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Abstract

Ocean currents transport a variety of natural (e.g. water masses, phytoplankton, zoo-
plankton, sediments, etc.) and man-made materials (e.g. pollutants, floating debris,
particulate matter, etc.). Understanding such uncertain Lagrangian transport is im-
perative for reducing environmental damage due to natural hazards and for allowing
rigorous risk analysis and effective search and rescue. While secondary variables and
trajectories have classically been used for the analyses of such transports, Lagrangian
Coherent Structures (LCSs) provide a robust and objective description of the im-
portant material lines. To ensure accurate and useful Lagrangian hazard scenario
predictions and prevention, the first goal of this thesis is to obtain accurate proba-
bilistic prediction of the underlying stochastic velocity fields using the Dynamically
Orthogonal (DO) approach. The second goal is to merge data from both Eulerian and
Lagrangian observations with predictions such that the whole information content of
observations is utilized.

In the first part of this thesis, we develop high-order numerical schemes for the
DO equations that ensure efficiency, accuracy, stability, and consistency between
the Monte Carlo (MC) and DO solutions. We discuss the numerical challenges in
applying the DO equations to the unsteady stochastic Navier-Stokes equations. In
order to maintain consistent evaluation of advection terms, we utilize linear centered
advection schemes with fully explicit and linear Shapiro filters. We then discuss
how to combine the semi-implicit projection method with new high order implicit-
explicit (IMEX) linear multi-step and multistage IMEX-RK time marching schemes
for the coupled DO equations to ensure further stability and accuracy. We also
review efficient numerical re-orthonormalization strategies during time marching. We
showcase our results with stochastic test cases of stochastic passive tracer advection
in a deterministic swirl flow, stochastic flow past a cylinder, and stochastic lid-driven
cavity flow. We show that our schemes improve the consistency between reconstructed
DO realizations and the corresponding MC realizations, and that we achieve the
expected order of accuracy.

In the second part of the work, we first undertake a study of different Lagrangian
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instruments and outline how the DO methodology can be applied to obtain La-
grangian variables of stochastic flow maps and LCS in uncertain flows. We then
review existing methods for Bayesian Lagrangian data assimilation (DA). Disadvan-
tages of earlier methods include the use of approximate measurement models to di-
rectly link Lagrangian variables with Eulerian variables, the challenges in respecting
the Lagrangian nature of variables, and the assumptions of linearity or of Gaus-
sian statistics during prediction or assimilation. To overcome these, we discuss how
the Gaussian Mixture Model (GMM) DO Filter can be extended to fully coupled
Eulerian-Lagrangian data assimilation. We define an augmented state vector of the
Eulerian and Lagrangian state variables that directly exploits the full mutual infor-
mation and complete the Bayesian DA in the joint Eulerian-Lagrangian stochastic
subspace. Results of such coupled Eulerian-Lagrangian DA are discussed using test
cases based on a double gyre flow with random frequency.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Background and Motivation

Data assimilation has long been used in meteorology for numerical weather prediction
[29] and in occanography to better understand and predict ocean dynamics [63, 54, 55,
38, 86]. The process of merging measurements which contain information regarding
the true state of a system with predictions from models to improve knowledge of
the state is referred to as data assimilation [28, 49, 98]. Predictions from dynamical
models involve uncertainty from different sources such as model uncertainty when the
dynamical model governing the interactions between the different physical processes
is not well known, imprecise knowledge of initial conditions, boundary conditions,
forcing, parameters, and unresolved processes of spatial and temporal scales that
may not interact or contribute strongly to the main physical process being modeled
[55, 62, 58]. At the same time, available measurements are both sparse in time and
space. It then becomes necessary to use both dynamical model and data to understand
how a dynamical system evolves.

In the context of oceans, one may need to describe density, temperature, salinity,
pressure and velocity to completely define the state. To understand and predict how
material transport is organized, it is imperative to look at advection of material in
the flow and Lagrangian Coherent Structures (LCS) which influence and organize

material transport. Measurements may or may not be available in these variables
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for assimilation. The different types of sensors used to make measurements include
Eulerian instruments (e.g. fixed sensors, moorings, etc.) and Lagrangian instruments
(e.g. drifters, floats, etc.). The differences between these instruments and the types of
measurements they make are discussed later in chapter 3. Most methods of data as-
similation have focused on incorporating observations made by Eulerian instruments.
It is only in the past two decades that different methodologies [13, 51, 46, 82, 84]
are being developed to assimilate observations made by Lagrangian instruments. It
is desirable to assimilate Lagrangian data as such observations can have more spa-
tial coverage and be more economical. Ideally, the assimilation methodology should
provide the true Bayesian estimate combining all information rigorously in accord
with probability densities. As a result, it should be capable of assimilating all of the
Eulerian and Lagrangian information content of observations. This forms the core

goal of this work.

1.2 Goal of this Work

In order to address the above challenges, this thesis develops numerical schemes for a
reduced order approach for making high-order probabilistic predictions for stochastic
Navier-Stokes and Boussinesq fluid flows and formulates a rigorous methodology for

Eulerian-Lagrangian data assimilation. Specifically this involves:

1. Probabilistic predictions of stochastic fluid flows - develop and verify
new numerical schemes for the Dynamically Orthogonal (DO) field equations

that maintain consistency, accuracy, and efficiency in the DO solution

2. Assimilation methodology for joint Eulerian-Lagrangian state esti-
mation - extend and apply the Gaussian Mixture Model (GMM)-DO filter to
joint Eulerian-Lagrangian data assimilation, exploiting the nonlinear governing

equations and Bayesian mutual information
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1.3 Layout of Thesis

In chapter 2, new numerical schemes for the DO equations applied to the stochastic
Navier-Stokes equations are formulated. We first provide an overview of the DO equa-
tions and the numerical challenges involved in the time-integration of these equations
when applied to the stochastic Navier-Stokes equations. We then discuss how these
numerical challenges may be overcome by using a suitable advection scheme with
filtering and high-order implicit-explicit (IMEX) time-marching schemes. This is fol-
lowed by a discussion on time-stepping and re-orthonormalization techniques. Finally,
we verify the consistency and accuracy of these numerical schemes by applications to
the stochastic passive tracer advection in a deterministic swirl flow, stochastic flow
past a cylinder, and stochastic lid-driven cavity flow.

In chapter 3, a new methodology is proposed for Bayesian Eulerian-Lagrangian
data assimilation. We first discuss the different types of Lagrangian instruments
and the types of measurements that they make in the ocean. This is followed by
a discussion on how Lagrangian Coherent Structures (LCS) may be described using
the measure of the finite-time Lyapunov exponent (FTLE). A brief overview of how
these may be obtained in stochastic flow is presented. We then give the formal
problem statement of joint Fulerian-Lagrangian data assimilation with a survey of
the existing methodologies in literature and the challenges that need to be handled.
We then describe how the Gaussian Mixture Model (GMM)-DO filter can be extended
to handle these challenges. Finally, the application of the methodology is presented
considering the test case of stochastic double-gyre flow.

Summary of results, concluding remarks and future directions are given in chapter
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Chapter 2

Numerical Schemes for

Dynamically Orthogonal Equations

Uncertainty quantification has become an important tool for making probabilistic pre-
dictions of truly stochastic dynamical systems or understanding the impact of error
or imprecise knowledge in data such as initial conditions, boundary conditions, pa-
rameters, etc. [131, 52]. The most popular method in uncertainty quantification has
been the Monte Carlo method and its variants which are all sampling based methods.
Nonsampling methods include perturbation methods [72, 73] where random fields are
expressed in their truncated Taylor series expansion around the mean. These meth-
ods do not perform well when magnitudes of uncertainty are high. Other methods
include moment equations and operator-based methods [17, 18, 133]. Recently de-
veloped methods include Proper Orthogonal Decomposition (POD) method which
was historically applied to turbulent flows [85, 78, 45] and generalized polynomial
chaos (gPC) [132] which uses spectral representations in the random space. Here, we
will focus on the Dynamically Orthogonal (DO) equations which was shown to be a

generalization of the generalized PC and POD methods in [96].
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2.1 Dynamically Orthogonal Equations

2.1.1 Review

Suppose that we are interested in the dynamics of the continuous stochastic field
X (r,t;w) which is governed by the following stochastic partial differential equation

(SPDE)
0X(r,t;w) _

5 L[X(r,t;w)w], T€D, teT, we (2.1)

with stochastic initial conditions
X(r, to;w) = Xo(r;w) (2.2)
and stochastic boundary conditions
BX(r,t;w)l,—e = (€, t;w) (2.3)

where B is a linear differential operator and £ denotes the spatial coordinate along

the boundary.

