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Abstract

The primary goal of this thesis is to develop and apply molecular dynamics simulation
methods to elemental and binary covalent materials (Si, C, SiC) based on the tight-
binding (TB) model of atomic cohesion in studies of bulk and deformation properties
far from equilibrium. A second purpose is to compare results with those obtained us-
ing empirical interatomic potential functions in order to elucidate the applicability of
models of interatomic interactions which do not take into account explicitly electronic
structure effects.

Based on the assumption that the cohesive energy can be written as the sum of
a band structure contribution and a repulsive short-range interaction contribution,
we have calculated the former by using a basis set consisting of four atomic orbitals,
one for the s state and three for the p states, constructing a TB Hamiltonian in the
usual Slater-Koster parametrization, and diagonalizing the Hamiltonian matrix at
the origin of the Brillouin zone. For the repulsive part of the energy we employ a
function in the form of inverse power law with screening which is then fitted to the
bulk modulus and lattice parameter of several stable polytypes, results calculated by
ab initio methods in the literature.

Three types of applications have been investigated to demonstrate the ut:hty of
the present TB models and their advantages relative to empirical potentials. In the
case of Si we show the calculated cohesive energy agrees to within a few persent with
the ab initio local-density approximation (LDA) resuits. In addition, for clusters up
to 10 atoms we find most of the energies and equilibrium structures to be in good
agreement with LDA results (the failure of the empirical potential of Stillinger and
Weber (SW) is well known). In the case of C clusters our TB model gives ring and
chain structures which have been found both experimentally and by LDA calculations.

In the second application we have applied our TB model of Si to investigate the
core structure and energetic of partial dislocations on the glide plane and reconstruc-
tion antiphase defect (APD). For the 900 partial we show that the TB description
gives the correct assymetric reconstruction previously found by LDA (SW potential
fails in this case). For the 30° partial, even though TB and SW potential both give



the correct reconstruction, TB gives better bond angles in the dislocation core. For
the APD we have obtained a binding energy and activation for migration which are
somewhat larger than the SW values, but the conclusion remains that APD is a
low-energy defect which should quite mobile.

In the third application we formulate a simple TB model for SiC where the coeffi-
cients of the two-center integrals in Si-C interactions are taken to be simple averages
of Si-Si and C-C intergrals (following the idea of universal TB for all covalent ma-
terials). Fitting is done on two polytypes, zincblende and rocksalt structures, and a
simulated annealing procedure is used. The TB results are found in good agreement
with LDA and experimental results in the cohesive energy, acoustic phonon modes,
and elastic constants. In addition, we have investigated the elastic stability of beta-
SiC under hydrostatic tension using the concept of elastic stiffness coefficients recently
developed. We find that TB predicts a critcial pressure (0.38 Mbar) compared to 0.28
Mbar obtained by using an empirical potential proposed by Tersoff.

For conslusions we consider (1) applicability of TB to SiC, and (2) relative advant-
ges over empirical. We believe, on the basis of the results presented, that TB(SiC)
provides a reasonable (at least qualitatively correct) description of atomic cohesion
and local bonding of SiC.Certain improvements, such as treating charge transfer, and
computationally more efficient techniques, such as the recursion method (real space)
should be considered in future studies. Relative to empirical potentials like SW and
Tersoff, the present TB models are clearly more transferable. In all the properties
we have examined in this work, we have not uncovered any property where TB is
qualitatively deficient.
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Chapter 1

Introduction

1.1 Background and Motivation

In atomistic simulation of materials properties and behavior, significant advances are
being made to develop methods of describing atomic cohesion in solids which can
be combined with molecular dynamics for the purpose of studying technologically
interesting solids. In the case of semiconductor and covalent materials such as Si,
C, and SiC, it is well known that pair potential functions are unable to account for
the strong electronic structure effects which give rise to the tetrahedral structure of
these materials and the corresponding angle-dependent forces [1]. Empirical potential
functions which attempt to take into account many-body interaction effects have been
proposed for use in molecular dynamics (MD) simulations {2, 3]. Although there exists
now a considerable body of literature on such studies of Si, no potential model can
claim to be fully satisfactory in describing the physical properties of this material [4).
The basic concern is that all empirical potentials, by the nature of their construction
and fitting to known properties, suffer from the lack of transferability. In other words,
a potential which is constructed by fitting to only equilibrium properties may do very
poorly in applications to highly nonequlibrium conditions. The best one can do is
to include as many different properties as possible in the database when fitting the
potential.

One can approach the problem of studying covalent materials by atomistic simu-
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lation based on density functional theory [5, 6, 7, 8] which treats electronic structure
effects quantum mechanically in a first principles or ab initio manner. In principle,
this approach is the most fundamental and accurate; however, in practice simulation
methods based on this formulation (9] require so much computational effort that,
at the present time, the method is still restricted to a small number of atoms and
quite short simulation times. For studies of mechanical and deformatjon properties,
simulation cells containing at least several hundred atoms would be required and one
cannot use the ab initio approach.

There exists an intermediate approach between the use of empirical potential func-
tions and first principles total-energy calculation. This is known as the tight-binding
(TB) method which is based on LCAO (linear combination of atomic orbitals) scheme
in which electronic structure effects are treated through a basis set of atomic orbjtals
representing only the outer valence electrons. By approximate parametrization of the
matrix elements of the Hamiltonian, [10] a description of the atomic cohesion can be
developed and conveniently incorporated into MD simulation which the expectation
is that the essential electronic structure effects can be taken into account, albeit in a
quite simplified manner, without incurring the full computational burden of the ab
initio method. Clearly, the TB approximation [1] will not be as accurate as first prin-
ciples; the question which needs to be addressed is whether this approach provides a
substantial improvement over the empirical potentials.

In a number of specific studies, TB models have been used to obtain results
which compare well with first principles calculations which we will denote as local
density approximation (LDA) to call attention to the treatment of electron exchange
and correlation that is almost universally adopted [6]. For the covalent materials
of interest in this thesis, one can point to existing models and results on properties
which provide a basis for further investigation of the applicability of this method of

describing atomic cohesion.
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1.2 Problem Statement

The primary goal of this thesis is to develop and apply molecular dynamics simulation
methods to elemental and binary covalent materials (Si, C, SiC) based on the TB
model of atomic cohesion in studies of bulk and deformation properties far from
equilibrium. A second purpose is to compare the TB results with those obtained using
empirical interatomic potential functions in order to elucidate the applicability of
models of interatomic interactions which do not take into account explicitly electronic
structure effects.

Three types of studies have been carried out to demonstrate the utility of the
present TB models and their advantages relative to empirical potentials. For clusters
up to 10 atoms we find energies an equilibrium structures to be in good agreement
with LDA results (the failure of the empirical potential of Stillinger and Weber (SW)
in this case is well known). In the case of C clusters our TB model gives ring and chain
structures which have been found both experimentally and by LDA calculations.

In the second study we have applied our TB model ot Si to investigate the core
structure and energetics of partial dislocations on the glide plane and the reconstruc-
tion antiphase defect (APD). For the 90° partial we show that the TB description
gives the correct asymmetric reconstruction previously found by LDA (SW potential
fails in this case). For the 30° partial, even though both TB and SW potentials give
the correct reconstruction, TB gives better bond angles in the dislocation core. For
the APD we have obtained the binding energy and the activation energy for migra-
tion which are somewhat larger than the SW values, but the conclusion remains that
APD is a low energy defect which should be quite mobile.

In the third study we formulate a simple TB model for SiC where the coefficients
of the two-center integrals in Si-C interaction are taken to be simple averages of Si-
Si and C-C integrals (following the idea of universal TB parameters for all covalent
materials). The TB results are found to be in good agreement with LDA and exper-
imental results in the cohesive energy, acoustic phonon modes, and elastic constants.

In addition we have investigated the elasic stability of 8 SiC under hydrostatic tension

13



using the concept of elastic stiffness coefficients recently developed citejl.
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Chapter 2

Development of Computational

Methods

In this part of the thesis, we will derive the semiempirical TB method from the
density functional theory by using the stationary property of the density functional
theory. We need to solve the Schrodinger equation in order to find interatomic forces
in a system which is composed of electrons and ions. But the exact solution of the
Schrodinger equation is possible only for very simple systems, like the hydrogen atom
[11]. Even for the He atom, we need to make approximations to solve the Schrodinger

equation [12].

- - -—— Ab-initio -methods{8]-solve-the -Schrddinger-equation by-making many significant
approximations, but without resorting to the experimental data. Ab-initio methods,
like Car-Parrinello method[9] permit simulation of only a few tens of atoms. But the
simulation results are very important for comparision purposes.

Semiempirical methods are between empirical and ab-initio methods, most im-
portantly the TB method (13, 14, 10]. The semiempirical methods enable us to
incorporate the electronic effects on the one hand and simulate large number of (a
few hundreds) atoms on the other hand. The orthogonal TB method (13, 15, 16) is a
semiempirical method for calculating interatomic forces in semiconductors and tran-
sition metals. The results of the simulations are usually in good agreement with that

of ab-initio simulations. Phonon frequencies[15], thermal expansion coefficients[17],
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specific heats{18], and radial distribution functionsi15] are in agreement within a few
percent of the ab-initio results.

The basis of the method is to expand the total electronic wavefunction as a lin-
ear combination of atomic orbitals. The Hamiltonian is approximated as the sum
of potential wells located on the nuclei. By using the expansion for the total elec-
tronic wavefunction, the Hamiltonian matrix elements are obtained. Then by using
the analytical derivatives of Hamiltonian matrix elements, the interatomic forces are
calculated. The interatomic forces are then used to carry out the MD simulation.

The TB method is transferable because the same formulation can be used to study
bulk(15], liquid[18, 19] or cluster[20] properties of materials.

In its simplest form the atomic orbitals which constitute the basis set are assumed
to be orthonormal to each other. Self consistency is ignored and the matrix elements

between localized orbitals on a single atom are assumed to vanish.

2.1 The Adiabatic Approximation

The system we are dealing with is composed of electrons and nuclei which are moving
in the potential field created by their own charges. Basically what we need is to
solve the Schrodinger equation for the whole system and compute properties of the
system by using the total wave function of the electron and nuclei. The solution of
the Schrodinger equation for the system of electrons and nuclei is a hopeless task
unless we make some approximations because of the enormous number of degrees of
freedom of the system.

One of the first approximations we will make is called the adiabatic approximation|21]
and enables us to solve the Schrodinger equation of electrons moving in the potential
field created by the charge of the nuclei. The basis of this approximation is that
electrons are so much lighter than the nuclei that the electrons adapt immediately to
any change in the configuration of the nuclei. The electronic system is always very

close to the ground state for a given nuclear configuration.
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The total Hamiltonian of the electrons and nuclei can be written as

H= Hel + Hian + Hel—l'tm- (2-1)

For the electronic part of the Hamiltonian, we write

H,=y P L Z ¢ (2.2)
T e om T Bmeo o |7k — Tk '
and similarly for the ion part we can write
P? 1 XYAVA
Hion = : —— 2.3
204 " e 2 7 - R &%)
and H._;on can be written as
—_e?7

Hoion = — £ A (2.4)

dmeo 47 |7 — Rl

Let’s suppose that we can write the Schrédinger equation for the electronic system

(Hcl + Hcl—io'n)"»b = E¢l¢ (2'5)

where 9 is the total electronic wave function. Now we will assume that the total
wave function of the system composed of the electrons and nuclei can be written as

a product
¥ = (717N Byoe By )o(Ry .. Bive) (2.6)

where N, N' are the numbers of the electrons and the nuclei, respectively. Let us

substitute this wave function into the Schrodinger equation as (2.1) is the Hamilto-
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nian:

HY = (Hel + Hion T Hel—ion)'lb‘P

2

If the last term were absent, we would be able to separate ion and electron motion.

If we neglect the last term we will have

(Hion + Ea)p = Eyp (2.8)

The last term is shown to be small in [22], so we can neglect it. E.; depends on both
ion and electron coordinates, so it brings a contribution from the ionic potential to the
electronic problem. ¢ is a function of the only ionic coordinates so that it describes
the motion of nuclei. So we developed a way to solve the Schrodinger equation by
separating electronic and ionic motion by using the adiabatic approximation. Now
we need to solve the electronic part of the Schrodinger equation first by using the
potential due to ions as an external potential to the electronic system. Then we
can solve the ionic problem by using the electronic energy as a potential function
which has been calculated by solving the electronic Schrodinger equation. For more

information about the adiabatic approximation, we refer the reader to the book by

Haugh (23].

2.2 Density Functional Theory

In order to use the TB method efficiently, we need to derive it from a more basic theory
like the density functional theory so that we will be able to appreciate limitations and
capabilities of the TB method better. The density functional theory is the obvious
choice for the more basic theory to derive the TB method from because there is a
very close connection between the two theory on the intuitive level.

Hohenberg and Kohn[5] and Kohn and Sham(6] have proved that the ground state

total energy of the electronic system under the external field created by the nuclei is
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determined solely by the density distribution of electrons. We can write the energy

functional for the electrons as
E(n] = T,[n] + F[n] (2.9)

where T,[n] is the kinetic energy of a noninteracting electron gas moving in the field
created by the nuclei which creates the electronic density distribution n. Even though
functional E is defined for all density distributions, only those densities which cor-
respond to the ground state density of the noninteracting elctrons make sense. The
total kinetic energy of the noninteracting electrons is not the same with the total

kinetic energy of the interacting electron system, but they are of equal magnitude
[24].

We can write the electrostatic potential energy functional F[n] as

Fn] = /V,,.,d Jn(r)dr + 2// n(r)n(r’) =12 L3 dr + E.n(r)] (2.10)

r ="

where V. is the potential energy created by the nuclear charges. (2.10) is the
definition for the E,.[n(r)] which is the exchange and correlation energy. Now let’s

define the first two potential energies as

= / / lr")_"rl‘ B rddy (2.11)
and
Euenuan(r)] = / Viwat (1) (r)d®r (2.12)
then we can write (2.10) as
Fln(r)] = Ect-nuet + En(n(r)] + Ezc[n(r)] (2.13)

Now we will make another approximation. The term E..[n(r)] is not known ex-

actly. We will make the local density approximation which says that the exchange-
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correlation term can be calculated by integrating the exchange correlation energy per
electron in a uniform noninteracting electron gas of the same density. So we can write

the exchange-correlation energy as

Euoln(r)] = / éae(n(r))n(r)dr. (2.14)

€z. can be calculated by using Monte Carlo methods(25]. The ab-initio calculations
using the LDA have been surprisingly accurate (9, 26].

Now let’s try to evaluate the energy functional E(n(r)]. To do this, we need to find
a potential V(r) which produces the ground state density of noninteracting electron

gas when plugged into the following equation:

(=52 + V(li(r) = ehi(r). (2.15)

The density can be calculated by using the one-electron wave functions

N
n(r) = 2_; pi (r)ehi(r). (2.16)

Then the kinetic energy functional can be calculated as

N
T = % Pi(r)(—5 V()

N
ge,- - / V(r)n(r)d®r. (2.17)

The electrostatic potential energy F[n(r)] is easy to calculate once we know the
density. We can obtain E[n(r)] = T,[n(r)] + F[n(r)]. However it is difficult to find
the density which minimizes the energy functional which is what we want. The ground

state density makes the energy functional stationary, so that we have

SE[n(r)] = Eln(r) + 8n(r)] - Eln(r))
O([én(r)]?) (2.18)
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For small fluctuations, §n(r) obeys the following equation:
/ §n(r)d®r = 0. (2.19)
From (2.17) we can write that
§T,(n(r)] = — / V(r)6n(r)d®r + O([6n(r)]?) (2.20)
so that we find that

SE[n(r)] = &T,[n(r)]+ 6F[n(r)
=[5~ VNn()r + O(IBn (). (2.21)

From this equation we see that E[n(r)] is stationary whenever

§F
EL;(,) = V(r) + const. (2.22)

The constant is arbitrary and can be set to zero. Then we have the following equation

6F

on = Vaua(r) + VH["’(T)] + u,c[n(r)], (2.23)

where Vg (n(r)] is the Hartree potential,

Vain(r) = ::é:) = I:—(:'—T.),—'dar' (2.24)

and p..[n(r)] is the exchange and correlation potential

pireln(r)] = f,ﬁjf)- (2.25)

(2.22) is the self-consistency condition. it relates the one-electron potential in (2.15)
to the potential obtained by using the density of the electrons obtained using this
potential. (2.15) should be solved self-consistently. When we obtain the ground state
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electron density, we can calculate the ground state energy as

Eo = T,[no] - F[Tlo] . (2.26)
N 1
=% / $i(r)(=5 V2 )bi(r)dr + Flno(r)]
N
= ; & + Flno(r)] - %L,o(,)no(r)dar
v
= Y= Balno(r)] + Exclno(r)] - / peclno(r)lno(r)d®r.  (2.27)

where

Fno(r)) —/aa-—f:l,,ﬂ(,)no(r)dsr (2.28)

is the double counting energy.

2.3 Semiempirical TB Models

In the semiempirical TB models, the basic assumption is that we can write the total
energy as a sum of the occupied one electron eigenvalues and a short range pair

potential. We start with the expression for the semiempirical TB methods

N
E=Y a+; Y L U(R - Ryl) (2.29)
a B

=1

where ¢; are eigenvalues of some non-self-consistent Schrodinger equation,
1
Hii = -5V + V(r)lgi(r) = ei(r) (2.30)

where V/(r) is the one-electron potential energy whose form we want to determine
and U(|R, — Rg|) is a short range pair potential between atoms a and 8. ¥;(r) are
one-electron eigenfunctions.

