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Abstract

In this thesis, we investigate the local and global properties of the eigenvalues of /-ensembles.
A lot of attention has been drawn recently on the universal properties of #5-ensembles, and
how their local statistics relate to those of Gaussian ensembles. We use transport methods
to prove universality of the eigenvalue gaps in the bulk and at the edge, in the single cut
and multicut regimes. In a different direction, we also prove Central Limit Theorems for the
linear statistics of /-ensembles at the macroscopic and mesoscopic scales.
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Chapter 1

Introduction

1.1 Background

The question of universality in Random Matrix Theory arose in the 50's with the pioneering
work of E. Wigner [87] when he observed that the gaps of energy levels of. large nuclei tend to
follow the same law, irrespective of the material. According to quantum mechanics, energy
levels of large nuclei should be described by the eigenvalues of a Hamiltonian, an Hermitian
operator acting on a Hilbert space. Wigner had the idea to model this operator by a large
Hermitian matrix with random entries, and look at its eigenvalues. With appropriate scaling,
one would find that the spacings of such eigenvalues would match empirically those of the en-
ergy levels. This point of view was adopted subsequently by F. Dyson ( see [38] and also [65]):

The statistical theory will not predict the detailed sequence of levels in anyone nucleus, but it
will describe the general appearance and the degree of irregularity of the level structure that
is expected to occur in any nucleus which is too complicated to be understood in detail.

From there emerged the universality conjecture in Random Matrix Theory, known as the
Wigner - Mehta - Dyson conjecture, which states that the distribution of eigenvalue gaps
are the same for random matrices within the same symmetry class. In Random Matrix The-
ory, there are several ensembles of matrices for which the question of universality has been
extensively studied.

1.1.1 Random Matrix Ensembles

Wigner Ensembles

Wigner matrices correspond to random symmetric or Hermitian matrices with independent
and identically distributed entries (up to the symmetry), with mean 0 and variance equal
to 1/N where N denotes the size of the matrix. In this context, universality refers to uni-
versality with respect to the law of the entries. Wigner matrices with Gaussian entries were
the first to be studied (see [38]).

9
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Invariant Ensembles

These correspond to symmetric or Hermitian random matrices sampled from the probability
distribution

dPN (M) - N trV(M)dM
V

where dM = H i, dMij in the symmetric case, dM = H1 dMi,i Ji< d'ZMi,j dIM, 3 in the
Hermitian case and V is a continuous potential with some growth assumptions. The nor-
malization constant ZyN is called the partition function, and log ZN the free energy. These
ensembles are called invariant since they are invariant by resp. orthgonal and unitary con-
jugaison. The probability density of the eigenvalues from these ensembles can be explicitely
computed and has the form

W.O(dA 1, ... , dAN) r]7 I A, - Aj 1,3eN~~ V(A1 ) dA 1 ... dAN, (1.2
V,0 1<i<j<N

where

V f Z -< - V(Ai) dA 1 ... dAN -.-
1<i<j<N

with / = 1, 2 respectively.

/-Ensembles

The previous density can be seen as the density of a gas with logarithmic repulsion, a con-
fining potential V and at inverse temperature / > 0. This system is often referred as the

/-ensemble, or Coulomb gas, and it will be the central object under study in this Thesis.
In this context, universality refers to universality with respect the potential, the factor /
corresponding to the symmetry class. /-ensembles generalize invariant ensembles and note
that for generic values of /3, there is not necessarily an underlying matrix model.

The Gaussian Ensembles (resp. Gaussian Orthogonal Ensemble, Gaussian Unitary Ensem-
ble), represent the canonical exemple for these ensembles and correspond to random syinet-

ric or Hermitian matrices with independant Gaussian entries (up to the symmetry). They
also correspond to invariant ensembles with potential V(A) = /W/4 with 3 = 1, 2 respec-
tively. The reader can refer to [65 for an extensive study of the Gaussian Ensembles. There
are several questions that are of great importance in Random Matrix Theory, and we discuss
some of them.