The first step of the DO methodology involves taking the generalized time-dependent

Karhunen-Loeve (KL) decomposition of the stochastic process X (r, t;w)
Ns
X(r,t;w) =x(r, 1) + Y Bi(t; w)Xi(r, t) (2.4)
i=1

where X(r,t) is the mean field, X;(r,t) are the orthonormal modes which forms a
basis of the time-dependent stochastic subspace, ®;(t;w) are zero-mean stochastic
processes, and n; represents the number of first dominant modes which are retained in
the decomposition and is also size of the stochastic subspace. The KL decomposition is
the best biorthogonal approximation of the original stochastic process [74, 1] in terms
of minimizing mean square error due to truncation. This is analogous to the singular
value decomposition for matrices. It should be noted that both the modal basis and

the stochastic coefficients are evolved in time and this is why the DO methodology is
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a more general formulation than Polynomial Chaos (PC) [132] where the stochastic
coefficients ®;(¢; w) are fixed in time or Proper Orthogonal Decomposition (POD) [45]

where the modes are fixed in time.

The DO evolution equations are obtained by enforcing the dynamically orthogo-

nality condition of

that is the stochastic subspace can evolve only orthogonal to itself. The operator

(a,b) is the spatial inner product defined as

(a(, 1), b(-, 1)) = /D a(r, t)Tb(r, t)dr (2.6)

The evolution equations of the mean, modes and stochastic coefficients respectively

are given by (using Einstein notation)

ox(r,t) Y
o = E[L[X(r, t;w);w]]
O%;(r,t L o
égt ) Iy (L [X(r, t; w); w] 25(t; w)) Co8,0) 27
| 5&-(%3_) — (L[X(r,t;w);w] — E[£ [X(x, ;w); 0], %i(x, 1))

where E[e] is the expectation operator, and II%[z] is the projection of the vector z

onto the space orthogonal to the stochastic subspace.
Mylz) =z — Mx[z] =2 - Y (z,%(r,t))X:(r, 1) (2.8)

i=1

The boundary conditions governing the mean and modes are given by

Bx(r,t)],—¢ = E[A(§, t;w)] (2.9)
B%i(r, 1)), = Z?E[q)j(tE w)h(€,;w)]|Cq e, (2.10)

The initial conditions are obtained through the KL decomposition and retaining the
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dominant n; modes. If one chooses to use {X;r}}; as the modal basis to describe

the stochastic subspace at time 0 then,

x(r,to) = E[Xo(r; w)] (2.11)
i(l‘, to) = )~(i0r (212)
Bi(to;0) = (Xolw) — %ol), Ko () (2.13)

A complete derivation of the DO equations can be found in [95] and details regarding
handling stochastic boundary conditions in [35].

With the DO methodology, we have reduced the original stochastic partial dif-
ferential equation of dimension ny to (i) a partial differential equation (PDE) of
dimension nx for the mean, (ii) ny PDEs of dimension nx for the orthonormal bases
which describe the stochastic subspace, and (iii) a set of stochastic differential equa-
tions which represents how the uncertainty evolves in the stochastic subspace through
time. If the stochastic coefficients are represented using ny;c sampled Monte Carlo
realizations !, then this set of stochastic differential equations is transformed into
ns X npyec ordinary differential equations (ODEs). Hence, the DO methodology is an
efficient reduced-order approach of propagating uncertainty in stochastic dynamical

systems.

2.1.2 Application to Navier-Stokes Equations

We are now interested in applying the DO methodology to the stochastic incompress-

ible Navier-Stokes equations

V- u(r, t,w)=0
——au(gtt;w) +u(r, tw) - Vu(r, ;w) = = Vp(r, t;w) (2.14)

+ v(r;w)Viu(r, t;w) + £(r, t;w)

1To make sure the samples are representative of the uncertainty in each mode, it is suggested to
use npyc >> Ng
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where u is velocity, p is pressure divided by density of the fluid 2, v is the kinematic
viscosity and f a forcing term. In general, stochasticity can be introduced through
initial conditions, boundary conditions, forcing terms, and parameters (e.g. viscosity,

density, etc.). The stochastic initial conditions are expressed as

u(r, to;w) = up(r;w) (2.15)

and the stochastic boundary conditions are separated according to the regions where

Dirichlet and Neumann boundary conditions are enforced

u(r,t;w) = hp(r,t;w), redDp, we (2.16)
a .
% = hy(r,t;w), r€dDy, weN (2.17)

To obtain the stochastic DO Navier-Stokes equations, we consider the following DO

decompositions of velocity and pressure

u(r,t;w) = a(r,t) + i Yi(t; w)i(r, t) (2.18)
p(r, t;w) = 5(r, 1) + S0 Vil w)i(r, ) (2.19)

i=1

where they share the same set of stochastic coefficients Y;. The initial DO decomposi-
tion is obtained by taking the KL decomposition of the initial conditions (eq. (2.15))
and retaining n; modes. The stochastic DO Navier-Stokes equations can be obtained
by applying the DO methodology described in the previous section to the stochastic
Navier-Stokes equations (eq. (2.14)).

2For brevity, we will refer to p simply as pressure in rest of this work.
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Mean

The evolution equation is given by

V-u=0
ou

with boundary conditions

a(r,t) = Elhp(r,t;w)] = hp,

a(r, t _
—uég—lr'],_) = ]E[hN(r: taw)] = hNa

and initial conditions

re 8DD,

r € 9Dy,

u(r, to) = Efuo(r;w)] = o (r; w)

Modes

The evolution equation is given by

V-; =0
au,

where

Qi = I/vzﬁi -— V . (l_lﬁz) - V . (ﬁlﬁ) - Vﬁz -

and Myjymyn =K [}/JYmYn]

The boundary conditions are

w;(r, t) ZIE (t; w)hp(r, t; W)]C;(t)q)j(t) = ﬁZA,D, redDp, wen

8u(r t) "3

26

= Q'l - (Qlaﬁ_))ﬁJ

— =-V_- (ﬁﬁ) - CYIYJV : (ﬁjﬁ@) - Vﬁ + I/VZI_I

weN

weN

Cr, My, v,1, V - (@ntim)

Z]E t w hN( )]C;il(t)Qj(t) = l?li,]v, re Dy, wefq

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)



with initial conditions as

U,(r, tg) = Tyo(r) (2.28)
Stochastic Coefficients
Their evolution is given by
dY; . - -
dt = <\Ilm7 ui)Ym - (V . (unum), u,)(YmYn — (Cymyn) (229)
where
U, = vV, — V- (i) — V- (i) — Vi, (2.30)

The initial conditions of the stochastic coefficients are obtained by projecting the full

stochastic field onto the corresponding mode after removal of the mean

Y,‘(to;w) = <110 — l_lo, ﬁ,‘}o(l‘)) (231)

Alternately one can use knowledge of the stochastic field when constructing the KL
decomposition e.g. the stochastic coefficients are Gaussian for a Gaussian process.
The details of the stochastic DO Navier-Stokes equations is now complete. For
a full derivation, the reader should refer [124] which actually discusses the case of
stochastic Boussinesq equations. The numerical study that we describe in this work

can be easily extended to stochastic Boussinesq equations.

2.1.3 Numerical Challenges

One of the broad goals of this work is to develop high-order numerical schemes for
the DO equations that ensure efficiency, accuracy, stability, and consistency between
the Monte Carlo (MC) and DO solutions. In order to maintain consistency between
the DO and MC solutions, we also need to ensure consistency in how advection
terms are evaluated in the two cases. This is difficult as the modes of velocity 1
do not contain any directional information. Adapting advection schemes used for

Monte Carlo realizations then becomes a challenge for advection terms of the form
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V - (Q,@;) and V - (@3;21) i.e. when the physical quantities are being advected by the
modes of velocity. One solution is to evaluate these terms in a Monte Carlo fashion.
This maintains consistency but is computationally expensive. Another approach is
to use an upwinding scheme considering the DO mean a1 for directional information
[69] but this is only justified for small uncertainties. There also exists Taylor series
approaches [16] but these become inaccurate when the PDFs are skewed and also when
uncertainties in the field variables are high. Another approach which has been quite
successful is to average numerical fluxes according to the PDFs of velocity direction
[124]. The idea is since stochastic coefficients Y; have zero mean, an upwinding
scheme [68] could be used to evaluate the advection terms considering both directions
and then average the results. The advection scheme chosen in [124] was the total
variation diminishing (TVD) scheme with a monotonically centered (MC) symmetric
flux limiter [126]. We will refer to this resulting scheme as the TVD* scheme in the

rest of the work.