There are similarities and differences between the DFT and the TB methods. In

the TB method, the eigenvalues ¢; are calculated from a non-self-consistent Schrodinger
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equation. The double counting energy which arise as a result of summing pairwise
Coulomb interactions twice in the one-electron eigenvalues and the ion-ion interac-
tion are represented by a short range pair potential. We need to prove that starting
from the DFT we can develop a non-self-consistent Schrédinger equation for the one-
electron eigenvalues and also represent the double counting term and the ion-ion
interaction as a pair potential.

Now let us prove the stationary and variational property of the DFT. The ground
state density no(r) minimizes the total energy of the electronic system. For an arbi-
trary density which differs from the ground state density by én(r) we can expand the

energy functional around ng:

snl = Ll 8’E NP3t
E[no-rb-n! = E[Tloj-r 5//Wlmén(r)6n(r )d rd’r

+ (terms of higher order). (2.31)

The first-order term is zero due to the stationary property of the DFT. The second
order term : [ f folnoﬁn&n is always greater than or equal to zero [27]. This is the

variational principle of the DFT and tells us that for any density different from the

The total energy of the system is written as a functional of the density as

E[nout] = Tl[nout] + F[ncmt]
al 1
= 5 [N =5 VBT + Flno
=1
N
= Z € — / Vin(F) o (1)d?r + Flnou) (2.32)
=1
where V;, is the potential which makes n,,, the ground state density of the noninter-
acting electron gas. From (2.22) and (2.23) Vi, can be written as
6F

Elnin

= Viuwal(r) + VH["'-'"(T)] + l"zc{nin(r)] (2.33)

Vin(") =



where n;, is a guessed density which should be as close to the ground state density
as possible.

To find E[ne,.| we first guess an input density for the electrons. Then we calculate
Vin and then we solve the one-electron problem (2.15) and find the new density and

then calculate E[ng,] from (2.32). When we do that we find that

E[nwt] = Z € — Inmnwt T F[nwtl
_ Zet '/'/nmnt::tl /#:c[nin]nwt T
: / / ’I‘:"‘_":"" + Eec[now]- (2.34)

It is not possible to establish a relationship between (2.34) and the semiempirical TB
method because of the existence of n,, in the formulation {27]. We need another
energy functional which is stationary around the ground state density and which
contains only n;, but is not necessarily variational. What is important to us is the
stationarity of this new energy functional around the ground state demsity which
guarantees that the approximate energies are better than the approximate densities
used to produce them. The variational principle is unimportant as far as obtaining
energies close enough to the ground state energy is concerned.

To demonstrate stationarity, let us write
An(r) = nou(r) — nin(r) (2.35)

and expand F[n..(r)| about n;,

y 6F
E[no‘a] = ch + F[nin] - 5n |n.“nu1
1=1

1 [t 6°F |
+ 5//mlm‘AnAn-’r... (2.36)
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Now we can define our new functional which is a functional of n;, only:

X . 6F
Blral = Lt Flnaal = [ Folnani

- Ze, En(nin] + Beelnin] — [ peclinlnin (2.37)

=1

so that we can write

2
E'[nin] = E[nouw) — 2//6 F nin AnAn + (higher order terms) (2.38)

So we have reached our goal of obtaining the second functional which depends only
on n;, and stationary about the ground state electron density.
We can calculate the electronic energy eigenvalues by solving a non-self-consistent

Schrodinger equation:

(=39 + Vaua(r) + Valtin(r)] + haclin(r)}ilr) = eti(r) (2.39)

and we can write the double counting energy as a functional of n;, only:

Flnis) — :55F lninftin = —Eg[nin] + Eze[nin] — / pee(min|nin. (2.40)

Now we can derive the semiempirical TB method by using the functional E'[n;n].
From now on all the densities n(r) are understood to denote n;,(r) and we suppress

the subscript.

Bl = Y+ Fin(r)) - [ S on(r)er

=1

— S &= Eafn(r)] [ Becln(n(r)dr + Bucln(r)]. - (241)

i=1

We can find the eigenvalues ¢; from a non-self-consistent Schrodinger equation

-5V + V()i = () (2.2
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where the input potential is

V() = 0 uey = Viut(r) + Virlo(r)] + picln(r)] (2.43)

We need to introduce another approximations which will enable us to neglect the core
electrons. This approximation is called the frozen core approzimation[28]. The basic
idea behind this approximation is that the core electrons are localized around the
nuclei and they are only slightly perturbed by the presence of other atoms. So we can
take the core orbitals as a linear combination of slightly perturbed atomic orbitals.
If the difference between core orbitals and atomic orbitals is on the order of A, then

we will write that [27]

Ve = X< Pl 5V + V() e >

D < daell—3 L9 4 V(r))fee > +0(2?)

a,c

- T.+ / nV + 0(0?) (2.44)

where ;. are core states and ¢, are unperturbed atomic core orbitals and T. is the

total kinetic energy of the unperturbed cores. Then we can write (2.41) as
E'ln)=Y e+ T, + / n.V — Egln] - j peclnln + Eocln). (2.45)

This equation can be written as

Eln) = ¥ e~ Ealnd = [ aclning + Eln)

1,V

ZUBZU
+ —ZE |

(2.46)
a IR Rpl

where C is the sum of free atomic core energies and Z,, are the number of valence elec-

trons of atom at R,. The valence eigenvalues can be found by solving a Schrodinger
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equation of the following form:

(=577 + Vaua + Varlnelr)] + Varlno(r)] + pecne(r) + ()] ()
= €ntin(r). (2.47)

At this point, we use a norm conserving pseudopotential(29] for the frozen cores.
For the norm conserving pseudopotentials the real and pseudo wave functions are

identical outside of the core. Then we can write the Schrodinger equation as

[—%Vz <+ Z "/p:,a + VH[nu} + F:c[nu]]¢pa,iv = eiv¢p:.iv (248)

and the energy expression as

Zua Zuﬁ

(2.49)
|R. — Rg|

E'ln) = Z €w — Egln.] — / pzc[no]ny + Eze[no] + 5 Z Z
So by replacing the effect of the core electrons by a pseudopotential, we are able to
neglect the core electrons. To solve the Schrodinger equation, we need to know the
input density n(r). Due to the stationary property even crude estimations of the
density should give reasonable energies. The input valence electron density can be
taken as a superposition of the atomic valence densities.

From (2.49) the electrostatic double counting energy can be written as

Di[n,] = -gz Sealep L [l o

|Rs — Ryl Ir =
3 1 ZoaZyup Toa(T)Mos(') 13 13,
- ZZ[IIL. % // T Ll (2.50)

where A is the minus intra-atomic Hartree energy. It is clear from (2.50) that the
electrostatic part of the double counting term is pairwise. The double counting con-

tribution of exchange and the correlation from (2.49) can be written as

Decfna) = [leacno(r)) = prac(ma(r)ina(r)r. (2.51)
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We can approximate the exchange and correlation double counting term as {27)

Dl Tl = % Dectral + 3 3 2 (Ducre o] = Daclre] = Duchros)

- ik b ons) 2,52

The terms higher than pair interactions are very small [27], so that only pair interac-
tions play a role. The exchange and correlation term can be approximately expressed
as a pair potential. So we have reached our goal of showing that the double counting

term can be expressed as a pair potential. We can write the double counting term as

3Gt 5 55 VusRa ~ s (2.5

where C, is the double counting for an atom.
If we construct the input density as a superposition of atomic-like densities, we

can write the one-electron potential as
V(r) = za: Va(r) + U(r) (2.54)
where V, can be written as
Va(r) = Vora(r) + Vir[nua(r)] + pac[nua()] (2.55)

and U(r) is

U(r) = I‘H[E Nga(T)] — ZPR[“M(’)]' (2.56)

Now we have proved that the double counting term is pairwise and we also found the
one-electron potential. The short range potential energy can be found from dimer
calculations. It is perfectly transferable.

So we were able to show that the total energy in the TB models can be approx-

imated as a sum of a band structure energy which is obtained by solving a non-
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self-consistent Schrodinger equation and a pair potential. We have also found the

one-electron potential which should be used in the one-electron Schrodinger equa-

tion.

2.4 Ab-Initio TB Method Applied to Crystalline

Substances

The TB theory is based on the one-electron approximation. In the one-electron ap-
proximation, the energy levels of a given electron are determined in a crystal potential
field. The TB method is based on the linear variation of parameters using the Block

sum as basis. We can write
bk, 7) = (N) V2 Y e*Rego |7 — (R, + 1)) (2.57)

where N is the total number of the unit cells in the crystal, k defines the region of the
Brillouin zone under consideration, and where vectors R, and t; label the positions of
the unit cells and of various atoms contained within each unit cell respectively. The
expression @q[F — (R, + ;)] represents some “atomic-like” function ¢(F) centered
about i-th atom of the v-th unit cell. Traditionaly, these ¢,(r) are chosen to be the
Hartree-Fock orbitals of the free atom of which the crystal is composed. When this is
done, and when care is taken to include those orbitals of the valence shell necessary
to assure that the resultant trial function will possess the proper transformation
properties under the operations of the group of the wavevector, we then call this
a minimum basis set. Usually the atomic orbitals are used as the basis functions
but Gaussian-type (GTO)(30] and Slater-type[31] (STO) orbitals can be used and
the results can be significantly improved. Gaussian orbitals are constructed by using
exp(—ar?) whereas the STO orbitals are constructed by using exponentials exp(—ar).
Atomic orbitals are similar to STO orbitals so STO orbitals give more accurate results
but GTO orbitals are easier to deal with.



From the Block functions (2.57) we construct the trial wavefunction

Yalks?) = 23 ab o (RIBL(F, D).

The variation of the linear parameters a' (k) yields an energy minimum when

det|H(k) — ES(k)| = 0,
where
HE(F) = [ bis(k, 7 H)(F, 7,
and

SEa(k) [ bz (R, )dr
S ek [ ga (7 - E)gal - (R, + E)ldr

respectively, and where H is the one-electron Hamiltonian (in atomic units)
1o
H= —EV + Very (7).

so that we need to calculate several multicenter integrals of the form

/ ¢a(7a)¢s(7B)dr
[ =59 ba(s )t
[ #aFaVay(alF)ir

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)
(2.64)

(2.65)

The first two integrals in (2.63) can be calculated easily. The last integral is

difficult to evaluate. One way of calculating those integrals is to write them as a
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linear combination of STO
Ba() = 3 Caszi (7), (2.66)
or GTO
a(7) = Z CaiZ{ (), (2.67)
and by expanding the periodic crystalline potential Vi, (7) in a Fourier serics
Viry(7) = 3 VA(K,) cos(K, 7) + 3 Vasin( K, 7%), (2.68)

where ¢ denotes the origin about which the potential is expanded. The required

integrals can thus be decomposed into a sum of integrals of the form

[ E Va2 Fa)dr = S VA(R.) [ 2 (Fa)eos( K. 7)=(Fa)dr +

S W(K.) / 28 (7g)sin( K,.7.)eC(Fp)dr (2.69)

for expansion in GTO and an analogous expression fcr expansion in STO. The re-
sultant integrals can be evaluated analytically for GTO but should be numerically
evaluated for STO.

The basic integral to evaluate is
Che = /exp(—alri)cos(l?v.i'c)dr. (2.70)
Using the following identity
exp(—a;73) exp(—azr3) = exp(—aazrip/(an + az))exp{— (a1 + ar)rd] (2.71)

where 74 and g are origins of the two basis functions. Those integrals are indepen- -

dent of k and need to be calculated only once for a crystalline material.

Qo
—




2.5 Orthogonal TB Method

In the previous sections we proved that the total energy of the system of electrons
and cores can be written as a sum of a band structure energy and a short range pair
potential. In this section we will discuss how to construct the secular equation and

how to solve it. The secular equation is given as
det|lH — eS| =0 (2.72)

where E are the eigenvalues of the Hamiltonian matrix H and the overlap matrix S
is a unitary matrix.

There are only a few parameters to be fitted. If these parameters are fitted to
the results of ab initio calculations accurate quantitative results can be obtained (32].
Unlike the free electron model which assumes that the electrons are free to move, the
TB approximation starts from the free atoms and looks at how the bonds are formed
when they are brought close to each other. This point of view permits obtaining of

cohesive energies and bonds much more easily.

2.5.1 Band Structure Energy for the Simple Cubic System

The basic assumption of the TB method is that the total wavefunction of the system
can be written as a linear combination of atomic-like orbitals, provided overlaps are
not too strong. If p(r — n) is the wave function corresponding to an orbital type A

on site n, we can write a wavefunction 1(r) as

#(r) = Sades(r - n). (2.73)

By this equation we mean that the density of electrons in the solid is a superposition
of free atomic densities. A useful approximation we can make is to assume that the

atomic orbitals are orthogonal. We can write that

¥ = [ drpilr - n)pu(r = m) (2.74)
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We will neglect S} if n # m. This approximation is not very accurate in practice
but in general we can include the effects of nonorthogonality by renormalizing the
TB parameters(33]. If we define the state |n,A > by the wavefunction < r|n,A >=

@a(r — n), then we can write that
<, Am,p >= dmnda,. (2.75)

Let’s write the total TB Hamiltonian as a sum of the kinetic energy plus the sum of

the atomic potential energy functions
H=T+) v (2.76)
where T is the kinetic energy operator. We can write this Hamiltonian as

Him,p >= *¥lm,p > + Y V¥m,p >, (2.77)
p¥mM

where €% is the atomic energy level for the orbital p. We reach the conclusion that
<mAHlm,p> = 6, + <m, Al Y V¥ |m,p >
p#m
Y

<m AHmp > = <o, AV m,p >=BM4in#m (2.78)

In the previous calculation only the most important term was retained. When n,m,p

are all different, we have small three center integrals which we will neglect:
< MV m,p >= [ drpx(r = n)V4(r = p)pu(r = m). (2.79)

Let us assume that all atoms in the crystal are equivalent. In this case a}* = a*é),
are independent of m and diagonal. a* is called crystal field integral, and )% are
called hopping integrals or transfer integrals. Hopping integrals decrease rapidly with

the interatomic distance so that usually only taking into account nearest neighbors
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is enough. The transfer integrals measure the ability of electrons to jump from one

site to another.

Let us look at a simple example. Suppose there are only s states, so we will have
only one transfer integral 8 and only one crystal field integral a. The Hamiltonian

can be written as
[
H=Y|n>(e*+a)<n|+)_ |n>B<ml (2.80)

where n and m are nearest neighbors. H can be diagonalized by using Block states

Ik >= \/IJT T e+ > . (2.81)

Then we have

Hlk >= ex|k > (2.82)
where
e=e'+atf) ek (2.83)
R

For simple cubic structure we have the following expression

€ = €' + a + 20(cosk.a + coskya + cosk,a), -1 <= k.a,kya,k.a <=7 (2.84)

2.5.2 The TB Hamiltonian and the Hamiltonian Matrix El-

ements

The TB Hamiltonian consists of two parts(34]

H=Y lip>Ey <ipl+ YY) [ip > tiyj < jv| (2.85)

17" iu Jv
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where E;, are the on site energies which are orbital energies of atoms. They are
calculated by using the Hartree-Fock theory and tabulated [35]. ¢;,;, are the hopping
integrals. They are the two center integrals and calculated by locating the two atomic
orbitals on the two atoms and taking into account as Hamiltonian only the potential
wells of the two atoms. We do not explicitly calculate the two-center integrals. They
are approximated by empirical functions.

The symmetry properties and the transformations of the two-center integrals un-
der arbitrary rotation are given by Slater and Koster(10]. They give transformation
rules for s,p,d and f orbitals. Some of the rules they derived for the s and p orbitals

are given below:

Hu = Vua(r)
H,, = Vi,p(r)cos(6.)
Hey = (V) = Vypa(r)) = cos(82 )cos(6))

2.5.3 Interatomic Forces

We need to know the radial dependence of the hopping integrals in order to calculate
interatomic forces. This radial dependence was given by Harrison as 1/r? where r is
the interatomic distance[36].

We calculate the interatomic forces by using the Hellmann-Feynman{37, 38) theo-

rem. The theorem states that if ¢ is a normalizable eigenfunction of H with eigenvalue

E, thus
H¢ = E¢ (2.86)
and if o is a real parameter in H, then according to the theorem
0E _ < 415214 >

a_a -— W—. (2-87)
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Let us differentiate the identity

<gH-E|p>=0 (2.88)
with respect to o to find
|H Elg >+ < ¢|3—H - a—E[¢ + < ¢|H - EI— >=0, (2.89)
but because of
(H - E)|¢ >=0 and < ¢|(H — E) =0, (2.90)
we reach this conclusion that
<ot - T4 > (2.91)

which of course is just (2.87). We know that the total energy of our system can be

written as

E= EZZZZ ’\Jm" jm! n’Hmnm’n‘ (2.92)

m n om

Now we know everything to calculate the interatomic forces by using the TB method.

The many-body force acting on atom n can be given as

OFE

Fo= —5= = =3 <4;108/07.14; > (2.93)
n Jj
or
Z z Z Z A,mm Jm'ﬂ'aHm’n‘mn/a;n (294)
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where ). are the components of the eigenvectors of the Hamiltonian and Hopnmin:

are the Hamiltonian matrix elements
Hpnmin =< ¢m(F_ 'Fn)IH|¢m'(F— 'FN') > (2'95)

where @ are atomic orbitals and 7, is the position vector of atom n. The force Fop is
usually noncentral. The direction cosines used in the construction of the Hamiltonian
matrix elements introduce a directional dependence to interatomic forces.

