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Abstract

Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zoo-
plankton, sediments, etc.) and man-made materials (e.g. pollutants, floating debris,
particulate matter, etc.). Understanding such uncertain Lagrangian transport is im-
perative for reducing environmental damage due to natural hazards and for allowing
rigorous risk analysis and effective search and rescue. While secondary variables and
trajectories have classically been used for the analyses of such transports, Lagrangian
Coherent Structures (LCSs) provide a robust and objective description of the im-
portant material lines. To ensure accurate and useful Lagrangian hazard scenario
predictions and prevention, the first goal of this thesis is to obtain accurate proba-
bilistic prediction of the underlying stochastic velocity fields using the Dynamically
Orthogonal (DO) approach. The second goal is to merge data from both Eulerian and
Lagrangian observations with predictions such that the whole information content of
observations is utilized.

In the first part of this thesis, we develop high-order numerical schemes for the
DO equations that ensure efficiency, accuracy, stability, and consistency between
the Monte Carlo (MC) and DO solutions. We discuss the numerical challenges in
applying the DO equations to the unsteady stochastic Navier-Stokes equations. In
order to maintain consistent evaluation of advection terms, we utilize linear centered
advection schemes with fully explicit and linear Shapiro filters. We then discuss
how to combine the semi-implicit projection method with new high order implicit-
explicit (IMEX) linear multi-step and multistage IMEX-RK time marching schemes
for the coupled DO equations to ensure further stability and accuracy. We also
review efficient numerical re-orthonormalization strategies during time marching. We
showcase our results with stochastic test cases of stochastic passive tracer advection
in a deterministic swirl flow, stochastic flow past a cylinder, and stochastic lid-driven
cavity flow. We show that our schemes improve the consistency between reconstructed
DO realizations and the corresponding MC realizations, and that we achieve the
expected order of accuracy.

In the second part of the work, we first undertake a study of different Lagrangian
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instruments and outline how the DO methodology can be applied to obtain La-
grangian variables of stochastic flow maps and LCS in uncertain flows. We then
review existing methods for Bayesian Lagrangian data assimilation (DA). Disadvan-
tages of earlier methods include the use of approximate measurement models to di-
rectly link Lagrangian variables with Eulerian variables, the challenges in respecting
the Lagrangian nature of variables, and the assumptions of linearity or of Gaus-
sian statistics during prediction or assimilation. To overcome these, we discuss how
the Gaussian Mixture Model (GMM) DO Filter can be extended to fully coupled
Eulerian-Lagrangian data assimilation. We define an augmented state vector of the
Eulerian and Lagrangian state variables that directly exploits the full mutual infor-
mation and complete the Bayesian DA in the joint Eulerian-Lagrangian stochastic
subspace. Results of such coupled Eulerian-Lagrangian DA are discussed using test
cases based on a double gyre flow with random frequency.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Data assimilation has long been used in meteorology for numerical weather prediction

[29] and in oceanography to better understand and predict ocean dynamics [63, 54, 55,

38, 86]. The process of merging measurements which contain information regarding

the true state of a system with predictions from models to improve knowledge of

the state is referred to as data assimilation [28, 49, 98]. Predictions from dynamical

models involve uncertainty from different sources such as model uncertainty when the

dynamical model governing the interactions between the different physical processes

is not well known, imprecise knowledge of initial conditions, boundary conditions,

forcing, parameters, and unresolved processes of spatial and temporal scales that

may not interact or contribute strongly to the main physical process being modeled

[55, 62, 58]. At the same time, available measurements are both sparse in time and

space. It then becomes necessary to use both dynamical model and data to understand

how a dynamical system evolves.

In the context of oceans, one may need to describe density, temperature, salinity,

pressure and velocity to completely define the state. To understand and predict how

material transport is organized, it is imperative to look at advection of material in

the flow and Lagrangian Coherent Structures (LCS) which influence and organize

material transport. Measurements may or may not be available in these variables

17



for assimilation. The different types of sensors used to make measurements include

Eulerian instruments (e.g. fixed sensors, moorings, etc.) and Lagrangian instruments

(e.g. drifters, floats, etc.). The differences between these instruments and the types of

measurements they make are discussed later in chapter 3. Most methods of data as-

similation have focused on incorporating observations made by Eulerian instruments.

It is only in the past two decades that different methodologies [13, 51, 46, 82, 84]

are being developed to assimilate observations made by Lagrangian instruments. It

is desirable to assimilate Lagrangian data as such observations can have more spa-

tial coverage and be more economical. Ideally, the assimilation methodology should

provide the true Bayesian estimate combining all information rigorously in accord

with probability densities. As a result, it should be capable of assimilating all of the

Eulerian and Lagrangian information content of observations. This forms the core

goal of this work.

1.2 Goal of this Work

In order to address the above challenges, this thesis develops numerical schemes for a

reduced order approach for making high-order probabilistic predictions for stochastic

Navier-Stokes and Boussinesq fluid flows and formulates a rigorous methodology for

Eulerian-Lagrangian data assimilation. Specifically this involves:

1. Probabilistic predictions of stochastic fluid flows - develop and verify

new numerical schemes for the Dynamically Orthogonal (DO) field equations

that maintain consistency, accuracy, and efficiency in the DO solution

2. Assimilation methodology for joint Eulerian-Lagrangian state esti-

mation - extend and apply the Gaussian Mixture Model (GMM)-DO filter to

joint Eulerian-Lagrangian data assimilation, exploiting the nonlinear governing

equations and Bayesian mutual information
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1.3 Layout of Thesis

In chapter 2, new numerical schemes for the DO equations applied to the stochastic

Navier-Stokes equations are formulated. We first provide an overview of the DO equa-

tions and the numerical challenges involved in the time-integration of these equations

when applied to the stochastic Navier-Stokes equations. We then discuss how these

numerical challenges may be overcome by using a suitable advection scheme with

filtering and high-order implicit-explicit (IMEX) time-marching schemes. This is fol-

lowed by a discussion on time-stepping and re-orthonormalization techniques. Finally,

we verify the consistency and accuracy of these numerical schemes by applications to

the stochastic passive tracer advection in a deterministic swirl flow, stochastic flow

past a cylinder, and stochastic lid-driven cavity flow.

In chapter 3, a new methodology is proposed for Bayesian Eulerian-Lagrangian

data assimilation. We first discuss the different types of Lagrangian instruments

and the types of measurements that they make in the ocean. This is followed by

a discussion on how Lagrangian Coherent Structures (LCS) may be described using

the measure of the finite-time Lyapunov exponent (FTLE). A brief overview of how

these may be obtained in stochastic flow is presented. We then give the formal

problem statement of joint Eulerian-Lagrangian data assimilation with a survey of

the existing methodologies in literature and the challenges that need to be handled.

We then describe how the Gaussian Mixture Model (GMM)-DO filter can be extended

to handle these challenges. Finally, the application of the methodology is presented

considering the test case of stochastic double-gyre flow.

Summary of results, concluding remarks and future directions are given in chapter

4.
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Chapter 2

Numerical Schemes for

Dynamically Orthogonal Equations

Uncertainty quantification has become an important tool for making probabilistic pre-

dictions of truly stochastic dynamical systems or understanding the impact of error

or imprecise knowledge in data such as initial conditions, boundary conditions, pa-

rameters, etc. [131, 52]. The most popular method in uncertainty quantification has

been the Monte Carlo method and its variants which are all sampling based methods.

Nonsampling methods include perturbation methods [72, 73] where random fields are

expressed in their truncated Taylor series expansion around the mean. These meth-

ods do not perform well when magnitudes of uncertainty are high. Other methods

include moment equations and operator-based methods [17, 18, 133]. Recently de-

veloped methods include Proper Orthogonal Decomposition (POD) method which

was historically applied to turbulent flows [85, 78, 45] and generalized polynomial

chaos (gPC) [132] which uses spectral representations in the random space. Here, we

will focus on the Dynamically Orthogonal (DO) equations which was shown to be a

generalization of the generalized PC and POD methods in [96].
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2.1 Dynamically Orthogonal Equations

2.1.1 Review

Suppose that we are interested in the dynamics of the continuous stochastic field

X (r, t; w) which is governed by the following stochastic partial differential equation

(SPDE)
X=(r,t;w) -L[X(r, t;w); w], r E'D, tE T, w E Q (2.1)

9t

with stochastic initial conditions

X(r, to; w) = Xo(r; w) (2.2)

and stochastic boundary conditions

B [X(r, t; W)]r= h( , t; w) (2.3)

where B is a linear differential operator and . denotes the spatial coordinate along

the boundary.

The first step of the DO methodology involves taking the generalized time-dependent

Karhunen-Loeve (KL) decomposition of the stochastic process X(r, t; w)

n.

X(r, t; w) = X(r, t) + <Di(t; w)Ri(r, t) (2.4)

where k(r, t) is the mean field, ki (r, t) are the orthonormal modes which forms a

basis of the time-dependent stochastic subspace, <bi(t; w) are zero-mean stochastic

processes, and n, represents the number of first dominant modes which are retained in

the decomposition and is also size of the stochastic subspace. The KL decomposition is

the best biorthogonal approximation of the original stochastic process [74, 1] in terms

of minimizing mean square error due to truncation. This is analogous to the singular

value decomposition for matrices. It should be noted that both the modal basis and

the stochastic coefficients are evolved in time and this is why the DO methodology is
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a more general formulation than Polynomial Chaos (PC) [132] where the stochastic

coefficients T'i(t; w) are fixed in time or Proper Orthogonal Decomposition (POD) [45]

where the modes are fixed in time.

The DO evolution equations are obtained by enforcing the dynamically orthogo-

nality condition of

K ' Dk , i(-, t) = 0 (2.5)

that is the stochastic subspace can evolve only orthogonal to itself. The operator

(a, b) is the spatial inner product defined as

(a(., t), b(., t)) = a(r, t)T b(r, t)dr (2.6)

The evolution equations of the mean, modes and stochastic coefficients respectively

are given by (using Einstein notation)

I t) = E [L [X(r, t; w); w]]

ata B ( , = I' (L [X (r, t; w); w] qG j (t; w)) C
dbi (t; w)

dt = (L [X(r, t; w); w] - E [L [X(r, t; w); w]] , kg(r, t))

(2.7)

where E[e] is the expectation operator, and 1H[z] is the projection of the vector z

onto the space orthogonal to the stochastic subspace.

n.

HI[z] = z -Hx[z] = z - (z, Ri(r, t))ki(r, t) (2.8)

The boundary conditions governing the mean and modes are given by

B [k(r, t)]r- = E[h( , t; w)] (2.9)

13 [i (r, t)]r-e (2.10)= [ ) (t; W)h( , t; w)
j=1

The initial conditions are obtained through the KL decomposition and retaining the
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dominant n, modes. If one chooses to use {kior}%li 1 as the modal basis to describe

the stochastic subspace at time 0 then,

x(r, to) = E[Xo(r; w)] (2.11)

R(r, to) = xior (2.12)

<i (to; W) = (Xo(-; w) - Ro(), io(-)) (2.13)

A complete derivation of the DO equations can be found in [95] and details regarding

handling stochastic boundary conditions in [35].

With the DO methodology, we have reduced the original stochastic partial dif-

ferential equation of dimension nx to (i) a partial differential equation (PDE) of

dimension nx for the mean, (ii) n, PDEs of dimension nx for the orthonormal bases

which describe the stochastic subspace, and (iii) a set of stochastic differential equa-

tions which represents how the uncertainty evolves in the stochastic subspace through

time. If the stochastic coefficients are represented using nMc sampled Monte Carlo

realizations 1, then this set of stochastic differential equations is transformed into

ns x nMC ordinary differential equations (ODEs). Hence, the DO methodology is an

efficient reduced-order approach of propagating uncertainty in stochastic dynamical

systems.

2.1.2 Application to Navier-Stokes Equations

We are now interested in applying the DO methodology to the stochastic incompress-

ible Navier-Stokes equations

V -u(r, t; w) = 0

u(r, t;w) + u(r, t; w) -Vu(r, t; w) = -Vp(r, t; w) (2.14)
a~t

+ v(r; w)V 2u(r, t; w) + f(r, t; w)

'To make sure the samples are representative of the uncertainty in each mode, it is suggested to
use nMc >> ns
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where u is velocity, p is pressure divided by density of the fluid 2, V is the kinematic

viscosity and f a forcing term. In general, stochasticity can be introduced through

initial conditions, boundary conditions, forcing terms, and parameters (e.g. viscosity,

density, etc.). The stochastic initial conditions are expressed as

u(r, to; w) = uo(r; w) (2.15)

and the stochastic boundary conditions are separated according to the regions where

Dirichlet and Neumann boundary conditions are enforced

u(r, t; w) = hD(r, t; w), r C ODD, W E Q (2.16)

Ou(r, t; w)
Ontw= hN(r, t; w), r E ODN, W E Q (2.17)

To obtain the stochastic DO Navier-Stokes equations, we consider the following DO

decompositions of velocity and pressure

n.

u(r, t; w) = i(r, t) + Y (t; w)i i(r, t) (2.18)

n8

p(r, t; w) =p(r, t) + Y (t; w)pi(r, t) (2.19)

where they share the same set of stochastic coefficients Y. The initial DO decomposi-

tion is obtained by taking the KL decomposition of the initial conditions (eq. (2.15))

and retaining n, modes. The stochastic DO Navier-Stokes equations can be obtained

by applying the DO methodology described in the previous section to the stochastic

Navier-Stokes equations (eq. (2.14)).