The TVD* scheme however can lead to significant errors after long time-integration
times [24, 23]. It can work well if for half the realizations Y; < 0 and for the other half
Y; > 0. However, this is not always guaranteed. One solution could be to carry out
an averaged-upwinding according to the PDF of Y; but this would still not help us in
achieving consistency. In this work, we will utilize linear centered advection schemes
which ensure consistency between advection in the DO and MC setting. They have
already been applied to the stochastic tracer advection equation in [23, 24]. Here, we

extend their application to the unsteady stochastic DO Navier-Stokes equations.

However, it is well known that centered advection schemes introduce numerical
spurious oscillations which need to be removed so as to not corrupt the solution to
the dynamical equations. This is accomplished by implementing spatial filters [48, 56]

which are discussed in the next section.

In addition to ensuring stability through filtering, stability and high-order ac-
curacy of the DO solution can be ensured by adopting higher order time marching
schemes. In prior numerical studies (95, 124], a first order implicit-explicit (IMEX)

scheme was used. Disadvantages of using lower-order time-marching schemes in-
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clude sacrificing stability and accuracy but particularly the loss of coupling between
the mean and modal evolution equations over the time-step. While linear multi-
step IMEX schemes can be used to tackle the former problems, IMEX Runge-Kutta
schemes can be used to tackle all of these problems. We thus develop and discuss

IMEX schemes for DO equations in section 2.3.

The resulting aggregate IMEX scheme for the mean and mode of velocity will
include pressure gradient terms. In our system of equations for incompressible flow
(eq. (2.14)), there is no evolution equation for pressure. One approach to resolve
this is to consider that the flow is weakly compressible and introduce an equation of
state. Other approaches [26] such as the pressure-correction methods (e.g. SIMPLE,
SIMPLER, PISO, etc.) rely on decoupling pressure and velocity, e.g. [2]. Here, we

use projection methods [32].

Another consequence of using numerical discretizations of the DO equations is
that the DO modes are guaranteed to be orthonormal only up to numerical error.
Using high-order numerical schemes helps in ensuring that the error is low over one
time-step but the modes may become very far from being orthonormal over a large
number of time-steps. It thus becomes important to come up with an approach
to ensure orthonormality of the DO modes during time-integration and this will be

discussed in section 2.4.

In order to track the true Monte Carlo realizations perfectly using the DO method-
ology, it would be necessary to retain all the modes in eq. (2.4) (possibly infinite) and
evolve them through time. In this case, the DO methodology would become as ex-
pensive as the MC approach. This is why truncating the number of DO modes to
ns(t) allows us to approximate the MC solution well and at the same time gain large
computational dividends. However, in order to ascertain the influence of the trun-
cated modes (i.e. modes numbered n,(¢) + 1 to co) on the retained modes and to
increase the overall accuracy and stability of the DO framework, a closure scheme
is required to model the evolution of these truncated out modes and their influence
on the dynamics of the retained modes. This forms both a modeling and numerical

challenge. We do not investigate this problem here and leave it for future work.
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2.2 Treatment of Advection: Numerical Filtering

In general, the following properties of the filter applied is desired [48, 103]:

1. completely remove waves of wavelength 2Axz (waves of smallest wavelength that

can be resolved on a grid of uniform spacing Az in any direction)
2. preserve physically meaningful waves of higher wavelengths

3. the filter is linear so that the filtering of the DO solution is equivalent to the

filtering of the realizations reconstructed from the DO solution

4. minimizes the loss of conservation properties upon application such as conser-

vation of mass

While there a variety of numerical filters [48, 88, 87, 104], many of them are
implicit or nonlinear. We focus on the linear explicit Shapiro filter [101, 102, 103]
which satisfies the above properties. It is a linear symmetrical operator which uses
neighboring grid points for smoothing. In one dimension, the application of Shapiro
filter of order 2n to a field of ¢ results in the filtered values F2*(¢;) as follows:

) L C§2n
where 62¢; = ¢ —2¢; + ¢;_1. This corresponds to adding high-order linear diffusion

of order 2n
AIL’zn 82n¢
2271 8$2n

Fg) = 6+ (-1 +0(Ac™) (23)

The corresponding response function or effect of applying the Shapiro filter to waves

of wave number k£ or wavelength A on a 1D grid of uniform spacing Az is

R, (k) =1 — sin®" (k%) =1 —sin®" <7ré;—c) (2.34)

From the above expression, it is clear that the second order Shapiro filter completely
removes waves of wavelength 2Az but also damps waves of higher wavelengths which

is not desired. This is also illustrated in Fig. 2-1. In order to avoid this, one can
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apply a higher order Shapiro filter and/or apply the Shapiro filter every few number
of time-steps during time-marching. Using a higher order Shapiro filter increases the
width of the numerical stencil and thereby the computational cost. In the case of two
or three dimensional grids, one can take two approaches: (i) apply the 1D Shapiro

filter in each direction or (ii) apply mutli-dimensional Shapiro filters [21].

So far, our discussion of the Shapiro filter assumed that we were deep in the
interior where there isn’t a limitation on how wide the numerical stencil can be. This
is no longer true near boundaries. One approach is to introduce ghost cells [101, 22]
so as to use the standard centered Shapiro filter. However, this involves extrapolating
values from the interior to the ghost cells while respecting boundary conditions. This
introduces noisy values into the ghost cells and thus degrades the overall smoothing.
Another approach is to reduce the order of the Shapiro filter which requires a smaller
stencil [22, 83]. While this is robust and easy to implement, this may lead to severe
damping of physically relevant waves propagating from the boundaries and hence

corrupting the solution.

Another approach is to use high order decentered Shapiro filters [27, 22] where the
numerical stencil is decentered by b points. This however introduces dispersion and
may be anti-dissipative for high values of decentering (b). In order to obtain better
dispersion and dissipation behavior, [11] and [129] suggested alternate explicit and
implicit generalized decentered Shapiro filters respectively. A more effective solution
is the uneven-order decentered Shapiro filters [22] which does not suffer from any
instability attributed to anti-dissipative behavior. In one dimension, if the boundary
cell is on the left, the expression for the filtered values F?"*!(¢;) upon application'of

the Shapiro filter to ¢ is given by

62n
F2H(¢) = i + (—1)71%(@41 — ¢i) (2.35)
The corresponding response function is
A
Ryni1(k) = 1 — sin®"+2 (k;) + 7 cos (k%) sin?+2 (k%) (2.36)
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which corresponds to a high order diffusion term and a low order dispersion term.
The response function for different orders against wavelength is plotted in Fig.2-2.
As in the case of the standard centered Shapiro filter, it is desirable to use the highest
possible decentered Shapiro filter in order to preserve the waves of longer wavelengths.
This also helps in minimizing the amount of dispersion introduced.

The different parameters of the Shapiro filter are: (i) order of accuracy (2n), (ii)
number of applications at a given time-step (Ntimes) and (iii) frequency at which the
Shapiro filter is applied during time-marching (7eq). There is no general principle
in deciding these parameters. They may change from one application to another.
When describing the Shapiro filter parameters in the rest of the work, we will use the

minimized notation of (2n, (TR T,

—2n=2||

; |——2n=4 oa‘
5 = 5"
2 (——2n=8| | °
a8 i 508
@
8 g
go. 1 g04
& &
2| 0.2
2 6 10 14 18 22 26 30 2 8 10 14 18 22 26 30
MAX MAx

(a) Application of Shapiro Filter 1 Time (b) Application of Shapiro Filter 100 times

Figure 2-1: Response function of the standard centered Shapiro Filter used in the
interior considering 1D grid of uniform spacing Ax (Adapted from [48])
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Figure 2-2: Response function of the un-cven decentered Shapiro Filter used near
boundaries considering 1D grid of uniform spacing Ax
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2.3 Implicit-Explicit (IMEX) Schemes

The equations for the mean and mode in the stochastic DO Navier-Stokes equations
are of the form
¢

ZZ et LM _p 2.37
5t + Vp (2.37)

where F¢* are nonlinear terms such as advection which we want to evaluate explicitly,
F'™ are stiff terms such as diffusion which we want to evaluate implicitly and V5 is
the gradient of mean or mode of pressure which is usually evaluated in a similar
manner to the diffusion like terms. There are two categories of IMEX schemes: (i)
linear multi-step IMEX schemes where information from previous tiﬁlesteps is used in
time-marching and (ii) IMEX Runge-Kutta schemes where one time-step is divided
into multiple stages. In this section, we will describe how these IMEX schemes can
be applied to the stochastic DO Navier-Stokes equations. Further, we will describe

how projection methods may be used to decouple pressure and velocity.