We have calculated the eigenvalues and eigenvectors of the Hamiltonian matrix
by diagonalizing the Hamiltonian matrix. The computer time needed for the diago-
nalization of the Hamiltonian matrix grows as N3, where N is the dimension of the
Hermitian Hamiltonian matrix.

The two-body repulsive part of the potential can be calculated by subtracting the
band-structure energy from the total energy and fitting a curve to the resulting graph
[15). We need to know the total energy curve of SiC from the ab-initio calculations
in order to find the pair potential.

The two body part of the potential is used to calculate the total forces. The two-
body forces are simply the minus gradient of the two-body potential energy function.
We have fitted a fifth order polynomial to the pair potential.

After calculating the interatomic forces, the equations of the motion for the parti-
cles can be solved by using one of the standard integrators, for example the predictor-

corrector method and the phase trajectory of the system is found.

2.5.4 The Basis Functions

The s-p bonded semiconductors can be treated by choosing a minimum basis set of

sps.

orbitals.

The electronic wavefunction is written as a linear combination of the atomic

l=0,m =0,s=1/2/x
[=1,m =1,ps = [\/5/2/\/21rain0e“

37



I =1,m =0,p, = [V3/2V27|cos
[=1,m=-1,p, = {\/5/2\/?1r]sin0e"¢.

We can use linear combinations of these orbitals as basis functions instead. The
symmetries of the basis functions are more clear and the transformations are easier

in the new forms:

s=1/2/Jrx
Pz = %[P—i—l +pal = \/5/2\/7732'110 cos ¢

Py = %[—i(l’ﬂ -pa1) = \/5/2\/7?sin03in¢
p: = V3/2/7 cos . (2.96)

Those basis functions are shown if Figure 2-1.

The electronic wave function is expanded as a linear combination of atomic or-

bitals:
Y= Annfmn(T— Ta) (2.97)

where )., are the expansion coefficients, fm n are the atomic orbital type m located
on atovm n and 7, are the position vector of atom n.

For transition metals which have d bands in the conduction bands range, use of
the d bands are required. There are total 5 d basis functions and their transformation
rules are given again by Slater and Koster{10]. But unlike the s-p Hamiltonian matrix

elements, the d matrix elements have a 1/r* dependence on interatomic distance r.

2.6 The Method of Slater and Koster

The TB method has important similarities with the H;} problem shown in Figure 2-2.
Two protons are located on the z axis with a distance R between them. An electron

is moving around those two protons. To solve the Schrédinger equation we need to
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use confocal elliptic coordinates u, v, and @ where

p o= (ra+m)/R
v = (ra—m)/R

(2.98)

and ¢ is the azimuthal angle about the z-axis with respect to XOY plane. The

Laplacian in this coordinate system is then can be written as

9 4 a ., , i) 0 2 0
- = — 1) —Y + —{(1 — ) —
v R’(;ﬂ _ u'*’)[ #{(F’ l)au}] v au{( v )au}
u? — 2 52
=11 = v3) 8¢ " (2.99)
If we use the seperation of variables method, we can write the solution as
b(p,v,¢) = M(p)N(v)2(¢) (2.100)
and we can write that
d*® 2
—_— = 2.101
5 A (2.101)
where —)\? is the seperation constant. The values |A| = 0,1,2,... are designated

o,7,6... and the possible molecular orbitals (2.100) are then 1so,2s0,2po, 2pn....
We choose some atom on the center of the coordinate system and consider the
ve.tor 7 determined by any one of its neighbors located at point P. The direction

cosines of 7 can be written as
[=2z[r =cos ¢sind, m=y/r=singsind n =z/r = cosb. (2.102)

We want to set up another coordinate system OX'Y’Z’ with the same origin as OXYZ
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and with the OZ’ axis lying along OP. The transformation can be written as

z a;; a2 a3 z
1 —

Yy = | a2x az2 as3 Yy (2-103)
]

z azy dasz2 4ass z

where a,3 = [, a23 = m and, az3 = n. We can write that

' = a1z + ay2y + a132. (2.104)
We can rewrite z' as
= = %[(‘111 +iapp)(z —iy)] + %[(au —iayp)(z + iy)] + a132
y = %[(ah t+iaz)(z — i) + %[(azx —iazn)(z +iy)] + azsz
Z = -;-[(031 + ia3;)(z —iy)] + %[(G:u — ia32)(z + 1y)] + a3sz (2.105)

We note that

z+iy = V2p41 o sin fe*®
z—iy = V2p_, xsinfe

z = poxcosh (2.106)

We want to calculate the following integral

V) = ({gllen — o)z + )] + 5l(eu + lais)(z - i)

+ anclVI(len + i)z - i)

+ %{(au —ian)(z + i) + maz}). (2.107)

In (2.107) there are total nine integrals. Some of these integrals will vanish because
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they contain terms like

/o " explimud)dé = 0 (2.108)

when m; = +1,+2,.... Two types of integrals won’t vanish. We will use special

symbols for them.

(polV'lpo) = (3/47)(cos8|V'|cosf) = Vppo
(PlV'Ips1) = (3/87)(sin fe~*|V'|sin f**)

(3/8x)(sin 8|V'|sin 8) = Vipu (2.109)
where o and = refer to m; = 0) and m; = %1, respectively. Then we can write that

("V'|z) = -;'[(a'fl +a2,))(V2ps1|V'[V2p_1) + al3(polV'[po)
= (1= B)Wopw + Vo (2.110)

where we have used the well-known property of an orthogonal matrix:
a?, +a}, +al; =1 (2.111)

The rest of the terms can be found similarly.
The TB parameters for Si, C and SiC are given in Table 2.6(18].

) € Viso Viro | Vopo | Vipr
Si |[-5.25|1.2 |[-1.938 | 1.745 | 3.05 | -1.075
C -2.99 | 3.71 | -5.550 | 5.910 | 7.78 | -2.50
SiC | — — | -3.744 | 3.827 | 5.42 | -1.785

Table 2.1: TB parameters for Si, C, and SiC. All units are in eV.
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2.7 Non-orthogonal TB Method

If the overlaps of the atomic orbitals are strong, we need to take into account explicitly
the non-orthogonality of the atomic orbitals. In this case the secular equation includes

the overlap matrix explicitly. Then the eigenvalue equation becomes
(H — E.S)$n = 0. (2.112)
The eigenstates of this system can be written as a linear combination of ¢,
Yn =) cida (2.113)

where ¢, are basis functions and c” are the expansion coefficients. Then the eigenvalue

problem (2.112) becomes

Z(H,-,- — E,Sij)ch =0 (2.114)
where
Hy= / ¢t Hp;dr (2.115)
and
Si; = / 1 ¢;dr. (2.116)

Then in the matrix form (2.114) becomes
(H - E,S)C" =0. (2.117)

In order to find the eigenvalues and eigenvectors of Hamiltonian matrix H and the
overlap matrix S we need to diagonalize them both simultaneously. But first we need

to calculate the Hamiltonian and the overlap matrix elements.
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The overlap elements are calculated by using the “Extended Huckel Approxima-
tion” [39]. Let us look at the matrix elements of the Hamiltonian between atomic
orbitals on adjacent atoms, < B|H|a >. If |a > were an eigenstate of the Hamilto-

nian, we could write
Hla >= gla > . (2.118)

Then if the overlap < f|a > is written as Sga, the matrix element becomes €,53a.
This, however treats the two orbitals differently, so we might use the average instead
of e,. However, experimental results show that we need to have a proportionality

constant to obtain reasonable results,

< B|H|a >= K Spa(€ep + €a)/2, (2.119)
so that we can write
2V5a
Sga = —————— 2.120
ba = Rlea+ ) ( )

where Vj, is < f|H|a >. Now let us calculate the overlap between two hybrids which

have opposite directions. The two hybrids can be written as

|h1 >= cosf|s > +sinf|p >
|h2 >= cosf|s > —sinf|p > (2.121)

where |h1 > and |h2 > are two hybrid orbitals and cos?f = } and sin?8 = $ for the
sp® hybrid.

S; = < hl|h2 >= c0s’BS,,; — 28infcosfS,ps — 3in*f 50

= (S - Zﬁf'" — 35pp0) (2.122)
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where S,,, =< 5|8 >,S.p0 =< $|p > and Sppo =< plp >. Similarly for H; we obtain

H, = < hl|H|h2 >= cos’BH,,, — 2sinfcosfH,ps — 8in’ Hppo
H,, —2V3H,,, — 3Hpp,

(2.123)

a

where H,,, =< s|H|s >, H,po =< s|H|p >, and Hp,, =< p|H|p >. Harrison et al.

[40] approximated Hj as
1
Hll'rn = WI’.m(l - 522) + 5(61 + ql)Sulm. (2.124)

By using (2.120) and (2.122) we obtain the following equation

1
Hy, = Vu-'m[l + 7 - Sg] (2.125)

So now we are able to calculate the Hamiltonian matrix elements and the overlap
elements, so that we can construct the secular equation and solve it by matrix diag-
onalization.

To calculate interatomic forces, let us take the derivative of (2.117) with repect

to x and then multiply it on the left with C™*. Then we obtain

dH OE as acr
n+( - _ ng _ —\C" n+ _ -
C™* (55 = 3= = Eng2)C" + C™(H — EnS) - (2.126)

Clearly the second term is zero. From the first term we obtain that

9E, C"*(8H/dz — E,d5/9z)C"

9z Cr+5Cn (2.127)

This is the electronic part of the total force. The forces due to the pair potential
can be calculated by taking the gradient of the pair potential.
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2.8 Self-Consistent TB Method

When there is a charge transfer between atoms it is necessary to apply some sort
of self-consistency to the solution of the TB method. One of the methods which is
used is the local charge neutrality approximation (41, 42]. In this approximation, the
diagonal elements of the Hamiltonian matrix are modified until there is no net charge
transfer between atoms. This means that each atom will have four electrons at the
end. The perturbation of the site energies ¢, — €, due to charge transfer between two

or more atoms can be given as
de = (1-Cz) 'Cdg (2.128)

where de is the change in the site energy, C' is the Coulomb matrix and z is the linear
response matrix and dq is the charge transferred. For charge neutral condition (2.128)
is reduced to z~'dg. The calculation of the linear response matrix z is computationally
demanding. Instead of calculating this matrix, the charge transfer is assumed to be
proportional to the site energy shift, the proportionality constant is approximately 1
eV which was found by trial and error. Usually one or two iterations are enough to
eliminate the charge transfer.

The self-consistency arises as a result of the fact that all one-electron energy levels
depend on the electron population which is determined in turn by the one-electron
energies.

If we do not enforce charge neutrality, we need to carry out fully self-consistent

calculations. The TB Hamiltonian is expressed using the local orthogonal basis as

H=3 lin>Ey <ipl+ Y. lin > tisj, < jvl (2.129)
iu

i Jv

where |ip > is the ket for atom i orbital y, and E;, and t,,;, are the on-site and hop-

ping energies. Effective Coulomb potential arising due to charge transfer is included

45



in E;, self-consistently

Ei = E5, + UQi - Z)V(R;, Ro) + fu, (2.130)

where EJ, is the orbital energy of the neutral free atom 1, U; is an average of the
interatomic Coulomb integrals of the valence electrons of the atom i, Z; and Q; are

the charge of the ion core and total valence occupancy of this atom. @ is given as
Qi =YY | <nfip> % (2.131)
H n

All these occupancies should be calculated self-consistently. The third term in (2.130)
is the electrostatic interatomic potential at site i due to cores and electrons in the
system. The fourth term f;, is the non-orthogonality correction and given by the
overlap matrix elements between atomic orbitals. The total energy of the system of

electrons and ion cores is given as

Eit = Eyy — Eoe + Ei_; (2.132)
where
E,, = ZE,. = E <n|lH|n>. (2.133)

E._. and E;_; are the electron-electron and ion-ion interaction energies. E, is the
eigenenergy and E,, is the band structure energy, where the electron-electron inter-

action is double counted. By using (2.129), (2.130), and (2.133) we obtain that

Ebc = z Qquip + Z z })l'ujvtiyju =
ip

iy Jv
= Y QuEL +d>UiQiQi - Z)+ 3> QiQ; - Z,)V(R;,R;) +
i T
Z Ql'llfiu + Z z })iujvtiuju (2.134)
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where P,,j, is the bond order and given as
occ
P = Z < nlip >< jvjn > . (2.135)
n
A more explicit total energy expression can be given as

Etot = Eutom + Eoucrlap + EMad + Ecou
1
Eatom = Z{Z Ql'p(E?“ - U,'Z.') + ‘EU!Q?}
i oom
Eouerlap = z Qiufi#f
iy
1 I
Ewat = 3 %Y@ - Z0(Qs - Z)V(Ry B
i g
Ecov = Z Z Pl'pjvtipjv (2’136)
[YTR 1Y)
The total energy should be computed self-consistently. The meaning of the various
terms are clear. Eg.m is the total energy of the isolated atoms whose occupancies
are Q;. Eoueriap is the overlap interaction energy which is the increase in the kinetic
~ energy of the electrons upon compression. Epfqq is the Madelung energy, which is a
sum of Coulomb interactions between atoms with effective charges, Q; — Z;. F.o is
the covalent energy. For ionic systems Epfaq and Eoueriap are dominant terms. In the

covalent systems E.,, and Egyeriap are dominant,

2.8.1 Hamiltonian Matrix in the SCTB Model

In order to find the eigenvalues and eigenvectors of the Hamiltonian, we need to
construct the Hamiltonian matrix first. The Hamiltonian matrix elements are con-

structed by assuming the r~2 dependence on the interatomic distance r as
Huyrm = mumh? [mr? (2.137)

where 7, are universal TB parameters and m is the electron mass.

The overlap matrix elements are calculated by using extended Huckel theory. The
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determination of Sy, is important because the interatomic repulsion is determined

by those terms. Kohyama et al. [34] adopted a 1/7* form
Swm = Mum|2/(E] + Ej)|(R?/m)(do/ K7°) (2.138)

where dy = €*(1/U; + 1/U;)/2. Majewski and Vogl {32] determined the values of
K and U; for each row of the periodic table to obtain agreement with the bond
length and bulk modulus of various sp bonded semiconductors and insulators. The

non-orthogonality correction to the Hamiltonian matrix elements is given as

fia = =Y SiajpHjpia- (2.139)
JB

In this sum only the nearest neighbors are taken into account. Now we know every-
thing to find the Hamiltonian matrix. After finding the Hamiltonian matrix, we need

to diagonalize it to find eigenvalues and eigenvectors.

2.8.2 Atomic Forces in the SCTB Model

In the SCTB model diagonal terms of the Hamiltonian also depend on the ionic
coordinates, so calculation of the interatomic forces is a little bit tricky. We express

the eigenvector [n > as 35, C},|ip > so that we can write (2.131) and (2.135) as

Qi =Y CIC, (2.140)
and
Py =), CPCh,. (2.141)

n

The normality condition of the eigenvectors are given as

Y cper =1. (2.142)
ip
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The derivative of the total energy is given as [43]

3EM 3f,',, 1 3V( fi:, I—i‘)
tot _ b - i = ZN0Q; - Z;)——21
0f - L Qg T3 o X(@- 2@ - BT
Ot:..;
Y. Puj—=-. (2.143
% " OR )

There are three terms in the derivative of the total energy. Those terms are explicit
functions of the interatomic distances. All of the three terms can be differentiated

analytically and the bond order P.,;, can be calculated by diagonalizing the Hamil-

tonian matrix.

49



Figure 2-1: The atomic orbitals for I=0 and I=1.
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Figure 2-2: The geometry used for H;.



Figure 2-3: Coordinates used for two-center integrals.
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Chapter 3

Bulk and Cluster Properties of

Silicon and Carbon

In this chapter, we will investigate bulk properties of carbon and silicon and also
calculate cluster energies and structures. Calculating properties of silicon and carbon
provides an important check for the TB method because there are extensive experi-
mental and theoretical data to compare our results with. Correct prediction of cluster

structure and energies shows that the TB method is transferable.

3.1 Total Energy and Band-Structure Energy

The total energy is one of the most important quantities which determine properties
of materials. Materials want to minimize their free energy which is a function of the
total energy. Most of the phenomena observed in materials, like phase transitions can
be explained as the material trying to reduce its free energy to reach a more stable
state. At zero temperature it consists of the potential energy of all the particles.
Total energy is in general a very complicated function of the particle coordinates.
Usually we are interested in the total energy of a given crystal structure. Then the
number of variables is reduced greatly. For example, if we assume that the crystal is
diamond-cubic, then the only variable on which the total enezgy depends is the bond
length. One of the most reliable ways of calculating the total energy is the density
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functional approach [7]. To find the equilibrium bond length, the total energy is
calculated for various bond lengths for a given structure and a curve is fitted to
the data. The bond length at the minimum of the curve is the zero temperature
equilibrium bond length.

The TB total energy consists of two parts. One part is the band-structure energy
which is the sum of the twice electron-electron interaction energy plus the electron-ion
interaction energy. The other part is a pair potential which is the ion-ion interaction
energy minus the electron-electron interaction energy. The sum of the pair poten-
tial and the band-structure energy gives the total energy. Calculation of the band
structure energy is computationally most expensive part of the TB method. We will
give an example for how to calculate the band-structure energy. Suppose that there
are only two atoms and only one orbital located on these atoms. Suppose that the
TB matrix element V changes exponentially with the interatomic distance. Then the

Hamiltonian matrix can be written as
H = (3.1)

where €; and ¢, are orbital energies of the two atoms. Then the eigenvalues of the

Hamiltonian can be written as
1 1
€+ = 5(61 + 62) :i: 5[(61 - 62)2 + 4V(T‘)z]l/2. (3.2)

Since the bonding state (valence band) is doubly occupied and the antibonding state

(conduction band) is unoccupied, the total energy of the system can be written as
U(r) = 2e_ + ¢(r) (3.3)

where ¢(7) is the corrective pair potential. As r decreases, |V(r)| increases, so e_

decreases and the electronic force is attractive. Suppose that the pair potential is



given as

¢(r) = doezp[—B(r — d)] (3.4)

and the Hamiltonian matrix element is given as
V(r) = V(ro)eznl—a(r - ro)}, (3.5)

Then the total force can be written as

= 2L+ (ST AVE) + B4, (3.6)

An important point to notice in (3.6) is that the force depends on the difference
between orbital energies and not on their absolute values. It means that we can
choose orbital energies arbitrarily provided their difference is constant.