2 For brevity, we will refer to p simply as pressure in rest of this work.
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Mean

The evolution equation is given by{V-fi=0
t V. (ni) - Cy~yV- (fIjIi) -- + vV 2 U

with boundary conditions

u(r, t) E[hD(r, t; w)] = D,

0 U-(r, t)
9 , E[hN(r, t;w) = hN,an

r E ODD, W E Q

r E 0DN, W E Q

and initial conditions

i(r, to) = E [io(r; w)] = io(r; w)

Modes

The evolution equation is given by

V -ii =0

a = -)

QivV 2ii - V- ( '6li) - V- (fin) - Vpj - CyjY MyymyV - (fIn1FIm)

and MYYYy, = E [YYmYn]

The boundary conditions are

rEaDD, WEQ (2.26)

r EDN, W E Q (2.27)
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(2.20)

(2.21)

(2.22)

(2.23)

where

(2.24)

(2.25)

n.

fi1 (r, t) = [<Dj (t; w)hD(r, t; w)]CD
j=1

aii(r, t)
an

n.

2 E[=1 (t; w)hN(r, t; U)]
j=1



with initial conditions as

Gi (r, to) = ii,o(r) (2.28)

Stochastic Coefficients

Their evolution is given by

dY

dt (Imii)Ym (V - ntnm),fii)(YmYn - Cymyn) (2.29)

where

/m = vV 2im - V _ (iiimi) - V (iUm) - VPm (2.30)

The initial conditions of the stochastic coefficients are obtained by projecting the full

stochastic field onto the corresponding mode after removal of the mean

Yi(to; W) = (uo - no, fi,o(r)) (2.31)

Alternately one can use knowledge of the stochastic field when constructing the KL

decomposition e.g. the stochastic coefficients are Gaussian for a Gaussian process.

The details of the stochastic DO Navier-Stokes equations is now complete. For

a full derivation, the reader should refer [124] which actually discusses the case of

stochastic Boussinesq equations. The numerical study that we describe in this work

can be easily extended to stochastic Boussinesq equations.

2.1.3 Numerical Challenges

One of the broad goals of this work is to develop high-order numerical schemes for

the DO equations that ensure efficiency, accuracy, stability, and consistency between

the Monte Carlo (MC) and DO solutions. In order to maintain consistency between

the DO and MC solutions, we also need to ensure consistency in how advection

terms are evaluated in the two cases. This is difficult as the modes of velocity ni

do not contain any directional information. Adapting advection schemes used for

Monte Carlo realizations then becomes a challenge for advection terms of the form

27



V - (6iifi) and V - (fiji) i.e. when the physical quantities are being advected by the

modes of velocity. One solution is to evaluate these terms in a Monte Carlo fashion.

This maintains consistency but is computationally expensive. Another approach is

to use an upwinding scheme considering the DO mean ii for directional information

[69] but this is only justified for small uncertainties. There also exists Taylor series

approaches [16] but these become inaccurate when the PDFs are skewed and also when

uncertainties in the field variables are high. Another approach which has been quite

successful is to average numerical fluxes according to the PDFs of velocity direction

[124]. The idea is since stochastic coefficients Y have zero mean, an upwinding

scheme [68] could be used to evaluate the advection terms considering both directions

and then average the results. The advection scheme chosen in [124] was the total

variation diminishing (TVD) scheme with a monotonically centered (MC) symmetric

flux limiter [126]. We will refer to this resulting scheme as the TVD* scheme in the

rest of the work.

The TVD* scheme however can lead to significant errors after long time-integration

times [24, 23]. It can work well if for half the realizations Y < 0 and for the other half

Y > 0. However, this is not always guaranteed. One solution could be to carry out

an averaged-upwinding according to the PDF of Y but this would still not help us in

achieving consistency. In this work, we will utilize linear centered advection schemes

which ensure consistency between advection in the DO and MC setting. They have

already been applied to the stochastic tracer advection equation in [23, 24]. Here, we

extend their application to the unsteady stochastic DO Navier-Stokes equations.

However, it is well known that centered advection schemes introduce numerical

spurious oscillations which need to be removed so as to not corrupt the solution to

the dynamical equations. This is accomplished by implementing spatial filters [48, 56]

which are discussed in the next section.

In addition to ensuring stability through filtering, stability and high-order ac-

curacy of the DO solution can be ensured by adopting higher order time marching

schemes. In prior numerical studies [95, 124], a first order implicit-explicit (IMEX)

scheme was used. Disadvantages of using lower-order time-marching schemes in-
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clude sacrificing stability and accuracy but particularly the loss of coupling between

the mean and modal evolution equations over the time-step. While linear multi-

step IMEX schemes can be used to tackle the former problems, IMEX Runge-Kutta

schemes can be used to tackle all of these problems. We thus develop and discuss

IMEX schemes for DO equations in section 2.3.

The resulting aggregate IMEX scheme for the mean and mode of velocity will

include pressure gradient terms. In our system of equations for incompressible flow

(eq. (2.14)), there is no evolution equation for pressure. One approach to resolve

this is to consider that the flow is weakly compressible and introduce an equation of

state. Other approaches [26] such as the pressure-correction methods (e.g. SIMPLE,

SIMPLER, PISO, etc.) rely on decoupling pressure and velocity, e.g. [2]. Here, we

use projection methods [32].

Another consequence of using numerical discretizations of the DO equations is

that the DO modes are guaranteed to be orthonormal only up to numerical error.

Using high-order numerical schemes helps in ensuring that the error is low over one

time-step but the modes may become very far from being orthonormal over a large

number of time-steps. It thus becomes important to come up with an approach

to ensure orthonormality of the DO modes during time-integration and this will be

discussed in section 2.4.

In order to track the true Monte Carlo realizations perfectly using the DO method-

ology, it would be necessary to retain all the modes in eq. (2.4) (possibly infinite) and

evolve them through time. In this case, the DO methodology would become as ex-

pensive as the MC approach. This is why truncating the number of DO modes to

ns(t) allows us to approximate the MC solution well and at the same time gain large

computational dividends. However, in order to ascertain the influence of the trun-

cated modes (i.e. modes numbered n,(t) + 1 to oc) on the retained modes and to

increase the overall accuracy and stability of the DO framework, a closure scheme

is required to model the evolution of these truncated out modes and their influence

on the dynamics of the retained modes. This forms both a modeling and numerical

challenge. We do not investigate this problem here and leave it for future work.
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2.2 Treatment of Advection: Numerical Filtering

In general, the following properties of the filter applied is desired [48, 103]:

1. completely remove waves of wavelength 2Ax (waves of smallest wavelength that

can be resolved on a grid of uniform spacing Ax in any direction)

2. preserve physically meaningful waves of higher wavelengths

3. the filter is linear so that the filtering of the DO solution is equivalent to the

filtering of the realizations reconstructed from the DO solution

4. minimizes the loss of conservation properties upon application such as conser-

vation of mass

While there a variety of numerical filters [48, 88, 87, 104], many of them are

implicit or nonlinear. We focus on the linear explicit Shapiro filter [101, 102, 103]

which satisfies the above properties. It is a linear symmetrical operator which uses

neighboring grid points for smoothing. In one dimension, the application of Shapiro

filter of order 2n to a field of # results in the filtered values T2n (#j) as follows:

22nY 2 nOgb) = i + (-1)"-1 2 2n d (2.32)

where 6 20, = 0j+j - 2#i + #-1. This corresponds to adding high-order linear diffusion

of order 2n

F2n(0) = 0 + (-1)n- 22n 92n + O(Ax 2n+ 2) (2.33)
22n &X

2n

The corresponding response function or effect of applying the Shapiro filter to waves

of wave number k or wavelength A on a ID grid of uniform spacing Ax is

Rn(k) = 1 - sin2 n k AX = 1 - sin2 n (r A) (2.34)

From the above expression, it is clear that the second order Shapiro filter completely

removes waves of wavelength 2Ax but also damps waves of higher wavelengths which

is not desired. This is also illustrated in Fig. 2-1. In order to avoid this, one can
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apply a higher order Shapiro filter and/or apply the Shapiro filter every few number

of time-steps during time-marching. Using a higher order Shapiro filter increases the

width of the numerical stencil and thereby the computational cost. In the case of two

or three dimensional grids, one can take two approaches: (i) apply the 1D Shapiro

filter in each direction or (ii) apply mutli-dimensional Shapiro filters [21].

So far, our discussion of the Shapiro filter assumed that we were deep in the

interior where there isn't a limitation on how wide the numerical stencil can be. This

is no longer true near boundaries. One approach is to introduce ghost cells [101, 22]

so as to use the standard centered Shapiro filter. However, this involves extrapolating

values from the interior to the ghost cells while respecting boundary conditions. This

introduces noisy values into the ghost cells and thus degrades the overall smoothing.

Another approach is to reduce the order of the Shapiro filter which requires a smaller

stencil [22, 83]. While this is robust and easy to implement, this may lead to severe

damping of physically relevant waves propagating from the boundaries and hence

corrupting the solution.

Another approach is to use high order decentered Shapiro filters [27, 22] where the

numerical stencil is decentered by b points. This however introduces dispersion and

may be anti-dissipative for high values of decentering (b). In order to obtain better

dispersion and dissipation behavior, [11] and [129] suggested alternate explicit and

implicit generalized decentered Shapiro filters respectively. A more effective solution

is the uneven-order decentered Shapiro filters [22] which does not suffer from any

instability attributed to anti-dissipative behavior. In one dimension, if the boundary

cell is on the left, the expression for the filtered values F2n+1(0,) upon application of

the Shapiro filter to 0 is given by

y2n+1() = c, + (-1)2 +2 (0i+1 - #,) (2.35)

The corresponding response function is

R2n+l(k) = 1 - sin2n+ 2 (k AX) + i cos k AX sin2n+ 2 k AX (2.36)
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which corresponds to a high order diffusion term and a low order dispersion term.

The response function for different orders against wavelength is plotted in Fig.2-2.

As in the case of the standard centered Shapiro filter, it is desirable to use the highest
possible decentered Shapiro filter in order to preserve the waves of longer wavelengths.

This also helps in minimizing the amount of dispersion introduced.

The different parameters of the Shapiro filter are: (i) order of accuracy (2n), (ii)

number of applications at a given time-step (ntimes) and (iii) frequency at which the

Shapiro filter is applied during time-marching (nfreq). There is no general principle

in deciding these parameters. They may change from one application to another.

When describing the Shapiro filter parameters in the rest of the work, we will use the
minimized notation of (2n, nfreq, ntimes)-

1 1

0.8 0.8 -2=40.
0-2n=4 2-

0. -2n8 0.62n6

0.4 0.4
Cr

0.2 0.2

0 02 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30VAx A/Ax

(a) Application of Shapiro Filter 1 Time (b) Application of Shapiro Filter 100 times

Figure 2-1: Response function of the standard centered Shapiro Filter used in the
interior considering ID grid of uniform spacing Ax (Adapted from [48])

1 0.2 -- ---- ------2i+1-3 
-2n+1-3-2n+1=6 
-2+1-50.8 -2n+1=7 16-2n+1-7

-2n1-9:80.1&' -2n+1-9
. 0.6

0. 1
0.4

10.2 0.05

0 02 6 10 14 18 22 26 30 2 6 10 14 18 22 26 30A/dx A/Ax

(a) Response function (b) Response function

Figure 2-2: Response function of the un-even decentered Shapiro Filter used near
boundaries considering 1D grid of uniform spacing Ax
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2.3 Implicit-Explicit (IMEX) Schemes

The equations for the mean and mode in the stochastic DO Navier-Stokes equations

are of the form
&qp

_= Fe + Fm - (2.37)at
where Fex are nonlinear terms such as advection which we want to evaluate explicitly,

F" are stiff terms such as diffusion which we want to evaluate implicitly and V- is

the gradient of mean or mode of pressure which is usually evaluated in a similar

manner to the diffusion like terms. There are two categories of IMEX schemes: (i)

linear multi-step IMEX schemes where information from previous timesteps is used in

time-marching and (ii) IMEX Runge-Kutta schemes where one time-step is divided

into multiple stages. In this section, we will describe how these IMEX schemes can

be applied to the stochastic DO Navier-Stokes equations. Further, we will describe

how projection methods may be used to decouple pressure and velocity.

To simplify our upcoming discussion on the application of IMEX schemes to the

stochastic DO Navier-Stokes equations, we will introduce some notation here. The

governing equations for the mean, modes and coefficients of velocity can be alterna-

tively written as I Fta + FeJ -V
at v

= F + F"u - VPi (2.38)

dY
dt

where the superscript of the F term indicates if is to be evaluated explicitly or implic-

itly numerically, and the subscript denotes if the term contributes to the evolution

of mean, mode or coefficients. For the stochastic DO Navier-Stokes equations, these

terms are as follows

F =M VV 2 U{ (2.39)
Ff -V (nn) - Cy yV. (fnjjjj)
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F m = vV2fiF v i 
(2.40)

FeX = -V - (fifi) - V - (flin) - C1y,M .,Y"X.V' (6dnfm) - (Qi, 6ft)flj

where Qi is as defined in eq. (2.24). This is to ensure that the diffusion terms

are solved implicitly and the advection terms or inner product terms are computed

explicitly. This approach is also followed in [124]. The evolution of the coefficients

is computed explicitly and thus F i corresponds to the entire right hand side in

eq. (2.29).