To simplify our upcoming discussion on the application of IMEX schemes to the
stochastic DO Navier-Stokes equations, we will introduce some notation here. The
governing equations for the mean, modes and coefficients of velocity can be alterna-

tively written as

o _, . o

= =P +FF — V5

o _

al; — FI" + FE — Vj, (2-38)
d)/;' exr

@~

where the superscript of the F term indicates if is to be evaluated explicitly or implic-
itly numerically, and the subscript denotes if the term contributes to the evolution
of mean, mode or coefficients. For the stochastic DO Navier-Stokes equations, these

terms are as follows

(2.39)



F = V2,
N ' (2.40)
Fl?la: =-V. (l_lﬁz) -V (ﬁll—l) - C;ileMYijan ) (ﬁnﬁm) - <Ql7 ﬁj>ﬁj

where Q; is as defined in eq. (2.24). This is to ensure that the diffusion terms
are solved implicitly and the advection terms or inner product terms are computed
explicitly. This approach is also followed in [124]. The evolution of the coefficients
is computed explicitly and thus Fy¥ corresponds to the entire right hand side in

eq. (2.29).

2.3.1 Linear Multi-step IMEX Schemes

The general linear multi-step IMEX scheme applied to the stochastic DO Navier-

Stokes equations can be written in the form

4

1 T 1 &
mAtu Z a;u

Il

—Zb {Feayh=i 4 Z o; [{Fim}=7 + {-Vp} |

J——l

[ 131 ~k— ex\ k— im s—
it L ’”:—Zb{F Yei 5 e [(FIYE + (- Vi)

j=-1

T_ﬂ%yikﬂ + Ejzz(:)aj)/ik—j — _jgobj{Fgc}k—j

(2.41)
with boundary conditions as given in eq. (2.22) and eq. (2.27). The parameter s in the
above equation represents the number of prior timesteps from which data needs to be
stored. The superscript on the terms Fi™ and F** indicate the time-step from which
these terms are being used with respect to the current time-step (i.e. k). The values
of parameters a;, b; and ¢; for which the above IMEX scheme is consistent and of
order s can be found in [9]. The above scheme can be rewritten as a parametric family
of schemes of order s (c.f. [9]). We want our projection method [32] to obtain the
above aggregate scheme. The projection method with incremental pressure correction

in rotational form can be written as
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Projection scheme for the mean

uk+1 . 1{Fi=m}k+1 _ (_I_ —c sz) okt
mAt I mAt !

1 s—1

s—1 s—1
= - 27 W = Y b{FEI 4 3 o {FT
.7=0 ]=0 J=0

v - ukt! _ quk
mAt
ﬁk+l — ﬁk+1 _ mAthk

~k 1+C s—1 ) .
ﬁkﬁ—l:q__f_____gﬁk_zﬁk—]_yv‘ﬁk-kl

with boundary conditions

N — oq

ukt! = hp, % =0, redDp
aukt+1

on =hy, redDy

_ Vﬁk

(2.42a)

(2.42Db)

(2.42¢)

(2.42d)

(2.43)

where UF*! is the predicted mean velocity, and @**! is the corrected mean velocity

which is also considered to be the mean veloéity at time tg,;. Eq. (2.42a) corresponds

to the prediction step, eq. (2.42b) to the Poisson equation solve, eq. (2.42¢) to the

velocity update, and eq. (2.42d) to the pressure update. The last three equations

collectively form the correction step.

Projection scheme for the modes

ﬁf—’_l —c {Fz;m}k+1 _ ( I —c lyv2) ﬁl_ﬂ—l
mAt mAt '

1 s—1

s—1 s—1

~k—j —j i —j o~

= _Exajui TN bAFEY T 4+ Y e {F T — VpF
j=0 j=0 j=0
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AV ﬁf+1

= Y25k 2.44b

mAt 4 ( :

@5 = 85— mArVE (2.44c)

e g’“_ L+ o g Z Tar A v L (2.44d)
—1 ‘

with boundary conditions

N . 0g;
Wt = h; p, 5% =0, redDp
8ﬁ{c+l _ (2'45)
*— =h;ny, redDy
On
where u"gle is the predicted velocity for mode 4, and ! is the corrected velocity for

mode ¢ which is also considered to be the modal velocity at time 5.

Summary of the complete time-integration scheme from time ¢ to t;,; is given in
Algorithm 1. Details of how Cy,y, is computed when the covariance matrix is close
to singular is discussed in [124]. Reorthonormalization and selection of the time-step
size will be discussed in section 2.4. Algorithm 1 describes the time-integration fol-
lowed after the starting time because second and higher order linear multi-step IMEX
schemes require special starting. For example, the third-order IMEX Semi-implicit
Backward Difference (IMEX-SBDF3) is typically started by one step of IMEX-SBDF1
followed by one step of IMEX-SBDF2. These schemes are described in Table 2.1. This
is another motivation to look at IMEX Runge-Kutta (IMEX-RK) schemes which do

not require any special starting. This is discussed in the next section.

2.3.2 IMEX Runge-Kutta Schemes

We closely follow the notation in [123] for the following discussion on IMEX-RK
schemes. An implicit scheme with s;,, stages is combined with a compatible explicit
scheme with s, stages to obtain consistent IMEX-RK schemes [8] of order s;mes

(< sim). We consider IMEX-RK schemes [123] which have Butcher Tableaus of the
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Algorithm 1 Linear Multi-step IMEX Time-Integration for Stochastic DO Navier-

Stokes Equations

Input: 0F € RMu+N)x1 k¢ RWVutNo)xns 5k ¢ RNpx1 gk ¢ RNoxns Yk kAt 2n,

Mtimes, Treq

Output: G+ € RWetMxt i+l ¢ RNt phtl g RNoxL gkt @ RNoxns,

k+1
Y;

1: procedure TIME-INTEGRATION(Inputs)

2: Compute statistics {Cy,y, }* (and it’s inverse), {Mly,y,, v, }*

3: Compute explicit terms (advection and inner product terms) {F&}* and
{Fgy*

4: Obtain Y**! using eq. (2.41)

5. Obtain 6**! and p**! using eq. (2.42)

6: Obtain G and pf*! using eq. (2.44)

7: if (¥ mod ngeq) == 0 then

8: Perform shapiro filtering

o: end if

10: Re-orthonormalize modes ii¥*! and pF*™

11: return Outputs

12: end procedure

Name O | Scheme

k41 _ k-1 , _
Crank-Nicholson ) Ll A 2At¢ :{FB:}k + % [{F"”}’CJrl + {F””}k_l]
Leapfrog (CNLF) - 5 [P+ vt

k+1 k k—1
Semi-Implicit Backward 37T — 4P+ QYT ook ppesykl
2 2At =AHF } )

Difference 2nd order (SBDF2) + {FmyEtl — vpht

k+1 _ pk—1
Crank-Nicholson Adams- ) ¢—2AtL Z%{Fez}k - %{Fm}k_1 1
Bashforth 2nd order (CNAB2) +§ [{Fim}kﬂ + {Fim}k_l] 3 [VPkH + Vpk_l]
Semi-Implicit Backward ] Klt‘ (% Pkt — 3¢k + %(bk_l — %¢.k—2) =
Difference 3rd order (SBDF3) 3{Fe}k _ 3{Fez}b—1 4 [Fer}h—2 | (Fim}k+]l _ yphtl

Table 2.1: Examples of Linear Multi-step IMEX Schemes
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form given in eq. (2.46).

