 = x(𝑡𝑗) ∈ R𝑛 are also decision variables

in our model. While we need to determine the constant values of the control variables

during each stage, c𝑗 ∈ R𝑚, these are not decision variables in our model for reasons

that we explain later in this chapter. Instead, we use other proxy decision variables

that we define later and whose value we use to compute the values of the control

variables once the optimization problem is solved. For the sake of clarity in our

model, we also define the duration of each stage, ∆𝑡𝑗, as a decision variable whose

value is constrained to be ∆𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗. Other auxiliary decision variables are

defined for different purposes, and are introduced as needed in this section.

The execution time of the first event and the values of the state variables at that

point are constrained to take the initial conditions defined in the PDDL-S problem.

In our example, 𝑡0 = 0, 𝑥0 = 0, 𝑦0 = 50, battery0 = 80.

95

6.3 Temporal Constraints

Events in the plan skeleton are totally ordered. We enforce this order by constraining

the events to be separated by at least 𝜀 time (∆𝑡𝑗 ≥ 𝜀). This is consistent with the

PDDL2.1 semantics [39]. We do this because solvers can only enforce non-strict in-

equality constraints. For each event representing the end of an activity, the constraint

that the minimum and maximum duration of that activity is respected is added to

the program:

𝑑𝑙(𝑎) ≤ 𝑡𝑒(𝑎)− 𝑡𝑠(𝑎) ≤ 𝑑𝑢(𝑎), ∀𝑎 ∈ 𝑃 (6.1)

, where 𝑡𝑠(𝑎) and 𝑡𝑒(𝑎) are the event times of the start and end of activity 𝑎, 𝑑𝑙(𝑎)

and 𝑑𝑢(𝑎) are the lower and upper bounds of the duration and each 𝑎 is an activity

in the plan skeleton.

In the example, the vehicle has to remain in regions A and B for at least 20

seconds. Therefore, the constraints 𝑡2 − 𝑡1 ≥ 20 and 𝑡4 − 𝑡3 ≥ 20 are added to the

program.

6.4 State Constraints

Each event is the start or end of an activity. For each event, 𝑒𝑗, which is the start

(end) of an activity, we add the constraints that enforce that the value of the state

variables, x𝑗, satisfy the at start (at end) state conditions of the activity.

Moreover, the values of the state variables at event 𝑒𝑗, x𝑗, need to satisfy all the

maintain (over all) state conditions of all the activities that have started before event

𝑒𝑗 but have not ended yet. Recall from Chapter 5 that, since state conditions are

restricted to be convex and the state trajectories are piecewise linear, enforcing the

maintain conditions of an activity at all events that take place during the activity

execution ensures that the conditions are always satisfied at any continuous point in

time during the activity.

In the example, the visit-B activity requires that the vehicle remains in region B

96

while the activity takes place. Since B is a polygonal region, this is achieved with the

constraint 𝐻(𝑥𝑗 𝑦𝑗) ≤ h, 𝑗 ∈ {1, 2}, where 𝐻 ∈ R2×2 and h ∈ R2×1 are the constants

of the linear inequalities that represent the polygon. The conditions for the visit-A

activity are similar, except that the region is a circle and the constraints take the

quadratic form of (𝑥𝑗 − 𝑐𝑥)2 + (𝑦𝑗 − 𝑐𝑦)
2 ≤ 𝑅2, 𝑗 ∈ {3, 4}. Moreover, since events

𝑒1, 𝑒2, 𝑒3 and 𝑒4 take place while the navigate activity is ongoing, the state variables

at those events need to satisfy its over all conditions: remain inside the safe region

and keep the battery level above 0.

6.5 State Change

State variables change their value between consecutive events 𝑒𝑗 and 𝑒𝑗+1 due to

the presence of continuous effects active during the stage between those events, 𝑠𝑗.

Therefore, the value of state variable 𝑘 at event 𝑗 + 1 is given by:

𝑥𝑘(𝑡𝑗+1) = 𝑥𝑘(𝑡𝑗) +
∑︁

𝑒𝑓𝑓𝑖∈𝐸𝑥𝑘
(𝑗)

∆𝑥𝑘𝑒𝑓𝑓𝑖(𝑗) (6.2)

, where 𝐸𝑥𝑘
(𝑗) is the set of all active continuous effects operating on state variable

𝑥𝑘 at stage 𝑗. Each ∆𝑥𝑘𝑒𝑓𝑓𝑖(𝑗) is a decision variable describing the change due to

a continuous effect during stage 𝑗. Each type of continuous effect imposes different

constraints on this value, as we describe in the next section.

6.6 Control Variables and Continuous Effects

Recall, from Definition 4.9, that the change produced by a controllable linear time-

varying continuous effect (CLTE) on state variable 𝑥𝑘 during stage 𝑗 is described

by:

∆𝑥𝑘𝐶𝐿𝑇𝐸(𝑗) =

(︃∑︁
𝑖

𝑘𝑖 · 𝑐𝑖(𝑗)
)︃
· (𝑡𝑗+1 − 𝑡𝑗) (6.3)

, where 𝑐𝑖(𝑗) is the constant value that the i-th control variable takes during stage 𝑗.

Given that the event times are decision variables, the previous equation is non-linear

97

and non-convex if the control variables are also decision variables. To overcome this

problem, the first version of ScottyActivity in [36] relaxes this non-linear constraint to

a linear interval equation on the state variables. With this relaxation, control variables

are not needed as decision variables and, instead, its lower and upper bounds are used

in the interval equations. Using this relaxation, however, limits the problems that

can be solved. For instance, with this relaxation the same control variable cannot be

used in more than one effect simultaneously, since the interval equations would, in

practice, allow the solver to choose two different values for the same control variable

(e.g. a high velocity to make a vehicle drive fast and simultaneously a low value to

make it consume less battery). Another important limitation of this relaxation is

that control variables are completely independent of each other and they can only be

limited by fixed bounds. Other constraints on the control variables are not possible

within this framework. For instance, a moving vehicle would only have independent

bounded velocity control variables on 𝑥 and 𝑦. The magnitude of its velocity cannot

be limited, as this requires a norm constraint acting on both the 𝑣𝑥 and 𝑣𝑦 velocities.

Therefore, the vehicle would essentially be able to move much faster in diagonal

directions than in the 𝑥 and 𝑦 directions.

These limitations are addressed here with a different encoding. Instead of using

interval equations, we define the decision variable 𝑐𝑖Δ𝑡𝑗 for every control variable

being used in each stage 𝑗. This decision variable represents the value 𝑐𝑖Δ𝑡𝑗 = 𝑐𝑖 ·∆𝑡𝑗.

However this constraint is not added directly, to avoid adding a non-linearity and

non-convexity constraint. Instead, the new decision variable 𝑐𝑖Δ𝑡𝑗 is subject to the

linear inequality constraints

𝑐𝑖𝑙 ·∆𝑡𝑗 ≤ 𝑐𝑖Δ𝑡𝑗 ≤ 𝑐𝑖𝑢 ·∆𝑡𝑗 (6.4)

where 𝑐𝑖𝑙 and 𝑐𝑖𝑢 are the constant lower and upper bounds of control variable 𝑐𝑖. We

can use this new decision variables to turn (6.3) into a linear equation, as we describe

later.

Note that, in effect, instead of asking the solver to pick a value for each control

98

variable, we ask the solver to pick the times of the events and the product of the

values of the control variables and the elapsed time between consecutive events. The

key idea that makes this encoding work is that, for most purposes, we only need the

values of the products of control variables and time intervals instead of the actual

values of the control variables. A key advantage of this formulation is that, contrary

to the first version of ScottyActivity, control variables can now be used in as many

continuous effects as needed, since the 𝑐𝑖Δ𝑡 decision variables can appear in other

constraints, and the values will be consistent with each other. Moreover, we can now

impose constraints on the control variables. For example, we can impose that two

control variables, 𝑐1, 𝑐2 always satisfy 𝑐1 + 𝑐2 ≤ 5. The constraint cannot be encoded

directly since 𝑐1 and 𝑐2 are not explicit decision variables. However, we can multiply

the equation by ∆𝑡𝑗 and impose the condition 𝑐1Δ𝑡𝑗 + 𝑐2Δ𝑡𝑗 ≤ 5 ·∆𝑡𝑗 in every stage

in which they are active.

Similarly, we can also impose maximum 𝑙2-norm constraints on sets of control

variables. In many robotic applications, like the motivating example in Section 3.1,

it is useful to represent the velocity of a robot with its principal components (𝑣𝑥, 𝑣𝑦)

but still limit the total velocity by some fixed amount. This can be expressed with

the constraint ||c|| ≤ 𝑣𝑚𝑎𝑥, where c = [𝑣𝑥, 𝑣𝑦]
𝑇 is a vector of control variables. To

encode this constraint, we multiply the whole equation again by ∆𝑡𝑗 to obtain the

equation

‖c‖ ·∆𝑡𝑗 =
⃦⃦
cΔtj

⃦⃦
≤ 𝑣𝑚𝑎𝑥 ·∆𝑡𝑗 (6.5)

The previous inequality is not a linear constraint, but a particular case of a second

order cone constraint. Second order cone constraints are given by:

‖Ax + b‖ ≤ c𝑇x + d (6.6)

where x is the vector of decision variables and the rest are constant parameters. Since

cΔt = [𝑣𝑥Δ𝑡, 𝑣𝑦Δ𝑡]
𝑇 and ∆𝑡 are decision variables, we can transform (6.5) into (6.6)

by taking b = d = 0 and choosing constants A and c as needed.

99

In the example, the velocities of the vehicle, 𝑣𝑥 and 𝑣𝑦 are each restricted to be

within (−2, 2). Therefore, we define the variables 𝑣𝑥Δ𝑡𝑗 and 𝑣𝑦Δ𝑡𝑗
for each stage and

constraint them as:

−2 ·∆𝑡𝑗 ≤ 𝑣𝑥Δ𝑡𝑗 ≤ 2 ·∆𝑡𝑗 (6.7)

−2 ·∆𝑡𝑗 ≤ 𝑣𝑦Δ𝑡𝑗
≤ 2 ·∆𝑡𝑗 (6.8)

(6.9)

Moreover, the magnitude of the velocity of the vehicle is also constrained to not

exceed 2. This is achieved with the following cone constraint for each stage:

𝑣𝑥Δ𝑡𝑗
2 + 𝑣𝑦Δ𝑡𝑗

2 ≤ 22 ·∆𝑡𝑗
2 (6.10)

6.6.1 CLTE Effects

Using the newly defined 𝑐𝑖Δ𝑡𝑗 variables, the originally non-linear CLTE equation (6.3)

can then be rewritten as the linear equation

∆𝑥𝑘𝐶𝐿𝑇𝐸(𝑗) =
∑︁
𝑖

𝑘𝑖 · 𝑐𝑖Δ𝑡𝑗 (6.11)

As an example, consider that the change in state variable 𝑥 during stage 𝑠1 (during

the visit-B activity) in the example scenario is given by:

𝑥2 = 𝑥1 + 𝑣𝑥Δ𝑡1 (6.12)

6.6.2 RNE Effects

The second type of continuous effects, resource constrained norm effects (RNE), are

described with cone constraints. In this work we focus on linear norm effects (LNE)

and linear squared norm effects (LSNE). Recall, from Section 4.1.4.2, that the change

100

due to a LNE effect on a constrained resource (state variable 𝑟𝑘) is given by

∆𝑟𝑘𝐿𝑁𝐸(𝑗) = −𝑘𝐿𝑁𝐸 · ‖c𝑒‖ ·∆𝑡𝑗, 𝑘𝐿𝑁𝐸 ≥ 0 (6.13)

where 𝑘𝐿𝑁𝐸 is a non-negative real constant and c𝑒 is the vector of the control variables

involved in the effect. Equation (6.13) is not convex and cannot be encoded directly.

However, we can transform (6.13) into a cone constraint by defining a new decision

variable 𝑏 that acts as a bound. The equation is then rewritten as

‖cΔtj‖ ≤ 𝑏, 𝑏 ≥ 0 (6.14)

∆𝑟𝑘𝐿𝑁𝐸(𝑗) = −𝑘𝐿𝑁𝐸 · 𝑏 (6.15)

Equations (6.13) and (6.15) do not represent the same, since 𝑏 is simply an upper-

bound on ||cΔtj||. This is the reason why we have to restrict these effects to con-

strained resources. In general, the bound 𝑏 will not be tight and the computed value

for resource 𝑟𝑘 may not be accurate. However, these equations can accurately model

that a constrained resource decreases with the norm of a control variable vector and

the bound will become tight to ensure that a resource never dips below some thresh-

old. This is useful to model, for example, how a vehicle’s battery decreases as a

function of the speed it is traveling at, regardless of the 𝑥, 𝑦 direction. Unfortunately,

we cannot use resource constrained norm effects to impose that a certain resource is

below some level, since the artificial bound 𝑏 could take any arbitrary large value to

satisfy the constraint trivially without changing the actual value of the norm of the

control variable vector. Modeling such condition would require handling a constraint

in the form of ||cΔtj || ≥ 𝑏. However, this is a non-convex constraint that we do not

support since it cannot be represented with a SOCP program. In practice, we have

not found many problems in which this is required, but we leave this extension for

future work.

The second resource constrained norm effect that we support is the linear squared

norm effect (LSNE), which is subject to the same limitations as the LNE effect, but in

101

which the decrease rate of the resource variable is proportional to the squared norm:

∆𝑟𝑘𝐿𝑆𝑁𝐸(𝑗) = −𝑘𝐿𝑆𝑁𝐸 · ‖c‖2 ·∆𝑡𝑗, 𝑘𝐿𝑆𝑁𝐸 ≥ 0 (6.16)

Again, equation (6.16) is non-convex, but we can use the same principle as before to

represent it as a SOCP constraint. Since cΔtj = c ·∆𝑡𝑗, we can write

‖c‖2 ·∆𝑡𝑗 =
cΔtj

𝑇cΔtj

∆𝑡𝑗
≤ 𝑏, 𝑏 ≥ 0 (6.17)

where 𝑏 is, again, an auxiliary positive bound variable. Finally, equation (6.17) can

be rewritten as

cΔtj
𝑇cΔtj ≤ 𝑏 ·∆𝑡𝑗 (6.18)

∆𝑟𝑘𝐿𝑆𝑁𝐸(𝑗) = −𝑘𝐿𝑆𝑁𝐸 · 𝑏 (6.19)

which is a rotated cone constraint, a valid type of convex SOCP constraint, since 𝑏

and ∆𝑡𝑗 are positive.

In the example, the vehicle battery decreases with a rate proportional to the square

of the vehicle velocity. This is modeled with the LSNE effect present in the navigate

activity. As explained in the previous section, we use auxiliary decision variables

to model this change. For each stage, we define the upper bound decision variables

𝑢𝐿𝑆𝑁𝐸(𝑗) for each stage that are subject to the rotated cone constraint described in

eq. (6.17). In particular, the constraint takes the form:

vΔtj
𝑇vΔtj ≤ 𝑢𝐿𝑆𝑁𝐸(𝑗) ·∆𝑡𝑗, 𝑢𝐿𝑆𝑁𝐸(𝑗) ≥ 0 (6.20)

where vΔtj = (𝑣𝑥Δ𝑡𝑗 𝑣𝑦Δ𝑡𝑗
). Then, the battery is updated in each stage according to

𝑏𝑗+1 = 𝑏𝑗 − 𝑘𝐿𝑆𝑁𝐸 · 𝑢𝐿𝑆𝑁𝐸(𝑗). Although the battery value computed with this model

may not be accurate (since the upper-bound decision variables could take arbitrarily

large values), these constraints ensure that the battery is never depleted.

102

6.7 Partial Skeleton Plans

The constraints presented so far are sufficient to represent full plans. However, Scotty-

Activity also needs to test the consistency of partial skeleton plans. In these partial

plans there may be ongoing activities that have started but not ended yet. We use

the same 𝑡𝑛𝑜𝑤 trick that COLIN [23] uses to detect inconsistencies due to future tem-

poral constraints being violated. An event at 𝑡𝑛𝑜𝑤 is placed after all the other events

in the partial plan. The state variables at this event are updated according to the

active continuous effects and subject to the invariant conditions of activities that have

started but not ended yet. For each of these ongoing activities, a decision variable

describing the future time where it will end is added and constrained to occur after

𝑡𝑛𝑜𝑤 and to respect the activity duration constraints. This helps identify partial plans

that are not feasible because future temporal deadlines cannot be met. The ‘now’

event is also the point at which each state variable is minimized and maximized to

find the bounds of each state variable at the end of the given plan skeleton.

In the example problem activity navigate has not ended yet (Figure 6-1). There-

fore, we place the auxiliary ‘now’ event, 𝑒𝑛𝑜𝑤, after the last event in the skeleton (the

end of visit-A) but before the future end of the navigate activity.

6.8 Objective

Recall that ScottyActivity and ScottyPath use the convex model for multiple pur-

poses during planning. Different purposes require different objective functions. The

objective function that ScottyPath uses is significantly different from that of Scotty-

Activity, since the model is used to jointly compute the cost and the heuristic of a

search node. For this reason, we defer the description of the objective function that

ScottyPath uses for Section 11.4.3. In this section we describe the different objective

functions that ScottyActivity defines for each of the purposes for which the convex

model is used.

When the model is used to test the feasibility of a plan skeleton, no objective is

103

needed. The model is also used to compute the bound of each state variable at the

end of a plan skeleton, as we describe in Chapter 8. In that case, the problem is

solved 2𝑛 times to minimize and maximize each of the 𝑛 state variables at the end of

the plan. The 2𝑛 objectives are, therefore: {𝑥𝑘(𝑡𝑛𝑜𝑤),−𝑥𝑘(𝑡𝑛𝑜𝑤)} 1.

ScottyActivity encodes the PDDL-S problem objective in the model in two sit-

uations: when determining the accumulated cost of a plan skeleton if the obj-EHC

algorithm is being used, and when finding the optimal execution times and control

trajectory for the full plan skeleton that satisfies the goal discrete conditions. Recall,

from Section 4.1.5, that the PDDL-S objective is a linear combination of the total

plan time, the values of the state variables at the end and the sumproducts of the

norms (or squared norms) of vectors of control variables and the durations they are

active for. The first two are straightforward to model, since the total plan time and

the values of the state variables are, respectively, the execution time of the last event

in the plan and the values of the state variables at that time. The last option allows

us to minimize actuation control.

The sumproduct of the norm of a control variable vector c𝑣 and the times it is

active for is given by ∑︁
𝑗

‖c𝑣‖ ·∆𝑡𝑗 (6.21)

Note that if c𝑣 represents the velocity of a vehicle, the previous is equivalent to the

distance traveled by that vehicle. In order to minimize eq. (6.21) using our convex

model, we use the same approach we followed to represent LNE effects (eq. (6.14)).

For each stage, we define a bound decision variable 𝑏𝑗 that satisfies

||cΔtj || ≤ 𝑏𝑗, 𝑏𝑗 ≥ 0 (6.22)

Then, minimizing
∑︀

𝑗‖c𝑣‖ · ∆𝑡𝑗 is equivalent to minimizing the sum of the bound

variables for each stage (
∑︀

𝑗 𝑏𝑗). We use an analogous approach to minimize the

1For valid states, the bounds for the state variables always need to be computed after the feasibil-
ity check. Therefore, for efficiency purposes, our model is never used without an objective in practice.
The first model solved is simultaneously determining the feasibility of the plan and minimizing the
first state variable.

104

sumproduct of the squared norm. In this case the bound variables are constrained

with rotated second order cone constraints (as in the case of the LSNE effects):

cΔtj
𝑇cΔtj ≤ 𝑏𝑗 ·∆𝑡𝑗, 𝑏𝑗 ≥ 0 (6.23)

In the example problem, the objective is a combination of minimizing the total

time and maximizing the sum of the 𝑥 and 𝑦 coordinates at the end. For the full plan

as shown in Figure 6-2a, this is achieved with the minimization objective 0.7𝑡5−𝑥5−𝑦5.

105

Part II

ScottyActivity

106

Table of Contents

7 Expressing ScottyActivity PDDL-S Problems 109

7.1 Control variables and global constraints on control variables 109

7.2 Continuous change with CLTE and RNE effects 110

7.3 Objectives . 111

7.4 Representing Advanced Convex State Constraints Through State Space

Regions . 112

8 ScottyActivity: Joint Activity and Trajectory Planning with Heuris-

tic Forward Search 117

8.1 ScottyActivity In a Nutshell . 117

8.2 Generation of Successor States . 121

8.3 Relaxed Hybrid Plan Heuristic . 124

8.4 Search strategies . 130

9 ScottyActivity Experimental Results 135

9.1 Synthetic Benchmarks . 135

9.2 Evaluation in Robotic Domains . 139

9.3 Comparison With a Mixed Integer Approach 147

108

Chapter 7

Expressing ScottyActivity PDDL-S

Problems

ScottyActivity uses control variables to define continuous change and allows more

complex state constraints than most activity planners. Since these features cannot

be expressed with standard PDDL, we define an additional syntax that we describe in

this chapter. We base our syntax in PDDL2.1 [39] since it provides most of the expres-

siveness that we need, except for control variables. While PDDL+ [40] significantly

advances the expressiveness of PDDL2.1, its syntax does not define control variables

(or parameters) and its more advanced features, such as processes and events, are not

supported by our planner.

We now proceed to describe the additions to the PDDL syntax that we need to

express PDDL-S problems. The rest of the PDDL2.1 syntax is the same.

7.1 Control variables and global constraints on con-

trol variables

As explained in Section 4.1, each control variable 𝑐𝑖 ∈ 𝐶𝑉 is defined by its lower

(𝑐𝑖𝑙) and upper (𝑐𝑖𝑢) bounds. We use the following syntax, that needs to precede the

definition of activities, to define a control variable.

109

(:control−variable <cvar−name>

:bounds (and (>= ? value <lower−bound>)

(<= ? value <upper−bound>)))

The global constraints on control variables can be of two types: linear constraints

and norm constraints. We use the keyword control-constraint to define named

groups of linear control variable constraints such as:

(:control−constraint <constraint−name>

:condition (and ({<= , >=} <l in−expr− l e f t> <lin−expr−r ight >)

. . .))

, where <lin-expr-{left,right}> are linear expressions on the control variables

𝑐𝑖 ∈ 𝐶𝑉 .

Norm constraints on control variables are expressed by first defining vectors of

control variables. Control variable vectors are lists of control variables that can op-

tionally specify a maximum norm according to the following syntax:

(:control−variable−vector <vector−name>

:control−variables ((<cv1> <cv2> . . . <cvn>))

:max−norm <max−norm−value>)

In a later section of this chapter, we use vectors of control variables, as defined above,

to express RNE effects, that depend on norms of vectors of control variables.

7.2 Continuous change with CLTE and RNE effects

CLTE effects are effects in which the rate of change is expressed as a linear com-

bination of control variables. We use a syntax very similar to that of PDDL2.1 for

continuous effects with the difference that, instead of using constant rates of change,

we use control variables. In particular, a continuous effect is defined in an activity

with the following syntax:

({ i n c r e a s e , d e c r e a s e } <state−var> <cvar−time−expr>)

, where <cvar-time-expr> is a linear combination of control variables multiplied by

the #t term. As an example (increase (x) (* (vx) #t)) denotes that state variable 𝑥 is

110

subject to a rate of change that corresponds to the control variable 𝑣𝑥.

RNE effects, that depend on the norm of control variable vectors, are defined

similarly by using the keywords norm or norm-sq to denote the norm or squared

norm of control variable vectors. For example (decrease (b) (* 0.45 (norm (velocity) #t)

)) represents that the state variable 𝑏 is subject to a rate of change of−0.45‖velocity‖,
where velocity is a vector of control variables as defined above.

7.3 Objectives

Similarly to PDDL2.1, the optional objective of a planning problem is defined with

the keyword metric, according to the following syntax:

(:metric minimize <linear−expr >)

As described in Section 4.1.5, the minimization objective is a linear combination of

the following types of terms:

∙ State variables at the end of the plan (𝑥𝑖 ∈ 𝑉)

∙ Plan makespan (using the keyword total-time)

∙ Sum-products of the norms or squared norms of control variable vectors and the

durations they are active for. Since control variables are restricted to be piece-

wise constant, the minimization objective given by the expression norm(velocity),

for example, minimizes the sum of the norm of the velocity control variable vec-

tor in each segment multiplied by the duration of that segment (
∑︀

𝑗‖v(𝑗)‖·∆𝑡𝑗).

In the case of a velocity, this is equivalent to minimizing the distance traveled

by a vehicle. However, a similar term involving the squared norm of a control

variable vector is also possible.

111

7.4 Representing Advanced Convex State Constraints

Through State Space Regions

PDDL2.1 syntax allows activity conditions on state variables to be defined using

polynomial expressions. Since Scotty only supports convex quadratic state condi-

tions, polynomial expressions are able to represent all the conditions that we can

handle. However, manually specifying state conditions using polynomial equations

is cumbersome and repetitive, since the same conditions often need to be used in

different parts of the domain definition. Moreover, the convex quadratic conditions

that Scotty can handle can become fairly complicated and hard to write using direct

equations. Polynomial state constraints are still allowed in Scotty. However, for the

reasons outlined above, we have developed a region-based system to express state

conditions that arise naturally in robotic scenarios in a more succinct and clear way.

We call a region the part of the state-space that is allowed by a condition. Regions

are defined as a collection of primitive regions defined on one or more parameters.

Analogous to the parameters in PDDL activities, the region parameters are place-

holders that are replaced by expressions of state variables when the regions are used

in actual activity conditions. Regions are defined before activities with the following

syntax:

(:region <region−name>

:parameters (? par1 ? par2 . . .)

:condition (and <pr imi t ive− r eg ion1 (parameter−expr1)>

<pr imi t ive− r eg ion2 (parameter−expr2)>

. . .)

[:linear−approximation (and ({<= ,=,>=} <lin−exp− l e f t> <lin−exp−right >)

. . .)])

Regions defined in this way represent the intersection of the provided primitive

regions. Since the primitive regions are convex, their intersection is also convex. We

only support regions defined as intersections (and) and not disjunctions (or) because

the latter are not guaranteed to be convex. Scotty supports both linear conditions

as well as quadratic conditions, as long as they are convex. For reasons that are

112

explained in Chapter 8, the heuristic needs linear over-approximations for quadratic

conditions. Our quadratic region primitives, such as circles, automatically add these

linear over-approximations (such as surrounding boxes). In general, automatic linear

over-approximations cannot be deduced easily from arbitrary quadratic equations.

Therefore, users specifying conditions manually using quadratic equations need to

provide a list of linear inequalities that over approximate the quadratic region using

the optional parameter linear-approximation.

Regions defined in this way can then be used in the at start, at end or over all

conditions of activities. Region conditions are defined with the following syntax:

(inside (<region−name> <par−expr1 (s t a t e−va r i ab l e s)>

<par−expr2 (s t a t e−va r i ab l e s)

. . .))

Note that we only support inside and not outside conditions. In effect, being

inside a convex region constitutes a convex condition, while being outside a convex

region does not. The quadratic solvers that Scotty uses do not support non-convex

conditions. However, even if they did, we would not be able to guarantee that invari-

ant conditions are satisfied throughout a piecewise linear trajectory by only checking

the switch points (like we showed we can do with convex conditions in Chapter 5).

Regions used in conditions need to be supplied with a list containing the values to be

used in place of their parameters. Each parameter can be given as a state variable,

or as an expression involving one or more state variables. This provides additional

flexibility to compose complicated regions from simpler ones. As an example, let us

consider a sampling region defined by a rectangle.

(:region sampling−region

:parameters (? x ?y)

:condition (and (in−rect (? x ?y) :corner (5 −10) :width 20 :height 30)

))

The region sampling-region(?x, ?y) has parameters ?x and ?y. Note that these

parameters are not state variables, but simply placeholders that serve to indicate

what the internal primitive region in-rect should be defined with respect to. The

113

primitive region in-rect(?x, ?y) defines the rectangular 2d region given by the

inequalities corner𝑥 ≤?𝑥 ≤ corner𝑥 + width and corner𝑦 ≤?𝑦 ≤ corner𝑦 + height. The

sampling-region can now be used to indicate, for example, that an AUV needs to

remain inside the region while a sample is being taken:

(over a l l (inside (sampling−region (x−auv) (y−auv))))

, where x-auv and y-auv are state variables that denote the position of the AUV.

Note that sampling-region can be reused in a different activity condition just by

feeding a different set of parameters as required. For example, we could indicate that

the ship needs to remain in the same region while another activity is being executing

just by using (inside (sampling−region (x−ship) (y−ship))). The expressions passed as

parameters to the regions can be arbitrarily complex, which makes it very simple to

specify complex conditions. For example, we could impose that instead of requiring

the AUV or the ship to be inside the region, we would like the center point of the two

vehicles to remain in the region by using the following expression:

(over a l l (inside (sampling−region (/ (+ (x−auv) (x−ship)) 2)

(/ (+ (y−auv) (y−ship)) 2))))

The internal expression engine in Scotty propagates the parameter expressions in or-

der to obtain the resulting linear conditions corner𝑥 ≤ 1
2
(𝑥𝐴𝑈𝑉 + 𝑥𝑠ℎ𝑖𝑝) ≤ corner𝑥 +

width and corner𝑦 ≤ 1
2
(𝑦𝐴𝑈𝑉 + 𝑦𝑠ℎ𝑖𝑝) ≤ corner𝑦 + height. Expressions passed as pa-

rameters to regions can be arbitrarily complex as long as the resulting final expression

remains convex quadratic, due to the reasons explained before.

7.4.1 Primitive Regions

In the current version of our planner we have implemented multiple primitive regions

such as in-rect. Since most of the robotic problems where ScottyActivity has been

used can be expressed with two dimensional coordinates, the primitives shown here

represent 2D conditions. However, our system is not restricted to two dimensions,

and additional region primitives can be defined for any number of dimensions.

∙ Manual convex quadratic inequalities or linear equalities: ({<=,=,>=} <expr−left

114

> <expr−right>)

∙ Rectangles: (in−rect (?x ?y) :corner (<𝑐𝑥> <𝑐𝑦>) :width <𝑤> :height <ℎ>)

The rectangle primitive enforces the conditions 𝑐𝑥 ≤?𝑥 ≤ 𝑐𝑥 + 𝑤 and 𝑐𝑦 ≤?𝑦 ≤
𝑐𝑦 + ℎ. Since these conditions are linear, this primitive does not need to add

linear approximations.

∙ Convex polygons: (in−poly (?x ?y) :vertices ((<𝑣1𝑥> <𝑣1𝑦>) ... (<𝑣𝑛𝑥> <𝑣𝑛𝑦>)))

The convex polygon is given by a list of its vertices. Again, no linear approxi-

mation equations are needed in this case.

∙ Circles: (in−circle (?x ?y) :center (<𝑐𝑥> <𝑐𝑦>) :r <𝑟>)

The circle primitive enforces the convex quadratic condition (?𝑥− 𝑐𝑥)2 + (?𝑦 −
𝑐𝑦)

2 ≤ 𝑟2. This primitive also adds the linear over-approximation conditions of

an square of center (𝑐𝑥, 𝑐𝑦) and side 2𝑟 surrounding the circle.

∙ Maximum distance between entities: (max−distance ((?x1 ?y1) (?x2 ?y2)) :d <𝑑>)

This primitive ensures that point entities of positions (?𝑥1, ?𝑦1) and (?𝑥2, ?𝑦2)

always remain within distance 𝑑 by enforcing the quadratic condition (?𝑥1−?𝑥2)2+

(?𝑦1−?𝑦2)2 ≤ 𝑑2. This primitive also provides the linear over-approximation

given by the equations |?𝑥1−?𝑥2| ≤ 𝑑 and |?𝑦1−?𝑦2| ≤ 𝑑.

Note that, thanks to our powerful parameter expression system, the condition

represented by max-distance can also be represented with a circle region in

which the parameters are the 𝑥,𝑦 components of the difference vector between

the entities:

(:region max−distance−region

:parameters (? x1 ?y1 ?x2 ?y2)

:condition (in−circle (− ?x1 ?x2) (− ?y1 ?y1)

:center (0 0) : r <𝑑>))

∙ Other previously defined regions: (in−region <region−name> (<par−expr1> ...))

A region can also be composed by the intersection of previously defined regions.

115

This makes it easy to define complex regions from other simpler, reusable re-

gions.

116

Chapter 8

ScottyActivity: Joint Activity and

Trajectory Planning with Heuristic

Forward Search

In this chapter we describe ScottyActivity, the component that performs activity

planning in the Scotty Planning System. ScottyActivity heavily relies on ScottyCon-

vexPath, which is described in Part I of this thesis. We begin by providing a high

level overview of the planner. We then describe the generation of successor search

states, the heuristic and the algorithms that guide the search.

8.1 ScottyActivity In a Nutshell

Recall that the plan that ScottyActivity generates consists both of an activity sched-

ule and a control plan, given as a piecewise constant trajectory of the control vari-

ables. ScottyActivity generates the activity schedule and the control plan concur-

rently, through heuristic forward search to select the order of the activities as a plan

skeleton, and ScottyConvexPath to test the feasibility of the plan skeleton. Scot-

tyConvexPath uses convex optimization to test the feasibility of the plan skeleton

by finding a valid control trajectory, state trajectory and the execution times of the

activities. An informal diagram describing how the ScottyActivity planner works is

117

PDDL-S
Problem

Create Initial
State

Get Q front state

Is Goal?

For each
successor state

Is
consistent?

Compute state
variable bounds

Compute
heuristic

Compute control
trajectory and

schedule
ScottyConvexPath

add state to Q

YES

NO

min, max each
state variable

minimize problem
objective

model
feasible?

Return plan

YES

Figure 8-1: Informal diagram describing the overall flow of the ScottyActivity planner.
The blue box indicates that ScottyConvexPath is used as a module that is queried at
different stages of the planning process and is not part of the flow.

118

event:
“start a”

activity a

activity b

activity c

e0 e1 e2 e3 e4 e5

s0 s1 s2 s3 s4t0 tj
x0 xj

cjc0

t

stage

Figure 8-2: A plan skeleton is given by an ordered sequence of start and end events, 𝑒𝑗.
Plan skeletons do not have an assigned control or state trajectory, or event execution
times. A mathematical program is used to test the consistency of plan skeletons by
finding feasible values for the control trajectory c(𝑡), state trajectory x(𝑡) and event
execution times, 𝑡𝑗.

presented in Figure 8-1. We provide detailed descriptions of each step of the algorithm

in this section.

Our method draws inspiration from COLIN [23], LPGP [69], LPSAT [96] and

previous planners [91] in that the discrete search is interleaved with consistency checks

using an optimization approach. We use heuristic forward search to find an ordered

sequence of starts and ends of activities that are analogous to the start and end snap

actions used by many temporal planners [69, 24]. We call each start or end of an

activity an event. We assume that no two events can co-occur, and that they are

totally ordered. This allows the planner to consider the introduction of only one

event during each planning step. While some heuristic forward search planners allow

some flexibility in the order of these events [22], we leave this extension for future

work.

We call a stage the period of time between consecutive events. In the piecewise

constant control trajectory that ScottyActivity finds, control variables have constant

values during stages, and the value changes can happen at each event. As described

in Chapter 5, the state variables change linearly in time during stages.

Recall, from Section 6.1, that every search state defines a partial schedule of

totally ordered events that forms a plan skeleton. The plan skeleton only defines the

sequence of starts and ends of activities that are selected and in what order. We

119

call a stage the period of time between consecutive events. In the piecewise constant

control trajectory that ScottyActivity finds, control variables have constant values

during stages, and the value changes can happen at each event. Figure 8-2 shows an

example of a plan skeleton.

Search states are constructed so that their plan skeletons satisfy all the discrete

conditions imposed by the activities in the partial schedule. However, plan skeletons

do not define the control trajectory, the state trajectory or the execution times of the

events. In order to check that the plan skeleton can satisfy the continuous constraints,

we solve an optimization problem that tries to find a feasible control trajectory, state

trajectory and the execution times of the activities. For intermediate search states,

this optimization problem is used as a feasibility check. The values returned by

the solver are, therefore, discarded. When the search state that satisfies the goal

conditions is found, the optimization problem is used one more time to find the

control trajectory and activity execution times that minimize the problem objective.

These values along with the event schedule are returned as the solution plan.

Successor search states extend the parent plan skeleton with a new start or end

event at the end. The convex model for successor plan skeletons is solved from scratch

every time, and no intermediate control trajectories are reused. There are multiple

reasons why that is the case. First, we do not know what future events could be added

to the plan later, and therefore we want to avoid early commitment to values that

could make the plan infeasible later. Second, by not committing early to values found

by the solver for incomplete plan skeletons, we can optimize the problem objective

throughout the complete plan skeleton when the goal is found.

Like many other heuristic forward search planners, we use common greedy search

algorithms that work well for relatively large planning problems. Our heuristic is

based on the Temporal Relaxed Planning Graph [24] and it provides an estimate of

the remaining number of start and end activities to reach the goal.

As described in Chapter 6, our mathematical program is convex. Therefore our

consistency checks are complete. However, we use an incomplete greedy search al-

gorithm. As is standard with most greedy HFS planners, we optionally resort to a

120

complete A* search when the incomplete greedy search algorithms fail. In practice,

A* is much slower than the greedy search algorithms and we do not report results

using A* in this thesis.

ScottyActivity is not an optimal planner in that we do not guarantee that the

returned plan is the best possible plan according to the problem objective. However,

since our optimization problem is convex, we guarantee that the instantiation of the

plan skeleton selected based on the heuristic is optimal. That is, for the order of starts

and ends of activities found by the search, there exist no other control trajectories or

activity execution times than the ones returned by ScottyActivity that can produce

a better objective value.

In the next sections, we describe the different components of our planner in detail.

8.2 Generation of Successor States

Algorithm 8.1: Get-Activities
Input: A PDDL-S planning problem (𝑃𝑃) and a search state (𝑆).
Output: A list of helpful applicable activities 𝐴𝐻 and list of activities that

are applicable but not helpful at 𝑆, 𝐴𝐴∖𝐻 .
Algorithm

1 𝐴𝐻 ← {}, 𝐴𝐴∖𝐻 ← {}
2 for 𝑎 in 𝑃𝑃.𝐴 do
3 if DISCRETE-APPLICABLE(𝑆, 𝑎) and CONTINUOUS-CONSISTENT(𝑆, 𝑎)
4 if IS-HELPFUL(𝑆, 𝑎)
5 PUSH(𝐴𝐻 , 𝑎)

else
6 PUSH(𝐴𝐴∖𝐻 , 𝑎)

7 return 𝐴𝐻 , 𝐴𝐴∖𝐻

Each search state contains a plan skeleton formed by an ordered list of events, a

set of predicates that hold at this state, a set of activities that have started but not

ended at this state, and the independently achievable lower and upper bounds for

each state variable (as we explain later in this section).

In order to explore successor states, we need to determine which events (starts or

121

Algorithm 8.2: Test-Consistency
Input: A PDDL-S planning problem (𝑃𝑃) a search state (𝑆) and the partial

plan leading to that state (𝑝).
Output: A state with the independently achievable lower and upper bounds

for each state variable or nil if the state is not consistent.
Algorithm

1 prog ← BUILD-PROGRAM(𝑃𝑃 , 𝑝)
2 if not IS-FEASIBLE(prog)
3 return nil

4 for 𝑥 in 𝑃𝑃.𝑉 do
5 𝑥𝑚𝑖𝑛 ← MINIMIZE(prog, 𝑥)
6 𝑥𝑚𝑎𝑥 ← MINIMIZE(prog, −𝑥)
7 SET-BOUNDS (𝑆, 𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥)

8 return 𝑆

ends of activities) can be applied next. This entails checking that both the discrete

and the continuous conditions and effects of the event are consistent with the current

state. Since the discrete state is fully described by the search state, the discrete check

can be done directly (Line 3 of Algorithm 8.1). However, we cannot do the same

with the continuous conditions and effects, since the execution times, durations, state

variables, and control variables are tightly coupled throughout the plan skeleton. In

order to reject infeasible successor states, we construct a mathematical program con-

taining all the constraints defined by the activities in the plan skeleton. Invalid states

are those whose associated mathematical programs do not have a feasible solution

(Algorithm 8.2).

As explained in Chapter 6, we use Second Order Cone Programs (SOCPs) for

this check for the following reasons. First, SOCPs can effectively represent all the

continuous conditions and dynamics that our planner requires (as described in Chap-

ter 4). Second, SOCPs are a class of convex optimization problems and are commonly

solved with complete algorithms that will return no solution only when the program

does not have a solution. This is an important characteristic since it ensures that

only infeasible states are pruned. Third, SOCPs can be solved very efficiently with

interior-point methods available in off-the-shelf solvers. Finally, being convex opti-

mization problems, the solutions of the SOCPs returned by the solvers are guaranteed

122

to be optimal, which is important for reasons that we explain later. Gradient-based

algorithms solving general non-linear programs do not present these characteristics.

They are orders of magnitude slower, which would directly translate into the plan-

ning time since it is, by far, the dominant factor. They are not complete due to

local minima, and not optimal. As we describe in in Chapter 6, formulating all state

conditions and dynamics as a convex program is not straightforward and is one of the

key innovations of our planner.

Solving the optimization for every candidate successor state that meets the dis-

crete conditions is expensive, and dominates the running time of our planner. For

this reason, we compute the feasible lower and upper bounds for each state variable

independently with our mathematical program. We do that using the same method

that COLIN uses: we solve the optimization problem twice per state variable to mini-

mize and maximize the state variable at the state (Lines 4-7 in Algorithm 8.2). These

bounds constitute an over-approximation of the reachable space at the last event of

the plan skeleton. We use the bounds to prune activities whose state conditions are

necessarily not compatible with the state variable bounds, and, therefore, can never

be satisfied (CONTINUOUS-CONSISTENT method in Algorithm 8.1). For linear inequal-

ity conditions in the form of
∑︀

𝑘𝑖𝑥𝑖 ≤ 𝑐, this can be done by computing the lower

bound of the expression according to the state variable bounds, and checking whether

it satisfies the condition. The lower bound on the expression can be computed with

the following equation:

𝑙𝑏 =
∑︁

min(𝑘𝑖𝑥𝑖𝑚𝑖𝑛, 𝑘𝑖𝑥𝑖𝑚𝑎𝑥) (8.1)

, where 𝑘𝑖 are the constant coefficients of the expression and 𝑥𝑖𝑚𝑖𝑛 and 𝑥𝑖𝑚𝑎𝑥 are

the bounds of state variable 𝑥𝑖. The linear inequality can only be satisfied if 𝑙𝑏 ≤ 𝑐.

Activities having at least one linear constraint where this condition is not met are

pruned from the list of applicable activities at that point in the search. Note that,

since the optimization problem is convex and its solution is optimal, the computed

bounds of each state variables are guaranteed to be the maximum and minimum values

123

that the state variable could reach. Therefore, this method only prunes infeasible

activities. Note, however, that this test using the variable bounds does not guarantee

that the linear condition can be satisfied in practice, as each variable lower and upper

bound is computed independently. This is not a problem, since all search states that

pass this pruning test are later checked with the optimization model.

