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Abstract

Atriums are widely applied in non-residential buildings to provide social contact,
daylight, air circulation, and aesthetic requirements. Buoyancy-driven ventilation
systems are common because they can maintain suitable thermal comfort and reduce
energy. Modeling techniques used to simulate naturally ventilation include analytical
models, full-scale and small-scale experiments, computational fluid dynamics(CFD)
and airflow network tools, which have advantages and limitations. Investigations on
atrium structure and opening characteristics have been limited up to now.

This thesis studies the temperature stratification and air flow rates inside atrium
buildings in purely buoyancy-driven ventilation. Ventilation effects in models with
different heat sources, opening locations, opening sizes and numbers of floors are com-
pared using CFD simulations. An airflow network tool, CoolVent, is used to compare
the results with CFD models. Both temperatures and flow rates match well with
discrepancies less than 10%. Therefore, the well-mixed temperature assumption in
the atrium in the airflow network tool is suitable for single-layer atrium buildings.
The full-scale experiment provides a detailed data set for further investigations. Air
temperatures keep stable on every floor but increase with height. Therefore, the well-
mixed temperature assumption over the entire height of the atrium in many analytical
models is not applicable when the cross section of the atrium is small. The prediction
of temperature distribution and flow rates in atrium buildings with buoyancy-driven
ventilation is provided in details. Indoor air temperatures and flow rates can be cal-
culated with known outside air temperatures and surface temperatures in the atrium.
The estimation of heat transfer coefficients, especially the approximation of stairs can
cause some discrepancies between calculated and actual results.

Thesis Supervisor: Leon R. Glicksman
Title: Professor of Building Technology and Mechanical Engineering
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Chapter 1

Introduction

1.1 Development of Atriums

Atriums, large open air spaces or skylights in covered space surrounded by build-

ings as shown in Fig.1-1, have been widely used, especially in non-residential build-

ings. Atriums provide aesthetic appeal, exposure for daylight, socialization and air

flow among the stories of the buildings. This architectural feature has often been

adopted for aesthetics in different regions and climates without consideration of suit-

able conditions, materials, environmental potentials (radiation, wind and others) and

energy consumption especially in ancient times. The earliest traditional atrium can

be traced back to 3000 BC in a remain of a house in Ur, Mesopotamia as a central

courtyard[8]. During the Industrial Revolution, atriums with plate glass and slender

structural elements of iron and steel were applied in the design of buildings. Until

late 1950s and early 1960s, modern atriums became popular[9].

Figure 1-1: Photographs of atriums[1].

15



The generic forms of atriums always depend on functions of the buildings, thermal

and ventilation expectations, daylighting performance, climate conditions, and archi-

tectural considerations. The displacement of the atriums in building is important to

determine the potential environmental benefits. Four shapes of atriums are widely

accepted as shown in Fig.1-2[10]. Each form is chosen according to the local climates,

daylight requirements, ventilation and other demands. Atriums are set at one side

of buildings as a glazed facade to get attractive views and solar gains in winters for

temperate climates. In hot and humid climates, centralized and linear atriums are

always used to minimize temperature fluctuations during hot seasons. Furthermore,

Temperature fields of all atrium types are the closest in neutral climate. Centralized

and linear atriums are still the most popular generic types now[2].

Figure 1-2: Four forms of atriums. (a)centralized, (b)semi-enclosed, (c)attached,
(d)linear[2].

(a) The centralized Atrium[11] (b) The semi-enclosed atrium[12]

(c) The attached atrium[13] (d) The linear atrium[14]

Figure 1-3: Photographs of four different typical atriums.
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1.2 Application of Natural Ventilation

Natural ventilation has become a key method to provide optimum indoor air cir-

culation, create suitable thermal environments and maintain appropriate mechanical

systems, such as HVAC. Fig.1-4 shows a schematic of typical buoyancy-driven ven-

tilation in an atrium building. One main reason for using natural ventilation is its

potential to reduce building energy use. The operation of buildings consumes about

40%(or about 39 quadrillion British thermal units) of national energy in the USA[15],

23% of which is for cooling and ventilation[4]. Thus, pure natural ventilation, which

creates air flow without mechanical systems, substantially saves energy use in cooling

and ventilation.

Another key reason when applying the natural ventilation is indoor thermal com-

fort. Clothing, lighting, radiation from walls, activity level, air speed, and many other

factors have been recognized to decide the thermal comfort environment. The Amer-

ican Society of Heating, Refrigerating and Air Conditioning Engineering(ASHRAE)

provides some adaptive ranges of operative temperatures or humidity ratios based on

the clothing amount or mean outdoor air temperatures. Researchers also conducted

many comparative experiments on indoor comfort for people living in air conditioning

buildings and purelly naturally ventilated buildings[16].

Based on 22,000 sets of data collected from 160 buildings, Brager found that people

living in naturally ventilated buildings likely felt comfortable in a wider range of air

temperatures, when they were at near sedentary activity levels, could freely control

openings and adapt their clothing anytime during the year. But defining suitable

thermal comfort conditions quantitatively is still contentious.

Figure 1-4: Schematic of typical buoyancy-driven ventilation in an atrium building[3].
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Figure 1-5: 2011 U.S.buildings energy end-use split[4].

1.3 Natural ventilation modeling strategies

The current modeling methods are outlined below. These techniques are classified

into four groups, each of which is discussed in this chapter: analytical models, full-

scale and small-scale experiments, CFD(computational fluid dynamics) models and

airflow network models.

1.3.1 Analytical models

Buoyancy-driven ventilation is created by a hydrostatic pressure gradient created

by density differences. Fig.1-6 shows a simple buoyancy-driven ventilation model

which is a single zone with two equal area windows at elevations 𝑧1 and 𝑧2, a uniform

indoor temperature 𝑇𝑖𝑛 and ambient temperature 𝑇𝑜𝑢𝑡, and negligible wind. The

indoor air is warmer than the outdoor air due to internal heat gains[17].

The column height and gravitational acceleration are equal inside and outside.

Thus, the hydrostatic pressure varies only with density. Because warmer air is less

dense than cool air, a smaller pressure gradient exists inside than outside, which is

shown in Fig.1-7.

The lower opening has a higher pressure outside than inside, which draws air into

the building, while the upper opening has a higher pressure inside than outside, which

18



Figure 1-6: Example of simple buoyancy-driven ventilation.

Figure 1-7: Indoor and outdoor pressure gradients as a function of elevation in purely
buoyancy-driven ventilation.

drives air out of the building. Using ideal gas law and Bernoulli equation, the driving

pressure can be obtained:

(𝑃1 − 𝑃2)𝑜𝑢𝑡 − (𝑃1 − 𝑃2)𝑖𝑛 = 𝜌0𝑔(𝑧2 − 𝑧1)
𝑇𝑖𝑛 − 𝑇𝑜

𝑇𝑖𝑛

(1.1)

where g is the acceleration in 𝑚/𝑠2, 𝑃𝑖𝑛 is the indoor pressure in Pa, and 𝑃𝑜𝑢𝑡 is

the outdoor pressure in Pa. The volume flow rate of unidirectional flow through an

opening of area A depends on the driving pressure drop ∆𝑃 across it with the orifice

19



equation:

𝑉𝑜𝑟𝑖𝑓𝑖𝑐𝑒 = 𝐴𝐶𝐷

√︃
2∆𝑃

𝜌
(1.2)

where 𝐶𝐷 is the discharge coefficient. Assuming both openings have the same area

A and discharge coefficient 𝐶𝐷, and combining the orifice equation and Bernoulli

equation, the flow rate entering the building can be obtained:

𝑉𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = 𝐴𝐶𝐷

√︃
𝑔(𝑧1 − 𝑧2)(𝑇𝑖𝑛 − 𝑇𝑜)

𝑇𝑖𝑛

(1.3)

Fitzgerald and Woods [18]developed a more complicated model of a room where

there is a distributed heat load 𝑄𝐻 at the base of the room leading to vigorous con-

vection and a well-mixed interior . The basic theorem of conservation of momentum

and energy were used to calculate the temperature elevation ∆𝑇 and flow rate V.

They also assumed two openings A and B on the side walls at different height ℎ𝐴

and ℎ𝐵. The buoyancy driving the flow is related to the column of room air extend-

ing from the height of B to the height of A. The reduced gravity is 𝑔*, defined as

𝑔* = 𝑔(𝜌𝑒 − 𝜌𝑟)/𝜌𝑒 , where the 𝜌𝑒 and 𝜌𝑟 are the density of the exterior and interior

air, and g is gravitational acceleration. Assuming the effective area of the two vents

is 𝐴*, defined as 𝐴* = 𝑐𝐴𝑎𝐴𝑐𝐵𝑎𝐵/(0.5(𝑎2𝐴𝑎
2
𝐴 + 𝑐2𝐵𝑎

2
𝐵))0.5 where 𝑎𝐴, 𝑎𝐵 are the areas

of vents, and 𝑐𝐴 and 𝑐𝐵 are the loss coefficients. The flow rate V is given by

𝑉 = 𝐴*
√︁
𝑔*(ℎ𝐴 − ℎ𝐵) (1.4)

where the effective opening area is 𝐴*.

The heat flux 𝑄𝐻 is given by balance of energy input:

𝑄𝐻 = 𝜌𝐶𝑝∆𝑇𝑉 (1.5)

where ∆𝑇 is the temperature elevation in the room, 𝜌 is the density of air and 𝐶𝑝 is

the specific heat capacity. The reduced gravity can be written as:

𝑔* ∼ 𝑔𝛽∆𝑇 (1.6)
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where the coefficient of expansion for air is 𝛽 = 1/𝑇 . The temperature elevation in

room is:

∆𝑇 = (
𝑄𝐻

2

𝛽𝜌2𝐶𝑝
2𝐴*2𝑔(ℎ𝐴 − ℎ𝐵)

)

1/3

(1.7)

The volume flow rate in room is:

∆𝑉 = (
𝐴*(ℎ𝐴 − ℎ𝐵)𝑔𝛽𝑄𝐻

𝜌𝐶𝑝

)
1/3

(1.8)

Although the analytical models require few computing resources and are rich in

physical meanings, they are difficult to use in real cases because the simple geome-

tries cannot describe the actual buildings even with many reasonable assumptions,

especially the assumption of a uniform temperature in the space.

1.3.2 Full-scale and small-scale experiments

Actual-size replications of the prototype buildings are always used to provide rich

insight into the air flow. To provide well distributed air flow throughout the building,

the proportion of areas of inlets and outlets is important.