0 0 0 0 0 0 0

a | afh O 0 o | aff a 0 e 0
0 0 (2.46)

Cs—1 | gy - 0231,5—2 0 Cs—1 aé’fm Tt aiﬂjl,s—Z a

bo -+ beo a b oo - be o a

The Butcher Tableaus for the implicit and explicit scheme are padded with zeros
[8] such that they have the same number of stages i.e. s. The entries of the Butcher
Tablueau for the explicit scheme satisfy ag’s = 0 V3 > a. It can be noted from
above that we limit ourselves to Diagonally Implicit Runge-Kutta (DIRK) schemes
which have the property of aiy = 0 Vf > a so that we can solve the different stages
sequentially instead of simultaneously. Further considering that ag”"a =a Vl<ac<
si.e. all the diagonal entries are same allow us to create a single matrix for the implicit

solve. Additionally, we also prefer schemes with b, = b%* = b'™.

The IMEX-RK scheme applied to the stochastic DO Navier-Stokes equations then

can be written as

s—1 s—1
G = ALY (R ALY B[R+ (-0
a=0 a=0
s-1 s—1
it = af + ALY WEFEY + ALY B [{FT 4+ {- Vi) (2.47)
a=0 a=0
s—1
YR =Y Ay b {F
a=0

where s is the number of stages. The superscript on the terms F'™ and F¢* indicate

the stage from which these terms are being used.

The intermediate variables of mean u®, modes 0, and coefficients Y;* in stage o
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are then solved using

a—1 a
6= 8+ ALY a(FEY + A Y ol [({FIY + {-VEY]

B=0 B=0
a—1 o ] )
8% = @+ ALY aZ {FEY + At Y ol [{Fiy + {- V5
B=0 B=0
a—1
YO =YF + ALY ol {FE)P
B=0

(2.48)

The above aggregate schemes for the mean and mode are then solved using projec-

tion methods as discussed before. The following discussion closcly follows the layout

in [123].

Projection scheme for mean in stage «

ﬁa im im\ o I 2\ fa
E — 0y q Fﬁ } = A_t —aa,al/V u
=—+ ) ags{Fa'}
At 5=0 @ v
a-1 i )
+ 3l [((FY + {-Vp)’] - o, V5™
B=0
v * ﬁa _ vzq,a
aim At
u® =u® — ay, AtVg®
P =p+ 3 —vV-u®
with boundary conditions
N - g~
u® = hp, i=O, r € Dp
on
oue -
‘U =hy, reodDy
on

(2.49)

(2.49b)

(2.49¢)
(2.49d)

(2.50)



where u® is the predicted mean velocity for stage o, and u® is the corrected mean
velocity which is also considered to be the mean velocity at stage o. The variable
p** is the estimated pressure at stage o which is usually a function of previously
calculated pressures at different stages. For the projection method with incremental
pressure correction in rotational form, it is considered to be the pressure from end
of the previous stage i.c. at end of stage (o — 1). Eq. (2.49a) corresponds to the
prediction step, eq. (2.49b) to the Poisson equation solve, eq. 2.49¢ to the velocity
update, and eq. 2.49d to the pressure update within the stage. The last three
cquations collectively form the correction step.

After the updated mean velocity and pressure at the end of stage a are computed,
the implicit predicted diffusion term of {F%m}o‘ must be replaced by the implicit
corrected diffusion term {FZ"}*. This can be done by recomputing these terms with
the corrected values of mean velocity and pressure. Another equivalent approach is

from the aggregate scheme at stage o given by cq. (2.48).

: ar—aF 1 | i a
(0 =y — o | 2 0 FEY + 3 aim Py = S ol (Vp)?
o, a,a | B=0 B=0 £=0
(2.51)
Projection scheme for modes in stage o
ﬁq im im I =
Kzt —Qyq Fﬁi } = (E - aa,ayv2> u;
ak ! p
1
= T Y o {FE)
B=0
a—1 ) ) )
+ 3 aity {FTY +{-Vpi}?] — aim viper (2.52a)
8=0
V-ag
——L = V%G 2.52b
aim Al G; (2.52b)
ul =uf — aL ALV (2.52¢)
I AV (2.52d)
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with boundary conditions

.- oG
i = h; p, 8—% =0, redDp

Hae n (2.53)
i = ~i,N7 re 8DN

On

where ﬁ? is the predicted velocity of mode 7 for stage a, and Gf is the corrected
modal velocity which is also considered to be the modal velocity at stage . The
variable p* is the estimated modal pressurc at stage o which is usually a func-
tion of previously calculated modal pressures at different stages. For the projection
method with incremental pressure correction in rotational form, it is considered to
be the modal pressure from end of the previous stage i.e. at end of stage (o — 1).
Eq. (2.52a) corresponds to the prediction step, eq. (2.52b) to the Poisson equation
solve, eq. (2.52c) to the velocity update, and eq. (2.52d) to the modal pressure up-

date within the stage. The last three equations collectively form the correction step.

After the updated velocity and pressure of mode ¢ at the end of stage a are
computed, the implicit predicted modal diffusion term of {F’ﬁ’?}“ must be replaced by
the implicit corrected modal diffusion term {F"}*. This can be done by recomputing
these terms with the corrected values of velocity and pressure of mode i. Another

equivalent approach is from the aggregate scheme at stage a given by eq. (2.48).

imya ﬁ? - ﬁf: 1 = ex ex im
{F = am At gim Z {F }ﬂ + Z A {F }ﬁ Z aq {va
o, 0 a,a | f=0

(2.54)

After all the stages are complete, the updated fields of the mean and modes of
velocity at time ¢, can be obtained from combining the mean and modal values of
velocity from the different stages using eq. (2.47). However, this requires computing
the explicit terms of {Fg'}°~! and {Fg}*~!. These may be divergent and thus a final

projection step must be taken to update the mean pressure 5°~! and modal pressures

k+1 +1

P57 that will ensure divergence-free iF*! and @f*!. Expressions for the projection

method for the mean and modes of velocity in final recombination step follow.
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Projection scheme for mean in final recombination step

ﬁk+1 ok s—1
Nt L ERY S b [(FY + {— VY] (2.550)
At At =0

v -kt 2 k+1
= V37 2.55b
b””lAt =V ( )
l—lk—f-l "k—+—1 bzm Atvqk+1 (2550)
P =+ ! (2.55d)

with boundary conditions

8qk+1

=0 2.56
on , re 0Dp ( )
where u**! is the predicted mean velocity for time t;,; and u’“rl is the corrected

mean velocity for time tx,;. Boundary conditions on the predicted velocity is not
required as we only need to evaluate the variable in eq. (2.55a) and not carry out any

solve.

Projection scheme for modes in final recombination step

2 k41 ~k s—1
uAt =t Z b{Fe) + Z o [{Fim)? + (- Vi) (2.57a)
B=0
V- ﬁf“ 2 ~k+1
‘ = Vg 2.57b
AL Y (2.57h)
o = uftt - o ALVt (2.57c)
it =pt gt (2.57d)
with boundary conditions
a~f+1
=0, readp (2.58)
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k1 is the predicted velocity of mode i for time tzy; and G¥*! is the

where U
corrected velocity of mode i for time tx,;. Boundary conditions on the predicted
modal velocity is not required as we only need to evaluate the variable in eq. (2.57a)
and not carry out any solve.

The details of the IMEX-RK scheme and the corresponding projection method
applied to the stochastic DO Navier-Stokes equation is now complete. A summary
of the complete time-integration scheme from time tx to tx4; is given in Algorithm
2. Lines 3 to 11 describes the projection schemes and solves carried out within each
stage. Lines 12 to 16 describes the final recombination step. Post time-marching,
Shapiro filtering and re-orthonormalization of the modes is carried out. One could
also carry out further Shapiro filtering and/or re-orthonormalization after every stage
in addition to at the end of the final recombination step.

We wrote a general routine for the IMEX-RK time-integration with additional in-
puts of Butcher tableaus satisfying properties described before. A particular example
that we consider is the 3rd order combination of a two-stage 3rd order DIRK scheme
and three-stage 3rd order explicit RK scheme (eq. (2.59) where v = (3 + V3)/6) [8].
We refer to this as the IMEX-RK (2,3,3) scheme in the rest of this work.

0 0 0 0 0 0 0 0
0 0 0 0
v | v v (2.50)
1—v|~v=-1 21—-%) O 1—-4]0 1-2y ~
0 1/2 1/2 0 1/2 1/2

Another example that we consider is the 2nd order L-stable combination of a two-
stage 2nd order stiffly accurate DIRK scheme and three-stage 3rd order explicit RK
scheme (eq. (2.60) where v = (2 — v/2)/2 and 6 = —2+/2/3) [8]. This will be referred
to as the IMEX-RK (2,3,2) scheme from hereon.