Unfortunately, the pruning test described above is not straightforward in the case

of general convex quadratic constraints, as it involves checking the intersection of ar-

bitrary conic shapes (the convex quadratic constraints) and hypercubes (given by the

bounds of each state variable). In practice, we use linear over-approximations for those

conditions and handle them as in the linear case. This linear over-approximations can

be entered manually or computed automatically using the region system described in

Section 7.4. Again, using linear over-approximations only affects the efficiency of our

pruning method, but not the completeness of the algorithm.

Finally, the state variable bounds are also needed to define the first layer of the

heuristic, as we explain in the next section.

8.3 Relaxed Hybrid Plan Heuristic

The heuristic that ScottyActivity uses is based on the Temporal Relaxed Planning

Graph (TRPG). The TRPG assigns to each layer in the planning graph a timestamp

corresponding to the earliest time when each layer could be reached [32]. In order to

handle continuous effects with control variables, such as vehicle dynamics, our heuris-

tic uses two ideas. First, we use flow tubes to represent all possible state trajectories

resulting from the application of activities with continuous effects. Second, each fact

layer is annotated with the minimum and maximum values that each state variable

could independently take in that layer. This idea of tracking the bounds for each

state variable is borrowed from MetricFF [45].

A flow tube is a compact encoding that describes all possible trajectories resulting

from the application of a continuous effect on a state variable, that is, its reachability

region. Figure 8-3 shows a flow tube that represents the reachability region of state

124

x0

t0

vmax

vmin

tend

xend

x(t)

t
t0 + dl t0 + du

ta

Figure 8-3: The shaded region is a flow tube that represents the reachable region for
state variable 𝑥 when subject to a linear time-varying effect(∆𝑥(𝑡) = 𝑣(𝑡) · 𝑡) for a
duration between 𝑑𝑙 and 𝑑𝑢

variable 𝑥 when subject to first order dynamics �̇�(𝑡) = 𝑣(𝑡) from 𝑥0 = 𝑥(𝑡0) for a

duration between 𝑑𝑙 and 𝑑𝑢. Under first order dynamics, as is the case in Scotty

problems, the velocity, 𝑣(𝑡), is a control variable that is continuously controllable

within its actuation bounds of 𝑣𝑚𝑖𝑛 and 𝑣𝑚𝑎𝑥 for the duration of the activity. The

shaded region in Figure 8-3 is the flow tube and is computed by propagating the initial

point with the extremal actuation and temporal constraints. This region represents

the values that 𝑥 can take at the end of the activity. The blue line shows one possible

trajectory. Note that the example final value, 𝑥𝑒𝑛𝑑, can be reached as soon as at 𝑡𝑎

if the maximum velocity value 𝑣𝑚𝑎𝑥 is chosen, or as late as 𝑡𝑜 + 𝑑𝑢 if a lower value

is used. Flow tubes have been used successfully for temporally and spatially flexible

execution of hybrid plans, in applications such as biped walking [49, 50]. Moreover,

flow tubes are the basic building block used by Kongming [64] to represent continuous

behaviors in its Hybrid Flow Graph. In our heuristic, we use flow tubes to express

how the reachable bounds of state variables grow between the consecutive layers of

the temporally relaxed planning graph. In our case, the minimum and maximum

actuation bounds are obtained by combining the minimum and maximum bounds of

125

all the continuous effects acting on each state variable at a given time.

In practice, our heuristic works in a similar way to COLIN’s [24], except for some

differences that we describe in this section. As is the case for many other planners,

the heuristic value is the number of start or end events needed to reach the goal in the

relaxed graph. We follow the standard procedure to generate the relaxed planning

graph that we summarize next. The initial fact layer is defined by the state at which

the heuristic is being computed. The relaxed graph is generated by adding alternating

activity and fact layers. All activities that could be applied at a given fact layer are

added to the current activity layer. The procedure finishes when the goal conditions

are contained in a fact layer, or when no more activities can be added to the graph.

The delete relaxation procedure ensures that at the next fact layer, new activities

may become applicable, but activities that were previously applicable always remain

applicable in posterior layers. In order to do that, the delete relaxation only adds

the discrete add effects of an activity to the next fact layer, but it ignores its delete

effects [47].

In the spirit of MetricFF, the continuous conditions and effects are handled by

tracking the minimum and maximum bounds of each state variable at each fact layer.

These bounds are used to test whether an action is applicable at a given layer. The

continuous effects active between layers grow these bounds between consecutive layers.

We now describe how the bounds for each state variable are grown while creating

the relaxed graph, since the presence of control variables in ScottyActivity problems

requires a slightly different approach compared to COLIN. We later describe how

these bounds are used to test whether a continuous condition can be satisfied at a

given layer.

When computing the heuristic for a state, the bounds of all state variables at

the first layer are known in advance. Recall from Section 8.2 that these bounds are

computed by solving the convex optimization problem twice per state variable in order

to find its minimum and maximum possible values. In order to compute the state

variable bounds in the next layers, COLIN keeps track of the maximum positive and

lowest negative rates of change (gradients) that each state variable could be subject

126

to at each layer. These rates of change are additive and come from the continuous

effects of ongoing activities at the current layer. The minimum and maximum possible

bounds for each state variable in layer 𝑖 + 1 are computed by extending the bounds

at layer 𝑖 with the maximum positive and minimum negative gradients multiplied

by the time elapsed between layers 𝑖 + 1 and 𝑖, ∆𝑡 = 𝑡𝑖+1 − 𝑡𝑖. In the spirit of

delete relaxations, the bounds can only grow from one layer to the next. Contrary to

COLIN, the rates of change in ScottyActivity are not fixed, as they depend on the

continuous controllable control variables, and these can take any value within their

actuation bounds. As explained in the beginning of this section, we use flow tubes

to represent how the bounds of the state variables grow in the presence of continuous

effects depending on continuous control variables. In practice, we use the minimum

and maximum actuation bounds of each control variable to compute the minimum

negative and maximum positive rates of change at a given layer. The growth of the

state variable bounds from a layer to the next are then computed in the same way as

COLIN does.

As an example, consider a layer in which an activity navigate with linear time-

varying continuous effects �̇�(𝑡) = 𝑣𝑥(𝑡) and �̇�(𝑡) = 𝑣𝑦(𝑡) is active. Assume that the

control variable 𝑣𝑥 has actuation limits of (−1, 2) while 𝑣𝑦 is constrained to be within

its (1, 3) bounds. The minimum negative and maximum positive gradients operating

on 𝑥 at that layer are then ∇𝑥− = −1, ∇𝑥+ = 2 respectively. The gradients on 𝑦

are ∇𝑦− = 0 and ∇𝑦+ = 3. Note that ∇𝑦− = 0 since the bounds of state variables

from one layer to the next are only allowed to grow. These gradients define how the

boundaries of the flow tubes grow with time (as shown in Figure 8-3). If an activity

turbo-boost-x that gave an additional boost to the x velocity of (−2, 2) became active

at a later layer, the minimum and maximum possible gradients for 𝑥 would become

∇𝑥− = −3 and ∇𝑥+ = 4 from that layer on, as effects are additive. The lower and

upper bounds for state variable 𝑥 at layer 𝑖 + 1, 𝑥𝐿𝑖+1 and 𝑥𝑈 𝑖+1 are then computed

as:

127

𝑥𝐿𝑖+1 = 𝑥𝐿𝑖 +∇𝑥− · (𝑡𝑖+1 − 𝑡𝑖) (8.2)

𝑥𝑈 𝑖+1 = 𝑥𝑈 𝑖 +∇𝑥+ · (𝑡𝑖+1 − 𝑡𝑖) (8.3)

The bounds computed in the previous manner are used to test whether each

continuous condition of an activity can be satisfied at a given layer using the same

method employed by MetricFF. We now describe how this test is performed for linear

inequalities. Any linear inequality can be expressed as:

∑︁
𝑗

𝑘𝑗 · 𝑥𝑗 + 𝑐 ≤ 0, (8.4)

where 𝑘𝑗 and 𝑐 are constants and 𝑥𝑗 are the state variables. A linear equality condition

can be satisfied at a given layer 𝑖 if the intersection between the half-space defined

by the inequality and the hypercube 𝑅𝑖 = {z ∈ R𝑛 | 𝑥𝑗𝐿𝑖
≤ 𝑧𝑗 ≤ 𝑥𝑗𝑈 𝑖

} whose sides

are the bounds of each state variable at layer 𝑖 is non null. For inequalities expressed

in the form of Equation (8.4), this condition is equivalent to asserting that the lower

bound of the left hand side of the inequality at layer 𝑖, 𝐵𝑖, is smaller or equal than

0. We can compute this lower bound 𝐵𝑖 using the bounds of the state variables with

the following expression:

𝐵𝑖 =
∑︁
𝑖

min(𝑘𝑖 · 𝑥𝑗𝐿𝑖
, 𝑘𝑖 · 𝑥𝑗𝑈 𝑖

) + 𝑐, (8.5)

Activities having linear inequality conditions that cannot be satisfied at a given

layer according to the previous test may become satisfiable in a future layer if there

are active continuous effects that expand the state variable bounds sufficiently in the

right direction. In order to ensure that the relaxed graph is fully expanded, COLIN

iteratively computes the next future time when one such unmet condition will become

satisfiable and adds a layer at that time until all activities become applicable or all

linear conditions that could ever be satisfied become satisfiable. The future point in

time, if any, when an unsatisfiable linear inequality will become satisfiable is computed

128

as follows. The linear condition is unsatisfiable because its lower bound 𝐵𝑖 is greater

than 0. By using the negative and positive gradients of each state variable at that

layer, we can compute the negative gradient of the left hand side of the inequality,

∇𝑒−𝑖 at layer 𝑖:

∇𝑒−𝑖 =
∑︁
𝑗

min(𝑘𝑗 · ∇𝑥𝑗
−
𝑖 , 𝑘𝑗 · ∇𝑥𝑗

+
𝑖) ≤ 0 (8.6)

If ∇𝑒−𝑖 < 0, the lower bound of the left hand side of the inequality, 𝐵, decreases

with time, and the linear inequality will become satisfiable when 𝐵 becomes negative,

which will happen first after ∆𝑡𝑒 units of time.

∆𝑡𝑒 =
𝐵𝑖

|∇𝑒−𝑖 |
The next layer can then be created at time 𝑡𝑖+∆𝑡𝑒, where 𝑡𝑖 is the time of the current

layer, with the hopes that satisfying this previously unmet linear condition may make

some new activity applicable at that time. If ∇𝑒−𝑖 = 0 the linear inequality will never

become satisfiable in the future, unless another continuous effect that makes this

gradient negative becomes active in a later layer.

Also new in our heuristic is that we need to take into account convex quadratic

conditions, that COLIN does not support. As we have just described, computing

the future times when linear inequalities will become satisfiable can be done in a

straightforward manner using Section 8.3. However, computing the future times

when an unmet arbitrary convex quadratic condition will become satisfiable cannot

be done with an analytical expression in an efficient manner. Our solution is to

use linear over-approximations to the quadratic constraints in the heuristic, which

are then handled as explained previously. In other words, our heuristic operates on a

relaxed problem, where the relaxation replaces convex quadratic constraints with their

linear over-approximation, on top of using the delete relaxation. If the user specifies

the convex quadratic conditions as primitives, such as ellipsoidal regions, our planner

computes the linear over-approximations automatically. For example, for ellipsoidal

region conditions, we compute the axis aligned bounding box that contains the region.

129

Otherwise, the user can specify the approximations directly by providing lists of linear

inequalities. These linear over-approximations constitute valid relaxations since they

ensure that actions can always be executed earlier than they would be if the actual

quadratic constraints were used.

The final difference in our heuristic compared to COLIN’s is that resource-constrained

norm effects (RNE) also need to be considered. These effects only reduce the availabil-

ity of constrained resources and their application can only make activities infeasible

(and never new activities possible). Therefore, in the spirit of delete relaxations, these

effects are ignored in the heuristic. The optimization-based consistency check, that

accurately computes these effects, rejects states that become infeasible due to this

and the search follows through a different route. However, there is room to improve

the current heuristic and make it aware of these interactions. We leave handling these

effects more accurately in the heuristic for future work.

8.4 Search strategies

ScottyActivity implements two search algorithms. The first is Enforced Hill-Climbing

(EHC) , which has been widely used with success by satisficing planners [47]. The

second is a variation of EHC that we call obj-EHC that guides the search to plans that

produce better objectives more efficiently. Additionally, ScottyActivity can optionally

fall back to A* when these incomplete search algorithms fail. However, this is not

discussed further in this thesis since our A* implementation is the standard one

commonly used in other planners.

EHC (Algorithm 8.3) is a very popular greedy search algorithm that drops the

open list every time it finds a state with a lower heuristic value. As a consequence,

EHC is not complete. Since the heuristic is the estimated number of start or end

activities to reach the goal, our EHC algorithm completely ignores the problem ob-

jective to guide the search. The TEST-GOAL procedure (Line 15) checks that the goal

has been reached and, in that case, solves the optimization with the problem objective

in order to generate the solution plan with the activity schedule and control trajec-

130

Algorithm 8.3: ScottyActivity-Plan-Ehc
Input: A PDDL-S planning problem 𝑃𝑃 .
Output: A valid PDDL-S plan or 𝑛𝑖𝑙 if no plan could be found.
Algorithm

1 𝑆0 ← MAKE-STATE(𝑃𝑃.𝐼)
2 𝑝0 ← {}
3 ℎ𝑏𝑒𝑠𝑡 ← GET-HEURISTIC(𝑆0)
4 𝑄 ← [<𝑆0, 𝑝0, ℎ0 >]
5 while not IS-EMPTY(𝑄) do
6 𝑆, 𝑝 ← POP(𝑄)
7 has-valid-descendants ← 𝑛𝑖𝑙
8 𝐴𝐻 , 𝐴𝐴∖𝐻 ← GET-ACTIVITIES(𝑃𝑃 , 𝑆)
9 for 𝑎 in 𝐴𝐻 + 𝐴𝐴∖𝐻 do

10 𝑆𝑛𝑒𝑤 ← APPLY(𝑆, 𝑎)
11 𝑝𝑛𝑒𝑤 ← 𝑝 + {𝑎}
12 𝑆𝑛𝑒𝑤 ← TEST-CONSISTENCY(𝑃𝑃 , 𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤)
13 if 𝑆𝑛𝑒𝑤

14 has-valid-descendants ← true
15 𝑝𝑠𝑜𝑙 ← TEST-GOAL(𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤)
16 if 𝑝𝑠𝑜𝑙
17 return 𝑝𝑠𝑜𝑙

18 ℎ𝑛𝑒𝑤 ← GET-HEURISTIC(𝑆𝑛𝑒𝑤)
19 if ℎ𝑛𝑒𝑤 < ℎ𝑏𝑒𝑠𝑡

20 𝑄 ← {<𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤 >}
21 ℎ𝑏𝑒𝑠𝑡 ← ℎ𝑛𝑒𝑤

22 break
else

23 if ℎ𝑛𝑒𝑤 <∞
24 PUSH(𝑄, < 𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤 >)

25 if all 𝑎 ∈ 𝐴𝐻 explored
and has-valid-descendants
/* Do not explore non-helpful */

26 break

27 return 𝑛𝑖𝑙

131

tory. This plan is guaranteed to be optimal conditioned on the sequence of events

chosen by the search.

While EHC is fast, ignoring the problem objective often leads to EHC making

misguided choices that result in highly suboptimal plans. This happens because

states that have the same heuristic value (in term of the number of activities to reach

the goal) may have very different costs as specified by the problem objective. In order

to improve the quality of the plans found by ScottyActivity, we introduce the obj-

EHC algorithm (Algorithm 8.4), that is a variation of EHC that attempts to improve

this issue. The obj-EHC algorithm uses a priority queue to sort the open states by

the heuristic value (first) and, in case of a tie, by the cost incurred in that state so far

according to the problem objective (second). Contrary to EHC, obj-EHC computes

the heuristic value and the cost-so-far of all the helpful descendants of the current

state, as opposed to dropping the queue and descending into a state as soon as a

heuristic lower than the prior best one is seen. In the spirit of EHC, obj-EHC drops

the queue when a state with a lower heuristic than the incumbent is removed from

the priority queue. This provides a reasonable compromise between finding better

quality plan and preserving the speed of EHC. However, dropping the queue makes

obj-EHC also an incomplete search algorithm.

In order to compute the cost so far for a given state, we solve the same optimization

problem that we use to test consistency with the objective of minimizing the cost as

specified by the problem objective (Line 19). Note that the cost computed this way

only provides an indication of the cost incurred so far, but does not provide any

estimate of the future cost that may be incurred in by future activities. That is,

this is the current cost of the plan skeleton and not a heuristic. Computing an

estimate of the future cost would probably help the search considerably. However,

this computation is not straightforward since it involves solving an optimization over

possible future choices of activities with their conditions and effects. We leave this

extension for future work.

Note that state expansion in obj-EHC is more computationally expensive than in

EHC, since obj-EHC requires solving one additional optimization problem (the one

132

Algorithm 8.4: ScottyActivity-Plan-Obj-Ehc
Input: A PDDL-S planning problem 𝑃𝑃 .
Output: A valid PDDL-S plan or 𝑛𝑖𝑙 if no plan could be found.
Algorithm

1 𝑆0 ← MAKE-STATE(𝑃𝑃.𝐼)
2 𝑝0 ← {}
3 ℎ𝑏𝑒𝑠𝑡 ← GET-HEURISTIC(𝑆0)
4 𝑄 ← MAKE-PQUEUE()
5 PUSH(𝑄, < ℎ𝑏𝑒𝑠𝑡, 0 >, < 𝑆0, 𝑝0 >)
6 while not IS-EMPTY(𝑄) do
7 𝑆, 𝑝 ← POP(𝑄)
8 has-valid-descendants ← 𝑛𝑖𝑙
9 if 𝑆.ℎ < ℎ𝑏𝑒𝑠𝑡

10 ℎ𝑏𝑒𝑠𝑡 ← 𝑆.ℎ
11 CLEAR(𝑄)

12 𝐴𝐻 , 𝐴𝐴∖𝐻 ← GET-ACTIVITIES(𝑃𝑃 , 𝑆)
13 for 𝑎 in 𝐴𝐻 + 𝐴𝐴∖𝐻 do
14 𝑆𝑛𝑒𝑤 ← APPLY(𝑆, 𝑎)
15 𝑝𝑛𝑒𝑤 ← 𝑝 + {𝑎}
16 𝑆𝑛𝑒𝑤 ← TEST-CONSISTENCY(𝑃𝑃 , 𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤)
17 if 𝑆𝑛𝑒𝑤

18 has-valid-descendants ← true
19 𝑜𝑏𝑗𝑛𝑒𝑤 ← MINIMIZE-OBJECTIVE(𝑃𝑃 , 𝑝𝑛𝑒𝑤)
20 𝑝𝑠𝑜𝑙 ← TEST-GOAL(𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤)
21 if 𝑝𝑠𝑜𝑙 return 𝑝𝑠𝑜𝑙
22 ℎ𝑛𝑒𝑤 ← GET-HEURISTIC(𝑆𝑛𝑒𝑤)
23 if ℎ𝑛𝑒𝑤 <∞
24 PUSH(𝑄, < ℎ𝑛𝑒𝑤, 𝑜𝑏𝑗𝑛𝑒𝑤 >, < 𝑆𝑛𝑒𝑤, 𝑝𝑛𝑒𝑤 >)

25 if all 𝑎 ∈ 𝐴𝐻 explored
and has-valid-descendants
/* Do not explore non-helpful */

26 break

27 return 𝑛𝑖𝑙

133

minimizing the cost) on top of the optimization problems used to compute the bounds

for each state variable. Moreover, obj-EHC maintains a priority queue, which is not

needed in EHC. Finally, obj-EHC requires expanding all children of each state as

opposed to stopping right away when a state with a better heuristic value is found.

In Chapter 9 we compare both, discuss the advantages and disadvantages of each

and show that the quality of the plans returned by obj-EHC is significantly higher in

general.

Both search algorithms explore by default only the helpful activities of each state.

These are the activities that appear in the first layer of the relaxed planning graph

[47]. However, we cannot model accurately some of the non-linear effects in our

heuristic (i.e. resource-constrained norm effects, RNEs). As a result, the heuristic

sometimes fails to identify activities that need to take place as helpful when RNEs

are used. To alleviate this, we allow our search to explore the applicable, but non-

helpful, descendant activities if the current state does not have any valid successors

(Line 25).

Finally, ScottyActivity can, like other planners, fall back to A* search if EHC or

obj-EHC do not find a plan. In practice A* search is very slow in non-trivial problems

and we do not show the performance of our planner using this search method.

134

Chapter 9

ScottyActivity Experimental Results

In this chapter we evaluate the scalability of ScottyActivity in both synthetic domains

and real expressive robotic scenarios. First, we use synthetic domains to illustrate why

maintaining both continuous time and continuous control variables, as ScottyActivity

does, is essential in order to plan efficiently over long horizons. We then present

three new benchmarking domains that represent robotic missions with coordination

constraints and show the scalability of our approach in these problems.

We evaluated the empirical performance of our planner on an Intel Core i7-3770

3.40 GHz using Gurobi 7.0.1 as ScottyActivity’s internal convex optimization solver.

9.1 Synthetic Benchmarks

In our first test, we compare the performance of ScottyActivity against Kongming

in a robotic sampling scenario that shows why Kongming’s time discretization can

be a problem in common applications and how ScottyActivity overcomes this issue.

We then compare ScottyActivity’s performance against POPF [22], a state of the art

planner capable of planning with continuous effects. Recall that POPF does not sup-

port control variables and therefore needs to represent different rates of change with

multiple discretized actions. This example shows that representing control variables

continuously is essential in robotic applications and that the alternative discretization

of control variables is not a scalable approach.

135

0.1
1

10
100

0 40 80 120 160

Kongming
Scotty

AeroAstro Doctoral Research Evaluation, January 2014 - Enrique Fernandez

3.2. Preliminary Results

�19

Pla
nn

ing
 Ti

me

(se
co

nd
s)

0.1

1

10

100

Sampling Depth

0 40 80 120 160

Kongming
Scotty

Results are preliminary. Ongoing work.

Scotty appears to solve some scaling issues that hinder Kongming’s
performance due to it’s use of discrete time

sampling
depth

sampling X

30 m

80 m

sampling
area

X = 0
depth = 0

descend1
descend2descend1

descend2

descend3

Example scenario:

Higher depth (larger
distance) requires more
time steps (layers) to find a
solution.

Kongming

Sampling Depth (m)

Pl
an

nin
g

Ti
m

e

Figure 9-1: Example scenario that shows the problems of discretizing time. Planning
time is shown in seconds.

9.1.1 Discretization of time

Kongming is the first mixed discrete-continuous activity planner that performs si-

multaneous activity and motion planning as a tightly coupled problem. It does so by

allowing continuous control variables and by using an efficient representation of all

possible trajectories with flow tubes. However, while Kongming’s approach is very

innovative, we argued in Chapter 2 that its fixed time discretization hinders its per-

formance in problems that require long planning horizons and where both short and

long lived activities coexist. In this section we present a simple robotic scenario that

highlights this issue and we show that ScottyActivity’s continuous time formulation

avoids this problem.

The problem consists of a simple autonomous underwater vehicle (AUV) sampling

mission as shown in Figure 9-1. In this problem the AUV needs to reach a certain

depth range in order to take a sample. We parameterize this scenario in terms of

such sampling depth. The AUV can use the action descend to modify its depth ac-

cording to the bounded control variable descent-rate. Because Kongming discretizes

time in constant time steps, increasing the target sampling depth forces Kongming

136

2D AUV 1 2D AUV 2 3D AUV Firefighting 1 Firefighting 2

Kongming 3.633 9.736 13.063 1.505 20.202
ScottyActivity 0.054 0.025 0.192 0.03 0.372

Table 9.1: Comparison between Kongming and ScottyActivity in several domains.
Results show planning time in seconds.

to create additional fact and action layers and, additionally, more variables that the

MILP solver needs to consider. As a result, the performance of Kongming degrades

very quickly with the target sampling depth as shown in Figure 9-1. On the other

hand, ScottyActivity’s performance is constant (and orders of magnitude better than

Kongming’s). This is an expected result. Because ScottyActivity does not discretize

time, it solves essentially the same problem regardless of the target sampling depth.

Only one descend activity is needed and it is only the parameters of the mathematical

optimization that change in each instance of the problem. For the sake of complete-

ness we also benchmarked ScottyActivity in other domains in which Kongming was

used. These domains, described in detail in [63], typically showcase one or more

mobile robots moving in a 2D or 3D environment and completing objectives that in-

volve visiting different locations. Table 9.1 shows that ScottyActivity exhibits a large

performance advantage over Kongming in these domains as well.

9.1.2 Discretization of control variables

In this section we argue that continuous control variables are essential to efficiently

solve robotic planning problems. In order to do this, we compare the performance

of ScottyActivity and POPF in a synthetic robotic domain. While POPF is a very

efficient planner, it only supports linear continuous effects with fixed rates of change

defined in advance, as opposed to the continuously controllable rates of change (con-

trol variables) that ScottyActivity supports. In this synthetic domain a mobile vehicle

needs to visit six regions. For the sake of simplicity the order of the regions is fixed in

this problem. The objective of this problem consists in minimizing the plan makespan.

In order to move, the vehicle uses the navigate activity. This activity has two CLTE

effects, each operating in state variables 𝑥 and 𝑦 respectively:

137

Planner A t S L O 𝑙 𝑣𝑎𝑣𝑔

ScottyActivity (EHC) 1 0.81 24 24 151.11 203.65 1.35
P

O
P

F

4 directions 4 1.07 326 38 200.22 376.40 1.88
8 directions 8 1.77 531 36 192.22 415.90 2.16

5 steps 24 11.84 3530 36 277.17 413.92 1.49
7 steps 48 22.66 6168 32 342.56 413.01 1.21
9 steps 80 59.62 15037 32 469.92 459.06 0.98
11 steps 120 133.35 31160 32 430.13 446.35 1.04

vx

vy

-vmax

-vmax

vx

vy

-vmax

-vmax

vx

vy
4 directions 8 directions 5 steps

Table 9.2: Discretization example results. A: number of navigate actions in the
domain; t: Planning time in seconds; S: Number of nodes expanded; L: Plan length
in number of actions; O: Makespan (objective value) of the plan returned; 𝑙: Length
of the path traveled; 𝑣𝑎𝑣𝑔: Average speed of the vehicle throughout the plan. The
diagrams on the right show the discretization performed in some of the problem
instances. Each black dot represents a navigate activity with its given 𝑣𝑥 and 𝑣𝑦. For
ScottyActivity, any velocity value within the square is allowed.

(increase (x) (* (vx) #t))

(increase (y) (* (vy) #t))

For ScottyActivity, 𝑣𝑥 and 𝑣𝑦 are continuous control variables that can take any

value between−2 and 2. Since POPF only supports fixed rates of change, the values of

𝑣𝑥 and 𝑣𝑦 have to be fixed in advance. Therefore, we create multiple navigate activities

with different discretization values for the velocities. We compare the performance of

ScottyActivity using EHC to POPF in problem instances using different discretization

values (from 4 navigate activities to up to 120 navigate activities).

The results are shown in Table 9.2. The diagrams on the right show the dis-

cretizations performed for some of the problem instances. Since the visit order of the

regions has been fixed, the plan returned by ScottyActivity is optimal. Given that

ScottyActivity only needs one navigate activity to represent all possible velocities,

this problem can be solved very quickly. As expected, the results show that as the

number of navigate activities increases, it becomes harder for POPF to find a solution

since it needs to explore more states.

Figure 9-2 shows the optimal trajectory returned by ScottyActivity and the trajec-

tories returned by POPF for different discretizations. A finer discretization (more nav-

igate activities), provides the chance of finding better plans, since more fine grained

control of the velocities is possible, which in turn allows better navigation headings

to be selected. However, the results show that the plans returned by POPF are not

138

x

y

A

B

C

D

E
F

Scotty Solution (optimal)
l = 203.6, vavg = 1.35

(a)

x

y

A

B

C

D

E
F

POPF Solution (4 navigate actions)
l = 376.4, vavg = 1.88

(b)

x

y

A

B

C

D

E
F

POPF Solution (120 navigate actions)
l = 446.4, vavg = 1.04

(c)

Figure 9-2: Trajectories of the discretization example. In this domain, the solution
returned by ScottyActivity is optimal (a). With 4 navigate actions, the solution is
worse than optimal and harder to find (b). Adding more actions, the problem becomes
much harder to solve, and the solution returned gets worse (c)

only much harder to find, but they also do not get better with more navigate ac-

tivities. We hypothesize that this is due to the greedy nature of the Enforced Hill

Climbing algorithm that POPF uses, and the fact that the number of actions to the

goal and not the objective is what guides the search. As an example consider the two

first actions of the plan shown in Figure 9-2c, which are the navigate activities with

velocities (0.8, 0.8) and (−2,−0.4) respectively. Because EHC commits to those first

two actions with their fixed velocities and headings, POPF’s linear program has no

other option than taking the vehicle all the way to the top right corner in order to

be able to reach region A afterwards.

This discretization example shows that even in simple domains, continuous control

variables provide a large advantage over discretized rates of change.

9.2 Evaluation in Robotic Domains

To the best of our knowledge, there are currently no prior benchmarks available that

can exploit the features of our planner. Therefore, in order to showcase the new

capabilities of our planner and to show that our optimization framework is fast and

scalable, we present three new expressive robotic domains and benchmark our plan-

139

ner against them. Since no other planner can solve these domains, we also provide

simplified, linear version of some of these domains that we use to compare our plan-

ner to POPCORN [85]. We compare against this planner since it supports control

parameters, which are essential for these domains. The simplified domains do not

capture the full expressivity of these problems. However, because POPCORN sup-

ports control parameters, we can still represent some aspects of these problems within

its formalism. We also compare against the first version of our planner, Scotty1 [36],

since it uses a much simpler optimization model than the one presented in this work.

We describe these domains in this section. The PDDL description of these that

ScottyActivity takes as input is provided in Appendix C.

9.2.1 The AUV Domain

In this domain an Autonomous Underwater Vehicle (AUV) needs to visit and take

samples at multiple regions. This domain is similar to POPCORN’s 2D-AUV-Power

domain, that is based on prior Kongming and ScottyActivity domains. There are two

main differences between POPCORN’s domain and ours. First, since POPCORN

does not support controllable rates of change, the effects of the glide action are mod-

eled as discrete numeric displacements on the 𝑥, 𝑦 variables at the end of the action,

whereas we model the motion as a continuous effect that takes place while the action

is being executed. Moreover, since POPCORN only supports linear constraints, its

authors model the maximum power of the vehicle as a simple linear constraint on the

displacements at the end of the action (e.g. 3𝑑𝑥 +4𝑑𝑦 ≤ 60), while we can use the new

features of our SOCP model to limit the magnitude of the velocity (𝑣2𝑥 + 𝑣2𝑦 ≤ 𝑣2𝑚𝑎𝑥).

The objective of this domain consists in minimizing the plan makespan. The simpli-

fied linear version of this domain is similar except that we place no constraints on the

𝑣𝑥, 𝑣𝑦 velocities other than their simple independent bounds.

140

9.2.2 The ROV Domain

This domain is based on the motivating example presented in Section 3.1 but without

an AUV. As in the motivating example, the Remotely Operated Vehicle (ROV) needs

to take samples in multiple regions and end, together with the ship, in the destination

region. Note that our planner decides where to station the ship while the ROV is

taking samples, and that good selections of that position may allow the ROV to visit

several regions without having to be recovered by the ship first. The objective for

this domain minimizes a linear combination of the plan makespan and the distance

traveled by the ship. Figure 9-3 shows an example solution plan returned by our

planner for problem 6 of this domain.

In the simplified linear version of this domain we remove the velocity norm con-

straints. Furthermore, the maximum distance constraints, which are modeled with

the convex quadratic constraints of being inside a circle, are replaced by a simpler

linear polygonal over approximation of such a circle (an octagon in this case). Since

we cannot model the distance traveled by the ship without quadratic constraints, the

simplified version only optimizes the makespan of the plan.

9.2.3 The Air Refueling Domain

In this domain an autonomous Unmanned Aerial Vehicle (UAV) needs to take pictures

of several regions before landing at the destination location. Since the UAV has

limited fuel, it needs to refuel in-air from a tanker plane. While refueling, both

planes can keep moving but they need to stay within a maximum distance. The UAV

fuel decreases as a function of the distance traveled and the square of the velocity

(𝑓 = −𝑘1𝑣 − 𝑘2𝑣
2). As in the ROV domain, the objective for this domain is to

minimize a linear combination of the plan makespan and the distance traveled by the

tanker plane. In instances 11-20 there is an additional UAV, but only one UAV can

refuel from the tanker plane at a time. Figure 9-4 shows an example solution plan

returned by our planner for instance 15 of this domain.

This domain is challenging for several reasons. First, the planner needs to con-

141

A C

B

D

E

F

end

start

Figure 9-3: Trajectories of ship (blue) and ROV (orange) in problem 06 of the ROV-
regions domain. Note how the planner selects ship positions so that the ROV can take
samples at multiple regions without having to reposition the ship and while observing
the tether range constraint.

sider the simultaneous trajectories of multiple vehicles and also their fuel levels. Sec-

ond, and more importantly, while our optimization model supports the resource-

constrained norm effects (such as the fuel decrease depending on the norm or squared

norm of the velocity), the heuristic does not consider these effects directly. Therefore,

our planner only chooses the refuel activities when reaching other regions becomes

infeasible due to having insufficient fuel.

We do not present a simplified version of this domain because POPCORN would

not be able to solve a linear alternative. The reason is that the refuel activity requires

continuous effects since both the tanker and the UAV have to be flying simultaneously

while staying close to each other. POPCORN cannot model this since the numeric

change can only be applied at the beginning or end of an activity and not continuously

in time. This domain also requires that the fuel of each UAVs decreases as a function

of the magnitude of their velocities, which POPCORN does not support either.

142

tanker

refuel-uav-1

refuel-uav-2

uav-1

uav-2

A
B

C
D

E
end

start

Figure 9-4: Example solution for instance 15 of the refueling domain with a tanker
plane (blue) and two UAVs (orange and green). Note that the planner finds a trajec-
tory for the tanker that allows it to refuel both UAVs as needed.

9.2.4 Results

We evaluated ScottyActivity with the two search approaches discussed in Section 8.4

in these robotic domains. The results are shown in Table 9.3. As seen in column T,

our convex optimization model, a key contribution of our work, is solved very quickly.

The mean optimization time per problem grows for more complicated instances since

these have more state variables and require more activities, which results in far more

decision variables and constraints at later stages of the search. However, most op-

timization problems are solved in less than 10 ms in average for small to medium

domain instances and in less than 50 ms for larger ones. This is important since

large domain instances require solving tens of thousands of optimization problems, as

seen in the table (column N). This kind of performance would not be possible if we

used a non-convex non-linear optimization model with a general purpose non-linear

optimizer.

Table 9.3 also illustrates the performance characteristics of the EHC search al-

gorithm compared to the obj-EHC, that breaks heuristic ties based on the objective

of each state, as discussed in Section 8.4. Column 𝑂% shows the relative value of

the objective of the obj-EHC approach compared to EHC. Negative values indicate

143

AUV ROV Air Refueling

EHC obj-EHC EHC obj-EHC EHC obj-EHC
t L S N T t L S N T 𝑂% t L S N T t L S N T 𝑂% t L S N T t L S N T 𝑂%

01 0.53 4 4 17 2 0.54 4 4 21 2 0.0 1.16 16 19 153 3 1.20 16 19 172 3 0.0 0.97 8 11 111 3 1.08 8 12 133 3 -0.0
02 0.55 8 10 41 2 0.64 8 9 46 1 0.0 1.74 20 35 281 4 1.52 20 25 226 4 -0.0 1.68 12 19 191 5 1.93 12 20 221 6 -0.0
03 0.66 12 18 73 2 0.80 12 15 76 2 0.0 2.79 24 57 457 4 1.90 24 32 289 4 -0.1 2.44 16 30 301 6 2.72 16 28 309 6 -0.0
04 0.84 16 28 113 2 0.90 16 22 111 2 -5.7 4.34 36 79 633 5 3.51 36 48 433 6 -0.2 5.78 18 74 669 7 3.52 18 36 397 7 26.1
05 0.94 20 40 161 2 0.98 20 30 151 2 -4.0 7.26 40 119 953 6 4.32 40 55 496 7 -14.7 3.82 20 45 433 7 4.74 20 43 464 8 -8.5
06 0.89 20 40 161 2 0.97 20 30 151 2 -13.3 10.71 52 157 1225 7 7.24 52 74 651 9 -21.2 5.68 24 60 583 8 5.57 22 50 541 8 -12.1
07 1.18 24 54 217 2 1.11 24 39 196 2 -9.5 16.38 56 213 1665 9 9.05 56 83 734 11 -15.5 11.18 28 98 927 11 5.69 - 55 585 8 -
08 1.24 24 54 217 2 1.12 24 39 196 2 -31.4 19.75 68 236 1822 9 14.84 68 108 950 14 -12.1 10.93 32 96 916 11 11.13 30 77 808 12 -30.1
09 1.46 28 70 281 2 1.34 28 49 246 2 -19.1 32.24 72 338 2607 11 17.48 72 119 1053 15 -21.0 12.03 32 105 997 11 13.29 32 94 945 12 -77.0
10 1.49 28 70 281 2 1.50 28 49 246 3 -20.4 35.09 84 350 2659 12 21.96 84 136 1203 16 -4.7 17.14 38 115 1124 14 15.05 34 100 1041 13 -63.0
11 1.87 32 88 353 3 1.90 32 60 301 3 -14.0 40.10 88 392 2993 12 25.47 88 150 1313 17 -23.5 2.14 10 18 289 5 3.60 10 29 494 6 -0.5
12 1.86 32 88 353 3 1.62 32 60 301 3 -33.5 56.63 100 451 3410 15 31.83 100 176 1490 20 -21.7 10.77 14 64 1025 10 - - - - - -
13 2.29 36 108 433 3 1.92 36 72 361 3 -33.1 52.82 96 412 3094 15 34.41 104 186 1556 20 -23.2 15.43 16 80 1281 11 - - - - - -
14 2.30 36 108 433 3 2.03 36 72 361 3 -23.4 68.63 108 497 3683 17 39.55 108 207 1699 21 -25.9 21.33 18 98 1569 13 - - - - - -
15 2.85 40 130 521 3 2.35 40 85 426 3 -26.1 87.77 120 586 4315 18 45.00 120 224 1827 22 -16.6 49.61 22 165 2581 19 - - - - - -
16 2.75 40 130 521 3 2.34 40 85 426 3 -19.9 95.51 124 630 4659 18 48.94 124 237 1930 23 -17.6 60.67 24 191 2907 20 - - - - - -
17 3.57 44 154 617 3 3.10 44 99 496 4 -32.0 119.82 136 712 5301 20 58.95 136 259 2128 25 -21.9 78.57 26 222 3373 23 - - - - - -
18 4.48 48 180 721 4 3.42 48 114 571 4 -38.4 151.10 140 885 6531 21 64.24 140 272 2245 26 -19.7 658.30 32 1147 17003 38 - - - - - -
19 5.04 52 208 833 4 4.04 52 130 651 4 -35.9 161.05 144 923 6802 21 70.79 144 288 2373 27 -19.6 563.87 34 906 13972 39 - - - - - -
20 6.15 56 238 953 4 4.69 56 147 736 4 -40.8 218.39 156 1181 8658 22 82.21 156 314 2591 29 -20.5 249.25 36 419 6210 39 - - - - - -

Table 9.3: Benchmarking results. t: Planning time in seconds; L: Plan length in num-
ber of actions; S: Number of nodes expanded; N: Number of optimization problems
solved; T: Mean optimization time for each optimization problem in milliseconds;
O%: Relative objective value achieved by obj-EHC compared to EHC. Values with
‘-’ denote problems that could not be solved in 1200 seconds.

destination
region

start
A

B

H

C

F

G

D

E

I

ship

ROV

(a)

destination
region

start
A

B

H

C

F

G

D

E

I

ship

ROV

(b)

Figure 9-5: Plans found by ScottyActivity for problem 9 of the ROV domain us-
ing EHC search (a) and obj-EHC (b). The objective is a combination of the plan
makespan and the distance traveled by ship. obj-EHC finds a better plan than EHC,
with a 21% improvement in the objective, by taking samples at closer regions first.

144

refuel1

refuel2 tanker

uav
start

destination
region

(a)

refuel1

refuel2

tanker
uav

start

destination
region

(b)

Figure 9-6: Plans found by ScottyActivity for problem 9 of the Air Refueling domain
using EHC search (a) and obj-EHC (b). The objective is a combination of the plan
makespan and the distance traveled by tanker plane. Note how the plan found by
obj-EHC is much better (77% improvement in the objective).

an improvement in the objective. As expected, obj-EHC produces better plans in

general. This improvement is very significant in some instances, showing a reduction

in the objective of more than 50% (Figure 9-5). As explained in Section 8.4, obj-

EHC is more computationally expensive as it requires an extra optimization problem

minimizing the objective per state and it checks all the helpful descendants of each

expanded node, as opposed to immediately picking the one with lower than the in-

cumbent best heuristic. Therefore, we expected that obj-EHC would take longer

than EHC to find plans. However, the results show that this is not the case, and that

obj-EHC explores less states, finds better plans and takes less time in general than

EHC. In particular, in the ROV domain, obj-EHC takes less than half the time to

find plans than EHC for more difficult instances. We believe the objective guidance

is being very effective in these domains, in which taking a sample in a nearby region

or a further one looks the same in number of actions, but very different in terms of

the objective.

However, obj-EHC is not always better than EHC. In particular, obj-EHC strug-

145

AUV-simplified ROV-simplified

ScottyAct(EHC) Scotty1 POPCORN ScottyAct(EHC) Scotty1 POPCORN
t L S N T t L t L t L S N T t L t L

01 0.54 4 4 17 2 0.48 4 0.05 4 0.86 16 19 153 2 0.89 16 0.57 16
02 0.55 8 10 41 1 0.49 8 0.15 8 1.25 20 35 281 2 1.48 20 1.95 20
03 0.61 12 18 73 1 0.56 12 0.30 12 1.74 24 57 457 2 2.33 24 3.59 24
04 0.72 16 28 113 1 0.64 16 0.58 16 2.54 36 79 633 3 5.58 36 6.53 36
05 0.80 20 40 161 1 0.77 20 0.94 20 4.07 40 119 953 3 7.54 40 16.34 40
06 0.83 20 40 161 1 0.74 20 0.91 20 5.46 52 156 1214 3 12.79 52 24.77 52
07 0.92 24 54 217 1 0.92 24 1.50 24 7.85 56 213 1621 4 16.73 56 49.84 56
08 0.99 24 54 217 1 0.94 24 1.52 24 9.06 68 233 1753 4 55.40 84 77.21 68
09 1.15 28 70 281 1 1.24 28 2.22 28 14.36 72 328 2478 5 86.75 96 107.27 72
10 1.13 28 70 281 1 1.14 28 2.23 28 15.53 84 345 2565 5 119.23 100 150.69 84
11 1.43 32 88 353 1 1.44 32 3.29 32 18.34 88 396 2952 5 96.59 96 175.83 88
12 1.42 32 88 353 1 1.43 32 3.26 32 24.79 100 450 3335 6 142.33 108 242.64 92
13 1.49 34 92 369 2 1.53 34 3.89 34 23.36 96 411 3023 6 126.13 104 278.46 96
14 1.48 34 92 369 2 1.57 34 3.90 34 30.35 108 495 3639 7 180.93 116 343.66 108
15 1.80 38 114 457 2 2.12 38 4.88 38 38.62 120 578 4261 7 254.07 128 460.56 112
16 1.75 38 114 457 2 2.19 38 5.60 38 45.26 124 660 4826 8 158.47 108 525.74 116
17 2.22 42 138 553 2 2.50 42 6.58 42 56.49 136 743 5469 8 204.34 120 617.31 128
18 2.81 46 164 657 2 3.53 46 9.91 46 68.51 140 890 6484 8 271.64 132 783.90 140
19 3.31 50 192 769 2 4.12 50 13.01 50 73.40 144 926 6737 9 391.01 152 834.64 136
20 3.93 54 222 889 2 5.30 54 17.18 54 98.11 156 1177 8479 9 500.96 164 1028.76 148

Table 9.4: Benchmarking results for simplified domains t: Planning time in seconds;
L: Plan length; S: Number of nodes expanded; N: Number of optimization problems
solved; T: Mean optimization time for each optimization problem in milliseconds.

gles in the Air Refueling domain with two UAVs. This is a challenging domain since

the need to refuel is not accurately captured in the heuristic. Since the refueling ac-

tivity requires the tanker plane to move to wherever the UAV that wants to refuel is,

this activity is expensive in terms of the objective, but is not deemed to be useful by

the heuristic. Therefore, the algorithm tends to prefer other irrelevant actions that

are not useful (such as taking the same sample over and over again).