‘We have discussed how to calculate the band-structure energy for arbitrary num-
ber of atoms in Chapter 2 in detail. The band-structure energy creates an attractive
potential. One way of calculating the purely repulsive pair potential is to subtract
the band-structure energy from the the total energy for the diamond-cubic structure
and fit a function to it. Another method is to assume an exponentially decaying pair
potential and fit the coefficient of the exponential to obtain the experimental lattice
parameter. We will use both of these methods. For silicon, we will use the first
method which is subtracting the band-structure energy from the total energy. For
carbon, we will fit an exponentially decaying function to obtain the correct lattice
parameter.

We took the total energy for silicon from [45]. We obtained the pair potential for
diamond-cubic structure and used it in our MD simulation.

A good empirical potential function should give correct total energy for a given
system. We calculated the total energy wiih respect to the lattice parameter for the
empirical potentials constructed by Stillinger-Weber and Tersoff (3, 2] for silicon and
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plotted (Figure 3-1). It is seen that the Tersoff potential gives unphysical resuits for
large interatomic distances. The reason for this is the cutoff function used to bring the
total energy smoothly to zero at large interatomic distances. For short interatomic
distances, Tersoff potential function gives closer results to the ab-initio calculations
than the Stillinger-Weber potential.

In the TB method for silicon, the ab-initio total energy is used for the calculation
of the pair potential. The most important component of our total energy comes from
the band-structure energy calculations. To find the total energy, we need to subtract
the electron-electron energy and add the ion-ion interaction energy. In Chapter 2 we
proved that this correction can be represented as a pair potential. This correction
is obtained by subtracting the band-structure energy from the ab-initio total energy.
The result is expressed as a fifth order polynomial of nearest neighbor distance.

Actually, we don't have to use ab-initio total energy results in our MD simulation
program. We can choose an exponential pair potential and fit the coefficient and
exponent of the exponential to obtain correct lattice parameter at zero temperature.
This is the method used by Menon et al. [46]. The advantage of this method
is that instead of fitting a curve, we only need to fit a number. For carbon, we
developed a code which emnploys this method. We explicitly took into account the
overlap interactions as well. The results for the carbon calculations will be given in

the following Chapter.

3.1.1 Calculation of Pressure

Pressure can be calculated by taking the derivative of the total energy with respect

to volume:

p-_2% (3.7)

For the diamond-cubic structure, we have eight atoms in the unit cell. The volume

change with lattice parameter is a known function of the structure, By using the
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chain rule we can calculate the pressure as

dF dd

P=-8—-0 (3.8)

The second term can be easily found for any crystal structure. The bulk modulus
can be calculated by taking the second derivative of the total energy with respect to

volume

0'E
B=V_—, 3.9
Again, because we know the structure of the unit cell and the dependence of the total

energy on interatomic distance, we can calculate the bulk modulus. The cohesive

energies and the bulk moduli of Si and C are given in references [47, 48],

3.1.2 Phase Transitions at High Pressures

Many materials undergo a phase transition under sufficiently high pressures. Some of
the materials undergo multiple phase transitions depending on pressure. Silicon is one
of the materials which show many different phases under various pressures [49). These
phase transitions are actually observed by using the diamond anvil cell technique. In
this technique, the material is put in a cylindirical hole in a flat metallic plate. The
hole is filled with a liquid, usually a mixture of ethanol, methanol and water. Then
the hole is crushed from the top and the bottom by flat surfaced diamond anvils and
the substance is observed with a TV camera through the diamond anvils. Under
these conditions it was observed that at about 100 kBar silicon becomes a yellow
shiny metal [49].

The differece between metals and semiconductors is that semiconductors have
a band-gap at the conduction level but metals do not. The metallization process
can be described as a band-gap closure phenomenon. When silicon transforms to
B Sn structure, the band-gap disappears and bands overlap. As a result there will

be many electrons in the half-filled conduction bands which is a characteristics of



metallic structure {50'. Actually, insulator-conductor transition is a complicated phe-
nomenon. When atoms are far apart, the system is an insulator because the electrons
are strongly localized. When we bring atoms closer, electrons get delocalized and
the system becomes conductor. There is a lattice parameter at which the insulator-
conductor transition takes place. By using the TB method, we can determine this
lattice parameter. As this phenomenon suggests, properties of materials are strongly
dependent on their electronic structures and empirical potential functions can give
only qualitative results because they do not take into account electronic structure
effects.

Total energy can be used to predict phase transitions at high pressures. To predict
a phase transition between two different crystal structures, we need to compute free
energies at zero temperature. Phase transition takes place at a pressure which makes
the free energies of the two structures equal. Free energy is the driving force of
the phase transitions. Materials want to minimize their free energies so that when
there is a structure with lower free energy, we expect a transition to this structure.
Usually phase transitions do not take place exactly at the free energy which is the
same for the both structure. The pressure at which the free energies are the same is
the minimum pressure at which a phase transition may be obseved. But to start the
actual transition, there should be defects in the material like surfaces or point defects.
In a perfectly ordered material, we need to go to much higher pressures to observe
the phase transition. The free energy is nothing but the sum of the total energy and
PV because the entropy term is zero at zero temperature. To find the pressure at
which a phase transition is expected, we need to find the common tangent to the two

total energy curves. Then the phase transition pressure can be calculated as(32)

_ E(W) - E(%)

Po=—9—

(3.10)

where E is the total energy and V; and V; are volumes at which the tangent touches
the total energy curves. I calculated the phase transition pressure for silicon as 95

kbar in close agreement with the result in [49])(105 kbar).
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Diamond may undergo a phase transition at extremely high pressures, even though
such pressures have not been obtained experimentally yet. M. Cohen(51] calculated
the transition pressure for diamond by using the density functional theory as 23 MBar.
He calculated total energy curves for various crystal structures for carbon and found
the pressure at which the free energies are the same for given two structures. The
transition is to the simple cubic structure and carbon is still insulating at this phase.
It should be noted that the transition takes place at an extremely high pressure. The
reason for this is that diamond cubic crystal for carbon has smaller volume than
all the other crystal structures of carbon, so in effect for carbon the diamond-cubic
structure is close packed. Phase transition can take place only at extremely high
pressures. This pressure is a theoretical limit for the pressures attainable with the

diamond anvil cells.

3.2 Elastic Constants

Elastic constants yield valuable dynamical and mechanical information about ma-
terials. For example, through the Born relations they yield information about the
stability and strength of solids. The comparision of the experimentally determined
and theoretically calculated elastic constants is an important way of testing inter-
atomic potentials. Because the origin of the elastic constants lies in the interatomic
forces, elastic constants provide a powerful tool to investigate interatomic forces.

A solid body changes its shape when subjected to a stress. If the stress is kept
below a certain limit, the strain is recoverable, that is to say, when the stress is
removed, the body returns to its original shape. For higher stresses the body cannot
recover its original shape and will eventually fail. For small enough stresses the
amount of strain is proportional to the magnitude of the applied stress (Hooke's

Law). Hooke’s Law states that

o = ce. (3.11)
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(3.11) can be generalized to obtain general stress-strain relationship in tensor form.
A homogeneous stress and a homogeneous strain are each specified by second rank
tensors{95]. If a general homogeneous stress o;; is applied to a crystal, the resulting
homogeneous strén ¢;; is such that each component is linearly related to all compo-

nents of the stress. The stresses may be expressed in terms of strains by the equations
05 = Cijhi€kl (3.12)

where c;ju are the 81 elastic constants of the crystal{95". Those 81 components form
a fourth rank tensor. Stress and strain tensors are symmetric, which requires that the
elastic constant tensor is also symmetric. We may write that ¢ i = Gk, Cijri = Cjinl-
Symmetry of the elastic constants tensor reduces the number of the independent
elastic constants to 36. Crystal symmetry reduces the number of independent elastic
constants further. Detailed information about elastic constants for various crysial
groups is given in [95]. In cubic crystals there are only three independent elastic
constants, namely (y;, ¢i2, and cs4. In a molecular dynamics simulation, all the
elastic constants can be calculated. Some of the elastic constants will be required to
be zero and some will be required to be equal to the others. By calculating these
elastic constants which are supposed to be equal to each other as a result of crystal
symmetry, we can check whether the MD results are converging or not.

We will use Voigt’s notation for elastic constants. In this notation, four indices of

the elastic constants are reduced to two according to the following convention:
11—-1, 22—-2, 33—-3, 2332—4, 3113—35, 1221 -6 (3.13)

According to this notation, c;y;; Is written as cje.

Elastic constants are determined experimentally by using various techniques in-
cluding Brillouin scattering, ultrasonic wave propogation, and neutron scattering
{52, 53, 54, 55]. If the potential function is known for a material, elastic constants
can be calculated by MD or Monte Carlo simulation and it is possible to peredict the

behavior of the material under normal or extreme loadiug.
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The theory of calculations of elastic constants using Monte Carlo simulation was
first developed by Squire et al. [56]. In this method the elastic constants are calculated
by using the fluctuation formulas. To use this method, we need to calculate the stress
tensor fluctuations, a kinetic energy term and a Born term which requires second
derivatives of the potential function and gives elastic constants at zero temperature.

The (E,h,N) ensemble is especially suitable for calculation of elastic constants
where E is the system energy, h is a matrix constructed using the three vectors
spanning the MD cell (a, b,¢), and N is the number of particles. The difference
between (E,h,N) and (E,V,N) ensembles is important. In the (E,V,N) ensemble not
only the volume but also the shape of the simulation cell is conserved. It is only
by allowing the shape to change are we able to calculate elastic constants by MD
simulation. The shape of the molecular dynamics cell is not arbitrary, but is always
a parallelopiped.

To find the elastic constants, we need to define strain first. Strain is defined ac-
cording to a reference state. The reference state of the system is defined by ho and the
volume Qo = det(hg). Finding the reference state is an important step in calculating
the elastic constants. The Parrinello-Rahman method[98] can be used to maintain the
system at zero stress, and hy can be obtained at the end of the simulation. Another
method is to run a microcanonical ensemble MD simulation several times in order to
find zero pressure configuration. Elastic constants are very sensitive functions of the
reference state, so the components of the hy must be calculated to high accuracy.

We may define a coordinate transformation by using hg
7o = hod. (3.14)
A homogeneous deformation of the system changes ho to h moving o to 7 where

7= h# = hh;'f. (3.15)

62



We obtain the displacement % due to distortion as
i =7 — 7o = (hhg! — 1)7%,. (3.16)

Now we may use the definition of Landau and Lifshitz{99) for strain

1 0uy au,, Ou, auy
Eou = i(az t2 5. oz, 3:cA (3.17)
From (3.16) we find that
d
a—:'\- = Qxy — 6;,, (3'18)
B
where a,,, is an element of matrix hh;'. By using (3.17) we find that
1
€xu = E(alu — byt e — 6t Z(avu ~ bup)(@nur = 61))
1
= E(Z Quudy) — 5,,;). (319)
It follows from (3.19) that
¢= %(h:,'lthl g (3.20)

where G = h'h.

It is known that[95] in the case of central force potentials like the Lennard-Jones
potential, ¢;2 — c¢44 = 0. This eqaution is known as Cauchy relation. In actual
crystals, the Cauchy relation is always violated. For a potential function to represent
a material realistically, it should violate the Cauchy relation.

First principles calculation of the elastic constants at 0 K is given in {100]. The
second derivatives of the total energy of the system with respect to various strains
need to be calculated. The weakness of this calculation is that at high temperatures
30 — 40% of the magnitudes of the elastic constants is due to thermal fluctuations

which are ignored in this calculation [57).
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All elastic constant calculations by using fluctuation formulas require second
derivatives of the potential energy. In the case of the TB method, we need to find the
second derivative of the band structure energy. Calculation of the second derivative
of the band-structure energy is not straightforward. e know from the Hellmann-

Feynman theorem that{37]

au
57 = / (ax)yd‘r (3.21)

where H is the Hamiltonian and ) is a real variable. By taking the second derivative
we find that {103}

Moy

2 2
o*U _/ o 0’H 0H , v /(Bv )vd'r (3.22)

NN VA / Vg a4~ g ga

The first term poses no problems, but the calculation of the second and third terms
is difficult. A perturbation approach can be used to calculate the second derivative

of the band-structure energy. The result is {104}

(T - gy -2y (_m(? . (3.23)
A v B vk
where H(y;\,l) is the matrix element of the first derivative of the Hamiltonian and Hﬁ)”
is the matrix element of the second derivative of the Hamiltonian.
Lee and Joannopoulos used Green's function approach to calculate the second
derivative of the band-structure energyi105i. Their formula is applicable not only to

periodic systems, but also to disordered systems. They obtained the following result

o o Galgr Gs(f)—} (3.24)

2
a EBS_ _ __._f chmTr{GB(C) zi 3z,
3

0zi 0z}

where 3?H/0z! z} and 9H/0z!, are the derivatives of the Hamiltonian with respect
to ionic coordinates and Gp(¢) is bulk Green function.

We calculated elastic constants by using stress-strain curves. We applied a strain

to the system and calculated resulting stress. We used the following equations to
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I C'll Cll? ‘ 6’44

SW

1.5 | 0.76 | 0.6

Tersoff | 1.5 [ 0.8 | 0.7

TB

1.54 | 0.87 | 0.82

Exp’t

1.66 | 0.64 [ 0.80 |

Table 3.1: Elastic constants of Si obtained by using SW potential, Tersoff potential,
and the TB method compared with the experiment.

Ciu | Ci2 | Cy

TB

95 | 1.7 |4a.05

Exp't

10.8 | 1.25 | 5.77

Table 3.2: Elastic constants of C obtained by the TB method compared with experi-

ment.

calculate the elastic constants:

g5y =
022 =
O3z =
O3 =
O3 =

Jd12 =

C11€1) — C12€22 T C12€33
Ci12€11 T C11€22 T C12€33
C12€11 T C12€22 T C11€33
C44723
C44713

C44712

(3.25)
(3.26)
(3.27)
(3.28)
(3.29)
(3.30)

To calculate ¢,,, we changed h,, and for each value of h,; we calculated ¢,,. Then

we fitted a curve to the stress-strain graph and the slope of this curve gave us ¢;.

To obtain c,,, we calculated o, and plot the o5, — €, graph. From the slope of this

graph we ontained cy5. c44 is calculated by simultaneously changing €;, and €;, and

calculating 0y,. Then the stress-strain curve is plotted and the slope of the curve is

found. The elastic constants of Si and C calculated by using the TB method, Tersoff

potential, SW potential compared with respect to experimental data are given in

Tables 3.‘1 and 3.2.



3.3 Silicon Clusters

Empirical potential functions in general fail to produce correct energies and structures
of clusters. Empirical potential functions are usually fitted to the bulk properties of
materials and give poor results for structures radically different from crystal structure.
The TB method is superior to the empirical potential functions and give good results
for both bulk and cluster properties. A good prediction of the cluster properties
means that the TB method is capable of treating short-range order as seen in liquids
and amorphous materials. We investigated cluster properties by using the method
developed by Goodwin et al. [41]. Our results are shown in Figure 3-2.

Silicon clusters were extensively investigated by using Stillinger-Weber potential
2] by Barojas and Levesque (58]. These authors have also looked at charged clusters.
They carried out MD simulation of clusters up to 22 atoms. The cluster structures
are not in agreement with ab-initio and TB results for small clusters. As the number
of particles in clusters increase, the structure becomes diamond cubic. They observed
liquid-solid like phase transitions in clusters. They concluded that a potential like SW
potential which was fitted to the bulk properties of crystals cannot describe cluster
properties adequately. Cluster properties should be used in the fitting process too.
They showed that if atoms in the cluster are charged, the structure of the cluster is
modified significantly.

There are extensive ab-initio results for silicon clusters{59, 60, 61}, but not much
experimental results. In the case of the ab-initio calculations, only a local mini-
mization is applied, usually the bond lengths are optimized for a given geometrical
structure.

Our results for Si cluster energies and structures are given below:

The binding energy for Si; is E, = —3.04eV and the equilibrium distance be-
tween atoms is d = 2.27A. The experimental value for the binding energy of Si, is
3.24eV[61)].

The binding energy for Si3is E; = —7.35eV and the cluster is an isosceles triangle

with a side length of 2.15A4 and an opening angle of § = 80°. These results are very
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close to those obtained in {62, 63] and the energy is in good agreement with the
experimental value of —7.4 = 0.5eV.

For Si, the minimum structure is a flat rhombus with a side length of 2.35A4 and
the diagonal lengths of 2.504 and 4.05A. The binding energy of this structure is
E, = -12.60eV

In the case of Sis the binding energy is —15.6eV. The structure is highly asym-
metric.

For Sig the minimum energy structure is a tetracapped trigonal prism with min-
imum energy of Eg = —20.80eV. The bond lengths are between 2.4 to 2.6A.