2.3.1 Linear Multi-step IMEX Schemes

The general linear multi-step IMEX scheme applied to the stochastic DO Navier-

Stokes equations can be written in the form

s-1 s- s-1

1l jk+1 1 s-i - bF 1 i + S1 c {Fim k-i + {-Vps

mAt +1 1 s-s- a i- = - E bj{F}-i + E cj [{F'm}-i -fr S-
j=0 =0 j=-1

1 yk+1 1 s-1 s-1

mAt k+ aj = bj{F}k

(2.41)

with boundary conditions as given in eq. (2.22) and eq. (2.27). The parameter s in the

above equation represents the number of prior timesteps from which data needs to be

stored. The superscript on the terms F"' and F'x indicate the time-step from which

these terms are being used with respect to the current time-step (i.e. k). The values

of parameters aj, b3 and cj for which the above IMEX scheme is consistent and of

order s can be found in [9]. The above scheme can be rewritten as a parametric family

of schemes of order s (c.f. [9]). We want our projection method [32] to obtain the

above aggregate scheme. The projection method with incremental pressure correction

in rotational form can be written as
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Projection scheme for the mean

Uk+ - c 1 {Fi"}k+1 i - c 1 nv2 1 k+1

mAt " mAt
1 s-1 s-1 s-1

At Zauaj - > bj {Fei}- + E cj{F"}k-J - VP
j=0 j=0 j=0

(2.42a)

. k+1
U = N72 qk

mAt

fk+1 _ Uk+1 - m mt e

-k+1 - k + + CO k s k-j
C-1 c-1 =

(2.42b)

(2.42c)

(2.42d)

with boundary conditions

{k+1iD , r= COD0

a k+1

= hN, r E &DNOn

(2.43)

where fjk+1 is the predicted mean velocity, and nk+1 is the corrected mean velocity

which is also considered to be the mean velocity at time tk+1. Eq. (2.42a) corresponds

to the prediction step, eq. (2.42b) to the Poisson equation solve, eq. (2.42c) to the

velocity update, and eq. (2.42d) to the pressure update. The last three equations

collectively form the correction step.

Projection scheme for the modes

^k+1 - c_{F"'+ - mf - c1vV2) k+1

1s-i s-i s-irnt c'(AtSaii'-5 5-V3
=- 'e kn-- b{" -j + c{ k -i -k

t 

j=0 j=0 j=0

(2.44a)
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V 2 +1
=t Ilif (2.44b)

mAt

-ik+1 = Zk+i ~v-
+ u - mAtV% (2.44c)

p-k+1 _ - sp ~ vV -+ (2.44d)
Ci = C_.pc-1 -1  i j=1

with boundary conditions

I + = D = 0, r E DD
- (2.45)

= hi, r E oDN

where j4 +1 is the predicted velocity for mode i, and if+1 is the corrected velocity for

mode i which is also considered to be the modal velocity at time tk+1-

Summary of the complete time-integration scheme from time tk to tk+1 is given in

Algorithm 1. Details of how Cyy, is computed when the covariance matrix is close

to singular is discussed in [124]. Reorthonormalization and selection of the time-step

size will be discussed in section 2.4. Algorithm 1 describes the time-integration fol-

lowed after the starting time because second and higher order linear multi-step IMEX

schemes require special starting. For example, the third-order IMEX Semi-implicit

Backward Difference (IMEX-SBDF3) is typically started by one step of IMEX-SBDF1

followed by one step of IMEX-SBDF2. These schemes are described in Table 2.1. This

is another motivation to look at IMEX Runge-Kutta (IMEX-RK) schemes which do

not require any special starting. This is discussed in the next section.

2.3.2 IMEX Runge-Kutta Schemes

We closely follow the notation in [123] for the following discussion on IMEX-RK

schemes. An implicit scheme with sim stages is combined with a compatible explicit

scheme with sex stages to obtain consistent IMEX-RK schemes [8] of order simex

( sim). We consider IMEX-RK schemes [123] which have Butcher Tableaus of the
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Algorithm 1 Linear Multi-step IMEX Time-Integration for Stochastic DO Navier-
Stokes Equations

pk E j(N.+N-)x1 jk (NU-+N)xns k E RNpx1, pk RNpxns, yk

ntimes, nfreq

Output: u k+1 E R(NL+N)x1 fjk+1 E R(NL+N)xns k1 E RNpxl +1 E RNPXnS
yk+1

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

procedure TIME-INTEGRATION(Inputs)

Compute statistics {Cyry}k (and it's inverse), {Myjymy"
Compute explicit terms (advection and inner product terms) {Fex}k and

{Fex}k

Obtain yk+1 using eq. (2.41)
Obtain jk+1 and pk+1 using eq. (2.42)
Obtain Ck+1 and pk+1 using eq. (2.44)
if (k mod nfreq) 0 then

Perform shapiro filtering
end if
Re-orthonormalize modes fik+1 and pk+1
return Outputs

end procedure

Name ( Scheme

k+1 - ok-1 1
Crank-Nicholson 2 2At F { 2Fmk+ + {Fimik-1

Leapfrog (CNLF) - 1 [Vpk+1 _ Vpk-1]

Semi-Implicit Backward 3 -k+1 _ 4 k + ok-1 2{Fex}k - {FCX}k-l
2 2At

Difference 2nd order (SBDF2) + {Fimjk+1 _ Vpk+l

ok+1 _ k-1 =3 xkIje -Crank-Nicholson Adams- -{F} - -{Fex}k-
2 2At 2 2

Bashforth 2nd order (CNAB2) +I [{F'mk+ + {Fimlk-1] [Vpk+l + Vpk-]

Semi-Implicit Backward 1 (ik+1 - 30/k + Ok-l - 1ok-2
3

Difference 3rd order (SBDF3) 3{Fex}k - 3{Fex}k-1 + {F+}k- 2 + {Fimlk+l _ Vpk+l

Table 2.1: Examples of Linear Multi-step IMEX Schemes
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form given in eq. (2.46).

0 0 ... -.. 0 0 0 0 ... ... 0

C1  a ex 0 ... 0 c1  aim a 0 ... 0

0 -. --- 0 (2.46)
c - ex aex c - i . i

C- aS- 1,0  s- 1 ,s- 2 0 cs-i a 1, 0  a ,s- 2 a

bo ... bs- 2  a bo .-- --. bs-2 a

The Butcher Tableaus for the implicit and explicit scheme are padded with zeros

[8] such that they have the same number of stages i.e. s. The entries of the Butcher

Tablueau for the explicit scheme satisfy a'x = 0 V0 > a. It can be noted from

above that we limit ourselves to Diagonally Implicit Runge-Kutta (DIRK) schemes

which have the property of aim = 0 V0 > a so that we can solve the different stages

sequentially instead of simultaneously. Further considering that a" = a VI < a <

s i.e. all the diagonal entries are same allow us to create a single matrix for the implicit

solve. Additionally, we also prefer schemes with b, = bx = b'.

The IMEX-RK scheme applied to the stochastic DO Navier-Stokes equations then

can be written as

s-1 s-1
nk+1 _ U -+ E b ex {F '}" + At E bj7 [{Fy}- + {-V (2.47

a=o a=O
s -1 s -1

< ik+1 = ak + At 1: bexf{Fex}" + At 1: b' {jF'}" + { -V~jjc' (2.47)
a=O a=0
S-i

Y k+1 _ Yk _+ At bex}
a=O

where s is the number of stages. The superscript on the terms F'm and F" indicate

the stage from which these terms are being used.

The intermediate variables of mean n", modes fii, and coefficients YQ in stage a

38



are then solved using

a-1

a = Ujk +At E a e{Fe} 3

=3=0

a-1

6= + At E aex {F}
a,= 3 f

Yo = yk +
a-1

At E aex {Frx }
/=o

a
+ At aa

a O

aO+ AtEa ~8=
/3=0

{F~/} + {-V}]

{F'} + {-Vi} 1]

The above aggregate schemes for the mean and mode are then solved using projec-

tion methods as discussed before. The following discussion closely follows the layout

in [123].

Projection scheme for mean in stage a

- a {F }" = - - aaaVI )U

- k a- 1

At a /{F+}
/=0

a-i

+ 5 aim [{F'}3 + {-V
/3=0

aia At

a mAtva

Pa a* + q - VV - We

with boundary conditions

{On

r E ODD
(2.50)

(2.48)

-La
U

- am Vp-a*CaaaV (2.49a)

(2.49b)

(2.49c)

(2.49d)

^ - aqa
S= hD, an= 0,n

r E aDN
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where U' is the predicted mean velocity for stage a, and n-' is the corrected mean

velocity which is also considered to be the mean velocity at stage a. The variable

P* is the estimated pressure at stage a which is usually a function of previously

calculated pressures at different stages. For the projection method with incremental

pressure correction in rotational form, it is considered to be the pressure from end

of the previous stage i.e. at end of stage (a - 1). Eq. (2.49a) corresponds to the

prediction step, eq. (2.49b) to the Poisson equation solve, eq. 2.49c to the velocity

update, and eq. 2.49d to the pressure update within the stage. The last three

equations collectively form the correction step.

After the updated mean velocity and pressure at the end of stage a are computed,

the implicit predicted diffusion term of {Fj} must be replaced by the implicit

corrected diffusion term {F}. This can be done by recomputing these terms with

the corrected values of mean velocity and pressure. Another equivalent approach is

from the aggregate scheme at stage a given by eq. (2.48).

no -ik 1 a-3 ai- aima{}= At aim a 3{FT}f + E { - {VP}
[a, O =0 0=0 13=0 J

(2.51)

Projection scheme for modes in stage a

iai { o
At aa{At= - aaavV) d

k a-1
=i + E aex {Fex}
-At += > ' i

a-i
+ Z aim3 [{F } 3 + {-VA} - aim VPC* (2.52a)

13=0

v =ii a 2 (2.52b)

kal=ai -a, AtVqI (2.52c)

iz =Pee* + 4io - VV . (2.52d )
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with boundary conditions

I = h =, r C OD

Ce (2.53)

au.i -= hiN , 0N
On

where Ui6 is the predicted velocity of mode i for stage a, and fV is the corrected

modal velocity which is also considered to be the modal velocity at stage a. The

variable Pk* is the estimated modal pressure at stage a which is usually a func-

tion of previously calculated modal pressures at different stages. For the projection

method with incremental pressure correction in rotational form, it is considered to

be the modal pressure from end of the previous stage i.e. at end of stage (a - 1).

Eq. (2.52a) corresponds to the prediction step, eq. (2.52b) to the Poisson equation

solve, eq. (2.52c) to the velocity update, and eq. (2.52d) to the modal pressure up-

date within the stage. The last three equations collectively form the correction step.

After the updated velocity and pressure of mode i at the end of stage a are

computed, the implicit predicted modal diffusion term of {F'}" must be replaced by

the implicit corrected modal diffusion term {F"J}. This can be done by recomputing

these terms with the corrected values of velocity and pressure of mode i. Another

equivalent approach is from the aggregate scheme at stage a given by eq. (2.48).

f.a ~k 1 a-1 a-1 i

{ FM Ia - - E aex {Fex} + 1: a im{F'm}# - E a i {VA 1}{F7} a im At -aim /a,8fl iC /3=0 ,3

a'Ca a'Ce 3=0 '8=0 )3=0 1
(2.54)

After all the stages are complete, the updated fields of the mean and modes of

velocity at time tk+1 can be obtained from combining the mean and modal values of

velocity from the different stages using eq. (2.47). However, this requires computing

the explicit terms of {F7}- and {Fy}x- 1 . These may be divergent and thus a final

projection step must be taken to update the mean pressure p and modal pressures

Pi-' that will ensure divergence-free U-k+1 and fii+. Expressions for the projection

method for the mean and modes of velocity in final recombination step follow.
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Projection scheme for mean in final recombination step

^k+1

At

-k s-1 s-1

= + E b{F}
At )=0 =0

[{F'}3 +

g . k+l

bt -= v2qk+1
bSf 1At

k+1 _ 4k+1 __k+1

Pk+1 -s-1 k+l

(2.55a)

(2.55b)

(2.55c)

(2.55d)

with boundary conditions

k+1

= 0 , )an
r C aDD (2.56)

where j6k+1 is the predicted mean velocity for time tk+i and n k+1 is the corrected

mean velocity for time tk+1. Boundary conditions on the predicted velocity is not

required as we only need to evaluate the variable in eq. (2.55a) and not carry out any

solve.

Projection scheme for modes in final recombination step

ok+I ~k

At = +

s-1

= x +
,3=0

[{Ft}"I + {-Vpi}
s-1

1: bg"
18=0

k+1

b -z Ui 2qk+1
bS21At

a k+i _ k+ 1 __qk+ 1

-k+1 s-i + k+1

with boundary conditions

k+1
=i 0,

an
r E ODD
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where 6;+1 is the predicted velocity of mode i for time tk+1 and 6k+1 is the

corrected velocity of mode i for time tk+1. Boundary conditions on the predicted

modal velocity is not required as we only need to evaluate the variable in eq. (2.57a)

and not carry out any solve.

The details of the IMEX-RK scheme and the corresponding projection method

applied to the stochastic DO Navier-Stokes equation is now complete. A summary

of the complete time-integration scheme from time tk to tk+1 is given in Algorithm

2. Lines 3 to 11 describes the projection schemes and solves carried out within each

stage. Lines 12 to 16 describes the final recombination step. Post time-marching,

Shapiro filtering and re-orthonormalization of the modes is carried out. One could

also carry out further Shapiro filtering and/or re-orthonormalization after every stage

in addition to at the end of the final recombination step.

We wrote a general routine for the IMEX-RK time-integration with additional in-

puts of Butcher tableaus satisfying properties described before. A particular example

that we consider is the 3rd order combination of a two-stage 3rd order DIRK scheme

and three-stage 3rd order explicit RK scheme (eq. (2.59) where ' (3 + V/5)/6) [8].

We refer to this as the IMEX-RK (2,3,3) scheme in the rest of this work.

0 0 0 0 0 0 0 0

-y -y 0 0 -Y 0 -y 0 (2.59)
1--y y-1 2(1-y) 0 1-- 0 1-27 y

0 1/2 1/2 0 1/2 1/2

Another example that we consider is the 2nd order L-stable combination of a two-

stage 2nd order stiffly accurate DIRK scheme and three-stage 3rd order explicit RK

scheme (eq. (2.60) where y = (2 - x/)/2 and 6 = -2Vf//3) [8]. This will be referred

to as the IMEX-RK (2,3,2) scheme from hereon.