Finally, we evaluate ScottyActivity in the simplified linearized versions of the

domains as described earlier (Table 9.4). Recall that our optimization model degrades

gracefully to an LP when the problem solved does not require quadratic constraints.

Therefore, these results let us answer the question of what is the performance penalty

of switching from a linear program formulation to a SOCP one. As seen in the

table, the difference between the mean optimization time for the linear problems

solved in the simplified domains and the SOCP ones from the full domains is very

146

small for the simpler instances and significant for more difficult instances. However,

this difference is always well within an order of magnitude. Moreover, we should

highlight that the linearized version of the domains is significantly simpler, as it not

only linearizes some constraints (such as the ROV tether range ones) but also drops

many other constraints, like the norm ones or the ones required to minimize the

traveled distances. We can conclude that using SOCPs for consistency checking is

not only practical, but that the performance trade-off is well worth it considering

the added expressivity that they provide. Finally, we compare our planner in these

simplified domains against Scotty1 and POPCORN. Since our optimization model is

significantly more complex than theirs, even in these linear domains, given the extra

variables and constraints that we require, we expected that our planner would be

slower. However, Table 9.4 shows that this is not the case and our planner performs

significantly better. We hypothesize that this is due to the superior performance of the

Gurobi solver compared to the solvers used by Scotty1 (CPLEX 12.4) and POPCORN

(lpsolve 5.5). Additionally, POPCORN’s test were kindly run on a slower i5-M540

2.53GHz processor by its authors, since they could not share the planner binary with

us.

9.3 Comparison With a Mixed Integer Approach

As we explain in Chapter 6, when the plan skeleton that describes the chosen starts

and ends of activities and their order is known, the state and control trajectories can

be found efficiently by solving a convex optimization problem. The hybrid activity

and trajectory planning problem reduces to finding the plan skeleton. This is hard

due to the highly combinatorial nature of the problem. In this thesis, we argue that

this problem is best solved using heuristic forward search with a delete relaxation

heuristic, as this method has been proven to be very effective in activity planning

problems. However, this problem could also be solved using a mixed-integer opti-

mization approach. Mixed-integer solvers use branch and bound search algorithms.

The branch and bound search is often guided by the solution to relaxed optimization

147

problems in which the integer variables are allowed to take continuous values. We

show in this section that our approach based on heuristic forward search performs at

least two orders of magnitude better than an alternative mixed-integer approach.

The mixed-integer formulation that we use in this section employs the same deci-

sion variables and constrains for the state and control variables and for the activity

durations, continuous conditions and effects, as presented in Chapter 6. An important

difference between the mixed-integer approach that we use in this section and Scotty-

Activity is that the former can only find the solution to a planning problem when

it is provided with a fixed length for the plan. This length indicates the maximum

number of start and end activities (events) that the plan can have. The reason for this

limitation is that the decision variables and constraints are fixed in the optimization

problem. ScottyActivity, on the other hand, determines the required number of start

and end activities as part of its search process. A well-known approach to solving

planning problems with a mixed-integer approach when the plan length is not known

consists in iteratively solving the problem with increasing plan lengths until a solu-

tion is found or the maximum plan length or time limit is exceeded. However, in the

results shown in this section we provided the MIP planner with a fixed plan length,

that matched, for each problem, the length of the plan found by ScottyActivity using

the obj-EHC algorithm.

In order to select the start and end activities and their order, the MIP approach

uses integer variables. For each step in the fixed length plan, we create a binary

variable for each start or end activity that indicates whether the activity is selected

for such step in the plan. The fixed plan length indicates the maximum number

of start or end activities, but the MIP planner is allowed to find a shorter plan by

selecting no-op activities at the last steps of the fixed length plan. Additional binary

variables are created to represent the propositions that hold at each step in the plan.

We use the standard big-M method to enable or disable constraints when an activity

is selected.

We compared the performance of this MIP planner against ScottyActivity using

the obj-EHC algorithm in the AUV and ROV domains from Section 9.2. We used a

148

01
4

02
8

03
12

04
16

05
20

06
20

07
24

08
24

09
28

10
28

11
32

12
32

13
36

14
36

15
40

16
40

17
44

18
48

19
52

20
56

Problem Number / # Start-End Actions

10 1

100

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

AUV Domain

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(a)

01
16

02
20

03
24

04
36

05
40

06
52

07
56

08
68

09
72

10
84

11
88

12
100

13
104

14
108

15
120

16
124

17
136

18
140

19
144

20
156

Problem Number / # Start-End Actions

100

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

ROV Domain

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(b)

0 20 40 60 80 100 120 140 160
Start-End Actions (Events)

10 1

100

101

102

103

Pl
an

ni
ng

 T
im

e
(s

)

Planning Time (AUV and ROV domains)

ScottyActivity (obj-EHC)
MIP First Solution
MIP Optimal (5%)

(c)

Figure 9-7: Planning time for ScottyActivity (obj-EHC algorithm) and the MIP
approach in the AUV (a) and ROV (b) domains. The planning time for the first MIP
solution (green) and optimal to 5% tolerance (red) are shown. Figure (c) shows the
planning time for both domains as a function of the required number of start/end
actions to solve the problem. A time limit of 2400 seconds was used.

149

time limit of 2400 seconds for the MIP solver for each problem, and we used Gurobi

7.5 as the MIP solver. The MIP solver was able to solve all the problems in the AUV

domain (Figure 9-7a). For small problems, up to instance 5, that require less than

20 events, the MIP planner was able to find a solution faster than ScottyActivity.

In many cases, this solution was also the optimal (to 5% tolerance) for the given

fixed length. However, the performance of the MIP solver degrades quickly as the

complexity of the problem increases. Problems needing more than 40 events where

solved two orders of magnitude slower than ScottyActivity. For example, the MIP

planner found a feasible solution for instance 19 of the AUV domain in 970 seconds,

while ScottyActivity solved the same problem in about 5 seconds. The MIP planner

was able to find optimal solutions (proved to 5 % tolerance) for instances 14 and

lower, which need fewer than 36 events.

The ROV domain proved to be more challenging for the MIP solver (Figure 9-7b).

In this case, the MIP solver was only able to solve the first five problems within the

maximum time limit of 2400 seconds. Instance 5, requiring 40 events was solved by the

MIP planner in 320 seconds. The same problem was solved by ScottyActivity using

the obj-EHC algorithm in about 7 seconds. One of the reasons why the ROV domain

is more challenging for the MIP planner is that the problems are more complex and

require a higher number of activities. However, we speculate that this is not the only

reason. In the AUV domain, the MIP planner was able to find solutions for problems

requiring up to 56 events, while it was not able to find a solution for a problem

requiring 52 events in the ROV domain. The reason this may happen is that the

ROV domain not only requires longer plans, but the number of possible activities is

also significantly higher in this domain than in the AUV domain. Furthermore, there

are several activities that are mostly discrete, such as the deployment and recovery

activities. For this activities the planner is probably not finding useful relaxations.

Another interesting comparison between the ScottyActivity planner and the MIP

approach is the quality of the returned plans. We report, in Figure 9-8, the objective

of the plans found by ScottyActivity and the MIP planner. For the MIP planner

we are interested in the objective of the first solution found, the best solution found

150

01
4

02
8

03
12

04
16

05
20

06
20

07
24

08
24

09
28

10
28

11
32

12
32

13
36

14
36

15
40

16
40

17
44

18
48

19
52

20
56

Problem Number / # Start-End Actions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
bj

ec
tiv

e
M

IP
/S

co
tt

yA
ct

iv
ity

Objective Ratio (AUV Domain)

ScottyActivity (obj-EHC)
ScottyActivity (EHC)
MIP First Solution
MIP Best on Timeout
MIP Optimal (5%)

(a)

01
16

02
20

03
24

04
36

05
40

06
52

07
56

08
68

09
72

10
84

11
88

12
100

13
104

14
108

15
120

16
124

17
136

18
140

19
144

20
156

Problem Number / # Start-End Actions

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

O
bj

ec
tiv

e
M

IP
/S

co
tt

yA
ct

iv
ity

Objective Ratio (ROV Domain)

ScottyActivity (obj-EHC)
ScottyActivity (EHC)
MIP First Solution
MIP Best on Timeout
MIP Optimal (5%)

(b)

Figure 9-8: Objective ratio between the MIP approach and ScottyActivity (obj-EHC
algorithm) in the AUV (a) and ROV (b) domains. The figures show the ratio achieved
by the first MIP solution (green), the optimal to 5% tolerance (red), and the best
MIP solution found before the timeout (purple). A time limit of 2400 seconds was
used.

151

within the time limit and the optimal solution for the fixed plan length. The results

show the ratio between the objective of the MIP solutions and the ScottyActivity

solution for the AUV (Figure 9-8a) and ROV (Figure 9-8b) domains when using the

obj-EHC algorithm. As seen in the figures, the obj-EHC algorithm returns fairly

high quality solutions. In particular, the solutions found by ScottyActivity with the

obj-EHC algorithms were always better than the first solution found by the MIP

planner, even when this solution was often found two orders of magnitude slower.

This results show the improvement of the obj-EHC algorithm when compared to the

standard EHC algorithm, whose solutions are often comparable to the first solutions

found by the MIP planner. One of the benefits of the MIP approach is that it is able

to find optimal solutions for a fixed plan length. However, these solutions are often

computationally expensive to find.

These results indicate that the MIP approach does not scale to large planning

problems. Moreover, it is important to highlight that the MIP planner was provided

with the number of required events for each planning problem. The runtime per-

formance would be significantly worse if the MIP planner had to solve problems of

increasing fixed-length until a solution was found. Additionally, the Gurobi solver is

designed to use multiple cores simultaneously, while our search algorithm is single-

core. While we do not believe that a mixed-integer approach is the best method to

solve large hybrid activity and trajectory planning problems, it is a useful approach

for solving small planning problems that require optimal solutions. Moreover, it may

be possible to use a mixed-integer formulation to improve plans that are first found

using a heuristic forward search approach. We leave this work for future research.

152

Part III

ScottyPath

153

154

Table of Contents

10 Geometric Path Planning Through Convex Obstacle-free Regions 157

10.1 Problem Formulation . 161

10.2 Approach . 164

10.3 Alternative Mixed-Integer Approaches 177

10.4 Experimental Results . 182

10.5 Generation of Convex Safe Regions 191

11 ScottyPath: Path Planning Through Convex Obstacle-free Regions

for Qualitative State Plans 195

11.1 Example problem . 197

11.2 Problem Statement . 200

11.3 Relation Between tQSPs and Other Problems 216

11.4 Planning Approach . 219

11.5 Chapter Summary . 236

12 ScottyPath Experimental Results 237

12.1 Description of the Experiments . 237

12.2 Generation of Problem Instances . 242

12.3 Results . 242

12.4 Chapter Summary . 250

156

Chapter 10

Geometric Path Planning Through

Convex Obstacle-free Regions

In order to effectively plan missions for mobile robots over long horizons, the Scotty

Planning System needs to be able to deal with obstacles. Unfortunately, the disjunc-

tive constraints required to avoid obstacles are non-convex and, therefore, cannot be

incorporated in our convex optimization model in a straightforward manner. In this

chapter we present a standalone geometric motion planner that uses an approach

based on informed search and convex optimization. In order to find obstacle-free

paths, this planner generates paths that are guaranteed to be contained in the union

of a set of convex obstacle-free safe regions, which are generated in advance. This

planner is not part of the Scotty Planning System. However, we use this chapter for

pedagogical purposes, as it provides us with the opportunity to introduce the core

ideas of the ScottyPath planner using a simpler problem. On that note, the planner

presented in this chapter is purely a geometric path planner. As such, it does not

consider multiple vehicles, dynamics, temporal constraints or any state conditions

other than visiting goal regions. All these are considered in ScottyPath, which we

describe in Chapter 11.

The disjunctive constraints required for obstacle avoidance can be handled with

mixed-integer optimization approaches. There exist available solvers capable of han-

dling the mixed-integer version of the cone programs that we use, known as mixed-

157

integer second order cone programs (MISOCPs). However, using MISOCPs solvers

to handle obstacles in Scotty is not an effective approach for two reasons. First,

mixed-integer problems are NP-complete, and therefore not known to be solvable in

polynomial time, unlike cone programs. As a consequence, solving MISOCPs takes, in

practice, orders of magnitude longer than SOCPs, and performance degrades quickly

the size of the problem increases. This is a significant problem for Scotty since, as we

explained before, our optimization program is solved thousands of times for a typical

robotics planning problem.

However, this issue is not the only reason why a MISOCP approach is not an

appropriate solution to handle obstacle avoidance in the Scotty Planning System.

Since we do not discretize time, each segment of the piecewise linear trajectory that

we allow for robot motions can take an arbitrarily large amount of time. A typical

mixed-integer approach using the well-known bigM method ensures that the extremes

of such linear segments are obstacle free. However, it cannot guarantee that the robot

does not collide with obstacles in between, as intermediate points are not subject to

obstacle avoidance constraints.

In this chapter, we propose a path planning approach that relies on convex opti-

mization and informed search. We restrict obstacles to convex polytopes, since this

greatly simplifies the problem. Non-convex obstacles can be decomposed into convex

components using well-known methods [65]. Instead of avoiding obstacles directly,

our planner reformulates the motion planning problem to find, instead, paths over

convex obstacle free safe regions. These safe regions are convex regions that are

guaranteed to be obstacle free and are computed with the IRIS algorithm [30]. This

type of motion planning over safe regions has been performed in the past to compute

dynamically feasible trajectories for quadrotors using a mixed-integer approach [28].

In this chapter, we present, instead, an approach based on informed search that finds

shortest piecewise linear paths going through safe regions. We show in Section 10.4

that our approach is more than two orders of magnitude faster in medium to large

environments than mixed integer approaches.

Our motion planner finds obstacle free paths from an initial position to one or

158

1

2

3

(a)

1

2

3

(b)

1

2

(c)

1

2

(d)

Figure 10-1: Motion planning for multiple goal regions can be done independently
when these goal regions are small (a and b). However, when goal regions are large,
better plans can often be found by considering all goals jointly. Figure (d) shows
the suboptimal path to goals 1 and 2 when planning independently (in black) and a
better plan, in blue, when considering both goals jointly.

159

more goal regions. The standard approach for motion planning when multiple goal

regions need to be visited is to plan for each consecutive pair of region goals indepen-

dently. This works well when the goal regions are small (Figures 10-1a and 10-1b).

However, for the typical robotic problems that Scotty solves, these regions can be

arbitrarily large. In these cases, planning for pairs of goal regions independently does

not work well, as better plans can often be found when considering all the goals

jointly (Figures 10-1c and 10-1d). For this reason our motion planner is designed to

consider all region goals jointly. As we will explain later, these goals can be ordered

or unordered.

Compared to other motion planning approaches, the algorithm presented in this

chapter exhibits multiple advantages for our purposes. By remapping the obstacle

avoidance problem into the problem of finding paths through convex safe regions, we

avoid non-convex disjunctive constraints. As we explain in Chapter 11, this allows

ScottyPath to use the same convex SOCP model from Chapter 6 that we use for

hybrid activity and motion planning. This is the main reason why this approach has

been developed, as it allows us to integrate our Scotty dynamics, continuous effects

and temporal constraints within this motion planning framework.

Instead of relying on integer programming to select the obstacle-free safe regions,

we use informed search on a graph that describes how these regions are connected.

The performance of this approach is orders of magnitude better than the alternative

mixed-integer programming approach, as we show in Section 10.4.

As a standalone path planner, our approach does present some disadvantages com-

pared to other standard motion planning approaches. First, we need the convex safe

regions to be generated in advance, as will be explained in Section 10.5. Moreover,

the shortest paths returned by our approach are only optimal with respect to the cov-

erage of the safe regions. That is, there could be shorter paths avoiding all obstacles

and going through areas not covered by the safe regions.

This chapter is structured as follows. We first define our problem statement. We

then explain the overall approach informally with an example, and we continue with

the formal motion planning algorithm. Next, we introduce alternative mixed-integer

160

approaches for comparison and show in the experimental results section that they are

more than two orders of magnitude slower than our planner in medium to complex

environments. We end this chapter by discussing methods for generating the convex

safe regions in the environment.

10.1 Problem Formulation

As indicated before, the motion planner presented in this chapter solves the problem

of finding piecewise-linear shortest paths through convex safe regions from an initial

position to one or more goal regions in the environment. We now proceed to introduce

the definitions we need before describing our problem statement in detail.

Definition 10.1 (Bounded convex polytope). A bounded convex polytope is the set

resulting from the intersection of a finite number of half-spaces, and is given by

𝑅 = {x ∈ R𝑛 | 𝐴x ≤ b } (10.1)

, where 𝐴 ∈ R𝑚×𝑛 and b ∈ R𝑚×1.

N

Definition 10.2 (Obstacle). An obstacle, 𝑅𝑜, is a bounded convex polytope that our

robot cannot intersect with. In order to simplify the planning problem, we follow

the popular approach of representing the robot by a point, x ∈ R𝑛 and growing the

obstacles according to the robot radius. N

Definition 10.3 (Occupied space). The occupied space, 𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠, is the set defined

by the union of all obstacles.

𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 =
⋃︁
𝑅𝑜𝑖

𝑅𝑜𝑖 (10.2)

N

161

Definition 10.4 (Safe region). A safe region, 𝑅𝑠 is a bounded convex polytope that

does not intersect with any obstacles. N

Definition 10.5 (Safe space). The Safe Space is the set resulting from the union of

all the safe regions.

𝑅𝑠𝑎𝑓𝑒 =
⋃︁
𝑅𝑠𝑖

𝑅𝑠𝑖 (10.3)

N

Note that the intersection between the occupied space and the safe space is null,

𝑅𝑠𝑎𝑓𝑒 ∩𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 = ∅.

Definition 10.6 (Goal region). A goal region is a bounded convex polytope that the

robot needs to visit. A goal region may or may not intersect with one or more

obstacles or safe regions. N

Definition 10.7 (Environment). An environment, 𝐸, is a bounded convex polytope

that contains all obstacles, all safe regions and all goal regions.

⋃︁
𝑅𝑔𝑖

𝑅𝑔𝑖 ∪𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 ∪𝑅𝑠𝑎𝑓𝑒 ⊆ 𝐸 (10.4)

N

Definition 10.8 (Free space). The free space, 𝑅𝑓𝑟𝑒𝑒, is the part of the environment

that does not intersect with any obstacles.

𝑅𝑓𝑟𝑒𝑒 = 𝐸 ∖𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 (10.5)

Note that 𝑅𝑠𝑎𝑓𝑒 ⊆ 𝑅𝑓𝑟𝑒𝑒. N

With these definitions in place, we can now proceed to define the problem that

the motion planner presented in this chapter solves.

162

Definition 10.9 (Safe-region shortest path problem). A safe-region shortest path

problem (SSP) is a tuple ⟨𝐸,𝑂, 𝑆,x0, 𝐺⟩ where

∙ 𝐸 is an environment.

∙ 𝑂 is the set of all obstacles in the environment.

∙ 𝑆 is the set of all safe regions in the environment.

∙ 𝑥 is the starting location of the robot.

∙ 𝐺 is a list of ordered or unordered goal regions that the robot needs to visit.

The solution to a safe-region shortest path problem is a safe region constrained

shortest path that visits all goal regions (in order or not) and has minimum length.

N

Definition 10.10 (Safe-region shortest path problem with ordered goals). A safe-

region shortest path problem with ordered goals, SSPo, is a SSP where the goal regions

need to be visited in the given order. N

Definition 10.11 (Safe-region shortest path problem with unordered goals). A safe-

region shortest path problem with unordered goals, SSPu, is a SSP where the goal

regions that need to be visited are unordered. N

The motion planner presented in this chapter solves both SSPos and SSPus. The

solution to SSP problems are shortest safe-region constrained paths. These are defined

next.

Definition 10.12 (Valid path). A valid path, 𝑝𝑣𝑎𝑙𝑖𝑑, is a piecewise linear path given

by the sequence of points denoting the ends of its linear segments, x1 . . .x𝑛, that

never intersects with any of the obstacles. That is, a valid path is fully contained in

the free space, 𝑝𝑣𝑎𝑙𝑖𝑑 ∈ 𝑅𝑓𝑟𝑒𝑒. N

163

Definition 10.13 (Shortest path). Given a SSP, a shortest path is a valid path that

visits all the goal regions (in the given order of not, depending on whether the SSP

is an SSPo or an SSPu) and that has minimum length. N

Definition 10.14 (Safe-region constrained path). A safe-region constrained path,

𝑝𝑠𝑎𝑓𝑒 is a path that is fully contained in the safe space, 𝑝𝑠𝑎𝑓𝑒 ∈ 𝑅𝑠𝑎𝑓𝑒. Since 𝑅𝑠𝑎𝑓𝑒 ⊆
𝑅𝑓𝑟𝑒𝑒 every safe-region constrained path is also a valid path. N

Definition 10.15 (Shortest safe-region constrained path). Given a SSP, a shortest

safe-region constrained path is a safe-region constrained path that visits all the goal

regions and that has minimum length. Since every safe-region constrained path is

also a valid path but not every valid path is a safe-region constrained path, shortest

paths have, in general, shorter length than shortest safe-region constrained paths. N

10.2 Approach

In this section we first describe how our motion planner works with an example and

then we proceed to describe our planning algorithm in detail.

10.2.1 In a Nutshell

Our motion planner takes a safe-region shortest path problem (Figure 10-2a) and

returns a shortest safe-region constrained path. We assume that the safe regions

have already been constructed and placed in the environment (Figure 10-2b), but we

discuss in Section 10.5 different methods for constructing such regions. To motivate

our solution method, we note that, if we knew an (ordered) sequence of safe and goal

regions we want to visit, then the problem of finding the shortest paths reduces to

solving a second order cone program, which can be done very efficiently with state

of the art commercial solvers. The difficulty of the motion planning problem lies,

then, in finding what safe regions to visit and in what order. We find this sequence

using informed search, although we also compare our approach with mixed integer

164

A
B

C D

 xstart

(a)

A
B

C D

 xstart

(b)

4

17

23 12

2

35

18

20

29

22

8

25

307

34

10
16

21

24

13

31

15

26
3

1

14

33
19

6

11

0

9

32

28

5

27B

D

A

C

S

(c)

D

 xini

(d)

Figure 10-2: Figure a shows the environment with obstacles (in purple) and goal
regions (in green). Safe regions (shown in red) are generated in advance (b). The
connectivity graph is then computed. This graph (c) shows the connections between
safe regions (white nodes), goal regions (green nodes) and the starting position (blue).
Using 𝐴* we find the optimal sequence of safe regions to reach goal region D with the
shortest safe-region constrained path (d).

165

Rgoal

S0

S1

S2

x1

x2
x3

xini

Figure 10-3: Shortest path going through a sequence of safe regions.

approaches. In order to find the best sequence of safe regions, we first create the

connectivity graph of safe and goal regions (Figure 10-2c). The connectivity graph is

an unweighted graph that indicates how regions are connected: i.e. the graph contains

an edge between two regions if these have a non-null intersection. This graph, which

is precomputed before the start of the search, prevents us from trying impossible

paths between regions that are not connected. In order to find the best sequence of

safe regions, we use the 𝐴* algorithm. In order to compute the cost of the selected

sequence of paths and the heuristic (cost-to-go), we solve a SOCP for each search

state. This SOCP computes the shortest path going through the selected safe regions

in the current search state (cost), and the straight line paths going through the

remaining goals and ignoring obstacles (heuristic). Since our heuristic is admissible,

the returned path is the shortest path through safe regions (Figure 10-2d).

10.2.2 Shortest Path through Convex Regions

Given a starting point, a goal region and an ordered sequence of safe regions to go

through, the shortest path can be found by solving a second order cone program

(SOCP). The shortest path is a piecewise-linear path, where each segment is fully

contained in each of the safe regions in the sequence. A path going through 𝑛 safe

regions and reaching a goal region at the end consists of 𝑛 segments and 𝑛+ 1 points.

These points are the solution to the SOCP problem. Given that the segments are

straight lines and that the safe regions are convex, it suffices to impose that the

166

beginning and the end of each segment are inside its associated safe region in order

to guarantee that the full segment remains inside the safe region. This is achieved

with the following optimization program in which the decision variables are the 𝑛+ 1

points (Figure 10-3), x𝑖 ∈ R𝑛:

min
x𝑖

𝑛−1∑︁
𝑖=0

‖x𝑖+1 − x𝑖‖ (10.6)

x0 = x𝑖𝑛𝑖 (10.7)

x𝑛 ∈ 𝑅𝑔𝑜𝑎𝑙 (10.8)

x𝑖,x𝑖+1 ∈ 𝑆𝑖 ∀𝑖 = 0 . . . 𝑛− 1 (10.9)

, where 𝑆0 . . . 𝑆𝑛−1 is the sequence of the 𝑛 safe regions visited, and the constraint

ensures that each of the linear segments of the path is fully contained in each safe

region, as discussed earlier. Note that all points except the first and the last are

constrained to be in two safe regions simultaneously. This is equivalent to imposing

that these points lie in the intersection between the consecutive safe regions. In order

to find the shortest path, we minimize the sum of the lengths of all the segments in

the paths. These lengths are expressed as Euclidean norms and can be represented

with cone constraints. Therefore, the mathematical program presented before is a

second order cone program (SOCP). Since SOCPs are convex optimization problems,

our optimization problem can be solved very efficiently and the solution returned

by the solver is optimal. As indicated earlier, the difficulty in the motion planning

problem that we are trying to solve lies in finding what safe regions to visit and in

what order. Once that is determined, we can extract the shortest path as indicated

in this section optimally and very efficiently.

10.2.3 Connectivity Graph of Safe Regions

As explained earlier the first step in our motion planning algorithm involves creating

the connectivity graph that expresses how the safe and the goal regions are connected.

167

A

B

1
2

3
4

5

6

(a)

1

3

6 5

A B

2

4

(b)

Figure 10-4: Safe regions and resulting connectivity graph

Algorithm 10.1: Connectivity-Graph
Input: A set of convex safe regions (𝑆) and a set of convex goal regions (𝑅𝑔).
Output: A bidirectional graph, 𝐺 = ⟨𝑉,𝐸⟩, with bidirectional edges between

pairs of regions whose intersection is not null.
Algorithm

1 𝑉 ← 𝑆 + 𝑅𝑔

2 𝐸 ← {}
3 𝑛𝑆 ← |𝑆|
4 𝑛𝑔 ← |𝑅𝑔|
5 for 𝑖 in 0 . . . 𝑛𝑆 − 1 do
6 for 𝑗 in 𝑖 + 1 . . . 𝑛𝑆 − 1 do
7 if INTERSECTS?(𝑆𝑖, 𝑆𝑗)
8 𝐸 ← 𝐸 + ⟨𝑆𝑖, 𝑆𝑗⟩

9 for 𝑘 in 0 . . . 𝑛𝑔 − 1 do
10 if INTERSECTS?(𝑆𝑖, 𝑅𝑔𝑘)
11 𝐸 ← 𝐸 + ⟨𝑆𝑖, 𝑅𝑔𝑘⟩

12 return ⟨𝑉 ,𝐸⟩

168

This can be done offline and reused in an environment with constant safe and goal

regions where multiple paths may be queried with either different starting positions

or different goal regions.

In order to create the connectivity graph, we test the pairwise intersections of

all safe regions among each other, as well as the intersections between safe regions

and goal regions (Algorithm 10.1). Note that we do not need to compute the actual

intersection between the regions, but only determine whether this intersection is null

or not (Line 7 and 10). This can be done efficiently with state of the art computa-

tional geometry algorithms [43]. The complexity of the connectivity graph algorithm

is quadratic in the number of safe regions. However, due to the efficiency of mod-

ern computational geometry algorithms we find that the connectivity graph can be

created very fast even in environments with hundreds of safe regions, and that the

computation time is very small compared to the time that it takes to find a path later

through this regions. This will be shown later in our experimental results section.

10.2.4 Informed Search over Convex Safe Regions

As discussed earlier we use informed search (the 𝐴* algorithm) and the connectivity

graph to find the optimal sequence of safe regions that the robot needs to go through

in order to visit the goal regions (Algorithm 10.2). The algorithm presented in this

section solves SSPo problems (in which the regions goals are ordered). Section 10.2.4.2

discusses the changes needed to solve SSPu problems (with unordered region goals).

We frame this problem as the search for the optimal sequence of safe regions over

the connectivity graph until all goal regions have been visited. Each search node

in the search tree contains the sequence of regions visited up to that point. These

regions can be either safe or goal regions. The search finishes when we find a search

node that visits all goal regions. We start the search with a priority queue containing

a search node for every safe region that contains the initial position x𝑖𝑛𝑖 (lines 2 to

6). Each search node has its associated cost (𝑔), which is the length of the path going

through the visited regions up to that node. Nodes also have their heuristic value (ℎ),

which is an estimate of the length of the remaining path in order to visit all remaining

169

Algorithm 10.2: Plan-Region-Path
Input: The starting point x𝑖𝑛𝑖, the connectivity graph 𝐺, a sequence of goal

regions to visit 𝑅𝑔 and a heuristic weight 𝛼 ≥ 0.
Output: A safe-region constrained path x𝑖𝑛𝑖,x1 . . .x𝑛 visiting the goal regions,

and the sequence of the safe regions that contain the path, if it
exists. This path is a shortest safe-region constrained path if 𝛼 ≤ 1.

Algorithm
1 𝑄← CREATE-PRIORITY-Q()
2 𝑅𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 ← GET-CONTAINING-SAFE-REGIONS(x𝑖𝑛𝑖)
3 for 𝑟 in 𝑅𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 do
4 𝑁𝑛𝑒𝑤 ← MAKE-NODE(x𝑖𝑛𝑖, 𝑅𝑔, 𝑟);
5 ⟨𝑔, ℎ⟩ ← COMPUTE-G-H(𝑁𝑛𝑒𝑤)
6 PUSH(𝑄, 𝑔 + 𝛼 · ℎ, 𝑁𝑛𝑒𝑤)

7 while not IS-EMPTY(𝑄) do
8 𝑁 ← POP(𝑄)
9 if not VISITED?(𝑁.𝑟𝑙𝑎𝑠𝑡)

10 MARK-VISITED(𝑁.𝑟𝑙𝑎𝑠𝑡)
if 𝑁 .remaining_goals = ∅

11 return ⟨𝑁.𝑝𝑎𝑡ℎ,𝑁.region_sequence⟩
12 𝑅𝑟𝑒𝑎𝑐ℎ ← SAFE-REGION-NEIGHBORS(G, 𝑁.𝑟𝑙𝑎𝑠𝑡)
13 if REACHABLE(G, 𝑁.𝑟𝑙𝑎𝑠𝑡, 𝑁 .next_goal)
14 𝑅𝑟𝑒𝑎𝑐ℎ +=𝑁 .next_goal

15 for 𝑟 in 𝑅𝑟𝑒𝑎𝑐ℎ do
16 𝑁𝑛𝑒𝑤 ← EXTEND(𝑁 , 𝑟)

if 𝑁𝑛𝑒𝑤 and not VISITED?(𝑟)
17 ⟨𝑔, ℎ⟩ ← COMPUTE-G-H(𝑁𝑛𝑒𝑤)
18 PUSH(𝑄, 𝑔 + 𝛼 · ℎ, 𝑁𝑛𝑒𝑤)

19 return ⟨𝑛𝑖𝑙, 𝑛𝑖𝑙⟩

170

Algorithm 10.3: Extend
Input: A search node, 𝑁 , and a new safe or goal region to visit, 𝑟.
Output: A new search node, 𝑁𝑛𝑒𝑤, going through region 𝑟.
Algorithm

1 𝑁𝑛𝑒𝑤 ← CLONE(𝑁)
2 if 𝑟 is SAFE-REGION
3 APPEND(𝑁𝑛𝑒𝑤.visited_regions, 𝑟)
4 𝑁.𝑟𝑙𝑎𝑠𝑡 ← 𝑟

5 elif 𝑟 is GOAL-REGION
6 𝑟𝑝𝑟𝑒𝑣 ← 𝑁.𝑟𝑙𝑎𝑠𝑡
7 APPEND(𝑁𝑛𝑒𝑤.visited_regions, 𝑟)
8 APPEND(𝑁𝑛𝑒𝑤.visited_regions, 𝑟𝑝𝑟𝑒𝑣)
9 REMOVE(𝑁𝑛𝑒𝑤.remaining_goals, 𝑟)

10 return 𝑁𝑛𝑒𝑤

goal regions after this node. Usually graph search problems assign fixed costs to the

edges of the graph and these costs are accumulated when traversing the graph in

order to determine the cost of reaching a given state through a path. Our problem is

more complicated in that we cannot assign fixed costs to the edges of the connectivity

graph. The reason is that the edge weights along a path are not independent of their

sibling edges. Each edge weight is a function of the points selected within the two

regions, and these points are shared by adjacent edges. Edges represent intersections

of regions and these intersections can be arbitrarily large. The cost of reaching some

region through a sequence of regions changes heavily depending on the path taken.

That is, the same edge that connects two safe regions in the connectivity graph can

have very different costs depending on the path before getting to that edge.

In order to solve this issue, we use an optimization based approach that jointly

computes the cost 𝑔 and heuristic ℎ for each search node by solving a single second or-

der cone program (line 17). This optimization problem, described in Section 10.2.4.1,

finds the minimum length path going through the visited safe regions in the search

node, and reaching the remaining goals while ignoring obstacles from that point on-

ward. Since the heuristic computed this way ignores obstacles, it represents the

minimum possible length of the path through the remaining goal regions, and it con-

stitutes an admissible heuristic. The paths returned by our algorithm are, therefore,

171

optimal when the heuristic weight, 𝛼, is smaller or equal than 1.

In order to perform informed search nodes are expanded as follows. Each node can

be extended to visit neighboring safe regions (those connected to the last visited safe

region) or the next goal region if it is connected to the last visited safe region in the

search node (lines 12 to 14). This is shown in Algorithm 10.3. When a search node

is extended with a safe region, this algorithm simply appends the safe region to the

list of visited regions and updates the node’s last region field. However, goal regions

are handled differently. First, whenever a new goal region is visited, this algorithm

removes the goal from the list of remaining goals to satisfy (line 9). Moreover, since

goal regions may intersect with obstacles, this algorithm not only appends the goal

region to the list of visited regions, but it also appends the last visited safe region as

well. This ensures that the segment visiting the goal region will also be contained in

the previous safe region, which ensures that the path will go through the goal region

without intersecting with any obstacles.

Finally, we avoid exploring regions that have already been reached by using a

visited list. In order to preserve the optimality of our algorithm, regions are only

marked as visited once they are pulled from the priority queue (line 12). Since our

planner is designed to find shortest paths visiting multiple goal regions, the same

safe region may have to be visited more than once within the full plan (e.g. going

back through some safe regions after visiting a goal region in a corner). Therefore,

safe regions are only marked as visited with respect to the sequence of goals already

satisfied. That is, the same safe region can be visited again after visiting some goal

region. For example, safe region 𝑅7 may be first reached and marked as visited

by a search node that describes a path that has already visited goals 𝐺1 and 𝐺2.

Other search nodes containing paths that have also visited goals 𝐺1 and 𝐺2 will not

be allowed to visit 𝑅7, since it has already been marked as visited for those goals.

However, a search node that has visited only 𝐺1 or another that has visited goals 𝐺1,

𝐺2 and 𝐺3 will be allowed to visit 𝑅7, since this safe region has not been marked as

visited for those goals.

We now proceed to describe how the cost (𝑔) and heuristic (ℎ) are computed for

172

Visited Regions: R9 R12 G1 R12 R7 R15 G2 R15 R21
Remaining Goals: G3 G4

R9

R12

R7

R15

R21G1

G2
G3

G4

g
h

x0 == xini

xi

xg0

xg1

Figure 10-5: Computation of g and h for a search node.

each node by solving an optimization program and the changes that are required to

plan paths visiting unordered goal regions.

10.2.4.1 Computing the Cost and Heuristic through Convex Optimiza-

tion

As described earlier, we use a single second order cone program to compute both the

cost and the heuristic of each search node. In this optimization problem we minimize

the sum of the length of the path going through the visited regions (i.e. the node cost,

𝑔) and the lengths of the straight line segments going to the remaining goal regions

while ignoring obstacles (i.e. the heuristic, ℎ). An example is shown in Figure 10-5

and Algorithm 10.4 describes how this program is built. The path going through

the visited regions is a piecewise-linear path that has as many segments as visited

regions. Each segment is constrained to be contained inside its associated visited

region by constraining its extreme points (lines 5 to 8). As explained earlier, our

node expansion function (Algorithm 10.3) forces the same previous safe region to be

visited again after a goal region is visited. Therefore, the extremes of each segment

visiting a goal region are also contained in that safe region. This ensures that the

segments going through goal regions are fully contained within a safe region and,

are therefore, obstacle free. This is the case even when goal regions intersect with

obstacles. This allows us to treat goal and safe regions equally when building the

173

Algorithm 10.4: Compute-G-H
Input: A search state, 𝑆.
Output: The path cost through the visited regions in state 𝑆, 𝑔, and the

cost-to-go through the remaining goal regions, ℎ.
Algorithm
𝑃 ← BUILD-PROGRAM()

1 𝑛𝑟 ← |𝑆.visited_regions|
2 for 𝑖 in 0 . . . 𝑛𝑟 do

x𝑖 ←ADD-VAR(𝑃 , 𝑑)

3 ADD-CONSTR(𝑃 , x0 = x𝑖𝑛𝑖)
4 𝑔 ← 0
5 for 𝑖 in 0 . . . 𝑛𝑟 − 1 do
6 𝑅𝑖 ←𝑆.visited_regions(𝑖)
7 ADD-CONSTR(𝑃 , x𝑖 ∈ 𝑅𝑖)
8 ADD-CONSTR(𝑃 , x𝑖+1 ∈ 𝑅𝑖)
9 𝑔 ← 𝑔 + LENGTH(x𝑖, x𝑖+1)

10 ℎ← 0
11 𝑛𝑔 ← |𝑆.visited_regions|
12 x𝑝𝑟𝑒𝑣 ← x𝑛

13 for 𝑗 in 0 . . . 𝑛𝑔 − 1 do
14 𝐺𝑗 ←𝑆.remaining_goals(𝑗)
15 x𝑔𝑗 ←ADD-VAR(𝑃 , 𝑑)
16 ADD-CONSTR(𝑃 , x𝑔𝑗 ∈ 𝐺𝑗)
17 ℎ← ℎ + LENGTH(x𝑝𝑟𝑒𝑣, x𝑔𝑗)
18 x𝑝𝑟𝑒𝑣 ← x𝑔𝑗

19 SET-OBJ(𝑃 , 𝑔 + ℎ)
20 SOLVE(𝑃)
21 𝑆.path← GET-VALUE(x0 . . .x𝑛)
22 return ⟨GET-VALUE(𝑔), GET-VALUE(ℎ)⟩

174

Visited Regions: R9 R12 GC R12 R7 R15 GB R15 R21
Remaining Goals: GA GD

R9

R12

R7

R15

R21GC

GB
GD

GA

g h
x0 == xini

xi

xg0

xg1

g0D = 1
g0A = 0

g1A = 1
g1D = 0

Figure 10-6: Computation of g and h for a search node in the case of unordered goals.
The MISOCP program finds that the optimal order to visit the remaining goals is D
and then A.

optimization problem that computes 𝑔 and ℎ.

In order to compute the heuristic part of the path, we place points within the

remaining goal regions (lines 12 to 18). Recall that we are now discussing SSPo

problems in which the goals are ordered, and therefore we now the order in which these

points have to be placed. We describe later in Section 10.2.4.2 how to deal with the

unordered goals of SSPu problems. The minimization objective of the optimization

problem is the sum of the lengths of all the segments of the path built as indicated

before. These lengths are Euclidean norms and can therefore be represented with cone

constraints. As a result, the program is, again, a SOCP and can be solved optimally

very efficiently.

10.2.4.2 An Extension to Shortest Paths through Unordered Goal Re-

gions

Generalizing Algorithm 10.2 to the unordered problem (SSPu) only requires changes

to the node expansion and heuristic computation.

First, the modification to the expansion is minor. In Algorithm 10.2 instead of

allowing node extensions to the next goal, we allow extensions to any goal region not

visited yet.

Second, the modification to the heuristic computation is more involved. In the case

175

of SSPos, the heuristic portion of the optimization can be computed in a straightfor-

ward manner, since the order of the remaining visit goals is known. This is no longer

the case for SSPus. In order to compute a heuristic value that is admissible and

informative, we use a mixed-integer programming encoding to determine the order of

the remaining goal regions that provides the shortest path while ignoring obstacles.

In the beginning of this chapter we argued that we wanted to avoid mixed-integer

approaches to select what safe regions to visit and in what order. The reason for this

is that our algorithm presented in this chapter can handle the combinatorial problem

of selecting the safe regions more efficiently by using an informative heuristic and A*.

However, we now use mixed-integer programming for a very different purpose. We use

integer variables to select the order of the remaining goals while ignoring obstacles,

which is a much smaller problem to solve.

To compute the values of the committed cost (𝑔) and heuristic (ℎ) for a search

state in SSPus, we construct the optimization program for the part of the path that

goes through the visited regions in the same way as in the case of SSPs, as described

earlier. For the goals that still need to be visited at that search state, we define one

point x𝐺𝑖 for each of the 𝑖 ∈ 0 . . . 𝑛𝐺 − 1 remaining goals (Figure 10-6). Since we do

not know the order in which the remaining goals need to be visited, we use boolean

indicator variables 𝑔𝑖𝑘 to assign each of the 𝑛𝑔 goal points to the remaining goal

regions. When boolean variable 𝑔𝑖𝑘 takes value 1, goal point x𝐺𝑖 visits goal region 𝑘.