Full scale models can provide accurate modeling methods without exact physical

expressions. However, this method is extremely resource-intensive and results can

only be applied to similar building structures. Although there are already some full

scale experiments, complete and systematic data sets are still lacking. Meanwhile,

most visualization techniques for indoor air flow include some buoyancy created by

the visual materials such as smoke that are inconsequential in inertial-dominated flow.

Some reduced-scale experimental results[19] show that the ambient temperatures

obviously affect the temperature distribution of the atrium space. They used four dif-

ferent ambient temperatures (20�, 25�, 30�and 35�), which represent the mean

noon temperature of winter, spring, autumn and summer respectively. Results show

that different outdoor temperatures have different influences on indoor temperature

distributions. The buoyancy-only natural ventilation can be utilized for an atrium

space to reach the general thermal comfort level in a hot and humid climate only
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in spring and winter, or when the outdoor temperature being under 30�. However,

the efficiency of stacks is limited when ambient air temperature is higher than 35�.

Therefore, the efficiency of buoyancy-driven ventilation in a hot and humid climate

has to be applied to a high building to induce a sufficient pressure gradient.

Reseachers also developed some different methods to construct reduced-scale model.

The filling box experiment[5], which is also called the small-scale salt bath experi-

ment, uses liquids of different densities to replace the cold and warm air in a small

container. Fig.1-8 shows the box filled with dense fluid and lowered into a large

reservoir of fresh water.

This experiment clearly simulates the buoyancy effects on a small scale and achieves

good visualization. Yet, due to the opaque properties of water and transparent fea-

tures of air for infrared radiation, the filling box method ignores radiation between

the floor and ceiling, the most important part of heat transfer in this case, leading to

inaccurate results.

Figure 1-8: Displacement flow from a box initially containing dense fluid. The box was
filled with dense fluid and lowered into the large reservoir of fresh water. Four large
plugs (diameter 5.5 cm) were removed from the top of the box, and the experiment
was started by removing two small plugs (diameter 1.8 cm) from the bottom of the
box. The photographs are at (a) 𝑡/𝑡𝐸 , = 0.07, (b) 0.29, (c)0.50 and (d) 0.86. The
emptying time 𝑡𝐸, is 139 s. Note the descending sharp interface between the clear,
ambient fluid and the dark, dense fluid. These and subsequent photographs are of
side views using the shadowgraph technique: the dense fluid is dyed[5].

Dimensionless analysis is necessary in small scale experiments. All variables ap-
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pear as ratios where dimensions are canceled, creating dimensionless parameters. For

buoyancy dominated flow, the Grashof number, Gr, and Prandtl number, Pr should

be equal. When buoyancy-driven and wind-driven effects are both important, the

Archimedes number, Ar, Gr and Pr should be the same.

Therefore, small scale models can simulate full-scale behaviors using significantly

fewer sources to construct and measure air flow. However, as Nielsen[20] recognized, if

the scale of a building is reduced by a factor of 10, the velocity should be increased by

a factor of 10 to remain the same Reynolds number, which would lead to an increase

in the temperatures difference by 10 to get the Archimedes number.

It is impossible for all dimensionless parameters to be the same because of their

interdependence, even though some threshold values are raised for special conditions

where those parameters are not equal. Good solutions and justification are still

needed.

1.3.3 Computational fluid dynamics models

Computational fluid dynamics(CFD) models solve many partial differential equa-

tions for the conservation of mass, momentum and energy using computational sources.

Y.Ji[21] did the steady-state simulations of natural ventilation in a single-storey space

connected to an atrium. The results showed good agreement between the mathe-

matical models, experiments and CFD predicting non-dimensional volume rate and

buoyancy force, but had obvious discrepancies in neutral plane height. They also clar-

ified that an atrium may fail to enhance the air flow when the resistance of openings

overcomes the enhancement.

M.Alejanda et al.[6] applied the CFD models shown in Fig.1-9 and Fig.1-10 to

conclude that neglecting radiation results in considerably higher excess temperatures

for heated surfaces, lower temperature of non-heated surfaces and the occupant zone.

In pure buoyancy-driven ventilation, the reduction of air temperatures can lead to un-

derprediction of the overall flow rate of 6% but much larger errors in the temperature

distribution. Therefore, desired thermal and flow performance cannot be achieved to

predict thermal comfort.
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Figure 1-9: Configuration of a large room. All heated surfaces (occupancy and ceiling)
were treated as constant heat flux surfaces[6].

In addition, vapor and carbon dioxide in the air have several infrared bands ab-

sorbing and emitting radiative energy. They are important for large spaces. Yet,

radiation effects in buildings with high humidities are rarely considered in current

CFD studies [22].

C.A.Rundle et al.[23] provide some validation of a commercial CFD code against

experimental measurements. Results show that the k-w turbulence model can simu-

late fluid flow and heat transfer in turbulent natural convection flow and a discrete

transfer radiation model can model radiation with a coarse mesh.

In short, CFD models have been validated and can model arbitrary geometries, but

they can focus only on a short time period. For annual ventilation prediction, CFD

is not suitable. Furthermore, its application requires knowledge of fluid mechanics,

fundamental computational power and detailed consideration of inertial conditions.
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Figure 1-10: Large open room under buoyancy driven flow. Excess temperature when
(a) and (b) accounting for radiation, and (c) and (d) neglecting radiation. Results are
shown along (a) and (c) the plane of symmetry, and (b) and (d) the middle plane[6].

1.3.4 Airflow network models

Airflow network models are popular to predict airflow rates and temperatures in

naturally ventilated buildings[24]. The models divide a building into many zones or

nodes and generate a network among them based on the architectural design. A

power-law function is applied to calculate the flow rates 𝐹𝑖𝑗 between connected zones

i and j:

𝐹𝑖𝑗 = 𝐶𝑖𝑗𝐴𝑖𝑗|
∆𝑃

𝜌
|𝑛𝑖𝑗 (1.9)

where ∆𝑃 is the pressure drop across the zones, n is the flow exponent, 𝐴𝑖𝑗 is

the cross section area connecting two nodes, and 𝐶𝑖𝑗 is the flow coefficient. Mass

conservation gives that ∑︁
𝑗

𝐹𝑖𝑗 = 0 (1.10)

Energy conservation for each nodes is

∑︁
𝑗

𝑄𝑗𝑖 + 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 + 𝑄𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝜌𝑖𝑉𝑖𝐶𝑝
𝜕𝑇𝑖

𝜕𝑡
(1.11)

where 𝑄𝑗𝑖 is the energy flux from node j to current node i, 𝑄𝑠𝑜𝑢𝑟𝑐𝑒 is the heat generated
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at node i, 𝑄𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 is the heat transfer of boundaries, 𝑣𝑖 is the volume of air, 𝐶𝑝 is

the heat capacity, and 𝑇𝑖 is the temperature at node i. Luo et al.[25] and Rousseau et

al.[26] coupled airflow and thermal models in their airflow network models to predict

flow rates and temperatures. MIT developed an application called CoolVent by using

airflow network models which has been validated by CFD models[27].

Airflow network models can predict the flow rates and temperatures of natural

ventilation in any arbitrary buildings because they convert the complex structure

into simple networks of nodes. However, they are limited by many key assumptions.

They ignore the momentum of air assuming small air velocities. And they assume a

well-mixed condition with an uniform temperature in each zone. Obviously, models

are questionable when air exchange rates are really high or uneven heat sources exist

in the space.

1.4 Summary of current natural ventilation model-

ing methods

In conclusion, analytical models are rich in physical meaning but too simple to

use in real world situations. The experimental results reflect real conditions without

many assumptions. Yet, they are too source intensive to be used widely. More data

sets are still need because of a small number of conducted experiments.CFD models

accurately simulate natural ventilation but require long run times.

The investigations focusing on the operating characteristic of atriums have been

limited up to now. The full scale experiment provides a more detailed data set than

any published work. Robust CFD simulations are also used to investigate the open-

ing characteristics with different settings. The research on enhancing experimental

models and CFD methods reported here will help designers and engineers to decide

the opening design in naturally ventilated buildings.
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1.5 Thesis objective

The aim of this research is to study the temperature stratification and the air

circulation inside the atrium space in purely buoyancy-driven ventilation through field

experiments, analytical calculations and computational fluid dynamics simulation,

and analyze the physical insight of the ventilation process by taking influencing factors

in to consideration. Specific contributions are summarized below.

Because the assumption of a uniform temperature inside the atrium in most ana-

lytical work cannot reflect the actual situation, a full scale experiment in a stairwell

was conducted with more details than most published work to understand the real

situations of buoyancy-driven ventilation in an atrium space. Better data sets can be

extracted especially the temperature stratification at different heights, temperature

and flow rate changes with different opening areas.

Calculations and analysis are investigated to explain the temperature and flow rate

changes during ventilation process. The influence of many factors can be determined

from the comparison of calculations and measured data.

Computational fluid dynamics(CFD) models are used to visualize and understand

how airflow establishes in many scenarios: different heat sources, sizes and locations

of openings.

Operating characteristics of typical atrium buildings will be illuminated and inte-

grated into the natural ventilation design tool"CoolVent" .

This thesis would help engineers and architects to make informed decisions on the

expected thermal environment and air flow conditions .
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Chapter 2

CFD models of atrium buildings in

buoyancy-driven Ventilation

Design and prediction of natural ventilation is difficult due to the unsteadiness of

the buoyancy effects, complex architectural structures and the coupling between the

temperature and flow rate changes. Simple analytical models and field experiments

are not enough to study the ventilation effects in buildings with different opening

and structure features. But CFD models could easily simulate those complex cases

and give detailed comparable results. This chapter investigates computational fluid

dynamics(CFD) models to study the purely buoyancy-driven ventilation inside an

atrium building with different heating sources, opening locations and sizes, and the

number of floors.

2.1 Basic building model

As discussed in the introduction chapter, centralized atriums, which has an outlet

at the middle of the top and connect to other rooms around, are still the most popular

generic types now. The building model used in CFD simulations in this chapter, as

shown in Fig.2-1 has one floor(8 m length by 6 m wide by 4 m high), which is assumed

to be a large single room. The room is connected to a 10 m-high single ventilation

atrium, whose floor area is 24 𝑚2(6 m×4 m). A 2 𝑚2 inlet on the south wall of
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the room allows outdoor air to enter the room. A 2 𝑚2 opening from the room to

the atrium allows air to exit the room. Then the air goes through the 2 m by 2 m

exhaust opening on the top of the atrium at the middle. One vertical measuring plane

is located at the symmetry plane of the whole zone, orthogonal to the openings on

the room wall, as shown in the Fig.2-1.

Figure 2-1: Geometry of the one storey atrium building with an heater near the wall
simulated with CFD for case A, B and C. One vertical measuring plane is located at
the symmetry plane of the whole zone.

