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Abstract

The surfaces of many plants and animals are covered with a variety of micro-textures
such as ribs or 3D tubules which can control surface-mediated properties such as skin
friction. Inspired by the drag reducing ability of these natural structures, especially
the ribbed features on shark denticles, passive drag reduction strategies such as micro-
fabricated riblet surfaces have been developed and studied. Microgroove textures on
the surface of objects such as hulls, wings or inner surface of pipes which are aligned
in the stream-wise direction have been shown to reduce the wall friction by 4 − 8%.
The mechanisms suggested for this form of drag reduction are viscous retardation of
the flow in the grooves (both laminar and turbulent) and the displacement of vortical
structures away from the wall in turbulent flows. Due to their effectiveness in altering
the boundary layer structure and reducing the viscous drag force, use of riblets have
been banned in various competitions such as the America’s Cup. The current thesis
work is partly focused on theoretical and numerical modelling (using the open source
CFD package OpenFOAM) of the evolution of viscous boundary layers in the presence
of various-shaped riblets (V-grooves as well as sinusoidal wrinkled surfaces) in high
Reynolds laminar flow. We explore the effect of the dimensionless height to spacing
of the grooves (aspect ratio) as well as the length of the wetted surface in the stream-
wise direction and how these change the total drag compared with a corresponding
flat wall. We show that riblets retard the viscous flow inside the grooves and reduce
the shear stress inside the grooves. But for this reduction to result in overall drag
reduction, the riblet wall needs to be longer than a critical length. The total drag
reduction achieved is a non-monotonic function of the aspect ratio of the riblets, with
aspect ratios of order unity offering the largest reduction in the total drag.

To eliminate the role of entrance effects, we additionally investigate the effect
of stream-wise aligned riblet structures on fully-developed Taylor-Couette flow. We
perform both experimental studies as well as time-dependent numerical simulations
in both the laminar Couette and the Taylor vortex regime. We again explore the
effect of the size of the riblets with respect to the geometry of the Taylor-Couette
cell, as well as the aspect ratio of the riblet grooves and the shape of the grooves
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(V-groove, Rectangular, semi-circular, etc.). For the experiments, the cylindrical
textured rotors are fabricated using 3D printing techniques and the rest of the Taylor-
Couette cell is custom built using CNC machining. The test cell is then aligned and
mounted on a stress-controlled rheometer to measure the velocity and the torque
on the rotating inner cylinder. The numerical studies are performed using the open
source CFD software package OpenFOAM to compare results and understand the
physical mechanisms contributing to this drag reduction phenomenon. Again we
observe a non-monotonic behavior for the reduction in torque as a function of the
aspect ratio of the riblets tested, similar to the trend observed in the boundary layer
analysis and we discuss the effect of changing the geometry of the flow as well as the
riblet spacing on the changes in the total torque.

When viewed holistically the results of these two studies show that, through care-
ful design, a net reduction in viscous drag force can be robustly realized on micro-
textured surfaces in high Reynolds number laminar flows through complex changes in
near-wall stream-wise velocity profiles even in the absence of turbulent effects. The
understanding of these changes can be effective in guiding the design of internal flows
(pipes or ducts) and external flows (such as ship hulls, micro air vehicles or unmanned
underwater vehicles) that are tailored and optimized to result in low frictional drag
over the entire wetted surface in both laminar and turbulent regions.

Thesis Supervisor: Gareth H. McKinley
Title: School of Engineering Professor of Teaching Innovation
Department of Mechanical Engineering
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4-1 Experimental results of Greidanus et. al (103 < Re < 106) [107] (sym-

bols marked by "current study"), and Hall and Joseph (103 < Re <
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channel height [58]. 𝑠+ is the riblet spacing (wavelength) in the wall

units which was defined earlier in Chapter 1. The figure is reproduced

from Reference [107]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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ders; (a) Max Margules [105], (b) Henry Reginald Arnulph Mallock
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outer cylinder respectively. This coordinate system used in this chapter

is a cylindrical polar coordinate system where the radial direction is

shown by 𝑟, the circumferential direction is shown by 𝜑, and the axial

direction is denoted by 𝑧 [137]. (b) Phase map of the different flow

types in the Taylor-Couette flow (between two concentric cylinders) as

a function of the Reynolds number based on the rotation rate of the

inner cylinder and the outer cylinder [132, 135]. . . . . . . . . . . . . 169

4-4 Taylor-Couette flow with 𝜂 = 0.63 and Γ = 5.1 with only the inner
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For this geometry, the critical Reynolds number for transition from

laminar to Taylor vortices is Re𝑑,crit = 74. . . . . . . . . . . . . . . . . 175
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4-5 Shape of the free surface in a Taylor-Couette cell open to air as a

function of the radial location and the radius ratio of the cell. 𝑟s/𝑅o = 1

corresponds to the radial location of the outer cylinder. . . . . . . . . 183
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shown with red circles. . . . . . . . . . . . . . . . . . . . . . . . . . 188
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Couette cell design to ensure a tight seal. The nominal width of the
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4-13 Engineering drawings of the bottom block of the Taylor-Couette cell.

All dimensions are shown in inches. . . . . . . . . . . . . . . . . . . . 191
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4-21 Numerical and experimental results of changes in the non-dimensional

torque 𝐺 as a function of the AR for (a) Re𝑑 = 23 and 𝜆/𝑑 = 0.12, (b)
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4-22 Distribution of shear stress components (a) 𝜏𝑟𝜑 and (b) 𝜏𝑧𝜑 normalized
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4-24 Average shear stress for Re𝑑 = 58 and 𝜆/𝑑 = 0.12 as a function of the

AR and the change in the wetted area of the riblets as a function of the
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4-27 Results of numerical calculations, experiments and asymptotic pertur-

bation theory for cylindrical Couette flow near riblet-coated inner ra-

dius(for shallow riblets with small 𝜆/𝑅i ) showing the torque change as

a function of the aspect ratio AR, at Re𝑑 = 58 and for (a) 𝜆/𝑑 = 0.12,

(b) 𝜆/𝑑 = 0.24, and (c) 𝜆/𝑑 = 0.36. The perturbation theory results
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4-28 Torque reduction results from numerical simulation of Taylor-Couette

flow with riblet covered rotors with 𝜆/𝑅i = 0.07 and different radius

ratio, 𝜂, and 𝜆/𝑑 as a function of the aspect ratio, AR. Theoretical

results for shallow riblets are also shown in the figure with dashed lines. 216

4-29 (a) Collapse of the experimental and numerical torque reduction date

for riblets of 𝐴𝑅 = 0.58 and various 𝜆/𝑑 in Taylor-Couette flow with

various 𝜂 when plotted as a function of (𝜆/𝑑)(𝜂(1 + 𝜂))−1. The data

collapse on a line with 𝐾 = 0.62 corresponding to Equation 4.112.

(b) The zeroth and first order correction terms of the velocity profile

calculated using 𝐾 from figure 4-29(a) on top of the velocity profile at

different axial location within one period of the riblet with AR = 0.58,

𝜆/𝑑 = 0.24, and 𝜂 = 0.63. . . . . . . . . . . . . . . . . . . . . . . . . 220

4-30 (a) Collapse of the experimental and numerical torque reduction date
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Chapter 1

Introduction

Over the past century, the field of drag reduction (especially passive drag reduction)

has been attracting attention of researchers in various disciplines; reducing the fric-

tional drag in pipe flow, flight vehicles, cars, and marine vehicles directly results in

a reduction in energy consumption and can reduce operating costs [1, 2]. Among

the various drag reduction methods proposed and investigated, drag reduction using

riblet surfaces has shown promising results for both external and internal flows. For

example, riblets were even used on the body of the Stars and Stripes racing yacht

during the 1987 America’s Cup and these riblets are thought to be at least part of the

reason for the United States winning the first place in the competition [3, 4]. Sim-

ilarly in 2010, the BMW Oracle team used 3M adhesive backed riblet films (Figure

1-1) on the yacht surface and the team won the 33rd America’s Cup competition [5]

(In other years, the use of anything that would alter the boundary layer around the

yacht hull has been banned by the rules of the America’s Cup competition [6]).

Figure 1-1: SEM image of 3M riblets with amplitude (height) and wavelength (spac-
ing) of 62 𝜇m [7].

33



Similar to the use of riblets in America’s Cup, a range of full scale or partial scale

experiments with boats, airplanes, wind turbines, various bodies of revolution, and

airfoils using full or partial riblet coverage have been previously performed. For ex-

ample the Admiralty Research Establishment’s (ARE) high speed buoyancy propelled

vehicle called MOBY-D (12.6 m long and 3.35 m in diameter, shown in Figure 1-2)

was partially (35%) covered with riblets and showed 1% drag reduction. Considering

the partial coverage of the riblets, as well as the fact that 80% of the drag in this case

is due to skin friction, total skin friction drag reduction in a fully covered case could

be estimated to be about 3.4% [8, 9, 10].

Figure 1-2: The Admiralty Research Establishment’s (ARE) high speed buoyancy
propelled vehicle called MOBY-D used for testing the effect of riblets on drag reduc-
tion. This vehicle is 12.6 m long and 3.35 m in diameter [8, 9, 10].

A riblet covered NACA 0012 airfoil has been used for both drag reduction and wake

effect studies [11, 12, 13, 14, 15] and a DU (Delft University) 96-W-180 airfoil with

riblets of various sizes were tested for drag reduction in wind turbine applications

[7]. In terms of flight vehicles, a modified Gates Learjet model 28/29 twin-engine

business jet was used by NASA Langley to test the drag reducing ability of a riblet

test plate in real flight conditions (pressure altitude of 10,000 - 42,000 feet) and high

Mach numbers (0.3-0.7) and observed maximum drag reduction of 6% on the test
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plate [16, 17]. Airbus industries also performed a flight test in 1989 using an Airbus

320 (Figure 1-3) with 3M riblets (similar to the one used on the Stars and Stripes

yacht). In this test, 700 m2 of the aircraft’s external surfaces were covered with the

riblets and a net drag reduction of 1.5 − 2% was measured, which is equivalent to

about 4 − 5.3% in skin friction drag reduction [9, 10].

Figure 1-3: Coverage of the body of an Airbus 320 for the flight test in 1989 [9, 10].

Through a later collaboration, Airbus, Lufthansa, and Cathy Pacific Airways con-

ducted a test to monitor the degradation of the riblets in commercial flights employing

the 3M riblet tapes on Airbus 340 aircraft on service. The final results of the tests
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suggested that to maintain the drag reduction capacity, the riblet films need to be

replaced every 2 to 3 years [10]. Another feasibility study by Lowrey and Harasha

has shown that with riblet surfaces that offer 8% drag reduction, industries working

with water could save up to $16, 720 a year per mile of piping and with natural gas,

industries could save up to $23, 373 per year per mile of pipes [2].

The method of drag reduction using stream-wise riblets was originally motivated

by a few independent ideas. First, inspired by natural surface textures, the observa-

tion of fine ridges aligned in the flow direction on the denticles of fast swimming sharks

raised the idea of possibly of achieving drag reduction using stream-wise grooves

[1, 18, 19, 20]. The body of fast swimming sharks are packed with micro-scale denti-

cles which have between 3-7 parallel ribs on them. Measurements of these micro-scale

ribs have shown that the spacing of these ridges vary over a range of 100 − 500 𝜇m

with depth of 10 − 100 𝜇m. Examples of shark denticles are shown in Figure 1-5.

Shark denticles have been the subject of various studies over the years such as in vor-

tex dynamics [21], anti-fouling [22], etc. and these have inspired fabrication of various

surface textures such as riblet surfaces, the Sharklet texture by Sharklet Technologies,

or graded wrinkling (Figure 1-6) [21, 22, 7, 23] .

Second, it was suggested that riblets or stream-wise grooved textures could con-

strain the growth of turbulent vortical structures and reduce the Reynolds shear stress

(which will be discussed more in section 1.4.3) near the wall by choosing physical rib

sizes smaller than the radius of the vortices[1, 25, 26, 27, 28]. Independent DNS cal-

culations and experimental measurements in turbulent boundary layers and channel

flows for various Reynolds numbers in the range of Re𝐿 ≈ 3 × 104 − 8 × 105 have

shown that the diameter of the stream-wise vortical structures near the wall have

values of between 10 and 44 ℓ* and the mean spacing of these structures is about 100

ℓ* [29, 30, 31]. Here the Reynolds number is a non-dimensional group quantifying the

relative importance of dynamic pressure effects in the flow compared to the viscous

effects and is defined as

Re𝐿 =
𝜌𝑉 𝐿

𝜇
(1.1)
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Figure 1-4: Pattern of scales of different sharks at different locations along its body.
Note the packing of the denticles on the body and the parallel ribs on each of the
denticles. These denticles are claimed to be partially responsible for the fast swimming
speed of sharks compared with other marine animals [20].

where 𝜌 and 𝜇 are the fluid density and viscosity, 𝑉 is the characteristic velocity, and

𝐿 the characteristic length. The viscous length scale ℓ* is defined as

ℓ* =
𝜈

𝑢*
(1.2)

where

𝑢* =

√︂
𝜏wall
𝜌

(1.3)

and 𝜏wall is the magnitude of the wall shear stress.

Third, advances in techniques employed to manufacture pipes with straight or

spiral fins lead to new experiments in 1970s on the heat transfer of turbulent flows

past walls with stream-wise fins, and sharp internal corners (i.e. rectangular ducts and

conduits). Experimentally, it has been observed that the secondary flow structures
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(a)

(b)

Figure 1-5: (a) Micro CT scan of a sample shark scale from a shortfin mako shark,
here DL = 151 𝜇m, RS = 51 𝜇m, RHM = 21 𝜇m , RHS = 11 𝜇m, BW = 119 𝜇m and
NW = 50.9 𝜇m [21]; (b) 3D morphology of a representative shark scale [24].

Figure 1-6: SEM images of the Sharklet AF𝑇𝑀 with feature width and spacing of
2 𝜇m and height of 3 𝜇m [22].
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Figure 1-7: Schematic of the mechanism of drag increase and reduction in riblets
with wavelength or spacing of 20 (right) and 40 (left) wall units. The circles represent
the stream-wise vortical structures in the turbulent flow over riblet surfaces and they
have an average diameter of 30 wall units [26].

that develop inside the corners of non-circular ducts, and at the base of the fins

(the intersection of the fins with the conduit walls) result in a reduced local shear

stress [1, 32, 33]. In addition, it was shown that such corners can weaken the spatial

development of the three dimensional flow inside the corner by limiting the span-

wise component of the velocity, therefore resulting in a local re-laminarization of flow

inside the corners [1, 34]. Thus, it was hypothesised that walls with periodic textures

aligned in the stream-wise directions (such as riblets) that contributed a large number

of independent corner regions could perform in a similar manner [1, 32, 33, 34].

Therefore, in this chapter, an overview of the riblet surfaces and how they affect

the flow behaviour in various conditions is presented. After an introductory summary

of the riblet geometry and the flow types used in the previous studies, a review

of the definitions of shear stress, drag, and friction coefficient in different settings

is presented. Then a short summary of the previous methods (experimental and

numerical) used in investigating riblet surfaces and the results of the previous studies

are discussed in subsequent sections.
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1.1 Geometry and Coordinate Systems

Riblets or stream-wise surface textures are micro- or milli-scale grooves aligned in

the direction of the flow. The grooves are periodically aligned parallel to each other

and each groove is typically symmetric. Grooves can be manufactured with various

cross sectional shapes such as V-grooves, U-grooves, rectangular grooves, sinusoidal

wrinkles, or trapezoidal grooves. A few examples of the geometry of the riblets are

shown in Figure 1-8(a).

(a)

(b)

Figure 1-8: (a) Examples of symmetric riblet geometries, from left to right; V-
grooves, U-grooves, and razor blade grooves. Here 𝜆 is the wavelength or spacing of
the riblets and 𝐴 is the amplitude or height of the riblets. (b) Schematic of the flow
over riblet surfaces and the coordinate system used with it. Here, 𝑥 is the stream-wise
direction, 𝑦 the normal direction, and 𝑧 the span-wise direction [35].

In the most general form, the geometry of a symmetric riblet can be defined using

the wavelength (𝜆) or spacing (sometimes denoted by 𝑠) and amplitude (𝐴) or height

(sometimes shown by ℎ) of each of the riblets. (Various notations can be found in

the riblets literature. In this thesis, I will uniformly use 𝜆 and 𝐴 for consistency.) As

geometries take more complicated forms, other parameters such as the thickness of

the blades in the razor blade grooves (also known as rectangular grooves - see Figure

1-9) or the radius of curvature of the peak or trough of the riblets in V-grooves have
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been introduced and considered in different investigations [36, 37, 38, 39, 40, 1].

Figure 1-9: Schematic of razor-blade riblets on the left and trapezoidal riblets on
the right [40].

To be able to compare the different riblet types, the dimensionless ratio of the

height to spacing of the riblets has been frequently used among researchers. This

ratio defined as 𝐴/𝜆 can be used as a measure of the sharpness of the riblets and one

can talk about a flat surface as riblets with 𝐴/𝜆 = 0. In case of V-grooves, 2𝐴/𝜆 is

the tangent of the two angles at the sides of the triangles. Due to the symmetry of

the riblets, I use the ratio of the amplitude to half of the wavelength and thus here,

Equation 1.4

AR =
2𝐴

𝜆
= tan 𝜃 (1.4)

is called the riblet aspect ratio (AR) throughout the thesis. The aspect ratio will be

used extensively in the following chapters.

Figure 1-10: Schematic of a V-groove, with wavelength 𝜆, amplitude 𝐴 and the side
angle 𝜃.

The coordinate system used in flows over riblets, is always best described by the
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stream-wise direction 𝑥 which is parallel to the ribs, thus cross sectional plane of

the ribs (Figure 1-8(a)) sits perpendicular to the stream-wise direction. In the cross

sectional plane, the 𝑦 direction (wall normal direction) as shown in Figure 1-8(b) is

in the direction of the height of the ribs and the 𝑧 direction (span-wise direction)

is in the direction of the wavelength (spacing) of the riblets. This choice of (𝑥, 𝑦, 𝑧)

direction is arbitrary and to avoid confusion, throughout this chapter, the directions

are associated with the terms; “stream-wise”, “normal” and “span-wise”. The same

idea can be used in cases where a cylindrical coordinate system is used. In each of

the following chapters of this thesis the coordinate system is defined at the beginning

of each chapter.

1.2 Shear Stress, Skin Friction, Drag and Friction

Factor

In order to investigate the effect of riblets on the frictional drag force on a surface,

first I need to define the the frictional drag exerted by the fluid on the solid wall and

vice-versa. The stress tensor in an incompressible Newtonian fluid can be calculated

using the expression

𝜏 = 𝜇
(︀
∇u + (∇u)𝑇

)︀
(1.5)

where 𝜏 is the stress tensor, 𝜇 is the dynamic viscosity of the fluid, 𝑢 is the velocity

vector, and ∇u and ∇u𝑇 are the velocity gradient tensor and its transpose respec-

tively. Therefore, to calculate the traction vector arising from he action of viscous

stress on a wall, I have

𝜏wall = 𝜏 .nwall (1.6)

where 𝜏wall is the traction vector (force/unit area) at the wall and nwall is the vector

normal to the surface of the wall. Now, the total force exerted by the fluid on the

wall can be calculated by integrating the traction vector over the entire wetted surface
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area of the wall

𝐹 =

∫︁
Awall

𝜏wall 𝑑𝑆wall =

∫︁
Awall

𝜏 .nwall 𝑑𝑆wall. (1.7)

where 𝐹 is the total force vector exerted by the fluid on the wall and 𝑆wall is the

wetted area of the solid surface. The component of the force vector that is in the

stream-wise direction is considered to be the frictional drag force on the surface and

will be denoted by 𝐷 = 𝐹 .𝑒𝑥.

With the non-uniformity of the surface of the riblets, it is important to take extra

care to use the appropriate wetted area and obtain the correct wall shear stress and

frictional drag force. Depending on whether an internal or external flow is used, the

total drag force can be used to calculate a global dimensionless measure such as a

friction factor and/or skin friction coefficient.

The study of friction reduction using riblets has been carried out for both internal

and external flows, especially boundary layers (external) and channel/pipe flows (in-

ternal). Thus, depending on the flow type used, the comparison with smooth surface

takes different approaches.

In external flows such as a boundary layer, the no slip boundary condition at the

plate results in the formation of a velocity profile which grows along the length of the

plate. The shape of the boundary layer profiles over flat plates are self-similar and in

laminar flows the thickness of the boundary layer increases proportional to the square

root of the distance down the plate in the stream-wise direction. Boundary layers will

be discussed in more detail in Chapters 2 and 3. Figure 1-11(a) shows a schematic of

the boundary layer growth on a flat wall and Figure 1-11(b) shows a corresponding

schematic of the boundary layer growth in the entrance region of a pipe before the

formation of a fully developed flow. The shear stress distribution at the flat wall is

also a function of the local stream-wise location (denoted 𝑥 here) along the plate at

which the only non-zero component of the shear stress at the wall in the stream-wise

direction is 𝜏𝑦𝑥(𝑥) where 𝑦 is the direction normal to the surface.

In such flows, the local shear stress can be expressed in a non-dimensionalized
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(a)

(b)

Figure 1-11: Schematic of growth of boundary layer (a) on a plate (Here 𝑈∞ is the
free-stream velocity, and 𝑥 is the stream-wise direction and 𝑦 the normal direction,
and 𝛿 represents the boundary layer thickness [41]) and (b) inside a pipe prior to
reaching a fully developed stage (Here 𝑥 is the stream-wise direction and 𝑟 is the
normal direction, note the cylindrical coordinate system). The velocity profile in the
pipe is denoted 𝑢(𝑟) and the fully developed velocity profile in the laminar case has
a quadratic profile [42].

form using a local skin friction coefficient defined as [41]

𝐶𝑓 (𝑥) =
𝜏𝑦𝑥(𝑥)
1
2
𝜌𝑈2

∞
(1.8)

where 𝐶𝑓 is the local skin friction coefficient, 𝜌 is the density of the fluid, and 𝑈∞

is the free-stream velocity (Figure 1-11(a)). This quantity is local and depends on
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the location along the plate. The non-dimensionalized form of the total drag on a

plate of total length 𝐿 and surface area 𝑆wall can be expressed in the form of the drag

coefficient as

𝐶𝐷 =
𝐷

1
2
𝜌𝑈2

∞ 𝑆wall

(1.9)

where 𝐶𝐷 is the drag coefficient over the entire surface of the plate of total length 𝐿

[41]. Equations 1.8 and 1.9 are general expressions and can be used for different types

of flow. However, in the case of the flat plate boundary layer theory as developed by

Prandtl and Blasius, the local skin friction coefficient and the drag coefficient in a

laminar boundary layer (far from the leading edge) can be calculated to be

𝐶𝑓 (𝑥) =
0.644

Re𝑥
1/2

(1.10)

𝐶𝐷 =
1.328

Re𝐿
1/2

(1.11)

where Re𝑥 is the Reynolds number based on the local position in the stream-wise

direction and Re𝐿 is the Reynolds number based on the overall length of the plate in

the stream-wise direction,

Re𝐿 =
𝜌𝑈𝐿

𝜇
(1.12)

where 𝜌 and 𝜇 are the fluid density and viscosity, 𝑈 is the characteristic flow velocity

and 𝐿 is the characteristic length scale of the problem. The velocity and the length can

be replaced with the corresponding free-stream velocity and length scale depending

on the flow in the problem (hydraulic diameter for internal flows, or stream-wise

distance for external flow) [43].

On the other hand, in internal flows, such as channel flow or pipe flow, the fluid is

bound by two walls in the normal or span-wise direction, or all around in case of the

pipe flow (Figure 1-11(b)) (Most direct numerical simulations bound the flow in the

45



normal direction and use periodic boundary conditions in the span-wise direction).

In either case, at the entrance of the channel, a boundary layer similar to the flat

plate boundary layer is formed and as the boundary layer thickness grows on either

side of the channel in the stream-wise direction, at some point along the channel

the boundary layers meet and from then onwards the flow becomes fully developed.

The length from the entrance up to the start of the fully developed velocity profile is

known as the entrance length (see Figure 1-11(b)). The entrance length can readily

be defined as the required distance along the pipe for the friction factor to decrease

to within 5% of its fully developed value. Using boundary layer analysis and laminar

flow in a smooth pipe, entrance length can be estimated to be [44]

𝐿e ≈ 0.05𝐷HRe𝐷H
. (1.13)

with

𝐷H =
4Area

Perimeter
(1.14)

as the hydraulic diameter of the pipe/channel used. Here, Area and Premeter are

the area and wetted perimeter of the cross section of the pipe respectively. In fully

developed laminar channel flow, the shape of the velocity profile (which is quadratic)

stays the same at every cross section along the length of the channel and thus, the

shear stress is constant in the stream-wise direction beyond the entrance length. The

total drag force in pipe or channel flow can be measured by the pressure drop along

the length of the pipe/channel and is presented in the non-dimensional form of a

friction factor:

𝑓 =
∆𝑃

1

2
𝜌𝑈2

𝐷H

𝐿
(1.15)

where ∆𝑝 is the pressure drop along the pipe and 𝐿 is the length of the pipe and 𝑈 ,

the average velocity int he pipe is defined as
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𝑈 =
1

𝜋𝑅2

∫︁ 𝑅

0

𝑢(𝑟)2𝜋𝑟𝑑𝑟. (1.16)

In laminar channel flow, the friction factor can be calculated analytically to be

𝑓 =
64

Re𝐷H

(1.17)

where Re𝐷H
is the Reynolds number based on the hydraulic diameter of the pipe. For

transitional and turbulent flows, various empirical forms (such as Equation 1.18 by

Prandtl) and tabulated data (such as the Moody chart) are available [41].

𝑓−1/2 = 2 log10 Re𝐷𝑓
1/2 − 0.8 (1.18)

In addition to the shear stress, friction coefficient, and drag coefficient, the effect of

the riblets on the flow can be discussed through comparing additional flow properties

such as velocity profiles, boundary layer thickness, vorticity distribution, and in case

of turbulent flows, the turbulent statistics, and Reynolds stresses. In turbulent flows

close to the wall, independent of the flow type, the friction velocity is defined as in

Equation 1.3 and is used to non-dimensionalize the lengths using the wall units as

shown in Equation 1.19

𝑦+ =
𝑦𝑢*

𝜈
=

𝑦

𝜏 *
. (1.19)

Turbulent velocity profiles are normally plotted in wall units showing the sub-layer,

buffer layer, and the logarithmic layer as indicated in Figure 1-12.

The thickness of the viscous sub-layer is about 5 wall units, the buffer layer is

generally between 5 to 30 wall units and the logarithmic layer is between 30 and

300 wall units. Additional details about turbulent flow can be found in the following

references [46, 43].
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Figure 1-12: Mean velocity profile in a turbulent boundary layer [45].

1.3 Experimental and Numerical Methods

Previous research on the effects of riblets on the frictional drag has been performed

using various experimental and numerical methods. For external flows, experimental

set-ups such as wind tunnels, water channels, and oil channels have been used to

measure the flow properties over riblet walls. For example, Walsh and co-workers

[36, 37, 38, 39], Hooshmand and co-workers [47], Vukoslavcevic and co-workers [48],

Park and Wallace [49], Choi [50], Lazos and Wilkinson [51], Wang and Jovanovic

[52], Caram and Ahmed [12, 13, 14], and Coustols and co-workers [53] used low or

high speed wind tunnel to measure various flow properties; Gallagher and Thomas

[54], Bacher and Smith [55], Reidy and Anderson [56], and Hou and co-workers [57]

used water channels/tunnels and Bechert and co-workers used the Berlin oil channel

which was custom designed for the drag reduction measurements [40, 20, 58]. A

representative diagram of the wind tunnel set up used by Walsh is shown in Figure

1-13.

Experiments were performed both in boundary layer and channel flow settings. In
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Figure 1-13: Test surface set up in NASA Langley 7”×11” low speed wind tunnel used
in riblet drag reduction measurements by Walsh and co-workers. The test section is
91.4 cm long and has a cross section of 17.8 × 27.4 cm2. The wind tunnel can be
operated up to speeds of 46 m/s [36, 37, 38, 39].

boundary layer experiments, drag measurements have been performed with various

direct and indirect methods. Walsh et al. measured the drag force on the test plate

by exerting a force in the opposite direction and measuring that force as the total

drag on the surface (See Figure 1-13) [36, 37, 38, 39]. Choi has used surface hot

wire measurements to measure mean and fluctuating components of skin friction in

turbulent flows over both flat and riblet surfaces [59].

Indirect measurements of the drag are based on measurement of the velocity pro-

file at different locations down the flow. Velocity measurements in these cases were

performed using methods such as hot wire probes, pitot tubes, and variable reluc-

tance differential pressure transducer [37, 50, 47, 60]. One of the indirect methods of

calculating the drag is by post processing the measured velocity profile 𝑢(𝑦, 𝑧) at the

wall. In cases with enough resolution, the velocity profile at specified locations were

measured, such as shown in Figure 1-15. In various cases, by considering riblet sur-

faces as rough surfaces, methods developed for rough walls such as Clauser Methods
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has been used to find the velocity gradient at the wall and thus the frictional drag

[61, 62, 63]. Analysis of the data in this way, requires a virtual origin for the velocity

profile for the normal distance (in the flat plate boundary layer, this origin is on the

wall) and introduces uncertainty in the choice of the virtual origin for the riblet sur-

faces. Hooshmand et al. showed that this uncertainty can result in significant errors

in the final results [47]. Gallagher and Thomas showed that simply choosing the peak

of the riblets as the origin results in finding 2 − 4% increase in the skin friction and

choosing the trough as the origin, shows a drag reduction of the same magnitude [54].

Wallace and Balint have plotted data from various researchers using midway of the

peak and valley as the virtual origin and remarked that they obtain more consistent

results [64].

To avoid such uncertainty, an alternate indirect method for measuring the drag and

skin friction is by using the momentum integral equation and momentum thickness,

and the results of this method are not affected by the choice of the origin [37, 47,

54]. This method uses Equation 1.20 (which is a simplified form of the von-Kármán

integral equation) to calculate the local skin friction coefficient.

𝑑𝜃

𝑑𝑠
=
𝐶𝑓

2
− (𝐻 + 2 − M2)

𝜃

𝑈e

𝑑𝑈e

𝑑𝑠
(1.20)

Here 𝑠 is the stream-wise direction (not necessarily a straight line), 𝐻 is the boundary

layer shape factor which is the ratio of the displacement thickness 𝛿* to the momentum

thickness 𝜃 of the boundary layer (will be discussed in section 1.4.2 as well as in

Chapters 2 and 3), M is the Mach number based on the flow at the edge of the

boundary layer, and 𝑈e is the velocity profile at the edge of the boundary layer

(calculated from potential flow theory for the inviscid flow outside of the boundary

layer). In case of a flat plate with 𝑑𝑈e/𝑑𝑠 = 0, Equation 1.20 reduces to

𝑑𝜃

𝑑𝑠
=
𝐶𝑓

2
(1.21)

(which will be referred to and discussed in Chapter 2). Also, integration of equation

1.20 over the entire length gives
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𝐶𝐷 = 2
𝜃∞
𝐿

(1.22)

for the total drag coefficient, where 𝜃∞ is the momentum thickness measured in the

wake of the plate or airfoil. In case of an airfoil, 𝐿 is replaced by the chord length.

Thus, by measuring the pressure distribution at different locations, the velocity distri-

bution can be measured and then integrated to calculate both displacement thickness

𝛿* and momentum thickness 𝜃 and thus calculate the skin friction and drag coefficients

[65].

In the case of internal flows (pipe or channel flow cases), pressure at different

locations along the channel is measured and the pressure drop along the length is

transformed to the friction factor using appropriate equations and then compared

with smooth pipe/channel results [52, 66]. Channel flow set-up is popular in numerical

investigations, especially in Direct Numerical Simulation (DNS) of flow over riblet

surfaces, with one riblet wall (with various shapes and sizes), one flat wall, and

periodic boundary conditions on the other four sides [27, 67, 25, 26]. DNS with

Boundary Integral Methods (BIM) and Large Eddy Simulations (LES) have been

also used to explore the effect of the rectangular and pointed rectangular riblets in

turbulent flow [68, 69].

In multiple cases, simplified versions of the Navier-Stokes equations have been used

for numerical calculations; Khan used finite difference discretization of the boundary

layer equations with laminar and turbulent flows (to model the turbulence, an alge-

braic uni-directional Reynolds stress model was used) [70]. Bechert and Bartenwerfer

assume that the flow inside the grooves is viscously dominated to simplify the Navier-

Stokes equation to the Laplace equation and used the solution over various geometries

to calculate a “Protrusion Height” as the virtual origin of the flow in presence of the

riblets (This will be discussed further in section 1.5) [71].
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1.4 Flow Behaviour in Presence of the Riblets

Having discussed the methods employed by earlier researchers for studying the effect

of the riblets on the flow behaviour in both boundary layer and channel flow settings,

below a summary of the results and observations are listed. The results are presented

as a comparison with the corresponding flow over the smooth surface as well as a

comparison among the different cases in the literature.

1.4.1 Velocity

The presence of riblets in either boundary layer or channel flow changes the shape

of the velocity profiles, thus at each riblet cross section, the velocity distribution is

a function of both normal and span-wise directions. This effect is more pronounced

inside the groove where the shape of the velocity profile in the normal direction is a

function of the span-wise location within each riblet and moving toward the valley of

the riblet shows a higher retardation in the local flow profile, while the velocity profile

at the peaks are similar to the profiles on a flat plate [72, 26, 25, 27, 73, 68, 12, 74, 75].

The large eddy simulations of Bannier et al. for riblets with 𝐴/𝜆 = 0.5 (AR = 1)

also shows that above 𝑦+ = 10 the mean velocity profiles at different span-wise

locations collapse on the velocity profile above a flat plate. This shows that riblets

only have minor effects on the flow outside of the viscous sub-layer [69]. Examples

of velocity profiles at 3 different locations inside each riblet in laminar and turbulent

channel flow (mean velocity profiles in case of turbulent flow) are shown in Figure 1-14

where 𝑦 is the wall normal direction. In each of the cases, the flow inside the grooves

experiences a substantial retardation in the valley and at the midpoint. Velocity

profiles at 3 different locations of riblets in a boundary layer flow are shown in Figure

1-15.

Turbulent velocity profiles can be non-dimensionalized using wall units and plotted

in semi-log plots as illustrated in figure 1-16. In wall units, it can be seen that the

introduction of the riblets shifts the velocity profiles upward in the 𝑦+ direction (which

is the normal direction in wall units). Various researchers have confirmed this shift
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(a)

(b)

Figure 1-14: DNS results of (a) the velocity profiles in laminar flow with Re = 1000
and (b) the mean velocity profile in turbulent flow with Re = 3500 over V-grooves
(left wall) and flat wall (right wall) channel flow with riblets of 𝐴 = 𝜆 = 0.1𝐻 where
𝐻 is the channel height (AR = 2) [25]. Here 𝑊 is the velocity in the stream-wise
direction and 𝑊avg(𝑦) is the temporal average at each local position.
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Figure 1-15: Experimental and numerical results for the velocity profiles over V-
grooves in a boundary layer flow. The local Reynolds number of this profile is Re𝑥 =
99, 200 and the profiles are normalized by the free-stream velocity (𝑈e) and normal
direction is normalized by the boundary layer similarity variable 𝜂 = 𝑦/𝑥

√
Re𝑥. Solid

lines are from the numerical simulations, the dash-dot line represents the Blasius
boundary layer and the symbols are the experimental results [73].

through experiments and numerical simulations [47, 64, 68, 57].

1.4.2 Boundary layer thickness

One of the main observations of the effect of riblets on the flow is increasing the

thickness of the boundary layer (and displacement thickness). But for the momentum

thickness different trends such as increase, no change, or decrease have been reported

in the literature [47, 25, 56, 54, 76].

The boundary layer thickness can be defined in various ways. One of the simplest

measures of the boundary layer thickness is by defining the distance from the plate

where the velocity reaches 99% of its free-stream value, also known as 𝛿99. Other

variations of this definition can be found by changing the percentage to other values

such as 95% [41, 43]. A more rigorous way of measuring the boundary layer thickness

is by using an integral definition for the thickness. The displacement thickness (𝛿*)

and momentum thickness (𝜃) are two methods of defining boundary layer thickness

which are not dependent on the origin, and are defined in Equations 1.23 and 1.24
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Figure 1-16: Numerical results of the mean stream-wise velocity profiles at the peak
and valley of rectangular grooves in a turbulent channel flow using the Boundary
Integral Method (BIM). The local Reynolds number of this profile is Re𝐻 = 5642
where 𝐻 is the channel height and velocity and normal direction are normalized by
the friction velocity and the wall units respectively. Solid line refers to the flat channel
results. All the riblets here have 𝐴/𝜆 = 0.5 corresponding to an aspect ratio (from
Equation 1.4 of AR = 1 [68].

respectively:

𝛿* =

∫︁ ∞

0

(︂
1 − 𝑢

𝑈∞

)︂
𝑑𝑦 (1.23)

𝜃 =

∫︁ ∞

0

𝑢

𝑈∞

(︂
1 − 𝑢

𝑈∞

)︂
𝑑𝑦 (1.24)

where 𝑢(𝑦) is the velocity profile in the stream-wise direction and 𝑦 is the direction

normal to the surface in the flat plate boundary layer.

In the case of the boundary layer theory and using Blasius solution, the boundary

layer thickness, using each of the above definitions can be written as
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Figure 1-17: Turbulent velocity profile with smooth and riblet walls measured us-
ing microscopic particle tracking velocimetry (𝜇PTV) at Re𝐻 = 480. Riblets have
trapezoidal cross section with amplitude of 0.375 mm and wavelength of 0.75 mm
[57].

Figure 1-18: Schematic of the velocity profile in the flat plate boundary layer, the
displacement thickness 𝛿* and the corresponding inviscid flow outside the plate [42].

𝛿99 =
4.99 𝑥√

Re𝑥
(1.25)
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𝛿* =
1.72 𝑥√

Re𝑥
(1.26)

𝜃 =
0.664 𝑥√

Re𝑥
(1.27)

with 𝑥 the stream-wise direction [41, 43]. The displacement thickness in physical

terms is equivalent to the distance away from the plate where it can be assumed

that the viscous effects are not significant and the flow is governed by the inviscid

flow solution [65, 41, 43]. Also, the displacement thickness can be related to the

distance between the wall and the shear layer in the boundary layer while the mo-

mentum thickness is related to thickness of the shear layer, especially for flows close

to separation or separated flows [65].

Figure 1-19: Schematic of the mathematical and physical definition of the displace-
ment thickness and momentum thickness in flat plate boundary layer [65].

Experiments at Re𝑥 = 2.02 × 106 with riblets of 𝐴/𝜆 = 0.5 (AR = 1) showed an

increase in the thickness of the boundary layer (𝛿99) from 4.5 inches to 5.25 in (about

16.7% increase) and the displacement thickness (𝛿*) was increased by 20.2% [47]. DNS

results for a turbulent channel flow of Re𝐻 = 3500 with 𝐴/𝜆 = 1 (AR = 2) showed a

46.4% increase in the displacement thickness for flow over the riblet surface compared

with the flat surface, and a corresponding 12.6% increase in the momentum thickness
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[25]. Experiments with boundary layer in water at Re𝑥 = 122, 500 show a reduction in

the momentum thickness at various locations in the span-wise direction of each riblet

[56]. Another boundary layer experiment in water channel flow with 𝐴 = 𝜆 (AR = 2)

reported no changes (or a slight increase) in the momentum thickness along the length

of the riblet plate, in this case, the riblets did not show a reduction in the total drag,

but local skin friction reduction of 20% was observed [54]. Savill suggests that the

observed shifts in the logarithmic velocity profile in turbulent flow over riblet surfaces

also means that riblets increase the thickness of viscous sub-layer [76]. Experimental

results of Hou et al. using microscopic particle tracking velocimetry (𝜇PTV) also

show this shift in the profile of the turbulent flow over riblet surfaces (trapezoidal

ribs) compared with a corresponding flat surface as shown in Figure 1-17 [57].

Only a very limited number of papers have reported values for the boundary layer

shape factors. The boundary layer shape factor denoted by 𝐻 is defined as the ratio

𝐻 =
𝛿*

𝜃
(1.28)

and is used as a measure of flow attachment, separation, inflection or reversal [65, 42].

For a laminar boundary layer, using the classical Blasius boundary layer theory, the

shape factor has a value of 2.6. A shape factor of 𝐻 = 4 indicates separation and

𝐻 > 4 indicates that flow reversal occurs [65, 42]. In turbulent boundary layer, the

shape factor reduces to a value of 2.4 [65, 42]. An increase in shape factor is an

indicator of reduction in the local shear stress [65, 77, 78]. All the literature which

mention the shape factor have reported an increase in the value of the shape factor.

For example, in experiments of Hooshmand et al. with Re𝑥 = 2.02 × 106 where 𝑥 is

the stream-wise direction and 𝐴/𝜆 = 0.5 (AR = 1), shape factor was increased from

1.35 in case of flat wall to 1.37 [47]. DNS results of the turbulent channel flow of

Re𝐻 = 3500 with 𝐴/𝜆 = 1(AR = 2) showed an increase from 1.77 for flat wall to 2.3

for the riblet wall [25].
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1.4.3 Turbulent Statistics and Reynolds Stresses

In studies of turbulent flow over riblet surfaces, in addition to the mean velocity

profile, measurements of the root mean square of fluctuating velocities, turbulence

intensity, as well as the Reynolds stresses are used to understand the effect of the

riblets.

In turbulent flows, using the well-known Reynolds decomposition, the instan-

taneous velocity is decomposed into a mean and a fluctuating component so that

U(x, 𝑡) = U(x, 𝑡)+u(x, 𝑡) [46]. Therefore the root mean square of the components of

the fluctuating velocity can be calculated as (𝑢′, 𝑣′, 𝑤′) = (
√
< 𝑢2 >,

√
< 𝑣2 >,

√
< 𝑤2 >)

[46]. Substitution of the decomposed velocity in the non-linear convection term in

the Reynolds Averaged Navier Stokes equations results in an additional term in the

equations known as the Reynolds stress (< 𝑢𝑖𝑢𝑗 > in index notation), which is a sym-

metric second order tensor [46]. The diagonal components of the Reynolds stresses

are also known as root mean square velocity[46] and the turbulent intensity is defined

as

𝐼 =

√︂
1

3
(𝑢′2 + 𝑣′2 + 𝑤′2)

√
𝑈2 + 𝑉 2 +𝑊 2

(1.29)

where (𝑈, 𝑉,𝑊 ) are the components of the mean velocity. Contours of the root mean

square velocities (𝑢′, 𝑣′, 𝑤′) as well as Reynolds shear stresses (< −𝑢𝑣 >,< −𝑢𝑤 >

,< −𝑣𝑤 >), for an example flow over riblets and the equivalent flat plates are shown

in Figure 1-20 from Goldstein et al. [67].