𝑔𝑖𝑘 =⇒ x𝐺𝑖 ∈ 𝐺𝑘 (10.10)
𝑛𝐺−1∑︁
𝑘=0

𝑔𝑖𝑘 = 1 (10.11)

𝑛𝐺−1∑︁
𝑖=0

𝑔𝑖𝑘 = 1 (10.12)

(10.13)

, where 𝑖 and 𝑘 range from 0 to 𝑛𝐺 − 1. The summation constraints ensure that all

176

goal points have to be assigned to one goal region (10.11), and that all goal regions

are visited by some goal point (10.12). As in the case of ordered SSPs, the objective

is given as the sum of lengths between consecutive points in the path. The boolean

indicator variables take the necessary values to ensure that the order of the remaining

goals (ignoring obstacles) is optimal, which provides an admissible heuristic. The

presence of the boolean variables turns the previous SOCP program into a mixed-

integer second order cone program (MISOCP). In order to speed up the solver, the

best order for the remaining goals returned by the solver for a search node is used as

a starting solution for the optimization problem of its children search nodes.

10.3 Alternative Mixed-Integer Approaches

Finding shortest safe-region constrained paths involves selecting what safe regions

to visit and in what order. This is a highly combinatorial problem in which an

objective, the path length, has to be minimized. For these problems, mixed-integer

approaches have proved to be very successful. Therefore, we present here two mixed-

integer encodings that find shortest safe-region constrained paths and we use them

to benchmark our informed search approach. We show that even the best mixed-

integer approach presented here is more than two orders of magnitude slower than

our method.

We first present a simple encoding and we the proceed to describe a more advanced

encoding. The more advanced encoding uses the same connectivity graph described

in Section 10.2.3 and a starting guess for a solution to the problem. In order to

find shortest paths, these approaches need to minimize segment lengths which are

represented with cone constraints. Therefore, these optimization problems are mixed-

integer second order cone programs (MISOCPs).

10.3.1 A simple MISOCP encoding

Both mixed-integer methods presented in this section find shortest safe-region con-

strained paths by solving a one-off optimization program. Optimization problems

177

have fixed size, and it needs to be fixed in advance. We parameterize the size of

the optimization problem in terms of the number of segments of the piece-wise linear

path, 𝑛𝑠. Since each segment is constrained to be fully contained in a safe region,

paths with a larger number of segments can have a shorter length than those with a

smaller number of segments. Having to pick the number of segments in advance is

an important drawback of this methods compared to our informed search approach

that automatically finds the number of required segments automatically. A popular

approach to handling this problem involves iteratively solving problems of increasing

size until a solution is found. However, in this section we only describe the encodings

when the number of segments is chosen in advance.

Given 𝑛𝑠 segments, there are 𝑛𝑠 + 1 extremes of each segment. These points are

expressed as x𝑖 ∈ ℛ𝑑, ∀𝑖 ∈ 0 . . . 𝑛𝑠 and constitute (𝑛𝑠 +1)×𝑑 of the decision variables

of the mathematical program. The first extreme of the first segment is constrained

to be the initial point of the trajectory, x0 = x𝑖𝑛𝑖.

We further define boolean variables 𝑟𝑖𝑗 that assign safe regions to segments. A

value of 1 for 𝑟𝑖𝑗 implies that segment 𝑖 is contained in safe region 𝑗. This is achieved

with the following constraints:

𝑟𝑖𝑗 =⇒ x𝑖 ∈ 𝑅𝑗 (10.14)

𝑟𝑖𝑗 =⇒ x𝑖+1 ∈ 𝑅𝑗 (10.15)

𝑟𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 1, ∀𝑗 ∈ 0 . . . 𝑛𝑅 − 1 (10.16)

, where 𝑛𝑅 is the number of safe regions. Constraints (10.14) and (10.15) ensure

that segment 𝑖 is fully contained in safe region 𝑗. These constraints can be enforced

using the well known bigM method or using indicator constraints, which most modern

solvers support. We enforce that each segment is assigned to a safe region with the

following constraint:

178

∑︁
𝑗

𝑟𝑖𝑗 = 1 (10.17)

We also define another set of boolean variables 𝑔𝑖𝑘. When boolean variable 𝑔𝑖𝑘

takes value 1, the end of segment 𝑖 visits a goal region 𝑘.

𝑔𝑖𝑘 =⇒ x𝑖+1 ∈ 𝐺𝑘 ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 1, ∀𝑘 ∈ 0 . . . 𝑛𝑔 − 1 (10.18)

, where 𝑛𝑔 is the number of goals.

We additionally impose goal reachability constraints, that only allow 𝑔𝑖𝑘 to take

value 1 if segment 𝑖 is contained in one of the safe regions that intersects with goal

region 𝑘. These constraints are not needed, but they facilitate the job of the solver.

𝑔𝑖𝑘 ≤
∑︁

𝑙∈𝑅𝐺𝑘

𝑟𝑖𝑙, ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 1, ∀𝑘 ∈ 0 . . . 𝑛𝑔 − 1 (10.19)

, where 𝑅𝐺𝑘
is the set of safe regions that intersect with goal region 𝑘.

We also impose that all goal regions need to be visited:

∑︁
𝑖

𝑔𝑖𝑘 = 1, ∀𝑘 ∈ 0 . . . 𝑛𝑔 − 1 (10.20)

For SSPo problems, we further require that the goal regions are visited in the

given order using precedence constraints:

𝑔𝑖,𝑘 ≤
𝑖−1∑︁
𝑙=0

𝑔𝑙,𝑘−1, ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 1, ∀𝑘 ∈ 0 . . . 𝑛𝑔 − 1 (10.21)

These constraints ensure that in order to satisfy goal 𝑘 at the end of segment 𝑖,

the previous goal, 𝑘 − 1, must have been satisfied in one of the previous segments.

We additionally force that some goal is reached at the end of the last segment:

179

∑︁
𝑘

𝑔𝑛𝑠−1,𝑘 = 1 (10.22)

This constraint is not necessary but we found that it helps the solver significantly,

especially in problems with only one goal region.

The objective is the sum of the lengths of each segment:

min
𝑛𝑠−1∑︁
𝑖=0

‖x𝑖+1 − x𝑖‖ (10.23)

These lengths are represented with cone constraints.

The encoding provided in this section can be used to find optimal shortest paths

(as good as the ones found with our informed search approach) as long as a suf-

ficiently large number of segments is allowed. Note that using a larger number of

segments than the minimum required for an optimal shortest path does not affect

the optimality of the path found, since additional segments can be placed in repeated

safe regions and segments can have zero length if needed. Increasing the number of

segment does increase the difficulty of the problem very significantly as the number of

boolean variables increases and mixed-integer problems are known to be NP-complete

problems.

10.3.2 A MISOCP encoding using the connectivity graph and

a warm start

The simple encoding presented in the previous section can be used to find shortest

safe-region constrained paths, and therefore solves the same problem that our in-

formed search approach solves. However, this simple encoding is at a disadvantage

compared to our informed search approach since it does not use the connectivity graph

that indicates how the safe regions are connected. As we will see in Section 10.4, this

simple encoding does not scale well as the number of safe regions increases. In or-

der to better compare our informed search approach with a mixed-integer solution,

we present here a more advanced encoding whose performance is greatly enhanced

180

compared to the simple encoding. We do this through two additions. First, we use

the common approach of providing an initial suboptimal solution to the solver. This

initial solution often helps the solver to find the optimal solution faster. We describe

how this initial solution is computed later. Second, we include in this advanced en-

coding the information of how safe regions are connected from the connectivity graph,

as computed in Section 10.2.3. This additional information also helps the solver and

increases performance as shown in the experimental results section at the end of this

chapter.

Explicitly stating how safe regions are connected is not necessary, since the con-

straints (10.14) and (10.15) that force points to remain inside safe regions will allow

the solver to discover what safe regions are connected. This, however, places the

burden of discovering the connections on the solver. In order to free the solver from

trying infeasible sequences of safe regions, we add the constraints

𝑟𝑖,𝑗 +
∑︁
𝑙∈𝑅𝑗

𝑟𝑖+1,𝑙 ≤ 1 ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 2, ∀𝑗 ∈ 0 . . . 𝑛𝑅 (10.24)

, where 𝑅𝑗 is the set of safe regions that does not intersect with safe region 𝑗. This

constraint ensures that if segment 𝑖 is contained in safe region 𝑗, segment 𝑖+1 cannot

be contained in a safe region that does not intersect with safe region 𝑗.

To speed up the search, we also add reachability constraints that state that a safe

region 𝑗 cannot be selected for segment 𝑖 if it is not possible to reach region 𝑗 using

𝑖 segments from the starting point.

𝑟𝑖𝑙 = 0,∀𝑙 ∈ 𝐷𝑖 ∀𝑖 ∈ 0 . . . 𝑛𝑠 − 1 (10.25)

, where 𝐷𝑖 is the set of safe regions that can be reached from the start point in 𝑖

segments or more and 𝐷𝑖 = 𝑅 ∖ 𝐷𝑖 is the set of regions that cannot be reached in

𝑖 segments. In order to compute the set 𝐷𝑖 we compute the all the single source

181

shortest lengths from the start position to all the safe regions in the connectivity

graph, considering that all edges in the graph (that represent connections between

safe regions) have length 1. This can be done very fast for the typical size of problems

that we solve, and its computation time is very small compared to the time that it

takes to solve the mixed-integer problem.

Finally, we compute an initial suboptimal solution to the problem and provide it

to the solver in order to warm start its search. In order to compute an initial solution,

we simply perform search on the connectivity graph by considering that all the edges

have cost 1. Recall that the nodes in the graph represent the convex safe regions and

edges between nodes represent that the regions overlap. The solution that we obtain

using this method is the one that provides a path going through the smallest number

of regions, which is often significantly different from the solution with the smallest

length.

The extra constraints added to the advanced encoding described in this section

are numerous. Adding these constraints to the program takes a considerable amount

of time, as shown at the end of this chapter. However, we show in Section 10.4 that

this version of the mixed-integer program performs much better than the version that

does not use the information from the connectivity graph or the warm start.

10.4 Experimental Results

In this section we show the results of our path planner as described in Section 10.2 and

compare its performance against the mixed-integer approaches shown in Section 10.3.

As the results show, our informed search path planner performs over two orders of

magnitude faster than the best mixed-integer approach for medium to complex size

problems. All the tests were run on an Intel Core i7-3770 3.40 GHz using Gurobi 7.5

as the SOCP and MISOCP solver.

In order to evaluate the planners, we use three scenarios (simple, medium and

complex) with different numbers of obstacles and safe regions (described in Figure 10-

7). The medium and complex scenarios have the same number of obstacles, and they

182

A
CB

D

(a)

A

C

B

E

D

G
F

I

H

J

(b)

A

C

B

E

D

G
F

I

H

J

(c)

Figure 10-7: Test environments, where obstacles are drawn in blue, goal regions in
green and safe regions in red. The simple map (a) has 10 obstacles and 8 safe regions
covering 90.1% of the free space. The medium map (b) has 50 obstacles and 36 safe
regions covering 88.7% of the free space. The complex map (c) is the same as the
medium one, but with 75 regions that cover 95% of the free space.

183

MISOCP MISOCP (adv) A*5% A*0.5%

Map T L T L T L T L

Simple Map
2 0.01 17.82 0.03 17.82
3 0.03 15.79 0.05 15.79 0.08 15.79 0.06 15.79

Medium Map
4 0.30 33.96 0.34 33.96
5 7.52 33.24 0.69 33.24
6 (0.6%) 32.84 5.05 32.84 0.28 32.93 0.34 32.84

Complex Map
3 0.33 35.68 0.81 35.68
4 (4.3%) 34.24 1.39 33.92
5 16.36 33.09
6 43.26 32.84 1.19 32.84 1.40 32.84

Table 10.1: Single goal results. Each row shows the planning results for the specified
number of segments. Informed search approaches find the needed number of segments
for the optimal path automatically. Column T shows the planning time in seconds
and L the length of the returned path. For the MISOCP approaches, results in
parenthesis show the MIP optimality gap that the solver was able to prove before the
timeout.

are arranged in the same way. However, the complex scenario has over twice the

number of safe regions (75 vs 36) than the medium one, which makes the problem

harder, since we are finding paths over safe regions. We evaluate the performance

of our planner and the mixed-integer planners in these scenarios using single goals,

multiple ordered goals and multiple unordered goals.

For every test, we used a timeout of 600 seconds. As indicated in Section 10.3, the

mixed-integer approaches need to know in advance how many segments are needed,

which is an important drawback over our informed search approach. Paths with lower

number of segments are easier to find, at the cost of having a longer length than

paths with more segments. In order to evaluate the scalability of the mixed-integer

approaches, we try to solve each problem multiple times with different number of seg-

ments. We start with the lowest possible number of segments that provides a feasible

path and we end with the number of segments needed to find the optimal shortest

path. We determine such number of segments for the optimal shortest path by solving

184

D

xini

Figure 10-8: Example results of a single goal problem in the complex map. The
optimal A* approach finds the shortest path consisting of six segments in 1.40 seconds
(green). Within the same time, the advanced MISOCP approach can only find a
(longer) path with four segments (magenta). The regions selected by each approach
are shown in the same color.

the problem with our informed search approach in advance. For the mixed-integer

approaches, we stop trying to solve problems with a certain number of segments when

the same problem with one fewer segment times out in 600 seconds. The MISOCP

planners are stopped as soon as the solver finds a solution with a proven optimality

gap of 0.5%, which means that the solution returned has a length within 0.5% of the

optimal shortest length for the given number of segments. In our results we show

the performance of our informed search approach using two optimality settings. The

first one (labeled A*0.5%) uses weighted A* with a weight of 1.005 (𝑓 = 𝑔 + 1.005ℎ).

This means that the returned path is guaranteed to be within 0.5% of the optimal

shortest path. We also instruct the MISOCP solver to return a solution as soon as

it proves that its length is within the same 0.5% of the optimal shortest length. The

difference is that our informed search approach does not need to know the number of

segments in advance and finds the shortest path regardless of how many segments are

needed. For the purposes of this section, we will call this our optimal informed search

approach. The second setting that we use for our informed search approach (labeled

A*5%) uses a more aggressive heuristic weight of 1.05. This planner finds paths faster

at the expense of only being able to guarantee returned paths whose length is within

185

5% of the optimal shortest one. We show the performance of this planner to illustrate

that by sacrificing some optimality we can greatly improve the performance of our

planner.

The results for a single goal are shown in Table 10.1. As we can see, for small

problems (e.g. Simple Map) the basic mixed-integer approach (labeled as MISOCP)

is the fastest method. However, this is only the case for very small problems. For

medium and large problems the performance of the basic mixed-integer approach

does not scale well. In the medium map, the basic mixed-integer approach is not

even able to find the shortest path with six segments before the timeout. As seen

in the table, the more advanced mixed-integer approach presented in Section 10.3.2

(labeled MISOCP (adv)) scales much better than the basic approach. This is due to

the fact that this more advanced encoding uses the connectivity graph and a starting

MIP solution that guides the search. In this same map, our optimal informed search

approach is able to find the shortest path more than an order of magnitude faster.

In the complex map, the basic MISOCP approach can only find the path with three

segments within the 600 second timeout. The optimal path has six segments and,

again, our optimal informed search approach can find the optimal solution more than

an order of magnitude faster than the advanced MISOCP approach. Within the time

that it takes our optimal informed search approach to find the optimal path (that has

six segments), the advanced MISOCP can only solve the problem with 4 segments,

which provides a significantly longer path (Figure 10-8).

The results for ordered multiple goals are shown in Table 10.2. The difference

in performance between the informed search approaches and the mixed integer ap-

proaches is more pronounced in this case. The informed search approaches perform

significantly faster even in the simple map that only has a few safe regions. The basic

MISOCP approach cannot even find any solution within the timeout in the case of

four goals or higher in the complex map. The advanced MISOCP approach cannot

find any solution within the timeout in the case of the complex map with six goals.

The mixed integer approaches can only find optimal solutions (within the time limit)

having the number of segments required for the shortest path in the case of the sim-

186

MISOCP MISOCP (adv) A*5% A*0.5%

Map T L T L T L T L

Simple Map
(3 goals)

8 1.59 47.44 0.16 47.44
9 2.14 45.41 0.84 45.41
10 1.11 44.82 6.24 44.82 0.37 44.82
11 0.37 44.86

Complex Map
(2 goals)

6 4.16 59.13 1.48 59.13
7 (6.8%) 58.49 9.76 58.49
8 18.70 57.89
9 78.55 57.20
10 346.02 56.67
11 (73.9%) 60.10
14 2.35 56.56
16 5.72 56.47

Complex Map
(4 goals)

11 - - 210.72 78.65
12 (43.5%) 82.63
20 14.95 75.70
21 8.26 75.87

Complex Map
(6 goals)

15 - - (57.3%) 120.00
24 18.65 105.81
29 13.06 106.01

Table 10.2: Results for multiple ordered goals. Each row shows the planning results for
the specified number of segments. Informed search approaches find the needed number
of segments for the optimal path automatically. Column T shows the planning time
in seconds and L the length of the returned path. For the MISOCP approaches,
results in parenthesis show the MIP optimality gap that the solver was able to prove
before the timeout. Results with ’-’ denote that the MISOCP solver was not even
able to find a feasible solution within the allowed time of 600 seconds.

187

J

D

F

I

xini

Figure 10-9: Paths for visiting ordered goals J, D, F and I. Within the timeout,
the advanced MISOCP planner can only find a path with 11 segments and a length
of 78.65 in 210 seconds (magenta). The optimal informed search approach finds the
optimal path consisting of 20 segments and a length of 75.70 in 14.95 seconds (green).
The weighted A* approach finds a path with 21 segments and a length of 75.87 in
8.26 seconds (black).

ple map. Even when solving problems with a significantly lower number of segments,

the advanced MISOCP approach performs more than two orders of magnitude slower

than the informed search approaches. For example, it takes the advanced MISOCP

approach more than 200 seconds to find a suboptimal path with 11 segments for the

complex map with four ordered goals. In the same problem, the optimal informed

search approach finds the shortest path with 20 segments in about 15 seconds. The

weighted A* approach finds a marginally worse path in just over 8 seconds (Figure 10-

9).

Finally, we present the results for the case of multiple unordered goals (Table 10.3).

This constitutes the hardest case, and the performance difference between the mixed

integer approaches and the informed search one accentuates even more. For the case

of two goals in the complex map, the advanced MISOCP can only find a path with

9 segments within the timeout (in over 400 seconds), while the shortest path found

by the optimal informed search approach consists of 14 segments and is found in 7.5

seconds (Figure 10-10). For the case of six unordered goals, the MISOCP approaches

cannot even find the optimal solution with 15 segments within the timeout. The

optimal informed search approach finds the shortest path consisting of 19 segments

188

MISOCP MISOCP (adv) A*-MIP5% A*-MIP0.5%

Map T L T L T L T L

Simple Map
(3 goals)

8 11.32 24.76 0.95 24.76 0.50 24.76 0.57 24.76

Complex Map
(2 goals)

6 (3.7%) 45.32 6.45 45.38
7 23.15 44.89
8 61.09 44.74
9 409.91 44.45
10 (0.9%) 44.45 1.92 44.77
14 7.51 44.30

Complex Map
(4 goals)

11 - - 455.10 58.92
12 (0.9%) 58.90
14 8.36 58.81
15 25.61 58.80

Complex Map
(6 goals)

15 - - (61.0%) 68.83
19 29.03 66.99 179.73 67.00

Table 10.3: Results for multiple unordered goals. Each row shows the planning
results for the specified number of segments. Informed search approaches find the
needed number of segments for the optimal path automatically. Column T shows the
planning time in seconds and L the length of the returned path. For the MISOCP
approaches, results in parenthesis show the MIP optimality gap that the solver was
able to prove before the timeout. Results with ’-’ denote that the MISOCP solver
was not even able to find a feasible solution within the allowed time of 600 seconds.

189

A

I

xini

Figure 10-10: Paths for visiting unordered goals A and I. The planners discover
that the optimal order is I and then A. Within the timeout, the advanced MISOCP
planner can only prove an optimality gap of 0.9% with a path with 10 segments and a
length of 44.45 (magenta). The optimal informed search approach finds the optimal
path consisting of 14 segments and a length of 44.30 in 7.51 seconds (green). The
weighted A* approach finds a path with 10 segments and a length of 44.77 (within
5% optimality) in just 1.92 seconds (black).

J

D

F

I

B

H

xini

Figure 10-11: Paths for visiting six unordered goals. The planners discover that the
optimal order is B, I, F, H, D and J. Within the timeout, the advanced MISOCP
planner can only prove an optimality gap of 61% with a path with 15 segments and a
length of 68.83 (magenta). The optimal informed search approach finds the optimal
path consisting of 19 segments and a length of 67.00 in 179.73 seconds (green). The
weighted A* approach finds a different path with 19 segments and and the same
length as the optimal in just 29 seconds (black).

190

in 180 seconds. The weighted A* solution finds, in this case, a different solution of

the same length much faster, in 29 seconds (Figure 10-11).

The results presented in this section show that our informed search approach, as

presented in Section 10.2, performs more than two orders of magnitude faster than

the best mixed integer approach that we have described in Section 10.3.2. Moreover,

recall that the mixed integer approaches require that we indicate in advance the

number of segments that we allow the path to have. Determining the lowest number

of segments needed in order to find a feasible path is not complicated, as we can

find such number by running a shortest path algorithm in the connectivity graph

considering that all edges in the graph have the same weight. Determining the number

of segments needed for the optimal shortest path is harder, though. In general, we

can only say that the MISOCP will find the optimal shortest path through the safe

regions if we allow the path to have as many segments as safe regions are in the

environment. In practice, the shortest path can be found with much fewer segments,

as safe regions are typically heavily interconnected, but this cannot be known in

advance. Our informed search approach does not present this problem of determining

the number of segments needed, as it will explore the connectivity graph in a best-first

manner until the optimal path is found. While our optimal informed search approach

performs much better than the mixed-integer counterparts, we have also shown with

these results that it is often possible to increase the performance very significantly

by trading some optimality with an increased heuristic weight. This can be useful in

situations in which a ‘good enough’ path suffices but planning time is critical.

10.5 Generation of Convex Safe Regions

The path planning algorithm presented in this chapter finds collision free paths going

through convex obstacle-free regions. So far, we have assumed that these convex

obstacle-free regions were already present in the environment. In this section we

discuss some possible ways to generate such regions.

We use the IRIS algorithm[30] to generate our safe regions, that are obstacle-free

191

bounded convex polytopes. The IRIS algorithm alternates between finding separating

hyperplanes and largest area inscribed ellipsoids until it converges to the largest

discovered obstacle free bounded polytope. The IRIS algorithm needs a seed point to

start its iterative approach for each new safe region to be generated. Although the

seed point is not guaranteed to be inside the final region returned by the algorithm,

we have found in our tests that this point is often either inside or close to this region.

Therefore, the problem of generating convex safe regions in the environment reduces

to selecting the desired seed points in order to then generate the safe regions with the

IRIS algorithm.

There are multiple ways to generate these seed points. A straightforward ap-

proach consists in having a human operator select the seed points using a point and

click interface. While this could be labor intensive in large environments with many

obstacles, it is often a fast and precise method for generating safe allowed regions

for robotic vehicles. This is important for missions with very expensive or hard to

replace assets in which operators want to ensure that robots are only allowed to be in

regions that human experts have deemed to be safe. This is the method that the MIT

team used in the DARPA Robotics Challenge[35]. In the next section we present an

alternative approach that we can use to automatically generate the safe regions.

10.5.1 Automatic Generation of Convex Safe Regions

Since the IRIS algorithm only needs a seed point to generate a safe region, a basic

approach for the automatic generation of safe regions consists in randomly sampling

obstacle-free points in the environment and using them as seed regions one by one,

until the desired safe region coverage is as large as desired. Unfortunately this method

is not very efficient. As more safe regions are added to the environment, it becomes

increasingly likely that the next randomly sampled seed point is already contained in

one of the safe regions. As a consequence, the newly generated region is likely to have

a large overlap with other safe regions already in the environment and less likely to

cover obstacle-free areas of the environment that were not already covered by other

safe regions.

192

Algorithm 10.5: GenerateSafeRegions
Input: An environment 𝐸 with obstacles and a desired coverage goal, 𝑐𝑔𝑜𝑎𝑙
Output: A list of SafeRegions, 𝑆, that achieves the coverage goal.
Algorithm

1 𝑃boundary ← POLY(𝐸.bounds)
2 𝑅free ← SUBTRACT(𝑃boundary, UNION(𝐸.obs))
3 𝑅uncovered ← 𝑅free

4 𝐴free ← AREA(𝑅free)
5 𝑆 ← {}
6 𝑐← 0
7 while 𝑐 < 𝑐𝑔𝑜𝑎𝑙 do
8 𝑃 ← FIND-LARGEST-BY-AREA(𝑅uncovered.polys)
9 xseed ← SAMPLE-POLY(𝑃)

10 𝑆new ← GROW-IRIS(xseed, 𝐸.obs)
11 if 𝑆new not in 𝑆
12 𝑆 ← APPEND(𝑆, 𝑆new)
13 𝑅uncovered ← SUBTRACT(𝑅uncovered, 𝑆new)
14 𝑐← 1− AREA(𝑅uncovered)

𝐴free

15 return 𝑆

This problem can be mitigated in part with Algorithm 10.5. Instead of sampling

seed points randomly in the environment, this method keeps track of the obstacle-free

areas of the environment that are not covered by safe regions yet, and samples seed

points in those areas. We initially compute the obstacle free region in the environment.

This is done with computational geometry libraries [43] that compute the subtraction

between the bounding polytope of the environment and the union of all the obstacles

(Line 2). The result of this operation is often a list of one or more disjoint polytopes.

Initially the entirety of the obstacle free region is uncovered by safe regions (uncovered

region). We then proceed to find the polytope in the uncovered region with largest

area and we sample a seed point within it using rejection sampling. This seed point

is used to grow a convex obstacle-free region using the IRIS algorithm (Lines 8 to

10). Since the seed point is not guaranteed to be contained in the generated region,

it is possible that this step produces a safe region that has already been generated

before. If that is the case, we reject this region and generate a new one with a different

sampled point. Otherwise, we add the newly generated safe region to the list of safe

193

regions and we subtract it from the uncovered region. Whenever the ratio of the area

covered by the safe regions and the free region exceeds the target value, the algorithm

stops.

We have found that this algorithm is able to cover a larger free area than the basic

sampling algorithm using a lower number of safe regions. This algorithm works well

for low dimensional environments, but it is unlikely to scale well for larger dimensions

due to the curse of dimensionality and the fact that keeping track of uncovered dis-

joint free-areas becomes exponentially harder in larger dimensions. However, this is

typically not a problem in many common mobile robotic missions. All the safe regions

that we used in the benchmarks in this chapter were generated using this method.

194

Chapter 11

ScottyPath: Path Planning Through

Convex Obstacle-free Regions for

Qualitative State Plans

The ScottyActivity planner, as presented in Chapter 8, is capable of performing com-

bined activity and trajectory planning for robotic applications by using an approach

that interleaves heuristic forward search and convex optimization. Unfortunately,

since commonly used obstacle avoidance constraints are non-convex, ScottyActivity

cannot handle obstacles. However, most robotic applications require that obstacles

are taken into consideration. In this chapter we present ScottyPath, a planning algo-

rithm designed to solve this problem.

Generating obstacle-free trajectories for ScottyActivity plans is not straightfor-

ward when they involve arbitrarily long horizons in which state variables, times and

control variables are tightly coupled over the full plan by temporal constraints and

robot behaviors. Off-the-shelf path planners cannot be used directly for this purpose.

This is the case for two reasons. First, the locations that need to be reached by the

robots at different times in the plan may not be explicitly defined. For example, a

UAV maintaining a communication wireless link with two ground vehicles may need

to stay within a maximum distance from either vehicle, and its trajectory will depend

on the trajectory of the other vehicles throughout the entire plan. Second, there may

195

be infinitely many feasible intermediate locations that a robot may visit to satisfy

the plan constraints independently, but the full plan needs to be considered jointly

in order to provide an optimal obstacle free trajectory.

In this chapter we present ScottyPath, a planning algorithm that completes the

Scotty Planning System. ScottyPath takes a plan specification, a set of convex

obstacle-free safe regions for each vehicle, and an objective, and returns an optimal

plan and control trajectory that is obstacle free. ScottyPath generates obstacle free

paths by ensuring that each robot always remains within one of its convex obstacle-free

safe regions. As in Chapter 10, safe regions are convex polytopes that are generated

offline in advance using the IRIS algorithm [30]. The plan specification is given as a

qualitative state plan (QSP) [60, 61]. QSPs specify robot goal behaviors in terms of

temporal constraints and continuous state and control constraints between points in

the plan, called events.

We use an approach that is based on insights from earlier chapters. First, we use

informed search to assign vehicles to convex safe regions using a method that is anal-

ogous to the method described in Chapter 10. Recall that the geometric path planner

described in the previous chapter finds obstacle-free shortest paths and does not con-

sider other constraints, such as temporal constraints, dynamics, state constraints or

multiple robots. All these are handled within ScottyPath. In fact, ScottyPath is

much more general than the geometric path planner presented in Chapter 10, and

any SSPo, in which the goals are ordered, can be solved with ScottyPath. Second, we

use ScottyConvexPath, described in Chapter 6, in order to find the control trajectory

of each vehicle using convex optimization. We also use ScottyConvexPath to compute

the heuristic and cost value used during the informed search that assigns the regions

without using time discretization. The innovations of our planner lie in how the cost

and heuristic for each search node are computed jointly with our convex optimization

model and in how intermediate events in the plan are connected sequentially until

the full plan is connected through safe regions.

While ScottyPath is designed to take the output of ScottyActivity as input, it can

also be used standalone. In fact, we will see in our example scenario in Section 11.1

196

that describing plan specifications with QSPs is straightforward. ScottyPath is useful

in many robotic applications in which obstacle free trajectory planning for multiple

robots with complex state and time constraints is needed, but where activity planning

is not necessary. ScottyPath is validated on a set of realistic robotic problems. The

results, presented in Chapter 12, demonstrate the scalability of ScottyPath to long

horizons, multiple vehicles and plans of increasing difficulty.

The structure of this chapter is the following. We present an example problem

in Section 11.1 that we use to describe our problem statement, in Section 11.2. In

Section 11.3 we explain how the output solutions of the ScottyActivity planner and the

SSPo problems from Chapter 10 can be expressed as input problems that ScottyPath

can solve. Finally, we describe our approach in Section 11.4.

11.1 Example problem

Our example scenario here is similar to the one we introduced in Section 3.1, and is

based on a realistic oceanographic science mission, in which multiple vehicles need to

be coordinated. For the sake of simplicity, only two vehicles are used in our example

scenario: a ship and a remotely operated vehicle (ROV). We assume that the mission

that these vehicles need to complete is specified as a qualitative state plan. This

qualitative state plan describes the initial conditions of these vehicles, specifically

their starting positions, as well as the state conditions that need to hold at each

step of the plan. It also specifies the behaviors that each vehicle uses and when

these behaviors are enabled and disabled. This qualitative state plan is the input to

ScottyPath. Operators can write qualitative state plans manually, when a high level

of control is desired. Otherwise, they can use ScottyActivity to generate these plans

autonomously, by only providing a high level description of the end goals and a model

of the robots and the environment.

We show our example scenario in Figure 11-1a. As in the scenario presented

in Section 3.1, the ROV is initially on-board the ship and both are at the starting

location. The ship can navigate, while obeying its velocity constraints, until reaching

197

A

B

C

 xstart

p

(a)

A

B

C

 xstart

(b)

A

B

C

p1

xstart

 p2

(c)

A

B

C

xstart

 p

(d)

Figure 11-1: Figure (a) shows the example scenario with the surface obstacles for the
ship, in black, the ROV sampling regions (A and B) and the end region (C). Figure (a)
also shows the optimal solution of this problem when obstacles are ignored. In order
to avoid the obstacles, the ship is required to remain in the safe regions (shown in
blue) that are constructed offline (b). The problem objective affects the deployment
position. In Figure (c), position p1 is the optimal ROV deployment position that
minimizes the time until the first sample is taken. On the other hand, position p2 is
the optimal deployment position in the plan that minimizes the total distance traveled
by the ROV. Finally, the plan that minimizes the total distance traveled by the ship
and the mission duration is shown in Figure (d). This figure also shows, in blue, the
safe regions selected for the ship throughout the mission.

198

some location where the ROV is deployed. The ship is not allowed to move from the

time the ROV deployment starts until the crew finishes recovering the ROV. After

the ROV is deployed, the ROV is allowed to navigate submerged on its own, while

obeying its velocity constraints and while ensuring that its distance from the ship

never exceeds the length of the tether that connects them. During deployment, the

ROV must visit region A and then region B to take a sample in each location. While

each sample is being taken, the ROV is not allowed to move. Finally, after both

samples are taken, the ship must reach region C with the ROV on-board. In order

to reduce the cost of the mission, the chief scientist desires a plan that minimizes

a linear combination of the distance traveled by the ship and the total time of the

mission.

The qualitative state plan does not define specific times when the constraints

must be met nor the precise values that the sate variables need to take (such as the

precise deployment location). In addition, the qualitative state plan does not define

the control trajectory that the vehicles must follow. It defines, however, constraints

that must be satisfied by the final plan. Since the qualitative state plan defines what

behaviors are used, when they are enabled, and any intermediate constraints that

need to be satisfied, activity planning is not required. However, unlike ScottyActivity

PDDL-S problems, there are obstacles that need to be considered. In our example

the obstacles are surface obstacles that only the ship needs to avoid, since the ROV

is always submerged while deployed. Figure 11-1a shows the solution to this problem

when obstacles are ignored. This plan, where obstacles are ignored, is the plan that

ScottyActivity would return. The planner that we introduce in this chapter finds a

plan that meets the same goals and their constraints, while ensuring that the ship

avoids the surface obstacles and the mission objective is minimized.

As seen in Figure 11-1a, the plan that ignores the obstacles chooses a deployment

position, labeled p, that is inside an obstacle and, therefore, infeasible. Moreover,

the ship trajectory goes through obstacles at other times during the plan. Finding

an obstacle-free plan is challenging for several reasons. First, an off-the-shelf motion

planner cannot be used directly, since the positions that the ship needs to reach

199

are not explicitly defined. For example, the deployment position is affected by the

tether range constraint between the ship and the ROV and the fact that the ROV

needs to visit both A and B while the ship is stationary. Moreover, there are an

infinite number of possible deployment positions that satisfy this constraint, but the

space of such positions is not convex due to the existence of obstacles. In order to

handle obstacles, we restrict vehicles to remain inside convex safe regions that are

generated offline. Figure 11-1b shows the safe regions that the ship is allowed to

remain in. Since the obstacles are in the surface, the ROV only has one safe region,

which covers the full scenario. Finally, the problem objective affects the choice for

such deployment position. For example, if the chief scientist wanted to minimize the

time until the first sample was taken, the resulting plan would look as in Figure 11-1c,

where the deployment position is labeled as p1. Note that while this plan is able to

deploy the ROV early, it forces the ship to take a detour that negatively affects the

total distance traveled by the ship. Another possible mission objective could aim to

minimize the distance traveled by the ROV. The resulting plan in that case is shown

in the same figure with the deployment position labeled as p2. Finally, the plan that

minimizes the total distance traveled by the ship and the mission duration is shown

in Figure 11-1d.

11.2 Problem Statement

Recall that the problem we solve in this chapter is that of finding a schedule for the

qualitative state plan and the control plans for each robot that take them through

trajectories that satisfy the goals in the plan, while avoiding obstacles.

The example problem described in Section 11.1 has several characteristics. First,

the problem defines a mission qualitative state plan that requires the robots to satisfy

certain state constraints at different points in the mission. These are the robot goals.

Moreover, this qualitative state plan also describes the behaviors that each robot

uses to move around and the times when those behaviors become active. These form

a skeleton plan for achieving these goals. Note, however, that this skeleton plan is

200

flexible, as it does not provide the specific times when certain parts of the mission

need to happen, nor the precise state trajectories or velocities that the robots need

to follow. Instead, it constrains the solution to achieve the goals by using an ordered

set of behaviors, and a set of constraints on state, control variables and events. The

problem consists in finding a schedule for the events in the plan and the control and

state trajectories that allow the robots to satisfy the goals according to the skeleton

plan while avoiding obstacles. The problem also specifies the objective that the

optimal solution plan needs to minimize.

In this section we provide a formal definition for the ScottyPath problem and its

solution.

11.2.1 Qualitative State Plans

Qualitative State Plans (QSPs) specify the goals for the robots along with what

behaviors are used to achieve them. It also provides a set of state, control and

temporal constraints between events in the plan that solution plans need to satisfy.

Additionally, the solution plans need to be obstacle free. ScottyPath achieves obstacle

free paths by ensuring that robots remain inside convex safe regions at all times.

QSPs are very expressive, and do not require that the events in the plan are totally

ordered. In its current form, ScottyPath solves a restricted form of QSPs in which

the events are totally ordered that we call Totally Ordered Qualitative State Plans

(tQSPs). We first provide a definition for general QSPs in this section, and we later

describe the totally ordered restricted version that ScottyPath solves.

As we explain in detail in the definition, the main element of a QSP are the

episodes. Episodes are defined between their start and end events, and specify tem-

poral, state and control constraints that need to be satisfied between those events.

They also specify the behavior that a robot uses between those events. These be-

haviors are defined with continuous effects, and can be understood as dynamics that

describe how the state variables evolve as a function of the control variables during

the episode. Finally, episodes also specify weighted objective terms that need to be

minimized. The solution plan that ScottyPath finds minimizes the sum of all weighted

201

objective terms across all the episodes in the QSP.

Recall that ScottyPath takes the output of ScottyActivity as its input. Every

activity in a plan returned by ScottyActivity can be represented as an episode in

a QSP. However, QSPs are more expressive than what can be represented with the

output plans returned by ScottyActivity. We provide in this section the general

definition of QSPs and we describe later, in Section 11.3.2, the mapping from the

output of ScottyActivity to QSPs.

Our example problem in Section 11.1 is a QSP that defines the goals for the

ship and the ROV, the behaviors that are used to achieve these goals and a set of

operational state, control and temporal constraints that need to be satisfied between

different events in the plan. We now provide a formal definition for QSPs and we

show the QSP for our example scenario afterwards. The formal definitions for all the

elements in a QSP are provided throughout the rest of this section.

Definition 11.1 (Qualitative State Plan, QSP). A Qualitative State Plan (QSP) is

given by a tuple ⟨𝑋,𝐶, 𝑉, 𝑟𝑣, 𝐸𝑣, 𝐸𝑝⟩, where

∙ 𝑋 is the set of state variables.

∙ 𝐶 is the set of control variables.

∙ 𝑉 is a set of 𝑛𝑣 vehicles.

∙ 𝑟𝑣 : 𝑉 → 𝑅𝑣 is a mapping from each vehicle, 𝑣, to the set of convex safe regions

that 𝑣 is allowed to go through, 𝑅𝑣.

∙ 𝐸 is a set of events. Each event 𝑒 in the plan denotes a point in time in the

plan, and is given by the tuple ⟨𝑡𝑒, 𝑆𝑒⟩, where:

– 𝑡𝑒 is a real valued variable that represents the execution time of the event.

– 𝑆𝑐 is a set of state constraints on the values of the state variables at the

event, x𝑒 = x(𝑡𝑒).

∙ 𝐸𝑝 is a set of episodes. Each episode connects two events and represents a set

202

of constraints that need to be satisfied between those events. An episode is

given by a tuple ⟨𝑒𝑆, 𝑒𝐸, 𝑑𝑙, 𝑑𝑢, 𝑆𝑐, 𝐶𝑐, 𝐶𝑒, 𝑂⟩, where:

– 𝑒𝑆 and 𝑒𝐸 are the start and end events of the episode.

– 𝑑𝑙 and 𝑑𝑢 are the lower and upper bounds on the duration of the episode

(i.e. 𝑑𝑙 ≤ 𝑡𝑒𝐸 − 𝑡𝑒𝑆 ≤ 𝑑𝑢).

– 𝑆𝑐 is a set of state constraints that the state variables need to satisfy for

the duration of the episode.

– 𝐶𝑐 is a set of control variable constraints.

– 𝐶𝑒 is a set of continuous effects that are active for the duration of the

episode.

– 𝑂 is a set of objective terms for the episode.

N

11.2.1.1 Totally Ordered Qualitative State Plans

QSPs, as defined in Section 11.2.1, do not specifically define a total order between

events. There may be multiple feasible orderings of events that allow all constraints,

temporal or otherwise, to be satisfied. For example, a QSP may specify that a vehicle

needs to visit two regions before the end of the mission, but that the order in which

those regions are visited is not important.

ScottyPath, in its current form, requires that the events in the QSP are totally

ordered. Therefore, we define a restricted form of QSPs called totally ordered quali-

tative state plans (tQSPs). Recall that ScottyActivity explicitly defines the order of

the start and ends of the activities in its solution plan. As a result, the solution of

ScottyActivity is already a tQSP, and this restriction does not affect the interoper-

ation between ScottyActivity and ScottyPath. We define the input of ScottyPath, a

tQSP, as follows.

203

mission

deploy-ROV sample-A
e0 e1 e2 e3 e4

t0
x0

t
sample-B

recover-ROV

e5 e6 e7 e8 e9

deployed-ROV

[10, 20] [10, 20] [20, 20][5, 5]

t9 = T
xship = xROV

xship = xROV

xROV 2 A

xROV 2 B

kxship � xROV k dmax

xship 2 Rend

vship = 0

vROV = 0

vROV = 0

VelocityControl(ship, vship)
VelocityControl(ROV, vship)

VelocityControl(ROV, vROV)

[",1)

min t3 � t0

min dist(ship) + ↵T

Figure 11-2: Totally Ordered Qualitative State Plan for the example scenario. Events
are represented with circles. The episodes that describe the behaviors of the vehicles
and impose constraints on them are shown as green arcs. State constraints are shown
in blue, control variable constraints and continuous effects in orange, and episodes
with objective terms in pink.

Definition 11.2 (Totally Ordered Qualitative State Plan, tQSP). A totally ordered

QSP (tQSP) is a QSP where the temporal constraints impose that the events are

totally ordered. A tQSP has the following additional properties:

∙ 𝐸𝑙 is the event list, given by the ordered sequence of events in the tQSP.

∙ 𝑠 is the start event of the tQSP (i.e. the first element of 𝐸𝑙).

∙ 𝑒 is the end event of the tQSP (i.e. the last element of 𝐸𝑙) and 𝑇 is its execution

time.

∙ x𝑖𝑛𝑖 ∈ R𝑛 is a real-valued vector that denotes the values of all state variables

at the start event of the tQSP.

∙ 𝐿 is the plan makespan, and is defined as the difference between the execution

times of the last event and the starting event in the tQSP: 𝐿 = 𝑇 − 𝑡0.

N

204

Our example scenario, as presented in Section 11.1, is a tQSP problem. The

tQSP is shown in Figure 11-2, where the events of the plan are labeled 𝑒0 to 𝑒9 and

are represented by circles. The episodes of the plan that impose constraints on the

vehicles are shown as green arcs and labels. Episodes that only impose temporal

constraints between consecutive events are shown as black arrows. Episodes that

only describe objective terms, are shown as pink arcs.

11.2.1.2 State Variables and State Constraints

We use state variables to represent the positions of the robots as well as other related

variables such as the battery level. ScottyPath operates on the assumption that it

cannot change state variables directly. Instead, robot behaviors, that we call continu-

ous effects, change the values of the state variables. These continuous effects depend

on control variables, whose value is assumed to be directly controllable.