2.2 Description of CFD settings

Many cases are simulated in a transient mode by ANSYS Fluent, the most pow-

erful computational fluid dynamics software tool available. The cases are assumed to

reach a steady state when the bulk exhaust temperature varies less than 0.003 ∘C for

1000 iterations. The k𝜖 RNG turbulent model is used based on its good performance

of accurately simulating air dynamics in actual building scales[17]. The radiation

is accounted for using a surface to surface (S2S) model with a residual convergence

criteria of 0.001, which assumes the indoor air is transparent. All surfaces inside are

simplified with an emissivity of 1.0. This simplification is justified given typical mate-
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rials in a room, excluding polished metals, with a emissivity above 0.9[28]. The mesh

density increases near openings and near walls with 𝑦+ ≤ 5 in accordance with the

enhanced wall functions. The enhanced wall functions with enhanced thermal effects

and buoyancy effects are also considered. To study the pure buoyancy-driven venti-

lation, the ambient is windless with air temperature of 293.15 K. Therefore, initial

reference and operation temperatures for all zones are 293.15K.

Adiabatic boundary conditions are set to all surfaces except the floors on each

floor. The outlet on the top of the atrium is modeled with a “pressure outlet” condition

while the inlet of the room is modeled with a “pressure inlet” condition under the

same specific temperature of 293.15K, although the reverse flow at the outlet is never

predicted.

The "PRESTO!" (PREssure STaggering Option) scheme is used for pressure inter-

polation, while the "SIMPLE" (Semi-Implicit Method for Pressure-Linked Equations)

algorithm is used for velocity-pressure coupling. Spacial discretization of governing

equations is achieved using a second-order upwind scheme.

In buoyancy-driven ventilation, the heat sources inside are always important to

enhance the air flows. In current buildings, the heat sources in a room are always

simulated as a heater near the corner or distributed heat sources on the floor. Different

heat source types would lead to different air flow and temperature fields. In this

study, a CFD investigation is applied to explore and compare the influence of the

heat sources in a typical full-scale building.

The effects of heat sources are explored by changing the boundary conditions. Two

sets of boundary conditions are considered: 1) two different heaters with constant and

uniform heat fluxes over the heater surface; 2) a floor with evenly distributed heat

loads. In the first setting, the power of the larger heater is 1.68 kW(a typical setting,

case A) while that of the smaller heater is 1.12kW(case B). In the second setting, the

heat load of the floor is 30 𝑊/𝑚2(case C), according to the heat loads in standard

office buildings in USA[29], which achieves the same heat intensity as the smaller

heater condition,1.12kW.
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Table 2.1: Boundary conditions of CFD cases with different heat sources

Initial tempera-

tures(K)

Room Atrium Large

Heater(case

A)

Small

Heater(case

B)

Floor heat-

ing(case C)

Ambient/

Room/Atrium

Walls/Floor

/Ceiling

Walls/Floor

/Ceiling
Heat flux Heat flux Heat flux

293.16/300/300 Adiabatic Adiabatic 1.68kW 1.12kW 30𝑊/𝑚2

The geometry in the study of the atrium opening characteristics and CFD settings

are similar to the models discussed above. Considering general heat sources in real

buildings and simplifying the mesh, we apply the uniformly distributed heating flux

to all following simulations. All other boundary conditions are the same as models

above. To study the features of the outlet on the top of atrium, the CFD model

contains a building model and a large ambient zone outside to compare the air flows

from the outlet, which is shown in Fig.2-2. In the ambient zone, three surrounding

sidewalls are set as pressure inlets and the ceiling is set as a pressure outlet. And the

floor is modeled as an adiabatic no-slip boundary. Temperatures of all surfaces in the

ambient zone are 293.15 K.

The connecting opening types and the exhaust opening locations of the atrium

are varied through the simulations in this comparison group. Two types of connecting

openings are modeled: a window at the middle(2 m wide and 1 m high) and a floor-

to-ceiling opening(6 m wide and 4 m high). In addition, the outlets on the top of

the atrium with three different locations which are shown in Fig.2-3 are modeled:

a middle opening, a south opening adjacent to the south atrium wall, and a north

opening adjacent to the north atrium wall.
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Figure 2-2: Geometry of the one storey atrium building with uniformly distributed
heat loads simulated with CFD for case D-L. One vertical measuring plane is located
at the symmetry plane of the whole zone.

Figure 2-3: Schematics of the top of the atriums with the middle outlet, south outlet
and north outlet.

The outlet size is another important factor that would apparently affect ventilation

effects. A 2 m by 1 m connecting window between the room and the atrium and

a middle outlet at the top of the atrium are assumed for the first three cases with

different cross section areas in this comparison group. Figure 2-4 shows the schematics

of the top of the atriums with the original outlet, small outlet and large outlet.
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Table 2.2: Boundary conditions of simulation cases with different connecting openings
and outlet locations

case Connecting
opening

Outlet of the
atrium

Initial condition Ambient Room
/Atrium

Tambient/Troom
/Tatrium

Pressure
inlet/outlet

Walls/Floor
/Ceiling

D A window A middle
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

E A window A south
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

F A window A north
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

G A floor-to-
ceiling
opening

A middle
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

H A floor-to-
ceiling
opening

A south
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

I A floor-to-
ceiling
opening

A north
opening

293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic
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Table 2.3: Boundary conditions of simulation cases with different outlet sizes

case Connecting
opening

Outlet of the
atrium

Initial condition Ambient Room
/Atrium

Size
Tambient/Troom

/Tatrium
Pressure

inlet/outlet

Walls/Floor
/Ceiling

J A window 2m×2m 293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

K A window 3m×3m 293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

L A window 1m×1m 293.16K/300K
/300K

Windless,
293.16K, zero
gauge pressure

Adiabatic

Flooring heating of 60 𝑊/𝑚2 at the ground of the room assists the buoyancy effect,

and all other surfaces are set adiabatic. All other settings are the same as the models

above(Case D, E, F). Boundary conditions of different cases are given in Table 2.3.

Because there are usually more than one floor for actual atrium buildings. Another

two-storey building model which is shown in Fig.2-5 is also simulated to investigate

differences between floors and the enhancement of the overall ventilation. The second

room is added on the top of the original room with the same flooring heat loads. All

other settings are the same as case J.

Figure 2-4: Schematics of the top of the atriums with the original outlet, small outlet
and large outlet.
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Figure 2-5: Geometry of the two storey atrium building with uniformly distributed
heat loads simulated with CFD. One vertical measuring plane is located at the sym-
metry plane of the whole zone.

2.3 Results

All cases are simulated using computational fluid dynamics transiently until a

real time more than 1000 seconds with a initial time step of 0.5s and automatically

adjusted time intervals when the change of values remain less than 0.1%, which is close

to the steady state. Figure 2-6 gives the plots of the streamlines in case A at different

times (t = 10, 25, 100, 250 and 500 s) at the vertical measuring plane. Different

colors refer to different particles. All particles are released at the inlet of room.

Initially, when the heater has not heated up the inner space, the particles runs in clear

and approximately parallel tracks passing through openings. Gradually, because of

the strong buoyancy effect caused by the heater and collisions with boundaries, the

trajectories are disturbed, mixed and in chaos.

Figure 2-7 show the velocity fields at different time(t = 10, 25, 100, 250 and 500

s). Obviously, the velocity directions change with time. Air comes from the inlet and

falls down due to the gravity, while air near the heater is heated and floats up due
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to the buoyancy effect. After passing the connecting opening between the room and

atrium, most fluids hit the atrium wall and form a updraft going out of the atrium.

Initially, the velocities at openings are high (up to 1.5 m/s) due to the sudden heat

loads inside and temperature differences. Gradually, air velocities decrease and reach

to a relatively steady state.

Fig.2-8 shows the temperature field change in this period, which also reflects

the air flow change. Before 10 s, the temperatures in the atrium are uniform and

steady. After 100 s, the heater near the wall generates a wall-attached plume along

the sidewall and then the ceiling. Therefore, the temperature of the ceiling is very

high. The upper hot flow and lower cool flow approximately divide the space to two

layers finally. Temperatures are similar in most space of the atrium without a clear

plume.

As mentioned above, three different heat sources are considered: a large heater

with constant heat fluxes(1.68 kW), a small heater with constant heat fluxes(1.12

kW), a floor with evenly distributed heat loads(30𝑊/𝑚2). As shown in Fig.2-9, the

velocity fields at the middle measuring planes of three cases at steady states are very

similar. The larger heater leads to higher flow rates than those of the smaller heater.

The heated floor (case C) performs higher flow velocities at the connecting opening,

more mixed temperature fields in the inner space and an obvious plume in the middle

of the atrium.

Fig.2-10 shows the temperature fields of three cases at steady states. Buoyancy-

driven natural ventilation is established for all cases with different heat sources. The

thermal plumes are generated through the convective heat exchange uniformly be-

tween air and the floor in the heated floor case. In the heater cases, high-momentum

high-temperature plumes from heater surfaces are generated to drive the ventilation.

The heater leads to a two-layer temperature stratification in the room and a plume

with higher temperature from the connecting opening hitting the atrium sidewalls

directly.
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Figure 2-6: Plots of streamlines in the atrium building with a large heater(case A) at
t=1, 10, 100, 300, 500, and 1000 s at the vertical measuring plane.
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Figure 2-7: Vector plots of indoor air velocities of in the atrium building with a large
heater(case A) at t=1, 10, 100, 300, 500, and 1000 s at the vertical measuring plane.
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Figure 2-8: Contour plots of indoor air temperatures of in the atrium building with
a large heater(case A) at t=1, 10, 100, 300, 500, and 1000 s at the vertical measuring
plane.
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(a) The model with a large heater(1.68kW) near the sidewall(case A).

(b) The model with a small heater(1.12kW) near the sidewall(case B).

(c) The model with uniformly distributed heat flux(30𝑊/𝑚2) on the floor(case C).

Figure 2-9: Vector plots of indoor air velocities of case A, B and C at steady states
at the vertical measuring plane.
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(a) The model with a large heater(1.68kW) near the sidewall(case A).

(b) The model with a small heater(1.12kW) near the sidewall(case B).

(c) The model with uniformly distributed heat flux(30𝑊/𝑚2) on the floor(case C).