Goldstein et al. and Chu and Karniadakis show only a very small (or close to zero)

reduction in the peak of the fluctuating velocities over the riblet wall compared to the

flat wall [27, 25]. Another DNS study by Choi, Moin, and Kim reports observing a

10% reduction in the maximum root mean square velocity fluctuations in the normal

and span-wise directions and a 5% reduction in the stream-wise component in the case

of a drag reducing riblet surface (𝜆+ = 20 and 𝐴/𝜆 = 0.5, 0.865 (AR = 1, 1.73)). The

drag increasing case (𝜆+ = 40 and 𝐴/𝜆 = 0.5, 0.865 (AR = 1, 1.73)) however, shows
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Figure 1-20: Contours of mean and root mean square (rms) velocities and Reynolds
stresses in turbulent flow over riblets with 𝐴+ = 8.7 and 𝜆+ = 23. Here, 𝑈 is the
mean velocity in the stream-wise direction and 𝑢′, 𝑣′, 𝑤′ are the root mean square
velocity component in stream wise, normal and span-wise direction. The quantities
< −𝑢𝑣 >,< −𝑢𝑤 >,< −𝑣𝑤 > are negative of shear components of the Reynolds
stress tensor (The negative sign only allows for presenting the color bars in positive
values). The flat plate contours for all the cases, except < −𝑢𝑤 > and < −𝑣𝑤 >, are
shown on the right hand side of each figure. Note that < −𝑢𝑤 >=< −𝑣𝑤 >= 0 in
flat plate. Vector of 𝑢*/5 is shown as scale [67].

a 5% increase in the normal and span-wise directions across the entire span, but the

stream-wise component shows 5% increase at the riblet peak and 15% reduction above

the riblet valley [26]. The numerical study of El-Samni et al. using Boundary Integral

Methods also reports an overall reduction in the stream-wise root mean square velocity

over the riblet surfaces with an outward shift in the location of the maximum for

rectangular grooves of 𝐴/𝜆 = 0.5 (AR = 1). This shift is more pronounced in

the drag reducing cases where the spacing of the riblets (𝜆+) are lower than the

diameter of the coherent stream-wise vortices. Also, in drag reducing cases, they
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report observing a significant decrease in the stream-wise component of the turbulent

intensity inside the grooves [68]. Choi also reports a reduction in the stream-wise

turbulence intensity of about 10% for riblets with 𝐴/𝜆 ≈ 0.64 (AR = 1.28) with

pointed rectangular riblets [50] and Park and Wallace show that for V-grooves of

𝐴/𝜆 = 0.5 (AR = 1) and Re𝜃 = 1.2 × 103 (where Re𝜃 is the Reynolds number based

on the momentum thickness), all components of turbulence intensities diminish in the

valleys of the riblets and increase when above the peak of the riblets [74].

The experimental studies of Hooshmand et al. also report a significant decrease

of about 10 − 15% in the stream-wise turbulent intensity over the riblet surface as

compared to the flat surface at a normal distance of less than 0.08 of the boundary

layer thickness from the surface, for V-grooves with 𝐴/𝜆 = 0.502 (AR ≈ 1) [47].

Walsh also reports a similar trend of reduction in the stream-wise and normal tur-

bulence intensities compared to flat wall for V-grooves with 𝐴/𝜆 = 0.5 (AR = 1) at

normal distances less than 0.5 of the boundary layer thickness [37]. The experimental

studies of Caram and Ahmed using a NACA 0012 arifoil with V-groove riblets of

𝐴/𝜆 = 1 (AR = 2) also shows a reduction in the stream-wise turbulence intensity in

the wake of the airfoil [12, 14, 13].

In the work of El-Samni et al. the spatial average contours of Reynolds shear

stress over rectangular riblets show that in the drag decreasing riblet case (𝜆+ =

17.7, 𝐴/𝜆 = 0.5), the riblets move the regions of large Reynolds stress away from the

wall, while in the drag increasing case (𝜆+ = 40.6, 𝐴/𝜆 = 0.5), local spots of high

Reynolds stress start to penetrate inside the grooves concentrating around the riblet

tips (see Figure 1-21). This indicates that drag reducing riblets are able to move the

near wall activities and their corresponding turbulent structures away from the wall

[68].

1.4.4 Vorticity and Vortical Structures

Various experimental and numerical works have looked into the near wall stream-wise

vortices above drag reducing and drag increasing riblet structures. In drag reducing

cases with turbulent flow, it has been observed that the size of the stream-wise vortices
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Figure 1-21: Streaky structures: (a) smooth surface at 𝑦+ ∼ 12; (b) ribbed surface of
drag reduction case at 𝑦+ ∼ 21; (c) ribbed surface of drag increase case at 𝑦+ ∼ 12.5;
(d) ribbed surface of drag increase case at 𝑦+ ∼ 29 [68].

are larger than the spacing of the riblets and thus the vortices are restricted and stay

above the riblets. This has been observed in DNS data of Choi, Kim, and Moin

for V-grooves with 𝜆+ = 20 and 𝐴/𝜆 = 0.5 (AR = 1), calculations of El-Samni for

rectangular grooves with 𝜆+ = 17.7 and 𝐴/𝜆 = 0.5 (AR = 1) and experimental data

obtained by Lee and Lee for semi-circular grooves (U-grooves) with 𝜆+ = 20 and

𝐴/𝜆 = 0.5 (AR = 1) as shown in Figure 1-22 [26, 68, 28]. Contour plots of the

distribution of the stream-wise vorticity in the cross section of a channel flow with
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one riblet wall are shown in Figure 1-23.

On the other hand in the case of drag increasing riblets, the size of the vortices

are smaller than the riblet spacing and thus the vortices are able to penetrate inside

the riblets. Examples of such cases can be seen in the data of Choi, Kim, and Moin

(V-grooves with 𝜆+ = 40 and 𝐴/𝜆 = 0.5), El-Samni et al. (rectangular riblets with

𝜆+ = 40.6 and 𝐴/𝜆 = 0.5), and Lee and Lee (semi-circular grooves with 𝜆+ = 40.6

and 𝐴/𝜆 = 0.5) [26, 68, 28].

In addition, the diameter of the stream-wise vortices were calculated by Kim et

al. to be about 25 ℓ* in wall units [29], while the measurements of Kim, Kline and

Reynolds, as well as those of Simpson, show that the diameter of the vortices are

between 10-44 wall units and the transverse spacing between the low speed streaks is

about 100 ℓ* in wall units [30, 31]. Measurements of Bacher and Smith, and Gallagher

and Thomas using variable interval time averaging technique (VITA) with hydrogen

bubbles and dye injection for visualization show that the presence of the V-groove

riblets can increase the streak spacing by about 45% and 15-30% respectively [55, 54].

1.4.5 Local Shear Stress Distribution

As a result of the non-uniform velocity profiles at different locations within one riblet,

the shear stress distribution at the wall within each riblet is no longer uniform. DNS

of laminar and turbulent channel flow by Chu and Karniadakis with V-grooves of

𝐴/𝜆 = 1 (AR = 2) at Re𝐻 = 1000 and Re𝐻 = 3500 show a shear stress distribution

within one riblet, with higher shear stress at the peaks and lower shear stress in the

valleys when compared to the equivalent flat channel (Figure 1-24) [25] .

Hooshmand et al. reported that local shear stress at the peaks of the riblets was

approximately 10% higher than the equivalent flat plate while the local shear stress

in the troughs was 40% less than the flat plate in turbulent boundary layer flow with

Re𝑥 = 2.02 × 106 and V-grooves of 𝐴/𝜆 = 0.5 (AR = 1) [47]. Khan’s numerical

models of V-grooves with 𝐴/𝜆 = 0.5 (AR = 1) for 𝐴+ = 8.33, 14.4 and 20.67 also

show a shear stress distribution similar to Figure 1-24 with the local shear stress at

the peak of the ribs higher than the shear stress on a flat wall and lower shear stresses
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Figure 1-22: Visualization of stream-wise vortices in the normal plane in turbulent
flow with, and without, riblets. Riblet spacing in the wall units, in the drag reducing
case is 𝜆+ = 25.2 (𝑈0 = 3m/s) and in the drag increasing case is 𝜆+ = 40.6 (𝑈0 =
5 m/s) and in both cases 𝐴/𝜆 = 0.5 (AR = 1). [28]

in the valley of the riblets compared to the flat wall [70]. Vukoslavcevic et al. also

report the wall shear stress at the peak of V-grooves with 𝐴/𝜆 = 0.5 (AR = 1) to be

about 85% larger than flat plate and a vanishing velocity gradient (almost zero) in

the valley of the riblets [48].
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(a)

(b)

Figure 1-23: Contours of stream-wise vorticity in the normal plane from DNS of
turbulent flow in a channel with one riblet and one flat wall for Re𝐻 = 1000 (a) for
𝜆+ = 18, 𝐴+ = 5.3 and (b) for 𝜆+ = 11.7, 𝐴+ = 9.4 [27].

1.4.6 Friction Factor for Fully Developed Pipe Flows

In pipe/channel flow experiments the drag reduction is measured through the changes

in the pressure gradient along the pipe/channel and using equation 1.15 can be trans-

lated to a dimensionless friction factor. The measurements of Liu et al. reported a
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(a) Re = 1000 (b) Re = 3500

Figure 1-24: Shear stress distribution within one riblet from the laminar and turbulent
channel flow DNS by Chu and Karniadakis. Here for 𝐴 = 𝜆 = 0.1𝐻 where 𝐻 is the
channel height (AR = 2). In the laminar case 𝐶𝑓,flat = 0.01284 [25].

5 − 7% reduction in the friction factor of fully developed turbulent pipe flow over

riblets with 𝐴/𝜆 = 0.87 (AR = 1.74) and water using 1 and 2 in diameter pipes.

Results for the 1 in diameter pipes are shown in Figure 1-25(a) and the maximum

reduction was seen with riblets of 𝜆+ ≈ 11 − 13 [66]. Nakao’s experiments showed

a 5 − 7% reduction in the friction factor in pipe flow using V-groove riblets of var-

ious aspect ratios and noticed that riblets with 𝐴/𝜆 ≈ 0.4 − 0.5 (AR ≈ 0.8 − 1)

showed drag reduction over a wide range of Reynolds numbers compared to others.

In addition, maximum reduction observed was for riblets with spacings in the range

of 𝜆+ ≈ 15 − 25 in wall units [79].

Experiments of Rohr et al. showed no reduction in the friction factor for laminar

flow with riblets of 𝐴 = 𝜆 (AR = 2), but after transition to turbulence, first a

drag reduction and then drag increase was observed as the Reynolds number was

increased. Additionally, they observed a substantial delay in transition to turbulence

when riblets are used as shown in Figure 1-25(b) [60]. Numerical calculations of

Launder and Li also showed no reduction using riblets of 𝐴/𝜆 = 1 (AR = 2) and

𝐴/𝜆 = 3 (AR = 6) in laminar flow [72]. The measurements of Wang and Javanovic
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(a)

(b)

Figure 1-25: (a) The friction factor coefficient in a pipe of diameter 𝐷 = 25.4 mm
with and without V-groove riblets of AR = 1.67 with respect to Re𝐷; Open circles
correspond to the smooth pipe data and open squares present the riblet results [66];
(b) Friction factor in pipes with and without V-groove riblets with respect to variation
of Re𝐷 for various types of riblets [60].
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using thin-fin riblet elements (close to rectangular riblet shapes) with 𝐴/𝜆 = 1 (AR =

2) or 𝐴/𝜆 = 0.5 (AR = 1) showed a reduction in the friction factor over a wide range

of Reynolds numbers [52].

1.4.7 Total Skin Friction Drag

The ultimate goal of using riblets is to reduce the total frictional drag force on the

surfaces. As I noted earlier, the presence of riblets results in a redistribution of the

wall shear stress and thus as reported by various researchers, the local skin friction

inside the valleys is lower than the corresponding flat surface value while at the peak

it is higher. However, when integrated over the entire area, it is possible to not get any

reduction in the total drag as the riblets increase the wetted area of the surface. For

example, Gallagher and Thomas reported a 20% reduction in the local skin friction

coefficient at the end of the test plate used, but they did not observe any reduction in

the total drag measured as compared with the flat plate [54]. As seen in the previous

section, for different cases of pipe flow, both reduction and increase in the total drag

(reported as a dimensionless friction coefficient) were observed. Also, DNS results

of a laminar (Re𝐻 = 1000) and turbulent channel flow (Re𝐻 = 3500) with riblets of

𝜆 = 𝐴 (AR = 2) showed no drag reduction in the laminar case and a 6% reduction

in the turbulent case [25].

The results found in the riblets literature clearly show that the drag reduction (in

the turbulent flow) is a function of the spacing of the riblets in the wall units, the ratio

of the height to spacing (or equivalently the aspect ratio, AR) of the riblets (even

though there is not much discussion offered regarding this parameter in the previous

papers), as well as the shape of the riblets. Walsh et al. show that the highest drag

reduction achieved is for riblets with spacing of about 15 wall units (Figure 1-26)

[37, 38, 39, 1]. Experimental results of Bechert et al. show a clear connection between

the reduction achieved and the aspect ratio of the riblets (see Figures 1-26 and 1-27)

[40, 20]. In addition the DNS results of Goldstein et al. show drag reduction of 2.2%

in case of V-grooves with 𝜆+ = 18 and 𝐴/𝜆 = 0.29 (AR = 0.58) and a reduction of

3.3% in case of V-grooves with 𝜆+ = 11.7 and 𝐴/𝜆 = 0.8 (AR = 1.6) [27]. Lazos and
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Wilkinson present the results of experiments with assembled rectangular riblets and

trapezoidal riblet films (Figure 1-28) and as seen from the plot and the accompanying

table, riblets with lower aspect ratios, show reductions in the total drag over a wider

range of 𝜆+; especially comparing models 6,8 and 10, as 𝐴/𝜆 (or AR) decreases,

riblets are able to give reduction in the drag over a wider range of 𝜆+ or as translated

to Reynolds number by re-plotting the same data in Figure 1-29.

Additionally, Bechert and co-workers show that rectangular riblets can perform

better than trapezoidal or V-groove riblets [20]. Walsh and Lindermann report that

peak curvature does not affect the results, but valley curvature could improve the

reduction, but is harder in terms of manufacturing [39]. Additionally, rounding the

tips of a blunt riblet peak can enhance the drag reduction, while rounding the tips

of sharp riblets has been seen to decrease the maximum level of total drag reduction

achieved [6].

1.5 Drag Reduction Mechanism

So far, various mechanisms for the drag reducing capabilities of riblet surfaces have

been suggested. As briefly discussed earlier, it is thought that in turbulent flows,

riblets smaller than the diameter of the vortices serve to lift the turbulent vortical

structures away from the wall and prevent them from penetrating inside the grooves.

As I have noted, experiments and simulations show that the diameter of the vortical

structures in turbulent flow is typically around 10-30 wall units [29, 30, 80, 31].

The data presented earlier confirm that spacing of drag reducing riblets are within

the range of 10-30 wall units, with the maximum drag reduction observed in the

range of 𝜆+ ≈ 10 − 20 [28, 27, 6, 26, 34, 55]. A schematic of the interaction of

the turbulent vortices with the riblets of different sizes is shown in Figure 1-30(a).

Displacement of the vortices affects the turbulent statistics as well, which in part

results in lower Reynolds shear stresses in turbulent flow and thus an overall drag

reduction [28, 27, 26].

Additionally, the aspect ratio (2𝐴/𝜆) of the riblets affects the ability of the riblets

69



(a)

(b)

Figure 1-26: Drag reduction curves of various V-grooves from wind tunnel and oil
channel experiments performed by Walsh and co-workers, and Bechert and co-workers
[40, 37, 38, 39, 1].

to reduce viscous the drag. As indicated in Figure 1-30(a), increasing the aspect ratio

of the riblets, results in an increase in the wetted area and could result in an increase

in the total drag as seen in Section 1.4.7 [81].

Another mechanism that has been suggested is that riblets cause a retardation

of the local flow close to the wall and this retardation (in some literature also called

re-laminarization) reduces the velocity gradient at the wall which, as seen earlier,

creates a span-wise distribution of the wall shear stress with valleys experiencing a
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Figure 1-27: Drag reduction curve for rectangular riblets with the same spacing and
varying heights (varying aspect ratios). Riblets with aspect ratios of less than 1
(𝐴/𝜆 < 0.5) show drag reduction over a wider range of 𝜆+ [40].

Figure 1-28: Drag reduction plot for rectangular riblets and trapezoidal riblets with
various aspect ratios. Numbers on the plot correspond to the numbers in the list of
the riblet wall shapes in the accompanying table [51].

(a)

Figure 1-29: Total drag reduction for riblets with various aspect ratios against
Reynolds number taken from Figure 1-28 for models 6,8 and 10 [51].
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(a)

(b)

Figure 1-30: (a) Schematic diagrams showing the interaction of vortices with wall
in flat and riblet case [81]. (b) Schematic definition of the protrusion height in both
stream-wise and span-wise directions [71].
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shear stress lower than the corresponding flat surface and thus results in a reduction

in the overall drag force [74, 1, 15, 75, 63, 55]. This mechanism holds for both laminar

and turbulent flows. Since the data available for laminar drag reduction using riblets

is very limited, one cannot conclude definitely that riblets would not be effective in

laminar flow.

Bechert and Bartenwerfer use the idea of a retarded flow and with assumption

of viscous dominated flow, calculate the “Protrusion Height” for the stream-wise and

cross flow [40]. As per their definition, the protrusion height is equivalent to the

virtual origin of the flow in both stream-wise and cross flow configurations (as shown

in Figure 1-30(b). They argue that drag reduction is dependent on the difference

of these two values as a measure of how much the turbulent cross flow close to the

wall (especially the span-wise component of the velocity) has been retarded by the

riblet structures [40]. Choi, and Suzuki and Kasagi also suggest that suppression of

the span-wise velocity component plays an important role in drag reduction using

riblets [50, 75]. But it should be noted that these calculations were performed with

the assumption of a fully viscous flow inside the riblets, and from their experiments,

Vuskoslaveciv et al. mention that they did not observe the assumed linear variation

in the velocity profile (Re𝜃 = 1000 and 𝐴/𝜆 = 0.5 (AR = 1)) [48].

1.6 Conclusion

In this chapter, an overview of the previous research in the use of riblets to achieve

drag reduction is presented. In summary, stream-wise grooves aligned in the flow

direction, also known as riblets, have been shown to be able to reduce the skin friction

drag by an average of 5−7% compared to the corresponding flat surface. Studies have

shown that inside the grooves the flow is retarded in both laminar and turbulent flow

and it has been seen that the thickness of the boundary layer increases when riblet

structures are introduced on the wall. In wall-bounded turbulent flow, riblets with

a lateral spacing size less than the diameter of the natural vortical structures of the

flow limit the interaction of the turbulent vortices with the walls, and thus reduce the
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Reynolds stresses in turbulent flow. Experimental and numerical results have shown

that riblets with spacing 𝜆+ = 10 − 20 wall units give the maximum drag reduction.

In terms of viscous shear stress, the grooves result in a shear stress distribution

with the local shear stress in the valleys lower than the corresponding flat surface and

higher at the peak of the riblets. However, because riblets increase the total wetted

area, the integration of this lateral shear stress distribution might or might not offer

a net drag reduction. Studies have shown that riblets with aspect ratios of unity and

lower result in drag reduction over a wider range of flow conditions.

The main two mechanisms suggested for this form of drag reduction are restriction

of the turbulent vortices from penetrating into the riblets and retardation of the local

viscous flow inside the grooves. Most of the studies so far have been in turbulent flow

regions and limited work has been done under laminar flow conditions. Additional

studies focusing on laminar flow could help in understanding the mechanism of this

form of drag reduction even more, because it does not require the use of large scale

numerical simulation algorithms such as DNS (Direct Numerical Simulations), LES

(Large Eddy Simulations), or RANS (Reynolds Averaged Numerical Simulations) as

well as allowing me a chance to analyse the equations of motion in great details.

To complement the efforts in the research on drag reduction method using riblet

surfaces, in this thesis I will consider the effect of riblets in laminar flows, especially

looking at the effect of riblets in flat plate boundary layers as well as in Taylor Couette

flows. In Chapter 2, a theoretical model of the boundary layer over V-groove riblets

is presented and used to discuss the resulting changes in the total frictional drag

force on riblet walls. Then in Chapter 3, using numerical modelling the effect of

sinusoidal riblets on the evolving boundary layer flow especially near the leading edge

of the plate is presented and later compared with the results presented in Chapter

2. Then in chapters 4 and 5, I will consider the case of using riblet covered rotors in

axi-symmetric Taylor-Couette flows and investigate the effect of riblets on the total

torque exerted on the inner rotor, using experimental and numerical calculations.
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Chapter 2

Extended Three Dimensional

Boundary Layer Theory for Periodic

Riblet Surfaces

2.1 Introduction

As it was introduced in Chapter 1, inspired by the shape of the ribs on the shark den-

ticles, various approaches to drag reduction using riblet surfaces have been introduced

and previously investigated with different riblet shapes such as V-grooves, U-grooves,

and rectangular razor blades in turbulent flows [82, 71, 25, 9, 8, 38, 39, 6], laminar

flows [72, 73, 83], high Mach number flows [84, 85, 86], and pipe flows [60, 79, 66].

Among the various forms of the external flows, boundary layer flows, especially bound-

ary layers over a flat plate are of great importance due to their application in flight

vehicles and marine equipment. Various researchers such as Djenidi and co-workers

[73], Hooshmad and co-workers [47], Lee and Lee [28] have discussed some aspects of

the turbulent and laminar boundary layer flows over V-grooves and U-grooves riblet

surfaces and parts of their work were discussed in Chapter 1.

In boundary layer flows, the fluid with a free-stream velocity 𝑊∞, flows past a

solid wall (flat or curved) and due to the no-slip boundary condition at the fluid-solid
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interface, the fluid is slowed down close to the wall. However, as I move further and

further away (in the normal direction) from the wall, the velocity of the fluid goes back

to the free-stream value [41, 43]. Prandtl was the first person to discuss the boundary

layers in detail and established the classical boundary layer theory. He simplified the

equations of motion to a set of two equations defining the boundary layer flow over

the flat plates (shown later in Equations 2.4 and 2.5). He assumed that only within

a small region with thickness 𝛿 ≪ 𝐿 (where 𝐿 is the length of the plate) close to the

wall (which is much smaller than the length of the plate, 𝐿) the viscous effects are as

important as the inertial effects and outside this layer, the flow can be analysed as

inviscid. This small region close to the wall is called a boundary layer. Using scaling

arguments one can show that in this region both viscous effects and inertial effects

are of the same order and hence, even the simplified form of the equations of motion,

also known as the classical boundary layer equations are non-linear [41, 43].

Prandtl’s graduate student, Blasius was the first person to solve the boundary

layer equations using a similarity solution and presented the shape of the boundary

layer profile (Figure 2-2) as a function of the similarity variable 𝜂 defined as [41, 43]

𝜂 =
𝑦

𝑧

√︀
Re𝑧 (2.1)

where 𝑦 is the wall normal direction and 𝑧 is the stream-wise direction, and Re𝑧 is

the Reynolds number as a function of the stream-wise location defined as 𝜌𝑊∞𝑧/𝜇.

(𝜌 and 𝜇 are the fluid density and viscosity respectively.)

The Blasius solution to the boundary layer equations (discussed in more details

in section 2.2) is shown in Figure 2-2 where the non-dimensional stream-wise velocity

𝑤/𝑊∞ is plotted as a function of the similarity variable 𝜂.

While the classical boundary layer theory over flat plate is a two dimensional

flow, introducing riblets on the surface of the plates, changes the velocity profile from

only being a function of the stream-wise and wall normal direction to a function of

all three directions in the Cartesian coordinate system. This results in changes in

the velocity profile, the boundary layer thickness, shear stress distribution on the
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(a) (b)

Figure 2-1: (a) Young Ludwig Prandtl (1875-1953) [87] [87] (b) Paul Richard Hein-
rich Blasius Prandtl’s doctoral student (1883-1970) [88].

wall, and ultimately the total drag force exerted by the fluid on the wetted area of

the surface. While these changes have been previously studied in the context of the

turbulent flows [47, 1, 73], fewer works have looked at the boundary layer flows over

riblet surfaces in the laminar region prior to transition to turbulence. In a boundary

layer, close to the leading edge of the plate, the flow initially starts as laminar and

evolves along the plate until it naturally transitions to turbulent at a local Reynolds

number of Re𝑧 ≈ 5 × 105 [41, 43]. Therefore, while it is important to understand the

mechanism of drag reduction in the turbulent regime, I also need to understand how

riblets behave in the laminar regime and thus be able to tune the shape and size of

the riblets for the optimum performance throughout the length of the plate.

High Reynolds number laminar boundary layer is a canonical flow problem and

understanding the effect of the change of geometry of the riblet surfaces can be

used to understand the geometric and dynamic parameters that define this mode

of passive drag reduction (before introducing complicating factors such as turbulence

and mixing).

To be able to understand the changes due to riblet surfaces in laminar boundary
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layer flows in more detail, in this chapter, I will expand the boundary layer theory

from two dimensional as put together by Prandtl to three dimensional flow over

periodic riblet surfaces with riblets of wavelength 𝜆 and amplitude 𝐴 (the same was

as defined in Section 1.1). First by scaling and non-dimensionalizing the equations of

motion, I will derive the three dimensional boundary layer equations as discussed in

Section 2.2. Then using an appropriate change of coordinate system and employing

conformal mapping, I solve the three dimensional boundary layer equations for the

simple case of V-groove riblets in Section 2.3. Afterwards in Section 2.4 I discuss

the results of the solution by looking at a new mode of self-similarity for flow over

riblet surfaces, then calculate the boundary layer thickness, and ultimately use the

momentum integral equations to calculate the total drag force over riblet plates of

various lengths. Ultimately I discuss the effect of the geometry and dynamics of the

flow on the possibility of achieving drag reduction employing riblet surfaces. Lastly,

I will compare the results with some of the previous experiments presented in the

literature. Finally, I will discuss the limitation of this theory and seek ways to resolve

this issue in the future chapters.

2.2 Extension of the Boundary Layer Theory to Three

Dimensions

In 1904 Prandtl introduced the concept of the viscous boundary layer, recognizing

that in high Reynolds number flows, close to a rigid wall, there is a thin region

where the viscous effects are as important as inertial effects of the flow and cannot

be neglected; outside this thin layer viscous effects are negligible and flow can be

considered to be inviscid and analysed using potential flow.

Assume an incompressible fluid of density 𝜌 and viscosity 𝜇 is flowing past a plate

of length 𝐿 with free-stream velocity 𝑊∞ in the stream-wise direction 𝑧. The wall

normal direction and the vorticity direction into the plane are 𝑦 and 𝑥 respectively.

Close to the wall a thin boundary layer is formed where the thickness of this boundary
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layer (denoted by 𝛿) is scaled as

𝛿

𝐿
∼ Re

−1/2
𝐿 , (2.2)

where the Reynolds number is defined as

Re𝐿 =
𝜌𝑊∞𝐿

𝜇
. (2.3)

The pressure gradient in all directions is zero , i.e. ∇𝑝 = 0 (neglecting gravitational

effects). The velocity vector inside the boundary layer is written as (𝑢, 𝑣, 𝑤) where

the span-wise velocity is equal to zero (𝑢 = 0) and the stream-wise and wall normal

components, 𝑤, and 𝑣, are found using

𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (2.4)

𝜌

(︂
𝑣
𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= 𝜇

𝜕2𝑤

𝜕𝑦2
(2.5)

known as flat plate boundary layer equations consisting of the continuity equation and

the Navier-Stokes equation in the 𝑧 direction with all first order terms (𝑂(1)). The

Navier-Stokes equation in the 𝑥 direction is identically zero and the Navier-Stokes

equation in the 𝑦 direction has an order of magnitude of 𝑂(Re−1
𝐿 ) compared to the

equation of motion in the 𝑧 direction and is neglected [41].

To extend the classical boundary layer theory over a flat smooth plate to the

case of boundary layer theory over flat (as opposed to curved surfaces) periodic riblet

surfaces, the case of V-groove textures (triangular riblets) are considered here. Any

riblet surface comprises of two main length scales, defining the overall shape of the

grooves; one is the wavelength (or spacing) of the riblets, denoted by 𝜆 and the

other is the amplitude (or height) of the riblets, denoted by 𝐴. These two variables

correspond to the variables 𝑠 and ℎ in most of the previous literature on riblet surfaces

respectively [71, 38, 39, 6, 82]. For periodic V-groove textures of interest, wavelength

(𝜆) and amplitude (𝐴) are shown in Figure 2-3(b). Note the same general definition
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can be extended to other riblet shapes as well.

To extend the boundary layer theory to the case of flat plates with three dimen-

sional periodic riblet surfaces, it is assumed that there are no pressure gradients in

the problem and therefore

𝑝 ≈ constant =⇒ ∇𝑝 = 0. (2.6)

For analysing the high Reynolds number laminar boundary layer flow over periodic

riblet surfaces (after the leading edge effects have subsided), I neglect the pressure

gradient term in the equations of motion. Additionally, length of the plate along the

flow direction is much larger than the spacing of the riblets (𝐿 ≫ 𝜆). Similar to the

boundary layer theory thickness of the boundary layer is defined as 𝛿 and its growth

is proportional to

𝛿 ∼
√︂
𝜇

𝜌
(2.7)

and it is much smaller than the length of the plate (𝛿 ≪ 𝐿).

From experimental measurements near textured surfaces by Hooshmand and co-

workers [47], I expect that the thickness of the boundary layer is of the same order

as the spacing of the riblets. Hence

𝛿

𝜆
∼ 1. (2.8)

So, to non-dimensionalize the Navier-Stokes equations for the stream-wise and the

normal direction,

𝑧* =
𝑧

𝐿
& 𝑦* =

𝑦

𝛿
(2.9)

are used respectively; while for the 𝑥 direction it it appropriate to introduce

𝑥* =
𝑥

𝜆
(2.10)

for non-diemsionalizing the equations. Note that this group is added due to the

81



presence of the riblets and it does not exist in the classical boundary layer theory. In

addition, velocities 𝑢, 𝑣 and 𝑤 can be scaled by 𝑈, 𝑉 , and 𝑊∞. Hence

𝑢* =
𝑢

𝑈
& 𝑣* =

𝑣

𝑉
& 𝑤* =

𝑤

𝑊∞
(2.11)

where the relative scales of 𝑈 and 𝑉 can be found using the continuity equation:

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (2.12)

𝑈

𝜆
∼ 𝑉

𝛿
∼ 𝑊∞

𝐿
(2.13)

Therefore, non-dimensional steady state Navier-Stokes equation in the span-wise di-

rection 𝑥 is written as

(︂
𝜆

𝐿

)︂2(︂
𝑢*
𝜕𝑢*

𝜕𝑥*
+ 𝑣*

𝜕𝑢*

𝜕𝑦*
+ 𝑤*𝜕𝑢

*

𝜕𝑧*

)︂
=

1

Re𝐿

(︃
𝜕2𝑢*

𝜕𝑥*2
+

(︂
𝜆

𝛿

)︂2
𝜕2𝑢*

𝜕𝑦*2
+

(︂
𝜆

𝐿

)︂2
𝜕2𝑢*

𝜕𝑧*2

)︃
.

(2.14)

On the left hand side of Equation 2.14 I have

𝑢*
𝜕𝑢*

𝜕𝑥*
∼ 𝑣*

𝜕𝑢*

𝜕𝑦*
∼ 𝑤*𝜕𝑢

*

𝜕𝑧*
∼ 𝑂(1) (2.15)

(︂
𝜆

𝐿

)︂2

∼
(︂
𝛿

𝐿

)︂2

∼ 1

Re𝐿
∼ 𝑂(Re−1

𝐿 ) (2.16)

and on the right hand side of the Equation 2.14, similarly I can write
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1

Re𝐿

𝜕2𝑢*

𝜕𝑥*2
∼ 1

Re𝐿

(︂
𝜆

𝛿

)︂2
𝜕2𝑢*

𝜕𝑦*2
∼ 𝑂(Re−1

𝐿 ) (2.17)

1

Re𝐿

(︂
𝜆

𝐿

)︂2
𝜕2𝑢*

𝜕𝑧*2
∼ 𝑂(Re−2

𝐿 ). (2.18)

Therefore, it shows that the Navier-Stokes equation in the span-wise (𝑥) direction is

of the order of 𝑂(Re−1
𝐿 ). Now, for the normal direction (𝑦) I have

(︂
𝛿

𝐿

)︂2(︂
𝑢*
𝜕𝑣*

𝜕𝑥*
+ 𝑣*

𝜕𝑣*

𝜕𝑦*
+ 𝑤*𝜕𝑣

*

𝜕𝑧*

)︂
=

1

Re𝐿

(︃(︂
𝛿

𝜆

)︂2
𝜕2𝑣*

𝜕𝑥*2
+
𝜕2𝑣*

𝜕𝑦*2
+

(︂
𝛿

𝐿

)︂2
𝜕2𝑣*

𝜕𝑧*2

)︃
(2.19)

where on the left hand side

𝑢*
𝜕𝑣*

𝜕𝑥*
∼ 𝑣*

𝜕𝑣*

𝜕𝑦*
∼ 𝑤*𝜕𝑣

*

𝜕𝑧*
∼ 𝑂(1) (2.20)

(︂
𝛿

𝐿

)︂2

∼ 1

Re𝐿
∼ 𝑂(Re−1

𝐿 ) (2.21)

and on the right hand side

1

Re𝐿

(︂
𝛿

𝜆

)︂2
𝜕2𝑣*

𝜕𝑥*2
∼ 𝑂(Re−1

𝐿 ) (2.22)

1

Re𝐿

𝜕2𝑣*

𝜕𝑦*2
∼ 𝑂(Re−1

𝐿 ) (2.23)

1

Re𝐿

(︂
𝛿

𝐿

)︂2
𝜕2𝑣*

𝜕𝑧*2
∼ 𝑂(Re−2

𝐿 ). (2.24)
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Thus, again resulting in the Navier-Stokes equation in the normal direction (𝑦) to be

of order of 𝑂(Re−1
𝐿 ). On the other hand, the Navier-Stokes equation in the stream-

wise (𝑧) direction is non-dimensionalized as

(︂
𝑢*
𝜕𝑤*

𝜕𝑥*
+ 𝑣*

𝜕𝑤*

𝜕𝑦*
+ 𝑤*𝜕𝑤

*

𝜕𝑧*

)︂
=

1

Re𝐿

(︃(︂
𝐿

𝜆

)︂2
𝜕2𝑤*

𝜕𝑥*2
+

(︂
𝐿

𝛿

)︂2
𝜕2𝑤*

𝜕𝑦*2
+
𝜕2𝑤*

𝜕𝑧*2

)︃
(2.25)

which on the left hand side

𝑢*
𝜕𝑤*

𝜕𝑥*
∼ 𝑣*

𝜕𝑤*

𝜕𝑦*
∼ 𝑤*𝜕𝑤

*

𝜕𝑧*
∼ 𝑂(1) (2.26)

and the right hand side

1

Re𝐿

(︂
𝐿

𝜆

)︂2
𝜕2𝑤*

𝜕𝑥*2
∼ 𝑂(1) (2.27)

1

Re𝐿

(︂
𝐿

𝛿

)︂2
𝜕2𝑤*

𝜕𝑦*2
∼ 𝑂(1) (2.28)

1

Re𝐿

𝜕2𝑤*

𝜕𝑧*2
∼ 𝑂(Re−1

𝐿 ). (2.29)

Thus, resulting in the Navier-Stokes equation in the stream-wise direction (𝑧) to be

of order 𝑂(1). Neglecting all the terms that are of orders 𝑂(Re−1
𝐿 ) or lower, the

boundary layer equations for three dimensional periodic steam-wise riblets surfaces

can be simplified into
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𝜕𝑢*

𝜕𝑥*
+
𝜕𝑣*

𝜕𝑦
+
𝜕𝑤*

𝜕𝑧*
= 0 (2.30)

(2.31)

Re𝐿

(︂
𝜆

𝐿

)︂2(︂
𝑢*
𝜕𝑤*

𝜕𝑥*
+ 𝑣*

𝜕𝑤*

𝜕𝑦*
+ 𝑤*𝜕𝑤

*

𝜕𝑧*

)︂
=

(︃
𝜕2𝑤*

𝜕𝑥*2
+

(︂
𝜆

𝛿

)︂2
𝜕2𝑤*

𝜕𝑦*2

)︃
(2.32)

and in the dimensional form

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 (2.33)

𝜌

(︂
𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= 𝜇

(︂
𝜕2𝑤

𝜕𝑥2
+
𝜕2𝑤

𝜕𝑦2

)︂
. (2.34)

Instead of only depending on the Reynolds number (Re𝐿) and the boundary layer

thickness 𝛿/𝐿 as in the Prandtl boundary layer theory, an additional dependence

on the dimensionless variable 𝜆/𝐿 (or locally 𝜆/𝑧) comparing the wavelength of the

riblets to the overall length of the plate (or the location in the stream-wise direction

𝑧), is also present in the equations. In the limit 𝜆≪ 𝛿 ≪ 𝐿 (i.e. when the boundary

layer has diffused normally away from the plate large distances compared to the

wavelength of the riblet texture), these expressions, outside the grooves, reduce to

the classical 2D boundary layer equations.

The physical important of the parameter 𝜆/𝑧 can be discussed by comparing

two scenarios: In the first case, as the boundary layer is evolving, the boundary

layer thickness is still smaller than the wavelength of the riblets and therefore the

velocity profiles at every point are different for different locations, 𝑥, within one

riblet. However, as the boundary layer evolves (i.e. grows), the thickness of the

boundary layer increases and when 𝛿 > 𝜆 then the velocity profiles follow the same

shape outside of the wrinkled grooves, while only inside the riblet grooves the profiles

take different shapes. Therefore, at this stage of the boundary layer evolution one
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can think of the solution to this problem in terms of an inner and outer solution. The

inner solution, which is dependent on all three spatial directions, is valid inside the

grooves. On the other hand, the outer solution is only a function of (𝑦, 𝑧) and the

equations governing that flow return back to the classical two dimensional boundary

layer problem.

In the boundary layer flow, I assume that the diffusion of vorticity is always per-

pendicular to the surface of the wall and in the case of the riblets, it is perpendicular

to the surface of the riblets which have a profile of (𝑥s, 𝑦s) with 𝜆 as the characteristic

length scale within the riblet groove. So, the boundary layer thickness (locally normal

to the wall) at each point can be estimated using the classical scaling

𝛿 ∼ 𝑧

Re1/2𝑧

. (2.35)

However, this scaling is valid as long as the 𝛿 is smaller than the length scale of the

riblets, 𝜆. Therefore, to compare the two length scales, the boundary layer thickness

and the wavelength of the riblets (for riblets of similar AR), I have

𝛿

𝜆
∼
(︂

1

Re1/2𝑧

)︂(︁𝑧
𝜆

)︁
(2.36)

and thus

(︂
𝛿

𝜆

)︂2

∼

(︃
Re𝑧

(︂
𝜆

𝑧

)︂2
)︃−1

=

(︂
Re𝜆

(︂
𝜆

𝑧

)︂)︂−1

(2.37)

which is a combination of both the Reynolds number and 𝜆/𝑧 and can be used to

explain the evolution of the boundary layer over riblet surfaces. Note that this com-

bination, here denoted as a re-scaled form the of Reynolds number, is the same group

as the dimensionless group on the right hand side of Equation (2.32) and will be

discussed more in the upcoming sections. It should also be noted that the scaled

Reynolds number can also be written in the form of the Reynolds number based on

the wavelength of the riblets Re𝜆 times 𝜆/𝑧 as shown above.

On the other hand, in these new boundary layer equations extended to the case
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of periodic riblets, the boundary layer thickness, 𝛿, (a measure that needs to be

calculated after the boundary layer equations are solved) is also a function of the

shape and sharpness of the riblets. Here, I assume that 𝛿 is a function of Re𝐿,

the dimensionless wavelength 𝜆/𝐿 as well as the aspect ratio of the riblets defined

as AR = 2𝐴/𝜆 (a measure of how sharp the riblets). In case of the V-grooves,

AR = tan 𝜃 as shown in Figure 2-3(b).

Therefore, with the introduction of the riblets, the boundary layer thickness is also

a function of the local Reynolds number, Re𝑧, the dimensionless wavelength, 𝜆/𝑧, as

well as the aspect ratio of the riblets AR. Hence, the main non-dimensional groups in

this problem are Re𝑧, 𝜆/𝑧 as well as AR. These boundary layer equations (Equations

2.33 and 2.34) are to be solved subject to boundary conditions as below: at the plane

of 𝑧 = 0, the velocity is the same as the free-stream velocity and thus

𝑣(𝑥, 𝑦, 𝑧 = 0) = (0, 0,𝑊∞). (2.38)

At the riblet wall (𝑥s, 𝑦s, 𝑧), defined as

0 ≤ 𝑥s ≤
𝜆

2
: 𝑦s =

𝜆

2
AR

(︂
1 − 2𝑥s

𝜆

)︂
(2.39)

𝜆

2
≤ 𝑥s ≤ 𝜆 : 𝑦s =

𝜆

2
AR

(︂
2𝑥s
𝜆

− 1

)︂
(2.40)

I have the no-slip boundary condition

𝑣(𝑥s, 𝑦s, 𝑧) = 0. (2.41)

Lastly, as the 𝑦 direction goes to infinity, then the velocity profile returns to the

free-stream velocity

𝑣(𝑥, 𝑦 → ∞, 𝑧) = (0, 0,𝑊∞). (2.42)
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2.3 Solving the Extended Boundary Layer Equation

The set of extended boundary layer equations is more difficult to solve compared

to the Prandtl boundary layer equations, since all three components of the velocity

field (𝑢, 𝑣, 𝑤) are involved in the equations 2.33 and 2.34 and are each a function of

the three spatial directions (𝑥, 𝑦, 𝑧). In addition, the equations include derivatives

in all three directions adding to the complexity. Since the growth of the boundary

layer is dependent on the diffusion normal to the surface of the riblets, it is desirable

to transform the coordinate system where one of the directions is perpendicular to

the surface of the riblets at the wall. Therefore, I seek a coordinate transformation

from (𝑥, 𝑦, 𝑧) to a curvilinear orthogonal coordinate system (𝛼, 𝛽, 𝑧) where one of the

directions is perpendicular to the riblet surface at every point (𝑥s, 𝑦s). If I denote

the local wall normal coordinate 𝛽, then in the other direction (which I denote 𝛼) I

expect to have no diffusion of vorticity and thus

𝑢𝛼 = 0 (2.43)

and

𝜕2𝑤

𝜕𝛼2
= 0 (2.44)

where 𝑢𝛼 is the velocity components in the new direction 𝛼, and 𝑤 is the stream-wise

velocity as before. In other words, transforming the original Cartesian coordinate

system (𝑥, 𝑦, 𝑧) to (𝛼, 𝛽, 𝑧) results in the velocity field being transformed from (𝑢, 𝑣, 𝑤)

to (𝑢𝛼 = 0, 𝑣𝛽, 𝑤) as shown schematically in Figures 2-4(a) and 2-4(b).

Such a transformation changes the extended boundary layer equations from Equa-

tions 2.33 and 2.34 to

𝜕𝑣𝛽
𝜕𝛽

+
𝜕𝑤

𝜕𝑧
= 0 (2.45)

𝜌

(︂
𝑣𝛽
𝜕𝑤

𝜕𝛽
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= 𝜇

(︂
𝜕2𝑤

𝜕𝛽2

)︂
(2.46)
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which are identical to the original boundary layer equations (2.4) and (2.5) that were

solved by Blasius [88, 41]. Thus the classical Blasius solution combined with the

appropriate coordinate transformation can be used together to solve the extended

boundary layer equations, giving the solution for the evolution in the velocity pro-

file both tangential and normal to the textured plate as a function of 𝛽 and 𝑧,

(0, 𝑣𝛽(𝛽, 𝑧), 𝑤(𝛽, 𝑧)).

2.3.1 Coordinate Transformation

To find the transformed coordinate system with the desired properties as above, the

method of conformal mapping is employed for transformation from (𝑥, 𝑦) to (𝛼, 𝛽)

and the reverse, at each 𝑧 cross section. Here, I use the Schwarz-Christoffel method,

which transforms a half space into a simple open or closed polygon [89]. Conformal

mapping is an angle preserving transformation. Therefore, while the map preserves

the orthogonality of the Cartesian coordinate system, it gives a map that is perpen-

dicular to surface of the riblets. Previously Bechert and Bartenwerfer [71] have used

a similar method to solve the Laplace equation for the velocity inside the grooves.

They use the idea of a retarded flow inside the grooves and with assumption of viscous

dominated flow, calculate the “Protrusion Height” for the stream-wise and cross flow

which is equivalent to the virtual origin of the flow in both stream-wise and cross flow

configurations and they argue that drag reduction is dependent on the difference of

these two values as a measure of how much the turbulent cross flow close to the wall

(especially the span-wise component of the velocity) has been retarded by the riblet

structures.