Definition 11.3 (State Variables). The vector of state variables of the system, x,

is given by a vector of real valued variables, x = ⟨𝑥1, 𝑥2, . . . , 𝑥𝑛⟩ ∈ R𝑛. N

As in the case of ScottyActivity, we also use resource variables to model values

such as the battery level of a vehicle. Recall that, as we describe in Chapter 4, certain

continuous effects, such as the ones that depend on norms of control variables, can

only be applied to resource variables.

Definition 11.4 (Resource). A resource is a type of state variable that is subject

to special conditions that we describe later in this section. N

In the QSP, goal constraints are specified as constraints in the state variables.

These constraints can be imposed for the duration of an episode, or at an event.

Recall, as described in Chapter 5, that convex constraints can be efficiently imposed

over arbitrarily long horizons in our model. For this reason, and in order to use

Scotty’s Convex Model, as described in Chapter 6, we impose the same restriction

that we used in ScottyActivity and limit state constraints to convex quadratic state

constraints. However, note that convex quadratic constraints are sufficient to express

205

a wide range of real-world constraints that appear in typical robotic missions, like the

ones shown in our example scenario.

Definition 11.5 (Convex Quadratic State Constraint). A convex quadratic state

constraint is a constraint in the form of 𝑔(x) ≤ 0, where 𝑔 : R𝑛 → R is a convex

quadratic function operating on the vector of state variables, x. N

Additionally, and as described in Chapter 6, we restrict resources to only be

subject to greater or equal than constraints. This is, again, the same limitation that

ScottyActivity imposes.

Our example scenario presents multiple state constraints. The ROV tether con-

straint, for example, is represented with the convex quadratic constraint: (𝑥𝑅𝑂𝑉 −
𝑥𝑠ℎ𝑖𝑝)

2 + (𝑦𝑅𝑂𝑉 − 𝑦𝑠ℎ𝑖𝑝)
2 − 𝑅2

𝑡𝑒𝑡ℎ𝑒𝑟 ≤ 0. Additionally, the ROV is required to remain

inside each sampling region while the sample is being taken. In this case, the con-

straints are linear, since the sampling regions are polygons. Recall that any linear

constraint is also a convex quadratic constraint [14].

11.2.1.3 Vehicles and Convex Safe Regions

Since ScottyActivity does not consider the obstacle avoidance problem, state variables

can be handled independently. In effect, it does not matter whether a state variable

denotes the 𝑥 position of one robot or a different one, as long as it is subject to the

right constraints. This is no longer the case in ScottyPath. In order to avoid obstacles,

ScottyPath forces each robot to remain within convex safe regions throughout the full

plan. We use the term vehicle to denote the vector of state variables that defines the

position of a robot. Additionally, vehicles can have associated resource variables and

a vector of control variables. The former are useful to model, for example, the battery

level or the remaining fuel of a vehicle. The vector of control variables is explained in

detail in the next section, where we explain that it is used to model the controllable

velocities of the vehicle.

206

Definition 11.6 (Vehicle). A vehicle 𝑣 is given by a tuple ⟨x𝑣, r𝑣, c𝑣⟩, where

∙ x𝑣 ∈ R𝑑 is the position of the vehicle and is given by a vector of state variables

where every state variable is one of the state variables of the system.

∙ r𝑣 is a vector of resource variables associated with the vehicle.

∙ c𝑣 is a vector of control variables associated with the vehicle.

N

In the example scenario there are two vehicles: the ship and the ROV. The

position of each vehicle is a two dimensional vector of state variables (e.g. x𝑠ℎ𝑖𝑝 =

(𝑥𝑠ℎ𝑖𝑝, 𝑦𝑠ℎ𝑖𝑝)). In the example, the vector of state variables contains the position

variables of both vehicles: x = (𝑥𝑠ℎ𝑖𝑝, 𝑦𝑠ℎ𝑖𝑝, 𝑥𝑅𝑂𝑉 , 𝑦𝑅𝑂𝑉).

In order to avoid obstacles, vehicles are required to remain within convex safe

regions. As described in the QSP (Definition 11.1), each vehicle 𝑣 is assigned a set

of convex safe regions 𝑅𝑣 through the mapping 𝑟𝑣 : 𝑉 → 𝑅𝑣. The plan returned by

ScottyPath ensures that each vehicle is always within one of its assigned convex safe

regions. The reason why we allow each vehicle to have a different set of safe regions is

that different vehicles may have to avoid a different set of obstacles. In the example

scenario, all obstacles are surface obstacles and, therefore, only the ship needs to

avoid them. The ROV, on the other hand, is always submerged and can move freely.

This represented by the ROV having only one safe region, which represents the full

environment.

ScottyPath uses the same convex safe regions introduced in the geometric path

planner presented in Chapter 10. Recall that these are convex polytopes that are

generated in advance. We provide the definition of convex safe regions here again for

clarity purposes.

Definition 11.7 (Convex Safe Region). A convex safe region, 𝑟 is a bounded convex

polytope that does not intersect with any obstacles and that is given by:

207

A

B

C

 xstart

(a)

A

B

C

 xstart

(b)

Figure 11-3: Example scenario environment with surface obstacles (in gray) and
regions of interest, in green (a). Figure (b) shows, in blue, the convex safe regions for
the ship. The ship must always remain within one of those safe regions.

𝑅 = {x𝑣 ∈ R𝑑 | 𝐴x𝑣 ≤ b } (11.1)

, where 𝐴 ∈ R𝑙×𝑑 and b ∈ R𝑙×1, 𝑙 is the number of hyperplanes (faces) of the

polytope, and 𝑑 is the dimension of the polytope. N

Figure 11-3 shows the convex safe regions for the ship in our example scenario.

These regions are computed in advance, as described in Chapter 10.

11.2.1.4 Control Variables and Continuous Effects

We assume that a human or an automated planner, like ScottyActivity, has provided

us with a behavior-based plan, for achieving goals comprised of a set of active be-

haviors that are enabled or disabled according to a provided sequence. Each of these

behaviors is a continuous effect over time. A continuous effect is active for the whole

duration of the episode where it is specified. Recall that ScottyPath can only change

the values of state variables by choosing the schedule of the events and the trajectories

for the control variables.

208

Control variables and continuous effects serve the same purpose than in Scotty-

Activity and, therefore, their definitions in the ScottyPath problem statement are the

same. Recall that control variables are bounded continuous controllable parameters.

Definition 11.8 (Control Variables, c). The control variables vector, c, is a vector

of control variables c = ⟨𝑐1, 𝑐2, . . . , 𝑐𝑚⟩, where each control variable 𝑐𝑗 is a real valued

parameter that is continuously controllable within its fixed lower and upper bounds,

𝑐𝑗 𝑙 and 𝑐𝑗𝑢. N

In the example scenario, each vehicle has its own velocity vector as their associated

control variables vector (e.g. c𝑅𝑂𝑉 = (𝑣𝑥𝑅𝑂𝑉 , 𝑣𝑦𝑅𝑂𝑉)). In the example, the vector of

control variables, is the vector of all these velocities: c = (𝑣𝑥𝑠ℎ𝑖𝑝, 𝑣𝑦𝑠ℎ𝑖𝑝, 𝑣𝑥𝑅𝑂𝑉 , 𝑣𝑦𝑅𝑂𝑉)

As described in Section 11.2.1, episodes in the QSP can define constraints on the

control variables. These are useful to model certain operational constraints that may

need to be active at certain points in the mission. In the example scenario, there

are two convex quadratic control variable constraints that limit the magnitude of the

velocities of the ship and the ROV, ‖v𝑣‖2 ≤ 𝑣𝑚𝑎𝑥𝑣 ∀𝑣 ∈ {ship,ROV}. Moreover,

in order to enforce that the ship does not move while the ROV is deployed, there

is a control variable constraint that sets the 𝑣𝑥 and 𝑣𝑦 velocities of the ship to 0

during that time. In order to use the same convex optimization model and solver that

ScottyActivity uses, as described in Chapter 6, we restrict control variable constraints

to convex quadratic constraints.

Definition 11.9 (Convex Quadratic Control Variable Constraint). A convex quadratic

control variable constraint is a constraint in the form of 𝑔(c) ≤ 0, where 𝑔 : R𝑚 → R

is a convex quadratic function operating on the vector of control variables, c. N

Continuous effects, as defined in Section 4.1.4, operate on state variables indepen-

dently. A continuous effect is the model of an engaged behavior. The plan provided

by the automated planner or the human describes, qualitatively, when the behavior

is engaged and disengaged. A continuous effect is active for the whole duration of the

episode where it is specified. A state variable may be influenced by multiple effects

209

simultaneously, and these influences are additive. Recall that we allow three types of

continuous effects.

The first type is the continuous controllable linear time-varying effect (CLTE).

As described in Definition 4.9, CLTEs are the most common continuous effects and

describe a time varying change on a state variable with a rate of change that is a

linear combination of control variables. In the example scenario, the CLTEs allow

the vehicles to move according to their control variable velocities. For example, the

two CLTE effects operating each on 𝑥𝑠ℎ𝑖𝑝 and 𝑦𝑠ℎ𝑖𝑝 allow the ship to move according

to its velocity by inducing the rates of change on its position variables: �̇�𝑠ℎ𝑖𝑝 = 𝑣𝑥𝑠ℎ𝑖𝑝

and �̇�𝑠ℎ𝑖𝑝 = 𝑣𝑦𝑠ℎ𝑖𝑝.

As described in Chapter 4, the other two continuous effects that we allow are

resource-constrained norm effects (RNE) and can only be applied to resource vari-

ables. RNEs (Definition 4.10) describe a change that depends on the Euclidean norm

of a vector of control variables. Similarly to ScottyActivity, ScottyPath supports two

types of RNEs: LNEs and LSNEs. Recall that the former describes a change that is

proportional to the Euclidean norm of a vector of control variables, while the later

describes a change that is proportional to the square of the Euclidean norm. RNEs

are useful to model, for example, the battery decrease rate of a vehicle as a function

of the norm of its velocity vector.

11.2.1.5 Objective Terms

As described in Section 11.2.1, episodes can also define one or more weighted objective

terms. The optimal plan returned by ScottyPath minimizes the weighted sum of all

the objective terms across episodes in the QSP.

Each objective term describes some incurred cost throughout the episode where

it is specified. We allow multiple types of objective terms. For example, we can

define a objective term on the duration of an episode. By placing an episode with

such objective term between the start and end events of the QSP, we can instruct

ScottyPath to minimize the duration of the solution plan. Other objective terms

allow us to minimize the distance traveled by a vehicle or the actuation effort during

210

an episode. The types of objective terms that we allow in ScottyPath mirror those

defined for ScottyActivity, in order to be able to use the same second order cone

model described in Chapter 6. The objective terms that we allow in the episodes of

a QSP are defined as follows.

Definition 11.10 (Objective Term). A objective term specified in an episode is given

by the tuple ⟨𝑘, 𝑒𝑆, 𝑒𝐸, 𝑜𝑡⟩.

∙ 𝑘 ∈ R is the coefficient of the objective term and is given by a real constant.

∙ 𝑒𝑆 and 𝑒𝐸 are the start and end events of the episode where the objective term

is specified.

∙ 𝑜𝑡 is the function that defines the objective. This function is defined between

the start, 𝑒𝑆, and the end event, 𝑒𝐸. It can be one of the following:

– A duration objective term, given as the difference of execution times

between the start and end event of the objective term: 𝑜𝑡(𝑒𝑆, 𝑒𝐸) =

𝑡(𝑒𝐸)− 𝑡(𝑒𝑆).

– A differential state variable objective term, given as the difference of values

of a non-resource state variable, 𝑥, between the start and end events. The

objective term is given by 𝑜𝑡(𝑒𝑆, 𝑒𝐸) = 𝑥(𝑡(𝑒𝐸))− 𝑥(𝑡(𝑒𝑆)).

– An end resource variable objective term, given by the value of a resource

variable at the end event, 𝑒𝐸. As explained in Chapter 6, resource vari-

ables can only be maximized. Therefore, we require this objective term

to have a negative coefficient (𝑘 < 0) and the start event to be the start

event of the QSP, 𝑒𝑠 = 𝑞.𝑠, where 𝑞 is the QSP. The objective term is

then defined as: 𝑜𝑡(𝑞.𝑠, 𝑒𝐸) = 𝑟(𝑡(𝑒𝐸))− 𝑟(𝑡0)

– A path length objective term. As described in Chapter 4, in order to

maintain convexity, these terms can only be minimized. Therefore, we

require the term coefficient to be positive, 𝑘 > 0. This term minimizes the

distance traveled by a vehicle during the episode. The objective function

211

is the following:

𝑜𝑡(𝑒𝑆, 𝑒𝐸) =

∫︁ 𝑡(𝑒𝐸)

𝑡(𝑒𝑆)

‖ẋ𝑒(𝜏)‖𝑑𝜏 (11.2)

, where x𝑣 is the vector of state variables that describes the position of

the vehicle.

– An actuation objective term, that depends on the norms or squared norms

of vectors of control variables. Again, this term can only be minimized

(𝑘 > 0). The objective function is given by:

𝑜𝑡(𝑒𝑆, 𝑒𝐸) =

∫︁ 𝑡(𝑒𝐸)

𝑡(𝑒𝑆)

‖c𝑒(𝜏)‖{1,2} 𝑑𝜏 (11.3)

, where c𝑒 is a vector of control variables.

N

The objective that the optimal plan returned by ScottyPath minimizes is then the

linear combination of all objective terms of all episodes in the QSP. We call this sum

the objective of the QSP.

min

∀𝑒∈𝐸𝑝∑︁
⟨𝑘,𝑒𝑆 ,𝑒𝐸 ,𝑐𝑡⟩∈𝑒.𝑂

𝑘 · 𝑜𝑡(𝑒𝑆, 𝑒𝐸) (11.4)

Note that while objective terms are relative in that they are defined between

the start and end events of its episode, it is possible to minimize absolute terms by

defining objective episodes that start at the starting event in the QSP. The example

scenario has two objective terms between the start and the end event of its tQSP.

One of them minimizes the total duration of the plan, 𝑇 − 𝑡0. The other is a path

length term that minimizes the distance traveled by the ship throughout the mission.

Figure 11-2 shows the episodes containing these objective terms as pink arcs in the

tQSP. As an example, the figure shows an additional objective that minimizes the

time between event 𝑒3 and 𝑒0. This represents the time until the sampling of the first

region is started. We use this example objective later in this chapter to illustrate how

our algorithm operates.

212

11.2.2 Solution Plan

Conceptually, the solution to a tQSP is comprised of three elements: the schedule for

the events in the tQSP, the trajectories of all the control variables throughout the

plan, and a sequence of safe regions, for each vehicle, that describes the obstacle-free

path that each vehicle follows.

Definition 11.11 (tQSP Plan). A tQSP plan is a tuple ⟨𝑓𝑡, fc, r⟩, where

∙ 𝑓𝑡 : 𝐸 → [𝑡0, 𝑇] is an assignment of each event in the tQSP to its execution

time, where the starting event is constrained to take place at 𝑡0. The execution

time of the last event is called 𝑇 .

∙ fc : [𝑡0, 𝑇) → R𝑚 is the control trajectory. The control trajectory assigns a

value to all control variables at every time 𝑡 between the start and the end of

the plan.

∙ r : [𝑡0, 𝑇] → 𝑅𝑣1 × . . . × 𝑅𝑣𝑛𝑣
is an assignment of each time in the plan to a

vector that describes the convex safe region that each vehicle is constrained to

remain in during that time.

N

Since state variables only change their values due to the influence of continuous

effects, and these only depend on the times they are active for and the values of the

control variables, the state trajectory, x(𝑡), is fully determined in a tQSP plan at all

times between the start of the plan, 𝑡0, and the end of the plan, 𝑇 .

A valid tQSP plan satisfies all constraints in the tQSP.

Definition 11.12 (Valid tQSP Plan). A valid tQSP plan is a tQSP plan that sat-

isfies all the constraints in the tQSP. That is,

1. For each event, 𝑒𝑗, the values of the state variables in the tQSP plan at the

event, x(𝑡(𝑒𝑗)), satisfy the state constraints of the event.

213

c11

�t11

ej

tj
xj

x12
t12 tji

xji

�tji

cji

sji

s02

e0 e1 e3

t

sequence
seq0

event
stage

Region Assignments

Vehicle 1
Vehicle 2

R3 R3
R8 R9R9

R12 R16
R21 R32

R16

�t02

c02

R22 R3 R39 R27
R6 R6 R15 R42

Figure 11-4: Diagram showing a tQSP plan with piecewise constant control with four
events. Each consecutive pair of events, 𝑒𝑗 and 𝑒𝑗+1, are connected by a sequence 𝑗
(green). Each sequence consists of one or more stages (blue). The control variables
vector takes a constant value c𝑖𝑗 during stage 𝑖 of sequence 𝑗. Each vehicle is assigned
one of its safe regions at each stage, where it must remain for the duration of the
stage.

2. For each episode with start event 𝑒𝑆 and end event 𝑒𝐸:

∙ The event times of 𝑒𝑆 and 𝑒𝐸 satisfy the episode temporal constraints.

∙ The state variables trajectory, x(𝑡), satisfies the episode state constraints

for the duration of the episode.

∙ The control trajectory, c(𝑡) satisfies the episode control variable con-

straints for the duration of the episode.

N

Definition 11.13 (Optimal tQSP Plan). An optimal tQSP plan is a valid tQSP

plan such that the tQSP objective takes the minimum possible value. N

11.2.3 Piecewise Constant Solution

Analogous to ScottyActivity, ScottyPath also generates plan with piecewise constant

control. Recall, from Chapter 5, that the piecewise constant restriction allows us

to efficiently enforce maintain conditions over arbitrarily long durations and to use

our second order cone model. Intuitively, in a ScottyPath solution plan, the vector

214

of control variables follows a piecewise constant trajectory. The periods of time in

which the vector of control variables takes a constant value are called a stages. Each

vehicle is constrained to remain inside a convex safe region for the whole duration of

each stage in the plan. In other words, during each stage all vehicles remain in some

convex safe region and the values of all control variables stay constant. The plan is

given, therefore, by a set of ordered stages. Recall that events in a tQSP are totally

ordered. We call the set of ordered stages between consecutive events in the tQSP a

sequence.

We call this type of plans that ScottyPath returns tQSP plans with piecewise

constant control. Additionally, the plans that ScottyPath returns are optimal. More

formally, tQSP plans with piecewise constant control are defined as follows.

Definition 11.14 (tQSP Plan with Piecewise Constant Control). A tQSP plan with

piecewise constant control is a tQSP plan in which the control trajectory and the

region assignment are piecewise constant. A tQSP plan with piecewise constant

control has the following properties:

∙ 𝑁−1 sequences, where 𝑁 is the number of events in the tQSP. Each sequence,

𝑠𝑒𝑞𝑗 is the period of time between two consecutive events, 𝑒𝑗 and 𝑒𝑗+1. Each

sequence 𝑠𝑒𝑞𝑗 consists of 𝑁𝑗 stages. A stage 𝑠𝑗𝑖 is the 𝑖-th stage of sequence 𝑗,

with 𝑖 = 0, . . . , 𝑁𝑗−1. Each stage has a beginning and an end. The beginning

of the first stage in the sequence takes place at the start event of the sequence:

𝑡(𝑠𝑗0.𝑠𝑡𝑎𝑟𝑡) = 𝑡(𝑒𝑗). The end of the last stage in the sequence, takes place at

the end event of the sequence: 𝑡(𝑠𝑗,𝑁𝑗−1.𝑒𝑛𝑑) = 𝑡(𝑒𝑗+1). The duration of stage

𝑠𝑗𝑖, ∆𝑠𝑗𝑖 is the difference between its end and start times.

∙ A control trajectory, c(𝑡), that is piecewise constant. The control variable vec-

tor is constant during each stage in the plan: c(𝑡) = c𝑗𝑖 for 𝑡 ∈ [𝑡(𝑠𝑗𝑖.𝑠𝑡𝑎𝑟𝑡), 𝑡(𝑠𝑗𝑖.𝑒𝑛𝑑)).

∙ A region assignment, r, that is piecewise constant. Each vehicle is required to

remain in the same region for the duration of each stage in the plan, r(𝑡) = r𝑗𝑖

for 𝑡 ∈ [𝑡(𝑠𝑗𝑖.𝑠𝑡𝑎𝑟𝑡), 𝑡(𝑠𝑗𝑖.𝑒𝑛𝑑)).

215

N

Figure 11-4 shows a diagram that illustrates the relation between events, sequences

and stages in a tQSP plan with piecewise constant control.

As in the case of the PDDL-S plans with constant control that ScottyActivity

generates (Section 4.2), the fact that ScottyPath generates tQSP plans with piecewise

constant control does not affect the completeness or the optimality of ScottyPath.

Theorem 11.1 (Completeness of tQSP Plans with Piecewise Constant Control). If

a tQSP problem has a solution, there always exists a solution that is a tQSP plan with

piecewise constant control.

Theorem 11.2 (Optimality of tQSP Plans with Piecewise Constant Control). The

optimal solution to a tQSP problem, if one exists, is a tQSP plan with piecewise

constant control.

The proofs for Theorems 11.1 and 11.2 are essentially the sames as the proofs for

the completeness and optimality of PDDL-S problems (Theorems 4.1 and 4.2). We

refer the interested reader to the proofs of the theorems of the PDDL-S plans with

piecewise constant control (Appendix A) for additional details.

11.3 Relation Between tQSPs and Other Problems

ScottyPath has been designed as part of the Scotty Planning System. Therefore, it

can take the output plan generated by ScottyActivity as its input. However, tQSPs, as

described in Section 11.2.1.1, are more expressive than the plans returned by Scotty-

Activity. In this section, we describe how to express the output plans of ScottyAc-

tivity as tQSPs. Additionally, we also describe how to solve the SSPo problems from

Chapter 10 with ScottyPath by expressing them as tQSPs.

11.3.1 SSPos and tQSPs

Every safe-region shortest path problem with ordered goals (SSPo), as defined in Sec-

tion 10.1, can be expressed as a tQSP. Recall that a SSPo problem seeks the shortest

216

path contained in safe regions that visits multiple region goals in a given order. Al-

though SSPo problems do not require temporal constraints, dynamics or multiple

vehicles, every SSPo can be expressed as a tQSP with:

∙ One vehicle, 𝑣, with as many position state variables as the dimension of the

goal regions in the SSPo. The vehicle also has a control variable with bounds

(−1, 1) for each of the position state variables.

∙ An initial state, x𝑖𝑛𝑖, that denotes the initial position of the vehicle at 𝑡 = 0.

This initial position is the initial position of the SSPo.

∙ An ordered list of events. The first event is the start event of the tQSP. This

events represents the starting position of the SSPo. For each goal region in the

SSPo, a corresponding event is added to the list. Each of these events have a

state constraint that requires the vehicle to be in the goal region of the SSPo.

The last goal region of the SSPo corresponds to the last event in the tQSP.

∙ A set of episodes. One episode is placed between the start event and the last

event of the tQSP. This episode defines, for each position variable of the vehicle,

a CLTE effect depending on its associated control variable (e.g. �̇� = 𝑣𝑥). These

effects allow the vehicle to move in the environment. In order to impose the

ordering constraints between the goals, additional episodes are placed between

each consecutive goal region events with a temporal constraint (0,∞). Finally,

an episode with an objective term minimizing the distance traveled by the

vehicle is placed between the start and the end events of the tQSP.

∙ A region assignment, 𝑟𝑣, that assigns all the safe regions in the SSPo to vehicle

𝑣.

Note that the events in a tQSP are fully ordered. Therefore, SSPu problems (in

which the goal regions are not ordered), cannot be expressed as tQSP problems.

217

11.3.2 Scotty Skeleton Plans, PDDL-S Problems and tQSPs

Recall that ScottyActivity plan skeletons, as defined in Section 8.1, represent a partial

schedule of totally ordered events, where each event in ScottyActivity is the start or

end of an activity. While performing joint activity and trajectory planning, Scotty-

Activity tests the consistency of plan skeletons by solving a convex model that finds a

feasible assignment for the execution times of the events and for the control trajectory.

Since the events in a ScottyActivity plan skeleton are totally ordered, and the

continuous effects and state conditions supported by ScottyActivity are similar to

that of ScottyPath, every ScottyActivity plan skeleton can be represented as a totally

ordered QSP. A tQSP representing a ScottyActivity plan skeleton has the following

characteristics:

∙ For any event in the plan skeleton, an event, 𝑒, is created in the tQSP. If the

plan skeleton event is a start (end) event of an activity, the at start (at end)

state conditions of the activity are added as the state conditions of event 𝑒.

∙ For every activity in the plan skeleton, an episode is created in the tQSP between

the analogous events of their start and end counterparts in the plan skeleton.

The temporal constraints, and over all state constraints of the activity are

added to the episode. Similarly, the continuous effects of the activity are added

to the episode.

∙ Episodes with temporal constraints [𝜀,∞) are added between the events in the

tQSP to maintain the same relative order of the events in the plan skeleton and

to enforce the epsilon separation of events in plan skeletons.

∙ An episode between the first and the last events in the tQSP is added. This

episode contains all the control variable constraints present in the ScottyActivity

PDDL-S problem.

∙ In order to capture the objective of the PDDL-S problem, another episode

between first and the last events in the tQSP is added. For every objective

218

term in the PDDL-S problem, a similar objective term is added to the newly

created episode. This is all that is needed since PDDL-S problems only support

objectives at the end of the plan.

Note that the discrete conditions and the discrete effects of activities are ignored

and, therefore, not part of the tQSP. This can be done since we require the events to

be totally ordered. Because the events are ordered, the semantics of PDDL-s problems

ensure that the discrete conditions and effects will always hold.

In order to create a tQSP problem, we further need to define the vehicles of the

problem and their relation with the state variables in the PDDL-S problem. This

information is not present in PDDL-S problems and, therefore, it needs to be entered

externally. Similarly, a mapping from each vehicle to a set of convex safe regions

needs to be defined.

Note that when mapping the solution plan from ScottyActivity to a tQSPpp

problem, we only use the information of what activities are selected and the total

order of the start and end events in the plan. The actual execution times and control

trajectories that ScottyActivity finds are discarded. Instead, ScottyPath finds new

execution times and control trajectories that satisfy all the PDDL-S constraints, but

also ensure that all the vehicles in the problem always remain within safe regions.

11.4 Planning Approach

In this section we discuss ScottyPath approach. We first start by providing a high

level overview of the algorithm. Afterwards, we provide a detailed description of the

search and the convex model used by ScottyPath.

11.4.1 In a Nutshell

Recall that ScottyPath finds optimal tQSP plans with piecewise constant control.

In order to find optimal piecewise constant control trajectories that satisfy all the

constraints of the tQSP we use convex optimization. To avoid the non-convex con-

219

mission

deploy-ROV sample-A
e0 e1 e2 e3 e4

t0
x0

t
sample-B

recover-ROV

e5 e6 e7 e8 e9

deployed-ROV

[10, 20] [10, 20] [20, 20][5, 5]

t9 = T
xship = xROV

xship = xROV

xROV 2 A

xROV 2 B

kxship � xROV k dmax

xship 2 Rend

vship = 0

vROV = 0

vROV = 0

VelocityControl(ship, vship)
VelocityControl(ROV, vship)

VelocityControl(ROV, vROV)

[",1)

min t3 � t0

min dist(ship) + ↵T

(a)

A

B

C

 xstart

p

(b)

A

B

C

 xstart

(c)

ship

ROV E

(d)

Figure 11-5: Figure (a) shows the tQSP for our example scenario (same as Figure 11-
2). Figure (b) shows the optimal trajectories for the ship (blue) and the ROV (red)
in the absence of obstacles. The safe regions for the ship are shown in blue in Figure
(c). Figure (d) shows the connectivity graph for the ship and the ROV. The starting
position is shown in blue and each safe region is shown as a white node. Since all
obstacles are on the surface, the ROV only has one safe region, which covers the full
environment.

220

straints that obstacle avoidance requires, we force vehicles to remain within a sequence

of overlapping convex safe regions that are guaranteed to be obstacle free. As we did

in Chapter 10, we assume that these regions have been generated offline in advance,

with one of the methods discussed in Section 10.5.1, based on the IRIS algorithm [30].

Figure 11-5c shows such safe regions for the ship in the example scenario presented in

Section 11.1. For each vehicle, we generate a connectivity graph that describes how its

safe regions are connected. Connectivity graphs are generated with Algorithm 10.1,

as described in Section 10.2.3. Figure 11-5d shows the connectivity graphs for the

ship and the ROV in the example scenario.

Recall that the tQSP plans with piecewise constant control that ScottyPath finds

are comprised of stages, which describe periods of time in which the vector of control

variables takes a constant value. Each stage defines: a) a duration, b) a constant

value for all control variables, and c) a safe region for each vehicle, such that each

vehicle remains inside that safe region for the whole duration of the stage. Recall, as

well, that we call a sequence the ordered set of stages between consecutive events in

the tQSP. In a final solution plan returned by ScottyPath there are 𝑁 − 1 sequences,

where 𝑁 is the number of events in the tQSP. Each of these sequences consists of

one or more stages. We call a region assignment, the composition of each sequence in

the plan. That is, the number of stages each sequence contains and the safe regions

that each vehicle is assigned in each of those stages. As we describe in Section 11.4.3,

when the region assignment is known, it is possible to use our convex model to find

all the continuous values that minimize the objective of the tQSP for such region

assignment. These continuous values are: the schedule of all the events in terms of

their execution times, the values of all state variables at each event, and the constant

value for the vector of control variables at each stage in the plan. That is, from the

region assignment we can use our convex optimization model to find the piecewise

constant trajectory of the control variables and the piecewise linear trajectory of

the state variables. There are, in general, an infinite number of region assignments

that produce feasible solution plans. The problem that ScottyPath solves reduces

to finding the optimal region assignment such that its associated control and state

221

A

B

C

xstart

1

(a)

A

B

C

xstart

9

(b)
mission

deploy-ROV visit-A
e0 e1 e2 e3 e4

visit-B recover-ROV
e5 e6 e7 e8 e9

s02stage

ship
ROV

R2 R18 R14 R12 R9 R9 R8 R3 R11 R0
env env env env env env env env env env env env env env env env env

R9 R9 R9 R9 R9 R9 R9

�t02

c02

(c)

A

B

C

xstart

 p

(d)

Figure 11-6: Figure (a) shows the trajectories for the ship (blue) and ROV (red) for a
region assignment where the next event that needs to be connected is the deployment
event, 𝑒1. The ship safe regions are shown in translucent blue. The trajectories shown
minimize 𝑓 = 𝑔+ℎ, where 𝑔, the committed cost, is the part going through safe regions
(in solid lines) and ℎ is the heuristic part ignoring obstacles from that point (in dashed
lines). Figure (b) shows the trajectories for a region assignment in which all events
have been connected except for the last one, 𝑒9. Figures (c) and (d) show the final
optimal region assignment that connects all events and its corresponding trajectories.
Since the obstacles do not affect the ROV, it is always inside the region that denotes
the full environment, ‘env’.

222

trajectories minimize the tQSP objective.

ScottyPath decides how many stages are needed for each sequence between con-

secutive events in the tQSP, and the safe region that each vehicle is assigned for each

of those stages. As in Chapter 10, we use A* on the connectivity graphs to find an

optimal region assignment. Each search node defines a partial region assignment.

The initial search node has an empty region assignment. A child node of a search

node adds an additional stage that assigns a safe region to each vehicle. Regions are

added until all events in the tQSP are connected. In the case of the geometric planner

presented in Chapter 10, the planner adds regions until all goal regions are connected

by a path consisting of a sequence of intersecting convex safe regions. ScottyPath op-

erates similarly in that it connects events in the tQSP with sequences of safe regions.

The difference, compared to the geometric path planner from Chapter 10, is twofold.

First, the region assignment describes a safe region path for each vehicle, as opposed

to a single region path. Second, we do not have an explicit representation of the goal

regions that need to be visited. In this case, the events in the tQSP can be considered

goals that need to be connected by sequences of safe regions. Each sequence consists

of an ordered set of stages between consecutive events in the tQSP. Each event has

associated a time and values for all state variables at that point in the plan, including

the positions of all vehicles. ScottyPath adds stages to the end of a sequence until it

becomes possible to connect to the next event. A connection is possible if the time

and the values of all state variables at the end point in the last stage match the time

and the state variables of the next event. This means that each vehicle has a path

through safe regions that leads to the time and the state variable values at the event.

The time and the state variables of the event need to satisfy all the constraints in the

tQSP. Whenever a connection is made, the sequence connecting that event is closed.

Children nodes of the search node where the connection was made have partial region

assignments with a new sequence. This new sequence aims to connect the next event

in the tQSP. Since we explore region assignments in best-first order, the problem is

solved when the last event in the tQSP is connected.

In our example scenario, the first event that needs to be connected by regions is the

223

start event of the ROV deployment episode (labeled as 𝑒1 in Figure 11-5a). The tQSP

does not specify the exact point where the ROV should be deployed. However, that

point is constrained by the requirement, specified in the tQSP, that the ROV visits

sampling regions A and B without repositioning the ship and without violating the

tether range constraint. Figure 11-6a shows a node with a partial assignment of safe

regions in which the next event that needs to be connected is 𝑒1. The solid lines show

the trajectories of the ship and ROV going through the regions in the stages of the

region assignment. The dashed lines show the rest of the plan that is not connected

by safe regions yet. The trajectories, connected by safe regions or not, satisfy all the

constraints in the tQSP. However, the part of the plan connected by safe regions is

obstacle free, while the unconnected part ignores obstacles. In Figure 11-6b, event

𝑒1 and all others except for 𝑒9 have already been connected. Finally, Figure 11-6c

shows the final optimal region assignment in which all the events are connected by

safe regions. Figure 11-6d shows its resulting optimal trajectories.

In order to use A*, we need to compute the cost (𝑔) and heuristic (ℎ) for each

search node. In the spirit of our method in Chapter 10, we compute 𝑔 and ℎ jointly

by solving a convex optimization model for each node in the search. Recall that the

optimal plan that we are seeking is the one that minimizes the linear combination

of all objective terms in the episodes in the tQSP. Each objective term 𝑐𝑡 is split

into its cost part 𝑔𝑐 and its heuristic part ℎ𝑐. The cost part of the objective is

the accumulated value incurred from the start until the end of the last stage going

through safe regions. The heuristic part is the accumulated value from that point

until the end of the plan, that is, the remaining unconnected section of the plan. In

the example scenario, one of the objective terms minimizes the distance traveled by

the ship. The 𝑔 part of that objective, for a given region assignment, is the distance

traveled by the ship through the assigned safe regions. The ℎ part is the length of the

path connecting the remaining events that ignores the obstacles. As an additional

example, imagine another objective minimizing the distance traveled by the ROV.

Consider a search node with a region assignment like the one shown in Figure 11-6a

where the deployment point, event 𝑒1, has not been connected yet. For this node,

224

the heuristic part of the objective term is the full distance traveled by the ROV (red

dotted trajectory) and the cost part is 0, since the ROV does not cover any distance

in the part of the plan connected by safe regions. On the other hand, for the search

node with the region assignment shown in Figure 11-6b, the cost part of the objective

term is the distance traveled by the ROV (solid red line). The heuristic part is 0,

since the ROV does not need to move again in the remaining part of the plan not

connected by safe regions. This is the case because the ROV is being carried by the

ship during that part of the plan.

As discussed earlier, search nodes are expanded by creating child nodes with one

additional stage appended at the end. This stage assigns a safe region to each vehicle

that is a neighboring region from the region assigned to each vehicle in the last stage.

Additionally we need to test, for every search node, whether the its region assignment

can connect the next event in the tQSP. We determine whether this connection

is possible by solving the optimization model one more time with the objective of

minimizing the distance from the last point going through safe regions to the event

that needs to be connected. If such distance is 0, the connection is possible. In effect,

when the distance is 0, the time and values of the state variables for the event are the

same as the time and the values of the state variables for the last point going through

regions. If this is the case, we create a child node in which the connection is enforced

by increasing the index of the next event that needs to be connected.

The search finalizes once all the events in the plan are connected through safe

regions. Since our heuristic ignores obstacles in the part of the tQSP not connected

by safe regions, and our optimization problem is convex, the heuristic value is a lower

bound on the remaining cost. That is, the cost for the remaining part of the tQSP

not yet connected can only be as low as the heuristic value. Hence, our heuristic

is admissible. Therefore, our A* search returns an optimal assignment of regions

connecting consecutive events that minimizes the linear combination of objectives in

the tQSP.

In the rest of this section we describe the search algorithm in more detail, as well

as the convex optimization model that we use.

225

11.4.2 Search Algorithm

Algorithm 11.1: ScottyPath-Plan
Input: A tQSP problem, 𝑃 , and a heuristic weight 𝛼 ≥ 0.
Output: A solution tQSP plan with piecewise constant control if one exists or

𝑛𝑖𝑙 otherwise. The solution is optimal if 𝛼 ≤ 1.
Algorithm

1 𝑄← CREATE-PRIORITY-Q()
2 for 𝑣𝑖 in 𝑃.vehicles do
3 𝑅𝑣𝑖 ← GET-CONTAINING-SAFE-REGIONS(𝑃.x𝑖𝑛𝑖(𝑣𝑖))

4 for ⟨𝑟𝑣1 , . . . , 𝑟𝑣𝑛𝑣
⟩ in CROSS-PRODUCT(𝑅𝑣1 , . . . , 𝑅𝑣𝑛𝑣

) do
5 𝑁𝑛𝑒𝑤 ← MAKE-NODE(⟨𝑟𝑣1 , . . . , 𝑟𝑣𝑛𝑣

⟩)
6 ⟨feasible, 𝑔, ℎ⟩ ← COMPUTE-G-H-DIST(𝑁𝑛𝑒𝑤)
7 if feasible
8 PUSH(𝑄, 𝑔 + 𝛼 · ℎ, 𝑁𝑛𝑒𝑤)

9 while not IS-EMPTY(𝑄) do
10 𝑁 ← POP(𝑄)
11 if NEEDS-EXPANSION?(𝑁)
12 MARK-EXPANDED(𝑁)
13 if ALL-EVENTS-CONNECTED?(𝑁)
14 return MAKE-PLAN(𝑁)

15 for 𝑁𝑐ℎ𝑖𝑙𝑑 in MAKE-EXTENSIONS(𝑁) do
16 ⟨feasible, 𝑔, ℎ⟩ ← COMPUTE-G-H-DIST(𝑁𝑐ℎ𝑖𝑙𝑑)
17 if feasible and NEEDS-EXPANSION?(𝑟)
18 PUSH(𝑄, 𝑔 + 𝛼 · ℎ, 𝑁𝑐ℎ𝑖𝑙𝑑)

19 return 𝑛𝑖𝑙

The search algorithm that assigns sequences of safe regions to each vehicle in

tQSP is shown in Algorithm 11.1. As described earlier, we use A* to find an optimal

assignment of regions that minimizes the objective of the tQSP problem. The search

expands nodes in order of increasing 𝑓 (= 𝑔 + ℎ) values. For every search node, we

use a convex optimization model to jointly compute the cost (𝑔) and heuristic (ℎ)

values of the region sequences assigned by that node (Lines 6 and 16). We also use

our convex model to find the minimum possible distance from the last point in the

part of the tQSP already connected by safe regions to the next event that has not

been connected yet.

226

Algorithm 11.2: Make-Extensions
Input: A search node, 𝑁 .
Output: A set 𝐶 of the possible node expansions from 𝑁 .
Algorithm

1 𝐶 ← {}
2 if 𝑁.next_distance == 0 /* Connection to next event is possible. */
3 𝑁𝑛𝑒𝑤 ← 𝑁
4 𝑁𝑛𝑒𝑤.next_event = 𝑁.next_event + 1
5 ADD-STAGE(𝑁𝑛𝑒𝑤, 𝑁.last_stage_regions)
6 ADD(𝐶, 𝑁𝑛𝑒𝑤)

7 for 𝑣𝑖 in 𝑃.vehicles do
8 𝑅𝑣𝑖 ← GET-NEIGHBORING-SAFE-REGIONS(𝑣𝑖, 𝑁.last_stage_regions)

9 for ⟨𝑟𝑣1 , . . . , 𝑟𝑣𝑛𝑣
⟩ in CROSS-PRODUCT(𝑅𝑣1 , . . . , 𝑅𝑣𝑛𝑣

) do
10 𝑁𝑛𝑒𝑤 ← CLONE-AND-ADD-STAGE(𝑁 , ⟨𝑟𝑣1 , . . . , 𝑟𝑣𝑛𝑣

⟩)
ADD(𝐶, 𝑁𝑛𝑒𝑤)

11 return 𝐶

The first step in the algorithm consists in finding, for each vehicle, the safe regions

that contain its initial location. We compute the cross product of the possible initial

regions for each vehicle in order to create a set of starting search nodes (Lines 2 to 8).

Each is placed on the queue as root nodes. The search finalizes when all the events are

connected by safe regions (Line 13). At that point, ScottyPath returns a tQSP plan

with piecewise constant control with the region assignment, the schedule of the events

and the control and state trajectories for each vehicle (Line 14). Since our heuristic

is admissible, the region assignment found by the search produces an optimal plan.

Search nodes are expanded by creating child nodes with an additional stage ap-

pended at the end (Algorithm 11.2). The newly added stage assigns a safe region to

each vehicle. To compute the possible child nodes of a given search node, we first

find all the neighboring safe regions of each vehicle’s last region. We then compute

the cross product of the neighboring regions for each vehicle in order to find all the

possible region assignment extensions for the current node. A child node is created

for each of these (Lines 9 to 10). The neighboring safe regions of a safe region include

the same safe region itself. We do this to allow some vehicles to stay in the same

region they were while other vehicles change to a different safe region.

227

Finally, we test, for each node, whether it is possible to reach the next unconnected

event through its region assignment. If that is the case, we create an additional child

node in which the index of the next event that needs to be connected is increased by

1. The new sequence that starts at the event that has just been connected contains

one stage. This stage assigns, to each vehicle, the same region they were assigned

in the previous stage. That is, each vehicle stays in the same region that made the

connection possible (Lines 2 to 6). Note that we do not force nodes to connect events

when the connection is possible, but that we only enforce this connection in a child

node. The reason is that making the connection as soon as it becomes feasible is not

always the best option to find an optimal plan. In order to find optimal plans, we

need to explore the full search space, and making the connection is a choice that is

represented by a child node.

In order to avoid exploring unnecessary region assignments, we use an expanded

list. In the expanded list, we mark the regions assigned to each vehicle in the last

stage of the region assignment (Line 12). For example, in a problem with two vehicles,

𝑣1 and 𝑣2, the last stage of a region assignment may assign ⟨𝑣1 ← 𝑅7, 𝑣2 ← 𝑅3⟩, where

𝑅7 and 𝑅3 are the regions for the first and second vehicle. The regions assigned to

each vehicle are considered jointly. Therefore, another search node with a region

assignment whose last stage was ⟨𝑣1 ← 𝑅7, 𝑣2 ← 𝑅12⟩ would not be considered

expanded, and the algorithm would expand it. Note, however, that the same safe

regions may have to be visited by the vehicles at the same time at later steps in the

tQSP. For example, consider a tQSP problem in which the two vehicles have to return

to a certain location after they visit each of their goals. In this case, the assignment

⟨𝑣1 ← 𝑅7, 𝑣2 ← 𝑅3⟩ may be needed multiple times throughout the plan. To avoid

this issue, the expanded list records, not only the region that each vehicle is assigned,

but also the next event in the tQSP that has to be connected next at that point in

the search. For example, the expanded list would record: ⟨𝑒1, 𝑣1 ← 𝑅7, 𝑣2 ← 𝑅3⟩,
meaning that 𝑣1 is in region 𝑅7 and 𝑣2 is in region 𝑅3 when the next event that has

to be connected by safe regions is 𝑒1. The search would still expand the assignment

⟨𝑣1 ← 𝑅7, 𝑣2 ← 𝑅3⟩, but only if it was associated with a search node in which the

228

next event that had to be connected would be different from 𝑒1, e.g. later in the

tQSP. This is analogous to the expanded list used in the geometric path planner in

Chapter 10.