The minimum energy configuration for Si; is the pentagonal bipyramid with side
length 2.5A4 and cap-to-basis distance 2.64. The minimum energy for this structure
is E; = —26.5eV and very close to the result in {61].

The minimum energy for Sis is Eg = —29.6eV. The structure is similar to that
of Si7.

The minimum energy configuration for Sig is the tricapped trigonal prism. The
energy for this structure is Eg = —33.1eV.

The minimum energy structure for Siyq is tetracapped trigonal prism structure
with minimum energy of Eyq = —39.1eV.

Chelikowsky and Glassford[64] investigated silicon clusters by developing their
own potential function. This potential function is based on “covalent-metallic” phase
transition. They found that Si, clusters follow an icosahedral pentagonal growth

sequence.

3.4 Carbon Clusters

Xu et. al. developed a transferable TB method for carbon(66] that is suitable for both
bulk and cluster properties of carbon. Their approach is based on the method used

by Goodwin et al.[41]. The total energy is represented as a sum of a band-structure
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N | Boad dab_""uio(;‘.) dTB(;l) N Bond dab-im'tio(fwi) dTB(;l)
21 1-2 2.23 2.25 1-3 2.53 2.55
3 1-2 2.17 2.26 1-5 2.56 2.72
=172 =80 1-2 3.26 3.24
4| 1-2 2.30 2.36 2-3 2.57 2.68
1-3 2.40 2.45 1-6 2.77 2.25
2-4 2.40 2-5 2.79 2.70
2-5 2.45 8 2-6 2.49 2.56
5| 1-2 3.05 3-4 2.48 2.45
2-3 2.62 4-5 2.32 2.33
1-5 2.75 5-6 2.48 2.45
1-2 2.86 2.55 1-8 2.37 2.40
1-3 2.49 2.67 3-8 2.42 2.39
6 1-5 2.69 2.66 1-6 2.57 2.56
3-5 2.93 2.66 9 1-2 2.50 2.52
5-6 2.38 2.38 1-9 2.53 2.65
7| 34 2.48 2.63 1-2 2.75 2.72
1-3 2.47 2.74 10 1-9 2.56 2.54
1-2 2.58 2.68 5-9 2.54 2.55

Table 3.3: Bond lengths for Si clusters calculated with TB method and ab initio
method. N is the number of atoms in the cluster.
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N | Bond | dap—initio(A) | dre(A)
2 1-2 1.245 1.4133
3 1-2 1.278 1.310
4 1-2 1.271 1.311
2-3 1.326
6 1-2 1.316 1.331
10 1-2 1.290 1.312

Table 3.4: Same as Table 3.3 except for C clusters.

energy and a repulsive potential:

E!ot = Ebl - Erep- (3.31)

The band structure energy is calculated by solving the Schrédinger equation for a

parametrized Hamiltonian. The short range repulsive potential energy is written as
Erep = Y AN 6(rs)) (3.32)
i j

where ¢(r;;) is a pair potential function and f is a fourth order polynomial with

argument 3 .@(r;;). The scaling function for the Hamiltonian matrix elements is

given as
s(r) = (ro/r)"ezp{n[—(r/rc)™ + (ro/rc)™]} (3.33)
and ¢(r;;) for the repulsive potential function is given as
¢(r) = go(do/r)" ezp{m[~(r/d.)™ + (do/dc)™}. (3.34)

Various parameters in these equations are given in [66]). In this paper, the scaling

functions are extrapolated by polynomials.

We worked on the properties of carbon clusters. Our results for C clusters com-

pared with ab-initio calculations are given in Table 3.4.
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3.5 Phonon Dispersion Relations

The phonon dispersion relation of the crystals is a very important property and the
basis of the lattice dynamics theory. Phonon dispersion is usually based on the
harmonics approximation. In this approximation, it is assumed that the atoms move
from their equilibrium positions only a small amount. The lattice cell is described
by three elementary vectors @,,dz,as. Then the position vector of the particle at the
vertex of any cell is

M= 1'd, + I’d, + °d, (3.35)
where [}, 12,3 are integers.

If there are s particles with masses m,(k = 1,2,...,s) and 7} is the position vector

of the kth particle from the cell vertex, then
k) = & + 7 (3.36)

defines the position of the particle {lk] in equilibrium. The rectangular components
of 7{lk) are z,[lk)(a = 1,2,3).

Now consider small arbitrary displacements u{lk] of the particles from equilib-
rium. The potential energy ® of the deformed lattice can be expanded in powers of
the rectangular components u,[lk](a = 1,2,3) of @[lk]. The linear terms vanish in

equilibrium and the second-order terms are

b1 = L 25T Boglll ko IHuslK] (0,8 = 1,2,3), (3.)
lk U'k! aB
Paplll'kk') = o' (3.38)

Bz [Ik)0za|I'k]’

These second derivatives in equilibrium depend only on the difference of the cell



indices (I — I') and satisfy the condition
®.p(lkk') = ®pq[—K'K].
The equation of motion of a particle of type k, mass my, is then

mitia(lk] + 33 @agll — kK Jug[l'k] = 0.
k! B

Introduce a “reduced” displacement vector

5llk) = /mrallk],

and define the elements of the dynamical matrix of the lattice as

1
T et

Dag|l — U'kk') =

P.p(l — U'kK).
Then (3.40) becomes

va[lk] + S5 Dagll — UK Jugll'K') = 0.
'kt B

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

A solution of this equation for an independent normal vibration of the lattice is a

plane wave:
Tlk) = V(k)e ™' e'T.
Then (3.43) becomes
W Va(k) = S5 Dogll — UkK'\V5(K') = 0
kB

and

Daplgkk] = 3" Dagll — I'kk|e= @ =) = 3™ D5 [1kk'|e (),
l

ll
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D(q) is the dynamical matrix in the reciprocal space.

The equations of motion (3.45) for a wave-vector q in the reciprocal space of the
lattice are a set of 3s homogeneous equations in the reduced amplitudes V,(k). The
necessary and sufficient condition that this set should have a nontrivial solution is

that
|D(q) — w?I| = 0, (3.47)

where I is the unit matrix of the order 3sz3s. For a particular wave-vector g, the
characteristic equation (3.47) has 3s roots w;, Three of these roots, the acoustic
branches, as function of g, tend to zero as § — 0. The remaining 3s — 3 roots, the
optical branches, tend to finite limits as § — 0.

The TB method can be used to calculate phonon dispertion relations. As discussed
above, we need to find the dynamical matrix for the diamond-cubic structure. The
total energy of the system consists of the pair potential and the band-structure energy.
The dynamical matrix is easy to calculate for the pair potential part, so we will discuss

the band-structure part.

3.5.1 Dynamical Matrix for Band-Structure Energy

Clearly, we need to find the second derivatives of the band structure energy. As
discussed before, the band-structure energy consists of the sum of the occupied eigen-
values of the Hamiltonian matrix. The second derivatives of the eigenvaiues of the
Hamiltonian can be calculated from the second-order perturbation theory.

The second derivatives of an eigenvalue of the Hamiltonian matrix can be calcu-

lated by the following exact equation:

0E, , 0°H (8H/0X)m(9H 8N )
oy = (gran)m T2 E.-E,

(3.48)

m#n

where ) and ) are two parameters of the Hamiltonian matrix. In our case, A and X'

are coordinates of particles. We can prove (3.48). The Schrodinger equation can be
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written as

(H - En)'r”’n =0, (3-49)

where the eigenfunctions ¥, can be taken to be orthonormal, and will be assumed

non-degenerate, so that

] VnPmdT = bnpm. (3.50)

Differentiation of (3.49) with respect to a parameter A gives

0H OF, 0V,
Iy =
(55 = S+ (H = E)52 = 0. (3.51)

By multiplying this equation by 37, integrating over all coordinates and making use

of the Hermitian property of the H, one obtains

0H O0E,
_mn—_nm+(E E)/ m

( BA) £ (3.52)

BA

When this equation is differentiated with respect to X', the following equation is

obtained

9E, 9 H OH 8v, 8¢ 0H
= Jan T /[v,. £a oE VnldT (3.53)

XN (BABA’ 0N 80X 09X ON

If it is assumed that the eigenfunctions v, form complete sets for all values of A, the

derivative dv,/8) occuring in this equation can be expressed in the form

a“)bn/aA = Z Cnm¥m- (354)

The coefficients ¢, can be found by substituting the series (3.54) into (3.51), which
leads to the formula

com = ZLO0m (2 1m), (3.55)
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The derivation of (3.48) can be completed by substituting (3.54) and (3.55) for du, /G
into (3.53).
We calculated the phonon dispersion relations for Si using the method described

above. Our result is shown in Figure 3-4.
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Figure 3-3: Structures of small carbon clusters.
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Figure 3-4: Phonon dispersion curves for Si by the TB method (solid lines) and from
experiments (circles).
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Chapter 4

Structure and Mobility of

Dislocations in Si

Most physical properties characteristic of the crystalline state are affected to a greater
or lesser extend by the presence of dislocations, simply because of the consequent
degradation in geometric perfection. In the majority of cases the extend of this influ-
ence is determined by the long range, elastic strain field of the dislocation which, for
distances more than a few atomic spacings from the center, is described well by con-
tinuum elasticity. The dislocation center is surrounded by a region, known as the core,
within which linear continuum elasticity ceases to be a good approximation. The dis-
location core region is responsible for structural differentiation in physical properties.
The most pronounced examples of structure-dependent dislocation influence are to
be found in the mechanical properties, specifically the plasticity of crystalline mate-
rials. The mechanism of plastic flow was established to be the sliding of close-packed
crystal planes across one another, always in the direction of densest atomic packing.
Plastic flow begins when the resolved shear stress on a possible slip system reaches
a constant, critical value, known as the critical resolved shear stress (crss). The slip
process in a perfect crystal requires the simultaneous breaking and rejoining of all
bonds acting across the slip plane. Optimistic estimates indicate that the required
stress for this transition is at least 0.04y, where p is the shear modulus; the observed

values are several orders of magnitude lower. This problem was not resolved until
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1934, when Taylor {67] proposed that dislocations might be the agents responsible.
Peierls showed theoretically that this model could lead to a suitable small cssr.

In the previous chapters we have tested the limits of transferability of the TB
method. These are definitely wider than those of the empirical potentials. Most
important is that the TB method seems to describe reasonably well local bonding
arrangements that are distinctly different from the ideal tetrahedral bonding in di-
amond cubic lattice of silicon. This is a very inviting property when it comes to
simulating defect and interface properties. In particular, we intend here to apply
the same methods discussed in the previous chapters to simulations of dislocations in
Si. In what follows we emphasize that the TB method is not just a feasible frame-
work for theoretical studies of dislocations in semiconductors, but it seems to be the
only reasonable way to address the very challenging issues associated with dislocation
mobilty.

The challenge is two-fold. First is that in the presence of the band gap various
electro-mechanical effects may occur. Indeed, earlier studies(68] showed that it was
absolutely necessary to account for electronic degrees of freedom to predict disloca-
tion properties of silicon. In particular, it was established that by changing electronic
properties, e.g. by doping, the barriers for kink motions are effectively reduced|69].
This was related to the existance of in-gap levels corresponding to electronic states
possibly localized on dislocations. Such states may serve as traps for the carriers and
become charged. Accordingly, moving dislocations can provide undesirable conduct-
ing paths or otherwise substantially affect the electronic properties[68].

It was realized that theoretical understanding of dislocation mobility in silicon
will require to fully account for re-distribution of the electron density in the course of
dislocation motions. In principle, this can be done in the framework of the Density
Functional Theory. However, computational effort involved in any kind of realistic
simulations of dislocation motions from the first priciples is immense. Accordingly,
no attampt has been ever made to model dislocation motions with full account of
electronic degrees of freedom. To our knowledge there exist only two results reported

in the literature on dislocations using the DFT/LDA approach: these are both con-
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cerned with in-core reconstruction of 90° partial dislocation in {111} glide subsystem
of silicon (70]. Although important, the issue was relatively well adressed in the ear-
lier work [71] so that the recent DFT/LDA results simply confirmed the expectations
that the 90° partial dislocation reconstructs in the asymmetric sense.

The existing computational limits fall far below levels required to perform any
reliable calculation of dislocation structures and motions, since, because of the long
range elastic fields associated with dislocations, these must include many atoms. For
that purpose DFT calculations are just not there yet to address the issues.

On the other hand, as was clearly shown lately {72], the known empirical poten-
tials generally fail to describe quantitatively highly distorted atomic environments
characteristic of dislocations and kinks in semiconductors. It is quite clear that by
using the TB approach instead we may be able to do a relatively good job in describ-
ing structural aspects and energetics of dislocation motions in Si and at a reasonable
computational cost. Important to note that due to the complex nature of the prob-
lem the theory of dislocations in semiconductors is yet to be developed. Therefore,
even small increments of knowledge in this area are very important. In this chapter
we present the first results of numerical simulations related to dislocation mobility in
silicon using a semi-empirical TB method.

The chapter is made up of a few sections. In section 4.1 the practical importance
of understanding of dislocations in Si is discussed where the role of dislocations in
the Brittle-to-Ductile (BDT) transition in Si is introduced. The relevant previous
theoretical work is discussed. The following section 4.2 contains results of our TB
simulations related to 90° partial dislocation. In this section comparison is given
with the published results obtained by DFT/LDA and empirical potentials. A better
transferability of the TB potential compared to the empirical potentials is tested again
for the specific case of dislocations in Si. Section 4.3 discusses our original results
obtained for 30° partial dislocation in Si, where no previous work which accounts
for electronic effects has been done. However, comparison is given with the empirical
potentials: SW, Tersoff, and KP. In section 4.4 results of TB calculations for structure

and energy of the reconstruction (APD) defect are presented. And lastly, APD motion
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barrier is computed along the appropriate motion coordinate and the implications of

the obtained results are discussed.

4.1 Brittle-to-Ductile Transition and Dislocations
in Si

Phenomenologically BDT manifests itself as a notable increase of the fracture en-
ergy with increasing temperature. Consequently, material that shows brittle fracture
behavior at low temperatures may become ductile at a higher temperature. The
transition temperature for silicon is in the range of 0.75T,, and it is very sensitive to
doping and the applied strain rates [73].

For the following reasons silicon is a very interesting object for studying the fun-

damental questions about BDT in crystals in general:

1. its BDT is rather dramatic in that the fracture energy increases 20-30 times in a

very narrow temperature interval, 3 —4°K. This is very helpful for experimental

studies of BDT.

2. it is possible to obtain Si single crystals with almost zero dislocation density

and to directly monitor motions of individual dislocations.

3. a very substantial theoretical and experimental effort was dedicated to Si, so
much about dislocations in Si is relatively well understood. On the other hand,

more very serious questions have arisen that await their answers.

In short, silicon represents an ideal testing ground for development of theory of dis-
locations and of the BDT in semiconductors.

Currenlty, understanding is there that BDT in Si is controlled by dislocation
emission and transport away from the crack tip. Unlike close packed metals, where a
dislocation, once generated, moves very easily, silicon is a material with characteris-
tically high Peierls barrier (or stress), meaning that lattice resistance to dislocation

motion is high. Therefore, even when stress concentration near the crack tip is high
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enough to make dislocation nucleation an easy process, dislocations may not be able
to move away fast enough compared to the crack propagation velocity. Accordingly,
this channel for energy dissipation may be ineffective. This is certainly true at room
temperature, while at higher temperatures the crack drags along a dense cloud of dis-
locations as it advances through the crystal{74]. Hence, is crucial for understanding
of BDT in Si to examine temperature and stress dependences of dislocation mobil-
ity. This adds yet another dimension to the importance of theory of dislocations in
semiconductors, while earlier efforts were focused on understanding of mechanisms
by which dislocations affect properties of electronic devices.

It is a distinctive characteristic of silicon that its BDT is mostly dislocation mo-
bility controlled, as opposed to the close packed materials where BDT is mostly
controlled by nucleation of dislocations from the crack tip{75!. We consider this as a
simplifying aspect because dislocation nucleation process by itself is not well under-
stood, but in Si it is a less important factor than dislocation mobility.

Since to a large extent the onset of BDT in Si is controlled by dislocation mobility
it is very important to establish the easiest modes of dislocation motions by which
energy can be effectively channelled away from the growing crack. As was shown
earlier, even motion of a single dislocation is in fact a very complex process involving
many different atomic mechanisms. Earlier calculations performed by Hirsch and
others in early 80s were successful in giving qualitative understanding of electronic
effects involved in dislocation transport. On the other hand, atomic mechanisms
considered were based on intuition developed on ball-and-spoke models at best. The
situation remained unchanged until recently when the first direct study of dislocation
mobilty is Si was performed(76].

It has become clear from those latest results that the atomic mechanisms impor-
tant for dislocation mobility in silicon are multiple and that due to the particular
geometry of diamond cubic lattice and the ability of diisocation cores to reconstruct
there exists a large set of interrelated processes simultaneously contributing to dislo-
cation transport.

In particular. it was established that the in-core reconstruction has a profound

(0.4}
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effect on the way dislocations move[76]. The meaning of that previous work in the
context of our study is that it isolated a few most important atomic mechanisms
that contribute the most into dislocation motions. It will be the focus of our work
here to obtain more reliable data that shall allow to further distinguish the easiest

mechanisms of dislocation transport usi:g the transferable TB method.

4.2 Structure and Energetics of 90° Partial Dislo-

cation

Si has diamond cubic structure consisting of two inter-penetrating fcc sub-lattices
displaced relative to each other by the vector < 111 >. The smallest repeat vector in
dc lattice is a/2 < 110 > and the most close packed planes are {111}. Accordingly,
just like in fcc materials {111} planes play a dominant role in crystallographic plas-
ticity while /2 < 110 > is the Burgers vector of dislocations gliding on {111} planes.
However, due to non-primitive structure of the dc lattice two distinct sub-sets of 111
slip systems are present: shuffle and glide sets. These are shown on Figure 4-1.