Here, it is considered that half of a V-groove riblet (0 ≤ 𝑥 ≤ 𝜆/2) is formed

from the 3 sides of an open polygon, where the two vertices of the polygon in non-

dimensional form are given by 0 + 𝑖AR and 1 + 𝑖0 in the complex plane and the angle

at the first vertex is 𝛾1 = 𝜋/2 − tan 𝜃 (where tan 𝜃 = AR) and at the second vertex

is 𝛾2 = 𝜋 − 𝛾1 = 𝜋/2 + 𝜃 (Figure 2-5(c)).

Using the Schwarz-Christoffel theorem, a rectangular grid (𝑋1, 𝑌1) with two ver-

tices corresponding to (−𝜋/2, 0) and (𝜋/2, 0) (Figure 2-5(a)) is transformed into a
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half-space (𝑋2, 𝑌2) with vertices (−1, 0) and (1, 0) respectively (Figure 2-5(b)). Using

complex variables to transform from 𝜒1 = 𝑋1 + 𝑖𝑌1 (−𝜋/2 < 𝑋1 < 𝜋/2 and 𝑌1 > 0)

to 𝜒2 = 𝑋2 + 𝑖𝑌2 I have

𝜒2 = 𝑋2 + 𝑖𝑌2 = sin(𝜒1) = sin(𝑋1 + 𝑖𝑌1). (2.47)

Then the half space 𝜒2 is transformed to half of a V-groove (𝑋3, 𝑌3) where two

vertices (−1, 0) and (1, 0) corresponding to 0 + 𝑖AR and 1 + 𝑖0. Using the Schwarz-

Christoffel method

𝑑𝜒3

𝑑𝜒2

=
𝑖

𝜋

1

(𝜒2 + 1)𝛾1/𝜋(𝜒2 − 1)(1−𝛾2/𝜋)
. (2.48)

Equation 2.48 needs to be integrated with respect to 𝜒2 to find the final conformal

map for half of the V-groove riblet boundary. To simplify the integration for the

transformation from 𝜒2 = 𝑋2 + 𝑖𝑌2 to 𝜒3 = 𝑋3 + 𝑖𝑌3, two intermediate variables (𝑛

and 𝜉) are introduced as follows

1

𝑛
=
𝜋

2
− 𝜋

𝜃
=

𝜋

𝛾1
, (2.49)

𝜉 =

(︂
𝜒2 − 1

𝜒2 + 1

)︂ 1
𝑛

. (2.50)

Here 𝑛 can take any real value larger or equal to 2. The case of 𝑛 = 2 or 𝛾1 = 𝜋/2

returns the results of the flat plate boundary layer (AR = 0). When substituted back

into Equation (2.48) integration gives

𝜒3 = 𝑋3 + 𝑖𝑌3 = 1 + 𝑛
𝑖

𝜋

∫︁
𝑑𝜉

1 − 𝜉𝑛
. (2.51)

Equation 2.51 can also be represented in a simplified form using a generalized hyper-

geometric function (2𝐹1) and written in the form

𝜒3 = 𝑋3 + 𝑖𝑌3 = 1 + 𝑛
𝑖

𝜋
𝜉 2𝐹1

(︂
1

𝑛
, 1, 1 +

1

𝑛
, 𝜉𝑛
)︂
. (2.52)
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Here 𝜒1, and 𝜒3 are non-dimensional complex variables (employed in the conformal

map) and are related to the Cartesian (𝑥, 𝑦) and the transformed variables along and

normal to the wall (𝛼, 𝛽) as

𝜒1 = 𝑋1 + 𝑖𝑌1 =
2𝜋

𝜆
(𝛼 + 𝑖𝛽) (2.53)

𝜒3 = 𝑋3 + 𝑖𝑌3 =
2

𝜆
(𝑥+ 𝑖𝑦). (2.54)

Hence, even though the boundary layer equations (2.45) and (2.45) are the same

as the classical boundary layer equations solved by Blasius, the coordinate transfor-

mation emphasizes the effect of the riblet shape in the problem through the spacing

of the riblets 𝜆 and the aspect ratio AR of the riblets in the mapping.

Equation 2.49 connects the variable 𝑛 to the angle 𝜃 or the aspect ratio of the

riblets (AR = tan 𝜃) and equation 2.54 involves the wavelength; therefore, for any

given wavelength and aspect ratio of V-groove shaped riblets, the above set of equa-

tions can be used to find a transformation between (𝑥, 𝑦) and (𝛼, 𝛽) for one half of

the riblet. Due to symmetry of the riblets, it is sufficient to find the map for only

half of a riblet.

To solve the extended boundary layer equations, first I use the coordinate trans-

formations (from (𝑥, 𝑦) to (𝛼, 𝛽) at each cross section with constant 𝑧), to transform

Equation (2.34) to equation (2.46). Then equation 2.46 is solved using the Blasius

solution [41] in the (𝛼, 𝛽, 𝑧) coordinate system. Using equation (2.53) and the Blasius

solution, the similarity variable 𝜂 for the new boundary layer problem can be defined

as

𝜂 =
𝜆/2

𝜋

𝑌1
𝑧

√︀
Re𝑧 =

𝛽

𝑧

√︀
Re𝑧 (2.55)

and thus 𝑤(𝛽, 𝑧)/𝑊∞ is calculated as a function of 𝜂 from the Blasius solution.

Then, using the conformal mapping steps introduced earlier in reverse, (𝛼, 𝛽) (or

𝜒1 = 𝑋1 + 𝑖𝑌1) can be transformed back into the physical domain of the riblets (𝑥, 𝑦)
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Figure 2-6: Schematic of the transformation between a point on the Cartesian
coordinate system and the corresponding point on the curvy-linear orthogonal coor-
dinate system used for solving the boundary layer flow equations over riblet surfaces.
Cartesian coordinate system on the left is used to solve the classical boundary layer
equations using Blasius solution and then transformed to the riblet coordinate system
shown on the right.

(or in dimensionless form of 𝜒3 = 𝑋3 + 𝑖𝑌3) as a function of the spacing of the riblets

(𝜆) and the aspect ratio of the riblets AR through the value of parameter 𝑛 ≥ 2, where

AR = tan(𝜋/2 − 𝜋/𝑛). Note that using 𝑛 = 2 returns the results of two-dimensional

boundary layer and 𝑛 can taken any real value larger than 2.

To solve the extended boundary layer equation: I employ the above transforma-

tion, particularly using 𝑋1 and 𝑌1, I define the generalized similarity variable 𝜂 as

equation 2.55 and calculate the 𝑤/𝑊∞ as a function of 𝜂 using the Blasius solution.

This method is used to calculate the velocity distribution for any V-groove riblet with

wavelength of 𝜆 and aspect ratio of AR for the rest of this work.

2.4 Results

The transformed boundary layer equations 2.45 and 2.46 employing the transforma-

tion introduced in section 2.3.1, were solved for riblet surfaces of various spacing (𝜆)

and aspect ratios (AR) using Matlab and the results are discussed below in the form

of the evolution in the velocity contours, the boundary layer thickness along the plate,

and the total drag on the textured surfaces. The results are presented as a function

of the dimensionless position along the plate 𝑧 or the Reynolds number of the flow

Re𝑧, ratio of spacing of the riblets to the location along the flow direction (𝜆/𝑧), as
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well as the aspect ratio (AR) of the riblets. In global coordinates, local position 𝑧 is

replaced with the length of the plate 𝐿 in the above dimensionless groups.

2.4.1 Velocity Profiles and Self-Similarity

The evolution of the velocity profiles are plotted as contour plots as a function of

Re𝑧, 𝜆/𝑧, and AR. First, I keep the shape and size of the riblets constant (by keeping

the wavelength, 𝜆, and aspect ratio, AR constant) and present the velocity contours

at different local positions 𝑧 (i.e. as a function of Re𝑧 and 𝜆/𝑧). The results for

riblets with AR = 1 and {Re𝑧 = 100, 𝜆/𝑧 = 1}, {Re𝑧 = 500, 𝜆/𝑧 = 0.2}, and

{Re𝑧 = 1000, 𝜆/𝑧 = 0.1} are plotted in Figure 2-7. Similar to the evolution of

the boundary layer over a flat plate, an increase in the Reynolds number results

in the diffusion of vorticity further away from the wall and thus an increase in the

thickness of the boundary layer. However, as it can be seen in Figure 2-7(a), at

lower Reynolds numbers, the velocity contours is partially mimicking the shape of

the riblets (as seen in the iso-velocity color stripes), but as I move along the plate

(i.e. increase the Reynolds number and decrease 𝜆/𝑧), then the velocity contours start

to forget the shape of the riblets, especially outside the grooves and the variations

inside the grooves stay within 25% of the free-stream velocity. Additionally, as Re𝑧

increases, the velocity inside the grooves becomes more retarded and as seen in Figure

2-7(c) for Re𝑧 = 1000, the velocity inside the groove is less than 25% of the free

stream value 𝑊∞. Other researchers have reported this phenomenon numerically and

experimentally [73, 83, 25, 72].

On the other hand, the results can be discussed for when the Reynolds number

and 𝜆/𝑧 are kept constant and only the shape of the riblets are changed by changing

the aspect ratio, AR. For example, for a constant {Re𝑧 = 200, 𝜆/𝑧 = 0.5}, velocity

contours are plotted as a function of the aspect ratio, AR, of the V-groove in Figure

2-8. The figures qualitatively show that at a fixed Reynolds number, or fixed position

along the plate, the introduction of riblets causes an increase in the thickness of the

boundary layer compared to the corresponding flat plate and as the aspect ratio, AR,

increases, thickness of the viscous boundary layer also increases. Additionally it can
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(a) (b)

(c) (d)

Figure 2-8: Velocity contours for boundary layer over riblet plates with {Re𝑧 =
200, 𝜆/𝑧 = 0.5} at (a) AR = 0; (b) AR = 0.58; (c) AR = 1.00; (d) AR = 1.73.

be seen that the introduction of the riblets results in the flow inside the grooves be-

coming progressively more retarded. As the AR of the riblets is increased at constant

Reynolds number, a larger area of slowly moving fluid is seen inside the grooves and

thus a thicker cushion of slow moving fluid inside the grooves.

Changing the spacing of the riblets changes the shape of the boundary layer and

thus the boundary layer thickness 𝛿/𝜆 will have a different behaviour depending on

𝜆/𝑧. As it was discussed in Section 2.2, when the boundary layer thickness, 𝛿, is

larger than the wavelength of the riblet, 𝜆, the flow outside the grooves forgets about

the shape of the wall and all the variations are inside the grooves, while when the

boundary layer thickness is smaller than the wavelength, the velocity contours mimic

the shape of the grooves. On the other hand, it was shown earlier that the ratio of
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boundary layer thickness to the wavelength 𝛿/𝜆 is directly dependent on a re-scaled

Reynolds number as in Equations 2.37 and 2.32. Therefore, changing the wavelength

will directly result in a change in 𝛿/𝜆 and the velocity profiles. However, one can see

that boundary layers that develop over riblets with the same aspect ratio but different

spacing, are self similar as long as the combination of Re𝑧(𝜆/𝑧)2 is the same between

the cases. The comparison can be seen in Figures 2-7 and 2-9 where the spacing of

the riblets in Figure 2-9 is two times the spacing of riblets in Figure 2-7: while Figure

2-7(a) and 2-9(a) correspond to different positions along the plate (thus different

Reynolds numbers and different 𝜆/𝑧), they have the same values of Re𝑧(𝜆/𝑧)2 = 100

and the same velocity profile as seen in the figures. The same similarity can also be

seen by comparing Figures 2-7(b) and 2-9(b) as well as Figures 2-7(c) and 2-9(c).

In other words, one can see that the development of the velocity profile over three

dimensional periodic riblet surfaces are effectively dependent on the Reynolds number

based on the wavelength of the riblets which can also be seen using the scaling in

section 2.2 and shown in Equations 2.32 and 2.37. On the other hand, this re-scaled

form of the Reynolds number, Re𝑧(𝜆/𝑧)2 = Re𝜆(𝜆/𝑧), combines the effect of the

flow along the plate as well as the effect of the size of the riblets; therefore, it can

serve as a meaningful dimensionless group for design purposes as it combines the fluid

properties, velocity, as well as the lateral size of the riblets (in form of the wavelength).

Hence, with this form of the self-similarity, it is possible to discuss the results as only

a function of two variables, Re𝑧(𝜆/𝑧)2, and the aspect ratio, AR, instead of the three

dimensionless variables originally introduced.

The re-scaled dynamical variable Re𝑧(𝜆/𝑧)2 has a slightly different behaviour com-

pared with the classical variable Re𝑧. Firstly, when all the aspects of geometry are

kept constant, increasing the free-stream velocity results in a linear increase in the

value of Re𝑧(𝜆/𝑧)2 (since Re𝑧(𝜆/𝑧)2 ∼ 𝑊∞). Similarly, keeping the free-stream ve-

locity constant and increasing the spacing of the riblets results in quadratic increases

in the scaled Reynolds number (Re𝑧(𝜆/𝑧)2 ∼ 𝜆2). In global form, when the Reynolds

number is defined based on the length of the plate (i.e. 𝑧max = 𝐿), then all the above

relations are re-written in terms of 𝐿 instead of local position 𝑧. However, unlike Re𝑧,
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increasing 𝑧 or in other words moving along the length of the plate results in a decrease

in the scaled Reynolds number since Re𝑧(𝜆/𝑧)2 = Re𝜆(𝜆/𝑧) ∼ 𝑧−1. Therefore, for

constant velocity and riblet spacing, while keeping fluid properties the same, increas-

ing the total length of the plate will result in an increase in the maximum Reynolds

number Re𝐿 but decreases the minimum scaled Reynolds number Re𝐿(𝜆/𝐿)2.

2.4.2 Measures of Boundary Layer Thickness

As it was shown in Figure 2-8, at constant Reynolds number (i.e. flow dynamics)

and at the same local position along the plate, for riblets with the same wavelength,

changing the aspect ratio of the riblets results in a change in the boundary layer

thickness qualitatively and increasing the aspect ratio increases the boundary layer

thickness compared to the case of a flat plate boundary layer. Note that as it was

mentioned earlier, using the same mapping and same transformed equations, one can

re-create the results of the velocity profiles from the Blasius solution by setting 𝑛 = 2

(corresponding to AR = 0, thus 𝜒3 = 𝜒1/𝜋 where Equation 2.55 turns back into

the similarity variable used in the Blasius solution). However, these figures are only

qualitative and I need to define the boundary layer thickness in a quantitative way.

Boundary layer thickness in this work is calculated using an integral definition

similar to the displacement thickness and momentum thickness as in the flat plate

boundary layer. To extend the definition of the boundary layer thickness from two-

dimensional to three-dimensional, the classical definition of displacement thickness

and momentum thickness are extended to displacement area and momentum area

using Equations 2.56 and 2.57 below. By analogy to displacement thickness, the

displacement area is a measure of the portion of the cross sectional area (with its

normal parallel to the stream-wise direction) that the inviscid outer flow has been

displaced by the presence of the wall and the formation of the viscous boundary layer

[41, 65]. Therefore the displacement area and momentum area are defined as
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∆* =

∫︁
𝑆

(︂
1 − 𝑤

𝑊∞

)︂
𝑑𝑆 (2.56)

Θ =

∫︁
𝑆

𝑤

𝑊∞

(︂
1 − 𝑤

𝑊∞

)︂
𝑑𝑆 (2.57)

where 𝑆 is the cross sectional area normal to the flow direction at constant 𝑧 (its

normal is parallel to the 𝑥 direction, similar to the cross section in Figures 2-7, 2-8,

and 2-9) where for one of the periodic riblets the (𝑥, 𝑦) of the points on each of these

surfaces have 0 < 𝑥 < 𝜆 and 𝑦s < 𝑦 <∞. In Section 2.2, the square of the boundary

layer thickness (𝛿2) in Equation 2.32 is non-dimensionalized by 𝜆2. However, since the

displacement area and momentum area both are of dimensions of square of length,

therefore, the integral measure ∆*/𝜆2 can substitute (𝛿/𝜆)2 in the scaling analysis.

The results of the displacement area for riblets of the same wavelength (i.e. 𝜆) are

plotted as a function of the Reynolds number and aspect ratio in Figure 2-10. As it

can be seen in Figure 2-10(a) the presence of the riblets results in an increase in the

boundary layer thickness or displacement area compared to a flat plate (AR = 0) and

increasing the aspect ratio results in an increase in the displacement area. Similar

behaviour was qualitatively observed in Figures 2-8, 2-7, and 2-9.

At lower Reynolds numbers the increasing trend of displacement area as a function

of the aspect ratio AR) is clearly seen, but as the value of Re𝑧 increases (corresponding

to greater distances, 𝑧/(𝜈/𝑊∞), down the plate), the difference between the calculated

displacement areas for various aspect ratios becomes less visible.

On the other hand, momentum area follows a slightly different behaviour. At

lower Reynolds number, (i.e. shorter distances along the plate) as seen in Figure

2-10(b), increasing the aspect ratio of the riblets, results in an increasing trend in

the momentum area. However, as the Reynolds number is increased, after a certain

point, the momentum area of the riblet surfaces cross over to values smaller than the

momentum area of a the case of the flat plate (i.e. AR = 0). This trend is discussed

in more detail in Section 2.4.3.

Next, to investigate the effect of the spacing of the riblets (𝜆) on the displacement
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(a)

(b)

Figure 2-10: (a) Displacement area (∆*) and (b) momentum area (Θ) of boundary
layer flow over the riblets as a function of the Reynolds number and various aspect
ratios. The spacing of the riblets has been kept constant for all the cases here.
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area, the results of the displacement area for riblets with various spacings, 𝜆/𝑧, are

plotted as a function of the aspect ratio, AR, at three Reynolds numbers (Re𝑧), 104,

4 × 104, and 9 × 104 in Figures 2-11(a), 2-11(b) and 2-11(c). Again it can be seen

that increasing the aspect ratio (AR) results in a slight increase in the displacement

area for all the cases shown in the figures. In all three figures increasing the spacing

of the riblets results in a decrease in the displacement area at the same Re𝑧 and the

difference is more pronounced as the Reynolds number increases.

However, again the self-similarity of the velocity profiles with the scaled Reynolds

number (Equation 2.37) can be used to collapse the results of the displacement area

as well. The data shown with star symbols in Figure 2-11(a) for {Re𝑧 = 104, 𝜆/𝑧 =

0.01}, the data shown with circle symbols in Figure 2-11(b) for {Re𝑧 = 4×104, 𝜆/𝑧 =

0.005}, and the data shown with diamond symbols in Figure 2-11(c) for {Re𝑧 =

9 × 104, 𝜆/𝑧 = 0.0033} show the same trend in displacement area for the different

aspect ratios and all the cases have the same value of the scaled Reynolds number

of Re𝑧(𝜆/𝑧)2 = 1. These three sets of results are overlaid on each other in Figure

2.4.2, again confirming the earlier observation that using the scaled Reynolds number

Re𝑧(𝜆/𝑧)2 captures the self-similarity in the structure of the boundary layer along

riblets of the same aspect ratio and different spacing (𝜆).

Similar behaviour is observed for the momentum area as a function of the scaled

Reynolds number and aspect ratio and thus, for the rest of this work, both displace-

ment and momentum area are written as a function of the scaled Reynolds number

Re𝑧(𝜆/𝑧)2 and aspect ratio (AR) of the riblets instead of the three dimensionless

groups introduced in section 2.2.

2.4.3 Momentum Area and Total Drag

In the previous section the boundary layer equations are all solved in the differential

form to calculated the velocity distribution 𝑤(𝑥, 𝑦) at each cross section (constant 𝑧

or Re𝑧). In a different view, Navier Stokes equation in the 𝑧 direction can be written

in the integral form (also known as the momentum integral equation) as below
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Figure 2-12: Collapse of the results of Displacement area as a function of aspect ratio
of the riblets with different 𝜆/𝑧 for {Re𝑧 = 10000, 𝜆/𝑧 = 0.01} , {Re𝑧 = 40000, 𝜆/𝑧 =
0.02}, and {Re𝑧 = 90000, 𝜆/𝑧 = 0.03} as a function of aspect ratio of the riblets. The
three cases have Re𝑧(𝜆/𝑧)2 = 1.

∫︁
𝑆

𝜕

𝜕𝑧
(𝑤 (𝑊∞ − 𝑤)) 𝑑𝑆 +

𝑑𝑊∞

𝑑𝑧

∫︁
𝑆

(𝑊∞ − 𝑤) 𝑑𝑆 =
1

𝜌

∫︁
ℓ

𝜏w.𝑑ℓ (2.58)

where 𝑆 is the cross sectional area at each constant 𝑧 in the 𝑥− 𝑦 plane (similar area

as the one in the definition of displacement area and momentum area in Equations

2.56 and 2.57), 𝜏w is the traction vector on the wall ( 𝜏w = 𝜏 . 𝑛w where 𝜏 is the shear

stress tensor and 𝑛w is the normal vector to the riblet wall), ℓ is the local tangential

vector along the contour of the riblets. Equation 2.58 is simplified as

𝜕

𝜕𝑧

(︀
𝜌𝑊 2

∞Θ
)︀

+ 𝜌𝑊∞
𝑑𝑊∞

𝑑𝑧
∆* =

∫︁
𝑙

𝜏w.𝑑ℓ (2.59)

where ∆* and Θ are the displacement area and momentum area as defined in equations

2.56 and 2.57 respectively. With the assumption of no pressure gradient (i.e. 𝑑𝑝/𝑑𝑧 =

0), using Euler’s equation for the inviscid flow outside the boundary layer,

𝜌𝑊∞
𝑑𝑊∞

𝑑𝑧
= −𝑑𝑝

𝑑𝑧
= 0 (2.60)
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therefore, Equation 2.59 is simplified more to relate the traction vector on the wall

to the momentum area in the form of an ordinary differential equation as

𝜕

𝜕𝑧

(︀
𝜌𝑊 2

∞Θ
)︀

=

∫︁
𝑙

𝜏w.𝑑ℓ (2.61)

Then, integrating equation 2.61 along the 𝑧 direction of a plate from 0 to 𝐿, gives

𝜌𝑊 2
∞Θ(𝐿) =

∫︁ 𝐿

0

∫︁
𝑙

𝜏w.𝑑ℓ = 𝐷 (2.62)

where the integral of the wall traction vector (𝜏w) along the riblet contour (ℓ) and

then along the length (𝐿) of the plate results in the total drag, 𝐷, over the riblet

surface (note that Θ(0) = 0). Therefore, calculating the momentum thickness is

sufficient for finding the total drag on the surface instead of calculating the shear

stress distribution on the surface. Therefore, to explore the effect of the riblets on

the total drag, the reduction in drag is found by calculating

𝐷 −𝐷flat

𝐷flat

=
Θ − Θflat

Θflat

(2.63)

where 𝐷flat is the drag on a flat surface (or AR = 0) and Θflat is the momentum area

of the flat surface.

As it was discussed at length in the earlier section, the boundary layer flow over

riblet surfaces exhibits another level of self-similarity, as long as the scaled Reynolds

number Re𝑧(𝜆/𝑧)2 is used instead of the classical Reynolds number. Due to this self-

similarity in the velocity profiles of riblets with different scales and at different stream-

wise locations, I presented the displacement area as a function of only Re𝐿(𝜆/𝐿)2 (in

the global form as I am interested in the total drag, calculated by the integral over the

entire surface of the riblets) and the aspect ratio (AR). Similar behaviour is observed

in momentum area as well and thus, the results of the total drag (equation 2.63) is

presented as a function of Re𝐿(𝜆/𝐿)2 and AR in Figure 2-13.

The first key point presented in the contour plot is that riblets can both increase

or reduce the total drag force on the plate and it depends on the size of the riblets,

the dynamics of the flow, and the aspect ratio of the riblets. This visual presentation
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confirms the experimental and numerical observations of previous literature where

both drag reduction and increase have been reported.

The second point is that at a constant aspect ratio, (AR), decreasing the scaled

Reynolds number (Re𝐿(𝜆/𝐿)2) results in a decrease in the total drag on the surface

and to achieve drag reduction with the riblet surface, the scaled Reynolds number

needs to be lower than a threshold. This threshold depends on the aspect ratio of the

riblets, AR and the threshold line for all the cases as calculated in this theory is shown

with the white continuous line in Figure 2-13. Therefore, for the same flow velocity,

fluid properties, and riblet geometry, to achieve drag reduction, the length of the

plate should be larger than a minimum length corresponding to the threshold scaled

Reynolds number. On the other hand, with the same plate length, constant fluid

properties, and riblet size, the velocity needs to be lower than a maximum velocity

(again corresponding to the threshold scaled Reynolds number) for the riblets to be

drag reducing. Similar trend was observed by Walsh [37] as well where increasing the

velocity for the same fluid and geometry resulted in an increasing trend in the drag

measured on the surfaces for V-grooves as well as other types of riblets tested.

On the other hand, at a constant scaled Reynolds number, possibility of achieving

drag reduction with riblets is dependent on the aspect ratio of the riblets; at each

scaled Reynolds number, total drag on the surface depicts a non-monotonic behaviour

as a function of the aspect ratio; it first decreases with the increase in the aspect ratio

of the riblets and then takes as increasing trend after crossing a minimum. Therefore

at each Re𝐿(𝜆/𝐿)2 there is an aspect ratio resulting in the highest drag reduction.

This optimum aspect ratio depends on the scaled Reynolds number of the flow. Also,

it can be seen that riblets with aspect ratios greater than a threshold (here AR & 1.4)

are no longer drag reducing.

Experimental results by Walsh [37] also shows that in similar flow conditions,

riblets with AR = 1 reduce the drag over a wider range of velocities compared to the

V-grooves with AR = 2. Additional results from Walsh and co-workers [38, 39] also

show similar non-monotonic trends when riblets of the same spacing, and different

aspect ratios were used in the same flow conditions and for 10 < 𝑠+ < 20, maximum
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reduction is achieved using AR ≈ 1.6 and drag has a non-monotonic trend with AR

as predicted by this theory. Results of experiments with rectangular (razor-blade)

riblets by Lazos and co-workers [51] also show a similar trend with AR for riblets

with spacing of 0.025′′ and aspect ratios of 0.8, 1.6 and 2 in a range of 𝑠+, AR = 1.6

provides the highest reduction, while in another range of 𝑠+, AR = 0.8 results in the

highest reduction and AR = 1.6 and AR = 2 causes drag increase. Similar trends can

also be seen in the experiments of Bechert and co-workers [20] for trapezoidal and

rectangular grooves where riblets with AR ≈ 0.6 − 0.8 offered the highest reduction

over a wide range of flow dynamics.

On the other hand, in Figure 1-27 shown in Chapter 1, the data presented by

Bechert and co-workers shows that as AR increases, the cross over from drag increas-

ing to drag reducing state happens at lower and lower values of 𝑠+. This can be

qualitatively compared with the scaled Reynolds number introduced earlier in this

chapter. From the definition of 𝑠+ or equivalently using the notation of this thesis

𝜆+ I know

𝜆+ =
𝜆

𝜈
𝑢* (2.64)

and

𝑢* =

√︂
𝜏

𝜌
(2.65)

For different types of flows one can write the wall shear stress in the form of a

drag/friction coefficient 𝐶𝑓 multiplied by 1/2𝜌𝑈2. If I assume that this drag/friction

coefficient is a function of the Reynolds number of the flow in the form of a power

law, Re−𝑚
𝐿 , where Re𝐿 is Reynolds number based on the characteristic length scale of

the problem with 0 < 𝑚 ≤ 1, then one can find a scale for Equation 2.64 as

𝜆+ ∼ 𝜆

𝐿

𝑈𝐿

𝜈

√︁
Re−𝑚

𝐿 ∼ 𝜆

𝐿
Re

1−
𝑚

2
𝐿 (2.66)

Therefore, while 𝑠+ or 𝜆+ is not exactly the same as the scaled Reynolds number, it
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has a similar functional form and follows similar increasing/decreasing trends with

Reynolds number and the riblet wavelength (spacing). Therefore for a flow to be

drag reducing, the 𝑠+ (or 𝜆+) should be smaller than a threshold as demonstrated in

Figure 1-27 by Bechert and co-workers which is comparable to the trend in the drag

reduction and the scaled Reynolds number explained earlier. Note that to return

to the scaled Reynolds number as in Equation 2.37, then 𝑚 = 1. This figure also

confirms the non-monotonic behaviour of the drag reduction as a function of the

aspect ratio and at each 𝑠+ there is one intermediate aspect ratio offering the largest

reduction in the frictional drag.

2.5 Shark Skin and Boundary Layer Theory over Ri-

blet Surfaces

The extended boundary layer theory introduced here can also be used to give an

insight into the geometrical features of the ribs on shark skin and their potential for

being able to reduce the skin friction drag. Using the reported values for the average

spacing and heights of the ribs of various types of shark denticles by Bechert and

co-workers [82], Wen and co-workers [90], and Luo and coworkers [91], it can be seen

that on average, the spacing of the ribs of the shark scales is 𝜆 ≈ 35−105 𝜇m and the

heights are in the range of 𝐴 ≈ 20− 30 𝜇m, giving an aspect ratio of AR ≈ 0.4− 0.8.

So, assuming that the ribs on the shark skin create a long continuous groove with

AR ≈ 0.4−0.8, and sharks of 𝐿 ≈ 2 m swim at an average speed of 5 m/s, the flow over

the shark skin will have a scaled Reynolds number of Re𝐿(𝜆/𝐿)2 ≈ 0.05 in water with

Re𝐿 ≈ 107 which falls in the drag reducing region in Figure 2-13. Since Re𝐿 ≈ 107

is in the turbulent flow regimes, assuming the transition to turbulence happening

at Re𝐿 ≈ 5 × 105, the location of the transition is at 𝐿 ≈ 0.5 m corresponding to

Re𝐿(𝜆/𝐿)2 ≈ 0.02 which also falls into the drag reducing region in Figure 2-13.

Therefore, this simple theoretical argument and the corresponding drag reduction

contour plot (Figure 2-13) shows that ribs on the shark skin have the potential of
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being drag reducing and their geometrical parameters, especially the aspect ratio of

the ribs falls in the region with the optimum drag reduction.

2.6 Limitations of the Theory

The theoretical modelling of laminar boundary layer flow over riblet surfaces presented

so far is a simplified model of the three dimensional flow and captures the trends in

the effect of riblet surfaces on the flow as well as the total drag on the surfaces and

it is able to predict the drag-reducing effect of the riblet surfaces.

However, similar to the boundary layer theory, this theoretical modelling fails

to capture the effect of the pressure gradient close to the leading edge of the plate

which enhances the ability of riblets in reducing the total drag using riblet surfaces

(will be discussed in more detail in Chapter 3). Looking back at Equation 2.59, if

the pressure gradient is non-zero, then the second term in the equation involving

the effect of the displacement area will be non-zero and will affect the calculation

of total drag. Previous experimental and numerical works discussed in Chapter 1

have shown reductions up to 8% in various flow conditions including the boundary

layer experiments performed by Walsh and co-workers while the results of the theory

showed earlier can capture up to 1% reduction [37, 39, 38].

On the other hand, using the this theory, I can calculate the velocity profiles for

V-grooves of various sizes; for example, for Re𝐿 = 99200 with 𝜆/𝐿 = 7.81× 10−3 and

AR = 1.72, the velocity profiles at three span-wise locations 𝑥/𝜆 = 0, 𝑥/𝜆 = 0.25,

and 𝑥/𝜆 = 0.5 are plotted in Figure 2-14. The results shown here correspond to the

experimental and numerical data presented by Djenidi et. al at the same Reynolds

number and similar riblet sizes (Figure 1-15). Comparing their results to the figure

below, one can see that qualitatively the velocity profiles at these three stream-wise

locations are similar especially as I move away from the riblets. However, inside the

grooves at the wall, one can see that the results of this theory cannot predict the

nearly zero velocity gradient that is visible in Figure 1-15 which results in a higher

shear stress inside the grooves and hence the total drag reduction predicted is smaller
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Figure 2-14: Calculated velocity profiles for boundary layer flow over V-groove riblet
surfaces with Re𝐿 = 99200, 𝜆/𝐿 = 7.81 × 10−3 and AR = 1.72 corresponding to the
data presented by Djenidi et al. [73].

than the reported values.

To be able to take the effect of the leading edge into account, the complete set

of the Navier-Stokes should be solved for the problem over the riblets of different

aspect ratios and sizes. In Chapter 3, I will use full three dimensional numerical

simulation of the boundary layer flow over riblet surfaces to complement the analysis

presented so far and understand how the leading edge and the pressure gradients can

help enhance the total reduction in the frictional drag force.

2.7 Conclusion

In this chapter, using an extension of the boundary layer theory, I showed that bound-

ary layer over three dimensional periodic riblets can be described using three non-

dimensional variables; Reynolds number of the flow Re𝐿, the ratio of the spacing of the

riblets to the length of the plate 𝜆/𝐿, and the aspect ratio of the riblets AR = 2𝐴/𝜆.

Scaling of the equations show that the results of the boundary layer calculations can

be presented in a self-similar manner, using a scaled form of the Reynolds number

Re𝐿(𝜆/𝐿)2 and the aspect ratio of the riblets AR.

The boundary layer equations were solved using coordinate transformation and

conformal mapping to find the relations between the Cartesian and curvy-linear riblet
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coordinate systems. Boundary layer over riblet surfaces is seen to have a thickness

larger than the flat plate and as the aspect ratio of the riblets increases the thickness,

presented in the form of displacement area. Additionally, increasing the aspect ratio

of the riblets results in a larger area of flow retardation inside the grooves.

Using the momentum integral equations the momentum area calculated for each

of the riblets can be used to calculate the total drag on the entire plate and the results

are presented in the form of a contour plot of the total reduction in frictional torque

as a function of the scaled Reynolds number and the aspect ratio of the riblets. The

results show that at each constant aspect ratio, scaled Reynolds number of the flow

should be lower than a maximum threshold for the riblet surface to be drag reducing.

On the other hand at each constant scaled Reynolds number, there is an aspect ratio

corresponding to the highest drag reduction. This theory can also be used to explain

that ribs on the shark denticles have optimum feature size to act as a drag reducing

surface.

As discussed in the chapter, the results of the this theory can capture the trends

presented previously in the literature and offers an explanation for the conflicting

results presented in terms of the effectiveness of riblets as a passive drag reduction

method. With the non-monotonic behaviour of the drag reduction as a function of

the aspect ratio, the choice of the aspect ratio, as well as the size of the riblets, in

any dynamic condition can result in situations where the riblets are able to reduce or

not reduce the total drag.

Lastly, one can see that while capturing the trends in the total drag, this theory

fails to predict the magnitude of the reduction achieved compared to the ranges from

previous experimental and numerical efforts. To mitigate this limitation, one needs to

remove the simplifying assumptions made earlier in the chapter, especially in terms of

neglecting the pressure gradient and the leading edge effects. To do that, one needs to

use the full three dimensional form of the Navier-Stokes equations which is achievable

employing various numerical simulation methods available. In the next chapter I will

perform the full three dimensional simulations of the steady state boundary layer

flow over sinusoidal riblet surfaces and discuss the effects of the leading edge on
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the dynamics of the flow and the total frictional drag reduction using riblet covered

surfaces.
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Chapter 3

Numerical Modelling of Boundary

Layer over Sinusoidal Riblet

(Wrinkled) Surfaces

Reproduced in part with permission from Raayai-Ardakani, S. and McKinley, G.H.,

2017. Drag reduction using wrinkled surfaces in high Reynolds number laminar bound-

ary layer flows. Physics of Fluids, 29(9), p.093605. Copyright 2017 American Insti-

tute of Physics.

3.1 Introduction

In the previous chapter, I discussed the boundary layer flow over V-groove riblet

surfaces by extending the two dimensional boundary layer theory to three dimensions

for periodic riblet surfaces. I showed that viscous boundary layer flow over riblet

surfaces can be discussed using two dimensionless groups, the scaled Reynolds number

Re𝐿(𝜆/𝐿)2, and the aspect ratio of the riblets AR = 2𝐴/𝜆. First, it was demonstrated

that for riblets with the same AR, the flow is self similar as long as the scaled Reynolds

number is kept constant between different cases. Then using the definition of the

momentum thickness and momentum integral equations, I showed that riblet surfaces

can offer a level of drag reduction compared to smooth walls, and for a surface to
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be drag reducing the flow near the surface needs to have a scaled Reynolds number

lower than a critical aspect ratio-dependent threshold. In addition, at a constant

scaled Reynolds number, it was seen that there is always one aspect ratio that offers

the optimum drag reduction and the change in the total frictional drag force for

riblet surfaces (compared to smooth surfaces) has a non-monotonic behaviour with

the aspect ratio of the riblets.

While this theoretical modelling allows me to understand and predict the trend in

the changes in drag as a function of the flow and the geometry, it cannot quantitatively

capture the magnitude of the drag reduction that has been previously reported in

literature as it was shown previously in Chapter 1. The calculations presented in

Chapter 2 were only able to show a maximum of 1% reduction in the total drag,

while in the previous experimental and computational literature reductions up to 8%

have been reported [38, 39, 1, 40, 59].

As I constructed the three dimensional extension to the boundary layer theory,

similar to the classical boundary layer theory, the dynamics of the leading edge of

the plate plus the resulting pressure gradients induced in the local flow near the edge

were neglected. Therefore, the total integrated frictional drag force calculated for

both riblet and smooth surfaces neglected all effects of the leading edge and hence a

lower percentage drag reduction is predicted. Thus to reintroduce the hydrodynamic

effect of the leading edge back into the problem, one needs to solve the full three

dimensional Navier-Stokes equations with the continuity equation without any geo-

metric simplifications, which is possible using steady-state numerical simulations of

the boundary layer over riblet surfaces.

In the previous chapter the three-dimensional boundary layer theory was devel-

oped quite generally for any riblet surface, but was solved specifically for V-grooves

since I could find an analytical solution for the conformal map between the Carte-

sian (𝑥, 𝑦, 𝑧) coordinate system and the curvy linear ortho-normal coordinate system

(𝛼, 𝛽, 𝑧). Similar conformal maps can be found for other riblet surfaces, however, they

might not have a closed form analytical solution and thus require numerical calcula-

tions using the Laplace equation [89]. To expand my investigation of riblet surfaces,
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in the present chapter I will use numerical simulations of steady three-dimensional

boundary layer flow over sinusoidal riblet surfaces (also known as wrinkled surfaces)

to evaluate more accurately the level of drag reduction that can be expected in real

applications using textured substrates.

Wrinkled surfaces have been capturing the attention of the mechanics world for a

number of years now. In recent decades, new developments in soft materials research

have demonstrated the possibility of creating surfaces with various types of wrinkled

textures in the forms of sinusoidal periodic and non-periodic wrinkles and herring-

bone patterns using hyper-elastic materials [92, 93, 23]. With the advances in the

understanding of the tunability of the wavelength and amplitude of textured surfaces

with geometric, dynamic and material parameters, it is also of interest to investigate

the possibility of using such surfaces for applications such as smart adhesion [94], and

flow control. Terwagne et al. have recently used dimpling patterns of wavelength of

4.37 mm and average dimple depth of between 0 − 0.8 mm on spherical surfaces of

20 mm radius and showed the potential of dynamically controlling the total drag for

Reynolds numbers between 5 × 103 − 105 [95].

In order, to understand the integrated effect of the riblets on the structure of an

evolving viscous boundary layer, it is important to first systematically unravel how

the laminar boundary layer spatially develops over riblet textured surfaces prior to

the transition to turbulence, and whether changes in the corresponding laminar flow

evolution could lead to an increase or reduction in the total drag force on the surface

compared to a flat plate. In this chapter, I explore the changes induced by periodic

sinusoidal wrinkles on a spatially developing laminar viscous boundary layer flow. I

study the systematic changes in velocity profiles, pressure distribution, and the re-

sulting local changes in the boundary layer thickness and the shear stress distribution

along the length and breadth of the textured plate. By understanding each of these

local kinematic and dynamical changes I can then ultimately evaluate the effect of the

riblets on the total integrated viscous drag force. In general, unperturbed boundary

layers over plates remain laminar up to Reynolds numbers close to 5 × 105 and then

naturally transition to turbulence [41]. Note I also recognize that boundary layers
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can be tripped to transition at earlier Reynolds numbers, resulting in an increase in

the total frictional drag force, however this is not the focus of this study [96, 55].

This chapter is organized as follows: in Sections 3.2, 3.3, and 3.4, I discuss the

numerical method used in the research combined with a grid resolution and bench-

mark study of flat plate boundary layer. Then in Section 3.5, the primary results of

the numerical study are presented; first I discuss the evolution of the velocity pro-

files along the boundary layer that develops over periodic riblet surfaces as well as

the pressure distribution in the stream-wise direction. Then I discuss the effect of

wrinkles of various aspect ratio on the thickness of the boundary layer, and lastly in

Section 3.5.3, I explore the effect of the riblets on changes in the local shear stress

distribution along the length of the plate as well as on the total integrated frictional

drag over riblet surfaces with various aspect ratios.

3.2 Numerical Method

My goal is to solve the full steady state Navier-Stokes equations for the three ve-

locity components (𝑢, 𝑣, 𝑤) and the pressure (𝑝) distribution in the laminar viscous

boundary layer that develops over different textured plate geometries. In the present

study the numerical simulations are carried out using the finite volume method, with

the SIMPLE algorithm (Semi Implicit Method for Pressure Linked Equations) [97].

The SIMPLE algorithm is widely used for steady state problems with velocity and

pressure coupling and was first introduced by Patankar and Spalding in 1972 [98]; in

this algorithm initial guesses for the velocity and pressure components are provided at

the beginning of each step of the iteration, then the discretized momentum equation

is solved leading to corrections for the velocity components and lastly the pressure

correction equation is solved, correcting the initial pressure estimate. The algorithm

then checks for convergence and either terminates the procedure at the desired conver-

gence criteria or continues to the next iteration step [97, 99]. The SIMPLE algorithm

is already implemented in the open source CFD package OpenFOAM R○ for three

dimensional laminar viscous flows and this implementation was utilized throughout
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the present study [100].

A schematic of the geometry and the coordinate system used is shown in Figure

3-1(a). Stream-wise wrinkles (sinusoidal riblets) are aligned in the direction paral-

lel to the flow (𝑧-direction) and are fully defined by two geometric parameters, the

wavelength (𝜆) or spacing of the riblets and the amplitude (𝐴), here defined as the

distance between the peak and the trough of a wave as shown in Figure 3-1(b). Veloc-

ities in 𝑥, 𝑦, 𝑧 direction are denoted by 𝑢, 𝑣, 𝑤 respectively and the total length of the

plate along the flow direction is denoted by 𝐿. To compare simulations with different

riblet geometries, two dimensionless groups are used: the aspect ratio AR = 2𝐴/𝜆 of

the riblets provides a measure of the local sharpness of the ribbed texture and 𝜆/𝐿

(global) provides a measure of the size of the plate riblets with respect to the size of

the plate. Because the flow also evolves in the stream-wise direction, it is also helpful

in my analysis to compare the ridge wavelength to local position suing a local scaled

variable 𝑧/𝜆. The lines 𝑦 = 0 and 𝑦 = −𝐴 are chosen to be at the peak and trough

of the wrinkles respectively and the surface of the riblets can be defined as

𝑦s = −𝐴
2

+
𝐴

2
cos

(︂
2𝜋

𝜆
𝑥

)︂
(3.1)

where 𝑥 is the cross-stream direction.

The scale of the wrinkles simulated in this work were chosen based on the physical

riblet sizes reported previously to show drag reduction [38, 39, 1, 40, 59]; the wave-

length has been kept constant at 𝜆 = 2𝜋/3× 10−4 m ≈ 200 𝜇m and the length of the

domain (0 < 𝐿/𝜆 < 191) and amplitude (AR = 0.48, 0.72, 0.95, 1.43, 1.91) have been

varied to investigate the effect of geometric changes on the level of drag reduction

that can be achieved. To ensure the flow is laminar, the Reynolds number of all the

cases simulated were limited to Re𝐿 < 5× 105, which is the conventional criterion for

transition to turbulence on a flat plate [41].