0 0 0 0 0 0 0 0

-y-y 0 0 'y0 -y 0 (.0-Y -Y-Y -Y(2.60)
1 6 1-J 0 1 0 1-y -Y

0 1-y -y 0 1-y y
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Algorithm 2 IMEX Runge-Kutta Time-Integration for Stochastic DO Navier-Stokes
Equations

Input: - E R(N+Nv)x1 jjk 6 ER(NU+N)xns Pk C RNpx, i E RNpxns yk At, 2n
ntimes, nfreq

Output: jU-k+1 E R(Nu+Nv)x1 jjk+1 G(N+Nv)xn, pk+1 CRNpx1, ,k+1 E ERNpxn,
yk+1

1: procedure TIME-INTEGRATION(Inputs)
2: Compute the implicit terms {F'm} 0 and {F7} 0 using information from tk
3: for a = 1 to (s - 1) do
4: Update time: t = tk + cAt
5: Compute statistics {Cyy } ' (and it's inverse), {MY YjmYn a-1
6: Compute explicit terms (advection and inner product terms) {F }Q1 and

7: Obtain Y' using eq. (2.48)
8: Obtain U-' and P using eq. (2.49)
9: Obtain fii and P7 using eq. (2.52)

10: Compute the implicit terms {F"} and {F}" using eqs. 2.51 and 2.54
respectively

11: end for
12: Compute statistics {Cyy,}S- (and it's inverse), {MYjymyn}18

13: Compute explicit terms (advection and inner product terms) {F x}-1 and
{Fi }s-

14: Obtain Yk+1 using eq. (2.47)
15: Obtain u-k+1 and p k+1 using eq. (2.55)
16: Obtain ii+ and P,+' using eq. (2.57)
17: if (k mod nfreq) == 0 then
18: Perform shapiro filtering
19: end if
20: Reorthonormalize modes if1 and pi+1

21: return Outputs
22: end procedure
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2.3.3 Comparison of IMEX Schemes

Now that we have finished the discussion on how different types of IMEX schemes

may be applied to the stochastic DO Navier-Stokes questions, we need to address

when is one scheme more favorable than the other. We will discuss their differences

on the criteria of starting, time-stepping, coupling, computational expense, storage

and stability.

As we have noted earlier, the linear multi-step IMEX schemes require special

starting. As one moves to higher order time-integration schemes, a hierarchy of lower

order time-integrations must be first applied. This has the negative consequence of

having to use a fixed time step size and thus a prior knowledge of the magnitudes

of flow to be expected in the numerical simulation. Changing the time-step requires

one to perform the special starting procedures again or restart from an earlier time.

This is circumvented in the IMEX Runge-Kutta schemes which are self-starting and

adaptive time-stepping can be easily applied [8].

Further, IMEX-RK time-integration respects that the stochastic DO NS equations

are coupled even over one time-step which is neglected in the case of linear-multistep

IMEX schemes. This however comes at the increased computational cost of having to

perform multiple advection evaluations and pressure poisson equation (PPE) solves.

For example, a second order IMEX-RK scheme requires two advection evaluations

and two PPE solves whereas an IMEX-SBDF2 scheme requires only one advection

evaluation and one PPE solve. The storage requirements of linear multi-step schemes

are however higher as one needs to save the save information from previous time-steps.

As advection tends to be the most expensive operation during the numerical sim-

ulation, higher order IMEX-RK schemes may become more expensive to perform for

the same time-step size. However, in most cases IMEX-RK schemes may still be pre-

ferred because of their broad stability regions. Higher order linear multi-step IMEX

schemes have much smaller stability regions (9].
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2.4 Re-orthonormalization and Time-stepping

We initialize the modes using the KL decomposition of eq. (2.4). The modes are

then orthonormal with respect to the spatial inner product defined in eq. (2.6). An-

alytically, the modes would remain orthonormal in time when evolved with the DO

equations

a (ii, f65) a6;- -86a = ,t I +Kui, = 0 (2.61)

with the application of the DO condition (eq. (2.5)). Numerically, errors creep in

due to truncation error and round-off error during time-integration due to which the

modes no longer remain orthonormal. This motivates the need for re-orthonormalization.

Suppose that the matrix of modes is given by U [i1 ,..., and the inner

product is

(01, ijA)= (2.62)

where A1 p is defined according to the variability in the different variables [53]. We

want to then ensure that numerically fJTAIPfJ = I through time. At the same

time, we want to ensure we respect the various schemes for time-integration we have

chosen. In the case of linear multi-step IMEX schemes, we need to ensure that there

is a correspondence between the columns of U(t) and U(t + At). Suppose that the

modes U(t) at time t are integrated over one time-step to obtain U(t + At) which is

not orthonormal up to round-off error. Any re-orthonormalization procedure that is

applied to U(t + At) to obtain U(t + At) should satisfy the following properties:

1. not reorder, rotate or mix the modes

2. retain the original DO solution and reconstructed realizations

One simple solution to the above is the Gram-Schmidt re-orthogonalization. It is

known that the classical Gram-Schmidt procedure is backward unstable [122]. The

modified Gram-Schmidt algorithm could be used in it's place but this also suffers

from instabilities during long time-integrations [44] and an iterative procedure must

be followed which may be expensive.
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An SVD-based algorithm for re-orthonormalization was proposed in [124]. While

this maintains realizations during the procedure, it suffers from multiple pitfalls. As

the SVD of a matrix is non-unique, it introduces sign changes of the modes, reorders

and also mixes the modes. While a fix was suggested to prevent sign changes in

[125], fixes to the other problems were not. The reordering and mixing of modes

did not effect the DO solution because a first order semi-implicit backward difference

(IMEX-SBDF1) was used for time-integration. In effect, the scheme did not 'see'

modes from earlier time-steps and continuity of modes was not required. However,

this is required in the case of linear multi-step IMEX schemes and thus an alternate

re-orthonormalization procedure must be selected. Moreover, it was suggested in

[125] to introduce bi-orthogonality i.e. decorrelate the stochastic coefficients in addi-

tion to orthonormality of modes. While this would give us a KL expansion for the

realizations at that time instance, this is not necessitated by the DO equations them-

selves. Moreover, the process of decorrelation destroys the continuation of modes and

sto'chastic coefficients between different time instances and would prevent us from

tracking the correct DO solution.

Another solution was proposed in [25, 24]. The idea is to find a linear transfor-

mation A C 7'", such that U = UA. In [24], this is framed as a solution to the

following unconstrained optimization problem

arg min IA TKA -Il 2  (2.63)
AEtns X ns

where denotes the Frobenius norm and K = UTAIpU is the Gram matrix.

This was solved using a gradient flow of the dynamical system

d A _ Gdt -A = 4KA(ATKA - I) (2.64)dt a A

where G(A) = IJATKA - 1112 and Ao = I is used as the initial guess. This approach

allows us to find A which orthonormalizes the modes but it is not necessarily close

to I. This is why the initial guess of Ao = I is chosen so that we may converge to A

that orthonormalizes the modes and is close to I. Moreover, the stopping criterion
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and the step-size chosen for the time-marching will effect the rate of convergence and

the overall cost of the approach.

Before we discuss the solution proposed in [70] which overcomes the problems of

the above approaches, let us formalize the mathematical notions of the properties we

would like the reothornmalization procedure to have. The first step is to introduce

the scaled Frobenius norm:

AI,K = tr(A TKA) (2.65)

The optimization problem of eq. (2.63) then becomes

argmin IIA-- I11 (2.66)
A E7Zns X n9

This is useful as it is also equivalent to the deviation of the transformed modes U

from the original modes U [69]

IIA-I I_ -= ||UA1- F,AJP jt1F,A12~- (2.67)

Solving the optimization problem (eq. (2.66)) will then allow us to satisfy both

the properties we desire from the re-orthonormalization procedure. An optimal SVD

based reorthonormalization algorithm [70] is then given as

1. Perform eigendecomposition of the Gram matrix K = VEVT

2. Compute the optimal linear transformation A = VE1/2VT

3. Transform the modes so as to re-orthonormalize them U = UA

4. Transform the stochastic coefficients so as to maintain realizations Y =-YA-T

The proof that the above procedure allows us to obtain the solution to the op-

timization problem (eq. (2.66)) can be found in [70]. This completes the discussion
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on re-orthonormalization and only the criteria of choosing the time-step size At re-

mains. In order to ensure stability in the IMEX schemes, At is selected according to

the Courant-Friedrichs-Lewy (CFL) condition [9, 8]. Through the DO methodology,

we are effectively evolving an ensemble of realizations. It is important to ensure that

the CFL condition is satisfied for each of these realizations. Hence, we select the

maximum velocity among all these realizations and set At as follows

At<Cmax maxiul + E s max tin maxYiI max jvj + Egi max vi max YI
Ax Ay /

(2.68)

where Cmax marks the boundary of the stability region for the respective IMEX

scheme.

2.5 Numerical Results

We showcase our results using three test cases: (i) stochastic passive tracer advection

in a deterministic swirl flow, (ii) stochastic flow past a cylinder and (iii) stochastic

lid driven cavity flow.

2.5.1 Stochastic Passive Tracer Advection in Deterministic

Swirl Flow

We consider the test case of stochastic passive tracer advection in deterministic swirl

flow with the same setup as in [751. We introduce. uncertainty here by considering

stochastic initial conditions in the concentration of the tracer. The stochastic concen-

tration of tracer is denoted by p(r, t; W) = p (r, t) + E ,5 (r, t)<bD (t; w). The domain is
j=1

a unit square basin. The background flow is a deterministic velocity flow field given

by u = [ut, uj1T

u, = sin2 (7rr_) sin(27rr.) (2.69)

UY = - sin2 (7rrV) sin(27rr,) (2.70)
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It is essentially a divergence-free counter-clockwise rotating flow (Fig. 2-3) which

vanishes at the domain boundaries. Initial conditions of the tracer concentration are

given by

1
p(r, 0; w) = [1 + cos(7rD(r; w))]

2

D(r;w) = maxO, 1 - 41r - Rc(w)|I

0.5 0.0625
Rc(w) ~ A -; ,I

(0.5 0 0.

0

)6251)

(2.71)

(2.72)

(2.73)

The DO mean, modes and stochastic coefficients are initialized as

equations 2.23, 2.28 and 2.31. In the results presented here, we

N, = 104 ensemble members in the DO decomposition.

The evolution of the stochastic tracer concentration is governed

DO advection equations:

was described in

use n. = 9 and

by the stochastic

afi(r, t)
'U - VrP = 0at

a8j (r, t)
t' + U -VrU - ( Vr, j) i = 0

j=1
dci (t; U)

dt + (u -Vr,5, A3) Dj(t; W) = 0
j=1

(2.74)

(2.75)

(2.76)

0.9
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0.7

10.6
0.5

0.4

0.3

0.2

0.1

0

Figure 2-3: Deterministic velocity field of swirl flow. Magnitude of velocity field is
plotted over the domain and is overlaid with streamlines.
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We carry out the simulation within a time-interval of [0, 10] using the 2nd order

linear centered advection scheme with Shapiro filtering and various time-integration

schemes. Figures 2-4 and 2-5 show the time evolution of the DO mean, first five DO

modes and their corresponding coefficients. It should be noted we continuously track

and show the first five DO modes and not the dominant modes. This is indicated

also by the time-evolution of the variance of the stochastic coefficients in Fig. 2-

8a where we see multiple criss-crossings of the coefficients. This shows that the re-

orthonormalization technique described in section 2.4 allows us to maintain continuity

in between modes.

Mean

0.0

0

III
5 0.5

0

C5 0.5

LI) I0
LO)

0**
II I 10.05

Mode 1

2
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-2
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-2

Mode 2 Mode 3

I2
12
:0

-I2

!2 I 2

Mode 4 Mode 5I

I2 512 32
I0 EL0

Figure 2-4: Stochastic tracer advection in a deterministic swirl flow: Time-evolution

of the DO mean P(r, t) and the first five DO modes /3 (r, t).
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In order to assess the consistency of the advection evaluation, we look at the time-

evolution of a randomly sampled DO realization and the corresponding MC realization

that it is trying to track. The results of CDS advection scheme with Shapiro filtering

are shown in Fig. 2-6 and those obtained considering a TVD advection scheme are

shown in Fig. 2-7. Both were performed considering a second order Runge-Kutta

(RK2) time-integration scheme. We clearly see that the error in between the DO

and MC realizations is much lower (i.e. of nearly three orders) in the case of using a

centered advection scheme as compared to using a TVD advection scheme. Moreover,

the error field is much smoother than that obtained in the latter case. This test case

was performed with other explicit multi-step and multi-stage time-integration schemes

to verify the temporal order of convergence. The results are summarized in Fig. 2-8b.
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Figure 2-5: Stochastic tracer advection in a deterministic swirl flow: Time-evolution
of the stochastic coefficients corresponding to the first five DO modes Di (t; w).
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Figure 2-6: Stochastic tracer advection in deterministic swirl flow: Time-evolution of
a selected DO realization (reconstructed) and the corresponding MC realization which
it is trying to track considering CDS advection scheme, Shapiro filter with parameters
(8, 10, 1) and second order Runge-Kutta Scheme (RK2). Error in between the DO
and MC realizations is also shown in the third column.
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DO Realization .190.5
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Figure 2-7: Stochastic tracer advection in a deterministic swirl flow: Time-evolution
of a selected DO realization (reconstructed) and the corresponding MC realization
which it is trying to track considering the TVD* advection scheme, and second order
Runge-Kutta Scheme (RK2). Error in between the DO and MC realizations is also
shown in the third column.
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Figure 2-8: Stochastic tracer advection in a deterministic swirl flow: (left) Time-
evolution of variances of the stochastic coefficients considering CDS advection scheme,
Shapiro filter with parameters (8, 10, 1) and second order Runge-Kutta Scheme (RK2).

(right) Temporal convergence of modes considering CDS advection scheme, Shapiro
filter with parameters (8, 10, 1) and fixed control volume size of Ax = 0.01. Leapfrog-
trapezoidal (LFT), 2nd order Adams-Bashforth (ABDF2) and second order Runge-
Kutta (RK2) time-marching schemes are considered. Optimal convergence of order 2
is obtained.