The widely spaced set of atomic planes, the shuffle set, has a spacing of v/3a/4,
while the closely spaced set is separated by only v/3/12. Of the two, only the glide set
dislocations may dissociate into Shockley partials. At the same time, it is very well
established experimentally that both static and mobile dislocations in {111} planes of
Si are dissociated[77]. For that reason only the glide plane dislocations are regarded
as active in the crystallographic slip.

At moderate strains there are two full dislocations present on {111} systems of
Si: screw and 60° (mixed) dislocations. They dissociate into two 30° partials (screw)

or one 30° and one 90° partial (60° mixed) according to the following equation:

a/2[101) = a/6[111] + a/6[112)]. (4.1)

Shown on Figure 4-2 is a triangular dislocation loop consisting of segments of disso-

ciated screw and mixed 60° dislocations. Of the two Shockley partials, 30° partial
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dislocation has received much less attentior, than 90° partial, even though it is in-
volved in both dissociations, while 90° partial is only involved in dissociation of the
mixed 60° dislocations.

Since full dislocations in the glide set dissociate, the resulting partials are thought
to be the major plasticity carriers. In this section we focus on the core structure of
90° partial dislocation. 30° partial will be discussed in the following sections 4.3 and
4.4,

In order to obtain fully relaxed core structures of the partial dislocations we per-
formed appropriate calculations based on the TB method using the periodic boundary
conditions. In such geometry, dislocations can be introduced by two (or more) at a
time. Consequently, we always had a dipole of dislocations in the periodic supercell,
't'wo dislocations were obtained starting from the perfect dc structure by cutting be-
tween two atomic planes of the glide set and displacing atoms above the cut by half
of an appropriate Burgers vector, while displacing the atoms below the cut by the
same amount but in the opposite direction. In order to actually have dislocations,
the cut should be terminated somewhere in the bulk of the crystal,

Because each one of the Burgers vectors of the partial dislocations does not give a
fuli lattice period, between the two partials lies an area of stacking fault. Associated
with the stacking fault is certain excess energy proportional to the stacking fault area.
Specific (per unit area) energy of the stacking fault is an important materials property
related to the relative stability of fcc (or dc) lattice to hcp packing. In silicon this
parameter is relatively small which means that dislocations must dissociate and he
well separated, as is known from the results of electron microscopy|(77).

By making an appropriate Burgers displacement, the core structure of a straight
90° partial dislocations is obtained shown in Figure 4-3a,

Here atoms above the glide cut plane are shown as open circles, and those below
are shaded. Each atom has 4 bonded neighbors, except the in-core atoms that have
3. The energy of such a core is apparently rather high, but this energy can be
reduced substantially by virtue of <he reconstruction shown in Figure 4-3b where

a moderate distortion in the core allows the dangling bonds to pair. Clearly, the
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reconstruction is associated with certain atomic displacements in the direction parallel
to the dislocation line, and there is additional energy of the corresponding elastic
distortion. On the other hand reconstructed bonds are formed bridging the atoms
across the dislocation line, which lowers down the overall energy. As a result all the
atoms are again four-fold coordinated.

Alternative to such, asymmetric reconstruction is another type of in-core struc-
ture suggested in {72}, which is shown in Figure 4-3c. Here atoms on the opposite
sides of the dislocation line simply move closer to each other so that quasi-fivefold
coordination is established. The latter, symmetric reconstruction was shown to give
a very different band structure with rather deep in-gap states. Alternatively, the
asymmmetric reconstruction results in only very shallow levels hardly split {from the
major bands.

Both experiments{78} and DFT|[70] calculations seem to favor the asymmetric re-
construction of the 90° partial. For that reason, the ability to predict this asymmetric
structure was used as a test ground for various models of Si. In [79] it was shown that
SW and KP empirical potentials clearly fail to reproduce the asymmetric structure
shown in Figure 4-1b. Among the potentials tested in [79], only Tersoff’s [3] potential
gave the correct reconstruction. Subsequently, applicability of the empirical poten-
tials to model dislocations in Si was questioned. Jumping ahead, Tersoff's potential,
heralded in [70] as the most transferable, failed miserably to desribe energetics of 30°
partial dislocation in Si, as discussed in the following sections. Hence, the general
trend observed in the earlier simulations was that empirical potentials fail to repro-
duce structures that were not explicitly or implicitly included in the databases used
for fitting.

To obtain the low energy cure structure of 90° partial dislocation we used a con-
stant volume periodic supercell with 96 atoms. Since, it is only possible to intruduce
dislocations in pair in a periodic supercell, we used a recipe suggested in {70] to re-
duce distortion stresses due to dislocation walls appearing when small supercells are
used. That recipe includes using a tilted periodic box that generates a quadrupolar

arrangement of dislocations.
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Dislocation dipoles were introduced by making an appropriate cut in the glide
{111} subsystem and displacing atoms on both sides of the cut in the following
way: atoms just above were shifted halfway along the Burgers vector of 90° (edge)
partial and atoms below were shifted halfway in the opposite direction. After that
the conjugate gradient method was used to minimize the energy of the system. This
procedure resulted in in an asymmetrically reconstructed core shown in Figure 4-3b.
Atoms just above the {111} glide plane are shown as open circles, while atoms just
below are shown as filled circles. Dots in the centers of open circles indicate the
bonds pointing up perpendicular to {111} plane. Atoms below the glide plane also
have bonds pointing down from the plane (not shown). The excess energy of this
configuration is 2.22 eV per repeat distance along the dislocation core. This energy
actually includes, in addition to the core energy, interaction energy of the partial
dislocations within the dipole as well as with other images, and the stacking fault
energy. This energy compares better with the corresponding values calculated using
SW potential (1.79 eV/b), than with Tersoff (3.96 eV /b) or KP (3.93 eV/b) empirical
potentials, even though SW potential does not predict an asymmetric reconstruction.

By comparing our results with the results obtained using empirical potentials we
conclude that the TB method gives both the correct, i.e. asymruetric reconstruction
(unlike the SW potential) and a more reasonable, lower value for the dislocation

excess energy {unlike the Tersoff and the KP potential).

4.3 Core Structure and Energy of 30° Partial Dis-

locations 1n Si

The same procedure as above was used to obtain the relaxed structure of 30° partial
dislocation, except that the direction of atomic displacements was changed appro-
priately, i.e. along the Burgers vector of the 30° dislocation. Immediately after the
displacement but before relaxation atoms in the dislocation core have only 3 bonded
neighbors, i.e. each one of them has a dangling bond (Figure 4-4a). After relaxation

was completed the reconstructed structure was obtained shown in Figure 4-4b.
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The core energy is reduced substantially by in-core atoms moving to each other
close enough for the dangling bonds to form bonding orbitals. This, so called “symmetry-
breaking” reconstruction doubles the repeat distance along the dislocation line and
results in the core energy of 2.69 eV /b.

This energy falls between the energiess obtained using SW potential (1.91 eV/h)
and higher values of 3.12 eV/b for Tersoff and 3.10 eV /b for KP empirical potentials.
Having in mind that the TB method is more transferable than either one of the
empirical potentials we expect that structure and energetics of the 30° reconstructed
core is better reproduced by the TB method.

Worth mentioning, however, that 30° partial (2x1) reconstruction is a more robust
effect than 90° partial asymmetric reconstruction and is reproduced one way or an-
other by all of the tested empirical potentials. However, as discussed in the following

section, the situation is different when it comes to in-core defects.

4.4 Structure, Energy and Motion of Reconstruc-

tion Defects in 30° Partial Dislocation

It was conjectured earlier{68] and confirmed recently by the direct atomistic simulations{76'
that in-core reconstructions have profound effects on the ways dislocations in Si move.
The key issue here turned out to be the presence of the so called “reconstruction de-
fect” or “antiphase defect” (APD). The last term originates from the fact that APDs
divide two perfectly reconstructed domains out of phase with each other. Another
common name for that defect is soliton{80)}, similar to the domain wall soliton intro-
duced in the theory of ferromagnetics{81].

It was demonstrated that the ease with which partial dislocations move in Si is
determined to a great extent by the motion barrier of APD[76]. Therefore, it was the
focus of our work to calculate this energy barrier.

Earlier calculations based on empirical potentials failed to adress this issue, as
no appreciable motion of dislocations was detected. Only recently the APD motion

barrier was obtained for SW model of Si. and it was found to be very low (0.17 eV').
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Although, it took substantial computational effort to obtain that energy, it may not
be considered very reliable until compared against more transferahle methods. On the
other hand, that recent study gives us an apportunity to save immense computational
effort by specifying the most important collective atomic modes for APD motjons,

We intend to explore this opportunity and apply the more transferable TB method
to compute APD motion barrier. But first we obtain the structure and the energy
of APD reconstruction defect in the core of 30° partial dislocation. For that we used
the same kind of procedure as in the previous section, however the system size was
increased to 144 atoms. This was necessary to have at least 3 repeat distances along
the dislocation line, so that, when the reconstruction occurs, one of the in-core atoms
is necessarily left over making thus an APD.

The resulting fully equilibrated structure is shown in Figure 4-4 where only one
of such defects is shown, and it has the excess energy of 0.93 eV.

This energy compares reasonably well with the SW value of 0.81 eV, while KP
energy is way too high (2.55 eV). However, Tersoff potential gives even worse result
(72]: the APD energy is negative (-0.13)! This should indicate instability of the core
towards the alternating reconstructed pairs and APDs, which corresponds to a very
high concentration of APDs (33%). Experimentally it was found that concentration
of APDs in the core is of the order of a few percent (in no case higher than 5%), which
is in disagreement with the Tersoff potential results. On the other hand, KP potential
predicts too low concentration of APDs. Clearly, only SW and the TB models give
reasonable (and comparable) energies.

It should be noted, however, that there are certain differences between SW and
TB results other than that in the APD energies. The APD atom shown in Figure
4-4b is somewhat tilted from the center-symmetric position taken by the same atom
in Figure 4-4. This tilt is a spurious feature of the SW empirical potential resulting
from the specific angular-dependent three-body term chosen to enforce the tetrahedral
arrangement of the bonded neighbors. Accordingly, even when one of the four bonded
neighbors is not present, the tetrahedral angle is still enforced, thus producing the

tilt. As is well known, however, bonding angles must become closer to 120° when
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Si atoms have only three bonded neighbors. Clearly, this situation is much better
reproduced by the TB method, compared to SW potential. If such relatively minor
effects are ignored, the SW potential provides a reasonable description of APD defect
in a 30° partial. As was noted in the previous section, and was just discussed, the
TB method is clearly superior when it comes to reproducing highly distorted atomic
arrangements in the dislocation cores compared to all of the so far tested empirical
potentials.

Having studied energetics of the static APDs we proceed by computing the APD
motion barrier. It was established that the lowest energy atomic mechanism for APD
motion is triggered by the APD attacking a neighboring reconstructed pair, with
the subsequent bond switching. Therefore, the distance between the APD atom and
its reconstructed neighbor in the core is a proper motion coordinate. With this we
can use efficient methods of minimization for computing the energy profile along the
motion coordinate.

The calculations were performed using MD simulated annealing method where
the system was constrained in such a way that the two atoms were kept at a fixed
distance from each other. By making such constrained relaxations at a few points
along the motion coordinates the maximum (minimax) was found corresponding to
an energy barrier of 0.31 eV as shown in Figure 4-5.

Although, we did not impose any kind of symmetry apriori, the saddle-point
structure is obviously center-symmetric around the atom flanked by the two in-core
neighbors.

The energies computed along the motion coordinate are scattered somewhat er-
ratically, because we stopped minimizations at all points when the maximum force
on atoms became 10-2eV/A. This tolerance was not sufficient to obtain accurate
energies for the intermediate constrained configurations along the path. However, it
was just enough to see whether the barrier state was reached. At one point, after one
more increment was made for the motion coordinate, the system’s energy went down
compared to the previous point. This indicated that the system was driven past the

saddle. Then, the previnus configuration, relaxed to the high tolerance of 10-%eV/A4,
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was subjected to still further relaxation until the maximum force became as low as
10~*eV/A. This was identified as the saddle-point state.

The above procedure allowed us to save substantial computational effort involved
in finding the eigenstates of the TB Hamiltonian. Typically, it was possible to reach
the high tolerance of 1072eV/A for the maximum force in 30-60 mins of CPU time
of CRAY XMP. However, it required more than 3 hours of the CPU time to reach
the low tolerance of 10"*eV/A. For that reason, more accurate relaxations were
performed only for the stable configuration and the saddle-point state, All the other,
intermediate states along the path were not fully relaxed, hence the scatter. Having
in mind the cost, and the relative unimportance of the intermediate points we decided
not to relax them any further. For that reason, the energies shown in Figure 4-5 for
the intermediate points on the motion coordinate must be regarded as upper estimates
for the real energy profile.

Although the TB energy barrier is notably higher (0.31 eV) that the SW barrier
of 0.17 eV (also shown on Figure 4-5), these two results are still surprisingly similar
in that they are much lower than the corresponding cnergies of the static APD defect
(0.93 for TB, and 0.81 for SW). Indeed, as discussed in [76], this APD energy conve-
niently defines an energy scale on which various atomic mechanisms can be compared.
With respect to the APD energy of 0.93 the APD motion barrier is very low, in full
agreement with the earlier result obtained with SW potential.

Physically, the low barrier energy of 0.31 eV implies that once there is an atom
with a dangling bond, such as APD or, alternatively a left kink bound {0 an APD
(76], the motion barrier for such a defect is low. Although, we have not yet computed
the motion barrier for other defects of this type, we expect these to be low as well.

We intend to apply the TB method to compute the other barriers important for
the dislocation motions, as identified in {76]. However, our first result obtained for the
APD motion barrier strongly suggests that the in-core reconstruction, and specifically
APD defect, greatly affect the operative atomic mechanisms of motion of 30° partial
dislocation in Si. This influence must be through possible low barrier mechanisms of

dislocation transport “lubricated” by the presence of an APD.
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The above results are very important, because they relate directly to the fastest,
hence dominant, mechanisms of dislocation transport. Consequently, since 30° partial
dislocation is one of the major plasticity carriers in Si, these mechanisms determine
eventually the onset of the Brittle-to-Ductile transition in Si.

On the other hand, the very same mechanisms must contribute prominently in
various dislocation-related effects in electronic properties in Si and, possibly, other
semiconductors. In order to actually evaluate the importance of APD-mediated dis-
location motion, we must eventually perform total energy calculations within the
framework of DFT/LDA approach. For that, the present results provide a very valu-
able input, as they specify semi-quantitatively the most important targets: stable
in-core defects, atomic mechanisms of their motions and nucleations, etc.

Future work will demonstrate whether the TB approach is fully adequate for quan-
titative assessment of operative mechanisms of dislocation glide in semiconductors,
or it can be used only as a method of preliminary targeting. We consider the present

work as a first, but very promising step in that direction.
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(a 101 projection)
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® - Si

Figure 4-1: A {101} projection of the diamond cubic lattice. Dashed lines show
examples of glide (labeled “g”) and shuffle (labeled “s”) planes.



Dissociation in fcc {111} planes

Padi'N

a/2 [101] = a/6 [211] + a/6 [112]

Figure 4-2: Dissociation of full dislocations into partial dislocations.
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(b)

(c)

Figure 4-3: Reconstruction of 90° partial dislocation:

(a) unreconstructed high energy core structure,

(b) the symmetric reconstruction, and

(c) the asymmetric reconstruction obtained in our calculations.
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Figure 4-5: Energy barrier to APD movement. Circles show the results obtained
using the TB method; crosses show the results obtained using the SW potential.
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Chapter 5

Application of the TB Method to
Silicon Carbide

5.1 Model Formulation

In this section, we will apply the orthogonal TB method to SiC for molecular dy-
namics simulation. The crystal structure of SiC is zincblende with two atoms in
the primitive cell as shown in Figure 3-1. The zincblende structure can be tought
as two interpenetrating fcc lattices one of which is moved 1/4 of the body diagonal
along the body diagonal. Because SiC is composed of two different kinds of atoms,
silicon and carbon, there are C-C, Si-Si and Si-C interactions. To develop an accu-
rate TB method for the MD simulation of SiC, We need to determine what sorts of
interactions there are between Si-Si, C-C and Si-C. The most important interaction
is Si-C interaction because the nearest neighbors of each atom are the other kind
of atoms and the nearest-neighbor interactions are the most important interactions.
First of all, we need to determine hopping parameters for the band-structure energy
and those parameters can be taken as averages of the parameters for silicon und car-
bon for which there is extensive literature[82, 83). It is a good approximation to take
averages of the hopping parameters of silicon and carbon for silicon carbide because
Harrison showed that([36] it is possible to use only one set of hopping parameters for

all nonmetals with reasonable accuracy, so we expect that our results are not very
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sensitive to the hopping parameters.