The appropriate Reynolds number that parametrizes the relative importance of

inertial and viscous effects in this spatially developing flow, is defined using the flow

direction (𝑧) as the length scale (similar to the classical boundary layer theory) and
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the maximum velocity of the stream along the plate (𝑊∞) which is determined after

the simulations are carried out. The local Reynolds number can thus be written as

Re𝑧 = 𝑊∞𝑧/𝜈, where 𝜈 = 𝜇/𝜌 is the kinematic viscosity of the fluid, 𝜇 is the dynamic

viscosity and 𝜌 is the density of the fluid.

The boundary conditions of this problem shown schematically in Figure 3-1(a)

are similar to the case of a conventional boundary layer problem [41]. At the inlet

(plane of 𝑧 = 0), flow enters the domain uniformly with uniform velocity 𝑊in, over

the computational domain the wrinkled surface on the bottom is non-permeable and

acts as a no-slip wall, the upper surface has a zero pressure and no velocity gradient

across it and the outlet (plane of 𝑧 = 𝐿) has zero velocity gradient across it and zero

pressure. The two side walls have periodic boundary conditions. Note that due to

leading edge effects, the maximum velocity in the simulations is up to 30% larger

than the inlet velocity and the maximum velocity calculated for each case is used as

𝑊∞ throughout the chapter.

3.3 Grid Resolution Study

The dimensions of the mesh elements used in this finite volume study have been

kept similar for all the cases with an average size of 0.08 × 𝜆. (The average size is

calculated as the cubic root of average cell volume 𝑉 1/3). The smallest mesh element

is located close to the wall at the leading edge with an average size of 0.05 × 𝜆

and the largest mesh element is at the top boundary at 𝑧 = 𝐿 has a length scale

in the stream-wise direction of 0.1 × 𝜆. AS a illustrative example of the problem

size to simulate the cases of 𝐿/𝜆 = 95.5 with 3 wrinkles, 𝑁 = 6.72 × 106 mesh

elements were used. For longer/shorter geometries, the number of mesh elements

were proportionally increased/decreased.

I first take two models with AR = 1.91 and AR = 0 (flat plate), 𝐿/𝜆 = 23.87

and Re𝐿 = 6650 and use these to investigate the effect of the spatial resolution by

changing the number of cells (or changing the average size of the elements). The

results are presented in Fig. 3-2 in terms of the change in the overall integral drag
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coefficient on the plate as the number of elements 𝑁 in the simulation is incremented

or as the size of the mesh element is reduced. The drag coefficient on the plate is

defined as

𝐶𝐷 =
𝐷

𝜌𝑊 2
∞𝐴w

=
1

𝜌𝑊 2
∞𝐴w

∫︁
𝐴w

(𝜏w.𝑛w).e𝑧𝑑𝐴w (3.2)

where 𝐷 is the total drag force on the wall, 𝐴w is the wetted area of the wall, nw

is the local normal to the surface of the wall, 𝜏w is the shear stress tensor evaluated

at the wall. The total drag coefficient calculated using the Blasius solution 𝐶𝐷 =

1.328/
√

Re𝐿 is also shown in Figs. 3-2 with dashed line. Due to the leading edge

effects present for plates with low Reynolds number (lower than 104) such as Re𝐿 =

6650 the calculated results for the flat plate is about 20% higher than the theory. This

difference can be captured using the higher order theory where the drag coefficient

includes an additional term and can be written as 𝐶𝐷 = 1.328/
√

Re𝐿 + 2.67/Re
7/8
𝐿

[41].

Results show that increasing the number of cells from from 1.22×106 to 1.68×106

(equivalently, changing the average cell size from 0.09𝜆 to 0.08𝜆) changes the drag

coefficient by only 0.1% and thus using the later cell size gives sufficient resolution

for the simulations. A similar mesh size as the 𝑁 = 1.68 × 106 (𝑉 1/3/𝜆 = 0.08)

for 𝐿/𝜆 = 23.7 has been used throughout this study where for 𝐿/𝜆 = 47.75 and

𝐿/𝜆 = 95.5 , 𝑁 = 3.36 × 106 and 𝑁 = 6.72 × 106 cells are used respectively.

3.4 Benchmark

As an initial benchmark, the problem of a flat plate boundary layer has been solved

with the method explained in Section 3.2; for this the same geometry as Figure 3-1(a)

has been used with a flat no-slip wall instead of the wrinkled one at 𝑦 = 0. The rest

of the boundary conditions are the same as explained. Water has been chosen as

the working fluid with 𝜈 = 10−6 m2/s and the inlet velocity is 𝑊in = 6 m/s. The

corresponding maximum free-stream velocity is found to be 𝑊∞ = 6.56 m/s and the

Reynolds number based on the length is Re𝐿 = 31550, corresponding to a flat plate
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(a)

(b)

Figure 3-2: Effect of (a) the number of mesh elements and (b) the average size of the
mesh elements on the study of flow over sinusoidal riblets. The results are presented
for the calculated drag coefficient on the riblet walls for a geometry with AR = 1.91
and AR = 0 (flat plate), Re𝐿 = 6650 and 𝐿/𝜆 = 23.87. The theoretical results for a
corresponding flat plate is shown with dashed line.
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of length 𝐿 = 0.1 m.

In order to validate the solution, the results from the numerical simulations are

compared with the boundary layer theory. Based on the Blasius solution for the

laminar boundary layer flow over a flat plate under zero pressure gradient, the velocity

profiles along the length of the flat plate are self-similar when expressed in terms of

a similarity variable 𝜂 defined as 𝜂 = 𝑦/𝑧
√

Re𝑧. Using 𝜂 and non-dimensionalizing

the velocity with the free-stream velocity 𝑤/𝑊∞, the velocity profiles collapse on

each other, having a form as shown with a solid line in Figure 3-3(a) as calculated

by Blasius in 1907 [88, 41]. The calculated velocity profile 𝑤/𝑊∞ at the end of the

plate, 𝑧 = 𝐿 (at Re𝐿 = 31550) as scaled using the definition of 𝜂 = 𝑦/𝐿
√

Re𝐿 are

shown on Figure 3-3(a) by the points. As shown, the results of the theory and the

numerical simulation match very well.

Additionally, the computed values of the skin frictional shear stress along the

plate are compared with the Blasius boundary layer theory. According to the Blasius

solution for the flat plate boundary layer, the shear stress at each point along the

plates is given in the form of a non-dimensional local skin friction coefficient 𝐶𝑓 at

each point on the flat wall and is given as [41]

𝐶𝑓 (𝑧) =
𝜏𝑦𝑧(𝑦 = 0, 𝑧)

1
2
𝜌𝑊 2

∞
=

0.664√
Re𝑧

. (3.3)

The local skin friction distribution at the wall 𝜏𝑦𝑧(𝑦 = 0, 𝑧) is also extracted from

the simulations, scaled with 1/2 𝜌𝑊 2
∞ and plotted versus the local Reynolds number

Re𝑧, next to the theoretical line (solid line) in Figure 3-3(b). It is clear that good

agreement with the Blasius result is obtained

3.5 Results

Having established the fidelity and convergence of the simulation technique I now

proceed to use the finite volume code to investigate how the presence and shape of

the sinusoidal riblet structures influence the development of the boundary layer flow.

I first investigate the evolution of velocity profiles in the stream-wise and span-wise
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(a)

(b)

Figure 3-3: Results of flat plate boundary layer calculation using OpenFOAM and
boundary layer theory for a flat plate with Re𝐿 = 31550; (a) Velocity profiles as
a function of the similarity variable 𝜂 = 𝑦/𝑧

√
Re𝑧 at 𝑧 = 𝐿. Maximum difference

between the numerical calculations and theory is 2.7%. (b) Distribution of skin
friction coefficient 𝐶𝑓 (𝑧) along the plate as a function of the local Reynolds number
Re𝑧.
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direction as well as the pressure distribution along the flow direction in Section 3.5.1.

Then I discuss different measures used to calculate the boundary layer thickness and

how the riblets affect the evolution in the boundary layer thickness in Section 3.5.2.

Lastly, I examine the effect of the riblets on the shear stress distribution along the

length of the plate as well as the total viscous drag acting on the surface in Section

3.5.3 and conclude whether drag reducing behaviour can be observed.

3.5.1 Evolution of Velocity and Pressure Field

In contrast to the flat plate boundary layer, with a textured plate the velocity profile

takes various shapes at each cross section depending on the span-wise (𝑥-direction) lo-

cation across the plate. As an example, the velocity profiles at 7 equi-spaced distances

across a single sinusoidal wrinkle with AR = 1.91 at Re𝐿 = 13300 and 𝐿/𝜆 = 47.75

are presented in Figure 3-4. Similar shaped velocity profiles have been previously

reported in both experimental and numerical simulations by Djenidi et al. [83, 73] as

previously shown in Figure 1-15. They reported velocity profiles, further away from

the leading edge at a Reynolds number of Re𝐿 = 7.13 × 104 for a plate of 𝐿/𝜆 = 92

featuring V-shaped grooves with AR = 1.72. Their profiles were comparable with

the key features reported here, showing a retarded (nearly stagnant) flow inside the

grooves (with a local velocity less than 20% of the free-stream velocity) while outside

of the riblets all velocity profiles collapsed onto the same universal profile. Similar

flow retardation and mean velocity profiles have been reported for turbulent flow over

thin rectangular riblets as well as V-groove and U-groove textures of different sizes

[68, 74, 27].

Because the differences in the shape of the velocity profiles vary systematically

with the cross sectional position (𝑥), the velocity profiles at the peak (𝑥 = 𝜆) and

in the trough (𝑥 = 𝜆/2) of the wrinkles are chosen as the representative profiles to

be discussed further as they present the two extrema of the problem. To illustrate

qualitatively the three-dimensional evolution in the flow, contours of the dimensionless

velocity distribution (𝑤/𝑊∞) at the peak and trough for ribbed plates at Re𝐿 =

13300, 𝐿/𝜆 = 47.75 and AR = 1.9 are shown in Figures 3-5(a) and 3-5(b) respectively.
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(a) (b)

Figure 3-4: (a) Contours of dimensionless velocity and (b) velocity profiles
𝑤(𝑥, 𝑦)/𝑊∞ at 7 different locations of 𝑥 = 𝑖𝜆/6 and 0 ≤ 𝑖 ≤ 6, within a single
groove of a wrinkled plate with AR = 1.91 and 𝐿/𝜆 = 47.75 at Re𝐿 = 13300; Here
𝜂 = 𝑦/𝐿

√
Re𝐿 which is the same definition as used in the flat plate boundary layer

theory. The dashed line denotes the theoretical profile from the Blasius solution to
boundary layer equation for a flat plate (AR = 0).

Qualitatively the velocity contours at the peak appear very similar to the evolution

observed along a flat plate boundary layer while the contour distribution in the trough

differs from the peak and depict a thicker boundary layer for which most of the region

inside the groove has velocities lower than 25% of the free-stream velocity.

The evolution in the velocity distributions can be studied more quantitatively by

plotting the spatial changes of the velocity profiles in the flow direction, as shown in

Figures 3-6 and 3-7. Here I non-dimensionalize the position along the plate using a

characteristic diffusive scale 𝜈/𝑊∞ so that the dimensionless position corresponds to

a local Reynolds number Re𝑧 = 𝑊∞𝑧/𝜈. Although the wrinkles (sinusoidal riblets)

result in different velocity profiles at different locations, the main features and the

local differences induced by the riblets can be effectively contrasted by comparing

the velocity profiles at the peak and trough of a single riblet. Figures 3-6 and 3-7

present the velocity profiles at the peak and trough respectively (corresponding to

the velocity contours in Figure 3-5). As I have noted, the stream-wise profiles at the

peak, 𝑤(𝑥 = 𝜆, 𝑦) closely resemble the profiles of flat plate boundary layer theory. In

the trough, the profiles 𝑤(𝑥 = 𝜆/2, 𝑦) look markedly different and reveal a thicker
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boundary layer, with the velocity inside the groove (𝑦 < 0) much lower than the

free-stream velocity. For this case with AR = 1.91 the minimum velocity observed in

each profile i.e. 𝑤min = min(𝑤(𝑥 = 𝜆/2, 𝑦)) is not always zero (as it is for the velocity

profiles at the peak 𝑥 = 𝜆), but can in fact become negative and within a region

between about 2500 < Re𝑧 < 10500, a local re-circulation is observed. The location

of the minimum velocity at each position 𝑧 along the plate is shown in Figures 3-6 and

3-7 by the red circles joined by a line. If there is a re-circulation present, then the line

of minimum velocity is displaced from the wall inside the groove. As a consequence

above this line of points, a stagnation line is also formed inside the grooves and shown

in each figure by the solid green line and triangular symbols.

At three representative local positions (corresponding to local Reynolds numbers

of Re𝑧 = 4000, 8000 and 12000) velocity profiles are extracted and plotted as shown

in Figures 3-8. For Re𝑧 = 4000 and Re𝑧 = 8000 the trough profiles show a region of

weak re-circulation inside the grooves (𝑦 < 0) whereas outside the groove, the velocity

profiles at the peak and at the trough collapse on each other and evolve in similar

fashion toward the outer inviscid flow far from the plate. Further along the plate at

Re𝑧 = 12000, the recirculating region ends, and thereafter the fluid inside the groove

is in an essentially stagnant condition with zero velocity. Outside the groove the two

velocity profiles meet and grow similarly to reach the free-stream velocity.

The detailed computations of the velocity field in the vicinity of the sinusoidal

texture reveal that due to the presence of the wrinkles the flow inside the grooves

feels a strong retardation that ultimately results in this local re-circulating region.

Eventually, as the frictional effects of the walls diffuse further outwards, the recir-

culating region ends and the fluid in the groove becomes almost stagnant inside the

grooves. This stagnant fluid acts like a “cushion” of fluid on which the fluid outside

of the grooves can slide. Similar behaviour is observed for cases with higher Reynolds

numbers and longer lengths (achieved by changing the inlet velocity and the length

of the plate). For example, for riblets of AR = 1.91 with global Reynolds number of

Re𝐿 = 120600 and 𝐿/𝜆 = 95.5, velocity profiles in the trough are presented in Figure

3-9 and as it can be seen the re-circulation starts at a later position (i.e. a higher
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local Re𝑧) and it extends to a larger distance downstream.

However, the aspect ratio AR of the wrinkles also has an effect on whether a

re-circulating region is created or not. The progression of local velocity profiles for

a wrinkled texture with global Reynolds number Re𝐿 = 13300 and 𝐿/𝜆 = 47.75

with a lower aspect ratio of AR = 0.95 (compared to AR = 1.91 in Figure 3-7) is

presented in Figure 3-10. Again one can see flow retardation inside the grooves with

a stagnant layer of fluid and a bounding stagnation line, shown with a green line with

triangular symbols. However for this shallower riblet geometry the minimum velocity

is zero and located at the wall (shown by red line with circular symbols) and thus no

re-circulation develops in the groove (𝑦 < 0).

This local re-circulation in the grooves can also be identified by using other vortex

identification methods such as the scalar measure 𝑄 defined as [101]

𝑄 = Ω : Ω− 𝑆 : 𝑆. (3.4)

This measure based on the the second invariant of the velocity gradient tensor, com-

pares the rotation rate in the fluid (the anti-symmetric part of the velocity gradient

tensor Ω = 1
2
(∇𝑢 − ∇𝑢𝑇 ) ) with the irrotational straining (symmetric part of the

velocity gradient tensor 𝑆 = 1
2
(∇𝑢 + ∇𝑢𝑇 )) in the fluid [101]. For example for

Re𝐿 = 13300 and 𝐿/𝜆 = 47.75 the iso-Q surfaces of 𝑄 = 1206.5 < 𝜔𝑧,w >
2 are shown

in Figure 3-11 where 𝜔𝑧 is the 𝑧 component of the vorticity vector and < 𝜔𝑧,w > is the

magnitude of the mean 𝑧 component of vorticity evaluated at the wall. The observed

vortical structures develop in the same region within the grooves as the local flow

re-circulation that was observed in Figure 3-7.

Close to the leading edge of the plate, the effects of stream-wise pressure gradients

are not negligible and this results in velocity profiles with a higher maximum velocity

than the bulk fluid velocity 𝑊in at the inlet [41, 102]. To evaluate the effects of this

local acceleration near the leading edge, the stream-wise pressure distribution above

one of the troughs (𝑥 = 𝜆/2) at 𝑦 = 0 is shown in Figure 3-12. Figure 3-12(a) shows

the dimensionless pressure distribution 𝑝* (scaled as 𝑝* = 𝑝/1
2
𝜌𝑊 2

∞) as a function
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of the local position along the plate (or local Reynolds number, Re𝑧) for a series of

different aspect ratio wrinkles, keeping the inlet velocity constant. As seen in the

figure, close to the leading edge a favourable pressure gradient (pressure decrease)

is observed. However at an intermediate location along the plate this turns into

an adverse pressure gradient (local stream-wise pressure increase) and ultimately the

pressure increases to an asymptotic value of zero (set by the exit boundary condition).

In the case of the boundary layer over a flat plate (AR = 0), the changes in pressure

disappear after Re𝑧 ≈ 15000, and from there onwards, the classical flat plate boundary

layer approximation of 𝜕𝑃
𝜕𝑧

≈ 0 is a valid assumption to simplify the equations of

motion. However, in the presence of the riblets, the region of favourable pressure

gradient is extended and the pressure decreases to progressively lower values as the

riblet aspect ratio increases. This results in the need for a larger pressure recovery

in the adverse pressure gradient region, and this contributes to the establishment of

local flow re-circulation. Comparing the case of AR = 1.91 from Figures 3-12(a) and

3-7 one can observe that the location of the minimum pressure is consistent with

the location of the start of the re-circulation inside the grooves. In addition the

local region corresponding to the adverse pressure gradient (𝜕𝑃
𝜕𝑧

> 0) corresponds to

the entire recirculating region inside grooves. As the pressure gradient driving this

re-circulating flow slowly decays away down the plate, a cushion of stagnant fluid

is formed, which can be observed in the grooves in Figure 3-7. The computations

in Figure 3-12(a) for different aspect ratios show that the pressure distribution in

case of riblets with AR ≤ 0.95 is only slightly different from AR = 0 (flat) case and

thus results in only a very thin stagnant cushion of fluid. For this configuration this

textured plate does not exhibit any re-circulation in the grooves (cf. Figure 3-9).

However, for aspect ratios of AR & 0.95 the magnitude of the local adverse pressure

gradient is notably enhanced and the recirculating region shown in Figures 3-7 and

3-9 develops.

The evolution of similar pressure distribution can be calculated for the case of

AR = 1.91 and 𝐿/𝜆 = 95.5, and different global Reynolds numbers of 2.5 × 104,

5.1×104 and 2.5×105 (by changing the inlet velocity) and are presented as a function
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(a)

(b)

Figure 3-12: (a) Stream-wise pressure distribution at 𝑥 = 𝜆/2 and 𝑦 = 0 (above a
trough) as a function of the local Reynolds number down the plate for different aspect
ratio riblets, keeping the inlet velocity constant (Re𝐿 = 25000 and 𝐿/𝜆 = 95.5).
Inset shows additional details for small values of Re𝑧 < 103 on a logarithmic scale.
(b) Pressure distribution along the direction of flow on top of a groove at 𝑦 = 0 for
various inlet velocities (and different global Reynolds numbers) and 𝐿/𝜆 = 95.5.
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of the position or local Reynolds number in Figure 3-12(b). Comparing the three cases

shows that the location of the minimum pressure (which coincides with the start of

the recirculating region in the case of AR = 1.91) evolves with changes in the inlet

velocity while the magnitude of the minimum dimensionless pressure stays nearly

constant. I denote the location of the minimum pressure as 𝐿c and seek to find a

scaling for 𝐿c as the flow geometry changes. Since the flow in the boundary layer

close to the leading edge is quasi-steady and inertial pressure effects balance viscous

stresses one expects that the pressure drop is of the same order as the divergence of

the shear stress tensor in the 𝑧 direction inside the grooves. A scaling estimate for

the pressure gradient in this region gives

𝜕𝑝

𝜕𝑧
∼ 𝜌𝑊 2

∞
𝐿c

(3.5)

and the divergence of the shear stress tensor in the 𝑧 direction for the viscous flow

inside the grooves (with characteristic groove length scale 𝜆) can be expressed as

(∇.𝜏 )𝑧 ∼
1

𝜆

(︂
𝜇𝑊∞

𝜆

)︂
. (3.6)

Therefore for the pressure gradient to balance with the shear stress gradient inside

the grooves, it requires

𝜕𝑝

𝜕𝑧
∼ (∇.𝜏 )𝑧 (3.7)

𝜌𝑊 2
∞

𝐿c

∼ 1

𝜆

(︂
𝜇𝑊∞

𝜆

)︂
(3.8)

𝐿c ∼
𝜌𝑊∞𝜆

2

𝜇
(3.9)

or in dimensionless form

𝐿c

𝜆
∼ 𝜌𝑊∞𝜆

𝜇
= Re𝜆. (3.10)

Therefore, the location of the minimum pressure along the plate is expected to
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increase linearly with increases in the inlet velocity. Figure 3-13 shows the calcu-

lated location of the minimum pressure for cases with inlet velocities 0.5 ≤ 𝑊in ≤ 7

m/s (and calculated maximum velocities of 0.6 ≤ 𝑊∞ ≤ 8.2 m/s, respectively) for

wrinkles with AR = 1.91 plotted as a function of 𝜌𝑊∞𝜆/𝜇. It can be seen from the

figure that the calculated location scales linearly with the Reynolds number based

on the wrinkle length scale (𝜆) Re𝜆 = 𝜌𝑊∞𝜆/𝜇 as predicted using the scaling above.

Additional computations indicate that keeping the inlet velocity constant and varying

the wavelength at a constant aspect ratio of AR = 1.9 results in the same scaling as

Equation 3.10 and in Figure 3-13.

Figure 3-13: Location of the minimum pressure for flow over textured surfaces with
various inlet velocities 0.5 ≤ 𝑊in ≤ 7 m/s and the calculated maximum velocities of
0.6 ≤ 𝑊∞ ≤ 8.2 for AR = 1.91.

A principal goal of the present study is to investigate the source of friction re-

duction arising from variations in the texture of the surface. The local shear stress

acting on the surface is directly proportional to the velocity gradient at the wall.

Furthermore, as was seen earlier, the presence of the wrinkled topography provides

a method to alter the curvature of the velocity profiles near the plate, especially in-

side the grooves, thus resulting in lower velocity gradients at the walls (for example,

compare the peak and trough profiles in Figures 3-8). This results in a lower local
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wall shear stress inside the grooves compared with an equivalent flat plate and thus

can result in a net reduction in the local average shear stress. This is especially seen

in the recirculating region and stagnant areas where there is a cushion of almost sta-

tionary fluid. In these regions the velocity gradient is small or close to zero (as seen

in Figure 3-7). However, conversely, the total surface area of a grooved or ridged

surface over which the shear stress is acting increases with the ridge scales and this

can potentially offset or even overwhelm the local friction reduction. I therefore now

proceed to carefully evaluate each contribution to the total skin friction on a wrinkled

surface.

3.5.2 Boundary Layer Thickness and Velocity Decomposition

I have shown qualitatively in Figures 3-6 and 3-7, 3-9 and 3-10, that the presence

of stream-wise sinusoidal riblets along the surface increases the overall thickness of

the boundary layer. To quantify this, I need to develop an appropriate definition of

the boundary layer thickness for flow over riblet surfaces. To do this I generalize the

definition of displacement thickness for a two dimensional flat plate boundary layer

to the integral form shown below [41, 65]

∆*

𝑧 𝛼𝜆
=

1

𝑧 𝛼𝜆

∫︁
𝑆

(︂
1 − 𝑤

𝑊∞

)︂
𝑑𝑆 (3.11)

where ∆* is now a displacement area, 𝛼 is the number of wrinkles modelled in the

simulation, 𝑧 is the local stream-wise location and 𝑆 is the cross sectional area of

the flow in the 𝑥 − 𝑦 plane. This expression for ∆*(𝑧) is defined locally but the

equation can be extended to a global definition by replacing the position 𝑧 with the

total plate length 𝐿. The boundary layer thickness for a flat plate (AR = 0) and three

different wrinkle textures of AR = 0.48, AR = 0.95, and AR = 1.91 are calculated

for cases with various inlet velocities and a fixed 𝐿/𝜆 = 47.75 and plotted on double

logarithmic axes versus the global Reynolds number Re𝐿 = 𝜌𝑊∞𝐿/𝜇 in Figure 3-14.

From the figure, it is clearly seen that increasing the aspect ratio of the riblets (AR)

results in an increase in the thickness of the boundary layer, as expected from the
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velocity contours shown in Figures 3-6 and 3-7.

At higher Reynolds numbers Re𝐿 > 104 when the initial pressure gradient is

negligible, the flat plate results extracted from the computations follow the Re−0.5
𝐿

scaling as calculated by Blasius. However, for lower Reynolds numbers, where the

effects of the initial pressure gradient are non-negligible along the entire length of the

plate, the data follows the scaling found from the higher order boundary layer theory

results presented by van de Vooren and Dijkstra [103], which can be fitted to a power

law proportional to Re−0.44
𝐿 .

Figure 3-14: Boundary layer thickness for different Re𝐿 and different wrinkle aspect
ratios; in all cases 𝐿/𝜆 = 47.75 and for each profile the change in the Reynolds number
is due to systematically changing the inlet velocity 𝑊in which results in changes of
the calculated maximum velocity 𝑊∞.

In addition to the displacement area, a momentum area (the equivalent of the

classical momentum thickness for a boundary layer that now varies in both 𝑥 and 𝑦)

can be calculated using the following expression [41, 65]

Θ

𝑧 𝛼𝜆
=

1

𝑧 𝛼𝜆

∫︁
𝑆

𝑤

𝑊∞

(︂
1 − 𝑤

𝑊∞

)︂
𝑑𝑆. (3.12)

Similar to displacement area, the above definition is local and it can be extended to
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a global definition by replacing the position 𝑧 with the length of the plate 𝐿.

Keeping the inlet velocity constant, the variation of the displacement area (∆*)

and momentum area (Θ) locally along the flow direction (𝑧) are plotted in Figure 3-15

for wrinkles with various aspect ratios, showing an increase in the local displacement

area of the boundary layer as AR increases. For all wrinkled cases studied this value

is larger than for a flat plate with AR = 0 but the results slowly converge as Re𝑧

increases beyond 104. This provides a clear indication that the effects of the wrinkled

texture on the boundary layer size decay away as the flow progresses along the plate.

In the case of the momentum area, again the local value of the momentum area for

wrinkled walls is always larger than the flat wall, but as Re𝑧 increases beyond 104,

the data once again converges to the flat plate results.

The shape factor 𝐻 = ∆*/Θ, is used frequently in aerodynamics as an indicator

of boundary layer separation and re-circulation [41, 104, 65]. For flow over a flat

plate in the laminar regime, 𝐻 < 2.65 and at higher Reynolds numbers it reaches the

value of 𝐻 = 2.65 as given by the Blasius solution. The shape factor of the evolving

boundary layer profiles along the length of the plates are shown in Figure 3-16 for

wrinkles with different aspect ratios as a function of the local Reynolds number 𝑅𝑒𝑧

(corresponding to Figure 3-15). The introduction of stream-wise wrinkles results in an

increase in the local shape factor of the viscous boundary layer and as the aspect ratio

of the wrinkles progressively increases the shape factor 𝐻 increases. This indicates a

retardation in the local velocity close to the wall compared with the flat wall (𝐻 < 4)

[65], but no re-circulation for 0 < AR < 1.5. For the case with the highest aspect

ratio (AR = 1.91), the shape factor reaches a peak value of 𝐻 = 4.5 at Re𝑧 ∼ 4000

and then as the flow progresses along the plate 𝐻 monotonically decays to a nearly

constant value. The region with local Reynolds number of 3000 6 Re𝑧 6 8000 where

the shape factor goes through an increase and then a decrease corresponds to the

re-circulation region documented earlier in Figure 3-7. At distances further down the

plate the amplified value of the shape factor (𝐻 > 2.65) is a quantitative indication

of fluid flowing over a cushion of stagnant fluid.

It is of interest to understand the differences between the calculated velocity pro-

145



(a)

(b)

Figure 3-15: Evolution of (a) the local displacement area (∆*) and (b) the local
momentum area (Θ) along the plate (plotted in the form of a local Reynolds number
Re𝑧) for wrinkles with different aspect ratios 0 < AR < 2 keeping the length (𝐿/𝜆 =
191) and inlet velocity constant 𝑊in = 1 m/s. For these conditions, calculations for
a flat plate (AR = 0) give 𝑊∞ = 1.33 m/s.

146



Figure 3-16: Shape factor (𝐻 = ∆*/Θ) of the velocity profile in a viscous boundary
layer for different aspect ratio wrinkles corresponding to Figure 3-15.

files obtained for flow over wrinkled surfaces with different aspect ratios and the

corresponding Blasius solution for the flat plate at every location of the riblet cross

section. As seen earlier, far from the surface of the riblets, the velocity profiles at dif-

ferent cross sectional locations collapse onto the same profile and behave similarly to

the Blasius solution (Figure 3-4). Additionally, as one moves further down the plate,

the effects of the riblets on the velocity profile are confined to the creation of a cush-

ion of stagnant fluid inside the grooves and are barely noticeable outside the grooves.

In order to examine the difference between the classical two dimensional boundary

layer and the current computations, the velocity contours at each cross section are

decomposed into two additive contributions; the first contribution assumes the flat

plate boundary layer solution of Blasius holds at every location in the cross section

and is here denoted by 𝑤
BL

(𝑥, 𝑦). The second contribution is obtained from the dif-

ference between the actual velocity profile 𝑤(𝑥, 𝑦) and the flat plate boundary layer

solution at every cross sectional location, denoted by ∆𝑤(𝑥, 𝑦) = 𝑤(𝑥, 𝑦)−𝑤
BL

(𝑥, 𝑦);

therefore:
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𝑤(𝑥, 𝑦)

𝑊∞
=
𝑤

BL
(𝑥, 𝑦)

𝑊∞
+

∆𝑤(𝑥, 𝑦)

𝑊∞
. (3.13)

The velocity gradient and the shear stress (proportional to the velocity gradient at

the wall or 𝑛 = 0) can thus also be decomposed into two parts:

𝜕𝑤

𝜕𝑛
=
𝜕𝑤

BL

𝜕𝑛
+
𝜕∆𝑤

𝜕𝑛
→ 𝜏 = 𝜏

BL
+ 𝜇

𝜕∆𝑤

𝜕𝑛
(3.14)

where 𝜏
BL

is the wall shear stress on the wrinkled wall, assuming the flat plate bound-

ary layer solution holds at every location. This decomposition can be used to under-

stand the increase or reduction in the local shear stress due to the periodic texture of

the wall and illustrative examples of this decomposition are presented in Figures 3-17,

3-18 and 3-19. If the flat plate solution was the solution everywhere to the velocity

field (𝑤
BL

), then the gradient of the velocity field normal to the wall (𝑛) evaluated at

the wall (𝑛 = 0 or 𝑦 = 𝑦s) could be found from the expression

𝜕𝑤
BL

𝜕𝑛

⃒⃒⃒⃒
𝑛=0

=

√︁
1 +

(︀
𝜋𝐴
𝜆

sin
(︀
2𝜋
𝜆
𝑥
)︀)︀2 𝜕𝑤

BL,f

𝜕𝑦

⃒⃒⃒⃒
𝑦=𝑦s

(3.15)

where 𝑤
BL,f

is the Blasius solution on the flat plate. The shear stress at the wall is

defined as 𝜏 = 𝜇 𝜕𝑤/𝜕𝑛|𝑛=0, thus

𝜏
BL

=

√︁
1 +

(︀
𝜋𝐴
𝜆

sin
(︀
2𝜋
𝜆
𝑥
)︀)︀2

𝜏
BL,f

(3.16)

where 𝜏
BL,f

is the wall shear stress for the flat wall as calculated by the Blasius solution.

Since the first trigonometric term in the expression in Equation 3.16 is always larger

than or equal to unity, the shear stress at the wall of a textured surface (in this case

a sinusoidally wrinkled surface) would be higher than that of the flat plate if the

Blasius solution were to hold everywhere for flow over a riblet surfaces (𝜏
BL
> 𝜏

BL,f
).

Therefore, any local decrease in the shear stress on the wrinkled plate (compared with

the flat plate) will be dependent on the sign of the last term in Equation 3.14. This

decomposition can be used to explain how wrinkle size affects changes in the viscous

shear stress compared to the stress distribution above a flat plate at the same local
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Reynolds number Re𝑧. For example the cross sectional velocity contours for three

different wrinkle sizes (AR = 0.48, AR = 0.95, and AR = 1.91) with Re𝑧 = 4000 and

𝑧/𝜆 = 14.32 are shown in Figures 3-17, 3-18 and 3-19. In each case the wrinkles have

the same wavelength while only the amplitude of the wrinkles is changed. In all the

figures, the 𝑦 direction is normalized with the constant wavelength (𝜆) of the wrinkle.

The most prominent differences between the actual velocity profiles shown in Fig-

ures 3-17(a), 3-18(a) and 3-19(a) and the locally-shifted form of the Blasius solution

𝑤
BL

(Figures 3-17(b), 3-18(b) and 3-19(b)) is inside the grooves where the velocity

boundary layer is thicker and the flow is almost stagnant close to the wall (as was also

demonstrated earlier). Therefore, the velocity defect ∆𝑤 (shown in Figures 3-17(c),

3-18(c) and 3-19(c)) shows non-zero and negative values which results in a lower veloc-

ity gradient in the grooves compared with 𝜕𝑤
BL
/𝜕𝑛|𝑛=0 inside the grooves. Another

region of difference is at the peak of the riblets. Here the difference is not as clearly

discernible, but is clearly non-zero and yields positive values of the velocity defect

∆𝑤 (with magnitudes lower than those observed inside the grooves). This results in a

slightly higher velocity gradient at the peak of the riblets compared to 𝜕𝑤
BL
/𝜕𝑛. The

combination of these features results in a substantially lower local shear stress inside

the grooves, plus a slightly higher shear stress at the peak of the riblets. Similar

conclusions have been reported previously (through DNS results as well as experi-

ments) indicating that the velocity gradients, and thus local shear stress, observed at

the peaks and troughs of riblet structures are higher and lower respectively than the

results for the flat plate [25, 70, 47].

Based on Equation 3.16 an increase in the aspect ratio (AR = 2𝐴/𝜆) of the

wrinkles would result in an increase in the wall shear stress calculated by using just

the Blasius solution for the riblets (𝜏
BL

) without correction. However when examining

the actual velocity defect structure in Figures 3-18(c), 3-17(c), and 3-19(c) one sees

a stronger negative velocity gradient inside the grooves which, from Equation 3.14,

can result in a reduction in the net local shear stress evaluated at each cross section

along the plate.
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3.5.3 Wall Shear Stress and Drag

Finally, I investigate the ability of the riblets to reduce the total drag force exerted

on the wall. To do this I evaluate the average skin friction coefficient 𝐶𝑓 (Figure

3-20(a)) and the total integrated drag force 𝐷 (Figure 3-20(b)) with respect to the

flat surface. I consider cases with different aspect ratios (0 < AR < 2) and constant

𝐿/𝜆 = 47.75, as a function of the global Reynolds number Re𝐿 (by using different inlet

velocities 𝑊in and computing the maximum calculated velocity 𝑊∞) for each case.

If the stress tensor at the wall and local wall normal vector evaluated at a position

𝑥s, 𝑦s on the riblet surface are defined as 𝜏w(𝑥s, 𝑦s; 𝑧) and 𝑛w(𝑥s, 𝑦s; 𝑧) respectively

(where 𝑦s = −𝐴
2

+ 𝐴
2

cos(2𝜋
𝜆
𝑥s)), then the total drag force on a plate of length 𝐿 and

the average skin friction coefficient are defined as

𝐷 =

∫︁ 𝐿

0

[ 𝜏w(𝑥s, 𝑦s; 𝑧).𝑛w(𝑥s, 𝑦s; 𝑧) ] .𝑒𝑧 𝑑𝐴𝑤 (3.17)

and

𝐶𝑓 =
𝐷

1
2
𝜌𝑊 2

∞ 𝐴w

(3.18)

respectively, where 𝐴𝑤 is the wetted area of the riblet wall. A reduction in the skin

friction coefficient is defined as ∆𝐶𝑓 = 𝐶𝑓 − 𝐶𝑓,0 where 𝐶𝑓,0 is the skin friction

coefficient of a flat plate and the reduction in total drag is defined as ∆𝐷 = 𝐷 −𝐷0

where 𝐷0 is the total drag on the flat surface. Note that negative values in both

plots correspond to skin friction coefficient reduction and drag reduction respectively.

The results in Figure 3-20 show that the presence of the riblets reduces the average

skin friction coefficient on the wall in nearly all of the riblet cases considered. At the

same value of the global Reynolds number (Re𝐿) increasing the aspect ratio (AR)

results in a progressively larger decrease in the average skin friction coefficient. This

also confirms the observations based on consideration of the velocity decomposition

that the negative velocity defect observed inside the grooves (Figures 3-17(c), 3-18(c)

and 3-19(c)) results in a reduction in the average shear stress compared to the flat

plate. As the aspect ratio of the wrinkles increases, the increase in the magnitude of

the negative velocity defect ∆𝑤 < 0 results in a higher reduction in the average skin

153



friction coefficient.

(a)

A
B

C

(b)

Figure 3-20: Reduction in (a) the skin friction coefficient (𝐶𝑓 ) and (b) changes in the
total drag (𝐷) for wrinkles of different aspect ratios, fixed plate length 𝐿/𝜆 = 47.75
and different Re𝐿 (varying the inlet velocity). Points A, B and C correspond to the
same points shown below in Figure 3-23.
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However, reduction of the average skin friction coefficient alone cannot define

whether a textured riblet surface is drag reducing or not because the total area of

the wetted surface is also increased through the presence of the wrinkles. The total

wetted surface area of the textured plate is larger than a flat surface and increases

with AR; thus for a textured surface to be drag reducing the reduction in the skin

friction coefficient due to the riblets must more than offset the increasing wetted area.

For the results shown in Figure 3-20(b) at 𝐿/𝜆 = 47.75 the only cases that appear

to show a net drag reduction are the cases with aspect ratios of AR = 0.48 and

AR = 0.95 and global Reynolds number of Re𝐿 = 13300. The rest of the cases show

substantial increase in the total drag when compared to an equivalent flat surface.

To better understand these drag reducing cases and how changes in the length of

the plate (Re𝐿) and aspect ratio (AR) interact to affect the total drag, I consider the

following situations: I keep the inlet velocity constant (thus keeping 𝑊∞ constant)

and extend the calculations to plates of longer total lengths than those used in the

computations presented in Figure 3-20. I consider a maximum plate length of 𝐿/𝜆 =

191 and an inlet velocity of 𝑊in = 1 m/s (thus corresponding to a maximum global

Reynolds number of Re𝐿 = 5 × 104) for 5 different aspect ratios of 0 < AR < 2.

The results are shown in Figure 3-21. I first consider the distribution of the wall

shear stress on the wall as a function of different aspect ratios at different positions 𝑧

along the length of the plate corresponding to different values of the local Reynolds

number, Re𝑧. From steady two-dimensional boundary layer theory I know that the

local shear stress on the wall decreases along the plate as 𝜏
BL

∼ Re−1/2
𝑧 (Equation

3.3). For reference, I plot this result as the black dashed line in Figure 3-21(a). For

a ribbed plate, the wall shear stress is now a function of lateral position 𝑥s, 𝑦s on the

surface as well as distance down the plate. I therefore define the dimensionless local

average shear stress distribution at any distance 𝑧 along the plate as

𝜏 *(𝑧) =
1

1
2
𝜌𝑊 2

∞

1

ℓC

∫︁
C

𝜏w(𝑥s, 𝑦s; 𝑧).𝑛w(𝑥s, 𝑦s; 𝑧).𝑒𝑧 𝑑ℓ (3.19)

where C is the riblet contour at each stream-wise cross section, ℓC is the total length
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of the riblet contour (ℓC =
∫︀
C
𝑑ℓ) and 𝑑ℓ is the line element along the rib transverse

to the flow direction. In Figure 3-21(a) I show the evolution in the local average shear

stress along the length of the plate for wrinkled cases with 0 < AR < 2 and plates

with Re𝐿 = 4 × 104 and 𝐿/𝜆 = 191 compared with the shear stress on the flat plate.

It is clear that the presence of the wrinkles changes the evolution in the shear stress

distribution along the flow direction. As seen in this figure, close to the leading edge

of the plate, the presence of wrinkles does not reduce the large initial shear stress

that results from the sudden generation of vorticity at the leading edge. However

as the local Reynolds number Re𝑧 increases along the plate, the wrinkles retard the

flow in the grooves and thus reduce the local average shear stress at the wall. The

case of AR = 1.91 shows a region with almost constant average shear stress between

5000 < Re𝑧 < 12000 which also corresponds with the re-circulation region presented

earlier in Figure 3-7. Smaller aspect ratios do not show any re-circulation and thus

there is no region with constant shear stress distribution.

At lower local Reynolds numbers Re𝑧 6 103 (close to the leading edge), the local

average shear stress for all the riblet cases is nearly the same as the shear stress

distribution on the flat plate. However, as established above, increasing the aspect

ratio of the riblets results in an increase in the wetted area and therefore this results

in a substantial increase in the total drag for plates with AR > 0.48 and global

Reynolds numbers of Re𝐿 < 8000 (and nearly no change in the total drag for the case

of AR = 0.48). However, further down the plate, as the cushion of stagnant fluid

starts to form inside the grooves, the reduction in the local shear stress can offset the

increase in the wetted area and this results in a net reduction of the total drag.

As I show in Figure 3-21(b) it becomes clear that riblets have the potential of

reducing drag provided the plate is longer than a minimum critical length Re𝐿,c(AR)

(which can be determined from where each of the curves cross the value of zero on

the ordinate axis). Secondly, the sharpness of the riblets plays an important role in

controlling the extent of total drag reduction achieved. Higher aspect ratio wrinkles

provide greater local shear stress reduction but this is offset by the large increase in

wetted area for very high aspect ratios. For the range of global Reynolds number Re𝐿
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(a)

(b)

Figure 3-21: (a) Evolution of the local transverse average of dimensionless wall shear
stress distribution (Equation 3.19) for the same inlet velocity and different aspect ratio
riblets. (b) Increases (∆𝐷 > 0) and reductions (∆𝐷 < 0) in the total drag force (𝐷)
for wrinkled plates of different total length of the range 0 < 𝐿/𝜆 < 191 (increasing
global Reynolds number Re𝐿) for various aspect ratio wrinkles 0 < AR < 2, keeping
the wavelength 𝜆 constant.
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studied, the case with AR = 0.95 was found to provide the highest reduction in the

total drag. I can illustrate this most clearly by holding the global Reynolds number

Re𝐿 and riblet spacing 𝐿/𝜆 constant and calculating the total drag reduction as a

function of the aspect ratio of the riblets. I illustrate this in Figure 3-22 for three

different values of Re𝐿 showing that for each of the cases there is an optimum aspect

ratio providing the largest possible drag reduction. Quite generally I find that the

total frictional drag reduction (corresponding to ∆𝐷/𝐷0 < 0) at a constant global

Reynolds number Re𝐿 and 𝐿/𝜆 is first enhanced as the aspect ratio of the wrinkles

increases, then reaches an optimum and as the aspect ratio increases still further

the extent of drag reduction decreases and eventually shifts to a net drag increase.

For Re𝐿 > 104 the optimum aspect ratio is slightly less than unity, but after that

the optimum aspect ratio is close to AR ≈ 1. Previous wind tunnel experiments by

Walsh with V-groove riblets of AR = 1 and AR = 2 at constant free-stream velocity

also show that riblets with AR = 1 result in a larger drag reduction compared to

AR = 2 [37].