2.5.2 Stochastic Flow Past a Cylinder

In the second test case, we consider the stochastic flow past a cylinder in a channel.

This forms the basis of multiple natural phenomena in geophysical fluid applications

[115, 99]. The flow is governed by the stochastic Navier-Stokes equations 2.14 which

we will study here using the DO methodology. We consider a domain of size 16 x 6

with a circular disk of radius 1 located along the centerline at a distance of 4.5 from

the inlet and boundary conditions on velocity as shown in Fig. 2-9. A deterministic

inlet velocity of u = [1, 0 ]T m/s is considered on the western boundary. Free-slip

boundary conditions are applied on the northern and southern boundaries, and open

conditions at the outlet (eastern boundary). No-slip boundary conditions are applied

on the circular disk. The flow was considered to have a kinematic viscosity of 0.01m 2 /2

corresponding to Re = 100.
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Figure 2-9: Stochastic flow past a cylinder: Schematic of the domain and boundary
conditions on velocity.

Uncertainty is introduced into the system by considering uncertainty in the initial

condition of velocity. Covariance matrices were constructed using the boundary-

mollified spatial covariance approach described in [124]. We consider n, = 8 modes

to capture 99.9% of the uncertainty and use N, = 10 4 DO realizations. In order to

induce vortex shedding quicker, a divergence-free exponentially decaying perturbation

is added to the DO mean field upstream of the disk. The results shown here were

obtained by considering the second order centered advection scheme with Shapiro

filtering, second order centered discretization for diffusion and second order IMEX-

SBDF2 time-integration scheme. Similar results were obtained using the other time-

integration schemes discussed before. A resolution of 240 x 90 was chosen along with

a fixed time-step At such that CFL = 0.4.

We show the time-evolution of the DO mean and the dominant three modes of the

flow field in 2-10 after vortex-shedding starts in all the realizations. The stochastic

initial conditions leads to uncertainty in the time when vortex shedding starts, the

face of the cylinder (north/south) from which the first vortex is shed, eddy strength

and the shedding frequency (Strouhal number). The dominant modes along with

the stochastic coefficients allows to us in capture all these different realizations. The

marginal PDFs of the stochastic coefficients corresponding to the dominant three

modes as a function of time are shown in Fig. 2-11. The markers on the alphabet

of the stochastic coefficients are those of the selected DO realizations which we re-
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constructed in Fig. 2-12 and compared against the corresponding MC realizations.

We see that the DO realizations match very well with the corresponding MC re-

alizations through time and the different vortex shedding patterns are captured as

well. The relative error between the DO and MC solutions remain within 1% even

after 2500 time-steps 2-13 Further, high-order time-marching allows us to capture the

non-Gaussian statistics (Fig 2-14).

Vorticity of Mma Vortlay of Mode 2

00 0 0

0 1 1 0
- - 4 -5--5-

~~ t5

- 24 10 5

- 1

Figure 2-10: Stochastic flow past a cylinder: Time-evolution of the DO mean and
the first three dominant modes of velocity are shown by plotting vorticity overlaid
with streamlines. CDS advection scheme, Shapiro filter with parameters (8, 3, 1) and
IMEX-SBDF2 time-integration was used.
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a cylinder: Time-evolution of the stochastic coef-
three dominant modes of velocity are shown. The

red and blue markers on the alphabet of the coefficients correspond to the selected
reconstructed DO realizations 1000 and 9000 which are compared against their cor-
responding MC realizations in Fig. 2-12. CDS advection scheme, Shapiro filter with
parameters (8, 3, 1) and IMEX-SBDF2 time-integration was used.
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Figure 2-12: Stochastic flow past a cylinder: Time-evolution of the selected DO
realizations and corresponding MC realization. Vorticity of the realization is plotted
overlaid with streamlines. CDS advection scheme, Shapiro filter with parameters
(8,3, 1) and IMEX-SBDF2 time-integration was used.
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Figure 2-13: Stochastic flow past a cylinder: Relative error between the DO and MC
realizations shown in Fig. 2-12 is plotted considering second order CDS advection
scheme with Shapiro filtering and IMEX-SBDF2 time-integration. Red and blue lines
are the trends for realizations 1000 and 9000 respectively.

59

- -



0.2

o 0

-0.2

0.2

0 0

C)-0.2

c 0.05

0

o) -0.05

.- 0.05

0
o -0.05

-0.1

1O 0.05

(D 0
0

C- 005

0.05

o 0

-0.06
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 -0.05 0 0.05 -0.05 0 0.05 0.1

Figure 2-14: Stochastic flow past a cylinder: Joint second marginal PDF of the
stochastic coefficients corresponding to the first six dominant DO modes at t = 5.

2.5.3 Stochastic Lid Driven Cavity Flow

The final test case that we study is the stochastic lid driven cavity flow which is

also governed by the stochastic Navier-Stokes equations 2.14. This test case will be

used to check consistency between the DO and MC solution, and verify the order of

accuracy of the implemented schemes by performing numerical convergence studies.

The domain of interest is a square cavity of length 1 with a lid at the top which

is used to drive the flow. The flow configuration is illustrated in Fig. 2-15. No-slip

boundary conditions are applied at all the boundaries except for at the top where a

Dirichlet boundary condition of Ub in the x-direction is set according to the velocity

of the lid. We consider the fluid to have a kinematic viscosity of 10- 3m 2 /s and thus

Re = 1000.

Uncertainty is introduced through the initial conditions and the mollified-boundary
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approach is followed again [125, 97]. We retain n, = 10 modes to capture 99.9% of

the uncertainty. The DO mean of the flow field, the three most dominant modes

and their corresponding coefficients are plotted in Fig. 2-16. The mean velocity and

pressure are initialized to zero. These are evolved over a time interval of [0, 15].

1

U = Ub, V = 0

u =0 u= 0
v=0 v=0

U =V = 0

Figure 2-15: Stochastic lid-driven cavity flow: Schematic of the domain and boundary
conditions on velocity.

0.5

105-0.5

-A

I i0.5

0

-0.5

-1

Modb Iof U 2 Mode I ofv 2

0 0

-1-1

Mode 2 of u 2 Mode 2 of v 2

2 2

-1

-2 1-2

Mode 3 of u Mode 3 of vZI., 1 2

0

-2

Figure 2-16: Stochastic lid-driven
modes and stochastic coefficients.

2

1

0
-1

-2

cavity flow: Initial

10-6

0 5 10
Coeff No.

0.ef 1 (VWr -0.00420)

0.3

02

0.1LA

-4 -2 0 2 4

2 (Vr = 0.00015)

02

01
-4 -2 0 2 4

0 . 3(V=f.0015)

0.4

02

-4 -2 0 2 4

conditions of the velocity mean,

61



We first look at the time-evolution of the mean, modes and coefficients considering

a resolution of 80 x 80 to ensure that the flow is well resolved and a fixed time-

step isuch that CFL = 0.2. Figure 2-17 shows the time-evolution of the mean flow

along with the three most dominant modes considering 2nd order CDS advection

scheme with Shapiro filtering and IMEX-SBDF2 for time-integration. Figure 2-18

shows the time-evolution of the corresponding stochastic coefficients and a randomly

sampled DO realization which is compared against the corresponding MC realization.

We observe that after a transient phase, the variance of the stochastic coefficients

become very low. This can be explained by the fact that after a transient phase,

the solution converges to a stable deterministic attractor. However, all the different

realizations follow a different route and this is captured using the DO methodology.

The sampled DO realization is but one example of such a route. Figure 2-19 is an

illustration of the non-Gaussian statistics that is observed during the transient phase.

Consistent advection evaluation combined with high-order time-integration allows us

to effectively track the MC solution and hence ensure consistency. This is further

evident by comparing the relative error in between the DO and MC solutions against

the case when TVD* is used for advection (Figure 2-21).

Numerical Convergence Studies

For spatial convergence analysis, we considered the time-step to be fixed at At

1/4096. The finest spatial resolution of 512 x 512 was considered to be the exact

solution and used for obtaining error estimates. We obtain the error between the

coarser solution and exact solution by interpolating the exact solution onto the coarse

grid and then calculating the L 2 norm over the interior of the domain [0.25, 0.75] x

[0.25, 0.75]. This is to avoid the singularities which occur at the boundaries of the top

two corners. A similar strategy was also followed in [124]. The results for the case

of IMEX-SBDF2 time-marching is shown in Fig. 2-22. Optimal convergence of order

2 is obtained. Similar results were obtained for IMEX-RK (2,3,2) (eq. (2.60)) and

IMEX-RK (2,3,3) (eq. (2.59)) time-integration schemes which are not shown here.

For temporal convergence analysis, the control volume size was fixed at Ax =
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Ay = 1/256. The finest temporal resolution of At = 1/4096 was considered to be

the exact solution and used for obtaining error estimates. The error is calculated

over the interior as was done for spatial convergence analysis. The results for the

IMEX-SBDF2, IMEX-RK (2,3,2) and IMEX-RK (2,3,3) time-integration schemes are

shown in Fig. 2-23. The order of convergence for the mean and modes of velocity, and

stochastic coefficients matches with the theoretical optimal order of convergence i.e. 2.

Using a higher order time-marching scheme such as IMEX-RK (2,3,3) (Fig. 2-23c)

does not help in improving order of convergence due to the projection method's time-

splitting [32] but does help in obtaining more accurate results than IMEX-SBDF2

(Fig. 2-23a). Due to the time-splitting error, the optimal order of convergence ob-

tained for mean and modes of pressure is also 3/2 in most general cases [33] and this

is observed here as well. To recover the order of convergence of the time-integration

scheme used, reiterations may be performed [2].

63



Vorticity of Mean 2 Vorticity of Mode 1 Vorticity of Mode 2 Vortioty of Mode 3

C) 10

20 150 I0
-10

-20 50

20 so 50 50

1010 10 10 150
-10

20

120I 2We 0 p0 71:0
4--20 -50s -50 150

20 50 so50LII 105A

Figure 2-17: Stochastic lid-driven cavity flow: Time-evolution of the DO mean and
the first three DO modes of velocity are shown by plotting vorticity overlaid with
streamlines. CDS advection scheme, Shapiro filter with parameters (8, 10, 1) and
IMEX-SBDF2 time-integration was used.
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Figure 2-18: Stochastic lid-driven cavity flow: Time-evolution of the stochastic coef-
ficients corresponding to the first three dominant modes of velocity are shown along
with a selected DO realization and corresponding MC realization. Vorticity of the
realization is plotted overlaid with streamlines. The marker on the alphabet of the
coefficients correspond to the reconstructed DO realization. CDS advection scheme,
Shapiro filter with parameters (8,10, 1) and IMEX-SBDF2 time-integration was used.
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Figure 2-20: Stochastic lid-driven cavity flow: Time-evolution of the variance of
stochastic coefficients considering CDS advection scheme, Shapiro filter with param-
eters (8, 10, 1) and IMEX-SBDF2 time-integration.
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Figure 2-21: The relative error between the DO and MC realization shown in Fig. 2-18
is plotted against that obtained using a TVD* advection scheme with IMEX-SBDF2
time-integration.
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Figure 2-23: Temporal convergence (L2 norm) of mean (left column) with modes
and stochastic coefficients (right column) of pressure and velocity. The different rows
indicate the different time-integration schemes used. The trend for the first mode
and the corresponding coefficient is shown. The control volume size is held fixed at
Ax = Ay = 1/256. A second order CDS scheme with Shapiro filtering was used.
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2.6 Summary

In this chapter, we have presented how centered advection schemes with filtering

can be combined with high-order IMEX schemes to achieve consistency, accuracy

and stability in the DO solution. These allow us to make accurate probabilistic

predictions for stochastic velocity fields which can then be used to obtain accurate

PDFs of Lagrangian variables. This will be described in the next chapter. Finally, we

will describe how assimilation may be carried out to combine observations in Eulerian

and Lagrangian variables with predictions.
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Chapter 3

Lagrangian Data Assimilation

3.1 Background

3.1.1 Lagrangian Instruments

There. are two main platforms in the ocean which provide measurements: (i) Eule-

rian instruments whose positions are fixed in time (e.g. fixed sensors, moorings, tide

gauges, etc.), and (ii) Lagrangian instruments whose positions are time-dependent

(e.g. drifters, floats, etc.). The assimilation of data from these Lagrangian instru-

ments forms the topic of Lagrangian Data Assimilation and has become an active

area of research in the last two decades [13, 51, 46, 82, 84, 5, 4]. One of the main

reasons for this interest is the spatial coverage provided by this platform as indi-

cated by the ever expanding data produced by the World Drifter Program [79]. The

main Lagrangian instrument used for sampling the ocean surface has been drifters

while floats (e.g. SOFAR, RAFOS, Argo floats) [89] have been used for sampling the

ocean interior. Data collected from drifters primarily include their positions (trajec-

tory information) using on-board satellite-tracked transmitters or GPS. Subsurface

instruments collect measurements (salinity, temperature, pressure, biology, etc.) from

a variety of sensors [91, 90].

Secondly, it allows us to gather information regarding ocean currents that dictate

material transport [30] at the surface and in the ocean interior. Pathways for material

71



transport can be linked to trajectories of drifters which are modeled as passive tracer

particles advected by the ocean current

dxy
d U(Xp, t) (3.1)dt

where xp is the position of the drifter and u is the velocity field. It should be

noted that this equation is highly nonlinear and leads to chaotic behavior [6, 7].

Drifter trajectories are thus sensitive to initial conditions i.e. release locations and

two particles (or drifters) which are released very close to each other may not follow

similar paths. This chaotic behavior is further aggravated by the high spatial and

temporal variability of ocean currents. The consequences are twofold.