0|0 0 0 00 0 0
0 0 0 0

Y Y Y (2.60)
116 1-6 O 110 11—~ ~
0 1—-v ~ 0 1—v ~
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Algorithm 2 IMEX Runge-Kutta Time-Integration for Stochastic DO Navier-Stokes
Equations

Input: @* € RWutMNo)xl gk ¢ RWutNo)xns 5k e RNpX1 5k ¢ RNoxns VK kAt 2n,

Ntimes, Treq

Output: @1 € RVutM)x1 Ghtl ¢ RWutNo)xns - phtl ¢ RNpx1 - phtl o RNpxns
Y;k-H

1: procedure TIME-INTEGRATION(Inputs)

2. Compute the implicit terms {F3"}° and {Fg"}° using information from

3: fora =1to(s—1)do

4: Update time: t = t; + c, At

5 Compute statistics {Cy,y; }*™* (and it’s inverse), {My,y,,v, }**

6: Compute explicit terms (advection and inner product terms) {F&}*~! and
{Fflaz: a—1

7: Obtain Y;* using eq. (2.48)

8: Obtain 4” and p* using eq. (2.49)

9: Obtain 6§ and p§ using eq. (2.52)

10: Compute the implicit terms {F7"}* and {F7"}* using eqs. 2.51 and 2.54
respectively

11: end for

12: Compute statistics {Cy,y,}*"" (and it’s inverse), {My,y,.v, }*™*

13: Compute explicit terms (advection and inner product terms) {F&}*~! and
{Fff s—1

14:  Obtain Y**! using eq. (2.47)
15: Obtain G**! and p**+! using eq. (2.55)
16:  Obtain @™ and pF*! using eq. (2.57)
17: if (k mod ngeq) == 0 then

18: Perform shapiro filtering

19: end if

20: Reorthonormalize modes %! and pF+!
21: return Outputs

22: end procedure
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2.3.3 Comparison of IMEX Schemes

Now that we have finished the discussion on how different types of IMEX schemes
may be applied to the stochastic DO Navier-Stokes questions, we need to address
when is one scheme more favorable than the other. We will discuss their differences
on the criteria of starting, time-stepping, coupling, computational expense, storage

and stability.

As we have noted earlier, the linear multi-step IMEX schemes require special
starting. As one moves to higher order time-integration schemes, a hierarchy of lower
order time-integrations must be first applicd. This has thc negative conscquence of
having to use a fixed time step size and thus a prior knowledge of the magnitudes
of flow to be expected in the numerical simulation. Changing the time-step requires
one to perform the special starting procedures again or restart from an earlier time.
This is circumvented in the IMEX Runge-Kutta schemes which are self-starting and

adaptive time-stepping can be easily applied [8].

Further, IMEX-RK time-integration respects that the stochastic DO NS equations
are coupled even over one time-step which is neglected in the case of linear-multistep
IMEX schemes. This however comes at the increased computational cost of having to
perform multiple advection evaluations and pressure poisson equation (PPE) solves.
For example, a second order IMEX-RK scheme requires two advection evaluations
and two PPE solves whereas an IMEX-SBDF2 scheme requires only one advection
evaluation and one PPE solve. The storage requirements of linear multi-step schemes

are however higher as one needs to save the save information from previous time-steps.

As advection tends to be the most expensive operation during the numerical sim-
ulation, higher order IMEX-RK schemes may become more expensive to perform for
the same time-step size. However, in most cases IMEX-RK schemes may still be pre-
ferred because of their broad stability regions. Higher order linear multi-step IMEX

schemes have much smaller stability regions [9)].
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2.4 Re-orthonormalization and Time-stepping

We initialize the modes using the KL decomposition of eq. (2.4). The modes are
then orthonormal with respect to the spatial inner product defined in eq. (2.6). An-
alytically, the modes would remain orthonormal in time when evolved with the DO

equations

o, a;) /0w _om\
T = < ot ,u]> + <uz, ot =0 (261)

with the application of the DO condition (eq. (2.5)). Numerically, errors creep in
due to truncation error and round-off error during time-integration due to which the
modes no longer remain orthonormal. This motivates the need for re-orthonormalization.

Suppose that the matrix of modes is given by U = [iiy, ..., @i,,] and the inner
product is

(0, 8;) = Gf Arpiy; (2.62)

where A;p is defined according to the variability in the different variables [53]. We
want to then ensure that numerically UTA;pU = I through time. At the same
time, we want to ensure we respect the various schemes for time-integration we have
chosen. In the case of linear multi-step IMEX schemes, we need to ensure that there
is a correspondence between the columns of U(t) and U(t + At). Suppose that the
modes U(t) at time ¢ are integrated over one time-step to obtain f)’(t + At) which is
not orthonormal up to round-off error. Any re-orthonormalization procedure that is

applied to ﬁ(t + At) to obtain U(t + At) should satisfy the following properties:

1. not reorder, rotate or mix the modes

2. retain the original DO solution and reconstructed realizations

One simple solution to the above is the Gram-Schmidt re-orthogonalization. It is
known that the classical Gram-Schmidt procedure is backward unstable [122]. The
modified Gram-Schmidt algorithm could be used in it’s place but this also suffers
from instabilities during long time-integrations [44] and an iterative procedure must

be followed which may be expensive.
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An SVD-based algorithm for re-orthonormalization was proposed in [124]. While
this maintains realizations during the procedure, it suffers from multiple pitfalls. As
the SVD of a matrix is non-unique, it introduces sign changes of the modes, reorders
and also mixes the modes. While a fix was suggested to prevent sign changes in
[125], fixes to the other problems were not. The reordering and mixing of modes
did not effect the DO solution because a first order semi-implicit backward difference
(IMEX-SBDF1) was used for time-integration. In effect, the scheme did not ’see’
modes from earlier time-steps and continuity of modes was not required. However,
this is required in the case of linear multi-step IMEX schemes and thus an alternate
re-orthonormalization procedure must be selected. Moreover, it was suggested in
[125] to introduce bi-orthogonality i.e. decorrelate the stochastic coefficients in addi-
tion to orthonormality of modes. While this would give us a KL expansion for the
realizations at that time instance, this is not necessitated by the DO equations them-
selves. Moreover, the process of decorrelation destroys the continuation of modes and
stochastic coefficients between different time instances and would prevent us from
tracking the correct DO solution.

Another solution was proposed in [25, 24]. The idea is to find a linear transfor-
mation A € R"*" such that U = UA. In [24], this is framed as a solution to the

following unconstrained optimization problem

argmin |[|[ATKA —I|J? (2.63)
AERrsxns
where || - || denotes the Frobenius norm and K = fJTAIPfT is the Gram matrix.

This was solved using a gradient flow of the dynamical system

dA  8G r
— =35 = “4KA(ATKA - 1) (2.64)

where G(A) = ||[ATKA —1||? and A, = I is used as the initial guess. This approach
allows us to find A which orthonormalizes the modes but it is not necessarily close
to I. This is why the initial guess of Ay = I is chosen so that we may converge to A

that orthonormalizes the modes and is close to I. Moreover, the stopping criterion
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and the step-size chosen for the time-marching will effect the rate of convergence and
the overall cost of the approach.

Before we discuss the solution proposed in [70] which overcomes the problems of
the above approaches, let us formalize the mathematical notions of the properties we
would like the reothornmalization procedure to have. The first step is to introduce

the scaled Frobenius norm:

I|AllFx = tr(ATKA) (2.65)

The optimization problem of eq. (2.63) then becomes

argmin ||A — I||2x (2.66)
AERnsxns ’

This is useful as it is also equivalent to the deviation of the transformed modes U

from the original modes U (69]

IA ~1[ix = [UA = UOllra,e = U = Ullpa,e = 3116 — 4ill3,, (2.67)
i=1

Solving the optimization problem (eq. (2.66)) will then allow us to satisfy both
the properties we desire from the re-orthonormalization procedure. An optimal SVD

based reorthonormalization algorithm [70] is then given as

1. Perform eigendecomposition of the Gram matrix K = VEV7
2. Compute the optimal linear transformation A = VX~1/2v7T
3. Transform the modes so as to re-orthonormalize them U = UA

4. Transform the stochastic coefficients so as to maintain realizations Y = YA~T

The proof that the above procedure allows us to obtain the solution to the op-

timization problem (eq. (2.66)) can be found in [70]. This completes the discussion
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on re-orthonormalization and only the criteria of choosing the time-step size At re-
mains. In order to ensure stability in the IMEX schemes, At is selected according to
the Courant-Friedrichs-Lewy (CFL) condition [9, 8]. Through the DO methodology,
we are effectively evolving an ensemble of realizations. It is important to ensure that
the CFL condition is satisfied for each of these realizations. Hence, we select the

maximum velocity among all these realizations and set At as follows

At S Cmaz‘

max |u] + 3%, max || max |Y;]  max|v|+ 372, max |V;| max |Yj| -

+
Ax Ay

(268)

where Ch,q; marks the boundary of the stability region for the respective IMEX

scheme.