A similar trend as discussed above can be observed for the other data points

presented in Figure 3-20(b) as the plate length is increased. To illustrate that, at

a constant aspect ratio of AR = 1.9 (which did not show any drag reduction for

the case of 𝐿/𝜆 = 47.75) the evolution in the total drag force for plates of various

lengths (1 < 𝐿/𝜆 < 191) with different inlet velocities are presented in Figure 3-23.

As I discussed in Section 3.5.1, changing the inlet velocity results in a change in the

pressure distribution (Figure 3-12(b)) and thus alters the location of the minimum

pressure inside the grooves (Figure 3-13). For short plates, the presence of the wrinkles

leads to an overall increase in the frictional drag, but in each case a net drag reduction

is observed when the length of the plate exceeds a critical value. However, due

to the differences in the pressure distribution among the cases with different inlet

velocities, the cross over from drag increase to drag decrease occurs at a longer plate

length as the free-stream velocity (and thus Re𝜆) is increased. Points A, B and C

indicated on the figure correspond to the points A, B and C noted in Figure 3-20(b)

(Re𝐿 = 1 × 104, 2.4 × 104, and 5.9 × 104 respectively) where for a fixed plate length
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Figure 3-22: Drag reduction curve for plates with global Reynolds number of Re𝐿 =
15000 and plate length 𝐿/𝜆 = 58.82, global Reynolds number Re𝐿 = 30000 and
plate length 𝐿/𝜆 = 117.64, and global Reynolds number Re𝐿 = 45000 and plate
length 𝐿/𝜆 = 176.46 (same inlet velocity 𝑊in = 1 m/s and the same wavelength
𝜆 = 2𝜋/3 × 10−1 mm) as a function of the aspect ratio of the riblets.

of 𝐿/𝜆 = 47.75 only a net drag increase was observed.

3.6 Conclusions

In this chapter I have examined in detail the effects of sinusoidal riblets on the spatial

structure and evolution of a steady viscous boundary layer. The presence of the

riblets results in a local flow retardation inside the valleys of the riblets and even

the possibility of a local flow reversal. Riblets increase the average thickness of the

boundary layer as well, resulting in an increase in the shape factor of the boundary

layer. The presence of riblets also changes the pressure distribution close to the

leading edge of the plate when compared with the flat boundary layer. This flow

retardation creates a cushion of almost stagnant fluid inside the riblets upon which

the fluid flowing above the plate can slide. This creates a non-uniform shear stress

distribution laterally across the plate and a local average shear stress lower than the
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A
B

C

Figure 3-23: Reduction in total drag for wrinkled plates of different length Re𝐿,
AR = 1.9 and inlet velocities of 𝑊in = 1, 2 and 5 m/s corresponding to Re𝜆 =
278.55, 534.07 and 1256.64. Points A, B and C correspond to the same points in
Figure 3-20(b).

corresponding flat plate. For sufficiently long plates, this can result in a reduction

of the total viscous drag force acting on the surface compared with flat surfaces,

provided the aspect ratio of the wrinkles is not so large that the increase in wetted

area offsets the local reduction in local wall shear stress 𝜏w(𝑥s, 𝑦s) at each point. By

careful computation of the local skin friction coefficient 𝐶𝑓 (𝑥s, 𝑦s) as well as the total

integrated frictional drag force𝐷, I have shown that the reduction in drag is a function

of the aspect ratio of the riblets. For each Re𝐿 and 𝐿/𝜆 there is an optimum aspect

ratio where the highest drag reduction can be achieved. For fully-developed viscous

boundary layers at Re𝐿 & 104 (so that leading edge effects are not important), it

appears that aspect ratios of order unity produce the maximum reduction in drag,

which can be as large as ∆𝐷/𝐷0 ≈ −20% at Re𝐿 ≈ 4 × 104.

The drag reduction results presented in Figure 3-21(b) which have been plotted

as a function of the Reynolds number (based on the total length of the plate) can

now be replotted based on the scaled Reynolds number as defined in Chapter 2
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and compared with the results in Figure 2-13. The re-scaled results are shown in

Figure 3-24. The results here agree very well with the trend previously presented in

Figure 2-13 showing that for riblets to be drag reducing, the scaled Reynolds number.

Re𝐿(𝜆/𝐿)2, needs to be less than a maximum threshold. The accompanying results

shown in Figure 3-22 also confirm the non-monotonic behaviour that was shown in

Chapter 2. However, the full numerical simulations presented in this chapter are able

to capture drag reductions larger than those the theory predicts. In addition, these

simulations show that riblets with AR > 1.5 are also able to reduce the drag force

while the theoretical calculations were not able to capture this.

Figure 3-24: Increases (∆𝐷 > 0) and reductions (∆𝐷 < 0) in the total drag force
(𝐷) for wrinkled plates of different total length of the range 0 < 𝐿/𝜆 < 191 plotted
as a function of the scaled Reynolds number Re𝐿(𝜆/𝐿)2 as defined in Chapter 2 for
various aspect ratio wrinkles 0 < AR < 2, keeping the wavelength 𝜆 constant.

Thus, one can see that the asymptotic theory in itself is able to predict the trends

in the changes in the frictional drag force due to presence of the riblets, however the

trends and ranges are very conservative compared to the results that full three di-

mensional numerical simulations of steady viscous flow over riblet surfaces can offer.

Also, these detailed computations as well as the trends captured in the theoretical

calculations presented in the previous chapter, help rationalize why previous experi-
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mental measurements have reported conflicting conclusions regarding drag increases

or decreases and will provide guidance for selecting optimal riblet sizes and spacings

for specific design applications requiring minimized frictional drag.
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Chapter 4

Taylor-Couette Flow with Riblet

Covered Rotors in the Laminar

(Couette) Regime

4.1 Introduction

In the previous chapters, the concept of drag reduction using riblet surfaces was

considered in the context of flat plate boundary layers. The effect of the riblets

were discussed theoretically using an extension of classical boundary layer theory to

three dimensions. Since this asymptotic theory has its own limitations discussed in

Chapters 2, the flow was also explored numerically using wrinkled textures as a model

riblet covered surface in Chapter 3.

In both Chapters 2 and 3, I showed that in boundary layer flows (whether over

smooth plates or riblet-textured plates) velocity profiles, the pressure distribution as

well as the shear stress distribution are a function of the stream-wise position along

the plate and ultimately the total drag reduction is directly dependent on the total

length of the plate considered, as well as the wavelength of the riblets, and their

aspect ratio AR. In addition, the extension of classical boundary layer theory to

riblet surfaces, neglecting the role of the pressure gradient, offers a starting point in
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understanding the possibility of achieving drag reduction in high Reynolds number

laminar boundary layer flows. However, considering the full Navier-Stokes equations

(through a comprehensive numerical calculations) shows that the leading edge of the

plate and the additional favourable pressure gradient close to the leading edge can

help enhance the drag reduction achieved by creating a nearly stagnant cushion of

fluid inside the grooves where fluid slides on itself, thus resulting in a much smaller

local shear stress inside the grooves and hence a reduction in the total integrated drag

force on a plate of length of length, 𝐿.

However, due to this dependence on the stream-wise location, it is difficult to

design experiments that would allow for robust and unambiguous measurement of

flow profiles, local shear stress, and frictional drag. Thus in this chapter, I consider

a well defined and fully developed flow in which the velocity and frictional drag can

be accurately measured in the lab. While channel or pipe geometries can offer a fully

developed flow, the Reynolds number dependence of the entrance length results in

difficulty in making accurate measurements of the total frictional drag. Therefore,

here I employ the flow between two rotating concentric cylinders, famously known as

Taylor-Couette flow [105]. I use this flow to investigate the effect of riblets geometry

on the changes of the frictional drag (in this case in the form of frictional torque on

the inner rotor) and compare the results of experiments with a numerical model of

the flow and discuss the physics behind the changes in the torque due to the change

in geometry.

The Taylor-Couette set-up has previously been used for studying drag reduction

using a number of different passive and active methods, specifically in the turbulent

regime. Hall and Joseph used riblets on the inner cylinder of the Taylor-Couette cell to

study the effect of riblets with AR = 2 and 𝜆 = 114 𝜇m with different Taylor Couette

set-ups and were able to observe up to 5.1% reduction in drag [106]. Greidanus and co-

workers [107] used a Taylor-Couette cell with riblets of 𝜆/𝑑 = 0.012 and AR = 0.92 to

study the reduction in the shear stress on the cylinders with 103 < Re𝑑 < 105 and were

able to observe a reduction in the shear stress similar to the drag reduction reported

previously by Bechert [40] in channel flow setting as well has those reported by Hall

164



Figure 4-1: Experimental results of Greidanus et. al (103 < Re < 106) [107] (symbols
marked by "current study"), and Hall and Joseph (103 < Re < 105) [106] of drag
reduction using riblets in Taylor-Couette flow compare with the results drag reduction
tests of Bechert et. al [40] using riblets in the Berlin oil channel with zero pressure
gradient and driven by a drive shaft corresponding to 500 < Re𝜏 < 5000 where Re𝜏 is
the shear Reynolds number defined as Re𝜏 = 𝜌𝑢*𝐻/𝜇 where 𝐻 is the channel height
[58]. 𝑠+ is the riblet spacing (wavelength) in the wall units which was defined earlier
in Chapter 1. The figure is reproduced from Reference [107].

and Joseph [106] as reprinted in Figure 4-1. Zhu and co-workers also performed a

set of direct numerical simulation to understand the changes in the turbulent Taylor-

Couette flow in presence of riblets [108]. They reports that the presence of the riblets

in the Taylor Couette flow enhanced the transport of momentum through plume

ejections happening at the tip of the riblets. In their calculations, the riblet surfaces

increased the value of torque compared with the smooth case. However, they foresee

the possibility of seeing a reduction in torque, if there are no plume ejections from

the tips and the grooves impeding the Taylor vortices [108].

More recently, Rosenberg and co-workers used a Taylor-Couette setup with a

radius ratio of 0.93 with a rotating outer cylinder and fixed inner cylinder with 6000 <

Re < 9000 to study the effect of liquid infused surfaces on drag reduction using

grooved textures on the inner cylinder with spacing of 100 𝜇m and height of about

80 𝜇m which were filled with various oils and they were able to see a maximum drag

reduction of 14% [109].
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In this chapter, I will use the Taylor-Couette flow especially in the laminar (Cou-

ette regime) to discuss the change in the frictional torque on the inner cylinder as a

result of the stream-wise V-groove riblets as a function of the speed of rotation. First,

I will take a look at the historical and theoretical background of Taylor-Couette flow

as well as how the riblets are added to the flow geometry. Then the experimental

setup used is discussed in Section 4.5. Subsequently in Section 4.6, the results of

experiments in the laminar (Couette regime) are presented and compared with axi-

symmetric periodic simulations of the riblets in the Taylor-Couette flow. Lastly, in

Sections 4.7 and 4.8 I will discuss the effect of the changes in the geometry of the

riblets and the Taylor-Couette cell on the changes observed in the torque and provide

a theoretical explanation for the experimental and numerical results.

4.2 Taylor-Couette Flow: Historical Background

The original effort in studying the flow between two rotating concentric cylinders can

be traced back to Newton when he considered the circular motion of the fluids [105].

But Max Margules, an Austrian physicist, is one of the first people to propose using

rotating cylinders as a method of measuring the viscosity of fluids by determining the

torque on the inner cylinder of the set-up as a function of rotation rate (assuming the

fluid adheres to the walls of the cylinders) [110, 105].

Then, nearly at the same time, French physicist Maurice Couette and British Sci-

entist Henry Reginald Arnulph Mallock independently made similar viscometers, with

the difference that Couette’s set-up consisted of a rotating outer cylinder and fixed

inner cylinder, while Mallock’s set-up allowed for both the inner and outer cylinder

to rotate. Couette seems to have known about Margules work and inspired by it tried

to measure the viscosity of fluid by using a similar set-up with various configurations,

first rotating the outer cylinder and keeping the inner cylinder stationary, and then

rotating the inner cylinder and keeping the outer cylinder stationary [105, 111, 112].

Mallock originally used his device to measure the viscosity of water and then, in a

later work, he used the device to investigate the stability of the fluid motion between
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(a) (b) (c)

Figure 4-2: Early scientists pioneering the study of flow between concentric cylinders;
(a) Max Margules [105], (b) Henry Reginald Arnulph Mallock [105], (c) Maurice
Couette [113].

the two concentric cylinders [111, 112]. There he noticed that when the inner cylinder

is rotating and the outer cylinder is stationary, the flow cannot sustain a laminar

behaviour and the torque on the inner rotor did not exhibit a linear relationship with

the rotation rate any more [110, 105, 112]. Mallock’s experiments were all conducted

in the ranges of velocities for which the base unidirectional flow is unstable and thus

he incorrectly concluded that the flow is always unstable [105, 112].

The first person who attempted to explain this instability is Rayleigh who consid-

ered the stability of fully developed unidirectional motion in absence of the viscosity

and showed that the flow is stable as long as the square of the angular momentum

per unit mass of the fluid increases outward monotonically [105].

On the other hand, Couette used a set of concentric cylinders as a viscometer

to measure the viscosity of different fluids [105, 113]. In Couette’s setup, the inner

cylinder was kept stationary and the outer cylinder rotating. Due to the configuration,

Couette only noticed two flow regimes, one laminar which can be calculated from the

integration of the equations of motion (and this solution is now widely known as

Couette flow) and another regime where the flow did not match the solution of the

steady axisymmetric equations of the motion [105].
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Later, G.I. Taylor studied the instability of the flow between the concentric cylin-

ders with both cylinders rotating and in his famous paper [114] he proposed a criteria

for the transition between the Couette flow and the axisymmetric vortices which are

now known as Taylor vortices [114]. Taylor solved the equations for the flow instabil-

ity in the limit of a small gap Taylor-Couette cell (the ratio of the radius of the inner

cylinder to the radius of the outer cylinder close to 1) to simplify the equations and

compared the results of the analysis with his experiment [114].

Later, other scientists such as Goldstein [115] and Chandrasekhar [116, 117, 118]

theoretically and numerically studied the instability of the flow between rotating

cylinders and Davey [119] extended the studies to the growth of the Taylor vortices

and later, jointly with DiPrima and Stuart [120], investigated instability of the Tay-

lor vortices that would lead to initiation of other forms of instabilities. Donnelly and

Schwarz [121] performed experimental investigations on the stability of flow between

two cylinders and discussed the results based on the observed wavelengths and am-

plitudes of the instabilities as well as the wave forms observed in the experiments.

In their experimental work, they noticed that using a wider gap Taylor-Couette cell

ensured stability of the flow over a wider ranges of Taylor numbers [121]. As an

appendix to the paper published by Donnelly and Schwarz, Roberts offered a math-

ematical method to predict the location of transition from Couette flow to Taylor

vortex regime and the table provided there covers a wide range of Taylor-Couette

set-ups and will be referred to later in this chapter [122]. Others, such as Nickerson

[123], Bligen and Boulos [124], and Eagles [125] studied the evolution in the torque in

Taylor-Couette cells in Taylor vortex and wavy Taylor vortex regimes. In addition,

Swinney and co-workers [126, 127, 128, 129, 130, 131] throughout the years have per-

formed experiments in various regimes of Taylor-Couette flow, offering a phase map

of the flow types in their 1986 paper as a function of the Reynolds number based on

the rotation of the inner and outer cylinder as defined in the section 4.3 [132] as well

as discussions on the physics behind the forms of instability. Grossmann, Lohse and

other co-workers have also been extending the work on the turbulent Taylor-Couette

flow both numerically and experimentally [133, 134, 135, 108, 136].
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4.3 Taylor-Couette Flow: Theory

Schematic of the geometry bounding this flow is shown in figure 4-3(a), where both

cylinders can rotate independently. Depending on how the cylinders rotate with

respect to each other, various types of flow and instabilities can be observed and

have been reported in literature using phase maps such as the one shown in Figure

4-3(b) as a function of the Reynolds number based on the inner and outer cylinders

[132, 135]. If the radius and the angular velocity of the inner cylinder and the outer

cylinder are 𝑅i, Ωi, 𝑅o, and Ωo respectively, then the Reynolds number for the flow

based on the inner and outer cylinders and the gap size are defined as

Re𝑑,i =
𝜌𝑅iΩi(𝑅o −𝑅i)

𝜇
(4.1)

Re𝑑,o =
𝜌𝑅oΩo(𝑅o −𝑅i)

𝜇
(4.2)

where 𝑑 = 𝑅o − 𝑅i is the gap between the two cylinders. (In some of the previous

literature, the Reynolds number is defined based on the radius of the inner and

outer cylinders instead of the gap size) Using these two Reynolds numbers one can

determine the type of the flow using the Taylor-Couette flow phase map as originally

put together by Andereck et al. [132, 135].

In addition to the Reynolds number which defines the dynamics of the flow, two

purely geometric dimensionless groups are used to define the geometry of the cell.

The first one, the radius ratio, 𝜂, is defined as

𝜂 =
𝑅i

𝑅o

(4.3)

and offers a measure of the curvature of the geometry of the Taylor-Couette cell. The

second one, is the dimensionless length, Γ, (also known as aspect ratio in the previous

literature) which is calculated as
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Γ =
𝐿

𝑅o −𝑅i

(4.4)

where 𝐿 is the axial height of the cell. Here to avoid confusion with the riblets aspect

ratio, I will call Γ the length ratio. In the ideal Taylor-Couette flow Γ → ∞.

To take the effects of curvature into account, sometimes instead of a Reynolds

number, one defines another dimensionless group, called the Taylor number which is

a combination of the square of the Reynolds number, Re𝑑,i, and the radius ratio, 𝜂,

and defined as [122]:

Ta =
2(1 − 𝜂)

1 + 𝜂
Re2𝑑,i (4.5)

At Reynolds numbers lower than the critical Reynolds number Re𝑑 < Re𝑑,crit,

before the flow experiences any form of instabilities, flow between the two rotating

cylinders is laminar and the velocity profile can be found using the equations of

creeping flow theory. The geometry of the flow is shown in Figure 4-3(a) in the

cylindrical coordinate system (𝑟, 𝜑, 𝑧) representing the radial, azimuthal, and axial

directions. The inner and outer cylinder are rotating at Ωi and Ωo in the counter

clockwise direction respectively. At the inner and outer cylinders (𝑟 = 𝑅i and 𝑟 = 𝑅o)

I have no slip boundary conditions and I assume the length of the cylinders is infinitely

long. Starting from the Navier-Stokes equation in cylindrical polar coordinate system

in the 𝜑 direction, at steady state, I have

𝜌

(︂
𝑣𝑟

1

𝑟

𝜕𝑟𝑣𝜑
𝜕𝑟

+
𝑣𝜑
𝑟

𝜕𝑣𝜑
𝜕𝜑

+ 𝑣𝑧
𝜕𝑣𝜑
𝜕𝑧

)︂
= 𝜇

(︂
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕(𝑟𝑣𝜑)

𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑣𝜑
𝜕𝜑2

+
𝜕2𝑣𝜑
𝜕𝑧2

)︂
− 1

𝑟

𝜕𝑝

𝜕𝜑
.

(4.6)

Thus, assuming the velocity is unidirectional (𝑣𝜑(𝑟)) and not in radial and axial

direction, I can postulate a velocity profile of the form
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𝑣 =

⎡⎢⎢⎢⎣
𝑣𝑟

𝑣𝜑

𝑣𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

𝑣𝜑(𝑟)

0

⎤⎥⎥⎥⎦ (4.7)

for a swirling flow in which the circumferential velocity is only a function of radial

position. Also, due to axi-symmetry, all the derivatives with respect to 𝜑 disappear,

thus

𝜕𝑣𝜑
𝜕𝜑

= 0 &
𝜕𝑝

𝜕𝜑
= 0 (4.8)

and the equation of motion in the 𝜑 direction (Equation 4.6) can be simplified to

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜑)

)︂
= 0. (4.9)

The integration of Equation 4.9, gives that the circumferential velocity has a func-

tional form of

𝑣𝜑(𝑟) =
𝐶1

𝑟
+ 𝐶2 𝑟 (4.10)

where 𝐶1 and 𝐶2 are coefficients to be found using two boundary conditions. For the

case of two independently rotating cylinders with arbitrary rotation rates, I have

𝑟 = 𝑅i → 𝑣𝜑 = 𝑅iΩi (4.11)

on the inner wall and

𝑟 = 𝑅o → 𝑣𝜑 = 𝑅oΩo (4.12)

on the outer wall. Now, using Equations 4.11 and 4.12, for the general case with both

cylinders rotating, the coefficients can be calculated

𝐶1 = 𝑅o
𝜂

1 − 𝜂2
(𝑅iΩi − 𝜂𝑅oΩo) (4.13)
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𝐶2 = − 1

𝑅o

1

1 − 𝜂2
(𝜂𝑅iΩi −𝑅oΩo) (4.14)

and thus the velocity profile can be written in the general form

𝑣𝜑 =
𝜂

1 − 𝜂2
(𝑅iΩi − 𝜂𝑅oΩo)

𝑅o

𝑟
− 1

1 − 𝜂2
(𝜂𝑅iΩi −𝑅oΩo)

𝑟

𝑅o

(4.15)

in dimensional form. If the velocity is non-dimensionalized by the velocity of the

inner cylinder then

𝑣𝜑
𝑅iΩi

=
𝜂

1 − 𝜂2

(︂
1 − Ωo

Ωi

)︂
𝑅o

𝑟
− 1

1 − 𝜂2

(︂
𝜂 − 1

𝜂

Ωo

Ωi

)︂
𝑟

𝑅o

(4.16)

and if non-dimensionalized by the velocity of the outer cylinder, I have

𝑣𝜑
𝑅oΩo

=
𝜂2

1 − 𝜂2

(︂
Ωi

Ωo

− 1

)︂
𝑅o

𝑟
− 1

1 − 𝜂2

(︂
𝜂2

Ωi

Ωo

− 1

)︂
𝑟

𝑅o

. (4.17)

Either non-dimensional form can be useful depending on the flow that is being anal-

ysed. When both cylinders are rotating another dimensionless groups, consisting of

the ratio of the rotation rates of the cylinders (Ωi/Ωo), is sometimes employed as

well. As it can be seen from the above equations, the unidirectional velocity profile

obtained in cylindrical Couette flow is only a function of the geometry and the ratio

of the rotation rates of the two cylinders.

Here, I am only interested in the cases where one of the cylinders is rotating at a

time. Since the experimental setup used in this work is attached to a stress-controlled

rheometer (discussed in Section 4.5), then I can only measure the angular velocity and

torque on the inner cylinder. Similarly one can extend this method to use a strain-

controlled rheometer where the angular velocity is measured on the outer cylinder

while the torque is measured on the inner cylinder. Therefore, out of the various

possibilities for this flow, the cases of rotating inner cylinder (finite Re𝑑,i) with fixed

outer cylinder (Re𝑑,o = 0), and rotating outer cylinder (finite Re𝑑,o) with stationary

inner cylinder (Re𝑑,i = 0) can be effectively used for conducting experiments on other

physical phenomena such as measuring the viscosity of fluids [138], or measuring the
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the frictional torque on the rotors and drag reduction tests [109].

These two cases are similar at low Reynolds number, but at high enough Reynolds

numbers, the case with rotating inner cylinder (finite Re𝑑,i) and stationary outer

cylinder (corresponding to the vertical line of Re𝑑,o = 0 on Figure 4-3(b)) experiences

instabilities (discussed earlier) that results in flow transition from laminar (Figure

4-4(a)) to Taylor vortices (Figures 4-4(b) and 4-4(c)), then wavy Taylor vortices, af-

terwards to turbulent Taylor vortices and ultimately to featureless turbulence. On the

other hand, when only the outer cylinder is rotating (corresponding to the horizontal

line of Re𝑑,i = 0 on Figure 4-3(b)), no instability is observed until the transition from

laminar to featureless turbulent flow occurs [132, 135, 121, 120, 114].

Thus, in the laminar or Couette flow regime when only the inner cylinder is rotat-

ing, using Equations 4.16 with Ωo = 0, the velocity profile can be written compactly

in the form:

𝑣𝜑
𝑅iΩi

= − 𝜂

1 − 𝜂2
𝑟

𝑅o

+
𝜂

1 − 𝜂2
𝑅o

𝑟
(4.18)

and when only the outer cylinder is rotating, using Equation 4.17 with Ωi = 0, the

velocity profile is simplified to

𝑣𝜑
𝑅oΩo

=
1

1 − 𝜂2
𝑟

𝑅o

− 𝜂2

1 − 𝜂2
𝑅o

𝑟
. (4.19)

In this work, I am interested in using the Taylor-Couette flow for the purpose

of measuring the total frictional torque exerted by the working fluid on the inner

cylinder. Here, I am interested in the total torque on the inner cylinder, since with

the experimental setup (discussed in section 4.5), I am able to measure the angular

velocity and torque on the inner cylinder and I will use that to discuss the effect of

riblets. To find the total torque, first I need to find the stress distribution on the

inner cylinder. The shear stress in a Newtonian fluid is found using
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(a)

(b)

(c)

Figure 4-4: Taylor-Couette flow with 𝜂 = 0.63 and Γ = 5.1 with only the inner
cylinder rotating in (a) laminar (Couette flow) regime with Re𝑑,i < 74, (b) close to
transition with Re𝑑 ≈ 74 and (c) after transition to Taylor-Vortices with Re𝑑,i > 74
and prior to transition to the wavy Taylor vortices. Note that all three flow types
shown here are axi-symmetric. For this geometry, the critical Reynolds number for
transition from laminar to Taylor vortices is Re𝑑,crit = 74.
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𝜏 = 𝜇𝛾̇ (4.20)

where 𝜏 is the Cauchy stress tensor in the fluid and 𝛾̇ is the rate of strain tensor in

the fluid which can be found as

𝛾̇ = [(∇𝑣) + (∇𝑣)𝑇 ] (4.21)

where ∇𝑣 is the gradient of the velocity profile. So, specifically for the cases where

only the inner cylinder is rotating, the strain rate on the inner cylinder (i.e. 𝑟 = 𝑅i)

is

𝛾̇ =

⎡⎢⎢⎢⎢⎣
0

−2

1 − 𝜂2
0

−2

1 − 𝜂2
0 0

0 0 0

⎤⎥⎥⎥⎥⎦Ωi (4.22)

and when only the outer cylinder is rotating, the rate of the shear strain (again!) on

the inner cylinder (𝑟 = 𝑅i) is

𝛾̇ =

⎡⎢⎢⎢⎢⎣
0

2

1 − 𝜂2
0

2

1 − 𝜂2
0 0

0 0 0

⎤⎥⎥⎥⎥⎦Ωo (4.23)

Therefore, the deviatoric stress tensor on the inner cylinder (𝑟 = 𝑅i) for the case with

inner cylinder rotating can be written as

𝜏 (𝑟 = 𝑅i, 𝜑, 𝑧) =

⎡⎢⎢⎢⎢⎣
0

−2𝜇

1 − 𝜂2
Ωi 0

−2𝜇

1 − 𝜂2
Ωi 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ (4.24)

and when only the outer cylinder is rotating is written as
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𝜏 (𝑟 = 𝑅i, 𝜑, 𝑧) =

⎡⎢⎢⎢⎢⎣
0

2𝜇

1 − 𝜂2
Ωo 0

2𝜇

1 − 𝜂2
Ωo 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ . (4.25)

As it can be seen, in both cases the deviatoric stress tensor only has one non-zero

component 𝜏𝑟𝜑.

𝜏𝑟𝜑 =
−2𝜇

1 − 𝜂2
Ωi (4.26)

𝜏𝑟𝜑 =
2𝜇

1 − 𝜂2
Ωo (4.27)

Thus the traction vector 𝜏w = 𝜏 (𝑟 = 𝑅i, 𝜑, 𝑧).𝑛w on the inner cylinder when the

inner cylinder is rotating is written as

𝜏w =

⎡⎢⎢⎢⎢⎣
0

−2𝜇

1 − 𝜂2
Ωi 0

−2𝜇

1 − 𝜂2
Ωi 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ .
⎡⎢⎢⎢⎣

0

1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

−2𝜇

1 − 𝜂2
Ωi

0

⎤⎥⎥⎥⎥⎦ (4.28)

and when the outer cylinder is rotating is written as

𝜏w =

⎡⎢⎢⎢⎢⎣
0

2𝜇

1 − 𝜂2
Ωo 0

2𝜇

1 − 𝜂2
Ωo 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ .
⎡⎢⎢⎢⎣

0

1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0

2𝜇

1 − 𝜂2
Ωo

0

⎤⎥⎥⎥⎥⎦ . (4.29)

And thus the magnitude of traction vector on the inner cylinder is equivalent to the

𝑟𝜑 component of the stress tensor and in both cases are identical if Ωi = Ωo and only

the magnitude of their sign is different (Note that this does not necessary mean the

same Re𝑑,i and Re𝑑,o for both cases). Now to find the total frictional torque on the

inner cylinder for either cases I can write
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𝑇 =

∫︁
𝑆w

𝑟w × 𝜏w𝑑𝑆w =

∫︁ 𝐿

0

𝑟w × 𝜏w2𝜋𝑟w𝑑𝑧. (4.30)

where 𝑟w(𝜑, 𝑧) is the local vector and 𝑟w is the magnitude of the local radius of the

wall on the inner cylinder in the most general form for any textured or un-textured

rotor which can be a function of the axial and circumferential direction. For the

case of periodic riblets in the circumferential direction then only the local vector is a

function of the axial direction, 𝑟w(𝑧). On a smooth rotor 𝑟w = 𝑅i, thus, for the case

with only the inner cylinder rotating I have

𝑇 =

∫︁ 𝐿

0

⎡⎢⎢⎢⎣
𝑟w

0

0

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎣
0

−2𝜇

1 − 𝜂2
Ωi

0

⎤⎥⎥⎥⎥⎦ 2𝜋𝑟w𝑑𝑧 =
−4𝜇

1 − 𝜂2
Ωi𝜋𝑅

2
i 𝐿𝑒𝑧 (4.31)

where 𝑒𝑧 is the unit normal in the axial direction and when the outer cylinder is

rotating the torque can be written

𝑇 =

∫︁ 𝐿

0

⎡⎢⎢⎢⎣
𝑟w

0

0

⎤⎥⎥⎥⎦×

⎡⎢⎢⎢⎢⎣
0

2𝜇

1 − 𝜂2
Ωo

0

⎤⎥⎥⎥⎥⎦ 2𝜋𝑟w𝑑𝑧 =
4𝜇

1 − 𝜂2
Ωi𝜋𝑅

2
i 𝐿𝑒𝑧. (4.32)

Thus the magnitude of the frictional torque on the inner cylinder can be simplified

and expressed as in equations below for cases when the inner cylinder is rotating and

one when the outer cylinder is rotating respectively

𝑇 =
4𝜇

1 − 𝜂2
Ωi𝜋𝑅

2
i 𝐿 = 4𝜋𝜈2𝜌𝐿

𝜂

(1 − 𝜂2)(1 − 𝜂)
Re𝑑,i (4.33)

𝑇 =
4𝜇

1 − 𝜂2
Ωi𝜋𝑅

2
i 𝐿 = 4𝜋𝜈2𝜌𝐿

𝜂2

(1 − 𝜂2)(1 − 𝜂)
Re𝑑,o. (4.34)

Note that Equations 4.33 and 4.34 are again identical for both situations as long as

Ωi = Ωo among the two cases. Note that the same Reynolds numbers would not result
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in the same torque for both the cases and it needs to be multiplied by a the radius

ratio determined from the geometry. Thus the torque can be written as a function of

a dimensional pre-factor and two dimensionless groups, one based on the geometry

involving the radius ratio and another based on the Reynolds number of the flow.

Thus the total torque is non-dimensionalized by 4𝜋𝜌𝜈2𝐿 which is the dimensional

pre-factor in both Equations 4.33 and 4.34 as

𝐺 =
𝑇

4𝜋𝜌𝜈2𝐿
(4.35)

where 𝐺 is the non-dimensional torque [128, 127]. For the case of the smooth rotor in

the laminar regime the dimensional torque of Equations 4.33 and 4.34 can be written

as the following equations for the cases with inner cylinder rotating and outer cylinder

rotating respectively.

𝐺 =
𝜂

(1 − 𝜂2)(1 − 𝜂)
Re𝑑,i (4.36)

𝐺 =
𝜂2

(1 − 𝜂2)(1 − 𝜂)
Re𝑑,o (4.37)

which only involve two dimensionless groups, the radius ratio, 𝜂, and, the appropriate

Reynolds number corresponding to the configuration. Note that this is only true in

the case of uni-directional flow.

Therefore, using either forms of the flow should result in comparable results for

drag reduction. In the current work, I will examine the case where the inner cylinder

is rotating and thus from this point forward the Reynolds number (Re𝑑) will be the

Reynolds number using the velocity on the inner cylinder. As mentioned earlier, in

case of only inner cylinder rotating, depending on the Taylor number or Reynolds

number, four different flow types can be observed, ranging from Couette flow, Taylor

vortex flow, wavy Taylor vortex flow, and turbulent flow as shown in Figure 4-3(b)

[132, 139, 140].
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It has been previously shown that local transition from laminar to Taylor vortices

described by a critical Reynolds number (based on the rotation of the inner cylinder)

or Taylor number (Re𝑑,crit(𝜂) or Tacrit(𝜂)) depends on the radius ratio, 𝜂, [121, 141].

The height ratio, Γ, and the boundary conditions at the top and bottom of the

cell can define how close the system is to the infinitely long, ideal Taylor-Couette

flow [132]. Earlier calculations by Roberts [122] has offered a table to determine

the critical Taylor number as a function of the radius ratio for infinitely long cells

which can be easily used for finding the transition Reynolds number for different

geometries. For example, for a Taylor Couette cell with 𝜂 = 0.63 (the geometry of

the experimental setup used in this thesis), the transition Reynolds number can be

found to be Re𝑑,crit = 74.

4.3.1 Pressure distribution in Taylor-Couette flow

One added level of complexity in the Taylor-Couette flows that does not exist in other

flows is the centrifugal effect that creates a pressure gradient in the radial direction

of the flow. In the easiest case of cylindrical Couette flow where I have a theoretical

solution to the problem, I can calculate this pressure gradient by looking at the Navier-

Stokes equation in the radial direction (in the cylindrical polar coordinate system).

In cylinder Couette flow after postulating the velocity profile as in equation 4.7, I was

able to calculate the velocity profile for the general configuration of both cylinders

rotating (Equation 4.15) and the special cases where only one of the cylinders is

rotating (Equations 4.16 and 4.17).

The experimental setup (discussed in Section 4.5) used in this work is attached to

a stress-controlled rheometer, allowing me to measure the angular velocity and the

torque on the inner rotors of the Taylor-Couette cell. Therefore, in this work, I am

interested in the case where only the inner cylinder is rotating, thus, I will continue

the calculation of the pressure distribution for this case only. Taking Equation 4.16

and 4.7, with the axi-symmetry, I can simplify the Navier-Stokes equation in the

radial direction from
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𝜌

(︂
𝑣𝑟
𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝑣𝜑
𝑟

𝜕𝑣𝑟
𝜕𝜑

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

−
𝑣2𝜑
𝑟

)︂
= −𝜕𝑝

𝜕𝑟
+𝜇

(︂
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)

)︂
+

1

𝑟2
𝜕2𝑣𝑟
𝜕𝜑2

+
𝜕2𝑣𝑟
𝜕𝑧2

)︂
(4.38)

with 𝑣𝑟 = 0, 𝑣𝑧 = 0, and 𝑣𝜑 only a function of the radial location to

− 𝜌
𝑣2𝜑
𝑟

= −𝜕𝑝
𝜕𝑟
. (4.39)

Now substituting for 𝑣𝜑 from Equations 4.16 in the above equation gives

𝜕𝑝

𝜕𝑟
= 𝜌

(︂
𝜂

1 − 𝜂2

)︂2(︂
1

𝑟
− 𝑟

)︂2
1

𝑟
. (4.40)

Assuming the reference pressure for the atmospheric pressure (𝑝atm = 0) to be at the

outer cylinder, the boundary condition can be written as

𝑟 = 𝑅o → 𝑝 = 0 (4.41)

then I can integrate the differential equation to find the dimensionless fluid pressure

distribution as a function of the radial location across the gap

𝑝

𝜌(𝑅iΩi)2
=

(︂
𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃

+ 𝐶𝑧 (4.42)

where 𝐶𝑧 is a function of 𝑧 to be found from the Navier-Stokes equation in the axial

𝑧 direction. This pressure distribution can directly affect the experiments through

changing the shape of the free surface between the external air and the fluid at the top

of the Taylor-Couette cell. Taking the Navier-Stokes equation in the axial direction,

𝜌

(︂
𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+
𝑣𝜑
𝑟

𝜕𝑣𝑧
𝜕𝜑

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑧
+ 𝜇

(︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑧
𝜕𝑟

)︂
+

1

𝑟2
𝜕2𝑣𝑧
𝜕𝜑2

+
𝜕2𝑝𝑧
𝜕𝑧2

)︂
− 𝜌𝑔

(4.43)

and simplifying the equation using Equation 4.7 gives:
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𝑝

𝜌(𝑅iΩi)2
= − 𝑔𝐿

(𝑅iΩi)2
𝑧

𝐿
+ 𝐶𝑟 (4.44)

where 𝐶𝑟(𝑟) is a constant or a function of the radial direction 𝑟 only. Thus, comparing

and combining the Equations 4.42 and 4.44 gives

𝑝

𝜌(𝑅iΩi)2
=

(︂
𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃
− 𝑔𝐿

(𝑅iΩi)2
𝑧

𝐿
. (4.45)

On the top surface of the Taylor-Couette cell open to the ambient air, the pressure

is atmospheric everywhere. Therefore the free surface (𝑟s, 𝑧s) of a Newtonian viscous

fluid under steady rotation can be found using

𝑝atm
𝜌(𝑅iΩi)2

=

(︂
𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟s

)︂2

− 2 ln

(︂
𝑟s
𝑅o

)︂
+

1

2

(︂
𝑟s
𝑅o

)︂2
)︃

− 𝑔𝐿

(𝑅iΩi)2
𝑧s
𝐿
.

(4.46)

Setting 𝑝atm = 0 then I have

0 =

(︂
𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟s

)︂2

− 2 ln

(︂
𝑟s
𝑅o

)︂
+

1

2

(︂
𝑟s
𝑅o

)︂2
)︃

− 𝑔𝐿

(𝑅iΩi)2
𝑧s
𝐿
. (4.47)

and

𝑧s
𝐿

= Fr2
(︂

𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟s

)︂2

− 2 ln

(︂
𝑟s
𝑅o

)︂
+

1

2

(︂
𝑟s
𝑅o

)︂2
)︃

(4.48)

where here the Froude number Fr is defined as

Fr =
𝑅iΩi√
𝑔𝐿
. (4.49)

Therefore, the geometric design of the Taylor-Couette cell (specifically the radius

ratio) affects the shape of the free surface of the fluid in the Taylor-Couette flow. The

results are plotted for various radius ratios 𝜂 and it is seen in Figure 4-5. Using a
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wider gap Taylor-Couette cell (i.e. 𝜂 < 0.85) would result in a deflection of fluid close

to the inner cylinder.

Figure 4-5: Shape of the free surface in a Taylor-Couette cell open to air as a function
of the radial location and the radius ratio of the cell. 𝑟s/𝑅o = 1 corresponds to the
radial location of the outer cylinder.

On the other hand, the location of the free surface of the working fluid is also

directly dependent on the Froude number, Fr, of the flow as defined in Equation

4.49 and for a constant radius ratio, increasing the Froude number results in a lower

deflection close to the inner cylinder as shown in Figure 4-6.

Hence, from Equation 4.48 I see that the free surface of the fluid will have a curved

shape with a deflection toward the inner rotor compared to the outer cylinder. Using a

wide gap Taylor-Couette cell (i.e. 𝜂 < 0.8) also results in an even enhanced deflection

at 𝑟/𝑅o = 𝜂. In addition, increasing the velocity of the inner cylinder, which results

in an increase in the Reynolds number as well as the Froude number, also changes

the shape of the free surface. As Froude number increases, then the local depression

close to the rotor increases, possibly resulting in part of the rotor not being in contact

with fluid. This causes added errors to the torque measurements as well as helping

air bubbles to be entrained in the experimental setup and causing added errors to
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Figure 4-6: Shape of the free surface in a Taylor-Couette cell open to air as a function
of the radial location and the Froude number of the flow for a cell with 𝜂 = 0.63.

the measured torque. Therefore, only a limited range of velocities can be employed

to avoid the errors due to the changes in the surface height. However, one can easily

change the ranges of Reynolds number by changing the viscosity of the working fluid,

while not changing the Froude number of the flow. This method was employed here

to cover a wider range of Reynolds numbers in the experiments.

4.4 Riblets in Taylor-Couette flow

In order to study the effect of the riblets on the changes in torque measured in Taylor-

Couette flows, I consider the case of Taylor-Couette flow when only the inner cylinder

is rotating. Since I am using a stress-controlled rheometer with my experimental

setup, I am only able to measure the rotation rate and the torque on the inner rotor.

For that, the inner rotor is covered with V-groove riblets that are aligned in the

circumferential direction (flow direction) and cover the entire length of the rotor.

Here I am again using V-grooves which are the simplest riblet geometry and allow me

to theoretically discuss the changes in the total frictional torque on the inner rotor
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in section 4.8. This study can easily be extended to other forms of riblet shapes.

Again, to understand the effect of the riblets similar to the previous chapters, I need

to define additional non-dimensional variables that characterize dimensions of the

riblets in this study. Figure 4-8 shows a schematic of the cross section of a Taylor-

Couette cell with riblets on the inner rotor. For V-groove riblets, two parameters

fully define the shape of the riblets, the wavelength or spacing of the riblets, denoted

by 𝜆 and the amplitude of the riblets, defined using 𝐴 similar to the definitions used

in the previous chapters (Figure 4-8).

Figure 4-7: Schematic of a Taylor-Couette cell with a riblet covered inner rotor. The
inner radius 𝑅i here corresponds to the distance from the center of the coordinate
system to the furthest point on the riblets (riblet peaks) and 𝑅o is the radius of the
outer cylinder. Again, a cylindrical polar coordinate system has been used for the
analysis (𝑟, 𝜑, 𝑧).

As noted earlier, Taylor Couette flow involves three distinct length scales, the

radii of the inner and outer cylinders, 𝑅i and 𝑅o, as well as the gap size, 𝑑, which can

easily be related to each other through the definition of the gap size, 𝑑 = 𝑅o −𝑅i, as

well as the radius ratio 𝜂. Thus, only one dimensionless group is sufficient to describe
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Figure 4-8: (b) Enlarged schematic of the riblet geometry on the Taylor Couette
cell wall showing the inner and outer radius 𝑅i and 𝑅o as well as the geometry of the
riblets. The blue region corresponds to the fluid domain that is analysed throughout
this chapter.

the geometry of the Taylor-Couette cell in the laminar (Couette) regime. Based on

the definitions I always have 𝑅o > 𝑅i and from the definition of the radius ratio I

have

𝑑

𝑅i

=
1 − 𝜂

𝜂
(4.50)

and hence the gap could be smaller, the same or larger than the radii of either of the

cylinders. On the other hand, the riblet geometry is defined by the amplitude and

the wavelength of the riblets, which are usually smaller than the characteristic length

scales of the flow they are used in. For example the riblets used in the investigation

by Hall and Joseph [106], Bechert and coworkers [40], and Greidanus and coworkers

[107], as shown in Figure 4-1, as well as the dimensions of natural surface textures

such as ribs on shark denticles, as shown in Figure 1-4, are much smaller than the

characteristic length scales of the flow. Hence, even in Taylor-Couette flow 𝐴, 𝜆 <

𝑅i, 𝑑. While both radii of the cylinders are important length scales in the problem,

diffusion of vorticity from the rotating inner cylinder occurs within the distance of

the gap and therefore, to non-dimensionalize the wavelength of the riblets, I use the

size of the gap as 𝜆/𝑑, which serves as a connection between the riblets dimension

and the general dimensions of the Taylor-Couette problem. Unlike a boundary layer
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flow in which the location along the plate played an important role as discussed in

Chapters 2 and 3 and was used for non-dimensionalizing the wavelength, here the

direction of the viscous diffusion in the radial direction (i.e. across the gap) is the

more appropriate length scale to be used.