Figure 2-10: Contour plots of indoor air temperatures of case A, B and C at steady
states at the vertical measuring plane.
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Fig.2-11 shows the velocity vector plots of cases with different opening locations

at the top of the atrium. In cases with the same connecting window, air comes from

the inlet on the sidewall, hits the floor due to gravity, generates a plume outside the

connecting window, finally floats up and goes out through the top outlet. Differences

between these cases are the flow features at the top outlet. The air flow at the middle

outlet is a combination of two subflows, while flow at the south outlet tilts to the

south and flow at the north outlet tilts to the north. Velocities in the cases with

the same floor-to-ceiling opening between the room and the atrium are lower and

steadier than those in cases with connecting windows, except the flow from the inlet

and outlet. The only difference between them is the location of the flow from the

outlet.

Temperature contours taken from the middle vertical planes in cases with different

opening locations are presented in Fig.2-12. Temperature fields in the cases with

connecting windows have little differences. Because of the buoyancy effect, top hot

air and bottom cold air divide the room into two layers, while the air temperatures

in the atrium are uniform. In the cases with floor-to-ceiling openings, temperatures

are mixed in the whole space without a temperature stratification. Temperature

differences are similar between cases with different outlets. Therefore, we can neglect

the influence of outlet locations on temperature differences. The connecting opening

is the main factor influencing temperature distributions in the room.

Figure 2-13 shows the velocity vector fields at the middle planes of models with

different outlet sizes. Similar to cases mentioned above, air comes from the inlet,

drops onto the floor, goes through the connecting window, hit onto the atrium wall

and finally floats up to the ambient. The model with a small outlet shows higher

velocities at the outlet but lower flow rates compared with the model with a large

outlet. And air from the small outlet flows directly upwards while the air from the

large outlet does not flow in the completely vertical direction.
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(a) The model with a middle outlet
and a window connecting the room and
atrium(case D).

(b) The model with a south outlet
and a window connecting the room and
atrium(case E).

(c) The model with a north outlet
and a window connecting the room and
atrium(case F).

(d) The model with a middle outlet and
a floor-to-ceiling connecting the room and
atrium(case G).

(e) The model with a south outlet and a
floor-to-ceiling connecting the room and
atrium(case H).

(f) The model with a north outlet and a
floor-to-ceiling connecting the room and
atrium(case I).

Figure 2-11: CFD predicted velocity vector plots taken from the middle vertical
measuring plane of case D, E, F, G, H, I.
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(a) The model with a middle outlet
and a window connecting the room and
atrium(case D).

(b) The model with a south outlet
and a window connecting the room and
atrium(case E).

(c) The model with a north outlet
and a window connecting the room and
atrium(case F).

(d) The model with a middle outlet and
a floor-to-ceiling connecting the room and
atrium(case G).

(e) The model with a north outlet and a
floor-to-ceiling connecting the room and
atrium(case H).

(f) The model with a north outlet and a
floor-to-ceiling connecting the room and
atrium(case I).

Figure 2-12: CFD predicted temperature contour plots taken from the middle vertical
measuring plane of case D, E, F, G, H, I.
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(a) The model with an original outlet(2m×2m)(case J).

(b) The model with a large outlet(3m×3m)(case K).

(c) The model with a large outlet(1m×1m)(case L).

Figure 2-13: CFD predicted velocity plots taken from the middle vertical measuring
plane of models with different outlet sizes(case J,K,L).
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Figure 2-14 shows the temperature contours at the middle planes of models with

different outlet sizes. Temperature stratifications are obvious inside the rooms while

there is more hot air on the upper layer in the model with a small outlet. There are

not distinct plumes from the connecting windows which means the atrium zones are

generally well-mixed. The model with a small outlet shows higher indoor tempera-

tures while a large outlet leads to lower air temperatures in atrium.

The CFD investigations are compared to CoolVent[27], an airflow net work model

adopted to capture the thermal environment and ventilation conditions. CoolVent

combines the conservation of energy and momentum through numerical calculations.

It assumes well-mixed conditions, applies negligible momentum among every zone[27].

All the building geometries, heat loads, and ambient conditions in the CFD models

are used in CoolVent for comparison. Heat gains are uniformly distributed across

floors in rooms.

Calculated air temperatures averaged over the volume of different zones from

CFD and CoolVent simulations are provided in Table2.4 and 2.5. From the results

in CFD models, air in the room reaches highest temperatures because of the heat

gains from the floor. Bulk temperatures from the connecting window are lower than

the average room temperature as a result of distinct temperature stratification in

the room. The temperature difference between the initial ambient temperature and

the final temperature from the top outlet is the highest in the model with a small

outlet but lowest in the model with a large outlet. The main reason should be the

different air exchange rates under different opening areas and resistance. Based on

the well-mixed assumption, air temperatures in the room and atrium are uniform in

CoolVent. The temperature increases from the inlet to the outlet are a little larger

in CoolVent than the CFD models but are less than about 0.7K.

Calculated airflow rates at the inlets and outlets of the models in CFD and Cool-

Vent simulations are shown in Table 2.6 and Table 2.7. According to the results in

CFD models, flow rates leaving the top of the atrium to the ambient are lower than

those from the ambient into the room. This results from calculating the average ve-

locities for the imperfectly upward airflow from the outlet. The model with a large
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outlet shows the highest flow rates while the model with a small outlet has the lowest

flow rates, but the differences are smaller than 0.2kg/s. Calculated flow rates at inlets

and outlets in CFD models and CoolVent models still match well with the differences

less than 10%.
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(a) The model with an original outlet(2m×2m)(case J).

(b) The model with a large outlet(3m×3m)(case K).

(c) The model with a large outlet(1m×1m)(case L).

Figure 2-14: CFD predicted temperature contour plots taken from the middle vertical
measuring plane of models with different outlet sizes(case J,K,L).
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Table 2.4: Simulated temperatures of different zones in buildings modeled with CFD.

Zone CFD model
CFD model with
a larger outlet

CFD model with
a smaller outlet

Ambient temperature(K) 293.16 293.16 293.16
Room temperature(K) 295.98 296.02 296.87
Bulk temperature from

the connecting window(K)
295.53 295.42 296.43

Atrium temperature(K) 295.98 295.45 296.46
Bulk temperature
from the outlet(K)

295.50 295.45 296.47

Temperature increase
from the inlet to outlet(K)

2.34 2.29 3.31

Table 2.5: Simulated temperatures of different zones in buildings modeled with Cool-
Vent.

Zone CoolVent
CoolVent with
a larger outlet

CoolVent with
a smaller outlet

Ambient temperature(K) 293.16 293.16 293.16
Room temperature(K) 295.97 295.94 296.51
Atrium temperature(K) 295.97 295.94 296.51

Temperature increase
from the inlet to outlet(K)

2.81 2.78 3.35

Table 2.6: Simulated flow rates at the inlets and outlets in buildings modeled with
CFD.

CFD model
CFD model with

a larger outlet

CFD model with

a smaller outlet

Airflow rate from

ambient(kg/s)
1.12 1.34 0.90

Airflow rate

to ambient(kg/s)
1.13 1.21 0.86
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Table 2.7: Simulated flow rates at the inlets and outlets in buildings modeled with
CoolVent.

CoolVent
CoolVent with

a larger outlet

CoolVent with

a smaller outlet

Airflow rate(kg/s) 1.01 1.03 0.85

Fig.2-15 shows the temperatures of different nodes in the CFD and CoolVent

model versus height inside the atrium. Temperatures in atriumzone1 and atrium-

zone2 are uniform in the CoolVent model. But according to the CFD results, the

large temperature change ranges at about 2m and 6.2m height are caused by the

plumes from two connecting windows. And air temperatures in the lower half zone

are relatively similar except those near the window while temperatures in the upper

half zone increase with height. And Fig.2-16 gives the temperature and velocity plots

at the middle plane of the two-storey model. Obviously, the plume from the sec-

ond floor leads to the temperature stratification in the upper half of the atrium but

the lower half are well-mixed. Furthermore, the upper layer causes higher indoor air

temperatures in the room but lower velocities at the inlet and the connecting window.

Similarly, CoolVent simulations are applied for this special case by adding the

number of floors in settings. Temperature and flow rate results obtained from two

methods are shown in Table 2.8 and Table 2.9. Obviously, there is a disagreement

in the airflow calculation between the CFD and CoolVent models. Simply using the

average air velocities at the cross sections of the inlet and outlet in CFD models may

lead to errors, because there are more grids near walls but fewer in the middle of the

openings in meshing, which emphasizes velocities near walls. Therefore, to solve this

problem, velocities in CFD models are adjusted by the biharmonic spline interpolation

and integral based on limited values at unevenly distributed grids. Fig.2-17, Fig.2-18

and Fig.2-19 show the scatter, contour and surface plots of velocities normal to the

cross section of the inlets and outlet. The contour and surface plots show that air

velocities at the middle are generally higher than those near edges of openings but

reach many peaks. Specially, air velocities near the lower edge is higher than those
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near the higher edge of the inlet on the second floor. The simulated air velocities at

the openings in CFD models generate irregular surfaces which is different from the

assumption of regular surfaces in most bulk velocity calculations and theories. The

comparison among the CFD and Coolvent models is shown in Table 2.10 and Table

2.11. The adjusted air flow rates calculated from the interpolation method are larger

than the originally average air flow rates at the openings in CFD models. Table 2.12

shows that calculated heat gains of air based on the temperature increase and the

flow rates and the actual heat loads in CFD models and CoolVent models. The heat

gains in CoolVent are the closest to the actual loads. And the adjusted CFD models

also match well with a slight decrease less than 10%. The air heat gains based on

the adjusted results match well with the floor heat loads, which means the adjusted

results are more accurate according to the conservation of energy.

Figure 2-15: The scatter plot of air temperatures versus height inside the atrium of
the two-storey model in CFD simulations and Coolvent.
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Figure 2-16: CFD predicted velocity and temperature plots taken from the middle
vertical measuring plane of the two-storey model.
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Table 2.8: Simulated temperatures of different zones in buildings modeled with CFD
and CoolVent.

Zone Temperature in CFD(K) Temperature in CoolVent(K)

Ambient 293.16 293.16

Room1 295.94 295.92

Room2 297.61 297.26

Bulk temperature from

the connecting window1
295.43

Bulk temperature from

the connecting window2
296.76

atriumzone1 295.58 295.92

atriumzone2 296.14 296.46

Bulk temperature

from the outlet
296.13

Temperature increase

from the inlet to outlet
2.97 3.3

Table 2.9: Simulated flow rates of different zones in buildings modeled with CFD and
CoolVent.