1.1.2 Some questions of interest

Law of Large Numbers

In the case of the Gaussian Ensembles, Wigner showed from a direct computation of the
moments that the empirical distribution of the rescaled eigenvalues
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1 N
LN= (1..4

converge in expectation towards a probability measure called the Wigner semicircle law and
with explicit density

1
psc(x) = - 4 - X2. (1.1.5)

27r

The convergence also holds for Wigner Matrices for which the entries have a finite second
moment, and the convergence happens almost surely. As shown in [6, 73, 67], the empirical
distribution of the particles also converge for /-ensembles with mild assumptions on the
potential V, but with a limit pv depending on V. In fact, Liv is the unique minimizer of the
energy functional

f V(xI) +V(x 2 ) /3
E(1u) = I -- log lxi - x dpu(xi)dpu(x2 ) (1.1.6)

2 2

on the space M1 (R) of probability measures on R, and a large deviation principle holds with

good rate function E(M) - E(pv) (see [6]). Moreover, the measure pv has compact support
and is uniquely determined by the existence of a constant cv such that:

#3logx - yldpv(y) -V(x) < cv

with equality almost everywhere on the support. For now, we assume the following

* V is analytic on a neighbourhood of the support.

" lim inf V(x)= +oo.1OgjXI

" The function / flog Ix - yldpv(y) - V(x) - cv does not vanish outside the support.

In that case the support of the equilibrium measure pv is an union of intervals A
Uq,1010; a+] and has a density that can be written in the following form (see [34])

diiv (x) g

dx =S(x) x- a a - x (1.1.7)
i=O

where S is analytic on a neighbourhood of the support. From there we can distinguish
several regimes, and the distinctions will be essential in what follows.

* We will say that we are in the single cut regime if the support of tUv is connected (i.e
g = 0), and that we are in the multicut regime otherwise.

e We will say that the regime is non-critical if S > 0 on the support, and that the regime

is critical otherwise.
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Notice that there are two kinds of criticality: S can vanish either in the interior of the sup-
port, or at the edges of the intervals. It is shown in [35 that in either cases, S vanishes like
an even power.

Central Limit Theorems

From the previous paragraph, we see that for a continuous function f with compact support,

f(Ai) -+ f(x)dpv(x). (1.1.8)

A natural extension would be the study of the fluctuations of the linear statistics

N

f(Ai) - N f(x)dv(x)(1.1.9)

Note that, due to the rigidity of the eigenvalues (see next paragraph), there is no 1/vW nor-
malization. The fluctuations of linear statistics of the eigenvalues were shown to converge
towards a Gaussian random variable for Wigner ensembles (see [4, 63, 76]), and 3-ensembles
in the non-critical onecut regime first in [51] and then in [16, 52]. However, it was shown
in [77, 15] that the result does not hold for all test functions f in the multicut regime. Al-
though the macroscopic limit pv is not universal, global fluctuations exhibit universality in
the sense that the mean and variance of the limiting Gaussian do not depend on the potential.

In a similar vein, one can also ask about the fluctuations of the linear statistics at the
mesoscopic scale a E (0; 1) around a fixed energy level E in the interior of the support of
the equilibrium measure:

N

f(Na(A, - E)) - N f(N'(x - E))dpv(x) (1.1.10)

Results in this direction were obtained in a variety of settings, for Gaussian Ensembles
[22, 46], and for invariant ensembles [24, 55]. In many cases the results were shown at
all scales a E (0; 1), often with the use of distribution specific properties. An early paper
studying mesoscopic statistics for Wigner Matrices was [23], here the regime studied was
a E (0; 1/8). The recent work [50] has pushed this to all scales.

Local Laws and Rigidity

The Law of Large Numbers determines the asymptotic number of particles in a fixed interval
[a; b]. One could ask if the result still holds when the size of the interval scales with N; i.e
can we prove for E fixed in the interior of the support of the equilibrium' measure

# , (1.1.11)

where N- 1 < 7 < N for some E > 0.
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Local Laws were proved first for Wigner Ensembles (see [39, 41], and [14] for a survey) and
subsequently for /3-ensembles in the single cut non-critical case in [20, 19, 18] with various
assumptions on the potential (convex analytic, V E C4, and then V non-convex). In these
articles, the authors also prove the rigidity of the particles with the same assumptions on
the potential: for any ( > 0, there exists some constants C, c > 0 such that

PWN ], JIj+1 - Aj > N-1+) _ Cexp(-Nc) , (1.1.12)

where A denote the reordered eigenvalues. Rigidity is proved by a multiscale analysis, by
bootstraping concentration estimates through the use of loop equations, and was also proved
more recently in the multicut case in [61].