However, it should be noted that the ratio 𝜆/𝑑 can easily be translated to 𝜆/𝑅i

using Equation 4.50. While I report my data as a function of 𝜆/𝑑, the group 𝜆/𝑅i can

be effectively used to simplify the equations of motion and boundary conditions at

the riblet wall to find appropriate scaling for the torque as a function of the geometry

and this will be discussed in the latter sections.

As a measure of the sharpness of the V-groove, I also use the dimensionless aspect

ratio, AR, defined as

AR =
2𝐴

𝜆
= tan 𝜃 (4.51)

which is also the tangent of the side angle 𝜃 as shown in Figure 4-8. Note that for a

smooth rotor AR = 0 and the radius of the wall on the inner cylinder is 𝑟w = 𝑅i for

every axial location 𝑧.

Now for the case of the riblet covered inner rotor the total torque can be calculated

using equations 4.30, but it should be noted that now 𝑟w is not a constant and will

change along the axial direction, same with the shear stress distribution. For the case

of the V-groove riblets the radius of the wall on the inner cylinder can be written as

0 < 𝑧 <
𝜆

2
: 𝑟w = (𝑅i − AR 𝑧) (4.52)

and due to symmetry about the line of 𝑧 = 𝜆/2 :

𝜆

2
< 𝑧 < 𝜆 : 𝑟w = (𝑅i − AR (𝜆− 𝑧)) (4.53)

and this definition of 𝑟w is used in Equation 4.30 for riblet covered rotors.
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4.5 Experimental Setup

A custom designed wide gap Taylor-Couette with radius ratio of 𝜂 = 0.63 was built

and used in this work. The setup is shown schematically in Figure 4-9. The fixed

part of the setup is built using a CNC mill and sits on the fixed Peltier plate of a

stress-controlled rheometer (TA Instruments AR-G2).

The top and bottom plates of the Taylor-Couette cell as shown in Figure 4-11 are

made of Delrin blocks of 6”× 6”× 0.5” inches and 6”× 6”× 1” respectively, and the

outer cylinder is cut from an acrylic cylinder with an inner diameter of 1.75” and the

outer diameter of 2” and brought to the required size by turning.

Figure 4-9: Schematic of the fixed part of the Taylor-Couette cell design used in the
current experiments. The top and bottom parts are 6” × 6” × 0.5” and 6” × 6” × 1”
respectively. The cylinder has a 2” outer diameter and 1.75” inner diameter. The
four 1/4” screws are for applying pressure on the O-rings to seal the set up. The
location of the O-ring slots are shown with red circles.

Figure 4-10: Schematic of the cross section of an X-profile O-ring used in the Taylor-
Couette cell design to ensure a tight seal. The nominal width of the O-ring used is
1/16” with an outer diameter of 2”.

The Delrin blocks were manually squared on a mill using a 2” face mill. Then

the closed and open holes were made using a pocketing operation with a 3/8” end

mill. To seal the setup from any leakage, two O-rings were used, one on each of the
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blocks. The O-ring slots (designated by the red circles on Figure 4-9) were made

using a profiling operation with a 1/16” end mill. The O-rings chosen were X-profile

O-rings as shown in Figure 4-10 (also known as Quattro seals [142]) and have four

points of contact which can offer a better seal in dynamic systems. To put pressure

on the O-rings the entire setup is assembled using four 1/4” socket screws as seen in

Figure 4-9. To be able to constantly monitor the effect of pressure and changes in the

height of the free surface as discussed in section 4.3.1 and avoid the entrance of air

bubbles into the working fluid, four additional holes were drilled on the top surface.

In addition, to control the effect of the height, the Reynolds number of the flow was

changed by both changing the angular velocity within a range of 1 6 Ωi 6 120 rad/s

as well as the viscosity of the working fluid by using different mixtures of glycerol

and DI water. The engineering drawing of the top and bottom blocks are shown in

Figures 4-12 and 4-13.

Figure 4-11: Experimental setup of the custom-designed and built Taylor Couette
cell used in this study. The Taylor-Couette cell mounted on the stress-controlled
rheometer (TA Instruments AR-G2).

Stream-wise-aligned Riblet covered rotors with V-grooves were 3D printed using a

Form 1+ 3D printer. A snapshot of the rotor configuration in addition to the added

189



F
igure

4-12:
E

ngineering
draw

ings
ofthe

top
block

ofthe
Taylor-C

ouette
cell.

A
lldim

ensions
are

show
n

in
inches.

190



F
ig

ur
e

4-
13

:
E

ng
in

ee
ri

ng
dr

aw
in

gs
of

th
e

bo
tt

om
bl

oc
k

of
th

e
Ta

yl
or

-C
ou

et
te

ce
ll.

A
ll

di
m

en
si

on
s

ar
e

sh
ow

n
in

in
ch

es
.

191



(a)
(b)

F
igure

4-14:
(a)

A
screen

shot
of

the
3D

m
odelof

the
riblet

covered
rotors

w
ith

the
needed

supports
prior

to
printing

using
a

Form
1+

3D
printer.

T
he

supports
w

ere
created

using
Form

labs
softw

are
preForm

.
(b)

3D
printed

riblet
covered

rotors
w

ith
different

w
avelengths

𝜆
=

1
m

m
,2

m
m

,and
3

m
m

and
aspect

ratios
A

R
=

0.58,1,and
1.73.

192



supports needed for 3D printing in the corresponding software preForm is shown in

Figure 4-14(a). The rotor was intentionally printed in the shown configuration to

avoid cracking and chipping the surface of the riblets as well as top of the rotor

(which gets connected to the spindle of the rhometer) while removing the supports.

The finish of the bottom is of least importance as the effect on the measured torque

is always subtracted through a calibration process. The calibration method will be

discussed in more detail in Section 4.5.1. To allow for comparison, a smooth rotor was

also 3D printed. The rotors can be mounted to the moving spindle of the rheometer

and thus the angular velocity and torque on the inner rotor are measured using the

sensors located in the rheometer head. The overall assembled Taylor-Couette cell and

the rotors as attached to the rheometer are shown in Figure 4-11 and a few of the

printed rotors are shown in Figure 4-14(b).

All these Taylor-Couette configurations (the fixed cell and the rotors together)

have a radius ratio of 𝜂 = 0.63 with 𝑅i = 14 mm and 𝑅o = 1.75” = 22.23 mm and

a dimensionless height of Γ = 5.1 and 𝐿 = 42 mm . The riblets of the rotors are

aligned in the circumferential direction (flow direction) and they are printed with

three different wavelengths of 𝜆 = 1 mm, 2 mm, and 3 mm (The minimum resolution

mentioned in the specifications of the Form 1+ printer is 300 𝜇m), and with three

different aspect ratios of AR = 0.58, 1, and 1.73 corresponding to side angles of

𝜃 = 30∘, 45∘ and 60∘ (9 different rotors + 1 smooth rotor).

4.5.1 Calibrating the Effect of the Closed Ends

With the limitations of the real life experiments compared with the idealized theoret-

ical models, there is a need to calibrate the experimental results for the effects rising

from the non-ideal setups used in the experiments. Taylor-Couette flow is not an

exception to this fact and various methods can be used to deduct these effects from

the measurement. The most common issue with a Taylor-Couette setup is arisen from

the added torque due to the no-slip boundary condition on the bottom enclosure of

the cell and the bottom of the rotor. Depending on the setup used, similar condition

can arise for the top of the cell as well.
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In the current setup, the rotors are connected to the head of the rheometer through

the spindle and they get suspended in the fluid inside the Taylor-Couette flow and

the rotor does not come into contact with the bottom of the Taylor-Couette cell. A

schematic of a two dimensional cross section of the assembled Taylor Couette setup

used here is shown in Figure 4-15(a) with the radii of the inner and outer cylinder

and the axial height of the rotor marked. As it can be seen on the figure, while the

Taylor-Couette cell has a top plate, the opening on this plate has a diameter larger

than the diameter of the rotors used. Therefore, top of the rotor is only in contact

with fluid and no walls above this portion of the working fluid. Thus no additional

frictional effect is sensed from the top of the rotors and the only difficulty comes from

the pressure effect which was discussed earlier.

(a) (b)

Figure 4-15: (a) Schematic of the geometry of the Taylor-Couette setup with closed
bottom gap with height ℎb from Equation 4.55.(b) Schematic of the flow between the
bottom of the Taylor-Couette cell and the bottom of the rotor.

But the bottom of the Taylor-Couette setup is closed and this results in the torque

measurements to be larger compared to the calculations of the creeping flow theory

as shown in Equation 4.33 in the laminar or Couette regime (when only the inner
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cylinder is rotating). Therefore, one can decompose the measured torque (call it

𝑇measure) into two components, a theoretical part (𝑇th which is the same as Equation

4.33) and a correction term, 𝑇cor.

𝑇measure = 𝑇th + 𝑇cor (4.54)

Different methods can be employed to find 𝑇cor. For example, Rosenberg and co-

workers first make their measurements using a Taylor-Couette cell completely filled

with the fluid as shown with the schematic 𝐴 in the Figure 4-16 and this corresponds

to the measured torque 𝑇measure. Then they repeated the experiments, with the same

Taylor-Couette cell, but this time filled with fluid only up to the bottom of the rotor

as shown in Schematic 𝐵 and use the results as 𝑇cor. Ultimately, they subtracted the

results of the measurements 𝑇cor from the original torque measurements 𝑇measure to

find the torque associated with the schematic 𝐶. The results are shown in Figure

4-16 [109]. With this method they were able to achieve a good agreement between

the friction coefficient previously reported (Figure 4-16).

Figure 4-16: Schematic of the calibration method for the effect of the bottom gap
as employed by Rosenberg et. al and plot of the measured friction coefficients and
corrected friction coefficients as a function of the Reynolds number [109].

Here, to find the correction term 𝑇cor, I model the effect of the viscous flow in be-

tween the bottom of the Taylor-Couette cell and the bottom of the rotor as shear flow

between two parallel plates, as shown in the schematic in Figure 4-15(b).Therefore,

this correction term can be analytically calculated and written as [138]
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𝑇cor(ℎb) = 2𝜋𝜇
𝑅4

i

4ℎ𝑏
Ωi (4.55)

where for a Taylor-Couette cell with a fixed geometry, the term 𝑇cor is a function of the

bottom gap size denoted by ℎb. Now with the above equation, one can calibrate the

experimental setup for the ℎb that would result in the equality shown in Equation

4.54. In the calibration, using the case of a small Reynolds number of Re𝑑 = 4,

torque on the inner rotor was measured while changing the bottom gap ℎb and then

the results were compared with the calculated torque using 𝑇calc = 𝑇th + 𝑇cor. The

difference between the measured and calculated torques can be presented as an error

defined as

𝐸(ℎb) =
𝑇measure − 𝑇calc

𝑇calc
× 100 (4.56)

as a function of the gap height ℎb and the results are shown in Figure 4-17. As shown

in the figure, the bottom gap of ℎb = 520 𝜇m gives almost no error (0.02%) and

hence this gap height has been used for the rest of the measurements. For the range

of 3 < Re𝑑 < 60 the infinity norm of the error for the measurements shown later in

Figure 4-18 is found to be 0.9% and for 60 < Re𝑑 < 80 which is in the transition

region, the norm of the error increases to 3.5% and keeps increasing as Re𝑑 is increased

and the flow transitions to the Taylor vortex flow (Infinity norm returns the largest

value in an array).

4.5.2 Characterisation of the Smooth Rotor Taylor-Couette

Flow

As a baseline for comparison, the torque on a smooth base rotor is measured for

a range of Reynolds numbers and Figure 4-18 shows the measured torque for the

Reynolds number 4 < Re𝑑 < 110 using a mixture of 75% volume in glycerol and

25% DI water as the working fluid (The viscosity of the mixture is measured with a

40 mm cone and plate setup to be 𝜇 = 0.0366 Pa.s and the density of the mixture
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Figure 4-17: The calibration plot, showing the error as defined in Equation 4.56 as
a function of the bottom gap height ℎb.

can be calculated to be 𝜌 = 1190 kg/m3 [143]). As seen in the figure the result

of the experiments match very well with the theoretical torque plus the correction

arising from the bottom plate. For the rest of the work, to allow for comparison

between numerical calculations and the experimental results, the correction term will

be subtracted from the measured torque to omit the effect of the bottom gap from

the results.

To find the location of transition from the laminar regime (Couette flow) to the

Taylor vortex regime from the experimental results, I follow a similar method to the

one used by Lathrop et. al [128, 127]: The exponent 𝛼 for local torque scaling (𝐺 ∼

Re𝛼 where 𝐺 is the dimensionless measured torque after subtracting the correction

term) is calculated as follows using Equation 4.57

𝛼 =
𝜕 log10𝐺

𝜕 log10 Re𝑑
(4.57)

and the results of the calculations are presented in Figure 4-19.

As it can be seen in the figure, for Re𝑑 < 60 the exponent remains 𝛼 = 1 as it

is expected from the theory (equation 4.36) and then between a range of Reynolds

number of 60 < Re𝑑 < 110 the exponent goes through a sudden change up to 𝛼 ≈ 2

and down to 𝛼 ≈ 1.53. In this range the flow is transitional. The vertical line at
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Figure 4-18: Experimental data of non-dimensional torque as a function of the
Reynolds number Re𝑑 for a smooth rotor in Taylor-Couette cell with 𝜂 = 0.63 and
Γ = 5.1 in addition to the theoretical results from the creeping flow calculations
incorporating the added correction term from Equation 4.55 for the effect of the
bottom gap with ℎb = 520 𝜇m.

Figure 4-19: Exponent of the local torque scaling for 𝐺 ∼ Re𝛼𝑑 as a function of the
Reynolds number, calculated using Equation 4.57.

Re𝑑 = 74 (corresponding to Tacrit = 2480) is the location of the theoretical transition

from laminar to Taylor Vortices for 𝜂 = 0.63 [122] sits within an intermediate location

in this region and points to the onset of the jump in the magnitude of the exponent.

Thus, the theoretical transition predicts the transition in the experimental results

198



very well. In addition, for the range of 400 < Re𝑑 < 104, Wendth has previously

reported an exponent of 𝛼 = 1.5 for the torque scaling [144] which matches very well

with the exponent 𝛼 ≈ 1.53 found here.

4.6 Experimental Results

Since I am interested in understanding the effect of the riblet geometry on the changes

in the total frictional torque on the inner cylinder, the results presented are in the

form of the changes in torque as a function of the various dimensionless variables

introduced earlier in the chapter. First, I present the results of the experiments over

a range of Reynolds numbers of 4 < Re𝑑 < 1000 in Figure 4-20. Here changes in

torque are defined as equation 4.58

∆𝐺

𝐺0

=
𝐺−𝐺0

𝐺0

× 100 (4.58)

where 𝐺 is the non-dimensional torque measured for the riblet covered rotors and

corrected using the correction term in Equation 4.55, and 𝐺0 is the non-dimensional

torque of the smooth rotor after correction. The results are presented in the three

plots as a function of the Reynolds number Re𝑑, the aspect ratio of the riblets, AR, as

well as 𝜆/𝑑. The vertical dashed line shows the location of the theoretical transition

point Re𝑑 = 74 which was also discussed earlier. The horizontal dashed line shows

the line of no changes in torque and based on the definition of the torque change,

a negative torque change corresponds to a drag reducing case and a positive torque

change corresponds to a drag increasing case. Each experimental data point were

repeated at least 2-3 times to confirm repeatability as well as to obtain the error

bars shown in the figures. The range of data between 4 < Re𝑑 < 105 were measured

using a working fluid composed of 75% by volume glycerol and 25% DI water and the

mixture viscosity was measured for each test and this value was subsequently used

for the data analysis. The range of data between 100 < Re𝑑 < 1000 were measured

using a working fluid with 50% by volume of glycerol and 50% DI water and again

for each test the viscosity of the fluid was measured and used for the analysis.
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Figure 4-20: Results of reduction in torque measured for riblet covered rotors com-
pared with smooth rotors as a function of the Reynolds number and 𝜆/𝑑 for (a)
AR = 0.58, (b) AR = 1.00 and (c) AR = 1.73.

200



4.7 Comparison with Numerical Simulations

In the laminar steady two dimensional flow where only the inner cylinder is rotating,

prior to transition to a Taylor Vortex state (TV), the velocity profile is only a func-

tion of the geometry of the Taylor-Couette cell and not a function of the Reynolds

number (Equation 4.18). A similar behaviour is expected in the presence of riblets

and therefore, it is expected that the resulting change in the torque due to riblets will

not be a function of the Reynolds number prior to transition to the Taylor vortices

(TVs). Figure 4-20 also shows that before approaching the critical Reynolds number,

the changes in the torque is nearly constant with respect to Re𝑑. While all cases show

a drag reducing effect, the results seem to be only dependent on changes in the riblet

geometry and not in the dynamics of the flow (as captured by Re𝑑).

To confirm this, axi-symmetric and periodic models of a single riblet in a Taylor-

Couette setup with the same 𝜆/𝑑 and a range of 0 < AR < 2.5 were created and

the numerical simulations were performed using OpenFOAM finite volume solver.

Similar to the boundary layer simulations mentioned in Chapter 3, the steady state

algorithm SIMPLE was used. To compare the effect of the Reynolds number, two

cases with Re𝑑 = 23 and Re𝑑 = 58 were modelled to calculate the changes in torque

for a range of 0 < AR < 2.5 and 𝜆/𝑑 similar to the values used in the experiments.

The experimental results are overlaid for comparison. As seen in Figures 4-21, the

measured and calculated changes in torque are identical between the two Reynolds

numbers presented as long as the geometric variables are kept constant. This can also

be seen in the experimental results shown in Figures 4-20.

However, changing the geometry of the riblets by either changing the AR or chang-

ing 𝜆/𝑑 has a direct effect on the torque changes measured. First consider the case

where the wavelength of the riblets are kept constant (constant 𝜆/𝑑) and the ampli-

tude of the riblets are varied (changing AR). As seen in the experimental results in

Figure 4-20, the results do not show a clear trend across the figure, but if the results

are replotted as in Figures 4-21, it can be seen that for a constant value of 𝜆/𝑑 the

change in torque is a non-monotonic function of the aspect ratio AR of the riblets.
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In addition, the maximum torque reduction happens at an intermediate aspect ratio

which is dependent on the wavelength, and as 𝜆/𝑑 is increased a wider range of as-

pect ratios offer torque reduction. In these sets of experiments in the laminar Couette

regime up to 10% torque reduction was observed.

The non-monotonic behaviour of the change in torque as a function of the aspect

ratio can be discussed in more detail, by considering the component of the traction

vector normal to the wall of the inner cylinder. If I denote the shear stress tensor in

the fluid by 𝜏 then the shear stress at the wall or the so-called traction vector, 𝜏w,

can be found as

𝜏w = 𝜏 .𝑛w (4.59)

and when the riblets are present, the normal vector to the wall can be written as

𝑛w =

⎡⎢⎢⎢⎣
cos 𝜃

0

− sin 𝜃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1√︀

1 + AR2

0

− AR√︀
1 + AR2

⎤⎥⎥⎥⎥⎥⎦ (4.60)

where for a smooth rotor with AR = 0, the wall normal is back to 𝑒𝑟. Therefore, the

component of the traction vector in the circumferential direction which contributes

to the frictional torque can be found to be

𝜏w,𝜑 = (𝜏 .𝑛w).𝑒𝜑 = 𝜏𝑟𝜑 cos 𝜃 − 𝜏𝑧𝜑 sin 𝜃 (4.61)

and thus

𝜏w,𝜑 = 𝜏𝑟𝜑
1√︀

1 + AR2
− 𝜏𝑧𝜑

AR√︀
1 + AR2

. (4.62)

In the presence of riblets, in addition to 𝜏𝑟𝜑 the stress tensor will also have a non-

zero value of 𝜏𝑧𝜑 and both of the shear stress components 𝜏𝑟𝜑 and 𝜏𝑧𝜑 vary across the

riblet length and they follow a distribution shown as in Figures 4-22(a) and 4-22(b)

with the highest stress at the peaks of the riblets and the lowest stress at the trough
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of the riblets.

(a) (b)

Figure 4-22: Distribution of shear stress components (a) 𝜏𝑟𝜑 and (b) 𝜏𝑧𝜑 normalized
by the shear stress in the case of a smooth rotor as a function of the axial location on
the riblet surfaces with 𝜆/𝑑 = 0.12 and AR = 1, and Re𝑑 = 58 (is the same for any
other Reynolds number prior to transition to Taylor vortices. Here 𝜏w,0 is the shear
stress in the case of a smooth rotor with AR = 0.

Therefore, the circumferential components of the traction vector 𝜏w,𝜑 acting on

each riblet is calculated from the numerical simulations for the case of 𝜆/𝑑 = 0.12 and

Re𝑑 = 58 (which is similar to any other Re𝑑 prior to transition to Taylor vortex flow)

and are plotted non-dimensionalized by the value of 𝜏w,0 as shown in Equation 4.26

for the smooth rotor and as a function of the axial direction 𝑧, non-dimensionalized

by 𝜆 and shown in Figure 4.7.

As shown in the figure, the introduction of the riblets results in a varying shear

stress distribution on the wall. Close to the trough of the riblets the shear stress is

lower than the shear stress in the case of the smooth rotor and near the peaks of the

riblets, the shear stress is higher than the smooth rotor. Similar behavior has been

previously reported in flows over riblets in channel flows and boundary layer flows

[47, 70] and also was observed in my numerical simulation of the boundary layer flow

over riblets as noted in Section 3.5.2 of chapter 3 along the velocity decomposition as

well.
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Figure 4-23: Distribution of shear stress normalized by the shear stress of the case
with a smooth rotor (Equation 4.26) for riblets of 𝜆/𝑑 = 0.12 within one riblet at
Re𝑑 = 58 as a function of the AR corresponding to figure 4-21(b).

As seen in Figure 4.7, as the aspect ratio, AR, of the riblets is increased, the shear

stress distribution expands so that a wider area of the riblet surface experiences a

shear stress which is lower than the shear stress on a smooth rotor and a smaller

portion of the riblet wall locally experiences a shear stress that is larger than the

shear stress on a smooth rotor. Therefore, upon integration, the riblet surface will

experience an average shear stress that is lower than the smooth rotor, and increasing

the aspect ratio AR of the riblets results in a constant decrease in the average shear

stress < 𝜏w > distribution as is shown in Figure 4.7.

However, adding riblets and increasing the aspect ratio of the riblets also results

in a constant increase in the total wetted area of the inner cylinder. The increasing

trend in the wetted area is also plotted in Figure 4.7. Therefore, the interplay of the

decrease in the average shear stress on the wall and the increase in the wetted area as

the aspect ratio is increasing results in the non-monotonic behavior (as seen in Figure

4-21(b)) of the total torque as a function of the aspect ratio.

𝑇 =

∫︁ 𝜆

0

𝑟w × 𝜏𝑤𝑑𝑆 =

∫︁ 𝜆

0

𝑟w𝜏w,𝜑2𝜋𝑟w𝑑𝑙 =

∫︁ 𝜆

0

𝑟2w𝜏w,𝜑2𝜋
√︀

1 + AR2𝑑𝑧 (4.63)
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At lower aspect ratios, the decrease in the shear stress on the wall overcomes the

increase in the wetted area (𝑆 in Figure 4.7) and the final combination results in a

reduction in the total torque. However, from an intermediate aspect ratio forward,

the increase in the area given by the last term in the integrand will overcome the

decrease in the average shear stress distribution and the total integrated torque will

increase, until ultimately the riblets will not be able to offer any reduction in frictional

torque. The location of the maximum torque reduction is dependent on the 𝜆/𝑑 and

for the range of 𝜆/𝑑 shown in Figures 4-21, the optimum aspect ratio is between

1.1 < AR < 1.5.

Figure 4-24: Average shear stress for Re𝑑 = 58 and 𝜆/𝑑 = 0.12 as a function of the AR
and the change in the wetted area of the riblets as a function of the AR. Increasing
the AR of the riblets results in a decrease in the average shear stress within one riblet
while the wetted area 𝑆 increases. Here 𝑆0 is the wetted surface area of a smooth
rotor in cylindrical Couette flow.

On the other hand, when the aspect ratio of the riblets is kept constant, the

torque reduction achieved is directly dependent on wavelength of the riblets and as

𝜆/𝑑 increases, the torque reduction achieved is enhanced as seen in Figures 4-20 and

4-21. If the torque reduction at a constant AR is plotted as a function of the 𝜆/𝑑

(shown in Figure 4-25), it can be seen that the torque reduction follows a linear trend

with the 𝜆/𝑑.
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Figure 4-25: Torque reduction as a function of the wavelength of the riblets at fixed
value of the aspect ratio, AR = 1.00.

4.8 Theoretical Modelling

To understand the effect of the size of the riblets, I can expand my theoretical cal-

culations of the cylindrical Couette flow to higher order terms for small riblets with

amplitudes smaller than the radius of the inner cylinder (𝐴 ≪ 𝑅i). To consider this

small parameter and be able to compare with the rest of the dimensionless groups

introduced throughout this chapter, I can write

𝐴

𝑅i

=
AR

2

𝜆

𝑅i

(4.64)

and hence I can think of two small parameters in the problem. One is the aspect

ratio of the riblets AR = 2𝐴/𝜆 (meaning very shallow riblets) as well 𝜀

𝜀 =
𝜆

𝑅i

. (4.65)

where at the limit of 𝐴/𝑅i → 0, the results of the torque calculations would go back

to the results from a smooth cylinder in steady Taylor-Couette flow and at a constant
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aspect ratio increasing the wavelength would result in an increase in 𝜀 and similar to

the schematic shown in Figure 4-26.

(a) (b)

Figure 4-26: Schematic of the small parameters (a) 𝜀 = 𝜆/𝑅i and (b) AR = 2𝐴/𝜆
to use for the higher order terms in the Taylor-Couette solution.

Then, assume the azimuthal velocity (𝑣𝜑) profile in presence of the riblets can be

written in the below form, which has a zeroth order and a first order term, with the

zeroth order being the same profile as the solution for smooth laminar Couette setup.

Any effect of higher order terms is neglected here,

𝑣𝜑 = 𝑣
(0)
𝜑 + AR 𝜀 𝑣

(1)
𝜑 +𝑂(AR2 𝜀2)... (4.66)

and the zeroth order Couette solution is only a function of the radial direction 𝑟.

𝑣
(0)
𝜑 =

𝜂

1 − 𝜂2

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂
(4.67)

Also, Here it is assumed that 𝑣𝑟 is of second and higher order and thus does not

show up in the current analysis and 𝑣𝑧 of the first order and is only a function of the

radial direction. More details about this assumption can be found in Appendix A.

Therefore
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⎡⎢⎢⎢⎣
𝑣𝑟

𝑣𝜑

𝑣𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

𝑣
(0)
𝜑

0

⎤⎥⎥⎥⎦+ AR 𝜀

⎡⎢⎢⎢⎣
0

𝑣
(1)
𝜑

𝑣
(1)
𝑧 (𝑟)

⎤⎥⎥⎥⎦+𝑂(𝜀2) (4.68)

Thus, the radial and axial velocity do not show up in the equations of motion and

the governing equation for flow between concentric cylinders simplifies to only the

azimuthal component of the Navier-Stokes equation and can be written as

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜑)

)︂
+
𝜕2𝑣𝜑
𝜕𝑧2

= 0 (4.69)

And substituting for 𝑣𝜑 from Equation 4.66 I have (again neglecting the second and

higher order terms):

𝜕

𝜕𝑟

1

𝑟

𝜕

𝜕𝑟

(︁
𝑟(𝑣

(0)
𝜑 + AR 𝜀 𝑣

(1)
𝜑 )
)︁

+
𝜕2

𝜕𝑧2

(︁
AR 𝜀 𝑣

(1)
𝜑

)︁
= 0 (4.70)

which can be divided into two separate equations

𝜕

𝜕𝑟

1

𝑟

𝜕

𝜕𝑟

(︁
𝑟(𝑣

(0)
𝜑 )
)︁

= 0 (4.71)

𝜕

𝜕𝑟

1

𝑟

𝜕

𝜕𝑟

(︁
𝑟(𝑣

(1)
𝜑 )
)︁

+
𝜕2

𝜕𝑧2

(︁
𝑣
(1)
𝜑

)︁
= 0 (4.72)

Since Equation 4.67 satisfies the equations for motion for smooth Taylor-Couette flow,

then, Equation 4.71 is already satisfied and thus, the equation of motion for the first

order term simplifies to Equation 4.72.

Now to solve this equation, let’s make some simplifying assumption. Since the

boundary condition on the inner cylinder is a constant rotation rate of Ωi. Therefore,

the velocity boundary condition on the riblets is not uniform and is dependent on

the local position on the riblets wall. If 𝑟w(𝑧) is the local radial location on the riblet

inner cylinder, then the boundary condition for 𝑣𝜑 is written as

0 < 𝑧 <
𝜆

2
: 𝑣𝜑,BC = 𝑟wΩi = (𝑅i − AR 𝑧)Ωi (4.73)
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and due to symmetry about the line of 𝑧 = 𝜆/2 :

𝜆

2
< 𝑧 < 𝜆 : 𝑣𝜑,BC = 𝑟wΩi = (𝑅i − AR (𝜆− 𝑧))Ωi. (4.74)

Thus for the first order term in azimuthal velocity, the boundary condition for

0 < 𝑧 < 𝜆/2 can be written as

AR 𝜀 𝑣
(1)
𝜑,BC = 𝑣𝜑,BC − 𝑣

(0)
𝜑

⃒⃒⃒⃒
𝑟=𝑅i−AR𝑧

(4.75)

and in the non-dimensional form as

AR 𝜀
𝑣
(1)
𝜑,BC

𝑅iΩi

= (1 − AR
𝑧

𝑅i

) −
𝑣
(0)
𝜑

⃒⃒⃒⃒
𝑟=𝑅i−AR𝑧

𝑅iΩi

. (4.76)

Now substituting for the zeroth order term from Equation 4.67 at 𝑟 = 𝑅i, I get

𝜀 AR
𝑣
(1)
𝜑,BC

𝑅iΩi

= (1 − AR
𝑧

𝑅i

) − 𝜂

1 − 𝜂2

(︂
𝑅o

𝑅𝑖− 𝐴𝑅𝑧
− 𝑅𝑖− 𝐴𝑅𝑧

𝑅o

)︂
(4.77)

and by replacing 𝑅i/𝑅o with 𝜂 I have

𝜀 AR
𝑣
(1)
𝜑,BC

𝑅iΩi

= (1 − AR
𝑧

𝑅i

) − 𝜂

1 − 𝜂2

⎛⎜⎜⎝ 1

𝜂

(︂
1 − AR

𝜆

𝑅i

)︂ − 𝜂

(︂
1 − AR

𝜆

𝑅i

)︂⎞⎟⎟⎠ . (4.78)

Then substituting for

AR
𝑧

𝑅i

= AR
𝜆

𝑅i

𝑧

𝜆
= AR 𝜀

𝑧

𝜆
(4.79)

and hence
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𝜀 AR
𝑣
(1)
𝜑,BC

𝑅iΩi

= (1 − AR 𝜀
𝑧

𝜆
) − 1

1 − 𝜂2
1(︁

1 − AR 𝜀
𝑧

𝜆

)︁ +
𝜂2

1 − 𝜂2

(︁
1 − AR 𝜀

𝑧

𝜆

)︁
. (4.80)

So, now for shallow riblets with amplitude much smaller than 𝑅i

𝜀 AR ≪ 1, (4.81)

I can use the Taylor series expansion

1(︁
1 − AR 𝜀

𝑧

𝜆

)︁ = 1 + AR 𝜀
𝑧

𝜆
+𝑂(𝜀2AR2)... . (4.82)

Thus the boundary condition (neglecting the second and higher order terms) can be

written as

𝜀 AR
𝑣
(1)
𝜑,BC

𝑅iΩi

= (1 − AR𝜀
𝑧

𝜆
) − 1

1 − 𝜂2

(︁
1 + AR𝜀

𝑧

𝜆

)︁
+

𝜂2

1 − 𝜂2

(︁
1 − AR𝜀

𝑧

𝜆

)︁
(4.83)

and simplified to

𝜀 AR
𝑣
(1)
𝜑,BC

𝑅iΩi

=
−2

1 − 𝜂2
AR 𝜀

𝑧

𝜆
+𝑂(𝜀2AR2)... (4.84)

or equivalently

𝑣
(1)
𝜑,BC

𝑅iΩi

=
−2

1 − 𝜂2
𝑧

𝜆
+𝑂(𝜀AR)... . (4.85)

In the limit of shallow grooves and small 𝜀, the Equation 4.72 can be solved

analytically with boundary conditions of Ωo = 0 at 𝑟 = 𝑅o and Equation 4.84 at

𝑟 = 𝑅i. The solution can be written as

𝑣
(1)
𝜑

𝑅iΩi

=
−2𝜂

(1 − 𝜂2)2

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂
𝑧

𝜆
. (4.86)

Now similarly to find the change in the torque due to the geometry, the torque
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can also be expanded in terms of a zeroth and first order term as

𝑇 = 𝑇 (0) + AR 𝜀 𝑇 (1) +𝑂(AR2𝜀2)... (4.87)

where the torque on a smooth rotor (𝑇 (0)) is as in Equation 4.33. Thus to calculate

the first order term of torque, I use the first order term in velocity to calculate the

additional contribution to shear rate on the wall. Since I am assuming AR ≪ 1 then

I can approximate the shear rate on the riblet wall as the shear rate calculated at

𝑟 = 𝑅i. Thus

𝛾̇
(1)
𝑟𝜑 = 𝑟

𝜕

𝜕𝑟

(︃
𝑣
(1)
𝜑

𝑟

)︃
(4.88)

which can be found to be

𝛾̇
(1)
𝑟𝜑 =

−2𝜂

(1 − 𝜂2)2
−2𝑅o

𝑟2
𝑧

𝜆
𝑅iΩi (4.89)

and at 𝑟 = 𝑅i then the shear stress on 𝑟 = 𝑅i can be written as

𝜏
(1)
𝑟𝜑 = 𝜇

4𝜂

(1 − 𝜂2)2
𝑅o

𝑅2
i

𝑧

𝜆
𝑅iΩi. (4.90)

Hence the first order correction term in torque can be calculated as

𝑇 (1) = 2

∫︁ 𝜆/2

0

𝜏
(1)
𝑟𝜑 2𝜋𝑅2

i 𝑑𝑧. (4.91)

Since the riblets are symmetric about each peak or trough, I calculate the integral

on half of the riblet and then multiply the results by two. Thus substituting for the

shear stress and simplifying I get

𝑇 (1) = 16𝜋𝜇
𝜂

(1 − 𝜂2)2
𝑅o

𝑅i

𝑅2
i Ωi

∫︁ 𝜆/2

0

𝑧

𝜆
𝑑𝑧. (4.92)

Gathering terms and simplifying

𝑇 (1) = 4(4𝜋𝜌𝜈2𝜆)
𝜌𝑅iΩi𝑑

𝜇

𝑅i

𝜆𝑑

1

(1 − 𝜂2)2

∫︁ 𝜆/2

0

𝑧

𝜆
𝑑𝑧 (4.93)
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and then re-writing in terms of the different dimensional and dimensionless groups

(such as 𝜌𝑅iΩi𝑑/𝜇 = Re𝑑) from earlier definitions I have

𝑇 (1) = 2(4𝜋𝜌𝜈2𝜆)

(︂
𝑅i

𝑑𝜆

1

(1 − 𝜂2)2
𝜆2

4𝜆

)︂
Re𝑑 (4.94)

which simplifies to

𝑇 (1) =
1

2
(4𝜋𝜌𝜈2𝜆)

1

(1 − 𝜂2)2
𝑅i

𝑑
Re𝑑. (4.95)

and in dimensionless form

𝐺(1) =
𝑇 (1)

(4𝜋𝜌𝜈2𝜆)
=

1

2

1

(1 − 𝜂2)2
𝑅i

𝑑
Re𝑑. (4.96)

Now to find the change in torque compared to a smooth rotor, I have

∆𝐺

𝐺0

=

(︀
𝐺(0) + AR 𝜀 𝐺(1)

)︀
−𝐺(0)

𝐺(0)
. (4.97)

From Equation 4.33 and the earlier discussions I know that

𝐺(0) = − 𝜂

(1 − 𝜂2)(1 − 𝜂)
Re𝑑 (4.98)

where the negative sign arises naturally from the definition of the rate of shear strain

and torque. Therefore, Equation 4.97 can be written as

∆𝐺

𝐺0

=

1

2

1

(1 − 𝜂2)2
𝑅i

𝑑
AR 𝜀Re𝑑

− 𝜂

(1 − 𝜂2)(1 − 𝜂)
Re𝑑

(4.99)

or

∆𝐺

𝐺0

= −1

2
AR

(︂
𝜀
𝑅i

𝑑

)︂(︂
1

𝜂(1 + 𝜂)

)︂
. (4.100)

Using the definition of 𝜀 = 𝜆/𝑅i, I can write

𝜀
𝑅i

𝑑
=
𝜆

𝑑
(4.101)
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and now substituting this back into the above, I have

∆𝐺

𝐺0

= −1

2
AR

(︂
𝜆

𝑑

)︂(︂
1

𝜂(1 + 𝜂)

)︂
= −

(︂
𝐴

𝑑

)︂(︂
1

𝜂(1 + 𝜂)

)︂
. (4.102)

Therefore, for a shallow riblet with small 𝜀 the reduction in torque is proportional

to the aspect ratio of the riblet, the size of the riblets 𝜆/𝑑, as well as the geom-

etry of the Taylor Couette cell (from the term 1/(𝜂(1 + 𝜂))). I can compare this

expression with the results presented in Figure 4-21. The figures are re-plotted with

the theoretical line from Equation 4.102 for 𝜂 = 0.63. As can be seen in Figures

4-27, the theoretical result captures the slope when AR → 0 for all three cases of

𝜆/𝑑 = 0.12, 0.24, and 0.36 at Re𝑑 = 58. However, at aspect ratios larger than 0.1

(AR < 0.1) the theory fails to predict the progressive torque increase seen from the

numerical and experimental results at high AR.

The above results were generated by keeping the radius ratio, 𝜂, and the gap

size, 𝑑/𝜆, constant and only changing the wavelength of the riblets. Figure 4-28

shows the results of numerical simulation where the wavelength of the riblets and

the radius of the inner cylinder were kept constant at 𝜆/𝑅i = 0.07 and the radius

of the outer cylinder and the gap were changed and therefore, both 𝜂 and 𝜆/𝑑 were

changed. The results presented here also shows a similar non-monotonic relationship

with the aspect ratio for the reduction in torque, but as it can be seen again the

higher order theory can capture the slope of the curves at AR → 0. Thus the theory

and the supporting presented experimental and numerical data show that the torque

reduction is initially directly dependent on the size of the riblets with respect to the

size of the Taylor-Couette geometry (i.e. 𝜀AR = 2𝐴/𝑅i, as well as the radius ratio 𝜂

of the Taylor-Couette cell used.

However, by comparing the above theory to the computational results, the theory

fails to capture the non-monotonic evolution in torque reduction measured at higher

aspect ratios. To solve this perturbation problem, I encounter two separate small

parameters, first 𝜆/𝑅i and second the AR. The discussion so far was for the situation

where both 𝜆/𝑑 and AR, are small for the riblets and hence the problem was solved
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Figure 4-28: Torque reduction results from numerical simulation of Taylor-Couette
flow with riblet covered rotors with 𝜆/𝑅i = 0.07 and different radius ratio, 𝜂, and 𝜆/𝑑
as a function of the aspect ratio, AR. Theoretical results for shallow riblets are also
shown in the figure with dashed lines.

using a domain perturbation method where the boundary conditions at the riblet wall

was replaced by a series expansion based on the the small parameters introduced.

The earlier discussion about the reduction in the average shear stress distribution

and the increase in wetted area explains the trend in the torque reduction as a function

of the aspect ratio. But for a larger value of AR and small 𝜀 = 𝜆/𝑅i the domain

perturbation method cannot capture the trend in the torque reduction presented in

the experimental and numerical results in Figure 4-21. To tackle this problem, where

only 𝜀 is the small parameter, one can employ an integral approach to relate the

torque reduction measured or numerically calculated to the size of the riblets and the

geometry of the Taylor-Couette cell.

I assume a constant aspect ratio AR (not necessarily small), but still a small value

of 𝜀 = 𝜆/𝑅i. Thus in the limit of 𝜀≪ 1, I can expand the velocity profile into a zeroth

and first order term as
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𝑣𝜑 = 𝑣
(0)
𝜑 + 𝜀𝑣

(1)
𝜑 (4.103)

Again, 𝑣(0)𝜑 can be written as in Equation 4.67 and the equations of motion can be

again written as in Equations 4.71 and 4.72. The boundary condition on the riblet

surface is again the same as in Equation 4.75 and can be expanded with the same

Taylor expansion and written as

𝑣
(1)
𝜑,BC

𝑅iΩi

=
−2

1 − 𝜂2
AR

𝑧

𝜆
(4.104)

However, since the aspect ratio is no longer very small, instead of assuming that

the above boundary condition holds on 𝑟 = 𝑅i, I assume that for each aspect ratio the

boundary condition on the inner cylinder can be defined as an average of the boundary

condition over one period in the 𝑧 direction. If I consider a purely geometric averaging,

I have

∫︀ 𝜆/2

0
𝑧𝑑𝑧

𝜆

2

=

𝜆2

8
𝜆

2

=
𝜆

4
. (4.105)

However due to the complexity of the problem and the fact that such an average

needs to be dependent on the aspect ratio, I assume that instead of the above bound-

ary condition, I can satisfy the boundary condition only at one intermediate location

𝑧 = 𝐾𝜆/4 where 𝐾 is only dependent on the aspect ratio and apply this boundary

condition

𝑣
(1)
𝜑,BC

𝑅iΩi

=
−2

1 − 𝜂2
AR

𝐾

4
(4.106)

at 𝑟 = 𝑅i. Note that for AR → 1, 𝐾 = 1. With this assumption, Equation 4.72

simplifies back to the one dimensional version which is only a function of the radial

location. Thus, with this boundary condition at 𝑟 = 𝑅i and Ωo = 0 at 𝑟 = 𝑅o the

velocity profile can be found to be
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𝑣
(1)
𝜑

𝑅iΩi

=
−2𝜂

(1 − 𝜂2)2
AR

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂
𝐾

4
. (4.107)

Again, calculating the rate of shear strain and the shear stress at the rotor will

follow the same method and the first order shear stress at 𝑟 = 𝑅i is written as

𝜏
(1)
𝑟𝜑 = 𝜇

4𝜂

(1 − 𝜂2)2
AR

𝑅o

𝑅2
i

𝐾

4
𝑅iΩi. (4.108)

Again for this expansion in Equation 4.103, the torque can be written as

𝑇 = 𝑇 (0) + 𝜀𝑇 (1) (4.109)

and the first order correction term in torque can be found to be

𝑇 (1) =
𝐾AR

2
(4𝜋𝜌𝜈2𝜆)

1

(1 − 𝜂2)2
𝑅i

𝑑
Re𝑑. (4.110)

Hence the non-dimensional torque and the torque reduction can be written as

𝐺(1) =
𝐾AR

2

1

(1 − 𝜂2)2
𝑅i

𝑑
Re𝑑 (4.111)

and

∆𝐺

𝐺0

= −𝐾AR

2

𝜆

𝑑

1

𝜂(1 + 𝜂)
(4.112)

where as mentioned earlier, 𝐾 is only a function of the AR. Note that for AR ≪ 1 I

expect that 𝐾 → 1 as per Equation 4.102.

Therefore, at a constant aspect ratio, AR, the reduction in torque due to the

riblets is again proportional to the size of the riblets compared to the gap of the cell

𝜆/𝑑, confirming the behaviour presented in Figure 4-25 and also in the experimental

and numerical results shown earlier in Figures 4-20 and 4-21.