CFD model CoolVent model

Airflow from inlet1(kg/s) 1.03 1.03

Airflow from inlet2(kg/s) 0.57 0.7

Airflow to ambient(kg/s) 1.62 1.73
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Figure 2-17: Scatter, contour and surface plots of air velocities taken from the cross
section of the inlet on the first floor of the two-storey model.
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Figure 2-18: Scatter, contour and surface plots of air velocities taken from the cross
section of the inlet on the second floor of the two-storey model.
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Figure 2-19: Scatter, contour and surface plots of air velocities taken from the cross
section of the outlet of the two-storey model.
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Table 2.10: Average air temperatures in CFD models, adjusted temperatures based
on interpolation and integral in CFD models and simulated temperatures in CoolVent
models of different zones in 2-layer buildings.

Zone
Temperature

in CFD(K)

Adjusted temperature

in CFD(K)

Temperature

in CoolVent(K)

Ambient 293.16 293.16 293.16

Room1 295.94 295.94 295.92

Room2 297.61 297.61 297.26

Bulk temperature

from the connecting

window1

295.43 295.49

Bulk temperature

from the connecting

window2

296.76 296.99

Atriumzone1 295.58 295.58 295.92

Atriumzone2 296.14 296.14 296.46

Bulk temperature

from the outlet
296.13 296.11

Temperature increase

from the inlet to outlet
2.97 2.95 3.3

Table 2.11: Averaged flow rates in CFD models, adjusted flow rates based on inter-
polation and integral in CFD models and simulated flow rates in CoolVent models
from the inlets and outlet in 2-layer buildings.

CFD model Adjusted CFD model CoolVent model

Airflow from inlet1(kg/s) 1.03 1.15 1.03

Airflow from inlet2(kg/s) 0.57 0.71 0.7

Airflow to ambient(kg/s) 1.62 1.85 1.73
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Table 2.12: Comparisons between actual total heat loads and the calculated air heat
gains in the CFD models and the CoolVent model.

CFD model Adjusted CFD model CoolVent model

Calculated heat gains

(kW)(based on flowrates

from inlets)

4.78 5.51 5.74

Calculated heat gains

(kW)(based on flowrates

from the outlet)

4.84 5.48 5.74

Heat loads(kW) 5.76 5.76 5.76

2.4 Conclusions

This study investigates and compares the velocity fields and temperature stratifi-

cation of naturally ventilated atrium buildings with different heat sources and open-

ings. CFD models are applied to the analysis of the transient flow behaviors and

steady state solutions. All cases can reach steady conditions after 1000 seconds and

exhibit turbulent flow conditions. The buoyancy effect drives air to come through the

inlet on the sidewall of the room, flow through the connection opening between the

atrium and the room, float up in the atrium and go out from the top outlet.

We can ignore the differences in flow rates and velocity fields with different heat

sources. The uniformly distributed heat fluxes reflects heat loads in real life leading to

more mixed temperature distribution in the room than heat sources near the sidewall

and simplify the mesh in CFD models. Therefore, the uniformly distributed heat flux

is used in other CFD simulations in this chapter.

Different locations of outlets on the top of the atrium have little influence on the

velocity and temperature fields inside the buildings. The connecting windows lead to

high flow rates, and obvious temperature stratification near the connecting openings.

In contrast, the temperatures are better mixed and velocities are more steady in cases

with the floor-ceiling openings.
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Lager outlets lead to higher airflow rates while airflow rates are lower in an atrium

building with a smaller outlet but all other settings are the same. Furthermore, there

are more uncertainties of air flow directions from the top larger outlet. On the other

hand, temperatures in both the room and atrium are lower in the building with a

larger outlet due to better air exchange effects. But a well-mixed temperature field in

the atrium zone can be concluded in all cases with different outlet sizes and locations.

Comparing the results from CFD and CoolVent result, both temperatures in different

zones and flow rates match well with differences less than 10%. Thus, applying the

airflow net work model with the well-mixed temperature assumption in zones are

suitable for the single-layer atrium building.

Adding the number of floors would enhance the overall ventilation effects. The

two-storey building model shows higher airflow rates and temperature increase from

the inlets to the outlet than those in the single-storey model. Air flow rates are lower

but the room temperatures are higher on the upper floor, because the shorter vertical

distance from the inlet to the outlet results in a smaller pressure difference. An

obvious temperature stratification can be observed in the upper half of the atrium

which results from the plume from the room on the upper floor. Therefore, the

assumption of a well-mixed temperature field in the atrium is inapplicable for multi-

layer buildings. The velocity calculation by simply averaging the velocity values

at grids of the cross section of openings brings apparent errors since the grids are

unevenly distributed in meshing. Interpolation and integral based on limited velocity

values could help to obtain more accurate results.
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Chapter 3

Full Scale Experimentation of

Buoyancy-Driven Ventilation

This chapter shows the full scale experiment conducted at a MIT building to

characterize the temperature distribution and airflow in a real stairwell space.

3.1 Motivation of full scale experimentation

Well designed atriums can help significantly save energy and provide suitable ther-

mal indoor comfort in natural ventilation without any aid of mechanical equipment.

Various simulation tools are used to ensure the design at the early stage. Computa-

tional fluid dynamics(CFD) has become the most popular and is used in about 70%

of publications in ventilation simulations reviewed by Chen[30]. Gan and Riffat[31]

used CFD models to simulate a 14.6 m tall and 205 𝑚2 atrium. They compared

the airflow rate changes with various opening configurations but failed to provide

any experimental verification of the CFD results. Ji and Cook[21] carried out CFD

simulations to study the buoyancy-driven ventilation flows in a single-storey space

connected to an atrium with and without ventilation openings at the bottom of the

atrium. They compared the results with predictions of analytical models and simple

small-scale experiments. Unfortunately, those studies cannot provide experimental

validation for CFD simulations.
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Some full scale experiments in atriums or similar large single-cell buildings have

been conducted and compared with CFD models. Cheng et al.[32] from Concordia

University conducted a series of full-scale measurements of hybrid ventilation in a 17-

storey institutional building and whole-building simulations using a 15-zone detailed

and a 5-zone simplified model. They also found that the variations of weather con-

ditions and dynamic interactions with hybrid ventilation systems can be accounted

by flow coefficients in the simplified model. But the results are measured when me-

chanical ventilation systems are open and cannot guide the design of purely natural

ventilation. Ray et al.[33] used a full-scale naturally ventilated atrium to validate

CFD turbulence models and introduced a new airflow visualization technique using

buoyant helium bubbles. But this study showed an unexpected bulk downward flow

in the atrium without further accurate explanations and measurement.

More full-scale experiments are needed to characterize the actual temperature

distribution and airflow conditions. These data would be used to validate CFD models

beyond analytical models and small-scale experiments.

3.2 Building description

Proper atrium buildings with both openings on the top and bottom are relatively

rare. Measuring the temperatures and flow rates in a typical atrium building is also

source intensive due to the large space and many uncontrolled influencing factors. A

typical five-storey stairwell chosen in this study, which is similar to a small atrium

space, is at the south-east corner of MIT Building 35 which is shown in Fig.3-1. A

floor plan of the Building 35 is shown in Fig.3-2. The stairwell is 20 m tall, 3.5 m high

and 6 m wide. North and east doors on each floor are connections to the corridors

in Building 35 and to Building 37. Four 2.5 m wide and 3 m high fixed windows on

the south provide natural lighting in the stairwell. No mechanical ventilated system

is installed inside the space. Although corridors are connected to the stairwell on

every floor, all connecting doors shown in Fig.3-3 were closed to avoid passersby and

air exchange. Thus, only purely natural ventilation would be considered inside the
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stairwell.

Figure 3-1: Photograph of the stairwell exterior in Building 35 at MIT used in the
full scale experiment.

Figure 3-2: The floor plan of Building 35 with the stairwell in red box.
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Figure 3-3: The photograph of the doors connecting corridors and the stairwell.

A south door on the ground floor was propped open to connect the stairwell and

the ambient space. And also a west door on the top directly connecting to the roof

was open. Both opening areas of the doors can be changed by adjusting the opening

angles. Doorways are shown in Fig.3-4 All other door in the stairwell were closed and

were labeled experiment notices during the process. Sunlight through south windows

primarily heated the inner surfaces including walls, windows and stairs. The heating

power was determined by the level of solar radiation and solar angles.

3.3 Instrumentation

The temperature distribution and airflow within the stairwell are characterized

by the temperature measurement of indoor air on every floor and the air velocities

measured at the ground door and roof door.

The thermometers used in this experiment are HOBOUX100-003 Temperature/Relative

Humidity data loggers shown in Fig.3-5 produced by OnsetThe loggers can record

temperature(Range: -20�to 70�Accuracy: ±0.21�from 0�to 50�) and relative

humidity (Range: 15% to 95% Accuracy: ±3.5% from 25% to 85%) in indoor envi-

ronments with its integrated sensors. To test the air temperatures at the middle space

and avoid disturbance from other surfaces, ten temperature sensors equally dividing
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Figure 3-4: Photographs of two openings connecting the stairwell and ambient. A bot-
tom door(left) on the ground floor is open during the experiment and a top door(right)
leading to the roof is left open.

the whole zone into 10 small zones in the vertical direction hung from the railings.

Locations of thermometers are shown in Fig.3-6. Ambient temperatures are measured

by a thermometer located outside the bottom door. Because surface temperatures

are difficult to measure using HOBO, an infrared thermometer(Range: -20�to 315�)

produce by RYOBI[34] was used to detect hot and cold spots near walls and windows,

which is shown in Fig.3-7

Figure 3-5: The thermometers measuring air temperatures in the experiment.
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Figure 3-6: Locations of the thermometers when hanging from the railings. Red dots
represent thermometers.

Figure 3-7: The infrared thermometer measuring surface temperatures in the experi-
ment.

Velocities are measured at the bottom door on the ground floor and the top door

connecting to the roof to get volumetric flow rates. The measurement are taken

at 12 points at the openings using the equal area method for the entrance to a

rectangular duct according to ASHRAE Standard 111-2008. Two Graywolf AS-201

hotwire anemometers which have the accuracy of +/ − 3% are used. Because the

velocities fluctuate rapidly due to wind fluctuation, only relatively average values

estimated by testers in short time periods are recorded. Volumetric flow rates are

calculated by multiplying average velocities and opening areas.
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3.4 Experimental procedure

This field experiment was conducted from 9:50 am to 11:00 am on Sunday, April

30,2017 at the stairwell of MIT Building 35. A Sunday was chosen to reduce the

impacts of occupants. Solar gains in the daytime experiment assisted the buoyancy

effect. Testers monitored the doors during the whole process to prevent any safety

problem. All doors connecting corridors were closed from 9:50. To observe the effects

of different opening sizes, the bottom and top doors were fully open from 9:50 to

10:30 but half open from 10:30 to 11:00 by adjusting the opening angle from 90°to

45°. The opening areas of the two doors are different, which are shown in Table 3.1.