Firstly, this indicates that it is useful to look at clusters of trajectories and rel-

ative dispersion of drifters to understand material transport. Lagrangian Coherent

Structures (LCSs) which were first formalized in [39, 42, 40] are the most persistent

material surfaces over a time interval that act as transport barriers. Most popular

ways of extracting LCSs in flow rely on first computing measures of relative disper-

sion such as the finite-time Lyapunov exponent (FTLE) or the finite-size Lyapunov

exponent (FTLE). In this work, we consider FTLE fields as a measure of dispersion

and will be described in section 3.1.2.

Secondly, this shows that uncertainty in velocity fields due to incomplete knowl-

edge of small scale resolved processes, forcing, topography, coastline, etc. may lead to

significant uncertainty in trajectories. This is why we want to use drifter positions as

observational data to improve our knowledge of the system through data assimilation.

From another perspective, the trajectories will be organized differently from one flow

realization to another with change in location and strength of hyperbolic, parabolic

and elliptic LCSs. In the next section, we review how FTLE fields can be computed

in deterministic and stochastic settings.
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3.1.2 Lagrangian Variables: Trajectories, Flow-Maps and LCS

Nearly all approaches for computing and extracting LCS rely on the flow-map. Sup-

pose that we are given a divergence free velocity field u(r, t), the flow-map [41] is

given by

o (ro) = r(t; to, ro), r E D, t E [to, t1 ] (3.2)

where D is the domain of interest and [to, ti] is the finite time interval of interest.

This can be easily obtained by integrating the advection ODE for trajectories in the

domain

- = u(r, t)

r(O) = ro,

So far we have actually defined the forward flow-map which tells us given the initial

position of a particle at time to, what will it's position be at time t. It is important to

make a distinction between this and the backward flow-map which tell us given the

final position of a particle at time t1 , what was it's position at time t. The backward

flow-map is simply the inverse of the forward flow-map (#t)-1. A popular method

for obtaining LCS is through the computation of the finite-time Lyapunov exponent

(FTLE) field. The forward FTLE is given by

At'(ro) = log Amax[C(r;toti)] (3.4)
|o t1 - to| a[~,tt)

where C(r; to, t1 ) is the right Cauchy-Green strain tensor and Amax(-) represents the

operation of extracting the largest eigenvalue of the operand. The Cauchy-Green

strain tensor is calculated from the flow-map as

C(r; to, ti) = [V#t']Tv#|| (3.5)

The backward FTLE field can be calculated using eq. (3.4) but using the backward

flow-map. The ridges of the forward FTLE field correspond to repelling LCS or

unstable manifolds and the ridges of the backward FTLE field correspond to the

attracting LCS or stable manifolds.
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An alternate approach to obtain the flow-maps and thus the FTLE fields [66,

67, 24] is to solve the PDE whose characteristics are the trajectories (eq. (3.1)) with

initial conditions set to positions,

&'i (r, t)'~~,t + U(r, t) -Vo(r, t) = 0, r E D, t E 7 =_ [to, ti]at (3.6)

(r, 0) = io(r) ,

where 4' is actually the inverse flow-map (q)1. So now in contrast to the ODE ap-

proach, forward time advection yields the backward flow-map whereas the advection

backward in time yields the forward flow-map.

This approach (eq. (3.6)) is a more attractive option for computing the flow-map

and the FTLE field than the trajectory approach (eq. (3.3)) because

1. the PDE can be solved using a finite-difference/finite-volume/finite-element

method on a grid and hence the same resolution is obtained everywhere. (When

using an ODE approach, the resolution is not uniform and depends on the par-

ticle density at the location. A higher resolution is obtained where particle

density is high and a lower resolution where particle density is low.)

2. the PDE approach can be easily extended to the stochastic case and the DO

methodology can be applied for a reduction in computational cost

In the stochastic case, we are given an ensemble of velocity fields u(r, t; w) and

we wish to find the corresponding ensemble of flow-maps 0'to(ro; w). This could be

obtained by solving the stochastic ODE

{ k = u(r, t; w) (3.7)

r(0) = ro,

or the stochastic PDE

a8b(r, t;- w)
at + u(r, t; W) - Vip(r, t; w) = 0, w E Q, r E D, t E T = [to, t1] (3.8)

4'(r, 0; W) = 4'o(r)
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using the Monte Carlo approach. However, it is more computationally amenable to

solve the stochastic PDE using the DO methodology. The DO decomposition of the

velocity field is denoted as

u(r, t; w) = d(r, t) + n3 (r, t)Y (t; w) (3.9)

where n- is the velocity mean, fij is the velocity of mode i, Y are the corresponding

stochastic coefficients and n,, is the number of modes retained in the DO decompo-

sition. The DO decomposition of O(r, t; w) is denoted as

k(r, t; W) = 0(r, t) + 34(r, t)Zi(t; w) (3.10)

where / is the mean, Vs are the modes, j are the corresponding stochastic coefficients

and i,, 4, is the number of modes retained. The resulting DO equations [23] are then

aN(r, t)
at U. ~ - ~

=~ -t; (i; - V~(YjZk - Cyz) + YfJ -VO + ZkU -Wki, )dt (3.11)
a8pi(r , t)

____ Qi (Qi,b m) m

where

Qi = -Cz z, LCZJYk~fk - Vo + MZjYkZik ' v] -~ Vi (3.12)

with Ca,b = E[ab] is the covariance between random variables a and b, and Mabc

E[abc] is the third moment of the random variables a, b and c.

The above equations are a subset of the stochastic Hamilton Jacobi equation which

have been previously solved by [113, 114] for optimal path planning in uncertain flow.

Details of an efficient implementation of the DO methodology for solving the above

system can be found in [24].
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3.2 Problem Statement

Variables and Dynamical Models

The variables of interest can be categorized as Eulerian (e.g. velocity, temperature,

salinity, density, pressure, etc.) and Lagrangian (e.g. drifter trajectories, flow-map,

LCS, etc.). Many of these are prognostic variables i.e. we know how to evolve them

through time using dynamical models. For example, velocity can be evolved using

the Navier-Stokes equations. In ocean models, velocity, temperature, salinity, density

and pressure may be evolved using primitive equations [37]. Other variables such

as FTLE fields are diagnostic in nature as they are obtained from time-integrated

information (eq. (3.4)) and not evolved through time. It should also be noted that

unlike variables defined at a certain time t, the FTLE field is defined over a time

interval. Suppose that X denotes the set of all prognostic and diagnostic variables we

are interested in. In our work, this will primarily include velocity fields, flow-maps,

drifter trajectories, and LCS.

Observations

Noisy observations of a subset of the Eulerian and/or Lagrangian variables are made

available to us at times tk, for k = 1, 2, ... , K. The variables in which observations are

made may change from one time instance to another. For example, we may obtain

observations in velocity at time t, and observations in temperature at time t2 . The

noisy observations of a continuous stochastic field X(r, t; W) may be obtained through

a linear (or linearized) observation model

Y(t; w) = H(t)X(t; w) + r(t; w), r (t; w) - A(-; 0, R) (3.13)

where X(t; w) is the spatially discretized vector of X(r, t; w), Y(t; w) are the noisy

observations, H(t) E RNosb(t)xNg(t) denotes the observation matrix at time t, r is the

zero-mean uncorrelated Gaussian measurement noise with covariance matrix R, Nobs

is the total number of observations made, and Ng is the total number of spatial grid

points/cells. The argument t indicates that these parameters or matrices may change
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with time. For brevity in notation, we will denote the variables in which we make

observations at or after time tk as Xk and the corresponding sparse noisy observations

as Yk. In the case where the forward or backward FTLE field is observed at some

locations, the observations can be associated to a time tk but they actually correspond

to FTLE data over a time interval, and they should be treated this way. That time

interval would be [t, tk] with t < tk for forward FTLE data and [tk, t] with t > tk for

backward FTLE data (observations are actually given available after tk in that case).

Objective

Consider T = [to, tN] as the time-interval of interest and let the observation times be

tk for k = 1, 2, ... , K such that to < ti < t2 < ... < tK < tN. We aim to determine

the posterior probability distribution function pxyl:, i.e. the set of all prognostic (at

time tk) and diagnostic variables (e.g. FTLE over a time interval [t, tk]) denoted by

Xk conditioned on the observations Y1 , Y2 , ... , Yk. The filtering problem consists of

computing PXkIY1,k and the smoothing problem of computing PXkIi,, where 1 > k.

Having defined the problem that we are interested in solving, let us review some

of the prior results and literature which looked at the problem of Lagrangian data

assimilation.

3.3 Existing Methodologies and Challenges

Pseudo-Lagrangian schemes 1 [43, 47] were the first approaches to the problem of

Lagrangian data assimilation. They use a finite difference approach to obtain a se-

quence of Eulerian velocity measurements which are then assimilated to improve the

state variable of velocity fields. This approach becomes inaccurate when the time

interval between subsequent measurements of drifter positions is comparable to the

Lagrangian integral time-scale. However, the main disadvantage of this approach is

that it ignores that the time series of drifter position measurements comes from a

single trajectory.

'term coined by [82]
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This issue can be circumvented by adopting a state-augmentation approach as in

[46, 51] where drifter positions are augmented with velocity field. The augmented

state is predicted using the evolution equations for velocity (e.g. Euler's, Navier-

Stokes, linear shallow water equations, etc.) and the advection equation for drifter

positions (eq. (3.7)). Drifter position observations (eq. (3.13)) can be directly assim-

ilated to obtain the posterior PDF of the augmented state and hence, velocity fields

are also updated according to the correlations of the drifter's movement with the

velocity fields. The implementation in [51] which uses the extended Kalman filter for

assimilation fails when observed trajectories pass too close to a saddle point of the

flow. The same implementation [51] also uses the linear tangential model for uncer-

tainty propagation which is not capable of capturing non-Gaussian PDFs of the state

and requires the computationally expensive operation of evolving the error covariance

matrix. The Ensemble Kalman Filter (EnKF) [20] has been combined with the state

augmentation approach in [94] for the unsteady double-gyre flow setup with shallow

water equations and in [128] to compare the assimilation of fixed Eulerian velocity

measurements against assimilation of Lagrangian drifter positions for capturing the

eddy-shedding process in the Gulf of Mexico.

Numerical experiments in [5, 4] indicate that variants of the Kalman filter such

as EnKF are unsuitable for assimilation and a linearized dynamical model can not

be used for prediction as they fail to capture non-Gaussian statistics of the state.

This is apparent for the nonlinear equations of velocity 2.14) and advection equa-

tion for drifter positions (eq. (3.7)) where the variables quickly become non-Gaussian

even when the initial PDF is a Gaussian. One solution would be to use the Parti-

cle Filter (PF) which is capable of capturing non-Gaussian PDFs but the required

ensemble size grows exponentially with the size of the system and thus quickly be-

comes intractable for high-dimensional problems. A suggested remedy to these issues

are hybrid filters such as the hybrid grid/particle filter (HGPF) [92, 93] and the hy-

brid particle-ensemble Kalman filter (HPEKF) [106]. The former (HGPF) uses an

advection-diffusion equation to solve the Fokker-Planck equation associated with the

augmented state vector which is computationally expensive for multiple drifters and
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requires an application of a particle filter update to the flow variables (i.e. velocity)

which becomes intractable for high-dimensional problems. The latter (HPEKF) over-

comes this issues by resorting to a Monte Carlo approach for evolving the ensemble

members and uses an EnKF for the usually high-dimensional flow (velocity) variables

and a PF for the usually low-dimensional variables of drifter positions. For large

ensemble sizes, a Monte Carlo approach for propagating uncertainty is inefficient and

particle filters suffer from sampling impoverishment [107] which requires resampling

procedures (e.g. Metropolis-Hastings method [19, 127], Gaussian resampling method

[130]).

On the other hand, variational methods [50, 81, 116] minimize a cost function

which measures the distance between model drifter and observed drifter trajectories.

Variational methods have also been combined with the pseudo-Lagrangian scheme

as in [117] where Argo float trajectories in the Mediterranean Sea were assimilated.

Variational methods also propagate uncertainty using a linear forward model and

hence cannot capture non-Gaussian statistics. Moreover, they typically provide a

single estimate and not a description of the uncertainty (PDF) of the state.

Observation operator based approaches try to construct observation models that

relate Lagrangian data to Eulerian variables. The observation models are not neces-

sarily local in time and could be nonlinear. The pseudo-Lagrangian schemes which

were discussed in the beginning of this section is an example of this approach as it tries

to relate Lagrangian drifter positions to Eulerian gridded velocity field. The assim-

ilation of subsurface Lagrangian data collected by periodically surfacing Lagrangian

instruments (gliders) was carried out in [111] by constructing an observation opera-

tor for subsurface measurements made en route between surfacings. This allows for

the correction of drifter paths as well when only subsurface measurements are avail-

able. The augmentation approach could not be used here for assimilating subsurface

measurements because the measurement locations are unknown. [119] constructs

adapted observation operators exploiting properties of the finite-time Lyapunov ex-

ponenet (FTLE) and finite-time Lyapunov vector (FTLV for direct assimilation of

high-resolution satellite ocean tracers. The FTLE/FTLV realizations are obtained
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from the satellite images using a binarization technique [120] and assimilation is used

to improve velocity fields. In this work, we do not focus on assimilation of subsurface

measurements and tracer images. This will be considered in the future.

In summary, any approach for Lagrangian data assimilation must overcome the

following: (i) nonlinearity of the evolution equations which requires a method of

uncertainty propagation and assimilation that is capable of capturing non-Gaussian

statistics (ii) high dimensionality of flow variables (e.g. velocity), and (iii) spatial and

temporal variability of the systems. Additionally, we would want the approach to

be general and capable of joint assimilation of Eulerian and Lagrangian information

content of observations.

3.4 State Augmentation Approach

For uncertainty propagation in the flow variables such as velocity or flow-map, we

use the DO methodology which was described in Chapter 2. It has been shown to

be capable of handling nonlinearities in dynamical equations and an efficient reduced

order approach for high-dimensional problems. We combine the assimilation strategy

of the state augmentation approach with the DO equations for forward evolution

of the prognostic variables. The GMM-DO filter [109, 110] is used for assimilation.