In addition, the geometry of the Taylor-Couette cell plays an additional role in

the total torque reduction achieved. As shown in Figures 4-25 and 4-28, keeping 𝜆/𝑑

constant alone is does not guarantee the same torque reduction across all the possible
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Taylor-Couette geometries. However, using Equation 4.112, one can see that as long

as (𝜆/𝑑)(𝜂(1+𝜂)−1) is kept constant, the results of the torque reduction should be the

same. Therefore, one can plot the torque reduction at a constant AR as a function

of this new combination (𝜆/𝑑)(𝜂(1 + 𝜂)−1) as shown in Figures 4-29(a), 4-30(a), and

4-31(a). In these figures, the torque reduction is plotted for various scenarios in

which 𝜆/𝑑 was kept constant and only the radius ratio of the Taylor-Couette cell

was changed. To ensure that the parameter 𝜀 = 𝜆/𝑅i is small, only the cases with

𝜀 < 0.3 were considered. Different symbols correspond to different cases of 𝜆/𝑑 for

fixed AR = 0.58 and the data are plotted against 𝜆/𝑑(𝜂(1 + 𝜂)−1) for all the cases.

In addition to the numerical data, the experimental results from Figure 4-20 are also

added for comparison. It should be noted that in the experiments, 𝜂 = 0.63 was kept

constant and 𝜆/𝑑 was changed by changing 𝜆. The results shown in all the figures

collapse on one line, confirming the linear relationship predicted by Equation 4.112.

In addition, a line can be fitted through the data and the slope of the line can be

used to find the parameter 𝐾 in the equation using

𝐾

2
AR × 100 = slope (4.113)

and the values of𝐾 can be found to be𝐾 = 0.61 for AR = 0.58, 𝐾 = 0.46 for AR = 1,

and 𝐾 = 0.27 for AR = 1.73. On the other hand, looking back at Figure 4-28, one

can see that the ratio of the torque reduction calculated numerically compared with

the theory for small aspect ratio corresponds very well with the values of 𝐾 = 1.

For larger aspect ratios the values of 𝐾 found above correspond well with the non-

monotonic behaviour in the figure where the torque reduction calculated is less than

what the asymptotic theory predicts in Equation 4-28.

Table 4.1 shows the calculated values of the coefficient 𝐾 and the multiplication of

𝐾AR for the cases presented in Figures 4-29, 4-30, and 4-31. In addition, the results

are plotted in Figures 4-32 as a function of the aspect ratio as well as the values

of 𝐾 calculated from the results of torque reduction for riblets with 𝜆/𝑑 = 0.24

in a Couette cell with 𝜂 = 0.63 corresponding to Figure 4-27(b). As it is seen, 𝐾

219



(a)
(b)

F
igure

4-29:
(a)

C
ollapse

ofthe
experim

entaland
num

ericaltorque
reduction

date
for

riblets
of
𝐴
𝑅

=
0.58

and
various

𝜆
/𝑑

in
Taylor-C

ouette
flow

w
ith

various
𝜂

w
hen

plotted
as

a
function

of
(𝜆
/𝑑

)(𝜂
(1

+
𝜂
)) −

1.
T

he
data

collapse
on

a
line

w
ith

𝐾
=

0.62
corresponding

to
E

quation
4.112.

(b)
T

he
zeroth

and
first

order
correction

term
s

ofthe
velocity

profile
calculated

using
𝐾

from
figure

4-29(a)
on

top
ofthe

velocity
profile

at
different

axiallocation
w

ithin
one

period
ofthe

riblet
w

ith
A

R
=

0.58,
𝜆
/𝑑

=
0.24,

and
𝜂

=
0.63.

220



(a
)

(b
)

F
ig

ur
e

4-
30

:
(a

)
C

ol
la

ps
e

of
th

e
ex

pe
ri

m
en

ta
l
an

d
nu

m
er

ic
al

to
rq

ue
re

du
ct

io
n

da
te

fo
r

ri
bl

et
s

of
A

R
=

1
an

d
va

ri
ou

s
𝜆
/𝑑

in
Ta

yl
or

-C
ou

et
te

flo
w

w
it

h
va

ri
ou

s
𝜂

w
he

n
pl

ot
te

d
as

a
fu

nc
ti

on
of

(𝜆
/𝑑

)(
𝜂
(1

+
𝜂
))

−
1
.

T
he

da
ta

co
lla

ps
e

on
a

lin
e

co
rr

es
po

nd
in

g
to

E
qu

at
io

n
4.

11
2

w
it

h
𝐾

=
0.

46
.

(b
)

T
he

ze
ro

th
an

d
fir

st
or

de
r

co
rr

ec
ti

on
te

rm
s

of
th

e
ve

lo
ci

ty
pr

ofi
le

ca
lc

ul
at

ed
us

in
g
𝐾

fr
om

fig
ur

e
4-

30
(a

)
on

to
p

of
th

e
ve

lo
ci

ty
pr

ofi
le

at
di

ffe
re

nt
ax

ia
ll

oc
at

io
n

w
it

hi
n

on
e

pe
ri

od
of

th
e

ri
bl

et
w

it
h

A
R

=
1,
𝜆
/𝑑

=
0.

24
,

an
d
𝜂

=
0.

63
.

221



(a)
(b)

F
igure

4-31:
(a)

C
ollapse

ofthe
experim

entaland
num

ericaltorque
reduction

date
for

riblets
of

A
R

=
1.73

and
various

𝜆
/𝑑

in
Taylor-C

ouette
flow

w
ith

various
𝜂

w
hen

plotted
as

a
function

of
(𝜆
/𝑑

)(𝜂
(1

+
𝜂
)) −

1.
T

he
data

collapse
on

a
line

corresponding
to

E
quation

4.112
w

ith
𝐾

=
0.27.

(b)
T

he
zeroth

and
first

order
correction

term
s

of
the

velocity
profile

calculated
using

𝐾
from

figure
4-31(a)

on
top

of
the

velocity
profile

at
different

axial
location

w
ithin

one
period

of
the

riblet
w

ith
A

R
=

1.73,
𝜆
/𝑑

=
0.24,and

𝜂
=

0.63.

222



has a decreasing trend as aspect ratio increases, however the AR𝐾 reveals the non-

monotonic behaviour of the torque reduction as a function of the aspect ratio of the

riblets.

Table 4.1: List of the calculated values of coefficient 𝐾 and AR 𝐾 for various aspect
ratios.

AR K AR K
0 1.00 0

0.58 0.62 0.36
1.00 0.47 0.47
1.73 0.27 0.47

(a) (b)

Figure 4-32: Variation of the (a) coefficient 𝐾 and (b) AR 𝐾 with aspect ratio 𝐴
calculated from data presented in Figures 4-29(a),4-30(a), and 4-31(a). The results
are compared with 𝐾 calculated for results of the numerical calculations of torque
reduction shown in Figure 4-27(b) for Couette cell with 𝜂 = 0.63 and 𝜆/𝑑 = 0.58
prior to transition to the Taylor vortex state.

Lastly, I can use the fitting parameter 𝐾 to go back to the velocity profile cal-

culated earlier in Equation 4.107 and compare the results with the velocity profiles

calculated for one case for each of the aspect ratios presented in Figures 4-29(a),

4-30(a), and 4-31(a). The velocity profiles for the Taylor Couette cell with 𝜂 = 0.63

and riblets of 𝜆/𝑑 = 0.24 with AR = 0.58, AR = 1, and AR = 1.73 are shown in

Figures 4-29(b), 4-30(b), and 4-31(b) respectively. The velocity profiles are shown

for 5 different lines within a riblet at locations 𝑧 = 0, 𝑧 = 𝜆/8, 𝑧 = 𝜆/4, 𝑧 = 3𝜆/8,

and 𝑧 = 𝜆/2. In addition the zeroth order velocity profile and the zeroth plus the
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first order velocity profiles with the corresponding 𝐾 found from the torque reduction

plots are also shown in the figures.

As it is seen in the velocity profiles, for all three cases, adding the first order

correction to the zeroth order solution helps align this average velocity profile to all

the velocity profiles in the gap far away from the rotating inner cylinder and only close

to the riblet wall the difference be observed. However, as shown earlier, this average

velocity profile can capture the shear stress distribution that the riblets create on the

wall.

4.9 Conclusion

In this chapter, I used the flow between concentric cylinders known as Taylor-Couette

flow to study the effect of riblets on the flow and the torque change they can offer. The

experimental setup was designed and built using various manufacturing methods. The

inner cylinders were 3D printed using a Form 1+ 3D printer with various V-groove

riblet sizes in both aspect ratio and wavelengths. The fixed outer cylinder was built

using a CNC mill as discussed earlier. The setup was mounted on a stress controlled

rheometer to allow for measurement of the velocity and torque on the inner cylinder.

To understand the results of the experiments, axi-symmetric and periodic numer-

ical simulations were performed on the laminar cylindrical Couette flow with riblet

surfaces and the results were compared with experimental results. Lastly, using a

higher order expansion and domain perturbation method, I provide a framework for

explaining the effect of changing the size of the riblets on the total torque change

observed.

The experimental and numerical results confirmed that using riblet surfaces confer

an ability to reduce the frictional torque exerted by the fluid on the rotor. In addition,

it was seen that the presence of riblets results in a decrease in the average shear stress

on the riblet walls and as the aspect ratio, AR, of the riblets were increased, the

average shear stress decreased. However, the increase in the aspect ratio also results

in an increase in the wetted surface area. Hence the interplay of the shear stress
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reducing effect of the riblet surfaces and increase in the wetted area, results in the

total torque reduction presenting a non-monotonic behaviour with the increase in the

aspect ratio, AR, of the riblets.

In addition, the experimental and numerical results show that at a fixed aspect

ratio AR, the torque reduction achieved is directly proportional to the wavelength

of the riblets and increasing 𝜆/𝑑, enhances the drag reduction achieved. Also, the

geometry of the Taylor-Couette cell affects the total torque reduction achieved. Using

a higher order perturbation theory for the steady viscous flow over riblet surfaces I

was able to confirm that for riblets with small 𝜆/𝑅i the reduction in torque is linearly

proportional to the 𝜆/𝑑 and inversely proportional to 𝜂(𝜂 + 1); while at very small

aspect ratios AR, it is linearly proportional to the aspect ratio. However, the linear

relationship with aspect ratio starts to break down after AR ≈ 0.1. For higher

values of AR, the effect of aspect ratio takes a more complicated turn which can

be rationalized using the shear stress distributions presented earlier. However, for

constant AR I was able to collapse the results of the experimental and numerical

simulations with various 𝜆/𝑑 and 𝜂.

The above discussions were all in the laminar regime where the effect of the

Reynolds number on either the smooth cases or the riblet covered rotors is linear

and thus in comparison, it drops out of the problem. In the next chapter, I will

discuss the case of riblets in the Taylor vortex flow regime where the dynamics of the

flow affect the results and dependent on the Reynolds number.
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Chapter 5

Taylor-Couette Flow with Riblet

Covered Rotors in the Taylor Vortex

Regime

5.1 Introduction

In the previous chapter, I explored the effect of riblets in Taylor-Couette flow and

specifically discussed the changes that riblets induce in the flow and in the total

frictional torque exerted by the fluid on the inner rotor in the laminar (Couette) Flow.

I showed that similar to the case of the boundary layers, discussed in Chapters 2 and

3, the torque reduction in laminar Taylor-Couette flow is a non-monotonic function

of the aspect ratio of the riblets. While the introduction of the riblets results in a

decrease in the average shear stress on the scale of one riblet period, the increase in

the wetted surface area of the inner cylinder counteracts this decreasing effect and

hence the interplay of the two phenomena results in a non-monotonic behaviour in

the total integrated frictional drag or torque reduction in the flows discussed so far.

In this chapter, I will discuss the extended effect of the geometry of the riblets

in the Taylor vortex regime and how the riblets interact with the larger-scale Taylor

vortex structures that occur due to the instability of the flow, in addition to the
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viscous dominated effect of the riblets on the flow (similar to the case of the laminar

Taylor-Couette flow discussed in Chapter 4).

In Chapter 4 the history of the Taylor-Couette flow and the theoretical formula-

tions of the Couette flow were discussed. The theoretical background of the Taylor

vortex flow is mostly built around the instability itself and how to mathematically

and physically predict the critical conditions and dynamical structure of the transi-

tion. Lord Rayleigh was the first person to discuss this instability using an energy

argument for inviscid flow and showed that a necessary and sufficient condition for

stability to axisymmetric disturbances in flow between concentric cylinders with both

cylinders rotating is that

𝑑

𝑑𝑟

(︀
Ω𝑟2
)︀2

> 0. (5.1)

Later, in the early 1920s, G.I. Taylor was the first person to formulate the equa-

tions of motion to understand the instability of the flow. He simplified the eigenvalue

problem for small gap Taylor-Couette cell and compared the results with experimental

observations [114]. The results of Taylor’s experiments and calculations asymptot-

ically approach the Rayleigh’s criteria at larger Reynolds numbers (based on the

velocity of the inner and outer cylinders) [114] .

Later, others such as Goldstein [115] and Chandrasekhar [116, 117, 118], Davey

alone [119] and in collaboration with DiPrima and Stuart [120], Donnelly and Schwarz

[121], Roberts [122], Nickerson [123], Swinney and co-workers [126, 127, 128, 129,

130, 131], and Grossmann, Lohse, and other co-workers [133, 134, 135, 108, 136]

investigated the spatial structures of this instability throughout the years.

Here, I am only interested in the effect of the riblet geometry on the Taylor vortices

and in this chapter I will specifically examine the results of the flow at Re𝑑 = 230 with

riblets of 𝜆/𝑑 = 0.24 with a range of AR, where the flow is above the first transition

point (Re𝑑,crit = 74) before wavy Taylor vortices develops.
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5.2 Methods

The data presented and discussed in this chapter is a combination of experimental

results collected and shown in Chapter 4 and time dependent numerical simulations

of the Taylor-Couette flow in the Taylor vortex regime, well before any wavy Taylor

vortices can be observed (74 < Re𝑑 . 300).

5.2.1 Experimental

The experimental method is the same as explained in Chapter 4 and to be able

to increase the Reynolds number without the effect the associated radial pressure

gradient, a mixture of 50% glycerol and 50% DI water was used as the working fluid.

The rest of the details are unchanged.

5.2.2 Numerical Method

To understand the effect of the presence of the riblets on the Taylor vortex flow and

visualize the changes in the vortices and flow dynamics, axi-symmetric simulations of

Taylor-Couette cells with both smooth and riblet rotors were performed. To be able

to capture the Taylor vortices, the length of the Taylor-Couette cells were adjusted

so that at least two or three vortex pairs would be visible inside the gap. To capture

the added details that the Taylor vortices, instead of a laminar model for the flow,

I use a large eddy simulation with a dynamic one equation model for the sub-grid

level. Large eddy simulation is one form of the simulation developed for tackling the

challenging problem of the Turbulent flow.

For modelling turbulent flows, different methods have been introduced to approx-

imate the complex phenomenon. There are three levels of approximations used. First

one is called the Reynolds Averaged Numerical Simulations or RANS where the so-

lution for the velocity vector (𝑢) and pressure (𝑝) is decomposed into a statistical

average and fluctuations term (𝑢 = 𝑢 + 𝑢′ and 𝑝 = 𝑝 + 𝑝′). Therefore, using the

statistical averages and solving for the terms does not allow for a fine description of

the flow to be achieved, thus this approach is not well suited for the studies of the
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fundamentals of the turbulent flow. In other words, in the energy spectrum of the

flow, the entire flow is modelled and not resolved at all the scales [145].

The second type of simulation is known as Large Eddy Simulation or LES, where

only the low frequency part (or large scale structures) of the solution is solved for

while the large frequencies (small scales) are modelled. For this the Navier Stokes

equations are filtered explicitly or implicitly by either spectral cut-off or numerical

discretizations. In this method, the smaller scales are modelled using various sub-grid

scale methods [145, 146].

The third method is known as Direct Numerical Simulations or DNS, where all

the scales of the flow is solved for, therefore this method is the most appropriate for

the fundamental studies of the turbulence, however it is the most expensive method

compared to the other two.

Here I am using the Large Eddy Simulation which is more detailed than RANS

simulations and less costly compared to the Direct Numerical Simulations. Below a

short introduction to the Large Eddy Simulations is presented.

5.2.3 Large Eddy Simulations

As mentioned, in large eddy simulations, the problem is divided into a sub-grid prob-

lem and large scale problem. For this cut-off various filters have been introduced and

used. Filters used in Large Eddy Simulations are high pass filters (in terms of of

scales) or low pass filters (in terms of the frequencies). A general definition of a filter

used in LES is as shown below, using a convolution integral [145, 146, 147]

𝜑 =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝜑(𝜉, 𝑡′)𝐺(𝑥− 𝜉, 𝑡− 𝑡′)𝑑𝑡′𝑑𝜉3 (5.2)

where 𝜑 can be any scalar, vector, or tensor field, 𝐺 is the filter kernel, and the over-

bar represents the filtered quantity. Filters used in LES have three properties which

are important as they make it possible to manipulate the Navier-Stokes equations
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Figure 5-1: Schematic of the filtering operation in the simplest form when the mesh
is identical to the filter in the problem. Here the cut-off wave-number is called 𝑘c
which can be calculated directly from the cut-off length (length scale of the filter) ∆
shown in the physical space [145].

[145]. The first one is that they conserve constants, i.e.

1 =

∫︁ ∞

−∞

∫︁ ∞

−∞
𝐺(𝑥− 𝜉, 𝑡− 𝑡′)𝑑𝑡′𝑑𝜉3 (5.3)

Second, they are linear meaning 𝜑+ 𝜓 = 𝜑 + 𝜓, and third, they commutate with

derivation as shown below.

𝜕𝜑

𝜕𝑥
=
𝜕𝜑

𝜕𝑥
. (5.4)

If the Navier-Stokes and the continuity equations are written in the form

𝜕𝑢𝑖
𝜕𝑡

+
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (5.5)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (5.6)
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(where 𝑢𝑖 are the components of the velocity vector and 𝑝 the pressure), when a filter

with earlier properties is applied to each of these equations, I have [145, 148]

𝜕𝑢𝑖
𝜕𝑡

+
𝜕(𝑢𝑖𝑢𝑗)

𝜕𝑥𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) (5.7)

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0. (5.8)

Thus the only term that is not clearly defined is the non-linear term on the left

hand side. I can decomposed the non-linear term 𝑢𝑖𝑢𝑗 using a decomposition for the

velocity vector u into a filtered velocity u (resolved scale) and u′ (sub-grid scale) as

[145]

u = u + u′ → 𝑢𝑖 = 𝑢𝑖 + 𝑢′𝑖 (5.9)

and substituting Equation 5.9 into the non-linear term from Equation 5.7 and ex-

panding the terms gives

𝑢𝑖𝑢𝑗 = (𝑢𝑖 + 𝑢′𝑖)(𝑢𝑗 + 𝑢′𝑗) = 𝑢𝑖 𝑢𝑗 + 𝑢𝑖𝑢′𝑗 + 𝑢′𝑖 𝑢𝑗 + 𝑢′𝑖𝑢
′
𝑗. (5.10)

The second and third term in Equation 5.10 can be combined as

𝐶𝑖𝑗 = 𝑢𝑖𝑢′𝑗 + 𝑢′𝑖 𝑢𝑗 (5.11)

which represents the interaction between the small (unresolved scale) and large scales

(resolved scale). Last term in Equation 5.10 is written as

𝑅𝑖𝑗 = 𝑢′𝑖𝑢
′
𝑗 (5.12)

which is called the Reynolds sub-grid tensor, showing the interactions between the

sub-grid scales. Therefore, the full non-linear term can be rewritten as:

𝑢𝑖𝑢𝑗 = 𝑢𝑖 𝑢𝑗 + (𝑢𝑖 𝑢𝑗 − 𝑢𝑖 𝑢𝑗) = 𝑢𝑖 𝑢𝑗 + 𝐶𝑖𝑗 +𝑅𝑖𝑗 = 𝑢𝑖 𝑢𝑗 + 𝜏𝑖𝑗 (5.13)
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where 𝜏𝑖𝑗 = 𝐶𝑖𝑗 +𝑅𝑖𝑗. Substituting the above terms back into Equation 5.7, I have

𝜕𝑢𝑖
𝜕𝑡

+
𝜕(𝑢𝑖 𝑢𝑗)

𝜕𝑥𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) − 𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(5.14)

Equation 5.14 is the filtered Navier-Stokes equation for the resolved scales and 𝜏𝑖𝑗 is

known as the Sub-Grid Tensor and it comprises of the 𝐶𝑖𝑗 which is the interactions

between the sub-grid scale and the resolved scale, and 𝑅𝑖𝑗 which presents the inter-

actions within the sub-grid scale. Thus, now in addition to the three components

of the velocity vector and one pressure, the nine elements of the sub-grid tensor are

also unknown. Thus, the three momentum equations and the continuity equation are

not enough to solve for all the unknowns in the problem. This requires a model to

connect 𝜏𝑖𝑗 to the rest of the known and unknown parameters in the problem.

In order to introduce the sub-grid models, it is beneficial to derive the sub-grid

scale kinetic energy equation as well. To derive the sub-grid scale kinetic energy

equation, first, I need to multiply each of the Navier Stokes equations with their

corresponding velocity component and sum all the equations, which can be written

as: [145, 148]

𝑢𝑖
𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝑢𝑖
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −𝑢𝑖

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

(5.15)

and then filtering the entire equation gives

𝑢𝑖
𝜕𝑢𝑖
𝜕𝑥𝑖

+ 𝑢𝑖
𝜕

𝜕𝑥𝑗
(𝑢𝑖𝑢𝑗) = −𝑢𝑖

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈𝑢𝑖

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

. (5.16)

To simplify Equation 5.16, I need to multiply each of the filtered Navier Stokes

equations by the corresponding filtered velocity and sum them all as shown below.

𝑢𝑖
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑖
𝜕(𝑢𝑖 𝑢𝑗)

𝜕𝑥𝑗
= −𝑢𝑖

1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝑢𝑖 𝜈(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) − 𝑢𝑖
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

(5.17)

Then, subtracting equation 5.17 from 5.16 and defining the kinetic energy 𝑘 = 1
2
𝑢𝑖𝑢𝑖,

and the kinetic energy on the filtered level 𝑘 = 1
2
𝑢𝑖 𝑢𝑖, and the kinetic energy of the

sub-grid scale as 𝑘sgs = 𝑘 − 𝑘, I can find an equation for the 𝑘sgs as
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𝜕𝑘sgs
𝜕𝑡

+
𝜕(𝑢𝑖𝑘sgs)

𝜕𝑥𝑗
= −𝜕𝑢𝑖

𝜕𝑥𝑗
𝜏𝑖𝑗 −

𝜕

𝜕𝑥𝑗
(
1

2
𝑢𝑖𝑢𝑖𝑢𝑗 −

1

2
𝑢𝑖𝑢𝑖𝑢𝑗 +

1

𝜌
𝑢𝑗𝑝−

1

𝜌
𝑢𝑗𝑝− 𝑢𝑖𝜏𝑖𝑗)

+𝜈
𝜕2𝑘sgs
𝜕𝑥𝑗𝜕𝑥𝑗

− 𝜈
𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

− 𝜕𝑢𝑖
𝜕𝑥𝑗

𝜕𝑢𝑖
𝜕𝑥𝑗

(5.18)

This sub-grid kinetic energy equation as shown in Equation 5.18 is used in the

models for the subgrid scale. When used, instead of the four equations, five equations

and five unknowns are solved for with the additional unknown being 𝑘sgs [145, 148].

Various sub-grid models have been proposed to define the sub-grid stress tensor.

For example, the Smagorinsky model is one of the algebraic models which tries to

define the sub-grid stress tensor terms in the momentum equation. The model is

based on the assumption of equilibrium in the sub-grid level and thus the production

and dissipation on this level being equal. In this model, the deviatoric part of the

sub-grid tensor is defined as a sub-grid scale kinematic viscosity multiplied by the

stress tensor in the resolved scale, 𝑆𝑖𝑗, as shown below [145, 99, 149, 150]

𝜏𝑖𝑗 −
2

3
𝑘sgs𝛿𝑖𝑗 = −𝜈sgs𝑆𝑖𝑗 (5.19)

and to define the sub-grid scale kinematic viscosity, 𝜈sgs, an algebraic equation is used

as

𝜈sgs = 𝐶2
s ∆2 < 2𝑆𝑖𝑗 𝑆𝑖𝑗 > (5.20)

where ∆ is the cut-off length scale that is dependent on the filter used in the equations.

The constant 𝐶s takes a number in the range of 0.1-0.45 and there are different

theoretical approaches to finding it [145, 99, 149, 150]. The normal part of the sub-

grid stress tensor, which corresponds to 2
3
𝑘sgs𝛿𝑖𝑗 can be added as an isotropic term to

the pressure term and solved with the pressure gradient as a modified pressure term

[145].

While Smagorinsky’s model is simple to apply, it has its own limitation of not

having a tunable coefficient. It has been seen that the coefficient is lower in shear flows
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compared to the isotropic turbulence, and similarly close to the wall the coefficient

needs to be lower, but setting it as constant does not correspond with the physics of

the flow in various regions [99].

Another form of sub-grid scale model is known as One Equation Eddy Viscosity

Model which uses a differential equation to close the sets of differential equation to

be solved using LES. In this model, the differential equation of the sub-grid scale

kinetic energy is added to the rest of the equations. For this model, Equation 5.18 is

rewritten as [145]:

𝜕𝑘sgs
𝜕𝑡

− 𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑘sgs) =

𝜕

𝜕𝑥𝑗
(𝜈sgs

𝜕𝑘sgs
𝜕𝑥𝑗

) −𝐺− 𝜀 (5.21)

where 𝐺 is known as production term and 𝜀 is known as the dissipation terms. Here,

in the sub-grid scale kinetic energy, the dissipation and the production terms are

modelled using equations below

𝐺 = 2𝜈sgs|𝑆|2 (5.22)

𝜀 =
𝐶e𝑘

3/2
sgs

∆
(5.23)

𝜈sgs = 𝐶2
s ∆2 < 2𝑆𝑖𝑗 𝑆𝑖𝑗 > (5.24)

𝐶s =

√︃
𝐶K

√︂
𝐶K

𝐶e

(5.25)

where again, the coefficients 𝐶K and 𝐶e need to be chosen and are not tunable accord-

ing to the flow type. Thus the dynamic version of the one equation eddy viscosity

model was introduced in the 1990s. The main idea behind the dynamic viscosity

model is to offer a way to tune the constants defining the eddy viscosity and not use

a fixed value throughout the domain and over time.

Therefore, instead of the assumption of the local equilibrium at the sub-grid level,

in this model it is assumed that there is an equilibrium between the sub-grid and the

resolved scales. Therefore one can find an equation to dynamically find the coefficient.
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In this model, the equation of the kinetic energy at the resolved scale is again filtered

with another filter of wider bandwidth (shown by the over-hat sign) and thus written

as [148, 151]:

𝜕𝐾

𝜕𝑡
− 𝜕

𝜕𝑥𝑗
( ̂︀𝑢𝑗𝐾) =

𝜕

𝜕𝑥𝑗
(𝜈sgs

𝜕𝐾

𝜕𝑥𝑗
) −𝐺K − 𝜀K. (5.26)

On the sub-grid scale I have [148, 151]:

𝜕𝑘sgs
𝜕𝑡

− 𝜕

𝜕𝑥𝑗
(𝑢𝑗𝑘sgs) =

𝜕

𝜕𝑥𝑗
(𝜈sgs

𝜕𝑘sgs
𝜕𝑥𝑗

) −𝐺sgs − 𝜀sgs. (5.27)

Now, with the equilibrium assumption between the two scales I can write that

[148, 151]:

𝐺K − 𝜀K = ̂𝐺sgs − 𝜀sgs (5.28)

and using a definition similar to Equation 5.23 for the dissipation term at each level

I have [148, 151]

𝐺K − 𝐶e𝐾
3/2̂︀∆ = ̂︂𝐺sgs −

𝐶*𝑘
3/2
sgs

∆
(5.29)

which results in [148, 151]

𝐶𝑛+1
* = (𝐺K − ̂︂𝐺sgs +

𝐶𝑛
* 𝑘

3/2
sgs

∆
)
̂︀∆

𝐾3/2
. (5.30)

Dynamic model is attracting more attention as it has the ability to tune the

coefficient depending on the flow type and other circumstances which models such as

Smagorinsky were not able to do. Due to this tunability, in this work, the dynamic

model is used for the sub-grid scale model.
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5.3 Results

After transition to the Taylor-vortex and the wavy Taylor-vortex regime, the be-

haviour of the velocity profiles becomes dependent on the Reynolds number and thus

the resulting measurements in the torque reduction show a slight dependence on the

Reynolds number. As shown in Figures 4-20 in the previous chapter, immediately

after transition, between 74 < Re𝑑 < 110 the results of the torque reduction show

a combination of irregular decrease and increase which is due to the hysteresis in

the vicinity of transition. From Figure 4-19 it can also be seen that transition re-

gion covers a wider range of Reynolds numbers than just one Reynolds number of

Re𝑑 = 74. Similar hysteresis in the behaviour of the Taylor-Vortex flow have been

reported previously by [132].

In the Taylor vortex regime, in addition to the size of the gap (which is the

characteristic length scale in the Couette flow calculations), the wavelength of the

vortex turns into another important length scale in the problem. Various researchers

have indicated that this wavelength does not have a fixed value and can not be

uniquely determined [152, 153, 154]. Groman and Swinney have reported observing

a variation of between 16 and 20 vortices in a Taylor-Couette apparatus of Γ = 20

[155].

In the current experimental setup, with Γ = 5.1 nearly all the times, at steady

state, three vortex pairs can be identified, but in some cases, right after the transition,

initially, four vortex pairs are seen and as the flow evolves, they ultimately collapses

into three pairs in the steady-state case. Similar behaviour was observed in the results

of the numerical simulation with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 (2/3 of the length

of the experimental setup to reduce the cost of the simulations) where first three vortex

pairs are initiated and during the transient time, the vortices interact to adjust their

wavelengths and collapse into two vortex pairs by the time the flow reaches the steady

state. Snapshots of the velocity profiles are presented in the coming section.

Therefore, in the presence of the riblets in the Taylor vortex flow, the changes

in the flow and hence the torque is a combination of the viscous dominated process
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similar to the case of the Couette flow discussed in Chapter 4 and the interaction of

the riblets (especially their peaks) with the larger Taylor vortices in the flow. Below I

will discuss this interaction in more detail and how the different contributions to the

shear stress distribution results in changes in the total frictional torque on the inner

rotor when changing the aspect ratio of the riblets.

5.3.1 Interaction of Taylor Vortices with Riblets

After the Taylor-Couette flow has transitioned to the Taylor vortices, the flow that

was only a function of the radial direction is now a function of both radial and axial

direction and new vortical structures appear in the flow due to the instabilities that

were discussed earlier.

As it was shown in the previous chapter, the introduction of the riblets resulted in

changes in the velocity profile, shear stress distribution, and hence the total torque.

Since the flow was fully viscous and none of the inertial effects were important, the

changes were independent of the Reynolds number of the flow and they were all

dictated by the changes in the aspect ratio, AR, of the riblets as well as the changes

in the size of the riblet with respect to the gap size 𝜆/𝑑. In addition, the changes

observed in the torque were also dependent on the geometry of the Taylor-Couette

cell as well, specifically the radius ratio of the cell 𝜂.

However, in Taylor-vortex flow with riblet covered rotors, in addition to the

changes in the viscous flow, the riblets interact with the larger Taylor vortices in

the flow and result in additional changes in the flow and the torque. The interac-

tion of the riblets and Taylor vortices can be best demonstrated using the in plane

streamlines for the radial and axial velocity, contours of the azimuthal velocity, as

well as the 𝑄 criteria introduced in Chapter 3. The results below are presented at

two different Reynolds number. First at Re𝑑 = 115 which is at the ending edge of

the transition region as shown in Figure 4-19 and then at Re𝑑 = 230 which is in the

Taylor vortex region.

Figure 5-2 shows the early stages of the evolution of the velocity profiles in Taylor-

Couette flow with Re𝑑 = 115, 𝜂 = 0.63, and Γ = 5.1. The figures show a planar cut
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within the concentric cylinder system and the cut plane on the left shows the evolution

in 𝑣𝜑/𝑅𝑖Ω𝑖 while the cut plane on the right shows the in plane streamlines, calculated

using 𝑣𝑟 and 𝑣𝑧 overlaid on the contour plots of the azimuthal velocity (The azimuthal

velocity have been normalized by the velocity of the inner cylinder). Figure 5-2(a)

shows the time of only 3 × 10−3 times the diffusion time after the start of the flow.

Diffusion time, 𝑡d is defined as 𝑡d = 𝑑2/𝜈 where 𝑑 is the gap of the Taylor Couette

cell and 𝜈 is the kinematic viscosity of the fluid in the cell. At 𝑡 = 3 × 10−3 𝑡d, the

azimuthal velocity is diffusing in a similar manner as in the Couette flow. However,

in this case, the axial and radial velocity are both non-zero and the streamlines of the

in-plane flow (streamlines with only 𝑣𝑟 and 𝑣𝑧) create two larger flow structures as it

is seen on the slice on the right. These two structures which are rotating, grow over

time and lead to the creation of two vortices on the two ends of the cell as it is shown

in Figure 5-2(b). Again, at this stage with 𝑡 = 7.4× 10−2 𝑡d the azimuthal flow does

not show any difference from what is expected of the Couette flow, but now the two

rotating structures are taking the form of two vortices on the two ends of the cells.

(a) (b)

Figure 5-2: Contours of azimuthal velocity (left cut) and streamlines of the in plane
axial and radial velocity (right cut) presented on a planar cut within the Taylor-
Couette flow at (a) 𝑡 = 3 × 10−3 𝑡d, (b) 𝑡 = 7.4 × 10−2 𝑡d for Re𝑑 = 115, 𝜂 = 0.63,
and Γ = 5.1.

By the time 𝑡 = 1.2× 10−2 𝑡d (see Figure 5-3(a)) the two vortices on the two ends

are fully formed and each of the two initiate another vortex (counter-rotating with
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respect to themselves). However, still the azimuthal velocity does not see any effects

from the radial and axial velocities. Afterwards, at 𝑡 = 1.5×10−2 𝑡d then the two new

vortices each start to initiate another counter rotating vortex, filling the entire length

of the cell with three pairs of counter-rotating vortices as seen in Figure 5-3(b).

(a) (b)

Figure 5-3: Contours of azimuthal velocity (left cut) and streamlines of the in plane
axial and radial velocity (right cut) presented on a planar cut within the Taylor-
Couette flow at (a) 𝑡 = 1.2 × 10−2 𝑡d, (b) 𝑡 = 1.5 × 10−2 𝑡d for Re𝑑 = 115, 𝜂 = 0.63,
and Γ = 5.1.

Then at 𝑡 = 2.2× 10−2 𝑡d, the last two vortices in the middle are still taking their

form (Figure 5-4(a)) and then by 𝑡 = 3.0× 10−2 𝑡d as seen in Figure 5-4(b) the three

vortex pairs are completely formed and they cover the entire length of the cell. Then

for a while the azimuthal velocity diffuses toward the outer cylinder while the vortices

keep this pattern until the time around 𝑡 = 4.1 × 10−2 𝑡d where a slight instability

becomes visible in the contour plots of the circumferential velocity profile as seen in

Figure 5-4(c). Then this instability goes through a modulation as shown in Figure

5-4(d) at time 𝑡 = 4.6 × 10−2 𝑡d and then the instabilities grow as shown in Figures

5-4(e) (𝑡 = 5.2× 10−2 𝑡d) and by 𝑡 = 5.9× 10−2 𝑡d as shown in Figure 5-4(f) the three

vortex pairs are all formed and the radial, azimuthal and axial velocities have reached

the steady state. The wavelength of each vortex pairs comes out to be Λ/𝑑 = 1.7 and

each of the two vortices in the pair cover a distance of 0.85 𝑑.

However, in presence of the riblets the grooves give rise to a three-dimensional flow
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(a) (b)

(c) (d)

(e) (f)

Figure 5-4: Contours of azimuthal velocity and streamlines of the in plane axial and
radial velocity at (a) 𝑡 = 2.2×10−2 𝑡d, and (b) 𝑡 = 3.0×10−2 𝑡d, (c) 𝑡 = 4.1×10−2 𝑡d,
(d) 𝑡 = 4.6 × 10−2 𝑡d, (e) 𝑡 = 5.2 × 10−2 𝑡d, and (f) 𝑡 = 5.9 × 10−2 𝑡d, for Re𝑑 = 115,
𝜂 = 0.63, and Γ = 5.1.
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inside each of them that result in initially observing two closed sets of streamlines

inside each of the riblets as shown in Figure 5-5(a) at 𝑡 = 3 × 10−3 𝑡d, while toward

the outer cylinder I observe larger vortical structures taking shape, but they are

not directly communicating with the riblet wall on the inner cylinder. Then this

three dimensional flow inside the grooves starts to affect the larger flow structures

within the gap and the difference is easily seen between Figures 5-2(b) and 5-5(b)

at 𝑡 = 7.4 × 10−2 𝑡d while the first set of recirculating regions on the two ends of

the Taylor-Couette cell are becoming visible. Comparing the two figures, one can see

that in presence of the riblets, the initial Taylor-vortices are not as smoothly round

as the ones that are initiated when the inner cylinder is smooth and the rest of the

streamlines in the rest of the length of the cell are under direct influence of the riblets.

(a) (b)

Figure 5-5: Contours of azimuthal velocity and streamlines of the in plane axial and
radial velocity at (a) 𝑡 = 3 × 10−3 𝑡d, (b) 𝑡 = 7.4 × 10−2 𝑡d, for Re𝑑 = 115, 𝜂 = 0.63,
and Γ = 5.1 and riblets of 𝜆/𝑑 = 0.24, and aspect ratio AR = 1.

Then at 𝑡 = 1.2× 10−2 𝑡d the second set of the vortices start to grow and become

visible. But in the case of the riblet wall shown in Figure 5-6(a), one can see that the

initial vortices are starting to form smoother streamlines while the smaller regions of

closed streamlines right above the riblet wall, these smaller vortices, and the larger

Taylor vortices are directly interacting with each other. Then at 𝑡 = 1.5 × 10−2 𝑡d

(shown in Figure 5-6(b) the second set of the vortices have been formed and leading
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the way for the final ones to initiate and grow in the central region of the Taylor

Couette cell. Again, the smaller vortices due to the riblets are constantly interacting

with the new and older Taylor vortices. But on the two ends, the larger Taylor

vortices seem to be taking over the entire region and absorbing the small vortices

from the riblets region, while the other Taylor-vortices are still interacting with the

smaller vortices in the flow.

(a) (b)

Figure 5-6: Contours of azimuthal velocity and streamlines of the in plane axial and
radial velocity at (a) 𝑡 = 1.2× 10−2 𝑡d, (b) 𝑡 = 1.5× 10−2 𝑡d, for Re𝑑 = 115, 𝜂 = 0.63,
and Γ = 5.1 and riblets of 𝜆/𝑑 = 0.24, and aspect ratio AR = 1.

Then by 𝑡 = 2.2 × 10−2 𝑡d (as shown in Figure 5-7(a)), the three pairs of the

Taylor vortices completely cover the entire gap and the length of the Taylor-Couette

cell, while the azimuthal velocity is still not sensing any effect of the radial and

axial velocities. The two Taylor vortices at the two ends have completely taken

over the smaller vortices, but the other four vortices are still interacting with the

smaller vortices and only a few of them are still left in the riblet boundary. Note that

throughout this evolution, none of the Taylor vortices are able to penetrate into the

grooves and the flow inside the grooves is a completely viscous dominated one. By

𝑡 = 3.0×10−2 𝑡d the smaller vortices due to the riblets have completely vanished into

the larger Taylor vortices and the three vortex pairs have filled the entire cell (Figure

5-7(b)).
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(a) (b)

Figure 5-7: Contours of azimuthal velocity and streamlines of the in plane axial and
radial velocity at (a) 𝑡 = 2.2 × 10−2 𝑡d, and (b) 𝑡 = 3.0 × 10−2 𝑡d, for Re𝑑 = 115,
𝜂 = 0.63, and Γ = 5.1 and riblets of 𝜆/𝑑 = 0.24, and aspect ratio AR = 1.

Afterwards at 𝑡 = 4.1 × 10−2 𝑡d, while no sign of the smaller riblets is left in the

cell, the azimuthal velocity starts to sense the effect of the instability (Figure 5-8(a))

and by 𝑡 = 4.6×10−2 𝑡d the instability is becoming modulated and the velocity profile

is not the same everywhere in the axial direction. From this point you can also see

the Taylor vortices attempting to penetrate inside the grooves and more streamlines

are visible inside the grooves (Figure 5-8(b)).

The modulation of the instability continues through to time 𝑡 = 5.2 × 10−2 𝑡d,

similar to the form in the case with the smooth rotor (Figures 5-9(a) and 5-4(e)),

and finally the flow reaches to its steady state form as shown in Figures 5-9(b) and

5-9(b). The Taylor vortices have a similar form as to the ones in case with smooth

rotors, however, close to the riblet wall the Taylor vortices slightly penetrate inside the

grooves and especially peaks of the grooves are in contact with the high momentum

fluid which results in sensing a higher shear stress at the peaks. The shear stress

distribution will not be the same for all the riblets as the flow is now dependent on

the axial direction as well. The wavelength of the vortex pairs and the length of a

single vortex are again 1.7 𝑑 and 0.85 𝑑 respectively.

After reaching the steady state point, the riblet surface shown above with 𝜆/𝑑 =
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(a) (b)

Figure 5-8: Contours of azimuthal velocity and streamlines of the in plane axial
and radial velocity at for Taylor vortex flow in presence of riblets with AR = 1 and
at Re𝑑 = 115 (a) 𝑡 = 4.1 × 10−2 𝑡d, (b) 𝑡 = 4.6 × 10−2 𝑡d, where 𝑡d,for Re𝑑 = 115,
𝜂 = 0.63, and Γ = 5.1 and riblets of 𝜆/𝑑 = 0.24, and aspect ratio AR = 1.

(a) (b)

Figure 5-9: Contours of azimuthal velocity and streamlines of the in plane axial and
radial velocity at for Taylor vortex flow in presence of riblets with AR = 1 and at
Re𝑑 = 115 (a) 𝑡 = 5.2 × 10−2 𝑡d, and (b) 𝑡 = 5.9 × 10−2 𝑡d, for Re𝑑 = 115, 𝜂 = 0.63,
and Γ = 5.1 and riblets of 𝜆/𝑑 = 0.24, and aspect ratio AR = 1.

0.24 and AR = 1 shows a total torque reduction of 4.6% compared to the case with

the smooth rotor numerically which is consistent with the results of the measurement

presented in Figure 4-20 in Chapter 4.

For the case of the Reynolds number of Re𝑑 = 230, the transient steps in the
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growth of the Taylor vortices are presented below. In Re𝑑 = 230, the original insta-

bility gives rise to three vortex pairs initially, but the vortices combine to settle into

two vortex pairs over a length of Γ = 3.4 (2/3 of the length in the previous case; to

reduce the costs of the simulations).

The time evolution of the Taylor vortices at Re𝑑 = 230, for Taylor Couette cells

with no riblets (AR = 0) are shown in Figures 5-10 and 5-11 and 5-12, for riblets

with aspect ratios of AR = 1 are shown in Figures 5-13 and 5-14, and for AR = 2 are

shown in Figures 5-15 and 5-16. The evolution is shown using the scalar 𝑄 which is

defined as in Equation 3.4 and discussed in chapter 3. Here 𝑄 is non-dimensionalized

by the square of the rate of shear strain and specifically here by using the rate of shear

strain in a laminar Taylor Couette flow with smooth rotors, as written in Equation

4.22. Thus the color bar of the figures is presenting 𝑄/𝛾̇2𝑟𝜑. As shown in Figures 5-10,

first the flow develops in the same manner as the laminar flow, but by 0.12 𝑡d the

flow starts to undergo an instability which is modulated and gives rise to three vortex

pairs in the entire length. However, the three vortex pairs are not stable and they

oscillate back and forth and it can be seen in the bottom figures in Figure 5-10

The oscillation continues as shown in Figures 5-11 until the three pairs of vortices

fill the entire region. The two vortex pairs toward the top of the cell are smaller in

wavelength compared with the one toward the bottom.