2.5 Numerical Results

We showcase our results using three test cases: (i) stochastic passive tracer advection
in a deterministic swirl flow, (ii) stochastic flow past a cylinder and (iii) stochastic

lid driven cavity flow.

2.5.1 Stochastic Passive Tracer Advection in Deterministic

Swirl Flow

We consider the test case of stochastic passive tracer advection in deterministic swirl
flow with the same setup as in [75]. We introduce uncertainty here by considering
stochastic initial conditions in the concentration of the tracer. The stochastic concen-
tration of tracer is denoted by p(r,t;w) = p(r,t) + Zsj pi(r,t)®;(t;w). The domain is
a unit square basin. The background flow is a detér_lilinistic velocity flow field given

by u = [ug, uy]?

u, = sin®(mry) sin(277,) (2.69)

uy = — sin®(7r,) sin(27ry) » (2.70)
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It is essentially a divergence-free counter-clockwise rotating flow (Fig. 2-3) which

vanishes at the domain boundaries. Initial conditions of the tracer concentration are

given by
ple; Gat)= % [1 + cos(mD(r;w))] (2.71)
where,
D(r;w) = max0,1 — 4||r — R, (w)|| (2.72)
0.5 0.0625 0
R (w)~N| , (2.73)
0.5 0 0.0625

The DO mean, modes and stochastic coefficients are initialized as was described in
equations 2.23, 2.28 and 2.31. In the results presented here, we use n, = 9 and
N, = 10" ensemble members in the DO decomposition.

The evolution of the stochastic tracer concentration is governed by the stochastic

DO advection equations:

WY | . v.5=0 (2.74)
ot
dpi(r,t : g o
pét ) +u-Vepi— D (u-Vepi, pj)p; =0 (2.75)
Jj=1
dd; (t; w : o

=1

Figure 2-3: Deterministic velocity field of swirl flow. Magnitude of velocity field is
plotted over the domain and is overlaid with streamlines.
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t=0.75 t=0.5 1=0.25 t=0

t=1

We carry out the simulation within a time-interval of [0, 10] using the 2nd order
lincar centered advection scheme with Shapiro filtering and various time-integration
schemes. Figures 2-4 and 2-5 show the time evolution of the DO mean, first five DO
modes and their corresponding coefficients. It should be noted we continuously track
and show the first five DO modes and not the dominant modes. This is indicated
also by the time-evolution of the variance of the stochastic coefficients in Fig. 2-
8a where we see multiple criss-crossings of the coefficients. This shows that the re-
orthonormalization technique described in section 2.4 allows us to maintain continuity

in between modes.

Figure 2-4: Stochastic tracer advection in a deterministic swirl flow: Time-evolution
of the DO mean p(r,t) and the first five DO modes p;(r,t).
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In order to asscss the consistency of the advection evaluation, we look at the time-
evolution of a randomly sampled DO realization and the corresponding MC realization
that it is trying to track. The results of CDS advection scheme with Shapiro filtering
are shown in Fig. 2-6 and those obtained considering a TVD advection scheme are
shown in Fig. 2-7. Both were performed considering a second order Runge-Kutta
(RK2) time-integration scheme. We clearly see that the error in between the DO
and MC realizations is much lower (i.e. of nearly three orders) in the casc of using a
centered advection scheme as compared to using a TVD advection scheme. Morcover,
the error field is much smoother than that obtained in the latter case. This test case
was performed with other explicit multi-step and multi-stage time-integration schemes

to verity the temporal order of convergence. The results are summarized in Fig. 2-8b.

Coeff1 Coeff2 Coeff3 Coeff 4 Coeff5
Var = 0.00337 Var=000327  Var=0.00306 Var = 0.00208 Var = 0.00194
08 06 \ 06 [ 06
o 1 [
1| 0.4 0.4 04 | 04
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O o6 06 ' 06 | o6
o 1 \
S 04 04 0.4 04
i
o2 02 05 02 02
ol ~ 0 0 0 0
ar = 0.00260 Var = 0.00265 3 5Var = 0.00306 Var = 0.00208 Var = 0.00194
Var = 0.0026 L 3¢ 5" 130¢ leatledisl ot ar = 0.001¢
0 06 06 ; ‘ 06 ! 06
o 04 04 04 0.4
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Figure 2-5: Stochastic tracer advection in a deterministic swirl flow: Time-cvolution
of the stochastic coefficients corresponding to the first five DO modes ®;(t; w).
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DO Realization ; MC Realization : Error
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Figure 2-6: Stochastic tracer advection in deterministic swirl flow: Time-evolution of
a selected DO realization (reconstructed) and the corresponding MC realization which
it is trying to track considering CDS advection scheme, Shapiro filter with parameters
(8,10,1) and second order Runge-Kutta Scheme (RK2). Error in between the DO
and MC realizations is also shown in the third column.
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DO Realization i MC Realization

t=0.25

t=0.5

t=0.75
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Figure 2-7: Stochastic tracer advection in a deterministic swirl flow: Time-evolution
of a selected DO realization (reconstructed) and the corresponding MC realization
which it is trying to track considering the TVD* advection scheme, and second order
Runge-Kutta Scheme (RK2). Error in between the DO and MC realizations is also
shown in the third column.
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Figure 2-8: Stochastic tracer advection in a deterministic swirl flow: (left) Time-
evolution of variances of the stochastic coefficients considering CDS advection scheme,
Shapiro filter with parameters (8,10, 1) and second order Runge-Kutta Scheme (RK2).
(right) Temporal convergence of modes considering CDS advection scheme, Shapiro
filter with parameters (8, 10, 1) and fixed control volume size of Az = 0.01. Leapfrog-
trapezoidal (LFT), 2nd order Adams-Bashforth (ABDF2) and second order Runge-
Kutta (RK2) time-marching schemes are considered. Optimal convergence of order 2
is obtained.

2.5.2 Stochastic Flow Past a Cylinder

In the second test case, we consider the stochastic flow past a cylinder in a channel.
This forms the basis of multiple natural phenomena in geophysical fluid applications
(115, 99]. The flow is governed by the stochastic Navier-Stokes equations 2.14 which
~ we will study here using the DO methodology. We consider a domain of size 16 x 6
with a circular disk of radius 1 located along the centerline at a distance of 4.5 from
the inlet and boundary conditions on velocity as shown in Fig. 2-9. A deterministic
inlet velocity of u = [1,0]" m/s is considered on the western boundary. Free-slip
boundary conditions are applied on the northern and southern boundaries, and open
conditions at the outlet (eastern boundary). No-slip boundary conditions are applied
on the circular disk. The flow was considered to have a kinematic viscosity of 0.01m?/2

corresponding to Re = 100.
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Figure 2-9: Stochastic flow past a cylinder: Schematic of the domain and boundary
conditions on velocity.

Uncertainty is introduced into the system by considering uncertainty in the initial
condition of Vélocity. Covariance matrices were constructed using the boundary-
mollified spatial covariance approach described in [124]. We consider n; = 8 modes
to capture 99.9% of the uncertainty and use N, = 10* DO realizations. In order to
induce vortex shedding quicker, a divergence-free exponentially decaying perturbation
is added to the DO mean field upstream of the disk. The results shown here were
obtained by considering the second order centered adveétion scheme with Shapiro
filtering, second order centered discretization for diffusion and second order IMEX-
SBDF?2 time-integration scheme. Similar results were obtained using the other time-
integration schemes discussed before. A resolution of 240 x 90 was chosen along with

a fixed time-step At such that CFL = 04.