Temperatures were logged at a sampling rate of 1 min to catch the real-time change,

while the velocities were tested every 10 minutes(9:50, 10:00,10:10, 10:20, 10:30, 10:40,

10:50, 11:00). To study the influence of inside surfaces, all surfaces including walls in

four sides, stairs, windows are measured using the infrared thermometer.

Table 3.1: Areas of the bottom and top doors at different opening conditions.

Bottom door Top door

Fully open area(𝑚2) 2 3
Half open area(𝑚2) 1 3

3.5 Results

Fig.3-8 shows the outside velocities measured at the outside ground near the

bottom door every ten minutes during the experiment process. The thermometer

was placed two meters away from the bottom door and 1 meter high. Outside wind

velocities changed but kept below 1 m/s in most time. The direction of the outside

wind remained from east to west. Flow rates at doors are shown in Fig.3-9. Because

the velocities always fluctuated rapidly when measuring, the recorded values contain

measuring errors. The flow rates at the top door are lower and more stable than those

at the bottom door. After the doors became half open, the flow rates at the top door

decreased but the rates at the bottom door failed to show similar change. Based on
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the conservation of mass of air inside the stairwell, the measurement at the bottom

door is inaccurate. The decrease of flow rates at the top door is more than half when

the opening area of the doors were adjusted to a half.

Figure 3-8: Outside velocities measured every ten minutes at the outside ground.

Figure 3-9: Flow rates calculated by measured velocities every ten minutes at the
bottom and top doors.

Fig.3-10 shows the measured surface temperatures of east wall, south wall, west

wall, north wall, stairs and windows. Temperatures of windows are obviously about
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4 degrees lower than temperatures of other surfaces, because the overall heat transfer

coefficient of the glass is much higher than that of others leading to surface tempera-

tures closer to the ambient air temperatures. But temperature differences among the

walls and stair are relatively small at every time. A decline from 9:50 to 10:30 and

an uptrend from 10:30 to 11:00 reveal that the air flows passing though the surfaces

cool them at the early stage but solar gains may heat them after 10:30.

Fig.3-11 shows the surface temperatures on different floors at 10:30. Temperatures

gradually increase with the floors because air gains heat from surfaces inside during

the process. An exception are temperature changes from fourth floor to fifth floor.

Temperature discrepancies are small among walls in four sides, which may show good

heat insulation.

Measured air temperatures of different floors and outside changing with time

are shown in Fig.3-12. Outside temperatures fluctuate and increase from 14�to

16.3�due to the solar gains but rise an abnormal peak at 10:30 which may be in-

fluenced by an unknown temporary ambient heat source. Because the connecting

doors on every floor were closed at 9:50 and the air exchanges were blocked, the air

temperatures drop down from 9:50 to 10:00. Fluctuations of air temperatures during

the experiment period on every floor are small after 10:00.

Figure 3-10: Surface temperatures averaged among different floors at various times
during experiment.
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Figure 3-11: Surface temperatures measured at 10:30 on different floors.

Fig.3-13 reflects the measured air temperatures at different times versus different

floors. Because air from ambient is heated by the inner surfaces on every floor, the

temperatures increase at a comparatively stable rate versus the heights based on the

stable slope of the curves after 10:00.

Figure 3-12: Air temperatures of different floors and outside changing with time.
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Figure 3-13: Air temperatures of different times changing with floor increase.

3.6 Conclusions

Experimental flow rates at the bottom and top doors fluctuate frequently and

randomly which are not in phase and also not accurately consistent with the out-

side wind velocity change. The obstruction of surrounding buildings, volatile wind

directions and the delay of the air flow process could be the main reasons. Surface

temperatures of different walls and stairs are close but increase along with the height.

The reason is that higher floors receive more solar gains than the lower floors in the

shade from other buildings. Moreover, vertical indoor air temperature distribution

would also influence the surfaces.

Indoor air temperatures on every floor are relatively stable during the experiment

time. However, the air temperatures keep rising when flowing from the bottom to

the top. That is the air gains heat from the hotter surfaces when blowing though

them and then enhances the buoyancy effect. These results prove that the well-mixed

conditions in the stairwell or atrium buildings used in many studies are unsuitable

when the cross section areas are small. The gradually increasing temperature fields

in the vertical direction inside atriums reflect real situations.
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Chapter 4

Analysis of the Full Scale Experiment

4.1 Motivation of theoretical analysis and calcula-

tions

Recall the results from the full scale experiment in the previous chapter. Flow rates

are decided by the buoyancy effects and the resistance of the inlet, outlet and passway.

Air temperatures are affected by the surfaces temperatures, heat transfer efficiency

and flow conditions. Thus, Flow rates and temperatures influence each other. Further

investigations for the effects of those factors are still needed. This chapter analyzes

the motion and heat transfer process of air in the full scale experiment in the previous

chapter. More calculations are provided to validate the results and predict the flow

rates and temperature distributions in future natural ventilation studies in atrium

buildings.

4.2 Geometry of the flow channel

The five-storey stairwell can be equally divided to ten sections in the vertical

direction. There are two sections for every floor. During the ventilation process,

ambient air coming from the inlet goes up through the inclined sections of stairs and

then exhausts from the top outlet. Table 4.1 provides the geometry of every section
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of stairs.

Table 4.1: Geometry of a sections of stairs.

Length(m) 6.32

Width(m) 1.75

Hight(m) 4

Hydraulic diameter(m) 2.43

Number of steps 10

Horizontal width of one step(m) 0.28

Vertical height of one step(m) 0.2

4.3 Resistance of the flow process

Flow rates measured at the bottom door and top door with their average values

are listed in Table 4.2. The average flow rates are used to estimate the bulk flow

velocities inside the stairwell. Calculated Reynolds number is about 50000, which is

much larger than 2300. Thus, the flows are in the turbulent region.

Table 4.2: Measured flow rates at doors and averages in 𝑚3/𝑠 at different times.

Times Top door Bottom door Average
9:50 2.62 2.96 2.79
10:00 1.72 4.21 2.96
10:10 1.72 1.28 1.50
10:20 1.70 4.71 3.21
10:30 1.73 2.63 2.18
10:40 1.03 2.18 1.60
10:50 1.35 3.62 2.48
11:00 1.18 1.46 1.32

Average 1.63 2.88 2.26

The air flow rates between two zones, 𝑉𝑜𝑟𝑖𝑓𝑖𝑐𝑒, is calculated by the orifice equa-

tion, which is an empirical model based on the conservation of mass, conservation of

momentum, and experimentally pressure drop through an orifice:
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𝑉𝑜𝑟𝑖𝑓𝑖𝑐𝑒 = 𝜌𝐴𝐶𝐷

√︃
2∆𝑃

𝜌
(4.1)

where A is the area of the orifice in 𝑚2, ∆𝑃 is the static pressure drop through

the opening in Pa, 𝜌 is the density of fluid in 𝑘𝑔/𝑚3, and 𝐶𝐷 is the dimensionless

discharge coefficient. 𝐶𝐷 is an empirical value which varies in different geometry and

flow conditions. Many cases and relationships for hydaulic resistance can be found

in Idelchik’s book[7], which defines a resistance coefficient 𝜁 and calculates the total

pressure drop based on a known bulk velocity.

𝜁 =
∆𝑃

𝜌𝑣2/2
(4.2)

where v is the stream velocity in 𝑚/𝑠. This 𝜁 is converted to the discharge coefficient

𝐶𝐷 in the orifice equation by equating the static pressure loss in two equations.

∆𝑃 =
1

𝐶2
𝐷

𝜌𝑣2

2
= 𝜁

𝜌𝑣2

2
(4.3)

The relationship between 𝐶𝐷 and 𝜁 is:

𝐶𝐷 =
1√
𝜁

(4.4)

The value of 𝜁 for the bottom and top doors are calculated using relationships for

the exhaust, single top-hinged flap and the intake, single top-hinged flap, shown in

Fig.4-1 and Fig.4-2. The ratios of the lengths and widths listed in Table 4.3 are the

main factors affecting resistance. Calculated values of 𝜁 and corresponding 𝐶𝐷 are

shown in Table 4.4 and Table 4.5.
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Figure 4-1: Diagrams of resistance coefficients for intake, single top-hinged flaps.

Figure 4-2: Diagrams of resistance coefficients for exhaust, single top-hinged flaps[7].

Table 4.3: The geometry of the bottom door and top door[7].

Top door Bottom door

length(m) 2 2

width(m) 1 1.5
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Table 4.4: Values of 𝜁 from Idelchik’s Diagram 4-23 for exhaust, single top-hinged
flap and intake, single top-hinged flap as shown in Figure 4-1 and Figure 4-2.

𝜁 Top door Bottom door

Fully open 2.5 2.6

Half open 4 3.8

Table 4.5: Values of 𝐶𝐷 calculated based on the values of 𝜁 in Table 4.4.

𝐶𝐷 Top door Bottom door

Fully open 0.6325 0.6202

Half open 0.5 0.513

The channel air passing through inside the stairwell can be modeled as many

rectangular tube sections with smooth walls and walls of uniform roughness when

considering the zigzag stair steps. ∆ refers to the equivalent uniform roughness of

walls, which is the height of every step. Fig.4-3 is the diagram of resistance coefficients

for rectangular tubes.

𝜁 =
∆𝑃

𝜌𝑣2/2
= 𝜆𝑛𝑜𝑛−𝑐

1

𝐷ℎ

(4.5)

𝜆𝑛𝑜𝑛−𝑐 =
∆𝑃

(𝜌𝑣2/2)(𝑙/𝐷ℎ)
= 𝑘𝑛𝑜𝑛−𝑐𝜆 (4.6)

where 𝐷ℎ is the hydraulic diameters in m, and 𝜆 is friction coefficient determined as

for circular tubes. The ratio of the length and width of the rectangular cross section

decides the correction factor 𝑘𝑛𝑜𝑛−𝑐. According to the values of geometry in Table

4.1, 𝑘𝑛𝑜𝑛−𝑐 = 𝑘𝑟𝑒𝑐 = 1.05, and relative roughness of walls ∆/𝐷ℎ = 0.069. For circular

tube with walls of uniform roughness, the value of 𝜆 is 0.09 when Re is 105. Thus,

𝜁 is 0.04. According to the air velocities through doors and inside the stairwell, the

pressure drops are about 2.2Pa at the top door, 1.45Pa at the bottom door, and

0.156Pa though the stairwell. Thus, compared with the resistance of the inlet and

outlet, the resistance of the stair sections can be ignored to simplify the calculations.
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Figure 4-3: Diagrams of resistance coefficients for rectangular tubes[7].