But these vortices cannot sustain their shape and ultimately, as shown in Figures

5-12, the two vortex pairs on the top move toward each other and collapse into one

pair (at about 0.52 𝑡d) and the two remaining vortex pairs adjust their wavelengths

to cover the entire length of the cylinder (Note that periodic boundary condition is

used for the top and bottom of the cell). After the time of 0.6 𝑡d the Taylor vortex

flow over smooth rotor reaches a steady state and no changes are seen in the flow.

Again the final wavelength of the Taylor vortex pairs is calculated to be 1.7 𝑑. Mullin,

Heise and Pfister discuss such collapse of 𝑁 vortices to 𝑁 − 2 vortices in terms of a

pitchfork bifurcation [156].

For the case of the riblets with AR = 1, the process of the evolution of the

vortices is similar to the case of the smooth rotor. However, in the case of the riblets
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(a) (b) (c)

(d) (e) (f)

Figure 5-10: Time lapse of 𝑄 criteria of the initiation of the Taylor vortices in flow
with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 1.03 × 10−1, (b) 1.18 × 10−1, (c)
1.33× 10−1, (d) 1.48× 10−1, (e) 1.64× 10−1, and (f) 1.77× 10−1 over a smooth rotor.

of AR = 1, the first sign of instability is visible slightly later than the smooth case at

0.13 𝑡d and again three pairs of vortices are initiated along the length of the cell with

one having a larger wavelength than the others (See Figure 5-13).

However, this time there is no oscillation visible in the Taylor vortices as it was

observed in the case with the smooth rotor. Again the presence of three pairs of

vortices is unstable and the two vortex pairs with smaller wavelengths move toward

each other and ultimately collapse into one larger Taylor vortex. Afterwards the two

Taylor vortices adjust their wavelengths to be the same and fill the entire length of

the cell (shown in Figures 5-14).
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(g) (h) (i)

Figure 5-11: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 1.92 × 10−1, (b)
2.09 × 10−1, (c) 2.24 × 10−2, (d) 2.37 × 10−1, (e) 2.51 × 10−1, (f) 2.66 × 10−1, (g)
2.81 × 10−1, (h) 2.96 × 10−1, and (i) 3.10 × 10−1 over a smooth rotor.
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(a) (b) (c)

(d) (e) (f)

Figure 5-12: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 4.58 × 10−1, (b)
4.73× 10−1, (c) 4.88× 10−1, (d) 5.03× 10−1, (e) 5.18× 10−1, and (f) 5.32× 10−1 over
a smooth rotor.

Similar behaviour is also seen when riblets with AR = 2 are put in the Taylor-

Couette flow at Re𝑑 = 230. First signs of the instability is visible at 𝑡 = 0.13 𝑡d

(slightly later than what was seen in the case with the smooth rotor) and again three

pairs of Taylor vortices show up in the cell.

Afterwards, unlike the smooth case, no visible oscillations are seen among the

vortices, however the top two vortex pairs move toward each other and combine into

one vortex pair. The two vortex pairs cover the entire length of the cell with each

pair having a wavelength of Λ/𝑑 = 1.7 and each of the separate counter rotating cells

have a length of 0.85 𝑑. This wavelength is similar across all the cases of smooth and
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(a) (b) (c)

(d) (e) (f)

Figure 5-13: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 1.18 × 10−1, (b)
1.33× 10−1, (c) 1.48× 10−1, (d) 1.64× 10−1, (e) 1.77× 10−1, and (f) 1.92× 10−1 over
a riblet covered rotor with aspect ratio of AR = 1.

riblet surfaces.

So, while the overall behaviour of the Taylor vortices and their evolution seems to

be similar with slight difference between the cases with smooth rotor and the riblets

with AR = 1 and AR = 2, the most prominent difference that is clear among all the

time instances is that the contours of 𝑄 close to the inner cylinder for the case with

the smooth rotor are on the lower side of the color bar corresponding to flow being

dominated by the rate of strain tensor and in this case specifically the rate of the

shear strain. Hence the entire length of the inner cylinder is in contact with flow with
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(d) (e) (f)

(g) (h) (i)

Figure 5-14: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 3.40 × 10−1, (b)
3.58 × 10−1 , (c) 3.70 × 10−1, (d) 3.85 × 10−1, (e) 3.99 × 10−1, (f) 4.14 × 10−1, (g)
4.29×10−1, (h) 4.44×10−1, and (i) 4.59×10−1 over a riblet covered rotor with aspect
ratio of AR = 1.
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(d) (e) (f)

Figure 5-15: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 1.18 × 10−1, (b)
1.33× 10−1, (c) 1.48× 10−1, (d) 1.64× 10−1, (e) 1.77× 10−1, and (f) 1.92× 10−1 over
a riblet covered rotor with aspect ratio of AR = 2.

a high rate of shear strain.

However, moving to the case with riblets of AR = 1 and AR = 2, it can be seen

that only parts of the riblets, especially in the vicinity of the peaks of the riblets, are

in contact with flow with high rates of shear strain and as one moves toward the inside

of the grooves, the flow moves toward a higher rate of rotation (or the anti-symmetric

part of the velocity gradient tensor). Since the total torque is directly dependent

on the shear rate and not the rotation in the flow, inside the grooves experiences a

lower shear stress compared to the case of the smooth rotor. Thus, only a portion of
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5-16: Time lapse of 𝑄 criteria of the initiation and growth of the Taylor
vortices in flow with Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for 𝑡/𝑡d (a) 8.73 × 10−1, (b)
8.88 × 10−1, (c) 9.02 × 10−1, (d) 9.17 × 10−1, (e) 19.32 × 10−1, (f) 9.47 × 10−1, (g)
9.61×10−1, (h) 9.76×10−1, and (i) 9.91×10−1 over a riblet covered rotor with aspect
ratio of AR = 2.
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the length of the inner rotor will be in contact with high momentum fluid when the

riblets are present. Note that this is a local discussion of the distribution of the rate

of shear strain on the wall and does not take into account the increase in the wetted

surface area. This will be discussed in more detail in the next section.

The evolution of the frictional torque on the inner cylinder for Taylor-Couette

flow with Re𝑑 = 230 and riblet covered rotors with aspect ratios of 0 6 AR 6 2

are plotted in Figure 5-17. As seen in the figure, the evolution of the torque up to

the steady state value goes through different paths with different jumps at different

times depending on the geometry used. However, the over all transient process is

very similar across the different cases.

Figure 5-17: Evolution of frictional torque over time for Taylor Couette flow at
Re𝑑 = 230, 𝜂 = 0.63, and Γ = 3.4 for riblet covered rotors with aspect ratios 0 6
AR 6 2. The torque is normalized by the torque defined in the laminar case and the
time is normalized by the diffusion time.

Figure 5-18 shows the torque evolution for the case of AR = 1.5 from the cases

shown in Figure 5-17. In addition at different times, especially at local minima and

maxima of the curve, the contour plots of the circumferential velocity as well as the
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streamlines of the axial and radial velocity are shown in the figure as well. At first

while toward the outer cylinder the larger vortex structures start to get formed, inside

each groove smaller vortex pairs are also created. As time goes forward, without the

azimuthal velocity feeling any difference, the four pairs of Taylor vortices start to

interact with the smaller vortices inside the grooves.

Afterwards, as the azimuthal velocity starts to show signs of the instability, the

larger Taylor vortices take over the smaller vortices inside the grooves and then a

wave showing the four vortex pairs becomes visible on the velocity contour. Then

a sudden jump in the torque is observed and the velocity contour now shows the

instability, but still the vortex pairs are interacting and mixing with each other to

form three vortex pairs at the torque maximum.

At the next local minimum, the mixing continues and the vortex pairs are down to

two, but still remnants of older vortices are seen. In addition, the velocity contour also

shows an unusual, non-periodic shape and ultimately when the flow reaches steady

state, only two pairs of vortices are visible in the entire cell with Γ = 3.4 and the

velocity contours turn into a periodic shape also showing two cells corresponding to

two vortex pairs.

5.3.2 Effect of Riblet Geometry in Torque Changes

Similar to the Couette flow, riblets are capable of changing the total frictional torque

on the inner cylinder. The change in torque is not only a function of the viscous flow

retardation inside the grooves, but also the interaction of the riblets with the Taylor

vortices will affect the total torque reduction achieved.

The results presented in Figure 4-20 show that in the Taylor vortex regime, the

total torque reduction is again a function of the aspect ratio of the riblets and similar

non-monotonic behaviour is observed in the torque change as a function of the aspect

ratio. I can compare the results at Re𝑑 = 230 which is well above the transition re-

gion from Couette flow to the Taylor vortex region, but still no wavy Taylor vortices

are observed in this region. The results of the torque evolution over time for various

aspect ratios were presented in Figure 5-17. Note that no theoretical results for the
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torque in the Taylor vortex region has been reported, however, in different Reynolds

number regimes various functional forms such as power law scaling have been sug-

gested throughout the years. As mentioned in the previous chapter, in the Taylor

vortex regime, torque is dependent on Re1.53𝑑 which is very close to the exponent of

1.5 reported by Wendt [144].

The results of the change in torque for Re𝑑 = 230, 𝜂 = 0.63, and riblets of

𝜆/𝑑 = 0.24 as a function of the aspect ratio, AR, is plotted in Figure 5-19. In the

figure, the computational results are plotted for various aspect ratios and the results

of the experiments are added for comparison. The results show a non-monotonic

behaviour for the torque reduction as a function of the aspect ratio. On this plot,

an additional curve shows the results of the torque reduction in the laminar flow for

Re𝑑 < 75 with the same riblet geometry, over a range of the aspect ratios, similar to

the one presented in Chapter 4.

Figure 5-19: Frictional torque change in the Taylor vortex regime with riblets of
𝜆/𝑑 = 0.24 at Re𝑑 = 230 over a range of aspect ratios. The results of the torque
change for the laminar Taylor Couette flow for 𝜆/𝑑 = 0.24 as a function of the AR is
also shown here for comparison.
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Comparing the drag reduction in the Taylor vortex flow compared with the laminar

flow shows that in the Taylor vortex regime the torque reduction is achieved over

a smaller range of aspect ratios, AR compared with the reduction in the laminar

region. The maximum reduction is nearly similar between the two cases, however,

this maximum happens at a lower aspect ratio (AR ≈ 0.6−0.7) for the Taylor vortex

case, compared with the laminar one which is happening at AR ≈ 1.2 − 1.3.

This trend in the torque change can again be explained by shear stress distribution

on the riblet wall. Here with the Taylor vortices present, instead of plotting the shear

stress distribution for only one riblet, the shear stress distribution within two Taylor

vortex pair wavelengths is presented in Figure 5-20 to capture the details of the shear

stress profiles. The shear stress is normalized by the shear stress distribution on a

smooth wall in the laminar flow.

First it can be seen that the presence of the riblets definitely changes the shear

stress distribution and the shear stress felt inside the grooves is smaller than the shear

stress close to the peaks of the riblets. On the other hand, due to the dependence of

the velocity profiles on the axial direction, then the shear stress is not similar for each

and every riblet, therefore, the maxima and minima of the shear stress on the curves

follow the overall shape of the shear stress distribution due to the Taylor vortices

while it goes through maxima and minima due to the presence of the riblets. This

shows that both riblets and the Taylor-Couette vortices play a role in the changes

seen in the torque.

Due to the distribution of the shear stress on riblet covered rotors, I notice that a

wide area of each riblet is experiencing shear stresses lower than the shear stress on

the smooth surface. However, increasing the aspect ratio, results in a wider and wider

area experiencing a lower shear stress inside the grooves. Therefore, the average shear

stress distribution (averaged over one wavelength of the vortex pair) in Taylor-vortex

flow over the riblets decreases as the aspect ratio of the riblets increase. But, due to

the Taylor vortices the peaks of the riblets experience a modulated increase in the

shear stress compared to the case of the laminar flow. Especially in higher AR cases,

the minimum of the shear stress profiles are rather constant throughout the length
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Figure 5-20: Shear stress distribution on the riblet wall in Taylor-Couette flow
with riblet covered inner cylinders. The shear stress is plotted for 2 Taylor vortex
pair wavelengths and for various aspect ratios at Re𝑑 = 230. The shear stress is
non-dimensionalized with the shear stress in the laminar Taylor-Couette flow with
smooth rotors 𝜏laminar = 2𝜇/(1 − 𝜂2).

while the maxima change throughout the length following the distribution of shape

of the shear stress due to the Taylor vortices. The average shear stress distribution

as a function of the aspect ratio of the riblets are presented in Figure 5-21. Similar

to the laminar flow, the average shear stress is decreasing with aspect ratio while the

total wetted area is increasing. Therefore, the total torque reduction which is the

interplay of the reduction in the average shear stress distribution and the increase in

the area, goes through a non-monotonic behaviour as a function of the aspect ratio

of the riblets.

However, it should be noted that due to the modulation in the shear stress felt on

the peaks of the riblets, the decrease in the average shear stress is not as substantial

as in the laminar case and therefore, comparing Figures 5-21 and 4.7, it can be seen

that this reduction in the average shear stress in the case of the Taylor vortices can

only counteract the effect of the area increase to only a smaller range of aspect ratios

compared to the laminar Taylor-Couette flow and hence the torque reduction can be

achieved over a smaller range of aspect ratios compared with the laminar case.
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Figure 5-21: Average shear stress in Taylor vortex flow over riblet covered rotors
compared with the average shear stress on a smooth rotor as a function of the AR
for the case of 𝜆/𝑑 = 0.24 and Re𝑑 = 230 as well as the change in the wetted area as
a function of the AR.

5.4 Conclusion

In this chapter, the case of the Taylor Couette flow at Re𝑑 = 230 in the Taylor vortex

regime with 𝜂 = 0.63, and Γ = 3.4 was employed to investigate the effect of the riblet

covered rotors on the changes in the frictional torque on the inner cylinder. Time

dependent numerical simulations of the flow over riblets with 𝜆/𝑑 = 0.24 and aspect

ratio of ranges between 0 and 2 were discussed in terms of the interactions of the

riblets with the Taylor vortices.

The time dependent interaction of the geometry of riblets with the Taylor vortices

were presented for smooth and various riblet walls and discussed in terms of the

velocity distribution and the 𝑄 criteria in the flow.

Later, the evolution of the torque over time were presented and compared with

the flow structure at various time stamps prior to reaching the steady state. As it

was seen the riblet peaks are directly in contact with the final Taylor vortices and

the Taylor vortices tend to try to penetrate inside the grooves and hence the region

in the vicinity of the peaks is in contact with high momentum fluid and experiences
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a higher shear stress compared to the rest of the grooves.

In the end, the changes in torque were presented as a function of the aspect ratio

and compared with the corresponding laminar situation. Similar to the laminar case,

the riblets reduce the average shear stress distribution over the wall as the AR of the

riblets is increased. However, the presence of the Taylor vortices and interactions with

the riblets result in an additional increase in the total frictional torque and hence the

decrease in the average shear stress distribution is smaller than the decrease in the

laminar case. Therefore, the non-monotonic behaviour observed in the torque change

as a function of AR can be extended in the Taylor vortex flow, however, only a smaller

ranges of the aspect ratios are able to provide a reduction in the total frictional drag

force.

With the complexity of the Taylor vortex flow and the various bifurcations that

are possible for this flow, it is intriguing to model additional cases with different riblet

geometries and other Reynolds numbers. The simulations for larger Reynolds number

should be performed for the full geometry of the concentric cylinders, since the rest

of flow behaviours are not axisymmetic. However, such simulations can be expensive

and would require larger computational memories than available in the current study.
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Chapter 6

Conclusion and Future Directions

In the previous chapters, a comprehensive study of the riblet surfaces in a model

external and internal flow were presented; Boundary layers as the external flow and

Taylor-Couette flow as the internal flow. In both cases we showed that riblet surfaces

have the ability to reduce the frictional drag force on the corresponding surfaces that

were analysed. However, it was also shown that the dynamics of the flow through

a Reynolds number, as well as the geometry of the riblets, and the overall flow play

direct roles in the final changes in the frictional drag force.

In this chapter, an overall summary of the findings of the previous chapters are

presented based on the dynamics of the flow and the geometry of the riblets. Then in

a later section, a list of suggestions for future research on this method of passive drag

reduction and applications of the method in different industries will be discussed.

6.1 Effect of the Flow Dynamics - Reynolds Number

Dependence of the changes in the frictional drag using riblet surfaces on the dynamics

of the flow defined in terms of the Reynolds number varies based on the flow type being

analysed. One can clearly see the difference by comparing the case of the boundary

layers over riblet covered surfaces in Chapters 2 and 3 and a closed system such as

the Taylor-Couette flow in the laminar regime where the flow is axi-symmetric and

fully developed as shown in Chapter 4. As it was shown, in a fully developed laminar
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Taylor-Couette flow the torque over a smooth and riblet surface scales linearly with

the Reynolds number and hence the changes in torque due to riblets is not dependent

on the Reynolds number. Hence the experimental and numerical results, and the

accompanying theory all confirm this. It should be noted that in this flow, the

velocity profile and the shear stress profiles are only dependent on the geometry of

Taylor-Couette cell and the riblets and the Reynolds number does not present itself

in them. Therefore, torque is only dependent on Re𝑑 linearly.

On the other hand, in the boundary layers, the local velocity profiles and the local

shear stress distribution are directly dependent on the Reynolds number. Therefore,

the total frictional drag will be dependent on the total length of the plate as it was

shown in Chapters 2 and 3. Therefore, with the shear stress dependence on the

local Reynolds number based on the stream-wise direction in both smooth and riblet

surfaces as shown in Figure 3-21(a), then the total frictional drag as calculated by the

integral of the local shear stress will be dependent on the Reynolds number based on

the length of the plate as shown in Figure 3-21(b). On the other hand, the theoretical

model and scaling introduced in Chapter 2 allows us to described the total frictional

drag reduction as a function of a scaled form of Reynolds number based on the total

length and use that to adjust the design of the riblet surfaces based on the length of

the plate or the velocity of the free-stream (The size of the riblets will be discussed

later in section 6.3).

Calculations of the reduction in the total frictional drag force using conformal

mapping for the V-groove riblets and the numerical simulations for the wrinkled

surfaces show that for a riblet surface to be drag reducing the scaled Reynolds number

Re𝐿(𝜆/𝐿)2 of a surface needs to be smaller than a threshold. This means that at a

constant riblet wavelength and constant flow velocity, the length of the plate needs to

be larger than a minimum threshold for it to be drag reducing. On the other hand,

at a constant plate length and a constant riblet wavelength, then the velocity of the

flow needs to be lower than a threshold to offer drag reduction.
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6.2 Effect of the Riblet Sharpness - Aspect Ratio

While both boundary layer flow and Taylor-Couette flow are different in many ways,

their response to changes in aspect ratio, AR, of the riblet were very similar. In

both boundary layer flow and Taylor Couette flow, at a constant Reynolds number

and a constant non-dimensional riblet wavelength (depending on the flow 𝜆 is non-

dimensionalized with different length scales), the changes in the total frictional drag

(or torque) measured or calculated on the surfaces showed a non-monotonic behaviour.

First at lower aspect ratios riblets results in a reduction in drag/torque and this

reduction was enhanced up to an optimum aspect ratio. Then the trend was reversed

and as the aspect ratio was increased more, drag/torque reduction diminishes and

after an aspect ratio, only drag increase in observed.

This behaviour can be explained by the shear stress distribution inside the riblets

and how the presence of the riblets results in a non-uniform distribution of the shear

stress inside the grooves with the peaks of the riblets experiencing a larger shear stress

compared to their equivalent smooth wall while the trough of the riblets experience

a lower shear stress compared to the smooth wall. Therefore, the average of the

shear stress distribution (whether in boundary layers or in Taylor-Couette flows) will

encounter a decreasing trend as the aspect ratio of the riblets is increased. However,

no matter the shape of the riblets chosen, increasing the aspect ratio directly results

in an increase in the wetted surface area. Therefore, observing a reduction in total

drag is ultimately dependent on the interplay of the decreasing trend in the shear

stress distribution as the aspect ratios are increased and the increasing trend in the

wetted surface area. Hence this interplay results in a non-monotonic behaviour in the

total reduction achieved in each of the cases.

6.3 Effect of the Size of the Riblets - Wavelength

As it was shown throughout the previous chapters, the changes in frictional drag due

to the presence of the riblet surfaces is directly dependent on the size of the riblets
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used in both external and internal flows.

In the boundary layers, through the scaling of the extended three dimensional

boundary layer equations, it was shown that the total torque reduction is dependent

on the 𝜆/𝑧 and it is best to be used in a scaled form of the local and global Reynolds

number as Re𝑧(𝜆/𝑧)2 and Re𝐿(𝜆/𝐿)2 respectively. Using the scaled Reynolds number,

the results of the calculations with conformal mapping shown in Chapter 2 showed

that the reduction in the total frictional drag force is directly dependent on the scaled

Reynolds number and for a ribelt surface to be drag reducing, the plate should have

a scaled Reynolds number smaller than a threshold depending on the aspect ratio

of the riblets. Therefore, with the definition of the scaled Reynolds number, at a

constant velocity and constant length, then the wavelength of the riblets should be

smaller than a limit for the plate to be drag reducing.

On the other hand, for the case of the Taylor-Couette flow, the wavelength was

non-dimensionalized by the size of the gap of the Taylor-Couette cell which is the

length scale where the diffusion of vorticity happens. Experimental results presented

in Chapter 4 showed that increasing the wavelength at constant Taylor-Couette ge-

ometry and riblet aspect ratio results in a an enhancement in the torque reduction

achieved. The relationship of the torque reduction with the wavelength of the riblets

were also analysed using a higher order expansion of the velocity profile and using a

perturbed boundary condition to solve the equations for the first order term of the

azimuthal velocity. The model at small aspect ratios and small 𝜆/𝑅i captures the

slope of the torque reduction curves from the numerical simulations. The simplified

model used later in the chapter, can capture the relationship of the torque reduc-

tion as a function of both 𝜆/𝑑 and the geometry of the Taylor-Couette cell through

(𝜂(1 + 𝜂))−1 and the results were shown for three different aspect ratios.

Therefore, depending on the type of the flow, the size of the riblets in terms of

the wavelength chosen can play a role in different ways and the drag change achieved

(whether increase or decrease) would show different scaling behaviours with the wave-

length. In addition, in both cases shown above, the results were dependent on a

combination of the non-dimensional wavelength, geometry of the overall flow, and in
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the case of the boundary layer on the dynamics of the flow. Therefore, while the

torque reduction with aspect ratio takes a universal trend, the dependence on the

wavelength needs to be mapped separately for the specific flow type needed and used

solely for that flow.

6.4 Future Directions

The ability of reducing frictional drag force using passive methods, such as riblet

surfaces can have spectacular implications for different industries. Understanding the

effect of riblets on external and internal flows in different regimes allows for innovative

designs of external and internal surfaces which could offer lower frictional losses, hence

reducing the energy losses associated with the frictional drag between the fluid and

the solid surfaces.

In terms of the external flows, with the understanding form this study for the

laminar boundary layer flow and the literature for the riblet drag reduction in the

turbulent boundary layers, one can design surfaces tailored to offer the best response

in different locations along the length of the surface and hence a better total reduction

in drag. This can be applied to ship halls, surface of the airplanes, as well as the

body of Unmanned Underwater Vehicles (UUVs) where close to the leading edge of

the vehicle the flow is laminar and further down the length the flow naturally or

forcibly transitions to turbulent.

On the other hand, there is still room for additional investigation in the effect of the

riblets within the transition region of the boundary layer flow, between laminar and

turbulent regimes. While it is very important to understand the frictional response

of the riblets in the transition, the question of whether the riblets can delay the

transition or not is still open for further investigation.

In terms of the internal flows, the flow in presence of the riblets at the entrance

length prior to becoming fully developed can be analysed in the same manner as the

boundary layer flow discussed here. In the fully developed case before transitioning

to turbulence, similar method as the one used in the Taylor-Couette flow can be em-

267



ployed to understand the effect of the riblets as well. While experimental methods

involving the pipe flow or channel flow can be difficult, especially in terms of fab-

rication methods, the advances in 3D printing methods can offer a new avenue in

overcoming the difficulties of such experiments.

Lastly, as a physical exploration, it is of interest to understand how the change in

the geometry of the riblets can affect the Taylor-Couette flow in the regimes where

the symmetry of the flow is broken as well as in regions where both cylinders are

rotating. Taylor-Couette flow as a model flow for physical studies can offer additional

insight into the mechanisms of how riblets affect the flow in different circumstances

and use those insights to analyse other cases.
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Appendix A

Matched Asymptotic Expansion for

Cylindrical Couette Flow over

V-groove Riblet Rotors

To solve the equations of motion for steady cylindrical Couette flow over V-groove

riblet surfaces, we can start by decomposing the solution for the velocity and pressure

distribution as a base solution and a first order perturbation for small riblets with

𝐴

𝑅i

≪ 1 (A.1)

and calling 𝜆/𝑅i = 𝜀, Equation A.1 can be rewritten as

AR
𝜆

𝑅i

= AR𝜀≪ 1. (A.2)

Here the base flow is the cylindrical Couette flow over smooth rotors discussed in

chapter 4 and the perturbation term is due to the presence of the riblets. Therefore,

we can expand the pressure and velocity profiles in the forms

𝑝 = 𝑝(0) + AR𝜀 𝑝(1) +𝑂(AR2 𝜀2)... (A.3)
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𝑣 =

⎡⎢⎢⎢⎣
𝑣𝑟

𝑣𝜑

𝑣𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

𝑣
(0)
𝜑

0

⎤⎥⎥⎥⎦+ AR𝜀

⎡⎢⎢⎢⎣
𝑣
(1)
𝑟

𝑣
(1)
𝜑

𝑣
(1)
𝑧

⎤⎥⎥⎥⎦+𝑂(AR2 𝜀2)... (A.4)

First the component of the steady axisymmetric Navier Stokes equation in the 𝜑

direction is written as

𝜌

(︂
𝑣𝑟
𝑟

𝜕𝑣𝜑
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝜑
𝜕𝑧

)︂
= 𝜇

(︂
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝜑)

)︂
+
𝜕2𝑣𝜑
𝜕𝑧2

)︂
. (A.5)

With the no-slip boundary condition on the inner and outer cylinders, i.e. 𝑣(1)𝑟 (𝑟 =

𝑅i) = 𝑣
(1)
𝑟 (𝑟 = 𝑅o) = 0, it is assumed that 𝑣(1)𝑟 = 0 (note that this ansatz will be

supported in Equations A.15 - A.20). Thus, substituting the above expansion for the

velocity and gathering the first order terms with the assumption that 𝑣(1)𝑟 = 0 gives

𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣

(1)
𝜑 )

)︂
+
𝜕2𝑣

(1)
𝜑

𝜕𝑧2
= 0 (A.6)

with the boundary condition of

𝑣
(1)
𝜑,𝐵𝐶

𝑅iΩi

=
−2

1 − 𝜂2
𝑧

𝜆
+𝑂(𝜀AR).... (A.7)

as explained in Chapter 4 using a Taylor series expansion for V-grooves in the range

0 ≤ 𝑧/𝜆 ≤ 1/2 (due to symmetry the problem is solved for half of a V-groove). Now

one can solve Equation A.6 to get

𝑣
(1)
𝜑

𝑅iΩi

=
−2𝜂

(1 − 𝜂2)2

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂
𝑧

𝜆
. (A.8)

Now, using the axisymmetric Navier Stokes equation in the radial direction

𝜌

(︂
𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑟
𝜕𝑧

−
𝑣2𝜑
𝑟

)︂
=
𝜕𝑝

𝜕𝑟
+ 𝜇

(︂
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)

)︂
+
𝜕2𝑣𝑟
𝜕𝑧2

)︂
(A.9)

and again, substituting the expansion and gathering the first order terms
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𝜌
2𝑣

(0)
𝜑 𝑣

(1)
𝜑

𝑟
=
𝜕𝑝(1)

𝜕𝑟
(A.10)

and thus

𝜕𝑝(1)

𝜕𝑟
= 𝜌

2𝜂2

(1 − 𝜂2)3
1

𝑟

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂2
𝑧

𝜆
(𝑅iΩi)

2. (A.11)

Integrating this equation, one gets an equation for the pressure distribution as

𝑝(1) =
2𝜂2

(1 − 𝜂2)3
𝑧

𝜆

(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃
𝜌 (𝑅iΩi)

2 . (A.12)

Therefore, the pressure gradient in the 𝑧 direction is written as

𝜕𝑝(1)

𝜕𝑧
=

2𝜂2

(1 − 𝜂2)3
1

𝜆

(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃
𝜌 (𝑅iΩi)

2 (A.13)

which is only a function of the radial direction, 𝑟. To simplify, I denote the right

hand side of above equation 𝑓(𝑟) and use the component of the steady axisymmetric

Navier-Stokes equation in the axial direction

𝜌

(︂
𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
= −𝜕𝑝

𝜕𝑧
+ 𝜇

(︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑧
𝜕𝑟

)︂
+
𝜕2𝑣𝑧
𝜕𝑧2

)︂
(A.14)

Substituting for the pressure and velocity expansion, and collecting the first order

terms, simplifies the above equation to

𝜇

(︃
1

𝑟

𝜕

𝜕𝑟

(︃
𝑟
𝜕𝑣

(1)
𝑧

𝜕𝑟

)︃
+
𝜕2𝑣

(1)
𝑧

𝜕𝑧2

)︃
=
𝜕𝑝(1)

𝜕𝑧
= 𝑓(𝑟) (A.15)

Therefore, the solution to 𝑣𝑧 has a form of

𝑣(1)𝑧 = 𝑔(𝑟) + 𝐶1𝑧 +𝐷 (A.16)

and with the boundary condition of
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𝜕𝑣
(1)
𝑧

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= −𝜕𝑣
(1)
𝑧

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝜆/2

, (A.17)

one thus finds that 𝐶1 = 0. Therefore, using the continuity equation (at this order)

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣(1)𝑟 ) +

𝜕𝑣
(1)
𝑧

𝜕𝑧
= 0 (A.18)

and substituting the above form for the first order terms, one gets

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣(1)𝑟 ) = 0 (A.19)

which can be solved as

𝑣(1)𝑟 =
𝐷1

𝑟
(A.20)

and with boundary condition of no-slip at the inner and outer walls, 𝐷1 = 0 and thus

𝑣
(1)
𝑟 = 0, confirming the assumption that was made earlier to solve the equations.

Any radial/ recirculating velocity that is induced by the riblets thus develops only at

higher orders 𝑂(𝜀2𝐴𝑅2) and beyond.

A.1 Cases With larger Aspect Ratios

For finite aspect ratio cases, the first order velocity and pressure terms can be ex-

panded using an inner and outer expansion where the outer expansion is valid for ra-

dial locations outside the grooves and the inner expansion is valid for 𝑦 = 𝑟−𝑅i ≪ 𝑑

(as shown in Figure A-1), close to the riblet textured wall.

A.1.1 Outer Expansion

Here, assume the outer expansion is valid for radial locations outside the riblet surface.

Therefore, I assume that the first order velocity and pressure distributions will only

be a function of the radial direction. Hence
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Figure A-1: Schematic of the V-groove riblets with arbitrary aspect ratio on the inner
cylinder of a cylindrical Couette flow geometry. To solve the equations of motion for
Couette flow in this geometry, the solution is expanded using an inner and an outer
expansion, with the inner solution valid close to the inner cylinder, i.e. 𝑦 ≪ 𝑑, and
the outer solution valid outside the grooves.

𝑝 = 𝑝(0) + 𝜀𝑝
(1)
O +𝑂(𝜀2)... (A.21)

neglecting terms of second order and higher with

𝜕𝑝
(1)
O

𝜕𝑧
= 0. (A.22)

Substituting the above equation into the axial component of the steady axisymmetric

cylindrical Navier-Stokes equation

𝜌

(︂
𝑣𝑟
𝜕𝑣𝑧
𝜕𝑟

+ 𝑣𝑧
𝜕𝑣𝑧
𝜕𝑧

)︂
=
𝜕𝑝

𝜕𝑧
+ 𝜇

(︂
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑣𝑧
𝜕𝑟

)︂
+
𝜕2𝑣𝑧
𝜕𝑧2

)︂
(A.23)

and substituting for the pressure and velocity, and collecting the first order terms,
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simplifies the above equation to

𝜇

(︃
1

𝑟

𝜕

𝜕𝑟

(︃
𝑟
𝜕𝑣

(1)
𝑧,O

𝜕𝑟

)︃
+
𝜕2𝑣

(1)
𝑧,O

𝜕𝑧2

)︃
= 0 (A.24)

with boundary conditions of 𝑣𝑧,O = 0 on the inner and outer cylinder and

𝜕𝑣
(1)
𝑧

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= −𝜕𝑣
(1)
𝑧

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝜆/2

(A.25)

This equation with the above boundary conditions has a trivial solution of 𝑣(1)𝑧,O = 0.

Now using the continuity equation

1

𝑟

(︂
𝜕

𝜕𝑟
(𝑟𝑣𝑟)

)︂
+
𝜕𝑣𝑧
𝜕𝑧

= 0 (A.26)

and substituting for the velocity profile and gathering the first order terms of the

outer solution gives

1

𝑟

(︂
𝜕

𝜕𝑟

(︁
𝑟𝑣

(1)
𝑟,O

)︁)︂
+
𝜕𝑣

(1)
𝑧,O

𝜕𝑧
= 0 (A.27)

with similar boundary conditions of of 𝑣(1)𝑟,𝑂 = 0 on the inner and outer cylinder and

𝜕𝑣
(1)
𝑟

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

= −𝜕𝑣
(1)
𝑟

𝜕𝑧

⃒⃒⃒⃒
𝑧=𝜆/2

(A.28)

With 𝑣
(1)
𝑧,O = 0 and the given boundary conditions, 𝑣(1)𝑟,𝑂 = 0. Therefore, the velocity

profile can be written as

𝑣 =

⎡⎢⎢⎢⎣
𝑣𝑟

𝑣𝜑

𝑣𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

𝑣
(0)
𝜑

0

⎤⎥⎥⎥⎦+ AR𝜀

⎡⎢⎢⎢⎣
0

𝑣
(1)
𝜑,𝑂(𝑟)

0

⎤⎥⎥⎥⎦ (A.29)

with the pressure as in Equation A.21. Hence this form of steady velocity profile

was used in the integral solutions proposed in Chapter 4. Therefore, the equations of

motion at the leading order are written as
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𝜌

(︁
𝑣
(0)
𝜑

)︁2
𝑟

=
𝜕𝑝(0)

𝜕𝑟
(A.30)

𝜕

𝜕𝑟

1

𝑟

(︂
𝜕

𝜕𝑟
(𝑟𝑣

(0)
𝜑 )

)︂
= 0 (A.31)

with boundary condition of 𝑣(0)𝜑 (𝑟 = 𝑅i) = 𝑅iΩi and 𝑣
(0)
𝜑 (𝑟 = 𝑅o) = 0 on the inner

and outer cylinder and for pressure 𝑝(0)(𝑟 = 𝑅0) = 0. These equations can be solved

as to give:

𝑣
(0)
𝜑 =

1

1 − 𝜂2
(
𝑅o

𝑟
− 𝑟

𝑅o

)𝑅iΩi, (A.32)

and

𝑝(0) =

(︂
𝜂

1 − 𝜂2

)︂2
(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃
𝜌 (𝑅iΩi)

2 . (A.33)

For the first order correction induced by the presence of the riblets, one has

𝜌
2𝑣

(0)
𝜑 𝑣

(1)
𝜑,O

𝑟
=
𝜕𝑝

(1)
O

𝜕𝑟
(A.34)

𝜕

𝜕𝑟

1

𝑟

(︂
𝜕

𝜕𝑟
(𝑟𝑣

(1)
𝜑,O)

)︂
= 0 (A.35)

The boundary condition on the riblet surface is again the same as in Equation

A.7. However, since the aspect ratio is no longer very small and I am using the outer

expansion valid far from the riblets (𝑦/𝑑 ∼ 𝑂(1)), instead of assuming that the above

boundary condition holds on 𝑟 = 𝑅i, I assume that for each aspect ratio riblet the

effective boundary condition on the inner cylinder can be defined as an average of

the boundary condition over one period in the 𝑧 direction. If I consider a purely

geometric averaging, one has
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∫︀ 𝜆/2

0
𝑧𝑑𝑧

𝜆

2

=

𝜆2

8
𝜆

2

=
𝜆

4
. (A.36)

However due to the complexity of the problem and the fact that such an average

needs to be dependent on the aspect ratio, I assume that instead of the above bound-

ary condition, one can satisfy the boundary condition exactly at one intermediate

location 𝑧 = 𝐾𝜆/4 where 𝐾 is only dependent on the aspect ratio and apply this

boundary condition

𝑣
(1)
𝜑,BC

𝑅iΩi

=
−2

1 − 𝜂2
AR

𝐾

4
(A.37)

at 𝑟 = 𝑅i. Note that for AR → 1, 𝐾 = 1. Now solving the equation for the azimuthal

velocity one gets

𝑣
(1)
𝜑,O(𝑟) =

−2𝜂

(1 − 𝜂2)2

(︂
𝑅o

𝑟
− 𝑟

𝑅o

)︂
1

4
(𝑅iΩi) (A.38)

and for the pressure

𝑝
(1)
O (𝑟) = −

(︂
𝜂2

(1 − 𝜂2))

)︂2
(︃
−1

2

(︂
𝑅o

𝑟

)︂2

− 2 ln

(︂
𝑟

𝑅o

)︂
+

1

2

(︂
𝑟

𝑅o

)︂2
)︃
𝜌 (𝑅iΩi)

2 .

(A.39)

A.1.2 Inner Expansion

In case of the inner expansion, I assume the solution is applicable to radial locations

close to the riblet wall (𝑦 ≪ 𝑑) and therefore velocity and pressure are a function of

both radial and axial directions and hence:

𝑝 = 𝑝(0) + 𝜀𝑝
(1)
I +𝑂(𝜀2)... (A.40)
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𝑣 =

⎡⎢⎢⎢⎣
𝑣𝑟

𝑣
(0)
𝜑

𝑣𝑧

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

𝑣𝜑

0

⎤⎥⎥⎥⎦+ 𝜀

⎡⎢⎢⎢⎣
𝑣
(1)
𝑟,I (𝑟, 𝑧)

𝑣
(1)
𝜑,I(𝑟, 𝑧)

𝑣
(1)
𝑧,I (𝑟, 𝑧)

⎤⎥⎥⎥⎦+𝑂(𝜀2)... (A.41)

Thus the continuity equation for the first order term in the inner expansion can be

written as

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣

(1)
𝑟,I ) +

𝜕

𝜕𝑧
𝑣
(1)
𝑧,I = 0. (A.42)

To satisfy the continuity equation, one can define a stream-function (𝜓(1)) for the first

order radial and axial velocities as

𝑣
(1)
𝑟,I =

𝜕𝜓(1)

𝜕𝑧
(A.43)

𝑣
(1)
𝑧,I = −1

𝑟

𝜕

𝜕𝑟
(𝑟𝜓(1)) (A.44)

On the other hand, the Navier-Stokes equations for the radial and axial direction are

written as

− 𝜌
2𝑣

(0)
𝜑 𝑣

(1)
𝜑,I

𝑟
= −𝜕𝑝

(1)
I

𝜕𝑟
+ 𝜇

(︃
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟

(︁
𝑟𝑣

(1)
𝑟,I

)︁)︂
+
𝜕2𝑣

(1)
𝑟,I

𝜕𝑧2

)︃
(A.45)

0 = −𝜕𝑝
(1)
I

𝜕𝑧
+ 𝜇

(︃
1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕

𝜕𝑟

(︁
𝑣
(1)
𝑧,I

)︁)︂
+
𝜕2𝑣

(1)
𝑧,I

𝜕𝑧2

)︃
(A.46)

Now differentiating Equation A.45 with respect to 𝑧 and Equation A.46 with respect

to 𝑟 and eliminating the pressure term, and substituting for the definition of the

stream function from above, I get:

− 𝜌
𝜕𝑣

(1)
𝜑,I

𝜕𝑧
= 𝜇

(︃
𝑟

2𝑣
(0)
𝜑

∇2∇2𝜓(1)

)︃
(A.47)

where
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∇2 =
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟
𝑟

)︂
+

𝜕2

𝜕𝑧2
. (A.48)

Now for the Navier-Stokes equation in the 𝜑 direction we have

𝜌𝑣
(1)
𝑟,I

1

𝑟

𝜕

𝜕𝑟

(︁
𝑟𝑣

(0)
𝜑

)︁
= 𝜇

(︃
𝜕

𝜕𝑟

(︂
1

𝑟

𝜕

𝜕𝑟

(︁
𝑟𝑣

(1)
𝜑,I

)︁)︂
+
𝜕2𝑣

(1)
𝜑,I

𝜕𝑧2

)︃
(A.49)

Now, differentiating Equation A.49 with respect to 𝑧 and taking the ∇2 of Equation

A.47 and eliminating the azimuthal velocity gives

− 1

𝑟

𝜕

𝜕𝑟

(︁
𝑟𝑣

(0)
𝜑

)︁ 𝜕𝑣(1)𝑟,I

𝜕𝑧
= 𝜈2∇2

(︃
𝑟

2𝑣
(0)
𝜑

∇2∇2𝜓(1)

)︃
(A.50)

or equivalently using Equation A.43

− 1

𝑟

𝜕

𝜕𝑟

(︁
𝑟𝑣

(0)
𝜑

)︁ 𝜕2𝜓(1)

𝜕𝑧2
= 𝜈2∇2

(︃
𝑟

2𝑣
(0)
𝜑

∇2∇2𝜓(1)

)︃
(A.51)

with no slip boundary conditions at the inner and outer cylinder for both radial and

axial velocities

𝑣
(1)
𝑟,I (𝑟 = 𝑅i, 𝑧) =

𝜕𝜓(1)

𝜕𝑧

⃒⃒⃒⃒
(𝑟=𝑅i,𝑧)

= 0, (A.52)

𝑣
(1)
𝑟,I (𝑟 = 𝑅o, 𝑧) =

𝜕𝜓(1)

𝜕𝑧

⃒⃒⃒⃒
(𝑟=𝑅o,𝑧)

= 0, (A.53)

𝑣
(1)
𝑧,I (𝑟 = 𝑅i, 𝑧) = −1

𝑟

𝜕

𝜕𝑟
(𝑟𝜓(1))

⃒⃒⃒⃒
(𝑟=𝑅i,𝑧)

= 0, (A.54)

and

𝑣
(1)
𝑧,I (𝑟 = 𝑅o, 𝑧) = −1

𝑟

𝜕

𝜕𝑟
(𝑟𝜓(1))

⃒⃒⃒⃒
(𝑟=𝑅o,𝑧)

= 0 (A.55)

and from Equations A.25 and A.28
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𝜕

𝜕𝑧

(︂
1

𝑟

𝜕(𝑟𝜓(1))

𝜕𝑟

)︂ ⃒⃒⃒⃒
(𝑟,𝑧=0)

= − 𝜕

𝜕𝑧

(︂
1

𝑟

𝜕(𝑟𝜓(1))

𝜕𝑟

)︂ ⃒⃒⃒⃒
(𝑟,𝑧=𝜆/2)

, (A.56)

and

𝜕

𝜕𝑧

(︂
𝜕𝜓(1)

𝜕𝑧

)︂ ⃒⃒⃒⃒
(𝑟,𝑧=0)

= − 𝜕

𝜕𝑧

(︂
𝜕𝜓(1)

𝜕𝑧

)︂ ⃒⃒⃒⃒
(𝑟,𝑧=𝜆/2)

. (A.57)

Thus to solve the equation for the inner expansion, one needs to solve the above linear

partial differential equation for the stream-function 𝜓(1) and then find the rest of the

velocities by substituting the stream-function into the previous equations.
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