11.4.3 Computing Optimal Trajectories Through Convex Safe

Regions using Convex Optimization

Our convex optimization model is used for three purposes. First we use it to compute

the cost and heuristic value for each search node. Second, we use the same constraints

with a different objective to compute the minimum distance from the last point going

through the safe regions in a region assignment to the next event in the tQSP not yet

connected. This distance is used to check whether the current region assignment can

connect the next event. Finally, this model is also used to compute the optimal tQSP

plan with piecewise constant control when the complete region assignment connecting

all the events is found. In this case the model and objective are exactly the same as

when computing the 𝑔 and ℎ values for a search node. The difference is that, because

all events are connected, the heuristic value, ℎ, is 0, since the full plan goes through

safe regions.

Since the state constraints, the continuous effects and the control variable con-

straints are the same as in ScottyActivity, the convex optimization model that we

use for ScottyPath is almost the same as the one described in Chapter 6, except for

a few differences that we describe in this section. Recall that in the ScottyActivity

model, stages are the periods of time between consecutive events in which the control

variables vector, c, takes a constant value. Since the control variables are constant

during stages, the trajectory of the state variables vector, x, during each stage is

described by a straight line segment, and the change is linear in time. In the Scot-

tyPath model, consecutive events are not separated by just one stage but, instead,

by a sequence of stages. Since the vector of control variables, c, takes a constant

value during each stage, each sequence describes a piecewise linear trajectory, where

each segment corresponds to each stage. Since the semantics of tQSP problems only

229

ej

tj
xj tji

xji
s02

e0 e3

t

sequence
seq0event stage

Region Assignments

Vehicle 1
Vehicle 2

R3 R3
R8 R9R9

R12 R16
R21 R32

R16

�t02

c02

R22
R6

reaching stage

�tji

cji

sji
next event

to be connected

sequence ignoring
obstacles

Scotty Plan Skeleton

ScottyPath Piecewise Constant tQSPpp Plan

activity c
activity a

activity b
e0 e1 e2 e4

s0 s1 s2 s3 s4t0
x0

cj

c0
t

�tj

e5

ej

tj
xjevent stage sj

Figure 11-7: Events, sequences and stages in a ScottyPath plan and their relation to
ScottyActivity plan skeletons.

allow state constraints, control variable constraints or continuous effect to become

enabled or disabled at events, the same constraints apply to all the stages in the

same sequence.

Figure 11-7 describes the relation between events, sequence and stages and the

differences with the ScottyActivity plan skeletons. We can distinguish three types of

sequences: 1) sequences leading to connected events, 2) the sequence leading to the

event that has to be connected next, and 3) sequences between unconnected events.

Every stage in sequences leading to connected events, such as 𝑠𝑒𝑞0 in Figure 11-7,

assign a safe region to each vehicle. Vehicles are required to remain in this region

for the duration of the stage. Since each stage corresponds to a straight line segment

and safe regions are convex, it suffices to constrain the beginning and the end of the

stage to be inside the region in order to guarantee that the full segment is contained

in the region, as explained in Chapter 5.

230

Next, consider the sequence leading to the event that has to be connected next,

such as 𝑠𝑒𝑞1 in Figure 11-7. This sequence has one or more stages with assigned safe

regions, and one stage at the end with no safe regions that ends at the event that

needs to be connected next. We call this last stage the reaching stage. The start

of the reaching stage marks the point from which no safe regions are assigned and,

therefore, obstacles are ignored. If the reaching stage has length and duration 0, that

is, its presence does not make a difference, then the event would be connected by a

path safe regions for each vehicle.

All sequences after the sequence containing the reaching stage link consecutive

pairs of events in which neither has been connected by a path of safe regions yet.

This is the case for 𝑠𝑒𝑞2 in Figure 11-7. These sequences only have one stage, and

this stage does not assign safe regions. The events in these sequences are connected

by only one straight line segment that ignores obstacles and that uses the same

constraints as in the ScottyActivity model.

The other difference in the ScottyPath model compared to ScottyActivity’s that

remains to explain is the computation of the cost (g) part and the heuristic (h) part

of each objective term. Since the objective terms are the same as in ScottyActivity,

the formulation for the objectives is the same as the one described in Chapter 6.

However, instead of computing each objective term throughout the entire plan, as

in ScottyActivity, we divide each objective term into the part that goes through the

section of the tQSP connected by safe regions and the part that ignores obstacles

after that. We do this because we need to compute the committed cost incurred in

the region assignment of the node (𝑔), and the best case remaining cost-to-go in the

part of the tQSP not yet connected by safe regions, that is, the heuristic value (ℎ).

The part of each objective, 𝑜𝑏𝑗, that goes through the safe region contributes to the

committed cost term (𝑔) whereas the part that ignores obstacles contributes to the

heuristic term (ℎ). Figure 11-8 shows, with an example, how this division between

committed cost and remaining cost-to-go is done.

In order to compute both 𝑔 and ℎ we solve the model to minimize 𝑓 = 𝑔 + ℎ.

Note that minimizing only 𝑓 is not sufficient to guarantee that the returned value for

231

Algorithm 11.3: Compute-G-H-Dist
Input: A search node, 𝑁 .
Output: Whether the node’s region assignment is feasible, and the values of

the cost, 𝑔, and heuristic, ℎ, of 𝑁 , as well as the connection distance,
𝑑, to the next unconnected event.

Algorithm
1 ⟨𝑔, ℎ⟩ ← ⟨𝑛𝑖𝑙, 𝑛𝑖𝑙⟩
2 prog← BUILD-PROGRAM(𝑃 , 𝑁.region_sequences)
3 feasible← OPTIMIZE(prog, ⟨𝑔 + ℎ, ℎ⟩)
4 if feasible
5 ⟨𝑔, ℎ⟩ ← ⟨GET-VALUE(g), GET-VALUE(h)⟩
6 OPTIMIZE(prog, ⟨distance⟩)
7 𝑁.distance_to_next_event← GET-VALUE(distance)

8 return ⟨feasible, 𝑔, ℎ⟩

ℎ is as small as possible. The solver has no incentive to ensure that the heuristic part

of the optimization is the one that strictly does not go through safe regions. As a

consequence, the solver could choose values for ℎ larger than the real remaining cost,

rendering the heuristic not admissible. In our case, this does not affect the optimality

of the standard A* algorithm, since the order in which nodes are visited only depends

on 𝑓 , and our convex model guarantees an optimal value for 𝑓 . This issue is important,

however, when using weighted A*. Without an admissible heuristic, it is otherwise not

possible to guarantee the optimality bounds that weighted A* provides. Therefore,

in order to address this problem, we solve a slightly different problem that minimizes

ℎ for the smallest possible value of 𝑓 = 𝑔 + ℎ. This is represented with the following

optimization problem:

minimize
𝑡𝑖𝑗,x𝑖𝑗, c𝑖𝑗

ℎ

subject to inf (𝑔 + ℎ) ,

𝑔 =
∑︁
𝑜𝑏𝑗

𝑔𝑜𝑏𝑗,

ℎ =
∑︁
𝑜𝑏𝑗

ℎ𝑜𝑏𝑗,

tQSP constraints

(11.5)

232

, where 𝑡𝑖𝑗 and x𝑖𝑗 are the times and values of the state variables at the start and end

of each stage and c𝑖𝑗 are the constant values of the control variables vector during

each stage. In practice, this is achieved by solving the model twice. The first time

minimizing 𝑓 and the second time minimizing ℎ such that the minimum value of 𝑓 is

maintained. Most commercial solvers support multi-objective optimization. In this

case, it suffices to set 𝑓 as the primary and ℎ as the secondary objective (Line 3 of

Algorithm 11.3).

Figure 11-8 demonstrates how the computation for 𝑔 and ℎ is performed for a

search node, for a scenario similar to the ship-ROV example scenario. In this example,

the event that needs to be connected next is 𝑒1. The objective for this problem is the

distance traveled by the ship. As shown in the diagram, the cost part of the objective

is the distance traveled by the ship while traversing through the safe regions (shown

in a solid blue line). The heuristic part of the objective is the remaining distance

traveled, while ignoring obstacles (shown in a dashed blue line).

If the model has no solution, the region assignment associated with the search

node is not feasible and the node is discarded. If the model has a solution, we solve

it again to determine whether the current region assignment can connect the next

unconnected event in the plan (Line 6 of Algorithm 11.3). In this case, the objective

for the model is the duration of the reaching stage. If the resulting duration of the

reaching stage is 0, no change in the state variables happens during the reaching

stage, and the end of the previous stage matches the next event in time and value

of the state variables. Therefore, the current region assignment can connect to the

next event if desired, and the search creates such child extension when the node is

expanded. Figure 11-9 shows two examples of two different search nodes and the

trajectories returned by the solver when minimizing 𝑓 and when minimizing the

duration of the reaching stage. In the first case, the connection is not possible. In

the second case, the region assignment allows event 𝑒1, the ROV deployment event,

to be reached through the region assignment associated with the search node.

Finally, the same model is used to find the final tQSP plan with piecewise constant

control once all events are connected by safe regions. The objective in this case is

233

B

Region
Assignments

mission

deploy-ROV
sample-A

e0
e1 e2 e3 e4 e5 e6 e7

deployed-ROV

xship = xROV xship = xROVxROV 2 A

xROV 2 B
vROV = 0

vROV = 0ship
ROV

R4 R12
Env EnvEnv

R7 sample-B

stage

reaching
stage

�tji

cji

sji

R7

A

cost
g

heuristic
h

reaching stage

e1

e3

e5

R12

R4

cost (g) heuristic (h)

�treach

ROV path

s01
c01

�t01 t02
x02

s01

min dist(s
hip) + ↵T

through regions ignoring obstacles

Figure 11-8: Example showing how 𝑔 and ℎ are computed for a search node in which
the ROV deployment event, 𝑒1, is being connected. The part of each objective term
that takes place through the safe regions adds the committed cost (𝑔) of the search
node, while the part that takes place after the last region contributes to the heuristic
value (ℎ). A search node can connect the next event if it is possible to assign a
duration of 0 to the reaching stage.

234

d

d
Minimizing

f = g + h

Minimizing
distance to next

event, d

d > 0, connection
not possible

same region
assignments

(a)

d d = 0

Minimizing
f = g + h

Minimizing
distance to next

event, d

d = 0,
connection is

possible

same region
assignments

event 1 can be connected
through this region

assignment

(b)

Figure 11-9: Figure (a) and (b) show two different region assignments of nodes trying
to connect event 1 through safe regions. Left of figure (a) shows the trajectories
resulting from optimizing for 𝑓 = 𝑔 + ℎ, while the right hand side figure shows
the trajectories minimizing the distance between the last point going through safe
regions and the point that satisfies event 1 constraints. Since the distance between
those points is not zero, the region assignment in (a) cannot connect event 1. On
the other hand, Figure (b) shows a region assignment that is able to connect event 1
(right figure).

235

the same as when determining the values of 𝑔 and ℎ. However, since all events are

connected, ℎ is 0, and the final cost of the plan is 𝑓 = 𝑔.

11.5 Chapter Summary

In this chapter, we presented ScottyPath, the second and last main component of

the Scotty Planning System. ScottyPath takes an input qualitative state plan that

is generated either by hand or with ScottyActivity, and returns an obstacle-free plan

that consists of a schedule and state and control trajectories for each vehicle. The

state trajectories of each vehicle are obstacle free because they are guaranteed to

be contained inside convex safe regions, which are computed in advance. The key

insights in ScottyPath are the following. First, we use informed search to assign a

sequence of safe regions to each vehicle. Second, we use the Scotty convex model to

compute, jointly, the cost and heuristic of candidate assignments. Third, we rely on

our convex optimization model to determine whether a candidate region assignment

can satisfy the next goal constraints in the plan, even when those goal constraints do

not explicitly define the state-space region that needs to be reached.

236

Chapter 12

ScottyPath Experimental Results

In this chapter, we evaluate the scalability of ScottyPath in terms of the size of the

input tQSP, the number of vehicles and the number of safe regions. We use the same

robotic domains from Chapter 9 to demonstrate that our approach scales well with

the size of the tQSP. The performance of our approach degrades with the number of

vehicles and safe regions. However, we demonstrate that by trading some solution

quality, we can significantly improve the runtime of our planner.

12.1 Description of the Experiments

Recall that ScottyPath is designed to take tQSP problems generated from the out-

put plans found by ScottyActivity, and return obstacle-free plans in which vehicles

go through safe regions. We use the same domains that we used to evaluate the

performance of ScottyActivity and that are explained in Section 9.2. These are the

AUV, the ROV and the Air Refueling domains. For those domains, ScottyActivity

solves the activity and trajectory planning problem. That is, from a set of initial

conditions and a set of goal conditions at the end of the plan, ScottyActivity returns

a set of ordered starts and ends of activities and a control and a state trajectory that

achieves the problem goals. ScottyActivity solves this problem in the absence of ob-

stacles. ScottyPath does not focus on activity planning, since it is already performed

by ScottyActivity. Instead, the test problems are tQSP problems that are generated

237

from the solutions found by ScottyActivity for each of the problems in Section 9.2.

In particular, we use the solution found by ScottyActivity using the obj-EHC search

algorithm presented in Section 8.4, since it often generates better quality plans, as

shown in Section 9.2.4. The original problems in Section 9.2 do not have obstacles.

To evaluate the performance of ScottyPath, we augment the tQSPs generated from

the ScottyActivity solutions with random obstacles and safe regions for each vehicle.

When testing the scalability of ScottyPath, we focus on its performance with

respect to several characteristics. First, we use the three same benchmarking domains

from Section 9.2: the AUV, the ship-ROV and the Air Refueling domains. These

domains are different in terms of the complexity of the constraints involved, the

number of vehicles and the length of the plans.

Second, each of these domains has 20 instances. The first instances of each domain

have associated short tQSPs, with few events and episodes. Later instances have

significant longer tQSPs in terms of the number of events and episodes. In the case

of the Air Refueling domain, problem instances 11-20 have one additional UAV. The

size of the input tQSP directly impacts the depth of the ScottyPath search.

Third, we use, for each domain, three environments with varying number of ob-

stacles and safe regions. These environments are generated randomly. The number of

safe regions in a tQSP problem directly impacts the branching factor (breadth of the

search), as well as the depth. That is, for an environment with many safe regions and

many obstacles, it may be necessary to visit many of those safe regions in order to

reach a goal region. Similarly, a large number of safe regions implies that the number

of descendants of each search node is large.

Fourth, we use weighted A* to solve the benchmark problems. We solve each

problem for three different values of the heuristic weight, in order to evaluate the trade

off between the optimality of the solution found and the runtime of the algorithm.

These four factors result in 540 problems of varying difficulty that we use to

evaluate the performance of ScottyPath. Throughout the rest of this section, we

describe these factors that affect the difficulty of the benchmark problems.

238

12.1.1 Benchmark Domains

The AUV, the ROV and the Air Refueling domains represent robotic scenarios. These

domains are described in detail in Section 9.2.

Recall that the AUV domain represents a simple problem in which an autonomous

underwater vehicle (AUV) needs to visit one or more regions. There are up to 14

target regions in this domain, depending on the problem instance.

The ROV domain is similar to the example scenario that we use throughout Chap-

ter 11, and that is described in Section 11.1. There are two vehicles in this problem, a

ship and a remotely operated vehicle (ROV). In this domain, the ROV needs to take

samples in up to 20 regions, depending on the problem instance. The solution tQSPs

found by ScottyActivity specify when the ROV is deployed and recovered and the

order in which the regions are sampled. As in the example scenario in Chapter 11,

the obstacles that we consider are in the surface and only affect the ship, and not the

ROV.

Finally, the Air Refueling domain describes a scenario in which an unmanned

aerial vehicle (UAV) needs to take images at up to 10 regions, depending on the

problem instance. The UAV has limited battery, and its decrease rate depends on the

velocity of the UAV. To complete its mission, the UAV can refuel, while flying, from

a tanker plane. While refueling, the UAV and the tanker plane need to stay within a

close distance from each other. Instances 11-20 have an additional UAV. The solution

tQSPs found by ScottyActivity specify when the UAVs refuel and the order in which

the regions are imaged. In this domain, the obstacles need to be considered by the

tanker plane and, also, the UAVs.

The three domains are different in terms of the number of vehicles and the com-

plexity of the constraints used. For example, the AUV domain only has one vehicle.

On the other hand, some instances of the Air Refueling have three vehicles, and all of

them need to avoid obstacles. Moreover, the refueling constraint requires vehicles to

stay close to each other. Moreover, the battery depletion effect requires complicated

cone constraints. More complicated problems require more state and control variables

239

and more complicated constraints. This affects the time that it takes to solve each of

the optimization problems in the search.

12.1.2 Domain Instances

Each of the three domains has 20 problem instances. In general, each successive

problem is harder than the previous one. The difficulty is increased by forcing the

vehicle to visit an additional region. This translates in the tQSPs having more events

and episodes. In the AUV domain, an additional target region simply requires one

more episode in the tQSPs. This is not the case in the ROV and Air Refueling

domains. For example, an additional target region may require the ship to recover

the ROV, navigate towards the new sampling region and deploy it there one more

time.

Since the ScottyPath algorithm finds sequences of safe region paths that connect,

one by one, the events in the tQSP, the size of the tQSP directly affects the depth of

the search.

12.1.3 Number of Safe Regions and Obstacles

Recall that ScottyPath finds obstacle free plans by ensuring that each vehicle is

always within a safe region. Therefore, the number of available safe regions for each

vehicle has a large impact in the runtime of the ScottyPath algorithm. In order

to evaluate the scalability of ScottyPath in terms of the number of safe regions, we

generate three random environments for each of the three domains. We call these

environments the ‘easy’, ‘medium’ and ‘hard’ environments. These environments are

shown in Figure 12-1. The ‘easy’ environment of each domain has around 10 regions,

the ‘medium’ has 30 and the ‘hard’ environment has roughly 100 safe regions. In

the case of the AUV and the ROV domains, only one vehicle has to go through safe

regions. The Air Refueling domain is harder, since both the tanker and the UAV need

to go through the safe regions. Furthermore, there is an additional UAV in instances

11-20 that also needs to go through the safe regions.

240

A

B
C

D

E

F

G

H

I

J

K

L

M

N

AUV "easy"
 (9 regions, 87.1 coverage)

(a)

A

B
C

D

E

F

G

H

I

J

K

L

M

N

AUV "medium"
 (28 regions, 90.9 coverage)

(b)

A

B
C

D

E

F

G

H

I

J

K

L

M

N

AUV "hard"
 (107 regions, 95.0 coverage)

(c)

A

B

C

D
E

F

G Goal

H

I

J

K L

M
N O

P

Q R

S

T

ROV "easy"
 (9 regions, 91.7 coverage)

(d)

A

B

C

D
E

F

G Goal

H

I

J

K L

M
N O

P

Q R

S

T

ROV "medium"
 (29 regions, 91.8 coverage)

(e)

A

B

C

D
E

F

G Goal

H

I

J

K L

M
N O

P

Q R

S

T

ROV "hard"
 (111 regions, 95.1 coverage)

(f)

A
B

C D

E F
G

Goal

H

I

J

AirRefueling "easy"
 (9 regions, 93.6 coverage)

(g)

A
B

C D

E F
G

Goal

H

I

J

AirRefueling "medium"
 (29 regions, 92.4 coverage)

(h)

A
B

C D

E F
G

Goal

H

I

J

AirRefueling "hard"
 (107 regions, 95.0 coverage)

(i)

Figure 12-1: This figure shows the ‘easy’, ‘medium’ and ‘hard’ environments for the
AUV, ROV and Air Refueling domains. Target regions are shown in green, obstacles
in gray and safe regions in blue. The red dots show the starting points of vehicles
across all problem instances.

241

12.1.4 Heuristic Weight

The ScottyPath algorithm, as presented in Section 11.4 is optimal. It returns the

plan that minimizes the problem objective while ensuring that all the vehicles always

remain within safe regions. However, it is often desirable to trade some solution

quality in order to improve the runtime of the algorithm. In order to do so, we use

weighted A*. In the experiments reported in this chapter, we use three settings for

the heuristic weight: 1.025, 1.05 and 2. In our results, we report the increase in the

solution objective and the decrease in the planning runtime as the heuristic weight

increases.

12.2 Generation of Problem Instances

In this section we describe, with an example, how we generate the benchmark prob-

lems from the solutions generated by ScottyActivity in Section 9.2.

Figure 12-2 shows how the tQSP problems that we use to benchmark ScottyPath

are generated. For each instance of each domain, we retrieve the solution found by

ScottyActivity. As shown in the figure, this solution ignores obstacles and consists,

in part, of an ordered list of starts and ends of activity. The activities in the solution

plan are the episodes, while their starts and ends are the events of the tQSP. The

tQSP is generated as described in Section 11.3.2. Finally, the input to ScottyPath

consists of this tQSP and a set of regions for each vehicle.

12.3 Results

In this section, we report the performance of ScottyPath in the benchmark problems

described in this chapter. The benchmarks were performed on an Intel Core i7-5960X

CPU 3.00GHz using Gurobi 7.5 as the SOCP solver. The results for the AUV, ROV

and Air Refueling domains are shown in Tables 12.1 to 12.3. Each row in the table

represents each of the twenty instances of the three domains (column labeled P). The

column Ne shows the number of events in the tQSP associated with that problem

242

00 start-navigate-ship
01 end-navigate-ship
02 start-deploy-rov
03 end-deploy-rov
04 start-navigate-rov
05 end-navigate-rov
06 start-take-sampleA
07 end-take-sampleA
08 start-navigate-rov
09 end-navigate-rov
10 start-take-sampleB
11 end-take-sampleB
12 start-navigate-rov
13 end-navigate-rov
14 start-recover-rov
15 end-recover-rov
16 start-navigate-ship
17 end-navigate-ship
18 start-arrive-port
19 end-arrive-port

event

mission

navigate-ship

deploy-ROV
e0 e1 e2 e3 e4

navigate-ROV

take-sample-A
e5 e6 e7 e8

[",1)

min dist(ship) + ↵T

e19

[",1) [",1)

ScottyPath

ScottyActivity solution

tQSP

Safe Regions

Solution

Figure 12-2: This diagram shows how the tQSP problems used in this chapter are
generated.

243

AUV domain

Easy (9 regions) Medium (28 regions) Hard (107 regions)

𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2
P Ne t L N t L N O t L N O t L N t L N O t L N O t L N t L N O t L N O

01 4 0.3 8 26 0.3 8 26 0.0 0.1 4 17 7.4 1.4 7 97 1.2 7 97 0.0 0.6 7 48 4.6 1.3 7 114 1.3 7 114 0.0 1.1 6 103 0.9
02 8 0.9 11 45 0.6 11 42 0.0 0.6 11 40 0.0 4.8 11 286 3.4 11 211 0.0 1.4 12 86 0.1 14.1 14 768 8.2 12 498 0.4 2.5 10 163 4.7
03 12 1.5 18 75 1.5 18 75 0.0 1.3 18 63 0.0 7.9 15 367 6.0 15 292 0.0 2.4 15 117 0.0 27.5 18 1356 13.9 18 569 0.0 5.2 16 246 3.3
04 16 2.7 24 95 2.5 24 95 0.0 2.2 24 83 0.0 11.7 22 470 12.0 22 469 0.0 4.1 21 158 5.5 35.0 26 1448 20.0 26 660 0.0 9.5 23 334 2.3
05 20 3.7 26 134 3.6 26 133 0.0 3.0 26 107 0.0 17.1 27 534 17.1 27 529 0.0 6.5 28 185 5.4 52.9 31 1607 28.7 31 800 0.0 14.9 29 426 1.9
06 20 3.2 26 109 3.2 26 108 0.0 2.6 26 85 0.0 22.4 29 773 22.5 29 768 0.0 19.5 29 623 3.1 44.1 31 1447 39.2 31 1343 0.0 17.3 32 482 1.6
07 24 4.6 30 133 4.4 30 132 0.0 4.1 30 119 0.0 24.8 33 747 24.2 33 746 0.0 20.5 37 589 3.5 83.8 40 2327 77.3 40 2127 0.0 21.5 37 533 4.9
08 24 5.9 32 158 5.4 32 147 0.0 4.2 30 118 0.7 44.1 34 1198 43.6 34 1193 -0.3 34.6 35 851 3.7 78.1 36 2171 68.8 36 1678 0.0 24.8 35 619 1.9
09 28 9.6 38 221 9.8 38 214 0.0 5.6 36 138 0.5 51.6 38 1255 50.7 38 1250 0.0 40.1 39 908 2.8 95.3 48 2313 80.0 48 1811 -0.0 33.2 43 719 2.7
10 28 7.0 34 185 6.8 34 184 0.0 4.9 34 134 0.0 32.9 35 824 32.0 35 813 0.0 17.2 37 390 0.6 81.0 46 2141 57.9 46 1374 0.1 31.0 41 652 0.5
11 32 8.2 38 202 8.1 38 200 0.0 5.3 38 125 0.0 41.9 41 910 41.2 41 906 0.0 21.6 41 421 0.4 111.6 52 2428 102.5 53 2210 0.1 41.9 48 757 0.8
12 32 10.3 38 242 10.2 38 240 0.0 7.3 38 171 0.0 50.0 45 1175 48.5 44 1144 0.2 31.2 43 800 2.1 129.0 52 2313 96.9 51 1738 0.2 39.3 49 687 3.7
13 36 11.9 42 258 11.6 42 256 0.0 8.8 42 187 0.0 73.6 49 1503 70.7 47 1469 0.2 37.6 46 881 2.1 159.6 56 2727 121.6 55 1996 0.2 46.3 51 785 4.2
14 36 13.3 51 248 13.3 51 246 0.0 9.3 49 186 0.4 114.3 51 2106 111.7 51 2079 0.0 49.2 53 786 3.2 241.0 54 4588 190.3 53 3459 0.5 54.1 54 931 0.9
15 40 15.6 57 259 14.4 57 248 0.0 11.6 53 203 8.2 113.1 55 1993 113.3 55 1948 0.0 36.4 55 584 2.8 252.2 61 4398 176.1 60 3113 0.0 58.4 57 932 0.6
16 40 19.8 55 336 19.0 55 331 0.0 11.0 50 211 1.0 121.6 54 2269 120.1 54 2236 0.0 84.7 56 1382 3.3 275.8 66 3842 139.1 65 1996 0.5 56.4 58 890 3.6
17 44 23.3 59 371 21.9 59 363 0.0 13.0 54 231 1.0 144.9 61 2499 139.6 62 2448 0.2 99.9 61 1605 3.5 341.8 72 4523 184.3 71 2598 0.5 70.7 63 963 3.9
18 48 23.6 61 361 20.2 61 320 0.0 16.0 61 257 0.0 172.1 66 2687 170.8 64 2644 -0.1 85.7 62 1294 3.9 283.2 71 4162 213.0 68 2735 0.3 76.0 65 1024 2.8
19 52 31.0 67 430 30.0 67 426 0.0 18.6 65 268 1.9 187.8 73 2789 187.5 72 2762 0.1 131.8 72 1871 2.6 341.1 80 4326 203.5 78 2602 -0.0 87.6 73 1108 2.3
20 56 35.0 74 464 34.1 74 464 0.0 21.4 72 286 1.7 203.6 77 2812 200.1 76 2787 0.1 144.6 77 1942 2.6 467.3 85 5246 247.5 82 2897 -0.1 103.3 77 1170 3.7

Table 12.1: Benchmarking results for simplified domains t: Planning time in seconds;
L: Plan length; S: Number of nodes expanded; N: Number of optimization problems
solved; T: Mean optimization time for each optimization problem in milliseconds.

ROV domain

Easy (9 regions) Medium (29 regions) Hard (111 regions)

𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2
P Ne t L N t L N O t L N O t L N t L N O t L N O t L N t L N O t L N O

01 16 6 17 120 6 17 120 0.0 6 17 120 0.0 60 21 1246 59 21 1247 0.0 10 18 184 7.0 227 22 4346 214 22 4182 0.0 36 22 620 19.9
02 20 7 20 141 6 20 114 0.1 8 21 133 0.5 61 25 1016 60 25 1001 0.0 16 23 254 6.5 23 27 330 22 27 299 0.3 19 26 287 17.3
03 24 11 24 169 8 24 127 0.1 11 25 152 0.5 88 30 1217 83 28 1217 0.1 22 27 295 6.4 31 31 374 27 31 331 0.3 25 30 311 17.1
04 36 43 37 472 37 37 413 0.0 22 37 220 0.0 52 40 460 51 40 460 0.0 40 40 366 0.0 438 43 3398 103 44 876 0.0 65 42 526 4.6
05 40 42 41 427 40 41 428 0.0 24 41 236 0.0 129 44 1321 69 45 592 0.0 45 45 381 1.5 183 48 1421 148 49 1167 0.0 81 45 623 0.6
06 52 59 53 476 60 53 475 0.0 42 55 302 1.0 92 56 616 92 56 600 0.0 74 56 479 0.6 580 60 3455 182 59 1161 0.0 124 60 748 1.8
07 56 65 57 489 66 57 489 0.0 45 57 304 0.0 191 60 1436 188 60 1423 0.0 78 62 476 2.0 171 66 1003 153 64 922 0.3 151 65 876 4.8
08 68 116 69 686 118 69 686 0.0 69 71 361 0.3 339 76 1940 338 76 1938 0.0 127 76 627 3.3 195 79 862 178 78 820 0.0 183 77 871 4.1
09 72 108 73 614 106 73 611 0.5 77 73 410 0.5 318 81 1797 316 81 1778 0.0 123 79 575 3.4 1138 89 5223 930 87 4148 0.1 237 83 1021 4.2
10 84 148 87 689 144 87 688 -0.0 106 87 463 1.4 417 92 2008 408 91 1999 0.1 171 93 694 0.1 TO F 5390 TO F 5308 - 332 99 1154 -
11 88 155 91 705 156 91 704 0.0 115 91 477 1.4 437 96 2032 428 95 2023 0.1 196 99 755 1.0 TO F 5003 TO F 5196 - 370 103 1225 -
12 100 304 105 1146 309 105 1146 0.0 153 104 548 0.3 759 111 2666 735 111 2565 0.0 316 115 985 10.8 722 119 2385 624 119 2041 0.0 499 115 1649 7.5
13 104 331 109 1202 337 109 1202 0.0 167 108 568 0.3 807 115 2730 792 115 2606 0.0 342 120 1008 10.7 766 122 2443 656 122 2098 0.0 552 119 1717 7.4
14 108 376 113 1290 375 113 1290 0.0 191 113 614 0.3 843 119 2785 840 119 2660 0.0 391 124 1082 10.7 857 127 2577 733 127 2220 0.0 570 123 1770 7.5
15 120 390 131 1156 382 131 1153 0.0 314 131 920 3.5 1153 140 3199 1049 140 2961 0.0 455 139 1188 11.0 TO F 4196 1083 144 2870 - 691 139 1949 -
16 124 194 F 664 191 F 664 - 190 F 660 - 1179 144 3269 1121 144 3012 0.0 480 142 1225 11.0 TO F 4187 1121 147 2924 - 729 142 1991 -
17 136 205 F 664 207 F 664 - 206 F 661 - 1152 156 2938 1076 156 2772 0.1 641 154 1463 8.7 TO F 3892 TO F 2943 - 1030 155 2539 -
18 140 210 F 664 214 F 664 - 209 F 662 - 1189 161 2988 1062 158 2730 0.4 638 156 1428 8.0 TO F 3748 TO F 2895 - TO F 2833 -
19 144 214 F 664 213 F 664 - 212 F 663 - TO F 2972 1118 162 2763 - 637 160 1445 - TO F 3628 TO F 2844 - TO F 2763 -
20 156 229 F 664 224 F 664 - 227 F 662 - TO F 2888 1173 174 2811 - 708 174 1507 - TO F 3521 TO F 2771 - TO F 2713 -

Table 12.2: ROV Benchmarking results for simplified domains t: Planning time in
seconds; L: Plan length; S: Number of nodes expanded; N: Number of optimiza-
tion problems solved; T: Mean optimization time for each optimization problem in
milliseconds.

244

Air Refueling domain

Easy (9 regions) Medium (29 regions) Hard (107 regions)

𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2 𝛼 = 1.025 𝛼 = 1.05 𝛼 = 2
P Ne t L N t L N O t L N O t L N t L N O t L N O t L N t L N O t L N O

01 8 6 13 133 6 13 133 0.0 6 13 126 4.2 394 22 5824 351 19 4981 0.6 26 17 396 3.2 TO F 18444 TO F 17971 0.0 144 20 2000 0.0
02 12 1 F - 1 F - - 2 F - - TO F 8392 1166 F 8496 - 1180 F 8418 - 2 F - 2 F - 0.0 2 F - 0.0
03 16 24 22 257 28 26 272 0.5 36 29 310 15.0 157 36 1081 103 33 817 0.2 110 37 810 11.3 TO F 13899 TO F 13698 0.0 TO F 9197 0.0
04 18 40 26 380 29 27 264 0.0 35 26 306 9.6 TO F 11230 TO F 11830 - 305 45 1893 - TO F 9286 TO F 8021 0.0 588 51 2867 0.0
05 20 252 33 2017 242 32 1955 0.4 60 28 478 7.3 TO F 11143 TO F 9843 - 304 45 1888 - TO F 7857 TO F 7870 0.0 888 53 4375 0.0
06 22 434 F 2800 414 F 2779 - 365 F 2806 - TO F 8825 TO F 8777 - 596 47 2745 - TO F 6899 TO F 6179 0.0 TO F 5338 0.0
07 28 121 41 730 99 40 644 0.0 72 42 404 7.5 TO F 8191 TO F 7228 - 283 47 1419 - TO F 8568 TO F 8484 0.0 TO F 4518 0.0
08 30 157 40 876 128 40 687 0.0 76 44 432 9.9 TO F 8003 TO F 8370 - 420 69 1618 - TO F 7004 TO F 6238 0.0 780 71 2817 0.0
09 32 112 39 665 123 42 669 0.0 83 42 422 3.7 TO F 5469 TO F 4841 - 254 48 1055 - TO F 6969 TO F 7196 0.0 TO F 3543 0.0
10 34 319 46 1615 326 48 1522 0.0 116 48 510 1.5 TO F 5426 TO F 5140 - 371 57 1357 - TO F 7085 TO F 6744 0.0 TO 80 4773 0.0
11 10 25 18 256 25 18 256 0.0 19 17 238 9.2 TO F 7390 TO F 6861 - 395 22 3025 - TO F 13163 TO F 12166 0.0 TO F 7097 0.0
12 14 184 20 1309 119 20 867 0.0 35 20 287 1.0 TO F 12726 TO F 12447 - 1047 35 6133 - TO F 9792 TO F 8184 0.0 TO F 6867 0.0
13 16 77 23 519 43 23 323 -0.0 45 23 336 4.1 TO F 10898 TO 47 101543 - TO F 7260 - TO F 9969 TO F 9178 0.0 TO F 5697 0.0
14 18 79 25 497 51 25 356 -0.0 49 25 366 10.4 TO F 10505 TO F 9787 - 1039 43 6160 - TO F 7807 TO F 6835 0.0 TO F 7838 0.0
15 22 277 39 1310 177 36 928 0.0 111 33 573 2.1 TO F 9225 TO F 8231 - TO F 4649 - TO F 9937 TO F 9668 0.0 TO F 8056 0.0
16 24 680 43 2743 653 43 2638 -0.0 193 39 787 5.7 TO F 7749 TO F 7379 - 1113 61 3222 - TO F 7685 TO F 8285 0.0 TO F 7973 0.0
17 26 845 41 3797 842 42 3660 -0.0 195 40 743 0.5 TO F 5765 TO F 5508 - TO F 3463 - TO F 7597 TO F 7567 0.0 TO F 7225 0.0
18 32 TO F 4461 TO F 4335 - 657 63 1566 - TO F 5296 TO F 4885 - TO F 2395 - TO F 4172 TO F 4459 0.0 TO F 4151 0.0
19 34 TO F 4001 TO F 3805 - 547 62 1232 - TO F 5925 TO F 5776 - TO F 2741 - TO F 4518 TO F 4196 0.0 TO F 3590 0.0
20 36 64 F 274 65 F 274 - 67 F 276 - TO F 2996 TO F 3106 - TO F 2659 - TO F 2792 TO F 2624 0.0 TO F 3356 0.0

Table 12.3: AirRefueling Benchmarking results for simplified domains t: Planning
time in seconds; L: Plan length; S: Number of nodes expanded; N: Number of opti-
mization problems solved; T: Mean optimization time for each optimization problem
in milliseconds.

instance. Recall that the tQSP is generated from the ScottyActivity solution and

that it does not depend on the obstacles or safe regions. Each table is divided into

three sections, corresponding to the ‘easy’, ‘medium’ and ‘hard’ environments. Each

of these is divided into three groups, which correspond to the three settings for the

heuristic weight.

The experiments were run with a time limit of twenty minutes (1200 seconds).

The column labeled t shows ScottyPath’s runtime in seconds. Entries labeled ‘TO’

indicate that ScottyPath could not solve the problem within the time limit. The

column labeled L shows the number of stages in the solution found by ScottyPath.

Recall that each stage assigns a safe region to each vehicle and corresponds to each

segment of the piecewise control trajectory. Entries labeled ‘F’ indicate that Scotty-

Path was not able to find a solution, either because the planner timed out or because

the search space was exhausted and no feasible solution was found. The column la-

beled N shows the number of search nodes expanded. Finally, column O shows the

relative increase in the objective value that the solution achieves compared to the

objective achieved with the heuristic weight 1.025. Positive values indicate that the

objective is larger and the solution is, therefore, worse. Entries labeled ‘-’ indicate

245

destination
region

start
A

B

H

C

F

G

D

E

I

ship

ROV

(a)

A

B

C

D

E

F

G

H

I

Goal

(b)

A

B

C

D

E

F

G

H

I

Goal

(c)

Figure 12-3: Results for problem 9 of the ROV domain. (a) shows the solution
found by ScottyActivity, in the absence of obstacles, using obj-EHC. (b) shows the
arrangement of the surface obstacles and safe regions for the ship, for the ‘medium’
environment. Finally, (c) shows the obstacle free plan found by ScottyPath, with the
ship path and the chosen safe regions in blue, and the ROV path in red.

that the relative objective increase could not be computed because ScottyPath could

not find a solution using the heuristic weight of 1.025 within the time limit.

With a single vehicle, like in the AUV domain, the results scale fairly well. The

hardest problem in the ‘easy’ environment, which consists of 9 safe regions, is solved

in 35 seconds when the ℎ𝑤 = 1.025 setting us used. The ‘medium’ environment, which

consists of about 30 safe regions, takes, in average, 6 to 7 times longer to solve for

each of the heuristic weight settings. However, the ‘hard’ environment, which consists

of 107 safe regions, takes only twice as much time, in the worst case, to solve as the

‘medium’ environment. All the problems in the AUV domain were solved within the

time limit, regardless of the environment used or the heuristic weight setting. The

hardest problem solved is instance 20 using the ‘hard’ environment and the ℎ𝑤 = 1.025

setting. The solution to this problem, found in 470 seconds, finds a path for the AUV

visiting 14 regions. This path consists of 85 stages, where each has associated a safe

region and a constant control value.

The ROV domain is significantly harder, and Table 12.2 illustrates this fact. In

this domain there are two vehicles: the ship and the ROV. Only the ship needs

to avoid obstacles and, therefore, it needs safe regions. However, both vehicles are

considered jointly since they always need to observe the tether range constraint.

246

Moreover, typical tQSPs in this domain are much longer than in the AUV case, as

there are episodes for deploying and recovering the ROV, multiple navigation episodes

for each vehicle and sampling episodes. In fact, the tQSP for instance 20 of the ROV

domain has 156 events, compared to the 56 events in the tQSP of the largest instance

in the AUV domain. Figure 12-3 shows the solution to instance 9 when using the

‘medium’ environment and the ℎ𝑤 = 1.05 setting. The left figure shows the plan

found by ScottyActivity in the absence of obstacles. This plan forms the tQSP that

ScottyPath solves. The center figure shows the ‘medium’ environment, which consists

of 29 regions for the ship.

The ROV domain takes considerably more time to solve than the AUV domain.

The runtime penalty from environment to environment is roughly similar to that in

the AUV domain. Runtime is about 3-4 times slower when switching from the 9

safe regions in the ‘easy’ environment to the 29 regions in the ‘medium’ environment.

Runtime is about twice as long, in the worst case, in the ‘hard’ environment with 111

regions than in the ‘medium’ environment. In the ROV domain, ScottyPath is not able

to solve, within the time limit, the last two instances using the ‘medium’ environment

and the most demanding heuristic weight setting. Furthermore, ScottyPath also times

out in many instances when using the ‘hard’ environment. Note also that ScottyPath

is unable to solve instances 16 to 20 when using the ‘easy’ environment, and that these

failures are not due to the time limit. In these cases, ScottyPath is unable to find a

solution because the arrangement of obstacles and safe regions is not compatible with

the tQSP found by ScottyActivity. For example, the tQSP in one of those instances

may require the ROV to reach multiple target sampling regions without moving the

ship. However, this constraint is impossible to satisfy with the safe regions in the

environment. This is a limitation of our approach, that separates the activity planning

problem from the motion planning problem.

The AirRefueling domain is the hardest domain. In this domain, both the tanker

plane and the UAV need to avoid obstacles. Moreover, the UAV has a limited battery

whose capacity decreases as a function of its speed. Instances 11-20 have an additional

UAV that needs to avoid obstacles as well. Figure 12-4 shows the solution found for

247

refuel1

refuel2

tanker
uav

start

destination
region

(a)

A
B

C D

E F
GH

I

Goal

(b)

A
B

C D

E F
GH

I

Goal

(c)

Figure 12-4: Results for problem 9 of the AirRefueling domain. (a) shows the solution
found by ScottyActivity, in the absence of obstacles, using obj-EHC. (b) shows the
arrangement of the no-fly zones and safe regions for both the tanker and the UAV,
for the ‘medium’ environment. Finally, (c) shows the obstacle free plan found by
ScottyPath, with the tanker path and its safe regions in red, and the UAV path and
its safe regions in blue.

instance 9. The left figure shows the plan found by ScottyActivity, which is used to

define the tQSP problem. The ‘medium’ environment for this domain is shown in the

center figure. Finally, the right figure shows the solution found by ScottyPath when

using the ℎ𝑤 = 2.0 setting.