Partition function

For Gaussian Ensembles, there is an exact formula for the partition function given by a
Selberg integral (see [75])

ZGE N N/2(N/2) -ON 2/4+()l/4-1/2)N I i=1
4JG,3 - (7) (N12)'(1 + 0/2)N

For invariant ensembles, Partition functions can also be computed using orthgonal polyno-
mials (see [65]). In the case # 0 {1,2, 4}, orthogonal polynomial methods do not apply
anymore. In [77], M. Shcherbina derives an asymptotic expansion of log ZyNj with o(1) pre-
cision. Using the loop equations (or Dyson-Schwinger equations), G.Borot and A. Guionnet
derived in [16] a 1/N asymptotic expansion of the free energy at all orders for /3-ensembles
in the single cut non-critical case. The loop equations ( see Proposition 4.2.1) are a family
of exact equations that can be obtained by integration by parts and determine a relation-
ship between the correlators. They were used to study the global fluctuations of the linear
statistics first in [51]: Such a 1/N expansion does not hold anymore in the multicut regime,
but the authors provide in [15] an alternative formulation with oscillating terms.

Eigenvalue gaps

In the Bulk

Wigner's original interest was to study the eigenvalue gaps. It was shown by M. Gaudin
that for the GUE, if we fix an energy level E E (-2; 2) and define

SN(A, s, E) = # i , A+ 1 - I , N- A (1.1<14wh, l/N 0pd E te r eE

where IN --- 0O, IN/N -+0, and Acorrespond to the reordered eigenvalues then

EGUE (SN(X , E) p(t) dt
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where p is a probability distribution - named the Gaudin distribution. In [35], P. Deift et
al. used the essential fact that for invariant Hermitian ensembles, the correlation functions
can be written in terms of orthogonal polynomials and used Riemann-Hilbert methods to
provide asymptotics for orthogonal polynomials, thus proving the averaged gap universality.
One might want to look instead at the distribution of a single eigenvalue gap. In fact T. Tao
showed in [79] that if eN < i < (1 - e)N for e > 0 then

PGUE(Npsc(Ai)(Ai 1 - Ai) < s) -+ p(t)dt . (1.1.15)

As will be shown in Chapters 2 and 3, fixed eigenvalue gaps are universal for -ensembles
with regular one-cut potentials (see also [20]), and regular multicut potentials. Their con-
vergence can be obtained using the translation invariance of the eigenvalue gaps as in [42].

At the Edge

Eigenvalues at the edge of the spectrum have a different behaviour than in the bulk. They
typically scale as N2/3 and C.Tracy and H.Widom showed (see [82]) that for the GUE

P'GUE(N (Al + 2) < s) -- F(s) , (1.1.16)

Where F is the so-called Tracy-Widom law.

Correlation functions

Universality at the microscopic levels can also be stated in terms of the correlation functions.
We define the k - point correlation function by

pN , ' k PN ( -, AN)dAk+1 *..dAN - (1-1-1

Here pN denotes the density of the unordered eigenvdlues for a Matrix Ensemble. Thus we
have for all continous and compactly supported function f on R'

E N f (AlN- k)! J ,(Al).. Ak)p -(A,. Ak)dA1 . . . dAb. (1.1.18)

With these notations, the Law of Large Numbers states that the one-point correlation func-
tion converges towards a probability density. At the microscopie level, it was shown by by
F. Dyson, M. Gaudin, M. Mehta (see [65]) using orthogonal polynomials that for the GUE
and E c (-2; 2) fixed
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EGUE( ?l f(Ny8 sc(E)( 1 - E),.-- , Npsc(E)(Aik - E)))
1 ..4- k