4.4 Flow rates

During the experiment, indoor air is warmer than outdoor air because of internal

heat gains. The density gradient inside is smaller than outside since warm air is less

dense than cool air. The vertical distance between the lower inlet and the upper

outlet is H. The hydrostatic pressure of air is decided by the density, height of air
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column, and gravitational acceleration. Indoor and outdoor pressure gradients in a

simplified buoyancy-driven ventilation model is shown in Fig.4-4. However, in real

cases, the indoor pressure gradient is not a straight line but a curve determined by

the temperature and density changes at different elevations.

Figure 4-4: Indoor and outdoor pressure gradients versus elevation in simplified
buoyancy-driven ventilation. The dashed line refers to the outdoor air assumed to be
warmer than the indoor air while the solid line represents the indoor air.

The pressure drop among the flow channel can be ignored because the resistance

is much less than resistance at doors. The difference of the outdoor and the indoor

air pressure drives air coming from the ambient and exit from the top outlet, which

is equal to the sum of the pressure drops at the bottom door and the top door:

∆𝑃 = 𝜌𝑜𝑢𝑡𝑔𝐻 −
∫︁ 𝐻

0
𝜌𝑔𝑑ℎ = ∆𝑃𝑏𝑜𝑡𝑡𝑜𝑚 + ∆𝑃𝑡𝑜𝑝 (4.7)

where the pressure drops at doors are calculated by ∆𝑃 = 1
𝐶2

𝐷

𝜌𝑣2

2
. The densities at

different elevations are calculated based on the temperature distribution vertically.

4.5 Heat transfer coefficient

4.5.1 Convective heat transfer for smooth cases

The convective heat transfer process of air flowing through the walls in the stair

sections is similar to heat transfer for fluid passing through smooth plates. The

convective heat transfer coefficient, h, depends on many variables including flow ge-

ometry, surface roughness, flow velocity, viscosity and more. Dittus and Boelter[35]
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gave the following correlation:

𝑁𝑢 =
ℎ𝐷

𝑘
= 0.023𝑅𝑒0.8𝑃𝑟𝑛 (4.8)

where D is the hydraulic diameter in m, k is thermal conductivity in 𝑊/𝑚𝐾, n is 0.4

for heating and 0.3 for cooling. Stanton, Reynolds and Prandtl numbers are evaluated

by following fundamental formulae:

𝑆𝑡 =
ℎ

𝜌𝑢𝑐
(4.9)

𝑅𝑒 =
𝜌𝑢𝐷

𝜇
(4.10)

𝑃𝑟 =
𝑐𝑝𝜇

𝑘
(4.11)

Combining and rearrange the equations, Stanton number for smooth cases is as fol-

lows:

𝑆𝑡 =
𝑁𝑢

𝑅𝑒𝑃𝑟
(4.12)

4.5.2 Friction factor for ribbed cases

The roughness of the stair steps can be simplified as ribbed roughness on plates.

An example of the ribbing configurations is shown in Fig.4-5, where p is the pitch

and e is the rib height.

Figure 4-5: Convention for pitch and rib height in a pipe.

Nikuradse[36] recommended the "friction similarity law" for sand grain roughness

by combining the velocity defect law and the law of wall. The roughness function
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𝑅𝑒+ is obtained by

𝑅𝑒+(𝑒+) = (
2

𝑓𝑟
)0.5 + 2.5 ln(

2𝑒

𝐷ℎ

) + 3.75 (4.13)

where 𝑓𝑟 is the friction factor, and the roughness Reynolds number, 𝑒+ is:

𝑒+ =
𝑒

𝐷ℎ

𝑅𝑒(
𝑓𝑟
2

)0.5 (4.14)

Han[37] developed a correlation for the friction factor for turbulent flow between par-

allel plates with rib roughness by considering the geometrically non similar roughness

𝑝/𝑒, rib shape angle Φ and the flow angle of attack 𝛼.

𝑅𝑒+(𝑒+) = 4.9(
𝑒+

35
)𝑚(

10

𝑝/𝑒
)−𝑛(

Φ

90∘ )−1(
𝛼

45∘ )−0.57 (4.15)

where m and n are given:

m=-0.4, if 𝑒+ < 35; m=0, if 𝑒+ ≥ 35.

n=-0.13, if 𝑝/𝑒 < 10; n=0.53( 𝛼
90∘

)0.71, if 𝑝/𝑒 ≥ 10.

Φ is 0, and 𝛼 is 90°for stairs in the experiment.

4.5.3 Heat transfer for ribbed cases

Han[37] and Webb[38] gave the Stanton number in the ribbed flow:

𝑆𝑡 =
𝑓𝑟

(𝐻𝑒+ −𝑅𝑒+)(2𝑓𝑟)0.5 + 2
(4.16)

A correlation recommended by Webb[38] gives the values of 𝐻𝑒+:

𝐻𝑒+ = 4.5(𝑒+)0.28(𝑃𝑟)0.57 (4.17)

4.5.4 Consideration of mixed convection

Based on the measured flow rates in previous chapter, average Reynolds number

is 51918 which is in the turbulent flow region. Because temperatures of walls and
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stairs are higher than temperatures of air, buoyancy force can assist the forced flow.

Thus, whether force or natural convection dominates heat transfer affects calculations

of heat transfer coefficients.

The dimensionless group that characterizes a natural flow is the Grashof number

which approximates the ratio of the buoyancy to viscous force on a fluid.

𝐺𝑟 =
𝑔𝛽∆𝑇𝐷3

𝑣2
(4.18)

where g is the acceleration due to Earth’s gravity in 𝑚/𝑠2, 𝛽 is the coefficient of

thermal expansion, ∆𝑇 is the difference of the surface temperature and bulk temper-

ature, D is the hydraulic diameter in m, and v is the kinematic viscosity in 𝑘𝑔/(𝑚𝑠).

Estimated Gr is 2.13 × 109 according to experimental data. 𝐺𝑟/𝑅𝑒2 is 0.79. The

criteria for mixed convection in external flows when 𝑃𝑟 ≤ 1 are given in the following

Table 4.6.

Table 4.6: Criteria for mixed convection in external flows.

Forced convection (𝐺𝑟/𝑅𝑒2) ≪ 1

Mixed convection (𝐺𝑟/𝑅𝑒2) ≃ 1

Natural convection (𝐺𝑟/𝑅𝑒2) ≫ 1

Therefore, the heat transfer process is mixed convection.

For external natural convection of a flow on a vertical wall, Churchill and Usagi[39]

defined a Prandtl number function Ψ as

Ψ = (1 + (
0.492

𝑃𝑟
)9/16)−16/9 (4.19)

Churchill and Chu[40] correlated average Nusselt number for a turbulent flow as

𝑁𝑢 = 0.68 + 0.67(𝑅𝑎Ψ)1/4(1 + 1.6 × 10−8𝑅𝑎Ψ)1/12; 109 ≤ 𝑅𝑎 ≤ 1012 (4.20)

Churchill[41] recommended an appropriate correlation for mixed convection in ex-

ternal flows. For laminar or turbulent boundary layer flows with an assisting buoyancy
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force on vertical plate, Nu is calculated by

(𝑁𝑢−𝑁𝑢0)
3 = (𝑁𝑢𝑓 −𝑁𝑢0)

3 + (𝑁𝑢𝑛 −𝑁𝑢0)
3 (4.21)

where subscripts f and n refer to forced and natural convection, and 𝑁𝑢0 =0.

4.5.5 Heat balance

Outside air temperatures are known as the initial air temperatures. Air gains heat

when flows though the surfaces inside the stairwell. The heat balance equation from

energy conservation is

𝜌𝑢𝐴𝐶𝑝(𝑇𝑏|𝑥+Δ𝑥 − 𝑇𝑏|𝑥) = ∆𝑥ℎ𝑖∆𝑇𝑖𝑃𝑖 (4.22)

where 𝜌 is the density in 𝑘𝑔/𝑚3, u is the bulk velocity in 𝑚/𝑠, A is the cross section

area in 𝑚2, 𝐶𝑝 is the specific heat in 𝑘𝐽/(𝑘𝑔𝐾), 𝑇𝑏 is the bulk temperature in K, ∆𝑥

is the flow distance in m, ℎ𝑖 is the heat transfer coefficient at surface i in 𝑘𝐽/(𝑚2𝐾),

∆𝑇𝑖 is the difference of the surface temperature and the bulk air temperature in K,

and 𝑃𝑖 is the perimeter in m.

When analyzing the heat transfer process, a machine room in the basement as

shown in Fig.4-6 should be considered. Temperatures of the walls of the machine room

are always much higher than indoor air temperatures. Some air from the ambient may

flow down to the basement and be influenced by the heat loads from the machine room.

This heat transfer process is so complex and uncertain that measured temperatures

on the first floor are used in calculations.
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Figure 4-6: Photographs of exterior and interior of the machine room in the basement.

All equations above are solved iteratively to calculate flow rates and temperatures

by assuming an initial guess of flow rate is 1𝑚3/𝑠 and the initial indoor temperature

is the ambient temperature. For every particular time, the ambient temperatures,

indoor air temperatures on the first floor, all surface temperatures are known. The

average of the temperatures at 10:20 and 10:40 is used as the temperature at 10:30

in calculations to revise the abnormal temperature peak at that time. Corresponding

air temperatures are calculated though heat balance which leads to a new air flow

rate. New heat transfer coefficients would be calculated using this new air flow rate.

These iterations are performed until the change between the new and old flow rates

is below 0.1%.

4.6 Results

Re, St, Nu, h and fr during the experiment calculated by iterations are shown in

Table 4.7. Reynolds numbers change because of air velocity change and keep much

larger than 2300, which are in the turbulent region. Nusselt numbers for the stairs are

larger than those for the walls since the zigzag roughness enhances the heat transfer

effects.
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Table 4.7: Calculated Re, St, Nu, h and fr for stairs and walls during the experiment
by iterations.

Time Re St Nu_stairs Nu_wall
h_stairs

(W/m2K)

h_wall

(W/m2K)
fr

9:50 80774 0.0029 484.68 168.11 5.35 1.86 0.56

10:00 70713 0.0027 422.26 151.14 4.66 1.67 0.54

10:10 62307 0.0026 381.70 136.61 4.21 1.51 0.51

10:20 60842 0.0026 374.27 134.04 4.13 1.48 0.51

10:30 44064 0.0026 300.20 103.57 3.31 1.14 0.45

10:40 40962 0.0025 284.41 97.70 3.14 1.08 0.43

10:50 33300 0.0025 249.32 82.79 2.75 0.91 0.40

11:00 32436 0.0021 229.58 81.20 2.53 0.90 0.39

The calculated air temperatures and measured air temperatures of different floors

changing with time are shown in Fig.4-7. The outside air temperatures fluctuate with

an upward trend and reach a peak at 10:30. These results of indoor air match fairly

well. Both the calculated and measured air temperatures on every floor decrease form

9:50 to 10:00 but keep relatively stable from 10:00 to 11:00. Calculated temperatures

of different elevations at the same time are lower than the actual temperatures. And

the differences among different elevations of calculated temperatures are smaller than

the those of actual temperatures during the process. Furthermore, calculated results

shows a more obvious rising trend.