The band-structure energy is the attractive interaction which is obtained by di-
agonalizing the Hamiltonian matrix and summing the occupied eigenvalues and then
multiplying by 2 due to the fact that there are two electrons per orbitalil5, 16]. The
repulsive part of the total energy can be represented by a short-range potential as
shown by Foulkes et al. {27). The repulsive part of the total energy corresponds to
the ion-ion interactions minus electron-electron interactions which is double counted
in the band-structure energy. We know that ion-ion interaction can be represented as
a pair potential due to the Coulombic nature of the interaction. The double counting
part of the repulsive potential is shown to be pairwise too by Foulkes et al. [27). One
way of determination of the pair potential is by subtracting the band-structure en-
ergy calculated by diagonalization of the Hamiltonian matrix from the total energy
for the system represented as a function of nearest neighbor distance and calculated
by ab-initio methods. The total energy as a function of the nearest neighbor distance
can be written as a very general function of only three parameters. This functional
form which is called the universal binding curve, is shown to be valid for hundreds of

materials. The universal binding curve is given as {84]
E(r) = E(ro)(1 + (r — ro)/A)ezp(—(r — ro)/A) (5.1)

where E(ro) is the cohesive energy, rq is the bond length and A is a parameter which

is calculated by using the bulk modulus
B = —VE(ro)( 2Ly 42 (5.2)
av '

Even though this method was used by Wang et al. in many of their papers on
silicon to calculate the pairwise pair potential, there are some disadvantages to it.
For example, the equilibrium volume of fcc silicon is predicted to be more than twice
as large as its ab-initio value. In general, Wang et al. 's method is not suitable for
close-packed systems like fcc lattice, even tkough it is fine for open structures like

tetrahedral silicon. To be able to work on liquid and amorphous SiC and clusters we
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Figure 5-1: A unit cube of zincblende structure.

99



Cohesive Energy Curve for SiC
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Figure 5-2: The cohesive energy versus lattice constant curves of 3-SiC for various
models.
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need a more sophisticated model. A solution to the shortcomings nf the method de-
veloped by Wang et al. was offered by Goodwin et al. {41] by rescaling the interatomic
dependence of the Hamiltonian matrix elements and the pair potential. Goodwin et
al. multiplied the hopping parameters and the pair potential by an exponential which
is a function of bond length in order to reduce the range of interactions in silicon and
thus reduce the volume of the close-packed systems such as fcc silicon. Goodwin et al.
took hopping parameters from Harrison’s work and introduced a rescaling function
for both band-structure energy and the pair potential. Their method which we used
in our calculations of dislocations in silicon decribed in detail in Chapter 2. Here we
will describe the TB model we developed for the molecular dynamics simulation of
SiC.

Wang et al. developed a TB model to carry out MD simulation of solid and
liquid carbon and to investigate properties of carbon clusters '17). In developing
their method, unlike Goodwin et al. who used a simple pair potential for repulsive
interaction, they used a many-body repulsive interaction similar to the embedded
atom model. Their aim was to reproduce the cohesive energy curves of the most
stable carbon polytypes which are diamond, graphite and the linear chain. Their
method describes other polytypes of carbon less accurately, like fcc, sc and bec carbon.
The cohesive energy curves of the polytypes of carbon are calculated by using ab-
initio local density functional approximation [85]. In those calculations, graphite was
regarded as a two-dimensional substance due to the large distance between graphite
layers compared to intralayer bond length. The total energy of carbon is expressed

as a sum of the band-structure energy and a repulsive potential
Etot = Ebo T Ertp (5'3)

where Ej, is the sum of the occupied eigenvalues which are calculated by diagonalizing
the Hamiltonian matrix and E,., is a short range repulsive potential. The off-diagonal
elements of the Hamiltonian are calculated by multiplying the hopping parameters

with a scaling function s and the diagonal elements are the atomic orbital energies of
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corresponding orbitals. The repulsive energy is calculated as
Erep =) f(D_8(ri;)) (5.4)
i j

where ¢(r;;) is a pairwise potential between atoms ¢ and j and f is a functional
expressed as a fourth order polynomial with argument 3; ¢(r;;). The s(r) and ¢(r)

have the same forms given by Goodwin et al. [41]:

s(r) = (ro/r) exp{n[—(r/rc)™ + (ro/r)™]} (5.5)

¢(r) = go(do/r)™ exp{m[~(r/dc)™ + (do/dc)™ ]} (5.6)

where 7o denotes the nearest-neighbor distance in diamond and n,n.,r., ¢¢, m,d. and
m. are parameters which need to be determined. Unlike Goodwin et al. ’s model (GSP
model), the parameters r. and n. are not the same at the corresponding d. and m, for
#(r) in Wang et al. ’s model. In order to be able to simulate liquid and amorphous
carbon, Wang et al. replaced the tails of s(r) and ¢, with a third order polynomial
which smoothly goes to zero at some designated cut-off distance. The coefficients of
these two polynomials are determined by requiring that at the match point s(r) and
t,(r — r1) are smooth up to the first derivative, and t,(r — r,) and its first derivative
are zero at 7,. The same procedure is used to determine t4(r — d;) which replaces
the tail of ¢(r). Wang et al. also checked to ensure that the model gives reasonable
results for the electronic band-structure, elastic moduli and phonon frequncies in the
diamond and graphite structures. The resulting sp® parameters are: E, = —2.99eV,
E, = 3.71eV, V,,o,, = —5.0¢V, V,p, = 4.7eV, Voo = 5.5¢V and Vpp» = —1.55€V.
The parameters for s(r) and ¢(r), the coefficients of the tail functions ¢,(r — )
and t4(r — d;) and the coefficients for the polynomial function f(z) = T4_, cnz",
with z = Y, ¢(ri;) are given in Table 5.1 and Table 5.2 respectively. Wang et al.
calculated vibrational and elastic properties of diamond and compared the results

with experimental data[17]. They obtained good agreement with the experiment for
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phonon frequencies (errors all within 10%). Calculated elastic constants are tco soft
in comparision with experimental data. Wang et al. also calculated vibrational and
elastic properties of graphite. Again they obtained good agreement in comparision
with the experimental data.

We decided to use the method developed by Wang et al. for the interactions
between carbon atoms because of the good agreement of the results of this method
with experimental data. Because we are using a nearest-neighbor model for SiC, the
important interaction is Si-C interaction. Especially at temperatures below melting
point at which only nearest neighbors are counted, we cxpect that C-C interaction
has no importance for the simulation purposes. C-C interaction becomes important
if we are investigating liquid SiC or SiC alloys for which the coordination number is
different from 4.

We used GSP method for the development of SiC TB model. We employed the
same scaling function for both the off-diagonal elements of the Hamiltonian matrix

and the pair potential. The total energy of the lattice is taken as

_ e S(2), F(3)
E[Z ] Ey, [f(l)l-rErep[f(l)

. (5.7)

This rescaling affects both the off-diagonal elements of the Hamiltonian matrix and

the repulsive potential. For the off-diagonal elements of the Hamiltonian we have

oy _ f(3)\n
ha(2) = b1 S ) (5.8)
and
8522 = o) Zed)m. (59)
i 71

GSP have chosen the function f as a smoothed step function, with the step positioned
midway between first and second nearest neighbors in the diamond lattice. The effect
of this function is to reduce the range of the atomic interactions and thereby reduce

the bond lengths, and the equilibrium volumes, for the close packed lattices. The
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function is given as

To

£(22) = Bezp(—(Z)m). (5.10)

T r Te

The position of the step, and its sharpness, are set by r. and n.. If n. tends to infinity,
we have infinitely sharp cutoff and we obtain the nearest neighbor model. The new

hopping parameters and the pairwise potential are given in the following equations:

ha(%2) = ha(1)(T ) ezpln(~ ()™ + ()l (5.11)
852 = 6(1)( ) ezplm(~ (=)™ + ()] (5.12)

We determined ¢(1),7.,n. and m by fitting to the lattice parameters and the
bulk moduli of diamond-cubic and rocksalt SiC. The band-structure energy can be
calculated as a function of g = f(ra./7)/f(1) for various values of g. We changed g
from 0.5 to 1.5 and obtained Hamiltonian matrix elements, and then diagonalized the
Hamiltonian matrix. By summing eigenvalues over the occupied states we found the
band-structure energy. Then we fitted a third order polynomial to the band-structure
energy for both the diamond-cubic and the rocksalt structures. The diamond-cubic
structure has 4 and the rocksalt structure has 6 neighbors. The equilibrium bond-
length can be found by determining the bond length at which the derivative of the
total energy with respect to bond length is zero. We know the ab-initio results for
the bond-lengths of diamond cubic and the rocksalt silicon carbide. This gives us two
equations. We can also calculate bulk moduli of the diamond-cubic and the rocksalt
silicon carbide if we know the second derivative of the total energy with respect to the
bond length at the equilibrium bond length. We found the following band-structure

energies for the diamond-cubic and the rocksalt silicon carbide:

E&(g(r)) = 4.5222¢° — 46.4920¢° + 24.2701g — 8.4806 (5.13)
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E[:(g(r)) = 10.1235¢> — 69.0672g° + 47.2682 = g — 17.4455 (5.14)

where dc stands for the diamond cubic structure and rc stands for the rocksalt struc-
ture. We do not have to know how g changes as a function of r in order to find the
band structure energy. The equilibrium bond length can be calculated by finding the

root of the following equation:

OEx(g(r ))I _ 0E0(g(r)) 9g(r)
or e dg(r) or

= 0. (5.15)

It is clear that either aE;’;:fgﬂ) or ag(.-) is zero. It is uniikely that i@ is zero, so that

é%%)) must be zero. From this observation we obtain the following equations:

dE% (g(r)) _AEE(r) Lo ey me1) -
dg(r) e = T ag(ry T o) ’ 10
and
OEL(9(r)),  _OE(9(T) 4, . myme1) -

We must multiply the pair potential with 2 in the case of diamond because there
are two bonds per atom in diamond cubic structure. We need to multiply the pair
potential with 3 in the case of the rocksalt structure because there are three bonds
per atbm in the rocksalt structure. We notice that g(rq.) = 1 which fixes the bond
length for the diamond: cublc structure.

We need to find the bulk moduli for the diamond cubic and the rocksalt structures
for SiC as a function of the second derivative of the total energy at the equilibrium

bond length. The bulk modulus for the diamond cubic structure is

1 BzEf:,(r)|
de — 8\/§Tdc 92 r=r4c)

(5.18)
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and the bulk modulus for the rocksalt structure is

5 _ L @EL(r)

T

(5.19)

We know the second derivative of the total energy in terms of the four parameters we

are trying to determine. The other two equations for the fit are then

1 8*E&(r) |
8\/§Tdc or? e

~BF =0 (5.20)

and

1 82ER(r)

E arz |"="r- - B:f = 0 (5'21)

where ez stands for the experimental value. So we have a total of four unknowns and
four equations 5.16, 5.17, 5.20 and, 5.21. Those four equations are trancendental.
We cannot find the roots of these four equations exactly. Instead we can minimize
the sum of the squares of these four equé.tions with respect té these four parameters.
We have chosen the Monte Carlo simulated annealing method to minimize these four
equations. It can be noticed tha;f the sum of the squares of the four funtions can be
minimum zero at which the four: parameters glve the perfect fit. We have chosen an
exponential cooling schedule for the 51mu1a.ted annec.hng method and approximately
0.5 acceptance ratio. We obtained: the four parameters at the end of simulation. Our

result for these four parameters are,

ne = 0.20727 (5.22)

p = 2.22987 (5.23)
m = 10.34121 (5.24)
¢ = 2.66603 (5.25)

where p = (r4/r.)" . By using those parameters, we calculated the lattice parameters

and the bulk moduli of the diamond cubic and rocksalt structures of silicon carbide
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by fitting a third order polyuomial to the total energy curves of the two structures.
The result is given below in Table 5.3. As can be seen from Table 5.3, the result of
the fit is very good and all the discrepancies are below five percent. In the rest of our
calculations, we used this fit.

We used our TB model for silicon carbide to calculate bulk properties of silicon
carbide. In order to simulate liquid silicon carbide, we need to smooth the cutoff. We
used a third order polynomial to smooth the cutoff. A third order polynomial has four
parameters. We require that g(r) and its first derivative are smocth at the matching
point, and we also require that g(r) and its first derivative are zero at the cutoff.
Those conditions give us four equations which are solved to find the parameters of
the polynomial. It should be noted that even though the first derivative of the g(r)
is smooth, the second derivative is not smooth and this fact is observed as an abrupt
change of the slope of the pressure-volume curve.

The band-structure curve for SiC is shown in Figure 5-3.

In our calculations, we are neglecting charge transfer and non-orthogonality effects.
Charge transfer is a result of the strong potential of the carbon atom. Carbon does
not have p-type core orbitals, so that the charge of carbon nucleus is shielded weakly.
As a result, the Coulomb potential of carbon is strong and charge is transferred from
silicon to carbon. But SiC is strongly covalent, as a result the charge transfer is
not very big. In calculation of bulk properties, we can obtain reasonable results by
ignoring the charge transfer. In the case of the surfaces and interfaces, the charge
transfer effects cannot be ignored.

One of the approximations which is employed to deal with the charge-transfer
effects is the local charge neutrality approximation|[41]. The basis of this approxima-
tion is to prevent the charge transfer completely. An iterative process is necessary to
eliminate charge transfer. First the Hamiltonian matrix is diagonalized. The amount
of charge transferred is calculated by using the eigenvectors of the Hamiltonian. Then
the diagonal elements of the Hamiltonian are modified and the Hamiltonian is diag-
onalized again. The amount of the charge transfer is calculated and the diagonal

elements of the Hamiltonian are modified. This procedure is repeated until there is
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zero charge transfer. Usually between 2 to 10 iterations are enough {42]. The reason
for eliminating the charge transfer is that the TB method produces unphysically large
charge transfers between atoms.

SiC is a slightly ionic compound. Under compression, it becomes more ionic(88],
so there are long range Coulomb interactions in this compound. Charge transfer
effects can be taken into account by carrying out a self-consistent TB calculation as
Kohyama et al. did [34, 43]. But to be able to simulate large systems, we neglected
the self-consistency.

The orthogonality of the atomic orbitals used in the TB method is another issue.
In general the atomic orbitals are non-orthogonal, so in the calculation of the band-
structure energy and the Hellmann-Feynman forces{37] the overlap matrix should be
used[46]. This matrix is unitary in the case of orthogonal TB method(15]. The over-
lap matrix elements are calculated by using the extended Huckel approximation{89).
According to this approximation, the overlap matrix elements are proportional to the
Hamiltonian matrix elements. The proportionality constant is found by fitting to
the lattice parameter in the crystal. Menon et al. [46] claim that to simulate carbon
reasonably, we have to take into account non-orthogonalities. But Wang et al. succes-
fully simulated amorphous carbon [90} and Zhang et al. [91] the buckyball collisions
by using orthogonal TB method.The explanation for the success of the orthogonal
TB method even for carbon is that because we are using experimental values for the

TB parameters, the nonorthogonality is already taken into account.

5.2 Pressure

Pressure is the negative derivative of the Helmholtz free energy with respect to volume

at constant temperature(92]:

P=—(2%y, (5.26)
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where

dF = —SdT — PdV (5.27)
or
ou
F=- 3—‘7)5 (5.28)

where U is the internal energy.
Stress can be calculated by using the virial theorem [93]. A good derivation of
stress from individual interatomic forces is given in one of the appendices of [94]. For

a pairwise interatomic potential stress can be calculated by the following formula

0i; = VN> PaiPaj/ma + D TabiFab;) (5.29)
a a,b

where p,; is the i component of the momentum of particle a. The first term represents
the momentum transfer as a result of crossing of a particle through a given surface.
The second term represents momentum transfer across surfaces via interatomic forces.
The TB method gives us the interatomic force F;, and those forces are in general
non-central. The pressure is the average of the diagonal elements of the stress tensor.

The pressure for SiC calculated from the virial is given in Figure 5-5.

5.3 Elastic Constants

Elastic constants of SiC have been calculated using the stress-strain curves as de-
scribed in Chapter 3. Our results for elastic constants are given in Table 5.4. The

stress-strain curves are shown in Figure 5-6.
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5.4 Phonon Dispersion Curves of SiC

Phonon dispersion relations for SiC are shown in Figure 5-7. The acoustic modes are
in agreement with experimental data, but the optical modes are incorrect due to our

neglect of long range Coulomb forces.

5.5 Elastic Instability in SiC

Materials undergo phase transitions, develop cracks or are disordered under suffi-
ciently high stresses. We investigated at which stress covalent materials become
unstable. As is mentioned in Chapter 3, some phonon modes become imaginary at
the point of instability. It is known that there are relations between elastic constants
and phonon dispersion curves[106]. Elastic instabilities can be determined from the
behavior of elastic constants.

For a crystal to be stable, the determinant of the elastic constants matrix should
be greater than zero. For cubic systems, we have three distinct elastic constants,

c11, €12 and, c44. The determinant of the elastic constant matrix gives us the three

conditions of elastic stability:[107]

(c11 + 2612)/3 > 0 (5.30)
(Cu - Clz)/2 >0 (531)
cag >0 (532)

Actually, elastic stiffness constants, rather than elastic constants are more im-
portant in determining elastic instabilities[108]. Elastic stiffness constants can be
calculated by stress-strain experiments or from fluciuation formulas. The two sets of

numbers are different for finite stresses. In the static calculation, one has to allow for
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strain relaxation within the unit cell when dealing with the elastic constants because
diamond cubic structure has two atoms per unit cell {107, 109). The left hand sides
of (5.30), (5.31), and (5.32) are bulk modulus, the modulus against tetragonal shear
G’, and the modulus against thombohedral shear G respectively. Then we can write

that
K(P)>0, G'(P)>0, G(P)>0 (5.33)

where P is the hydrostatic pressure. Recently, it has been shown that (5.30), (5.31),
and (5.32) do not predict correctly lattice instability induced in an fcc metallic lattice
by hydrostatic tension [108, 110]. It has been also shown that by replacing the elastic
constants by the stiffness coefficients, the resulting stability criteria will have the

following forms:

K = (cn+2c12)/3+P/3>0 (5.34)
G, = (Cu - Clz)/2 -P>0 (5.35)
G = cu—-P>0. (5.36)

If we carry out stress-strain experiments, the numbers we will find will not be elastic
constants, but elastic stiffness constants, so that we can directly use those numbers
in (5.30), (5.31), and (5.32) to determine elastic instability stress and strain. To
determine elastic instability stress and strain, we apply a strain to the system and
determine elastic stiffness constants at this strain and repeat this procedure for various
strain values until one of the elastic stability criteria is violated. Our results for elastic
moduli at various strain values are shown in Figure 5-8.