We review the filter in section 3.4.1 and explain how the Bayesian problem is solved

during assimilation and how the non-Gaussian PDF of the posterior is accurately

captured. It has been used previously for filtering [109, 110] and smoothing [76, 75] of

velocity fields in idealized flow test cases. It has also been extended to model learning

[77, 71] and simultaneous estimation of states, parameters and model equations with

applications to coupled biogeochemical-physical flows [34]. Here, in this work we

extend the GMM-DO filter for simultaneous estimation of Eulerian and Lagrangian

variables which we will describe in section 3.4.2.

80



3.4.1 Gaussian Mixture Model (GMM)-DO Filter

From a Bayesian perspective, the goal of assimilation [98] is to obtain the posterior

distribution p(xly) of the state x given a prior distribution p(x) on x which reflects

the current knowledge of the state, and a likelihood distribution p(yIx) of the ob-

servations y given the state x based on our knowledge of noise in the observations.

This is referred to as filtering if the observations y at time tk are used to improve the

knowledge of the state x at time tk and is referred to as smoothing if they are used

to improve the knowledge of state x at time t < tk. The true posterior distribution

is then given by Baye's rule:

p(xly) p(yx)p(x) (3.14)
p(y)

In the GMM-DO filter [109, 110] and the GMM-DO smoother [76, 75], the PDF of

the state of interest is evolved forward in time using the DO methodology. The prior

state vector (also called forecast during filtering) can be written as

Xf(W) = k- + ZVf V(W) (3.15)

where kf is the mean of Xf(w), xV E RNxxn, is the matrix containing the orthonor-

mal modes, and f(W) E R' x1 is a time-dependent vector of zero-mean stochastic

coefficients. Assimilation is then carried out in the dominant stochastic subspace.

The stochastic coefficients are represented using samples and thus the realizations in

the state space can be obtained using the affine transformation (Eq. 3.15). The first

step of the GMM-DO filter involves fitting a Gaussian Mixture Model (GMM) [80]

to the samples of the stochastic coefficients.

M

pg(q5) =Zir{ xK(4;jy ,E) (3.16)
j=1

where the GMM parameters 7r3 E [0, 1] is the weight of GMM component j and
M

satisfies Er7 = 1, p4 E Rn, is the mean of GMM component j, E{ is the covariance
.j=1
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matrix of GMM component j, and M is the the number of components in the GMM

(also called complexity of the GMM). The GMM is fit to the realizations using the

Expectation-Maximization algorithm [12] for a given complexity M. The Bayesian

Information Criterion (BIC) is used to determine the most suitable value for M.

Details regarding the application of the EM algorithm and BIC to obtain the GMM for

a given set of realizations can be found in [109. Combining eq. (3.16) and eq. (3.15),

the PDF in the state space can be determined which is also a GMM

M

px(x) = Er x A(x; k, Pj) (3.17)
.j=1

where the corresponding GMM parameters are given by

p ( ) (3.18)
P = 

Z~j(Z)T

The GMM is an attractive option for describing the PDF of the state vector as it is

capable of capturing non-Gaussian statistics unlike the parameteric Gaussian PDF

and does not require to retain the nMC realizations unlike a kernel density estima-

tor [105] which is computationally expensive for assimilation. Moreover, GMMs are

conjugate priors [14, 108] to Gaussian observation models (eq. (3.13)). When solving

eq. (3.14) during the assimilation to obtain the posterior distribution, the modes of

the prior state vector (eq. (3.15)) are assumed to remain constant. Computing the

posterior state vector then becomes equivalent to obtaining the parameters of GMM

describing the posterior state. It was shown in [109] that this can be done in the

stochastic subspace by finding the posterior distribution (GMM) over the stochastic

coefficients which is much more computationally cheaper. We denote the parameters

of the posterior state vector as

Xa(w) = 4 + XtbIa(w) (3.19)
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where the modes satisfy *f = 7a = A and the corresponding GMM over #P(w) as

,,ra, a, E3a, j = 1, ... M (3.20)

The update equations [109] are as follows:

M

Xj = Rf + 'j/ E ,ra x ,agj~Aj

j=1

Z x A(*; fpj , HE5 + R)
,,= M f I f

E 7r. x V(y; HpL, H EffT + R) (3.21)m=1

M

p= - > r x ag
j=1

Ea (I - RH)E

with the following definitions

HA? (3.22a)

y - Hil (3.22b)

ga p + KR (yV - Hlj) (3.22c)

Rj ,H (E 5H + R) XKj (3.22d)

where K, is the Kalman gain matrix associated with GMM component j and fa is

the intermediate mean vector of 4)a. When eq. (3.14) is applied to the stochastic

coefficients i.e. Vf, the intermediate posterior distribution of <i> which is a GMM

with parameters of rj, fa , and Ea for j 1,..., M is obtained. The DO methodology
M

requires that Ja are zero-mean stochastic processes i.e. = 3rp = 0 which is not
j=1

satisfied by fa in general.

After the posterior distribution of Jpa is obtained, we can sample from the cor-

responding GMM to obtain the posterior set of realizations within the stochastic

subspace. The procedure to obtain posterior state vector (eq. (3.19)) is then com-

plete. Details regarding the derivation of the update equations (Eq. 3.21) can be
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found in [109]. In the next section, we describe how the GMM-DO filter can be

extended to include the assimilation of Lagrangian data.

3.4.2 Joint Eulerian-Lagrangian Data Assimilation

In general, we can augment the state as

Eulerian Variables
X = (3.23)

[Lagrangian Variables

As explained earlier in section 3.2, some of these variables have dynamical equations

attached to them which we referred to as prognostic variables. The state vector can

then be rewritten also as

_ [Prognostic Variables xPV (3.24)
-Diagnostic Variables [XDVJ

The prognostic variables are evolved using their corresponding dynamical equations

and the diagnostic variables are usually determined from the time-integrated prog-

nostic variables. Diagnostic variables include trajectories (T = {xp(t; W) It E [to, ti]})

which is set of all positions lying along the drifter path and FTLE A which are com-

puted from the stochastic flow-maps. For example, if we consider the augmented state

vector containing Eulerian velocity u and Lagrangian drifter positions xp, flow-maps

IF, and FTLE A.

U

X = (3.25)

A

The prognostic variables are velocity, drifter positions, and flow-maps which can be

evolved with eq. (2.14), eq. (3.7), and eq. (3.8) respectively. Effectively, the dynamical
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equations of XpV are augmented together.

L(u)

L(Xpv) = (xp) (3.26)

The diagnostic variable of FTLE is calculated using eq. (3.4). Velocity and the flow-

map can be computed efficiently using the DO methodology (equations in section

2.1.2 and eq. (3.11) respectively). The positions of the drifters are evolved in a Monte

Carlo fashion using the ensemble realizations of the velocity

dxp(t; w) "tsu

dt = 11t ),t )=n~pt ) t) + f ni (xp (t; w), t) Yi (t; w) (3.27)

where we inserted the DO decomposition of the velocity (eq. (3.9)). The trajectories

can also be obtained from the forward flow-map. For example, the ensemble of

trajectories corresponding to a drifter released from zp would be given by

{ xp(t; w) (zP, t) + 3 (zp, t)Zi(t; w)
(3.28)

xp(t = 0; W) Zp

where the DO decomposition of the forward flow-map in the above equation was ob-

tained from backward time-integration of %F (or eq. (3.10)) in eq. (3.11). It should be

noted that there may be slight differences in the trajectories obtained using eq. (3.27)

and eq. (3.28) due to numerical errors. We decompose the drifter positions xp into

it's mean Xp and deviation EP.

xp(t; w) = kp(t) + Ep(t; w) (3.29)

Once all the prognostic variables have been computed, the diagnostic variable such

as FTLE may be determined form the time integrated information. The DO decom-

position of the FTLE is obtained by taking the SVD of the ensemble realizations of

85



FTLE determined from the ensemble realizations of flow-maps using eq. (3.4). The

DO decomposition of the FTLE will be denoted by

ns,A

A(r; w) = A(r; w) + E> X&(r, t)Bj(t; w) (3.30)
i=1

After all the prognostic variables available at the time of interest tk and diagnostic

variables at time of interest or time interval of interest, we augment the variables to

obtain the augmented vector (eq. (3.25)) and the associated DO decomposition

u(w) U [1 0 0 0 Y(W)

Xp(W) _XP 0 INp 0 0 Ep(w) (3.31)
X- )+ x (.1

X(w) 0 0 0 Z(w)

L A(w)J A 0 0 0 A L B(w)

where INp is an identity matrix of size 2Np x 2Np when working in 2D with Np

denoting the number of drifters, and u is the modes' matrix for velocity where the

ith column is the ith DO mode fi6. The mode matrices of flow-map and FTLE are

denoted by Ai and A respectively. The reduced order decomposition of X is a valid

DO decomposition because the modes of the augmented state vector are orthonormal

with respect to the inner product defined by *TAIP2 = I (eq. (2.62)) and exactly

reproduces the individual realizations of the variables in the state vector.

In eq. (3.31), the uncertainty is explained by XG(w). If we consider the entire

set of realizations, then the matrix can be denoted as i;kT. It is important to

note two things at this stage. Firstly, b'Z T is the exact representation of the DO

realizations but is a low-rank expansion of the entire set of MC realizations which

are a part of the uncertainty. It may not necessarily be the best low-rank expansion.

This brings us to the second point. If we were to take an SVD of the set of MC

realizations, we would have obtained a matrix of modes X that may be a better

representation of the uncertainty as the modes would not only capture correlations

in a single variable but also the cross-correlations between variables. The stochastic
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coefficients 4 would now be shared. A disadvantage may be that the sparsity in X

may be lost. A particular advantage is that there is a possibility of having a lower

rank modes matrix to describe the same uncertainty. Here, the DO realizations are

available in place of the MC realizations. It may still be advantageous to obtain

the best low-rank expansion of the DO solution as it ensures that the coefficients are

shared between the different variables and X may have a smaller rank than X. It can

also be truncated to have a smaller rank but still represent nearly all the uncertainty.

Instead of taking an SVD of the reconstructed DO realizations to obtain the best

low-rank expansion, we apply an alternate procedure.

It should be noted that T =k)T as they represent the same realizations. Let

us denote this resulting matrix as A and the eigendecomposition of AA" = PQPT.

The matrices X and P can then be obtained through

X =XVP; pT = pTpT (3.32)

It can be checked that the resulting modes are orthonormal (G = XA 1 X =

PT*AIP*P = I). Truncation is carried out by looking at Q according to the

amount of uncertainty one wants to capture.

After the augmented state vector is created, the Baye's formula (eq. (3.14)) is

solved using the GMM-DO filter as discussed in section 3.4.1 to obtain the posterior

distribution of the state vector. The key thing here is that we fit a GMM to the

stochastic coefficients 4. In the case of eq. (3.31), we then obtain the joint prior

distribution for the augmented stochastic coefficients and the prior distribution of

the shared coefficients in eq. (3.32). In the observation model (eq. (3.13)),

Y(t; w) = H(t)X(t; w) + L(t; w), F(t; w) ~ M(.; 0, R) (3.33)

the observation operator (measurement model) H(t) which projects the state space

onto the observation space is a simple projection matrix. The elements of the matrix

can only be 0 or 1. For example, if we only had observations in drifter trajectories, the

observation operator would be given by H(t) = (0, 1, 0, 0) where I is a unit matrix.
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The posterior distribution can then be obtained using the GMM-DO update of Eq.

3.21.

To understand how observations in a Lagrangian (Eulerian) variable also helps

in improving our knowledge in the Eulerian (Lagrangian) variable, let us consider a

simpler example. Suppose that the augmented state vector contains only velocity and

FTLE. The DO decomposition is then given by

u(w) 1 [ + [i 0 X Y(w) (334)

A(w) A 0 A B(w)

:=X(w) := =

considering the first augmentation approach. The PDF of the GMM that is fit to the

joint realizations of [Y(w), B(w)] is

M Y -J. E ' Y ,BJ

P (#) PY,B (Y B) = 7ri x A( P Y ::]) (3.35)
j=1 B -2B Y B,

Using the above joint PDF PY,B and the joint affine transformation (eq. (3.34)), we

can determine the joint state-space PDF PU,A which is also a GMM given by

( U + 1y =Fyy6T 6JY
PX (X) :=P.,A (u, A) = E7ri x ArI-KL=1 [ -xtJ LAEJ YiT AEBA TiA A + A -B_ BT iB,B

(3.36)

If we now consider the case where only velocity measurements are made, the linear

observation model can then be written as H = [I, 0] where Iu is an unit matrix

with entries of 1 according to the location where the observation in velocity is made.

According to the GMM-DO update equations (eq. (3.21)), the Kalman gain matrix

for each mixture component in the GMM (eq. (3.35) is given by

-j = ( iT T + R (3.37)
BY T U T
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where the mean, covariance matrix and weight for each component of the posterior

GMM in the joint stochastic subspace are

A3 = _I + K3(y -I ) (3.38)

= (I -kRh) (3.39)
M

F cr x 7 (y; J I yTIT + R)), > ^r = 1 (3.40)
m= 1

From eq. (3.37), we see that our knowledge in the Lagrangian variable improves as a

consequence of the cross-correlations in each GMM component. We can then generally

say that the mutual information between the observational data and the variables in

the augmented state allows us to improve our knowledge. We illustrate using the

same augmented state through a simple application in the following section.