The comparisons of calculated air temperatures and measured air temperatures

of different times versus floors are shown Fig.4-8. Air temperatures at 9:50 are higher

than those at other times. The larger slope of the curves from the ambient to the first

floor reflect a larger temperature rise because of influence of the basement. Measured

temperatures keep higher than the calculated temperatures on every floor during the

whole process. The calculated and measured temperature increases on every floor

keep relatively steady with heights and time except 9:50. Moreover, the measured

temperature increases on every floor keep larger than the calculated temperature
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increases, which are caused by some unknown heats and unexpected errors in heat

transfer coefficient calculations.

Measured flow rates and calculated flow rates at doors are shown in table 4.8 and

Fig.4-10. Calculated values are in the range of flow rates at the top door and bottom

door. However, their fluctuations are not in phase. Moreover, the calculated flow

rates change to approximately one half when the opening areas are reduced by a half.

Figure 4-7: Calculated(up) and measured(below) air temperatures at different floors
versus times.
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Figure 4-8: Calculated(blue curves) and measured(orange curves) air temperatures
at different times versus floors.
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Figure 4-9: Measured(first) and calculated(second) air temperature increases at every
floor at different times.
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Table 4.8: Measured flow rates at top and bottom doors and calculated flow rates.

Time
Measured flow rates

at top door(𝑚3/𝑠)

Measured flow rates

at bottom door(𝑚3/𝑠)
Calculated flow rates(𝑚3/𝑠)

9:50 2.62 2.96 3.41

10:00 1.72 4.21 2.88

10:10 1.72 1.28 2.52

10:20 1.70 4.71 2.53

10:30 1.73 2.63 1.83

10:40 1.03 2.18 1.71

10:50 1.35 3.62 1.10

11:00 1.18 1.46 1.31

Figure 4-10: Measured flow rates at top and bottom doors and calculated flow rates
versus times.

4.7 Conclusions

This chapter discusses methods to determine and calculate indoor air flow rates

and temperatures inside a stairwell. Discharge coefficients of inlets and outlets are

calculated from empirical equations based on the opening geometries. Pressure drops

due to resistances of walls and stair steps can be ignored compared with pressure
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change through openings in this experiment. Thus, indoor and outdoor pressure

differences, which determine air flow rates, can be calculated with height difference

and discharge coefficients.

Walls and stairs are considered separately as smooth plates and planes with ribbed

roughness simply when calculating heat transfer coefficients. The height of rough-

ness and distance between two stairs are main factors deciding enhancement of heat

transfer. In addition, mixed convection should be considered by comparing Gr and

𝑅𝑒2. With known initial outside air temperatures, indoor air temperatures can be

predicted by the heat gains of the air and the heat transfer processes at the surfaces.

Calculated results match well with the actual measured results in the previous

chapter. Measured temperature increases on every floor are little larger than calcu-

lated temperature increases because of errors in the heat transfer coefficient estima-

tion, especially the approximation of stairs as ribs. And the temperature increases

keep relatively constant along with time. Calculated flow rates are about the mean

values of flow rates at the top and bottom doors and change corresponding to the

opening areas. However, fluctuations of air flow rates does not match well because of

difficulties of precise velocity measurement. More future analysis are still needed for

predictions of flow rates.
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Chapter 5

Conclusions and future work

5.1 Conclusions

Atriums have been widely used in non-residential buildings for aesthetic requests,

social contact, exposure for daylight, and fresh air exchange. The shapes and dis-

placement of atriums are determined by building functions, thermal comfort and

ventilation requirements, climates, and daylight performances. Centralized atriums

are still the most popular which are basic forms in this study for modeling and simula-

tions. In atrium buildings, natural ventilation could be considered to assist indoor air

circulation, maintain suitable thermal environment and avoid or reduce the use of me-

chanical systems, such as air conditioning. To predict the reduction in energy costs,

indoor comfort and possible operations of controlling systems, modeling techniques

are needed before the architectural design stage.

Present natural ventilation modeling strategies are classified into four categories:

analytical models, full-scale and small-scale experiments, computational fluid dy-

namics and airflow network models. All methods have advantages and limitations.

Analytical models provide rich physical meanings and are easy to be applied, but

they are too simple to represent real-world conditions. Full-scale field experiments

require much resources which leads to difficulties in collecting sufficient data sets.

Small-scale experiments cannot meet the exact match of dimensionless numbers due

to the change of geometry. CFD simulations require much computational resources
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and cannot show results in long time periods. Moreover, airflow network models are

limited by many assumptions including well-mixed temperature conditions in a single

zone and negligible momentum of air.

This thesis focuses on study temperature stratification and air circulation inside

atrium buildings in purely buoyancy-driven ventilation. Results and conclusions will

help designers and engineers predict the indoor comfort and energy savings before

design and construction.

Because the investigations on atrium structure features and opening character-

istics have been limited up to now. Computational fluid dynamics simulations are

used to study the ventilation effects based on comparisons among building models

with different heat sources, opening locations, sizes and numbers of layers. The basic

building model is a large room with a inlet on the sidewall and the heat source on

the ground connected to a centralized atrium with an outlet on the top. In all cases,

buoyancy effect drives air to come through the inlet, flow through the connecting

opening, float up inside the atrium, and finally flow out from the top outlet. Differ-

ent heat sources produce similar velocity fields and total flow rates with equivalent

heat loads. But the uniformly heated floor shows better mixed temperature distribu-

tion than the heater near walls. On the other hand, different locations of the outlets

on the top of the atrium show little effects on the temperature and velocity fields.

A small window connecting the room and the atrium results in higher velocities and

more obvious temperature stratification near the opening than those in models with

floor-ceiling openings. Airflow rates are higher while indoor temperatures in both the

room and atrium are lower in the building model with a large outlet compared with

the case with a small outlet. However, regardless of the outlet sizes and locations, a

well-mixed temperature field inside the atrium can be assumed.

Adding the floors of an atrium building enhances natural ventilation. Total air-

flow rates and temperature increase in the two-layer model are higher than those in

the single-layer model. Lower flow rates are observed through the second floor than

the first floor with all other parameters are constant, which leads to higher room

temperatures. Furthermore, the well-mixed temperature field is still verified in the
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lower half of the atrium space while the temperature stratification exists in the up-

per half. Therefore, the temperature distribution inside the atrium of multi-layer

buildings should be carefully considered by accounting for the gradually temperature

increase with height.

CoolVent is used as a airflow network tool to compare the results with CFD

simulations. Calculations in CoolVent assume uniform air temperatures in every

zone and ignore the momentum of air. In comparison with CFD simulations, both

temperatures and flow rates match well with discrepancies less than 10%. The well-

mixed temperature assumption in the atrium used in the airflow network tool is

suitable for single-layer atrium buildings but further calculations should be improved

for multi-layer buildings.

A full-scale field experiment is conducted in a five-storey stairwell of MIT Building

35, which could be treated as a simple small atrium. Temperatures of indoor air are

measured by thermocouples evenly distributed in the vertical direction while temper-

atures of inside surfaces are measured by an infrared thermometer. Velocities at the

bottom door and top door are measured by hotwire anemometers. Measured flow

rates at two doors fluctuate frequently and are not in phase, which may not reflect

the real flow rate change during the experiment process. When the opening area are

reduced to a half, flow rates decrease less than a half. Solar gains through windows

would assist natural ventilation by heating up the walls and stairs. Though the indoor

air temperatures on every floor keep stable during the experiment, air temperatures

increase with height because the heat transfer with the surfaces when flowing through

them. Therefore, the well-mixed temperature assumption over the entire height in

many analytical models and airflow network models is not applicable if the cross area

of the atrium is small. The temperature stratification should be carefully considered.

More calculations and analysis are provided to predict the flow motions and tem-

perature distributions in buoyancy-driven ventilation in atrium buildings. The con-

siderations of flow resistance, pressure drops, heat transfer coefficients for walls and

stairs, and mixed ventilation are discussed in details. When the outside air temper-

atures and surface temperatures are known, corresponding indoor air temperatures
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would be predicted by the heat transfer balance between air and surfaces. Calculated

and measured results of temperatures match well. Some errors in the heat transfer

coefficient estimation cause the slightly lower temperatures in calculations compared

with the actual temperatures in the experiment. In addition, the calculated flow rates

are not in phase with measured flow rates through both the bottom door and the top

door.

5.2 Future work

There are a few limitations in this research. Additional future work are needed.

The atrium type used in computational fluid dynamics is the centralized atrium

connected with rooms. The sizes and locations of openings in the atrium building

are chosen to represent the simplest and universal situations. There are more cases

where purely buoyancy-driven ventilation is important to meet diverse architectural

aesthetics and climates. These cases should be carefully generalized and taken into

consideration as well. Based on the comparison between the results of CFD mod-

els and CoolVent models, the total air temperature increase and flow rates match

well. But the temperature stratification in the room still exists, which requires more

analysis to describe besides the simple airflow network model. In multi-layer build-

ings, temperature field could not be assumed to be well-mixed in the atrium space

and disagrees with the CoolVent results. The calculation methods in CoolVent for

ventilation in multi-layer atrium buildings should be revised.

The experiment conducted in the stairwell of MIT building 35 provides detailed

data sets of actual temperature distributions and air flow rates. However, the mea-

sured flow rates at doors are not in phase because of the difficulties in recording

velocities fluctuating rapidly and randomly. The Measured outside air temperatures

reach an abnormal peak at 10:30 caused by some unknown heat sources. Analysis

based on results including these errors is difficult. Additional experiments should be

conducted using better automatically recorded anemometers and thermometers.

The calculations in chapter 4 successfully verify the measured results in the ex-
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periments and help predict the indoor environment in similar atrium space. But the

resistance and pressure drops of the flow process are calculated using empirical val-

ues in some handbooks and change in different cases. More future work should be

done to determine the resistance coefficients applied in various building structures.

Calculated air temperatures keep lower than measured air temperatures during the

experiment time period. Some unknown factors in heat transfer coefficient estima-

tion should be investigate carefully. In addition, more full-scale experiments should

be conducted in typical atriums besides the experiment in a stairwell in this study.
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