The bulk modulus goes to zero at 17% strain for the TB model and sipinodal
instability sets in. We calculated the stress at the instability point and found that
it is 0.38Mbar. Tersoff potential predicts spinodal instability too, but strain at the
elastic instability point is 15% and the stress is 0.36 Mbar. There are no ab inito

or experimental data for instability for hydrostatic tension. But we believe that our
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results are more reliable due to the fact that we include electronic effects as well.
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n ne I r(A) |ro(A) [ ri(A) | goleV)
2.0 6.5 2,18 1.1.5363 | 2.45 | 8.185
m me d.(A) | do di(A)

3.303 | 8.665 | 2.1052 | 1.64 2.57

Table 5.1: Parameters for functions s(r) and ¢(r)

t(r—r1) | te(r —dy) f(x)
co | 6.7392107% | 2.250z10-® —2.590
c; | —8.188z1072 | —1.440z10-% [ 0.572115
' ¢, | 0.193236 | 2.10433z10°5 | —1.789z10-3
cs | 0.354287 6.602439z10° | 2.3539z10°5
C4 | —1242:10_7

Table 5.2: Coefficient of the polynomial functions t,(r — ry),te(r — dy), and f(z).

ra(A) | 1,,(A) | Ba(eV/A®) | B,.(eV/A?)
exp't | 1.89 | 2.015 | 1.3233 1.93884
fit | 1.89 | 2.027 | 1.3875 1.95658

Table 5.3: The results of the fit to diamond cubic and rocksalt silicon carbide.

Cu | Ci: | C4,
Tersoft | 4.36 | 1.20 | 3.11
TB 3.72 | 1.57 | 2.56
Exp’t. | 3.9 | 1.42 | 2,56

Table 5.4: Elastic constants of SiC obtained using Tersoff potential and the TB
method compared with experiment (in MBar).
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Figure 5-3: The band-structure energy for SiC.
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Figure 5-5: Pressure vs. volume curves of # SiC for various models.
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Figure 5-6: The stress-strain curves for SiC.
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The experimental data (open circles) are from [15).
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Chapter 6

Conclusions and Future Work

We have shown in this dissertation that the TB approach provides an efficient and
transferable method for calculating properties of covalent materials. We have estab-
lished that the TB method is transferable in the sense that it is equally applicable to
clusters, liquids, crystals, and crystal defects.

We calculated various properties of Si, C, and SiC by using the TB method. We
found that C clusters form chain and ring structures for N < 10. We calculated
elastic constants for Si, C, and SiC and found them in good agreement with the
experiment. These calculations proved that the TB method describes angle dependent
forces adequately.

For the first time we investigated partial dislocations in Si by the TB method and
obtained results in agreement with the experimental data. We have proved that APD
defects are important agents in dislocation movement.

We developed a new TB method for SiC and investigated elastic stability of SiC
and determined critical stress, strain and the mode of elastic instability. We have
found that under uniform dilatation the spinodal or decohesion instability sets in
first. Phonon dispersion curves and elastic constants are in reasonable agreement with
experimental results. The results on elastic constants, particularly the shear elastic
constant cy for all three systems investigated give a measure of the robustness of the
TB approach to atomic cohesion. The results on clusters, properties of which we are

not using in determining the TB parameters, serve to emphasize the transferability
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of this approach. Taking all of the results together, we can conclude that the TB
method is in general more reliable than empirical potential functions.

In the case of SW and Tersoff empirical potentials, we have shown that they can
be used to give satisfactory results in most but not all situations. Since empirical
potentials are simpler to use than any TB method, it would be useful to develop a
hybrid method where both can be applied in a single simulation, the TB method
being used only in the most critical region where the description of local bonding is
important.

Several further improvements are possible to make the TB method a quantitative
tool for investigating atomistic phenomena. Charge transfer effects can be included in
the calculations. Application of the recursion method to calculate electronic structure

effects may allow larger number of particles to be treated by the TB method.
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Appendix A

The MD Program

The flowchart of the tight-binding MD program is shown in Figure A-1[15]. The com-
putationally most intensive part of the program is the calculation of the tight binding
eigenvalues and eigenvectors. A very large matrix should be diagonalized in order to
calculate the interatomic forces. The Jacobi method[111] is used to diagonalize the
Hamiltonian matrix. The derivatives of the Hamiltonian matrix elements are calcu-
lated analytically. The program is suitably coded to make vectorization possible. The
periodic boundary conditions are applied in all three directions. If an atom leaves
the central unit cell in one direction, anotier atom enters the central unit cell in the
opposite direction. The periodic boundary conditions in two dimensions are shown
in Figure A-2.

The MD program consists of two parts: one part calculates the Hellmann-Feynman
forces and the other part calculates the pair potential forces. The program combines
the two forces to obtain the total force. The pair potential forces are calculated very
quickly compared to the Hellmann-Feynman forces. One of the reasons for that is the

simple form of the pair potential chosen. The total energy is conserved to the fifth
digit.
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Figure A-1: The flowchart of the tight binding MD simulation program for SiC.

123



T T R e T

(1,1)

- e e = e = = -

(1,0)

Primary Cell

(0,0)

Figure A-2: Application of the periodic boundary conditions in two dimensions.

124



Bibliography

(1] A.E. Carlsson. Solid State Phys., 43:1, 1985.

[2] F.H. Stillinger and T.A. Weber. Phys. Rev.B, 31:5262, 1985.

(3] J. Tersoff. Phys. Rev.B, 39:5566, 1989.

[4] H. Balamane, T. Halicioglu, and W.A. Tiller. Phys. Rev. B, 46:2250, 1992.
(5] P. Hohenberg and W. Kohn. Phys. Rev., 136:864B, 1964.

(6] W. Kohn and L.J. Sham. Phys. Rev.A, 140:1133, 1965.

[7] R.O. Jones and O. Gunnarson. Rev. Mod. Phys., 61:689, 1989.

(8] M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Rev.
Mod. Phys., 64:1045, 1992.

(9] R. Car and M. Parrinello. Phys. Rev.B, 55:2471, 1985.
1 .C. Slater and G.F. Koster. Phys. Rev., 94: , .
0] J.C. SI d GF.K Phys. Rev., 94:1498, 1954

[11] L. Pauling and E.B. Wilson. Introduction to Quantum Mechanics. Dover, New
York, 1985.

(12] I.N. Levine. Quantum Chemistry. Prentice Hall, New Jersey, 1991.
(13] D.J. Chadi. Phys. Rev. Lett., 41:1062, 1978.
(14] D.J. Chadi. Phys. Rev. B, 29:785, 1984.

(15] C.Z. Wang, C.T. Chan, and K.M. Ho. Phys. Rev. B, 39:8592, 1989.

125



[16] C.Z. Wang, C.T. Chan, and K.M. Ho. Phys. Rev. B, 40:3390, 1989.
[17) C.H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho. Phys. Rev.B, 43:5024, 1991.
(18] C.Z. Wang, C.T. Chan, and K.M. Ho. Phys. Rev.B, 45:12227, 1992.

[19) R. Virku inen, K. Laasonen, and R.M. Nieminen. J. Phys.:Condens. Matter,
3:7455, 1991.

(20] K. Laasonen and R.M. Nieminen. J. Phys.:Condns Matter, 2:1509, 1989.

[21] J.M. Ziman. Principles of the Theory of Solids. Cambridge University Press,
New York, 1989.

[22] O. Madelung. Introduction to Solid State Theory. Springer-Verlag, 1981.
(23] A. Haugh. Theoretical Solid State Physics. Pergamon Press, New York, 1972.

[24] I.N. Levine. Properties of Homogeneous Electron Gas. Prentice Hall, New
Jersey, 1991.

[25] D.M. Ceperley and B.J. Alder. Phys. Rev. Lett., 45:566, 1980.

(26] I. Stich, R. Car, and M. Parrinello. Phys. Rev. Lett., 63:2240, 1989.

[27] W. Foulkes and R. Haydock. Phys. Rev. B, 39:12520, 1989.

(28] U. von Barth and C.D. Gelatt. Phys. Rev. B, 21:2222, 1980.

[29) G.B. Bachelet, D.R. Hamann, and M. Schluter. Phys. Rev. B, 26:4199, 1980.

(30) R. C. Chaney, T. K. Tung, C. C. Lin, and E. E. Lafon. J. of Chem. Phys.,
52:361, 1970.

[31] E. E. Lafon and C. C. Lin. Phys. Rev, 152:579, 1966.
[32] J.A. Majewski and P. Vogl. Phys. Rev. B, 35:9666, 1987.

[33] F. Ducastelle. Order and Phase Stability in Alloys. Elsevier Science Publishers
B.V., 1991.

126



[34] M. Kohyama, S.Kose, M. Kinoshita, and R. Yamamoto. J. Phys., 2:7791, 1990.
[35] D.J. Chadi. At. Data Nucl. Data Tables, 14:177, 1974.

[36) W.A. Harrison. Electronic Structure and the Properties of Solids. Freeman, San
Fransisko, 1980.

[37) B. M. Deb. The Force Concept in Chemistry. Van Nostrand Reinhold Company,
New York, 1981.

(38] R.P. Feynman. Phys. Rev, 56:340, 1939.

[39] R. Hoffman. J. Chem. Phys., 39:1397, 1963.

[40] M. Schilfgaarde and W.A. Harrison. Phys. Rev. B, 33:2653, 1986.

[41] L. Goodwin, A.J. Skinner, and D.G. Pettifor. Europhys. Lett., 9:701, 1989.

[42) M.W. Finnis, A.T. Paxton, D.C. Pettifor, A.P. sutton, and Y. Ohta. Phil. Mag.,
58:143, 1988.

[43] M. Kohyama, R. Yamamoto, Y. Ebata, and M. Kinoshita. Phys. Stat. Sol.,
152:533, 1989.

(44] A. L. Companion and F. O. Ellison. J. Chem. Phys., 32:1132, 1960.
[45) M. T. Yin and M. L. Cohen. Phys. Rev. B, 26:3259, 1982.

[46] K.R. Subbaswami M. Menon. Phys. Rev. B, 67:3487, 1991.

[47] A. K. Mahan. Phys. Rev. B, 30:5835, 1984.

[48] B. Holland, H. S. Greenside, and M. Schluter. Phys. Stat. Sol. (b), 126:511,
1984.

[49] K. J. Cheng and M. L. Cohen. Phys. Rev. B, 31:7819, 1985.

[50) N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College
Publishing, 1976.

127



{51] M. T. Yin and M. L. Cohen. Phys. Rev. Lett., 50:2006, 1983.

[52) S.F. Ahmad, H. Kiefte, M.J Clouter, and M.D. Whitmore. Phys. Rev. B,
26:4239, 1982.

(53] P. Korpium and E. Lusher. Rare gas solids. volume II, chapter 12. Aca-
demic,London, 1977.

[54] M. Powell and G. Dolling. Rare gas solids. volume II, chapter 15. Aca-
demic,London, 1977.

[55] P. Stoicheff. Rare gas solids. volume II, chapter 16. Academic,London, 1977.
[56] D.R. Squire, A.C. Holt, and W.G. Hoover. Physicc, 42:338, 1969,
(57) J.R. Ray, M.C. Moody, and A. Rahman. Phys. Rev. B, 32:733, 1985.
(58] E. B. Barojas and D. Levesque. Phys. Rev. B, 34:3910, 1986.

(59) K. Raghavachari. J. Chem. Phys., 83:3520, 1985.

60] K. Raghavachari. J. Chem. Phys., 84:5672, 1986.

[61] K. Raghavachari. J. Chem. Phys., 89:2219, 1988.

(62] D. Tor.ﬁanek and M. A. Schluter. Phys. Rev.B, 36:1208, 1987.

(63] F.S. Khan and J. Q. Broughton. Phys. Rev. B, 39:3688, 1989.

[64] J. R. Chelikowisky and J. C. Phillips. Phys. Rev.B, 44:1538, 1991.
(65] s. Kirkpatrick, C. Gellat, and M. Vecchi. Science, 220:671, 1983.

[66] C. H. Xu, C.Z. Wang, C.T. Chan, and K.M. Ho. J. Phys.: Condens. Matter,
4:6047, 1992.

(67) A. Taylor and R. M. Jones. Phys. Rev.B, 39:5120, 1989.

(68] P. B. Hirsch. J. Microsc., 118:3, 1980.

128



'69] A. George and G. Champier. Phys. Stat. Solidi, A53:529, 1979.
(70) J.R.K Bigger, D.A. Mclnnes, and A.P. Sutton. Phys. Rev. Lett, 69:2224, 1992.
i71] S. Marklund. Phys. Status Solidi B, 92:83, 1979.

(72] M.S. Duesbery and G. Y. Richardson. CRC Crit. Rev. Solid State Mater. Sct.,
17:1, 1991.

(73] C.S. John. Phil. Mag., 32:1193, 1975
(74] G. Michot and A. George. Scripta Metall., 16:519, 1986.

[75] B. Y. Farber, Y.L. Lunin, and V.I. Nikitenko. Phys. Stat. Solidi A, 97:469,
1986.

(76] V.V. Bulatov, S. Yip, and A.S. Argon. to be published.

(77] L.L.F. Ray and D.J.H. Cockayne. J. Micros., 98:173, 1973.

(78] K.W. Lodge, A. Lapicirella, and C. Battistoni. Philos. Mag. A, 60:643, 1989.
[79] M. S. Duesbery, B. Joos, and D.J. Michel. Phys. Rev. B, 43:5143, 1991.

[80] M.I. Heggie and R. Jones. Philos. Mag., 48:365, 1983.

(81] J.M. Ziman. Models of Disorder. Cambridge University Press, Cambridge, 1979.
[82] Y. Li and P.J. Lin-Cheung. Phys. Rev. B, 36:1130, 1987.

(83] B.J. Min, Y. H. Lee, C. Z. Wang, C. T. Chan, and K. M. Ho. Phys. Rev. B,
46:9677, 1992.

(84] Rose J, H, J. R. Shmidt, F. Guinea, and J. Ferrante. Phys. Rev. B, 29:921,
1984.

(85]) S. Fahy and S. G. Louie. Phys. Rev. B, 36:3373, 1987.

(86] D. H. Lee and J.D. Joannopoulos. Phys. Rev. B, 48:1846, 1982.

129



[87) G. Wiech. Soft x-ray band spectra and the electronic structures of metals and

materials. Academic,New York, 1968.
{88] D. Olego, M. Cardona, and P. Vogl. Phys. Rev. B, 25:3878, 1982.
[89] M. Schilfgaarde and W.A. Harrison. J. Phys. Chem. Solids, 46:1093, 1985.
{90] C.Z. Wang, C.T. Chan, and K.M. Ho. Phys. Rev.B, 70:661, 1993.

[91] B. L. Zhang, C.Z. Wang, C.T. Chan, and K.M. Ho. J. Phys. Chem, 97:3134,
1993.

[92) F. W. Sears and G. H. Salinger. Thermodynamics, Kinetic Theory, and Statis-
tical Thermodynamics. Addison-Wesley Publishing Company, 1975.

(93] J.R. Ray and A. Rahman. J. Chem. Phys, 80:4423, 1984.

[94) J.M. Haile. Molecular Dynamics Simulation, Elementary Methods. John Wiley
and Sons, Inc, 1992.

(95] J. F. Nye. Physical Properties of Crystals. Oxford University Press, New York,
1990.

(96] W. G. Hoover, A. C. Holt, and D. R. Squire. Physica, 44:437, 1969.

[97] J.R. Ray and A. Rahman. Phys. Rev. B, 33:895, 1986.

[98] M Parrinello and A. Rahman. J. Appl. Phys., 52:7182, 1981.

[99]) L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Pergamon, Oxford, 1959.
[100] X-Q Guo, R. Podloucky, and A. J. Freeman. J. Mater. Res., 6:324, 1991.
(101] M. D. Kluge and J. R. Ray. J. Chem. Phys., 85:4028, 1986.

(102] R. J. Wolf, K. A. Mansour, M. W. Lee, and J. R. Ray. Phys. Rev.B, 46:8027,
1992.

130



103} J. Goodisman. The force concept in chemistry. volume I, chapter 5. Van Nostran

Reinhold Company, 1981.

104} J. Ashkenazi, M. Dacorogna, M. Peter, Y. Talmor, E. Walker, and S. Steine-
mann. Phys. Rev. B, 18:4120, 1978.

1105] D. H. Lee and J. D. Joannopoulos. Phys. Rev. Lett., 48:1509, 1982,

'106] H.M.J. Smith. Proc. Roy. Soc. A, 241:105, 1947.

107} M. Tang and S. Yip. unpublished.

(108] J. Wang, S. Yip, S.R. Phillpot, and D. Wolf. Phys. Rev. Lett., 71:4182, 1993.

'109] E. Pearson, T. Takai, T. Halicioglu, and W.A. Tiller. J. Cryst. Growth, 70:33,
1984.

{110} J. Wang, S. Yip, S. R. Phillpot, and D. Wolf. to be published.

[111) W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical
Recipes in Fortran. Cambridge University Press, Cambridge, 1990.

131