We show the time-evolution of the DO mean and the dominant three modes of the
flow field in 2-10 after vortex-shedding starts in all the realizations. The stochastic
initial conditions leads to uncertainty in the time when vortex shedding starts, the
face of the cylinder (north/south) from which the first vortex is shed, eddy strength
and the shedding frequency (Strouhal number). The dominant modes along with
the stochastic coefficients allows to us in capture all these different realizations. The
marginal PDFs of the stochastic coefficients corresponding to the dominant three
modes as a function of time are shown in Fig. 2-11. The markers on the alphabet

of the stochastic coefficients are those of the selected DO realizations which we re-
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constructed in Fig. 2-12 and compared against the corresponding MC realizations.
We see that the DO realizations match very well with the corresponding MC re-
alizations through time and the different vortex shedding patterns are captured as
well. The relative error between the DO and MC solutions remain within 1% even
after 2500 time-steps 2-13 Further, high-order time-marching allows us to capture the

non-Gaussian statistics (Fig 2-14).

Figure 2-10: Stochastic flow past a cylinder: Time-evolution of the DO mean and
the first three dominant modes of velocity are shown by plotting vorticity overlaid
with streamlines. CDS advection scheme, Shapiro filter with parameters (8,3, 1) and
IMEX-SBDF2 time-integration was used.
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Figure 2-11: Stochastic flow past a cylinder: Time-evolution of the stochastic cocf-
ficients corresponding to the first three dominant modes of velocity are shown. The
red and blue markers on the alphabet of the coefficients correspond to the selected
reconstructed DO realizations 1000 and 9000 which are compared against their cor-
responding MC realizations in Fig. 2-12. CDS advection scheme, Shapiro filter with
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parameters (8,3,1) and IMEX-SBDF2 time-integration was used.
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Figure 2-12: Stochastic flow past a cylinder: Time-evolution of the selected DO
realizations and corresponding MC realization. Vorticity of the realization is plotted
overlaid with streamlines. CDS advection scheme, Shapiro filter with parameters
(8,3,1) and IMEX-SBDF?2 time-integration was used.
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Figure 2-13: Stochastic flow past a cylinder: Relative error between the DO and MC
realizations shown in Fig. 2-12 is plotted considering second order CDS advection
scheme with Shapiro filtering and IMEX-SBDF2 time-integration. Red and blue lines
arc the trends for realizations 1000 and 9000 respectively.

59



ff 4 Coeff5 Coeff6

O
o
(]

Coeff 1 Coeff2 Coeff3

Coeff1

Coeff5 Coeff4 Coeff3 Coeff2

2 EIDIEF O

)

P XN
\/‘\\

BRIIe) ST
VK OVIN

©)| &

-0.05
© 005 /r"\ Vin T e
= \ £ \
) !l
2 o (KA yore) (o )
= -0.05 / L

02 0 02 04 02 0 02 04 -0056 0O 005 01 -01 -005 0 0.05-005 0 005 -005 0 005 01

Figure 2-14: Stochastic flow past a cylinder: Joint second marginal PDF of the
stochastic coefficients corresponding to the first six dominant DO modes at ¢ = 5.

2.5.3 Stochastic Lid Driven Cavity Flow

The final test case that we study is the stochastic lid driven cavity flow which is
also governed by the stochastic Navier-Stokes equations 2.14. This test case will be
used to check consistency between the DO and MC solution, and verify the order of
accuracy of the implemented schemes by performing numerical convergence studies.

The domain of interest is a square cavity of length 1 with a lid at the top which
is used to drive the flow. The flow configuration is illustrated in Fig. 2-15. No-slip
boundary conditions are applied at all the boundaries except for at the top where a
Dirichlet boundary condition of u; in the x-direction is set according to the velocity
of the lid. We consider the fluid to have a kinematic viscosity of 1073m?/s and thus
Re = 1000.

Uncertainty is introduced through the initial conditions and the mollified-boundary
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approach is followed again [125, 97]. We retain ns; = 10 modes to capture 99.9% of
the uncertainty. The DO mean of the flow field, the three most dominant modes
and their corresponding coefficients are plotted in Fig. 2-16. The mean velocity and

pressure are initialized to zero. These are evolved over a time interval of [0, 15].
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Figure 2-15: Stochastic lid-driven cavity flow: Schematic of the domain and boundary
conditions on velocity.
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Figure 2-16: Stochastic lid-driven cavity flow: Initial conditions of the velocity mean,
modes and stochastic coefficients.
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We first look at the time-evolution of the mean, modes and coefficients considering
a resolution of 80 x 80 to ensure that the flow is well resolved and a fixed time-
step isuch that CFL = 0.2. Figure 2-17 shows the time-evolution of the mean flow
along with the three most dominant modes considering 2nd order CDS advection
scheme with Shapiro filtering and IMEX-SBDF2 for time-integration. Figure 2-18
shows the time-evolution of the corresponding stochastic coefficients and a randomly
sampled DO realization which is compared against the corresponding MC realization.
We observe that after a transient phase, the variance of the stochastic coefficients
become very low. This can be explained by the fact that after a transient phase,
the solution converges to a stable deterministic attractor. However, all the different
realizations follow a different route and this is captured using the DO methodology.
The sampled DO realization is but one example of such a route. Figure 2-19 is an
illustration of the non-Gaussian statistics that is observed during the transient phase.
Consistent advection evaluation combined with high-order time-integration allows us
to effectjvely track the MC solution and hence ensure consistency. This is further
evident by comparing the relative error in between the DO and MC solutions against

the case when TVD* is used for advection (Figure 2-21).

Numerical Convergence Studies

For spatial convergence analysis, we considered the time-step to be fixed at At =
1/4096. The finest spatial resolution of 512 x 512 was considered to be the exact
solution and used for obtaining error estimates. We obtain the error between the
coarser solution and exact solution by interpolating the exact solution onto the coarse
grid and then calculating the L? norm over the interior of the domain [0.25,0.75] x
[0.25,0.75]. This is to avoid the singularities which occur at the boundaries of the top
two corners. A similar strategy was also followed in [124]. The results for the case
of IMEX-SBDF?2 time-marching is shown in Fig. 2-22. Optimal convergence of order
2 is obtained. Similar results were obtained for IMEX-RK (2,3,2) (eq. (2.60)) and
IMEX-RK (2,3,3) (eq. (2.59)) time-integration schemes which are not shown here.

For temporal convergence analysis, the control volume size was fixed at Az =

62



Ay = 1/256. The finest temporal resolution of At = 1/4096 was considered to be
the exact solution and used for obtaining error estimates. The error is calculated
over the interior as was done for spatial convergence analysis. The results for the
IMEX-SBDF2, IMEX-RK (2,3,2) and IMEX-RK (2,3,3) time-integration schemes are
shown in Fig. 2-23. The order of convergence for the mean and modes of velocity, and
stochastic coefficients matches with the theoretical optimal order of convergence i.c. 2.
Using a higher order time-marching scheme such as IMEX-RK (2,3,3) (Fig. 2-23c)
does not help in improving order of convergence due to the projection method’s time-
splitting [32] but does help in obtaining more accurate results than IMEX-SBDF2
(Fig. 2-23a). Due to the time-splitting error, the optimal order of convergence ob-
tained for mean and modes of pressure is also 3/2 in most general cases [33] and this
is observed here as well. To recover the order of convergence of the time-integration

scheme used, reiterations may be performed [2].

63



Vorticity of Mean Vorticity of Mode 1

20 F"' =
| gy |
e

|\ N2 ||

oy

— ]

Figure 2-17: Stochastic lid-driven cavity flow: Time-evolution of the DO mean and
the first three DO modes of velocity are shown by plotting vorticity overlaid with
strcamlines. CDS advection scheme, Shapiro filter with parameters (8,10,1) and
IMEX-SBDF2 time-integration was used.
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Figure 2-18: Stochastic lid-driven cavity flow: Time-evolution of the stochastic coef-
ficients corresponding to the first three dominant modes of velocity are shown along
with a selected DO realization and corresponding MC realization. Vorticity of the
realization is plotted overlaid with streamlines. The marker on the alphabet of the
coefficients correspond to the reconstructed DO realization. CDS advection scheme,
Shapiro filter with parameters (8,10, 1) and IMEX-SBDF2 time-integration was used.
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Figure 2-19: Stochastic lid-driven cavity flow: Joint second marginal PDF of the
stochastic coefficients corresponding to the first six dominant DO modes at ¢ = 5.
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Figure 2-20: Stochastic lid-driven cavity flow: Time-evolution of the variance of

stochastic coefficients considering CDS advection scheme, Sha

cters (8,10, 1) and IMEX-SBDF2 time-integration.
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Figure 2-21: The relative error between the DO and MC realization shown in Fig. 2-18
is plotted against that obtained using a TVD* advection scheme with IMEX-SBDF2

time-integration.
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