The results for the AirRefueling domain are shown in Table 12.3. ScottyPath

can solve most problems within the time limit when using the ‘easy’ environment,

regardless of the heuristic weight setting. However, increasing the number of safe

regions has a large performance penalty in this problem. Using the two most de-

manding heuristic weight settings, ScottyPath can only solve a few problems when

using the ‘medium’ environment, and none when using the ‘hard’ environment. Using

the ℎ𝑤 = 2.0 setting, ScottyPath can solve most problems when using the ‘medium’

environment, but it is unable to solve most within the time limit when using the

‘hard’ environment. These results illustrate the difficulty of assigning safe regions to

multiple vehicles when the number of possible safe regions is large.

Finding optimal solutions is hard when the tQSPs are long or the number of

safe regions is large. However, it is possible to use weighted A* in order to obtain

solutions quicker by trading solution quality. Figures 12-5 to 12-7 show examples of

248

A

B
C

D

E

F

G

H

I

J

K

L

M

N

hw = 1.025, obj = 183.4, t = 467.3 s

(a)

A

B
C

D

E

F

G

H

I

J

K

L

M

N

hw = 1.05, obj = 183.3, t = 247.5 s

(b)

A

B
C

D

E

F

G

H

I

J

K

L

M

N

hw = 2.0, obj = 190.3, t = 103.3 s

(c)

Figure 12-5: Results for instance 20 of the AUV domain using the ‘hard’ environment.

A
B

C D

E F
GH

Goal

hw = 1.025, obj = 5403.4, t = 157.4 s

(a)

A
B

C D

E F
GH

Goal

hw = 1.05, obj = 5403.4, t = 127.9 s

(b)

A
B

C D

E F
GH

Goal

hw = 2.0, obj = 5940.1, t = 76.3 s

(c)

Figure 12-6: Results for instance 8 of the Air Refueling domain using the ‘easy’
environment.

A

B

C

D
Goal

hw = 1.025, obj = 348.2, t = 437.6 s

(a)

A

B

C

D
Goal

hw = 1.05, obj = 348.3, t = 102.6 s

(b)

A

B

C

D
Goal

hw = 2.0, obj = 364.3, t = 64.6 s

(c)

Figure 12-7: Results for instance 4 of the ROV domain using the ‘hard’ environment.

249

solutions found for the same problem when using the three heuristic weight settings:

ℎ𝑤 = 1.025, ℎ𝑤 = 1.05, and ℎ𝑤 = 2.0. These heuristic weight settings ensure that

the returned solution has an objective within 2.5%, 5% and 200% of the optimal

objective. While the best solution quality should be found with the ℎ𝑤 = 1.025

setting, our results show that, in practice, the ℎ𝑤 = 1.05 setting produces almost

always the same solution, while using considerably less time. For example, Figure 12-

5 shows that the solution obtained using ℎ𝑤 = 1.05 is slightly better than the solution

obtained with ℎ𝑤 = 1.025, while taking almost half as long to solve.

As expected, large heuristic weight values, such as ℎ𝑤 = 2.0, often produce sig-

nificantly suboptimal plans. For example, the tanker trajectory, shown in red in

Figure 12-6c, is significantly longer than it should be, when compared to the tra-

jectory returned using the other heuristic weight settings (Figures 12-6a and 12-6b.

However, we also found that, sometimes, using a large heuristic weight can reduce the

planning time drastically without having an equally large loss in the solution quality.

As an example, the solution found using ℎ𝑤 = 2.0, shown in Figure 12-7c, is very

similar to the solution found using the ℎ𝑤 = 1.025 setting, shown in Figure 12-7a,

but it was computed roughly an order of magnitude faster.

12.4 Chapter Summary

In this chapter, we evaluated the scalability of ScottyPath with respect to the size of

the input tQSP, the number of vehicles and the number of safe regions. Our results

showed that ScottyPath scales well with the size of the tQSP in environments with

a moderate number of safe regions. Our results also show that the runtime of the

planner increases significantly when multiple vehicles are used and when the number

of safe regions is large. However, we show that, by trading some solution quality, it

is possible to significantly improve the runtime of the planner.

250

Part IV

Conclusions

251

252

Chapter 13

Conclusions

13.1 Summary of Contributions

As robots become increasingly capable and accessible, there is an unfulfilled need for

controlling them efficiently and autonomously. In order to narrow the gap between the

needs of robotic missions and the capabilities of state of the art automated planning

techniques, this thesis presented the Scotty Planning System. The Scotty Planning

System is an activity and trajectory planning framework designed to efficiently plan

for long term missions involving coordinated robotic vehicles.

In order to address this problem, I presented five contributions in this thesis.

1. An Architecture for Planning and Execution of Missions With Multi-

ple Coordinated Robotic Vehicles. My first contribution is an architecture

for solving hybrid activity and trajectory planning problems that involve co-

ordinated robotic vehicles over long horizons. This problem is hard due to its

highly combinatorial nature, which arises from the activity selection and the

avoidance of obstacles. We solve this problem by handling the two combinato-

rial aspects separately with two planners. The first planner solves the activity

planning problem, and generates a plan skeleton, in the form of a qualitative

state plan (QSP), that specifies a sequence of behaviors for each robot that

satisfy the mission goals. The second planner finds control and collision-free

253

trajectories for each robot while satisfying all the time, state and control con-

straints in the plan skeleton. We handle both combinatorial aspects separately

in order to leverage heuristics that are better suited for each of those problems.

Finally, we propose a receding horizon executive that combines a discrete-time

model with more accurate dynamics and multi-vehicle obstacle avoidance for a

limited horizon, and a continuous time model with first-order dynamics for the

rest of the plan.

2. An Architecture for Solving Combinatorial Planning Problems. Both

the activity planning problem and the obstacle avoidance problem involve dis-

crete choices that are highly combinatorial. The two planners that we present

in this thesis to solve this problem use the same master-slave architecture. The

master uses heuristic forward search to make the discrete combinatorial choices.

The slave is a subplanner that solves a relaxed problem in order to test the

consistency of candidate solutions and to compute their heuristic value. Our

method of making the discrete choices differs from other traditional approaches

that use mixed-integer solvers. These often use a branch and bound search

algorithm where problems where the integer constraints are relaxed are repeat-

edly solved in order to compute bounds. The results that we present in this

thesis show that our heuristic forward search method performs orders of mag-

nitude faster, since we leverage specialized heuristics that allow us to navigate

the discrete combinatorial space more efficiently. Each of the two planners,

ScottyActivity and ScottyPath, use the same subplanner, ScottyConvexPath,

that solves a relaxed planning problem in which the activities and their order

are fixed and the environment is obstacle-free.

3. A Convex, Goal-directed Trajectory Planner for Coordinated Robotic

Vehicles Over Long Horizons. The third contribution in this thesis is Scot-

tyConvexPath, a goal-directed trajectory planner. ScottyConvexPath solves

the problem of simultaneously finding the schedule and the control and state

robot trajectories for a given plan skeleton. ScottyConvexPath solves a relaxed

254

problem in which obstacles are not considered, and where the activities are

specified by the plan skeleton. Since there are no obstacles and the order of the

activities is specified by the plan skeleton, the relaxed problem that ScottyCon-

vexPath solves does not involve combinatorial choices. A key contribution of

this thesis is a method for solving this relaxed problem efficiently over long hori-

zons while respecting the robot dynamics and constraints. This is achieved by

reformulating the problem as a second order cone program (SOCP). Our formu-

lation respects multi-vehicle coordination constraints and first order dynamics

and does not require discretization of either time, control or state. Our encod-

ing uses convex quadratic constraints to represent velocity controlled dynamics

and to model common effects, such as velocity dependent battery consumption.

In order to maintain a continuous time formulation, our encoding avoids non-

convex terms that arise in straightforward formulations. Because our planner

operates on continuous time, it is well suited for finding robot trajectories over

long horizons. ScottyConvexPath constitutes a core element of this thesis. Both

ScottyActivity and ScottyPath use ScottyConvexPath as their subplanner. The

SOCP encoding that ScottyConvexPath uses is also essential for MPC-Scotty,

the executive that is being developed as a future extension to our system.

4. A Hybrid Activity and Trajectory Planner Based on Heuristic For-

ward Search. The fourth contribution in this thesis is ScottyActivity, a state

of the art hybrid activity and trajectory planner. ScottyActivity solves the hy-

brid problem of simultaneously selecting the activities along their schedule, and

finding the robot control and state trajectories that satisfy the goal constraints

in an obstacle-free environment. ScottyActivity implements hybrid activity and

trajectory planning as heuristic forward search with delete relaxations. Scotty-

Activity uses ScottyConvexPath to test the consistency of candidate action

plans and to compute the objective lower bound that complements the delete

relaxation heuristic in the case of heuristic ties. ScottyActivity performs as

fast as other state of the art HFS activity planners, but is much more expres-

255

sive. Since ScottyConvexPath operates on continuous-time, ScottyActivity can

solve problems with longer horizons than other hybrid planners, at the expense

of using simple, first-order dynamics. Contrary to most activity planners, our

rich representation of activities allows ScottyActivity to generate plans that are

flexible in time, state and control, which makes them suitable for online execu-

tion. Within the Scotty Planning System, ScottyActivity generates candidate

activity plans, for which ScottyPath later finds collision-free trajectories.

5. A Qualitative State Plan Path Planner for Coordinated Robots With

Obstacles. Finally, this thesis presented ScottyPath, an optimal QSP planner

for multiple coordinated vehicles that avoids collisions with obstacles. The qual-

itative state plan that ScottyPath takes as its input is the plan skeleton that

ScottyActivity generates and that specifies the activities that are executed and

their order. These activities specify the constraints that the robots are subject

to, as well as their dynamics. ScottyPath finds optimal control and collision-free

trajectories for multiple coordinated robotic vehicles that satisfy the constraints

in the plan skeleton. In order to guarantee collision-free trajectories, ScottyPath

finds paths that ensure that each vehicle is always inside a set of overlapping

convex safe regions, which are generated in advance. Similar to ScottyActivity,

ScottyPath solves the problem by performing heuristic search over a combi-

natorial space. ScottyPath uses ScottyConvexPath to compute the cost and

heuristic of candidate plans. The combinatorial space that ScottyPath explores

represents the traversals through sequences of convex safe regions. Since Scotty-

ConvexPath operates on continuous time, ScottyPath can efficiently find plans

over long horizons. Our results show that our heuristic search method performs

two orders of magnitude faster than mixed-integer approaches.

13.2 Future Work

There are many interesting avenues for future research related to the Scotty Planning

System. We describe some of them in this section.

256

Execution of Scotty Plans with Higher Fidelity Dynamics and Constraints

The Scotty Planning System, as described in this thesis, computes grounded plans

that contain a control trajectory for each vehicle. These plans cannot be executed

directly for two reasons. First, these plans assume that there is no uncertainty and

that no deviations occur during the execution of the plan. Second, the vehicle dy-

namics are represented with a simplified first order model that does not correspond to

reality. However, the Scotty Planning System can generate flexible plans in terms of

time, control and state. These flexible plans are QSPs and are given by the set of con-

straints that the solution plan satisfies. In order to address the two issues described

earlier, we propose a receding horizon planner, that we refer to as MPC-Scotty, that

executes the QSP obtained with the Scotty Planning System. MPC-Scotty combines

a discrete-time detailed model for a limited horizon with a simpler continuous-time

model that is used for the rest of the plan into a single mixed-integer second order

cone program (MISOCP). By using a discrete-time formulation for a limited detailed

horizon, MPC-Scotty can handle accurate dynamics and vehicle to vehicle collisions.

By also considering a continuous-time model with the same first order approximations

used by Scotty for the rest of the plan after the horizon, the solutions are guided be-

yond the detailed horizon. This allows MPC-Scotty to produce solutions with better

quality than other MPC approaches that do not reason beyond the planning horizon.

It also allows us to detect, during execution, early failures that may occur beyond the

horizon. MPC-Scotty is being developed in the MIT MERS lab and an initial version

is already solving problems similar to the ones we presented in this thesis.

Full Integration of Activity and Trajectory Planning with Obstacles

In this thesis, we presented an approach that performs planning for robotic missions

by breaking the problem into the activity planning problem and the path planning

problem of the resulting QSP solution. The activity problem that ScottyActivity

solves considers robot trajectories with their dynamics and coordination constraints.

However, the resulting QSP solution that ScottyActivity generates, and that is the

257

input to ScottyPath, does not consider obstacles. Therefore this approach is not com-

plete nor optimal. In effect, there could be solution QSPs generated by ScottyActivity

that cannot be solved due to the presence of obstacles. As we describe in Section 12.3,

this happened a few times in our benchmark problems. In order to solve this issue,

the activity planning, the trajectory planning and the path planning problems need

to be solved jointly. This could be done by using ScottyPath as a consistency checker

for the partial plans defined by the search nodes in the ScottyActivity search. That

is, instead of using the convex model to test the consistency of partial plans, Scotty-

Activity would use ScottyPath directly. The challenge is that this approach would

require ScottyPath to be significantly faster than what it is at the moment. The con-

sistency checks that ScottyActivity currently performs with the convex model take in

the order of milliseconds. The same checks, with the addition of obstacles, performed

by ScottyPath would probably take a few seconds. Given the large number of states

that ScottyActivity expands while solving typical planning problem, this approach is

not currently feasible. However, the performance of ScottyPath could be improved to

lessen the impact of this issue.

Activity Planning for Qualitative State Plans

The PDDL-S activity planning problems that ScottyActivity solves only specify initial

conditions and goal conditions at the end of the plan. However, many robotic missions

require a more flexible specification for goal conditions given as temporally evolved

goals in the form of a QSP. Such QSP describes goal constraints for the robots at

different steps in the mission. Some planners are capable of performing activity

planning for QSPs. For example, Kongming [63, 62] is capable of planning for QSPs

by performing a clever encoding that converts each temporally extended goal to an

activities that only become feasible when its prior goals are satisfied. This encoding

reduces the problem to a traditional problem with an initial condition and a goal

condition at the end of the plan. Perhaps more interestingly, the tBurton planner

[94, 93] was designed to handle QSPs by using a novel approach based on causal

graph decomposition. This is an interesting approach that could be used to extend

258

Scotty’s capabilities. However, tBurton is a temporal planner that was not designed

to handle continuous states or control variables, and a number of challenges need to

be solved in order to incorporate the causal graph decomposition ideas into Scotty.

Optimal Activity Planning With an Objective Guided Heuristic

Similar to most heuristic forward search activity planners, the heuristic value that

ScottyActivity computes is the remaining number of activities needed to reach the

goal in the relaxed planning graph. This heuristic does not consider the problem

objective in any way. Therefore, the heuristic does not guide the search towards plans

with smaller objective values, but to plans with a fewer number of activities. The

obj-EHC search algorithm that we presented in Section 8.4 tries to mitigate this issue

by breaking heuristic ties with the objective function. However, it would be desirable

that the heuristic estimated the cost to go according to the problem objective. This is

not straightforward for two reasons. First, estimating the cost to go would involve, for

each heuristic computation, solving an additional optimization problem on the relaxed

planning graph which could have a significant performance penalty. Second, the

relaxed planning graph ignores delete effects, which means, for example, that a vehicle

is allowed to visit more than one region at a time. The optimization program used

to estimate the remaining cost would have to use relaxed constraints to handle these

inconsistencies. As an example, the program could consider a relaxation consisting

of the convex hull of all the regions selected for a vehicle at a given layer, instead

of having to choose a particular one. Other challenges, such as determining which

continuous effects in activities in the relaxed planning graph are applied and when

would have to be solved. However, such heuristic would allow ScottyActivity to

generate significantly higher quality solution plans, and is, therefore, an interesting

avenue for future research.

QSP Path Planning for unordered QSPs

While ScottyPath is designed to work in conjunction with ScottyActivity, it is a very

expressive and capable planner on its own. In fact, the MIT MERS team will be

259

using it to plan obstacle-free trajectories for multiple coordinated robots in an ocean

exploration mission in Hawaii that will be led by WHOI in the beginning of 2018.

However, ScottyPath is limited, in its current form, to planning for QSPs that are

totally ordered (tQSPs). This is a strong limitation, as it requires the order of all

the events in the QSP to be known in advance. This is not always the case. For

some missions it is desirable that the planner makes the choice of which sampling

region should be visited first. To remove this limitation, ScottyPath could use a

similar approach like the one we presented in Chapter 10 that the geometric path

planner uses to handle multiple unordered region goals. Recall that, in order to

plan for unordered region goals, our approach solves, for each search node, a mixed-

integer SOCP that jointly computes the cost, the heuristic value and the order of the

remaining goals. A similar approach could be used to allow ScottyPath to handle

general QSPs. However, it remains to be seen whether the performance penalty

incurred in solving such mixed-integer program for each search node would be too

severe.

An Improved Path Planning Strategy For Multiple Vehicles

Since the semantics of QSP problems allow arbitrary convex quadratic constraints

between vehicles, ScottyPath needs to consider all vehicles jointly. Therefore, node

expansions require selecting the next convex safe region for each vehicle. As a conse-

quence, the search branching factor increases significantly with the number of vehicles.

This results in long planning times for planning problems with few vehicles. However,

in many robotic missions, vehicles are not jointly constrained, or are only jointly con-

strained during certain parts of the mission. A more efficient approach for handling

multiple vehicles would separate the parts of the plan where a vehicle or a set of

vehicles can be assigned safe region paths that are independent from the rest of the

vehicles, which would significantly reduce the search branching factor.

260

Chance-constrained Planning for Robotic Missions

The Scotty Planning System currently assumes that the state of the world and the

model of the robots are perfectly known. Since this is often not the case in the real

world, we propose that, during execution, a detailed receding horizon planner is used

to refine the plans produced by Scotty. However, over the last few years, a number of

interesting techniques have arisen that can reason with models of uncertainty. These

approaches are able to find plans that guarantee, with a certain degree of confidence,

that constraints are not violated. These plans are often called chance-constrained

plans. For example, the PSulu planner [74, 10, 73, 75] uses a method called iterative

risk allocation (IRA) to generate chance-constrained motion plans for mobile robots

that provide guarantees about the safety of the robot. Similarly, the RAO* [83]

algorithm has recently been used in the CLARK architecture to perform generative

planning for robots [84, 82]. CLARK only reasons with temporal activities with

discrete conditions and effects. However, a future extension to Scotty would greatly

benefit from the ideas demonstrated by PSulu and CLARK in order to generate

chance-constrained plans that take into account models of uncertainty.

A More Expressive QSP Path Planner to Allow For More Realistic Mis-

sions

Inspired by our close collaboration with Woods Hole Oceanographic Institution, there

are a number of things that the Scotty Planning system should support in order to

become a more useful tool for planning oceanographic science missions in the future.

We discuss some of them here:

∙ Optimal Planning with Knowledge of Underwater Currents. Nowa-

days, it is not uncommon to have access to current prediction models, such as

the ones provided by NOAA, in the areas where scientific expeditions take place.

Similarly, many ships used in these expeditions use an acoustic Doppler current

profiler (ADCP) in order to measure the local currents in the area. Since some

of the robotic platforms that are commonly used in long term missions are low

261

powered and have a limited ability to fight strong currents, it would be desirable

to find plans that optimize the battery usage by taking into account the current

profile. ScottyPath could make use of this information by incorporating the

current velocity into the safe regions.

∙ Planning for Coordinated Robots with Different Dynamics. The typical

WHOI missions involve heavy and slow vehicles, such as the ship, small and

agile vehicles, such as AUVs, and vehicles with limited maneuverability, such

as gliders. In order to effectively coordinate them, it is important to consider

their accurate dynamics. For example, some AUVs may be able to descend a

steep underwater hill while maintaining a constant distance to the bottom, but

unable to climb the same hill without colliding with it.

∙ Planning in the Presence of Mobile Obstacles. Some of the ocean explo-

ration missions that WHOI is interested in take place to shipping lanes, which

are used by large ships. While it is desirable to avoid the shipping lanes, it is of-

ten necessary to cross them at certain parts of the mission. There are nowadays

information systems that provide the position of large ships traversing these

lanes. ScottyPath would benefit from using this information in order to plan

paths crossing these lanes that do not collide with other ships. In order to make

use of this information, ScottyPath could either recompute the safe regions for

the areas crossing the shipping lanes, or it could post process the resulting plans

in order to ensure that no collisions take place.

262

Appendix A

Proofs of Completeness and

Optimality of PDDL-S Plans with

Piecewise Constant Control

In this section, we provide the proofs for the completeness and optimality theorems

stated in Section 4.2.1.

A.1 Completeness of PDDL-S Plans with Piecewise

Constant Control

Assume the PDDL-S Problem has a valid PDDL-S Plan solution, 𝑝, with an arbitrary

control trajectory. This solution 𝑝 is characterized by:

∙ The schedule of its 𝑁 start or end events, given by their execution times 𝑡𝑖 with

𝑖 = 0, . . . , 𝑁 − 1.

∙ The control trajectory c(𝑡).

We prove the completeness of PDDL-S plans with piecewise constant control by

construction. We use the original valid PDDL-S plan 𝑝 to construct the PDDL-S plan

with piecewise constant control 𝑝𝑐 in the following way:

263

∙ The execution times of the events, 𝑡𝑐𝑖, are the same as the times of the original

solution, 𝑡𝑐𝑖 = 𝑡𝑖. Since they are the same, we use refer to them as 𝑡𝑖 from this

point.

∙ The control trajectory, cc(𝑡), is a piecewise constant trajectory. Recall that a

stage, 𝑠𝑖, is the period of time between two consecutive events taking place at

𝑡𝑖 and 𝑡𝑖+1. The value of the vector of control variables is constant during each

stage, cc(𝑡) = cc𝑖 ∈ R𝑚, 𝑖 ∈ [𝑡𝑖, 𝑡𝑖+1), for 𝑖 = 0, . . . , 𝑁 − 2. Each constant value

cc𝑖 at each stage takes the value of the average of the original control trajectory

c(𝑡) during that stage:

cc𝑖 =
1

∆𝑡𝑖

∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)𝑑𝑡, (A.1)

where ∆𝑡𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is the duration of the stage.

Lemma A.1. The piecewise constant control trajectory of 𝑝𝑐, cc(𝑡) satisfies all the

control variable constraints at all times.

Proof. Recall that each control variable constraint is restricted to be a convex con-

straint on the control variable vector in the form of 𝑔(c(𝑡)) ≤ 0. Using (A.1), we can

write:

𝑔(cc𝑖) = 𝑔

(︂
1

∆𝑡𝑖

∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)𝑑𝑡

)︂
(A.2)

We make use of Jensen’s Inequality to assist our proof [51]. Jensen’s Inequality

states the following:

𝑔

(︂∫︁ 𝑏

𝑎

ℎ(𝑡)𝑓(𝑡)𝑑𝑡

)︂
≤
∫︁ 𝑏

𝑎

𝑔 (ℎ(𝑡)) 𝑓(𝑡)𝑑𝑡 (A.3)

, where:

∙ 𝑓 is a non-negative function such that
∫︀ 𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = 1.

∙ ℎ is any real-valued measurable function.

264

∙ 𝑔 is convex over the range [𝑎, 𝑏].

We use the vector version of (A.3) on (A.2) by identifying terms as follows: 𝑎 = 𝑡𝑖,

𝑏 = 𝑡𝑖+1, 𝑔 = 𝑔, 𝑓(𝑡) = 1
Δ𝑡𝑖

, h(𝑡) = c(𝑡). Note that Jensen’s conditions hold since 𝑔 is

convex. This allows us to write:

𝑔(cc𝑖) = 𝑔

(︂
1

∆𝑡𝑖

∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)𝑑𝑡

)︂
≤
∫︁ 𝑡𝑖+1

𝑡𝑖

𝑔(c(𝑡))
1

∆𝑡𝑖
𝑑𝑡 (A.4)

Since 𝑝 is a valid PDDL-S plan, 𝑔(c(𝑡)) ≤ 0 at every stage and, therefore, (A.4)

reduces to 𝑔(cc𝑖) ≤ 0 during stage 𝑠𝑖. Since this is applicable for every stage and every

control variable constraint, we conclude that the piecewise constant control trajectory

of 𝑝𝑐, cc(𝑡), satisfies the control variable constraints.

Lemma A.2. The state variables that are not resources take the same values in the

PDDL-S plan with piecewise constant control, 𝑝𝑐, as in the original plan, 𝑝.

Proof. Recall that state variables that are not resources can only change their value

due to active CLTE effects. Recall, as well, that the change in one such state variable

𝑥𝑗 during a stage 𝑠𝑖 is given by:

∆𝑥𝑗(𝑗) =
∑︁

∆𝑥𝑗𝑒𝑓𝑓 , (A.5)

where eff represents each of the active CLTE effects during stage 𝑠𝑖. Recall as well

from Section 4.1.4.1 that the change due to a CLTE on a state variable 𝑥 during stage

𝑠𝑖 is given by:

∆𝑥𝐶𝐿𝑇𝐸(𝑗) =

∫︁ 𝑡𝑖+1

𝑡𝑖

k𝑇 · cc(𝜏)𝑑𝜏 (A.6)

In the case of the plan with piecewise constant control, cc(𝑡) takes the constant

value cc𝑖 during stage 𝑠𝑖:

∆𝑥𝐶𝐿𝑇𝐸(𝑗) =

∫︁ 𝑡𝑖+1

𝑡𝑖

k𝑇 · cc𝑖𝑑𝜏 = k𝑇 · 1

∆𝑡𝑖

∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)𝑑𝑡

∫︁ 𝑡𝑖+1

𝑡𝑖

𝑑𝜏 =

∫︁ 𝑡𝑖+1

𝑡𝑖

k𝑇 · c(𝜏)𝑑𝜏

(A.7)

265

(A.7) proves that the cumulative change due to CLTE effects during a stage 𝑠𝑖

is the same regardless of whether the original control trajectory c(𝑡) or its averaged

value during the stage, cc𝑖, is used. Since the initial variables are the same, and the

cumulative change during each stage is the same, the values of the state variables

that are not resources are the same (x𝑖 = x(𝑡𝑖) = xc(𝑡𝑖) = xc𝑖) at each event in the

original plan, 𝑝, and the plan with piecewise constant control, 𝑝𝑐.

Corollary A.1. The state trajectory of the PDDL-S plan with piecewise constant con-

trol, 𝑝𝑐, satisfies all the state constraints on the state variables that are not resources.

Proof. Since the values are the same at the events, xc𝑖 = x(𝑡𝑖), and 𝑝 is valid, 𝑝𝑐

satisfies all the state constraints at the events. The overall maintenance conditions

between events are also satisfied by xc(𝑡). This is the case because the overall con-

ditions during stages between consecutive events are convex by definition and need

to be satisfied also at those events. Chapter 5 proves by convexity that this is the

case.

Lemma A.3. The resource variables take greater or equal values at the events in the

PDDL-S plan with piecewise constant control, 𝑝𝑐, than in the original plan 𝑝.

Proof. The change during stages on resources due to CLTE effects is the same as in

the case of state variables that are not resources. The remaining change in resources

is due to LNE or LSNE effects.

Recall that the change during stage 𝑠𝑖 in resource 𝑟 due to LNE effect is given by:

∆𝑟𝐿𝑁𝐸(𝑖) = −𝑘 ·
∫︁ 𝑡𝑖+1

𝑡𝑖

‖cc(𝑡)‖𝑑𝑡 (A.8)

Substituting for the constant value of cc(𝑡) during the stage:

∆𝑟𝐿𝑁𝐸(𝑖) = −𝑘 ·
⃦⃦⃦⃦∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)
1

∆𝑡𝑖

⃦⃦⃦⃦ ∫︁ 𝑡𝑖+1

𝑡𝑖

𝑑𝑡 (A.9)

We can use Jensen’s inequality (A.3) again by identifying terms: 𝑎 = 𝑡𝑖, 𝑏 = 𝑡𝑖+1,

𝑔(x) = ‖x‖, 𝑓(𝑡) = 1
Δ𝑡𝑖

, h(𝑡) = c(𝑡). The conditions for Jensen’s inequality hold since

266

norms are convex functions. Therefore, we obtain:

⃦⃦⃦⃦∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)
1

∆𝑡𝑖

⃦⃦⃦⃦
·∆𝑡𝑖 ≤

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c(𝑡)‖ 1

∆𝑡𝑖
𝑑𝑡 ·∆𝑡𝑖 (A.10)

Note that (A.10) is the factor that multiplies −𝑘 for the cumulative decrease of

the LNE effect in the original plan with arbitrary control trajectory. Therefore, the

decrease due to the LSE effect is smaller in the case of the piecewise constant control

trajectory than in the plan with the arbitrary control trajectory.

Similarly, for LSNE effects, the change in a resource during stage 𝑠𝑖 is given by:

∆𝑟𝐿𝑆𝑁𝐸(𝑖) = −𝑘 ·
∫︁ 𝑡𝑖+1

𝑡𝑖

‖cc(𝑡)‖2𝑑𝑡 (A.11)

Substituting for the constant value of cc(𝑡) during he stage:

∆𝑟𝐿𝑆𝑁𝐸(𝑖) = −𝑘 ·
⃦⃦⃦⃦∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)
1

∆𝑡𝑖

⃦⃦⃦⃦2 ∫︁ 𝑡𝑖+1

𝑡𝑖

𝑑𝑡 (A.12)

We can use Jensen’s inequality (A.3) one more time with the correspondence:

𝑎 = 𝑡𝑖, 𝑏 = 𝑡𝑖+1, 𝑔(x) = ‖x‖2, 𝑓(𝑡) = 1
Δ𝑡𝑖

, h(𝑡) = c(𝑡). Jensen’s conditions hold again

since 𝑔 is a convex function. It is a convex function because it is the composition of

a convex non-decreasing function (𝑥2 is non-decreasing over the positive reals) and a

convex function (the norm function). We then obtain:

⃦⃦⃦⃦∫︁ 𝑡𝑖+1

𝑡𝑖

c(𝑡)
1

∆𝑡𝑖

⃦⃦⃦⃦2
·∆𝑡𝑖 ≤

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c(𝑡)‖2 1

∆𝑡𝑖
𝑑𝑡 ·∆𝑡𝑖 (A.13)

Again, (A.13) is the factor that multiplies −𝑘 for the cumulative decrease of the

LSNE effect in the original plan with arbitrary control trajectory. Therefore, the

decrease due to the LSNE effect is also smaller in the case of the piecewise constant

control trajectory.

From Lemma A.2, the change produced on resources due to CLTE effects is the

same in 𝑝𝑐 as in 𝑝. However, the resources in 𝑝𝑐 experience a smaller decrease in 𝑝𝑐

during stages due to LSE or LSNE effects than in 𝑝. As a consequence, resources

have always larger or equal values at the events in 𝑝𝑐 with piecewise constant control

267

trajectories than in 𝑝 with its arbitrary control trajectory.

Corollary A.2. The resource variables in the PDDL-S plan with piecewise constant

control satisfy all the constraints they are subject to.

Proof. Recall that resources can only be subject to greater than some value con-

straints. Since 𝑝 is a valid plan, the resources in 𝑝 satisfy the constraints they are

subject to. Since the resources take values greater or equal at the events in 𝑝𝑐 than

in 𝑝, the resources satisfy all their constraints at the events. Due to convexity and

as proved in Chapter 5, the resources also satisfy the constraints at all intermediate

points between events.

Lemma A.4. 𝑝𝑐 is a valid PDDL-S plan.

Proof. 𝑝𝑐 is a valid PDDL-S plan since:

1. All temporal constraints are satisfied since the event execution times of 𝑝𝑐 are

the same of 𝑝, and 𝑝 satisfies all temporal constraints.

2. All the propositional constraints (discrete conditions and effects of activities)

are satisfied since 𝑝 satisfies all propositional constraints and the ordering of the

starts and ends of activities is the same.

3. The piecewise constant control trajectory satisfies all the control variable con-

straints (Lemma A.1)

4. The state variables satisfy all the state constraints (Corollaries A.1 and A.2).

Theorem 1 (Completeness of PDDL-S Plans with Piecewise Constant Control). If

a PDDL-S problem has a solution, there always exists a solution that is a PDDL-S

Plan with piecewise constant control.

Proof. For every valid PDDL-S plan with an arbitrary control trajectory, it is also

possible to construct a valid PDDL-S plan with a piecewise constant control trajectory

(Lemma A.4). Therefore, there are no solvable PDDL-S problems that cannot be

solved with a PDDL-S plan with piecewise constant control.

268

A.2 Optimality of PDDL-S Plans with Piecewise Con-

stant Control

Recall that the minimization objective of a PDDL-S problem is given as a linear

combination of the following types of terms:

∙ The total duration of the plan (plan makespan)

∙ The value of a state variable at the end of the plan. In the case of a resource,

its coefficient can only be negative (i.e. resources can only be maximized).

∙
∫︀ 𝑇

0
‖c𝑒(𝜏)‖𝑑𝜏 , where c𝑒 is a vector of control variables and 𝑇 is the plan makespan.

Its coefficient can only be nonnegative (i.e. this term can be minimized but not

maximized).

∙ A similar term with the same conditions with the square of the norm,
∫︀ 𝑇

0
‖c𝑒(𝜏)‖2𝑑𝜏 .

Corollary A.3. The makespan is the same in 𝑝𝑐 than in 𝑝.

Proof. All the events take place at the same time in 𝑝𝑐 than in 𝑝. Therefore, the last

event takes place at the same time in both plans.

Corollary A.4. Any state variable that is not a resource takes the same value at the

end in 𝑝𝑐 than in 𝑝.

Proof. Since the values of the state variables that are not resources take the same

value at all events in 𝑝𝑐 than in 𝑝 (Lemma A.2), they also take the same value at the

end of the plan.

Corollary A.5. Any resource variable takes a larger value at the end of the plan in

𝑝𝑐 than in 𝑝.

Proof. Since the values of the resources take larger value at all events in 𝑝𝑐 than in 𝑝

(Lemma A.3), they also take larger values at the end of the plan.

Lemma A.5.
∫︀ 𝑇

0
‖c𝑒(𝜏)‖𝑑𝜏 takes a smaller or equal value in 𝑝𝑐 than in 𝑝.

269

Proof. The proof is similar to that of Lemma A.3. We can write the term as a sum

of integrals over each stage in the plan:

∫︁ 𝑇

0

‖c𝑒(𝜏)‖𝑑𝜏 =
𝑁−2∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c𝑒(𝜏)‖𝑑𝜏 (A.14)

In a PDDL-S plan with piecewise constant control, c𝑒(𝑡) = cc𝑒(𝑡) takes a constant

value cc𝑒𝑖 during each stage 𝑠𝑖. Therefore, each stage term can be written as:

∫︁ 𝑡𝑖+1

𝑡𝑖

‖cc𝑒𝑖‖𝑑𝜏 =

⃦⃦⃦⃦∫︁ 𝑡𝑖+1

𝑡𝑖

c𝑒(𝑡)
1

∆𝑡𝑖

⃦⃦⃦⃦
·∆𝑡𝑖 ≤

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c𝑒(𝑡)‖
1

∆𝑡𝑖
𝑑𝑡 ·∆𝑡𝑖 (A.15)

, where the equality follows from the definition of cc (A.1), and the inequality is,

again, Jensen’s inequality (A.3), and it is applied in the same way as in (A.10). We

can then write:

∫︁ 𝑇

0

‖cc𝑒(𝜏)‖𝑑𝜏 =
𝑁−2∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

‖cc𝑒(𝜏)‖𝑑𝜏 ≤
𝑁−2∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c𝑒(𝜏)‖𝑑𝜏 =

∫︁ 𝑇

0

‖c𝑒(𝜏)‖𝑑𝜏,

(A.16)

which proves that the term is smaller for 𝑝𝑐 than for 𝑝.

Lemma A.6.
∫︀ 𝑇

0
‖c𝑒(𝜏)‖2𝑑𝜏 takes a smaller or equal value in 𝑝𝑐 than in 𝑝.

Proof. The proof is analogous to the proof for Lemma A.5. The difference is that

Jensen’s inequality is applied as in (A.13). That leads us to

∫︁ 𝑇

0

‖cc𝑒(𝜏)‖2𝑑𝜏 =
𝑁−2∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

‖cc𝑒(𝜏)‖2𝑑𝜏 ≤
𝑁−2∑︁
𝑖=0

∫︁ 𝑡𝑖+1

𝑡𝑖

‖c𝑒(𝜏)‖2𝑑𝜏 =

∫︁ 𝑇

0

‖c𝑒(𝜏)‖2𝑑𝜏,

(A.17)

, which proves that the term is smaller for 𝑝𝑐 than for 𝑝.

Lemma A.7. A PDDL-S plan with piecewise constant control, 𝑝𝑐, has better objective

value than the plan with arbitrary control trajectory that it was formed from, 𝑝.

270

Proof. The objective of a PDDL-S Plan is a linear combination of the terms presented

above. Due to Corollaries A.3 and A.4, all the terms that could be negative or positive

take the same value in 𝑝𝑐 than in 𝑝. Due to Corollary A.5, all the terms that can

only be negative are larger in 𝑝𝑐 than in 𝑝. Finally, due to Lemmas A.5 and A.6, all

the terms that can only be positive are smaller in 𝑝𝑐 than in 𝑝. Therefore, 𝑝𝑐 has a

smaller or equal objective value than 𝑝.

Theorem 2 (Optimality of PDDL-S Plans with Piecewise Constant Control). The

optimal solution to a PDDL-S problem, if one exists, is a PDDL-S Plan with piecewise

constant control.

Proof. Since there always exists a PDDL-S plan with piecewise constant control for

any valid PDDL-S plan for a PDDL-S problem (Theorem 4.1) and this plan always

has a better or equal objective value (Lemma A.7), the optimal plans for PDDL-S

problems are PDDL-S plan with piecewise constant control.

271

272

Appendix B

An Example Scenario in PDDL-S

Syntax

We now proceed to represent our motivation example from Section 3.1 with the syntax

we have defined in Chapter 7. We start by defining the state variables of the problem,

which are the 𝑥, 𝑦 positions of the ship, (𝑥𝑠, 𝑦𝑠), the AUV, (𝑥𝑎, 𝑦𝑎) and the ROV,

(𝑥𝑟, 𝑦𝑟). Furthermore, the battery of the AUV is also a state variable in this problem.

State variables are defined using the same syntax from PDDL2.1:

(:functions

(xs) (ys) (xr) (yr)

(xa) (ya) (ba))

There are six control variables in our problem, the 𝑥, 𝑦 velocities of each vehicle.

The maximum velocity of each vehicle is upper-bound constrained. As an example,

the velocity of the ship (vel-ship) is defined and constrained with the following

declaration:

(:control−variable vx−s

:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−s

:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−ship

:control−variables ((vx−s) (vy−s))

:max−norm 2)

273

We define the rectangular region mission-region to limit the area that any of

the vehicles can visit. Other regions, such as the sampling regions are polygons and

are defined with their vertices according to the following syntax:

(:region miss ion−reg ion

:parameters (? x ?y)

:condition (and (in−rect (? x ?y) :corner (0 −100) :width 500 :height

500)))

(:region regionA

:parameters (? x ?y)

:condition

(and (in−poly (? x ?y) :vert ices ((125 0) (130 −15) (115 −30) (100 0))))

)

Since the ROV is tethered to the ship, it always needs to remain within a distance

that is the length of the tether. Moreover, the AUV and the ROV can only be recov-

ered by the ship when they are close enough. These two conditions are represented

with the regions rov-range and recover-range defined next:

(:region rov−range

:parameters (? x1 ?y1 ?x2 ?y2)

:condition (and

(max−distance ((? x1 ?y1) (? x2 ?y2)) :d 60)))

(:region recover−range

:parameters (? x1 ?y1 ?x2 ?y2)

:condition (and

(max−distance ((? x1 ?y1) (? x2 ?y2)) :d 2)))

In order to enforce the tether constraint, the ROV and the ship are forced to

remain in the rov-range region while they move. We present the navigate-ROV

activity next to show how this is expressed:

(:durative−action navigate−ROV

:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))

:condition (and

(at start (r o v− s t i l l))

(over a l l (rov−deployed))

274

(over a l l (inside (miss ion−reg ion (xr) (yr))))

(over a l l (inside (rov−range (xr) (yr) (xs) (ys)))))

: e f f e c t (and

(at start (not (r o v− s t i l l)))

(at end (r o v− s t i l l))

(at start (not (rov−pos i t ioned)))

(at end (rov−pos i t ioned))

(increase (xr) (* (vx−r) #t))

(increase (yr) (* (vy−r) #t))))

As explained in the beginning of this section, the continuous change in the position

of the ROV is represented with a CLTE effect that indicates, for example, that the rate

of change of the position (𝑥𝑟) is proportional to the control variable that represents

the 𝑣𝑥 velocity of the ROV. RNE effects, such as the one that decreases the AUV

battery are expressed in a similar way. The continuous effects of the navigate-AUV

activity are given by:

(increase (xa) (* (vx−a) #t))

(increase (ya) (* (vy−a) #t))

(decrease (ba) (* 1 (norm (vel−auv)) #t))

, which indicates that the rate of change of the battery is proportional to the space

traveled by the AUV (�̇�𝑎 = −‖v𝑎‖). The navigate-AUV also has an invariant condi-

tion (over all (>= (𝑏𝑎) 0)) that ensures that the battery constraint is respected.

Finally, the minimization objective in this problem is the sum of the total plan

length and the distance traveled by the ship. This objective is defined as:

(:metric minimize (+ (* 1 (tota l−t ime))

(* 1 (norm (ve l−ship)))))

The other discrete conditions and effects, as well as the discrete objectives are

defined as in PDDL2.1 and are omitted here for the sake of brevity.

275

276

Appendix C

Benchmark Domains

In this appendix we provide the PDDL sources of some of the instances of the bench-
mark domains described in Section 9.2.

C.1 The AUV Domain

The PDDL of instance 3 of the AUV domain is provided next. In this domain
the AUV needs to visit regions A, B and C. The other instances (1-20) are anal-
ogous. The only difference between the original and the simplified, linearized version
is that the later does not include the maximum norm constraint (indicated with the
:control−variable−vector statement).
The domain file (auv03-domain.pddl) is displayed next:
(define (domain auv−2D−3)
(:predicates

(sample−takenA)
(sample−takenB)
(sample−takenC)
(can−move))

(:functions (x) (y))

; ; Contro l Var iab l e s
(:control−variable vel−x
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vel−y
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−auv
:control−variables ((vel−x) (vel−y))
:max−norm 2)

; ; Regions
(:region miss ion−reg ion

:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100)

))
(:region regionA

:parameters (? x ?y)

277

:condition (and (in−rect (? x ?y) :corner (80 70) :width 10 :height 10)
))

(:region regionB
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (55 40) :width 5 :height 5)))

(:region regionC
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (30 30) :width 10 :height 10)

))

; ; A c t i v i t i e s
(:durative−action g l i d e
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and (at start (can−move))

(over a l l (inside (miss ion−reg ion (x) (y)))))
: e f f e c t (and (at start (not (can−move)))

(at end (can−move))
(increase (x) (* (vel−x) #t))

(increase (y) (* (vel−y) #t))))

(:durative−action take−sampleA
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionA (x) (y))))
(at end (inside (regionA (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))
(at end (sample−takenA))))

(:durative−action take−sampleB
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionB (x) (y))))
(at end (inside (regionB (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))
(at end (sample−takenB))))

(:durative−action take−sampleC
:duration (and (>= ? durat ion 2) (<= ? durat ion 8))
:condition (and (at start (can−move))

(over a l l (inside (regionC (x) (y))))
(at end (inside (regionC (x) (y)))))

: e f f e c t (and (at start (not (can−move)))
(at end (can−move))
(at end (sample−takenC)))))

The problem file (auv03-problem.pddl) is displayed next:
(define (problem auv−3D−problem−3)

(:domain auv−2D−1)
(: i n i t

(can−move)
(= (x) 0) (= (y) 0))

(:goal (and

278

(sample−takenA)
(sample−takenB)
(sample−takenC))))

(:metric minimize (+ (* 1 (tota l−t ime))))

C.2 The ROV Domain
We provide the PDDL sources for instance 6 of the ROV domain. In this problem,
the ROV needs to visit regions A, B, C, D, E and F (Figure 9-3).