3.5 Application: Stochastic Double-Gyre Flow

Here, we consider the stochastic case of the periodically varying double-gyre flow [100]

which was described in [23, 24]. The stream function of the stochastic flow is given

by

(X, y, t; W) = A sin(7rf(x, t; w)) sin(7ry) (3.41)

where

f(x,t; W) a(t; W)x 2 + b(t; w)x

a(t; w) = csin(wt) (3.42)

b(t; w) = - 2E sin(wt)

where the stochasticity is introduced through the variable W which is the angular

frequency of the oscillations. Here, we consider w - U[7r/10, 87r/10]. The parameter E

is approximately how far the line separating the two vortices moves left or right from

the center line. The flow is divergence free (i.e. V -u) for any value of W or E. It should

however be noted that this is not a solution to the stochastic Navier-Stokes equations

(eq. (2.14)). Velocity is already known as a function of time and thus does not need
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to be dynamically evolved. The DO decomposition of velocity u is shown in Figure

3-1 at T = 5. We find that four modes is enough to explain 99.9% of the uncertainty

at all time instances. This is reflected by the exponential decay of variance of the

stochastic coefficients in Figure 3-1. The prognostic variable of flow-map is evolved

using eq. (3.8). Here, we choose to evolve the backward flow-map from T = 10 to

T = 0 which marks the temporal domain of interest. The DO decomposition of the

stochastic backward flow-map is shown in Figure 3-2. The stochastic backward FTLE

field is obtained using eq. (3.4) and the DO decomposition (Figure 3-3) using an SVD

approach. We consider the augmented state vector as (u(w), A(w))T. It should be

noted the stochastic backward flow-map is not included as a part of the augmented

state vector but needs to be if we also want to update our knowledge in that variable

as well.
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We consider two test cases: (i) observations in the Lagrangian FTLE is used to

improve the knowledge in both u and A, and (ii) observations in the Eulerian velocity

is used to improve the knowledge in both u and A.
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10 and T = 0. (first two columns) DO mean and the first three dominant modes of
backward flow-map with (third column) Spectrum of the stochastic coefficients (top
row) followed by the kernel density estimates of the marginal PDFs of the stochastic
coefficients
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Test Case 1: Observations in Lagrangian FTLE

We follow a twin experiment approach where the truth is selected to be one of the

realizations belonging to the statistics of the DO decomposition of FTLE. We start
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off with the test case where only observations in FTLE are made at four locations

marked by stars in Figure 3-4. Velocity is not observed. The measurement noise in

eq. (3.33) corresponding to the FTLE observations is set to zero-mean Gaussian with

variance of 2c1 where 2t is the global average variance of the FTLE field.
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Figure 3-4: Stochastic double-gyre flow: Observations in backward FTLE are used to
update the knowledge of both the Lagrangian FTLE and the Eulerian velocity. (left)
Prior DO mean, true realization of FTLE (with observation locations marked by
stars) and the posterior DO mean of FTLE; (center) Prior DO mean, true realization
of velocity (no observations were made in this variable) and the posterior DO mean
of velocity; (right) Prior and posterior distributions of the corresponding stochastic
coefficients with the coefficient of the truth marked.

In Figure 3-4, we have plotted the prior DO means of the FTLE field and the

velocity. Results of the assimilation are shown by plotting the posterior DO means of

the FTLE field and velocity in Figure 3-4, the marginal distributions of the stochas-

tic coefficients corresponding to the first three modes in the same Figure, and the

marginal distributions (in one and two dimensions) of the stochastic coefficients in

Figure 3-5. The posterior distributions of the first three coefficients show improve-

ments with modes in the PDFs centered at the coefficient of the true solution. This is
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more clear in Figure 3-5 where we can see that Gaussian components of the posterior

GMM with high weights are closer to the true solution. Further, we plot the PDFs

of the variables at the observations locations in Figure 3-6. There were no observa-

tions made in velocity but we are still able to improve our knowledge in this variable

through the state augmentation approach as reflected in the posterior distributions.

This shows how information in one variable can be captured to improve knowledge

of another variable.
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Figure 3-5: Joint GMM fits considering observations in Lagrangian FTLE. In the four
boxes, we show pairwise joint distributions of two stochastic coefficients. Ensemble
members representing the prior are shown in blue along with the prior and posterior
GMM fits. One standard-deviation contours of the different Gaussian components are
displayed and colored by the weight of the component i.e. 1rj for the prior GMM (see
colorbar on the left) and 7r, for the posterior GMM (see colorbar on the right). The
1D marginal densities of the prior are computed by a kernel dressing scheme and are
shown in blue. The marginal prior and posterior PDFs of each stochastic coefficient
as obtained through the GMM fits are also plotted (see legend for color association).
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not observed; (center) Prior distribution, posterior distribution and true solution
of v velocity which is not .observed; (right) Prior distribution, observation with it's
associated Gaussian distribution, true solution and posterior distribution of FTLE

Test Case 2: Observations in Eulerian Velocity

As before, we follow a twin experiment approach where the truth is selected to be

one of the realizations belonging to the statistics of the DO decomposition of FTLE.

The observation locations which were selected in the last test case are considered

again but now observations are made in Eulerian velocity. The measurement noise

in eq. (3.33) corresponding to observations ux. and u., is set to zero-mean Gaussian

with variance of 2o-U and 2ai, respectively where aux and oUX are the global average

variances of u. and u. respectively.

We organize our results in a similar manner to that in the previous test case. In

Figure 3-7, we have plotted the prior DO means of the FTLE field and the veloc-

ity. .Results of the assimilation are shown by plotting the posterior DO means of the

FTLE field and velocity in Figure 3-7, the marginal distributions of the stochastic co-

efficients corresponding to the first three modes in the same Figure, and the marginal
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Figure 3-7: Stochastic double-gyre flow: Observations in velocity (both components)
are used to update the knowledge of both the Lagrangian FTLE and the Eulerian
velocity. (left) Prior DO mean, true realization of FTLE (no observations are made
in this variable) and the posterior DO mean of FTLE; (center) Prior DO mean, true
realization of velocity (observation locations are marked by stars) and the posterior
DO mean of velocity; (right) Prior and posterior distributions of the corresponding
stochastic coefficients with the coefficient of the truth. marked

distributions (in one and two dimensions) of the stochastic coefficients in Figure 3-

8. The posterior distributions of the first three coefficients show improvements with

modes in the PDFs centered at the coefficient of the true solution. We notice that

the uncertainty in the stochastic coefficients is reduced to a greater degree compared

to the previous case. This is more clear in Figure 3-8 where we can see that Gaussian

components of the posterior GMM with high weights move towards the true solution.

The prior and posterior PDFs of the velocity components are plotted in Figure 3-9

at the observation locations. Comparing this against the corresponding distributions

in Figure 3-6 where FTLE observations were assimilated, we can conclude that ve-

locity observations are more informative for the random variables of velocity at these

locations. This is expected due to the higher mutual information between the PDFs
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of the observation and verification variable in this case. FTLE observations could

be more informative if the observation noise in velocity was much higher than the

observation noise in FTLE.
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Figure 3-8: Joint GMM fits considering observations in Eulerian velocity. In the four

boxes, we show pairwise joint distributions of two stochastic coefficients. Ensemble

members representing the prior are shown in blue along with the prior and posterior

GMM fits. One standard-deviation contours of the different Gaussian components are

displayed and colored by the weight of the component i.e. r for the prior GMM (see

colorbar on the left) and 7rj' for the posterior GMM (see colorbar on the right). The

1D marginal densities of the prior are computed by a kernel dressing scheme and are

shown in blue. The marginal prior and posterior PDFs of each stochastic coefficient

as obtained through the GMM fits are also plotted (see legend for color association).
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Figure 3-9: Distributions of velocity at the observation locations (left) Prior distribu-
tion, observation with it's associated Gaussian distribution, posterior distribution and
true solution of u velocity; (right) Prior distribution, observation with it's associated
Gaussian distribution, posterior distribution and true solution of v velocity

3.6 Summary

In this chapter, we extended the GMM-DO filter for the joint assimilation of Eulerian

and Lagrangian variables using the augmentation approach. We illustrated the ca-

pability of this approach through two test cases based on the stochastic double-gyre

flow considering observations in Eulerian or Lagrangian variables.
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Chapter 4

Conclusions and Future Work

In this chapter, we summarize the work that was done in this thesis focusing on some

of the key results obtained. This is followed by a discussion of the future directions.

4.1 Summary and Conclusions

In the past few decades, the role of data in making accurate predictions has increased

drastically. This motivates the use of measurements from fixed Eulerian and non-

stationary dynamic Lagrangian sensors in the ocean. One of the main contributions

of this thesis is the formulation of a methodology that is capable of assimilating Eule-

rian and Lagrangian information while respecting non-linear dynamics and capturing

non-Gaussian statistics. We were successful in doing this by using the Dynamically

Orthogonal (DO) field equations for propagating uncertainty in the stochastic dy-

namical mQdels and the GMM-DO filter for data assimilation.

First, numerical schemes were developed for the stochastic DO Navier-Stokes equa-

tions to improve the consistency, accuracy, efficiency and stability in the DO solution.

A fundamental numerical challenge is maintaining consistency between MC and DO

advection which involves the evaluation of advection by DO modes which don't con-

tain any directional information. The issue of maintaining consistency between DO

and MC advection was addressed by using centered advection schemes which do not

require any directional information combined with the linear and explicit Shapiro
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filter for suppressing oscillations. In order to further ensure accuracy and stability

for long time-integrations, semi-implicit IMEX schemes were applied to the stochas-

tic DO Navier-Stokes equations. Projection schemes for the linear multi-step IMEX

and IMEX Runge-Kutta schemes were obtained. We also presented strategies for re-

orthonormalization that ensure that DO modes remain orthonormal throughout the

simulation time and allow us to continuously track the DO solution. Finally, the ad-

vantages posed by these numerical schemes were illustrated through the test cases of

stochastic passive tracer advection in a deterministic swirl flow, stochastic flow past a

cylinder, and stochastic lid-driven cavity flow. As a whole, for given uncertain initial

conditions, these schemes provide ensemble of velocity fields that are comparable to

the Monte Carlo (MC) solution at a fraction of the computational cost.

Second, the GMM-DO filter was extended to the joint assimilation of Eulerian

variables and Lagrangian variables. The DO equations are used to obtain the ensem-

ble of velocity fields which are in turn used as inputs for the different realizations of

drifter/float trajectories, stochastic flow-map, and thus stochastic FTLE fields used

for identifying Lagrangian Coherent Structures (LCS) in the flow. As new data be-

comes available, assimilation is carried out using a state augmentation approach.

This has an immediate consequence. Irrespective of which variable is measured, the

other variables describing the ocean state are updated through mutual information.

This was illustrated for test cases based on the stochastic double gyre flow over one

assimilation step.

4.2 Future Work

The two main areas that we worked on were (i) numerical schemes for uncertainty

propagation in high-dimensional stochastic fluid flows and (ii) Bayesian state estima-

tion when sparse observations in Eulerian and Lagrangian data are available. Next,

we outline some possible future directions within these two areas.

To ensure consistency between the evaluation of advection in the Monte Carlo

sense and in the stochastic DO Navier-Stokes equations, we currently use centered
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advection schemes with Shapiro filtering to suppress oscillations. Other advection

schemes such as essentially non-oscillatory scheme (ENO) or weighed essentially non-

oscillatory schemes (WENO) using centered fluxes [121, 118] may be investigated or

possibly update so that they do not require directional information. As these schemes

are in general nonlinear and not bilinear like the centered schemes, direct consistency

between MC and DO advection is not ensured but is a good approximation if these

schemes are of low polynomial order. These schemes will be especially important

in flows with very high velocity gradients or shocks where filtering may not prevent

growth of spurious numerical oscillations introduced by centered schemes.

As part of the numerical schemes for the DO equations, we discussed projection

schemes in the rotational form for IMEX linear multi-step and IMEX Runge-Kutta

time marching schemes. Irrespective of the order of time-integration used, velocity

and pressure [32] can be at most second order accurate. One way to increase accuracy

is to carry out multiple reiterations of the projection step using the corrected pres-

sure obtained. This has already been successfully implemented and validated in the

case of the deterministic Navier-Stokes equations [3, 2]. Applying this approach to

the stochastic DO Navier-Stokes equations would further increase the accuracy and

consistency of the DO solution.

Additionally, the stability analysis of the IMEX schemes as applied to the DO

equations needs to be better understood. Of utmost consequence is the understanding

of how stability of the different schemes may vary with Reynolds number of the flow.

This would give an insight into the conditions that need to be imposed on the size of

the time-step during time-marching.

Finally in this work, we restricted ourselves to the case of constant number of

modes n, when integrating the DO equations through time. This limits the amount

of uncertainty that can be captured. More modes may need to be introduced to

capture the uncertainty that arises from the interactions of existing modes in time

[24]. This motivates the need to look at combining adaptivity with the numerical

schemes introduced here.

In Chapter 3, we presented the theory and methodology for joint Eulerian-Lagrangian
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data assimilation. Applications of sequential filtering need to be investigated. This

could be followed by smoothing, parameter estimation, and model learning [56, 77,

76, 75]. Finally, this would need to be applied to realistic ocean fields [37, 36]. A

step in this direction would be to extend the numerical schemes presented for the

stochastic DO Navier-Stokes equations, to the case of the stochastic ocean primitive

equations [55, 112].

The methodology would also need to be extended to assimilate vertically-integrated

or subsurface measurements more complex observation model may need to be created

in addition to using the state augmentation approach. Lagrangian measurements of

biological variables [64, 10, 60] and of acoustical variables [59, 57] would also need to

be included.

An important to question to ask is where should I place sensors so as to maximize

the information that I collect about the state variables that I am evolving? This

forms the question of adaptive sampling [56]. A secondary question may be at a given

observation location, making measurements in which variable is more informative?

In the case of drifters, the question can be rephrased as "Where should I release

drifters so as to maximize information about the state variables (prognostic variables

and structures in the flow) through the observations of drifter trajectories?" This

motivates the need to formulate a methodology for drifter deployment.

Finally, we note that several recent sea experiments involving gliders, floats, and

drifters [15, 61, 31, 65] indicate that the present results will be very useful in a wide

range of ocean science and engineering applications.
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