C.2.1 Original (quadratic) version

The domain file (rov06-domain.pddl) is displayed below:
(define (domain rov−6)
(:predicates

(rov−deployed) (rov−onboard)
(rov−navigat ing) (r o v− s t i l l)
(rov−pos i t ioned) (sh ip−arr ived)
(mission−ongoing)
(sample−takenA) (sample−takenB)

(sample−takenC) (sample−takenD)
(sample−takenE) (sample−takenF))

(:functions (xs) (ys) (xr) (yr))

; ; Contro l Var iab l e s
(:control−variable vx−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−s
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−ship
:control−variables ((vx−s) (vy−s))
:max−norm 2)

(:control−variable vx−r
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−r
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−rov
:control−variables ((vx−r) (vy−r))
:max−norm 2)

; ; Regions
(:region miss ion−reg ion

:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100)

))
(:region region−port

:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((80 .00000 80 .00000)

(80 .00000 90 .00000) (90 .00000 90 .00000) (90 .00000 80 .00000) (80 .00000
80 .00000)))))

279

(:region regionA
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((39 .37217 36 .35934)

(39 .62838 41 .83741) (33 .58334 38 .41339) (35 .90700 36 .75789) (39 .37217
36 .35934)))))

(:region regionB
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((53 .20386 24 .86533)

(59 .77362 23 .94972) (60 .97144 25 .64728) (58 .46709 27 .47164) (53 .20386
24 .86533)))))

(:region regionC
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((54 .84244 42 .09887)

(53 .85109 44 .74345) (48 .76991 42 .71553) (51 .70078 38 .83075) (54 .84244
42 .09887)))))

(:region regionD
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((14 .22096 82 .10052)

(14 .54697 77 .25059) (17 .45469 76 .93250) (19 .08229 80 .64577) (14 .22096
82 .10052)))))

(:region regionE
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((32 .26246 85 .87668)

(34 .33392 88 .33325) (34 .46927 90 .12637) (30 .73706 91 .88235) (32 .26246
85 .87668)))))

(:region regionF
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((30 .13904 62 .94699)

(29 .93304 65 .07422) (25 .68036 65 .04391) (24 .56301 62 .75958) (30 .13904
62 .94699)))))

(:region rov−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 10)))

(:region recover−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 0 . 5)))

; ; A c t i v i t i e s
(:durative−action navigate−ship
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))
:condition (and (over a l l (mission−ongoing))

(over a l l (rov−onboard))
(over a l l (inside (miss ion−reg ion (xs) (ys))))
(over a l l (inside (miss ion−reg ion (xr) (yr)))))

: e f f e c t (and
(increase (xs) (* (vx−s) #t))
(increase (ys) (* (vy−s) #t))
; ; Also move ROV s t a t e v a r i a b l e s
(increase (xr) (* (vx−s) #t))
(increase (yr) (* (vy−s) #t))))

(:durative−action navigate−ROV
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 200))

280

:condition (and (over a l l (mission−ongoing))
(at start (r o v− s t i l l))
(over a l l (rov−deployed))
(over a l l (inside (miss ion−reg ion (xr) (yr))))
(over a l l (inside (rov−range (xr) (yr) (xs) (ys)))))

: e f f e c t (and (at start (not (r o v− s t i l l)))
(at end (r o v− s t i l l))
(at start (not (rov−pos i t ioned)))
(at end (rov−pos i t ioned))
(increase (xr) (* (vx−r) #t))
(increase (yr) (* (vy−r) #t))))

(:durative−action deploy−ROV
:duration (and (>= ? durat ion 10) (<= ? durat ion 10))
:condition (and (over a l l (mission−ongoing))

(at start (rov−onboard)))
: e f f e c t (and (at start (not (rov−onboard)))

(at end (r o v− s t i l l))
(at end (rov−deployed))))

(:durative−action recover−ROV
:duration (and (>= ? durat ion 40) (<= ? durat ion 40))
:condition (and (over a l l (mission−ongoing))

(at start (rov−deployed))
(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (inside (recover−range (xr) (yr) (xs) (ys))))

)
: e f f e c t (and (at start (not (rov−deployed)))

(at end (rov−onboard))
(at start (not (rov−pos i t ioned)))))

(:durative−action arr ive−port
:duration (and (>= ? durat ion 2) (<= ? durat ion 2))
:condition (and (over a l l (rov−onboard))

(over a l l (inside (region−port (xs) (ys)))))
: e f f e c t (and (at end (sh ip−arr ived))

(at start (not (mission−ongoing)))))

(:durative−action take−sampleA
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionA (xr) (yr))))
(at end (inside (regionA (xr) (yr)))))

: e f f e c t (and (at end (sample−takenA))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleB
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

281

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionB (xr) (yr))))
(at end (inside (regionB (xr) (yr)))))

: e f f e c t (and (at end (sample−takenB))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleC
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionC (xr) (yr))))
(at end (inside (regionC (xr) (yr)))))

: e f f e c t (and (at end (sample−takenC))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleD
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionD (xr) (yr))))
(at end (inside (regionD (xr) (yr)))))

: e f f e c t (and (at end (sample−takenD))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleE
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionE (xr) (yr))))
(at end (inside (regionE (xr) (yr)))))

: e f f e c t (and (at end (sample−takenE))
(at end (not (rov−pos i t ioned)))))

(:durative−action take−sampleF
:duration (and (>= ? durat ion 20) (<= ? durat ion 20))
:condition (and (over a l l (mission−ongoing))

(over a l l (r o v− s t i l l))
(over a l l (rov−pos i t ioned))
(over a l l (rov−deployed))
(over a l l (inside (regionF (xr) (yr))))
(at end (inside (regionF (xr) (yr)))))

: e f f e c t (and (at end (sample−takenF))
(at end (not (rov−pos i t ioned))))))

The ROV instance 6 problem file:
(define (problem rov−problem−6)

282

(:domain rov−6)
(: i n i t (rov−onboard)

(r o v− s t i l l)
(mission−ongoing)
(= (xs) 20 . 0) (= (ys) 30 . 0)
(= (xr) 20 . 0) (= (yr) 30 . 0))

(:goal (and (sample−takenA) (sample−takenB)
(sample−takenC) (sample−takenD)
(sample−takenE) (sample−takenF)
(rov−onboard) (sh ip−arr ived))))

(:metric minimize (+ (* 0 .1 (tota l−t ime))
(* 2 .5 (norm−sq (ve l−ship)))))

C.2.2 Simplified, linearized version

In the linearized version the velocities of the AUV and the ship are not norm con-
strained and therefore, the :control−variable−vector statements do not appear in the
domain file. Moreover, the original convex quadratic constraints that represent the
maximum distance between the ROV and the ship (represented with the rov-range
and recover-range regions) are replaced by linear approximations (in particular,
octagon over-approximations). Therefore the rov-range and recover-range regions
are described in the following way:

(:region rov−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(<= (+ (* 1 .0 (− ?x1 ?x2)) (* 2 .414 (− ?y1 ?y2))) 24 .142)
(<= (+ (* −1.0 (− ?x1 ?x2)) (* 2 .414 (− ?y1 ?y2))) 24 .142)
(<= (+ (* −2.414 (− ?x1 ?x2)) (* −1.0 (− ?y1 ?y2))) 24 .142)
(<= (+ (* −2.414 (− ?x1 ?x2)) (* 1 .0 (− ?y1 ?y2))) 24 .142)
(<= (+ (* −1.0 (− ?x1 ?x2)) (* −2.414 (− ?y1 ?y2))) 24 .142)
(<= (+ (* 1 .0 (− ?x1 ?x2)) (* −2.414 (− ?y1 ?y2))) 24 .142)
(<= (+ (* 2 .414 (− ?x1 ?x2)) (* −1.0 (− ?y1 ?y2))) 24 .142)
(<= (+ (* 2 .414 (− ?x1 ?x2)) (* 1 .0 (− ?y1 ?y2))) 24 .142)))

(:region recover−range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and

(<= (+ (* 1 .0 (− ?x1 ?x2)) (* 2 .414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* −1.0 (− ?x1 ?x2)) (* 2 .414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* −2.414 (− ?x1 ?x2)) (* −1.0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* −2.414 (− ?x1 ?x2)) (* 1 .0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* −1.0 (− ?x1 ?x2)) (* −2.414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* 1 .0 (− ?x1 ?x2)) (* −2.414 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* 2 .414 (− ?x1 ?x2)) (* −1.0 (− ?y1 ?y2))) 1 . 207)
(<= (+ (* 2 .414 (− ?x1 ?x2)) (* 1 .0 (− ?y1 ?y2))) 1 . 207)))

283

C.3 The Air Refueling Domain

As an example, we provide the PDDL sources for instance 15 of the Air Refueling
domain. In this problem there are two UAVs that need to take images in six re-
gions, while refueling from a single tanker airplane. For the reasons explained in
Section 9.2.3, no linearized version is provided for this domain.
Domain (onair15-domain.pddl):

(define (domain onair−re fue l−15)
(:predicates

(can−start)
(uav−canfly) (uav− f ly ing) (uav−avai lable)
(uav2−canfly) (uav2− f ly ing) (uav2−avai lable)
(tanker− f l y ing)
(mission−ongoing)
(a r r i v ed)
(photo−takenA) (photo−takenB)
(photo−takenC) (photo−takenD) (photo−takenE))

(:functions (xt) (yt) (xb) (yb) (bb) (xb2) (yb2) (bb2))

; ; Contro l Var iab l e s
(:control−variable vx−t
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable vy−t
:bounds (and (>= ? value −2.0) (<= ? value 2 . 0)))

(:control−variable−vector vel−tanker
:control−variables ((vx−t) (vy−t))
:max−norm 2)

(:control−variable vx−b
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable vy−b
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable−vector vel−uav
:control−variables ((vx−b) (vy−b))
:max−norm 3)

(:control−variable vx−b2
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable vy−b2
:bounds (and (>= ? value −3.0) (<= ? value 3 . 0)))

(:control−variable−vector vel−uav2
:control−variables ((vx−b2) (vy−b2))
:max−norm 3)

(:control−variable vx−b−ref
:bounds (and (>= ? value −0.5) (<= ? value 0 . 5)))

(:control−variable vy−b−ref
:bounds (and (>= ? value −0.5) (<= ? value 0 . 5)))

(:control−variable−vector vel−uav−ref
:control−variables ((vx−b−ref) (vy−b−ref))
:max−norm 0 . 5)

(:control−variable bat−recharge−rt
:bounds (and (>= ? value 0 . 5) (<= ? value 10)))

; ; Regions

284

(:region miss ion−reg ion
:parameters (? x ?y)
:condition (and (in−rect (? x ?y) :corner (0 0) :width 100 :height 100))

)
(:region end−region
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((30 .00000 80 .00000)

(30 .00000 90 .00000) (40 .00000 90 .00000) (40 .00000 80 .00000) (30 .00000
80 .00000)))))

(:region regionA
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((69 .28348 48 .10923)

(68 .00933 45 .38239) (73 .61835 42 .22267) (74 .51618 48 .55133) (69 .28348
48 .10923)))))

(:region regionB
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((8 . 00984 57 .59487) (7 .01760

51 .92697) (9 .45458 50 .25484) (14 .20403 53 .92992) (8 .00984 57 .59487)))))
(:region regionC
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((23 .52966 20 .52394)

(28 .28920 22 .87291) (25 .77673 27 .59659) (22 .34778 24 .69332) (23 .52966
20 .52394)))))

(:region regionD
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((49 .99606 18 .74888)

(54 .37759 24 .80803) (52 .85137 25 .66706) (49 .60897 24 .57518) (49 .99606
18 .74888)))))

(:region regionE
:parameters (? x ?y)
:condition (and (in−poly (? x ?y) :vert ices ((59 .35168 78 .26495)

(57 .61885 83 .77747) (52 .45846 80 .30299) (56 .94561 76 .10759) (59 .35168
78 .26495)))))

(:region re fue l− range
:parameters (? x1 ?y1 ?x2 ?y2)
:condition (and (max−distance ((? x1 ?y1) (? x2 ?y2)) :d 2)))

; ; A c t i v i t i e s
(:durative−action f ly− tanker
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (can−start))

(over a l l (inside (miss ion−reg ion (xt) (yt)))))
: e f f e c t (and (at start (not (can−start)))

(at start (mission−ongoing))
(at end (not (mission−ongoing)))
(at start (tanker− f l y ing))
(at end (not (tanker− f l y ing)))
(increase (xt) (* (vx−t) #t))
(increase (yt) (* (vy−t) #t))))

(:durative−action f ly−uav
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (mission−ongoing))

285

(at start (uav−canfly))
(over a l l (inside (miss ion−reg ion (xb) (yb))))
(over a l l (>= (bb) 0)))

: e f f e c t (and (at start (not (uav−canfly)))
(at start (uav− f ly ing))
(at end (not (uav− f ly ing)))
(increase (xb) (* (vx−b) #t))
(increase (yb) (* (vy−b) #t))
(decrease (bb) (* 0 .1 (norm−sq (vel−uav)) #t))
(decrease (bb) (* 1 .1 (norm (vel−uav)) #t))))

(:durative−action f ly−uav2
:duration (and (>= ? durat ion 0 . 1) (<= ? durat ion 2000))
:condition (and (at start (mission−ongoing))

(at start (uav2−canfly))
(over a l l (inside (miss ion−reg ion (xb2) (yb2))))
(over a l l (>= (bb2) 0)))

: e f f e c t (and (at start (not (uav2−canfly)))
(at start (uav2− f ly ing))
(at end (not (uav2− f ly ing)))
(increase (xb2) (* (vx−b2) #t))
(increase (yb2) (* (vy−b2) #t))
(decrease (bb2) (* 0 .1 (norm−sq (vel−uav2)) #t))
(decrease (bb2) (* 1 .1 (norm (vel−uav2)) #t))))

(:durative−action re fue l−uav
:duration (and (>= ? durat ion 0 . 5) (<= ? durat ion 20))
:condition (and (over a l l (tanker− f l y ing))

(over a l l (uav− f ly ing))
(over a l l (<= (bb) 100))
(at start (uav−avai lable))
(over a l l (inside (re fue l− range (xt) (yt) (xb) (yb)))))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(increase (bb) (* (bat−recharge−rt) #t))))

(:durative−action re fue l−uav2
:duration (and (>= ? durat ion 0 . 5) (<= ? durat ion 20))
:condition (and

(over a l l (tanker− f l y ing))
(over a l l (uav− f ly ing))
(over a l l (<= (bb2) 100))
(at start (uav2−avai lable))
(over a l l (inside (re fue l− range (xt) (yt) (xb2) (yb2)))))

: e f f e c t (and
(at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(increase (bb2) (* (bat−recharge−rt) #t))))

(:durative−action a r r i v e−a i rpo r t
:duration (and (>= ? durat ion 2) (<= ? durat ion 2))
:condition (and (at start (mission−ongoing))

(at start (uav− f ly ing))
(at start (uav2− f ly ing))

286

(at start (uav−avai lable))
(at start (uav2−avai lable))
(over a l l (inside (end−region (xt) (yt))))
(over a l l (inside (end−region (xb) (yb))))
(over a l l (inside (end−region (xb2) (yb2)))))

: e f f e c t (and (at end (a r r i v ed))
(at start (not (mission−ongoing)))))

(:durative−action take−photoA
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionA (xb) (yb))))
(at end (inside (regionA (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenA))))

(:durative−action take−photoA2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionA (xb2) (yb2))))
(at end (inside (regionA (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenA))))

(:durative−action take−photoB
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionB (xb) (yb))))
(at end (inside (regionB (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenB))))

(:durative−action take−photoB2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionB (xb2) (yb2))))
(at end (inside (regionB (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenB))))

(:durative−action take−photoC
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))

287

:condition (and (over a l l (mission−ongoing))
(over a l l (uav− f ly ing))
(over a l l (inside (regionC (xb) (yb))))
(at end (inside (regionC (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenC))))

(:durative−action take−photoC2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionC (xb2) (yb2))))
(at end (inside (regionC (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenC))))

(:durative−action take−photoD
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionD (xb) (yb))))
(at end (inside (regionD (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenD))))

(:durative−action take−photoD2
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionD (xb2) (yb2))))
(at end (inside (regionD (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenD))))

(:durative−action take−photoE
:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav− f ly ing))
(over a l l (inside (regionE (xb) (yb))))
(at end (inside (regionE (xb) (yb))))
(at start (uav−avai lable)))

: e f f e c t (and (at start (not (uav−avai lable)))
(at end (uav−avai lable))
(at end (photo−takenE))))

(:durative−action take−photoE2

288

:duration (and (>= ? durat ion 15) (<= ? durat ion 15))
:condition (and (over a l l (mission−ongoing))

(over a l l (uav2− f ly ing))
(over a l l (inside (regionE (xb2) (yb2))))
(at end (inside (regionE (xb2) (yb2))))
(at start (uav2−avai lable)))

: e f f e c t (and (at start (not (uav2−avai lable)))
(at end (uav2−avai lable))
(at end (photo−takenE)))))

Problem (onair15-problem.pddl):
(define (problem onair−problem−1)
(:domain onair−re fue l−1)
(: i n i t (can−start)

(uav−canfly) (uav−avai lable)
(uav2−canfly) (uav2−avai lable)
(= (xt) 70 . 0) (= (yt) 10 . 0)
(= (xb) 70 . 0) (= (yb) 10 . 0)
(= (xb2) 70 . 0) (= (yb2) 10 . 0)
(= (bb) 100)(= (bb2) 100))

(:goal (and
(photo−takenA) (photo−takenB)
(photo−takenC) (photo−takenD)
(photo−takenE)
(a r r i v ed))))

(:metric minimize (+ (* 5 (tota l−t ime))
(* 20 (norm (vel−tanker)))))

289

290

Bibliography

[1] Johannes Aldinger and Johannes Löhr. The Jumpbot Domain for Numeric Plan-
ning. Technical report, University of Freiburg, April 2016.

[2] Johannes Aldinger and Bernhard Nebel. Interval Based Relaxation Heuristics
for Numeric Planning with Action Costs. In KI 2017: Advances in Artificial
Intelligence, pages 15–28. Springer, Cham, Cham, September 2017.

[3] C G Atkeson, B P W Babu, N Banerjee, D Berenson, C P Bove, X Cui, M De-
Donato, R Du, S Feng, P Franklin, M Gennert, J P Graff, P He, A Jaeger,
J Kim, K Knoedler, L Li, C Liu, X Long, T Padir, F Polido, G G Tighe, and
X Xinjilefu. No falls, no resets: Reliable humanoid behavior in the DARPA
robotics challenge. In 2015 IEEE-RAS 15th International Conference on Hu-
manoid Robots (Humanoids), pages 623–630. IEEE, November 2015.

[4] Josef Bajada, Maria Fox, and Derek Long. Temporal Planning with Semantic
Attachment of Non-Linear Monotonic Continuous Behaviours. In IJCAI 2015,
Proceedings of the 24th International Joint Conference on Artificial Intelligence,
Buenos Aires, Argentina, July 25-31, 2015, 2015.

[5] T Bedrax-Weiss, J Frank, A Jónsson, and C McGann. EUROPA2: Plan database
services for planning and scheduling applications. 2004.

[6] J Benton, Amanda Jane Coles, and Andrew Coles. Temporal Planning with
Preferences and Time-Dependent Continuous Costs. ICAPS 2012, 2012.

[7] Sara Bernardini, Maria Fox, and Derek Long. Planning the Behaviour of Low-
Cost Quadcopters for Surveillance Missions. Twenty-Fourth International Con-
ference on Automated Planning and Scheduling, November 2014.

[8] Sara Bernardini, Maria Fox, Derek Long, and Chiara Piacentini. Boosting
Search Guidance in Problems with Semantic Attachments. In Proceedings of the
Twenty-Seventh International Conference on Automated Planning and Schedul-
ing, ICAPS 2017, Pittsburgh, Pennsylvania, USA, June 18-23, 2017., pages 29–
37, 2017.

[9] Brian Bingham, Brendan Foley, Hanumant Singh, Richard Camilli, Katerina
Delaporta, Ryan Eustice, Angelos Mallios, David Mindell, Christopher Roman,
and Dimitris Sakellariou. Robotic tools for deep water archaeology: Surveying

291

an ancient shipwreck with an autonomous underwater vehicle. Journal of Field
Robotics, 27(6):702–717, 2010.

[10] Lars Blackmore, Masahiro Ono, and Brian C Williams. Chance-Constrained
Optimal Path Planning With Obstacles. IEEE Transactions on Robotics,
27(6):1080–1094, December 2011.

[11] Avrim L Blum and Merrick L Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1):281–300, 1997.

[12] Sergiy Bogomolov, Daniele Magazzeni, Stefano Minopoli, and Martin Wehrle.
PDDL+ Planning with Hybrid Automata: Foundations of Translating Must
Behavior. In Proceedings of the Twenty-Fifth International Conference on Au-
tomated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11,
2015., pages 42–46, 2015.

[13] Sergiy Bogomolov, Daniele Magazzeni, Andreas Podelski, and Martin Wehrle.
Planning as Model Checking in Hybrid Domains. In AAAI-17, pages 2228–2234,
2014.

[14] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, New York, NY, USA, 2004.

[15] Daniel Bryce, Sicun Gao, David J Musliner, and Robert P Goldman. SMT-Based
Nonlinear PDDL+ Planning. AAAI-17, pages 3247–3253, 2015.

[16] S Cambon, R Alami, and F Gravot. A Hybrid Approach to Intricate Motion, Ma-
nipulation and Task Planning. The International Journal of Robotics Research,
28(1):104–126, January 2009.

[17] Richard Camilli, Paraskevi Nomikou, Javier Escartin, Pere Ridao, Angelos
Mallios, Stephanos P Kilias, Ariadne Argyraki, Muriel Andreani, Valerie Ballu,
Ricard Campos, Christine Deplus, Taoufic Gabsi, Rafael Garcia, Nuno Gracias,
Natalia Hurtos, Lluis Magi, Catherine Mevel, Manuel Moreira, Narcis Palom-
eras, Olivier Pot, David Ribas, Lorraine Ruzie, and Dimitris Sakellariou. The
Kallisti Limnes, carbon dioxide-accumulating subsea pools. Scientific Reports,
5(1):srep12152, July 2015.

[18] Richard Camilli, Christopher M Reddy, Dana R Yoerger, Benjamin A S
Van Mooy, Michael V Jakuba, James C Kinsey, Cameron P McIntyre, Sean P
Sylva, and James V Maloney. Tracking hydrocarbon plume transport and
biodegradation at Deepwater Horizon. Science, 330(6001):201–204, October
2010.

[19] M Cashmore, M Fox, T Larkworthy, D Long, and D Magazzeni. AUV mission
control via temporal planning. In Robotics and Automation (ICRA), 2014 IEEE
International Conference on, pages 6535–6541. IEEE, 2014.

292

[20] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. A Compila-
tion of the Full PDDL+ Language into SMT. In Proceedings of the Twenty-Sixth
International Conference on Automated Planning and Scheduling, ICAPS 2016,
London, UK, June 12-17, 2016., pages 79–87, 2016.

[21] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Temporal Plan-
ning in Domains with Linear Processes. In IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009, pages 1671–1676, 2009.

[22] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-
Chaining Partial-Order Planning. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling, ICAPS 2010, Toronto, Ontario,
Canada, May 12-16, 2010, pages 42–49, 2010.

[23] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. COLIN: Plan-
ning with continuous linear numeric change. Journal of Artificial Intelligence
Research (JAIR), 44:1–96, 2012.

[24] Andrew Coles, Maria Fox, Derek Long, and Amanda Smith. Planning with
Problems Requiring Temporal Coordination. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, pages 892–897, 2008.

[25] William Cushing, Subbarao Kambhampati, Mausam, and Daniel S Weld. When
is Temporal Planning Really Temporal? In Proceedings of the 20th International
Joint Conference on Artifical Intelligence, pages 1852–1859, San Francisco, CA,
USA, 2007. Morgan Kaufmann Publishers Inc.

[26] Hongkai Dai, A Valenzuela, and Russ Tedrake. Whole-body motion planning
with centroidal dynamics and full kinematics. In Humanoid Robots (Humanoids),
2014 14th IEEE-RAS International Conference on, pages 295–302. IEEE, 2014.

[27] R Dechter, I Meiri, and J Pearl. Temporal constraint networks. Artificial Intel-
ligence, 1991.

[28] Robin Deits and Russ Tedrake. Efficient Mixed-Integer Planning for UAVs in
Cluttered Environments. groups.csail.mit.edu, December 2014.

[29] Robin Deits and Russ Tedrake. Footstep Planning on Uneven Terrain with
Mixed-Integer Convex Optimization. In Proceedings of the 2014 IEEE/RAS In-
ternational Conference on Humanoid Robots (Humanoids 2014), Madrid, Spain,
2014, August 2014.

[30] Robin Deits and Russ Tedrake. Computing large convex regions of obstacle-free
space through semidefinite programming. Algorithmic Foundations of Robotics
XI, 2015.

293

[31] Giuseppe Della Penna, Daniele Magazzeni, Fabio Mercorio, and Benedetto In-
trigila. UPMurphi: A Tool for Universal Planning on PDDL+ Problems. In
Proceedings of the 19th International Conference on Automated Planning and
Scheduling, ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009, 2009.

[32] Minh Binh Do and Subbarao Kambhampati. Sapa: A Multi-objective Metric
Temporal Planner. J Artif Intell Res(JAIR), 20:155–194, 2003.

[33] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Tr u g, Michael
Brenner, and Bernhard Nebel. Semantic Attachments for Domain-independent
Planning Systems. In Proceedings of the Nineteenth International Conference on
International Conference on Automated Planning and Scheduling, pages 114–121.
AAAI Press, 2009.

[34] Patrick Eyerich, Robert Matmüller, and Gabriele Röger. Using the Context-
enhanced Additive Heuristic for Temporal and Numeric Planning. In Proceedings
of the 19th International Conference on Automated Planning and Scheduling,
ICAPS 2009, Thessaloniki, Greece, September 19-23, 2009, 2009.

[35] M Fallon, S Kuindersma, S Karumanchi, and Russ Tedrake. An Architecture
for Online Affordance-based Perception and Whole-body Planning. Journal of
Field . . . , 2015.

[36] Enrique Fernandez-Gonzalez, Erez Karpas, and Brian C Williams. Mixed
Discrete-Continuous Heuristic Generative Planning Based on Flow Tubes. In
Proceedings of the Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages
1565–1572, 2015.

[37] Enrique Fernandez-Gonzalez, Erez Karpas, and Brian C Williams. Mixed
Discrete-Continuous Heuristic Generative Planning based on Flow Tubes (ex-
tended version). In PlanRob Workshop, ICAPS 2015, pages 1–10, May 2015.

[38] Enrique Fernandez-Gonzalez, Erez Karpas, and Brian C Williams. Mixed
Discrete-Continuous Planning with Convex Optimization. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, pages 1–7, 2017.

[39] M Fox and D Long. PDDL2. 1: An Extension to PDDL for Expressing Temporal
Planning Domains. J Artif Intell Res(JAIR), 2003.

[40] M Fox and D Long. Modelling Mixed Discrete-Continuous Domains for Planning.
J Artif Intell Res(JAIR), 2006.

[41] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. FFRob:
An efficient heuristic for task and motion planning. lis.csail.mit.edu, 2014.

294

[42] Alfonso E Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competi-
tion: PDDL3 and experimental evaluation of the planners. Artificial Intelligence,
173(5-6):619–668, April 2009.

[43] Sean Gillies and others. Shapely: manipulation and analysis of geometric objects.
Technical report, toblerity.org, 2007.

[44] Dylan Hadfield-Menell, Christopher Lin, Rohan Chitnis, Stuart Russell, and
Pieter Abbeel. Sequential quadratic programming for task plan optimization.
In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS, pages 5040–5047. IEEE, 2016.

[45] Jörg Hoffmann. The Metric-FF Planning System: Translating ”Ignoring Delete
Lists” to Numeric State Variables. J Artif Intell Res(JAIR), 20:291–341, 2003.

[46] Jörg Hoffmann and Stefan Edelkamp. The deterministic part of IPC-4: An
overview. Journal of Artificial Intelligence Research, 24:519–579, 2005.

[47] Jörg Hoffmann and Bernhard Nebel. The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search. J Artif Intell Res(JAIR), 14:253–302, 2001.

[48] Andreas Hofmann. Robust Execution of Bipedal Walking Tasks From Biome-
chanical Principles. PhD thesis, Massachusetts Institute of Technology, January
2006.

[49] Andreas Hofmann and Brian C Williams. Exploiting spatial and temporal flexi-
bility for plan execution of hybrid, under-actuated systems. AAAI 2006, 2006.

[50] Andreas Hofmann and Brian C Williams. Temporally and spatially flexible plan
execution for dynamic hybrid systems. Artificial Intelligence, (0 SP - EP - PY -
T2 -):–, 2015.

[51] J L W V Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica, 30(0):175–193, 1906.

[52] Sertac Karaman and Emilio Frazzoli. Incremental Sampling-based Algorithms
for Optimal Motion Planning. arXiv.org, May 2010.

[53] Henry A Kautz and Bart Selman. Planning as Satisfiability. In Proceedings of the
Tenth European Conference on Artificial Intelligence (ECAI’92), pages 359–363,
1992.

[54] Henry A Kautz and Bart Selman. Unifying SAT-based and Graph-based Plan-
ning. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999. 2 Volumes,
1450 pages, pages 318–325, 1999.

295

[55] Eric Krotkov, Douglas Hackett, Larry Jackel, Michael Perschbacher, James Pip-
pine, Jesse Strauss, Gill Pratt, and Christopher Orlowski. The DARPA Robotics
Challenge Finals: Results and Perspectives. Journal of Field Robotics, 34(2):229–
240, 2017.

[56] Scott Kuindersma, Robin Deits, Maurice Fallon, Andrés Valenzuela, Hongkai
Dai, Frank Permenter, Twan Koolen, Pat Marion, and Russ Tedrake.
Optimization-based locomotion planning, estimation, and control design for the
atlas humanoid robot. Autonomous Robots, 40(3):429–455, 2015.

[57] C Kunz, C Murphy, R Camilli, H Singh, J Bailey, R Eustice, M Jakuba, K i
Nakamura, C Roman, T Sato, R A Sohn, and C Willis. Deep sea underwa-
ter robotic exploration in the ice-covered Arctic ocean with AUVs. In 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3654–3660. IEEE, September 2008.

[58] Benoit Landry, Robin Deits, Peter R Florence, and Russ Tedrake. Aggressive
quadrotor flight through cluttered environments using mixed integer program-
ming. ICRA, pages 1469–1475, 2016.

[59] S M LaValle. Randomized Kinodynamic Planning. The International Journal of
Robotics Research, 20(5):378–400, May 2001.

[60] Thomas Léauté. Coordinating Agile Systems through the Model-based Execution
of Temporal Plans. Master’s thesis, July 2005.

[61] Thomas Léauté and Brian C Williams. Coordinating Agile Systems through
the Model-based Execution of Temporal Plans. In Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Seventeenth Innovative
Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh,
Pennsylvania, USA, pages 114–120, 2005.

[62] Hui Li and Brian C Williams. Hybrid Planning with Temporally Extended Goals
for Sustainable Ocean Observing. In Proceedings of the Twenty-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Francisco, California,
USA, August 7-11, 2011, 2011.

[63] Hui X Li. Kongming: a generative planner for hybrid systems with temporally
extended goals. PhD thesis, Massachusetts Institute of Technology, 2010.

[64] Hui X Li and Brian C Williams. Generative Planning for Hybrid Systems Based
on Flow Tubes. In Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September
14-18, 2008, pages 206–213, 2008.

[65] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposition of
polygons. Computational Geometry, 35(1-2):100–123, August 2006.

296

[66] Nir Lipovetzky and Hector Geffner. A Polynomial Planning Algorithm that
Beats LAMA and FF. In Proceedings of the 27th International Conference on
Automated Planning and Scheduling (ICAPS’17), 2017.

[67] Nir Lipovetzky and Hector Geffner. Best-first Width Search: Exploration and
Exploitation in Classical Planning. In Proceedings of the 31st AAAI Conference
on Artificial Intelligence (AAAI’17), 2017.

[68] J Löhr, P Eyerich, T Keller, and B Nebel. A Planning Based Framework for
Controlling Hybrid Systems. ICAPS, 2012.

[69] Derek Long and Maria Fox. Exploiting a Graphplan Framework in Temporal
Planning. In Proceedings of the Thirteenth International Conference on Auto-
mated Planning and Scheduling (ICAPS 2003), June 9-13, 2003, Trento, Italy,
pages 52–61, 2003.

[70] Tomás Lozano-Pérez and Leslie Pack Kaelbling. A constraint-based method
for solving sequential manipulation planning problems. In Intelligent Robots
and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pages
3684–3691. IEEE, 2014.

[71] Drew Mcdermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. PDDL - The Planning Domain
Definition Language. Technical report, 1998.

[72] Nicola Muscettola, P Pandurang Nayak, Barney Pell, and Brian C Williams.
Remote Agent: to boldly go where no AI system has gone before. Artificial
Intelligence, 103(1-2):5–47, August 1998.

[73] Masahiro Ono. Robust, Goal-directed Plan Execution with Bounded Risk. PhD
thesis, Massachusetts Institute of Technology, 2012.

[74] Masahiro Ono and Brian C Williams. Iterative Risk Allocation: A new approach
to robust Model Predictive Control with a joint chance constraint. In 2008 47th
IEEE Conference on Decision and Control, pages 3427–3432. IEEE, 2008.

[75] Masahiro Ono, Brian C Williams, and Lars Blackmore. Probabilistic Planning
for Continuous Dynamic Systems under Bounded Risk. Journal of Artificial
Intelligence Research, 46:511–577, 2013.

[76] Florian Pantke, Stefan Edelkamp, and Otthein Herzog. Symbolic discrete-time
planning with continuous numeric action parameters for agent-controlled pro-
cesses. Mechatronics, 34:38–62, March 2016.

[77] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. Online Planning for
Autonomous Running Jumps Over Obstacles in High-Speed Quadrupeds. In
Robotics: Science and Systems, 2015.

297

[78] Chiara Piacentini, V Alimisis, M Fox, and D Long. Combining a temporal planner
with an external solver for the power balancing problem in an electricity network.
Twenty-Third International . . . , 2013.

[79] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio. Heuristic Planning for PDDL+ Domains. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI
2016, New York, NY, USA, 9-15 July 2016, pages 3213–3219, 2016.

[80] N Ratliff, M Zucker, J A Bagnell, and S Srinivasa. CHOMP: Gradient optimiza-
tion techniques for efficient motion planning. In Robotics and Automation, 2009.
ICRA ’09. IEEE International Conference on, pages 489–494. IEEE, 2009.

[81] S Richter and M Westphal. The LAMA planner: Guiding cost-based anytime
planning with landmarks. Journal of Artificial Intelligence Research, 2010.

[82] Pedro Santana. Dynamic execution of temporal plans with sensing actions and
bounded risk. PhD thesis, Massachusetts Institute of Technology, 2016.

[83] Pedro Santana, S Thiebaux, and Brian C Williams. RAO*: An Algorithm for
Chance-Constrained POMDP’s. Thirtieth AAAI Conference on . . . , 2016.

[84] Pedro Santana, Tiago Vaquero, Eric Timmons, Brian C Williams, Catharine
McGhan, Richard M Murray, and Claudio Toledo. Risk-aware Planning in Hy-
brid Domains: An Application to Autonomous Planetary Rovers. In The AIAA
Space and Astronautics Forum and Exposition (AIAA SPACE), 2016.

[85] Emre Savas, Maria Fox, Derek Long, and Daniele Magazzeni. Planning Using
Actions with Control Parameters. In ECAI 2016 - 22nd European Conference on
Artificial Intelligence, 29 August-2 September 2016, The Hague, The Netherlands
- Including Prestigious Applications of Artificial Intelligence (PAIS 2016), pages
1185–1193, 2016.

[86] Enrico Scala, Patrik Haslum, Sylvie Thiébaux, and Miquel Ramírez. Interval-
Based Relaxation for General Numeric Planning. ECAI, 2016.

[87] J Schulman, J Ho, A Lee, I Awwal, H Bradlow, and Pieter Abbeel. Finding Lo-
cally Optimal, Collision-Free Trajectories with Sequential Convex Optimization.
Robotics: Science and . . . , 2013.

[88] Ji-Ae Shin and Ernest Davis. Processes and continuous change in a SAT-based
planner. Artificial Intelligence, 166(1):194–253, 2005.

[89] David E Smith and Daniel S Weld. Temporal Planning with Mutual Exclusion
Reasoning. In Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 99, Stockholm, Sweden, July 31 - August 6, 1999.
2 Volumes, 1450 pages, pages 326–337, 1999.

298

[90] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart J
Russell, and Pieter Abbeel. Combined task and motion planning through an
extensible planner-independent interface layer. In 2014 IEEE International Con-
ference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 -
June 7, 2014, pages 639–646. IEEE, 2014.

[91] Mark Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelli-
gence, 16(2):111–139, 1981.

[92] Marc Toussaint. Logic-Geometric Programming: An Optimization-Based Ap-
proach to Combined Task and Motion Planning. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages 1930–1936, 2015.

[93] David Wang. A Factored Planner for the Temporal Coordination of Autonomous
Systems. PhD thesis, Massachusetts Institute of Technology, May 2015.

[94] David Wang and Brian C Williams. tBurton: A Divide and Conquer Temporal
Planner. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas, USA., pages 3409–3417, 2015.

[95] Brian C Williams and P Pandurang Nayak. A reactive planner for a model-based
executive. 15:1178–1185, 1997.

[96] Steven A Wolfman and Daniel S Weld. The LPSAT Engine & Its Application
to Resource Planning. IJCAI 2016, 1999.

299

	1 Introduction
	1.1 Thesis Goals
	1.2 Thesis Contributions
	1.3 Organization of This Thesis

	2 Related Work
	2.1 Temporal and Hybrid Discrete-Continuous Planning
	2.2 Optimization-based Approaches for Robotics Planning
	2.3 Combined Task and Motion Planning Approaches (TAMP)

	3 The Scotty System:An Architecture for Hybrid Activity and Trajectory Planning
	3.1 Example Motivating Scenario
	3.2 The Scotty Planning System
	3.2.1 ScottyActivity
	3.2.2 ScottyPath
	3.2.3 MPCScotty
	3.2.4 Example Usage of the Planning Architecture

	4 Problem Statement
	4.1 The PDDL-S Problem
	4.1.1 Hybrid Durative Activities
	4.1.2 State
	4.1.3 State Constraints
	4.1.4 Control Variables and Continuous Effects
	4.1.5 Objective

	4.2 Solution to a PDDL-S Problem
	4.2.1 PDDL-S Plans with Piecewise Constant Control
	4.2.2 Qualitative State Plans

	I ScottyConvexPath
	5 Efficient Satisfaction of Convex Conditions Over Arbitrarily Long Horizons Through Piecewise Constant Control Trajectories
	5.1 Typical Maintenance Convex Conditions in Robotic Applications

	6 ScottyConvexPath: Trajectory Planning for Skeleton Plans Over Long Horizons With Convex Optimization
	6.1 Plan Skeletons
	6.2 Preliminary Definitions and Decision Variables
	6.3 Temporal Constraints
	6.4 State Constraints
	6.5 State Change
	6.6 Control Variables and Continuous Effects
	6.6.1 CLTE Effects
	6.6.2 RNE Effects

	6.7 Partial Skeleton Plans
	6.8 Objective

	II ScottyActivity
	7 Expressing ScottyActivity PDDL-S Problems
	7.1 Control variables and global constraints on control variables
	7.2 Continuous change with CLTE and RNE effects
	7.3 Objectives
	7.4 Representing Advanced Convex State Constraints Through State Space Regions
	7.4.1 Primitive Regions

	8 ScottyActivity: Joint Activity and Trajectory Planning with Heuristic Forward Search
	8.1 ScottyActivity In a Nutshell
	8.2 Generation of Successor States
	8.3 Relaxed Hybrid Plan Heuristic
	8.4 Search strategies

	9 ScottyActivity Experimental Results
	9.1 Synthetic Benchmarks
	9.1.1 Discretization of time
	9.1.2 Discretization of control variables

	9.2 Evaluation in Robotic Domains
	9.2.1 The AUV Domain
	9.2.2 The ROV Domain
	9.2.3 The Air Refueling Domain
	9.2.4 Results

	9.3 Comparison With a Mixed Integer Approach

	III ScottyPath
	10 Geometric Path Planning Through Convex Obstacle-free Regions
	10.1 Problem Formulation
	10.2 Approach
	10.2.1 In a Nutshell
	10.2.2 Shortest Path through Convex Regions
	10.2.3 Connectivity Graph of Safe Regions
	10.2.4 Informed Search over Convex Safe Regions

	10.3 Alternative Mixed-Integer Approaches
	10.3.1 A simple MISOCP encoding
	10.3.2 A MISOCP encoding using the connectivity graph and a warm start

	10.4 Experimental Results
	10.5 Generation of Convex Safe Regions
	10.5.1 Automatic Generation of Convex Safe Regions

	11 ScottyPath: Path Planning Through Convex Obstacle-free Regions for Qualitative State Plans
	11.1 Example problem
	11.2 Problem Statement
	11.2.1 Qualitative State Plans
	11.2.2 Solution Plan
	11.2.3 Piecewise Constant Solution

	11.3 Relation Between tQSPs and Other Problems
	11.3.1 SSPos and tQSPs
	11.3.2 Scotty Skeleton Plans, PDDL-S Problems and tQSPs

	11.4 Planning Approach
	11.4.1 In a Nutshell
	11.4.2 Search Algorithm
	11.4.3 Computing Optimal Trajectories Through Convex Safe Regions using Convex Optimization

	11.5 Chapter Summary

	12 ScottyPath Experimental Results
	12.1 Description of the Experiments
	12.1.1 Benchmark Domains
	12.1.2 Domain Instances
	12.1.3 Number of Safe Regions and Obstacles
	12.1.4 Heuristic Weight

	12.2 Generation of Problem Instances
	12.3 Results
	12.4 Chapter Summary

	IV Conclusions
	13 Conclusions
	13.1 Summary of Contributions
	13.2 Future Work

	A Proofs of Completeness and Optimality of PDDL-S Plans with Piecewise Constant Control
	A.1 Completeness of PDDL-S Plans with Piecewise Constant Control
	A.2 Optimality of PDDL-S Plans with Piecewise Constant Control

	B An Example Scenario in PDDL-S Syntax
	C Benchmark Domains
	C.1 The AUV Domain
	C.2 The ROV Domain
	C.2.1 Original (quadratic) version
	C.2.2 Simplified, linearized version

	C.3 The Air Refueling Domain

	Bibliography