N! 1 A1  Ak
f (A-, Ak)pk(NE + ( ,NE+ )dA 1 ... dAk

(N - k)!Nk pc(E) k 'PSCE )' PC(E)

-+ f(A,- . , Ak) det(K(Ai, Aj)i,j<k)dAl ... dAk

(1.1.19)

where K is the sine kernel:

K(x, y) -sin(x-y)
x-y

This is proved using the fact that the eigenvalues of the GUE form a determinantal point
process, i.e its correlation functions can be written explicitely in terms of a determinant
det(KN(Ai, Aj)i,jk), where KN can be written in terms of the Herinite orthogonal polyno-
mials. For / : 2, it is not true anymore that the point process formed by the eigenvalues from
a /-ensemble with Gaussian potential #A 2/4 is determinantal, and one has to use alternate
techniques to find the limit in law of this point process. In fact, A. Edelnan and I. Dumutriu
showed in [37] that we can realize these eigenvalues as the eigenvalues of a random symmetric
tridiagonal matrix. Using this representation, B. Valk6 and B. Virag showed in [84] that the
point process (Ny, c(E)(A, - E))LN converges in law with respect to the counting measure
towards a point process called the Sine point process (see also [85] for an alternative descrip-
tion). At the edge, and extending (1.1.16), it has also been shown by J. Ramirez, B. Rider
and B. Virag in [72] that the eigenvalues are described by an operator called the Stochacstic
Airy Operator and the k first recaled eigenvalues (N 2 /3(A, + 2), ... , N 2 /3(Ak + 2)) converge
in distribution to (A 1, - -, Ak) where Ai is the i-th smallest eigenvalue of the stochastic Airy
operator SAOfl.

Universality of the correlation functions (in the weak sense) in the bulk states that if we
fix an energy level E E supp(ptv) such that pv(E) > 0, we have for all smooth compactly
suppoerted function f

lim E ( f Npv(E)(Aii -'E),.. . Np v(E)(A - E)
N -+oo V

N-~o ~NtSC()Ai)) 1.1.20)

lim E N f Npsc(0)Aj, ... Ny-sc(O)Aj
N -+oo #k)

Note that the latter limit depends neither in E or V, and is described by the Sine process. It
is often easier to prove "averaged energy universality", where we consider the previous quari-
tity averaged on a window of sizeq =N- 1 ' with 0 < E < 1. Universality for /-ensembles
at the edge usually refers to the convergence in law of the first rescaled eigenvalues of non-
critical /3-ensembles to those of the stochastic Airy operator SAO/3 . A different limit is
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expected to appear for critical potentials, and the N2 /3 scaling would differ.

Universality was proved first for invariant ensembles in the case # = 2 using the Christoffel-
Darboux formula for orthogonal polynomials (see [70] [69]), and subsequently for other clas-
sical values of 3 = 1,4 in [31],[32], both in the bulk and at the edge of the spectrum.
Universality of the correlation functions was proved more recently by P. Bourgade, L. Erd6s
and H.T. Yau for general non-critical /-ensembles with one-cut potentials in [20, 19, 18],
with various assumptions on the potential (eventually V C C 4 ), both in the bulk and at
the edge. Universality of the correlation functions. in the bulk was subsequently proved in
the multicut case for analytic potential in [78], using change of variable methods. Similar
statements hold for Wigner Ensembles (see [40, 43, 42, 81, 80]).

The main goal of these Thesis is to investigate some of the universal features of 3-ensembles.
More specifically we will focus on

" Universality of the eigenvalue gaps, in the bulk and at the edge. Chapter 2 treats the
single cut case, whereas Chapter 3 deals with the multicut case.

" Central Limit Theorems at all mesoscopic scales in the one cut regime in Chapter 4.

" Central Limit Theorems at the macroscopic scale in the multicut and critical cases in
Chapter 5.

Each Chapter corresponds to a different article. We briefly present here the content of each
Chapter, and the main results they contain.

1.2 Results

The second Chapter corresponds to the article [11] written in collaboration with A. Figalli
and A. Guionnet. In this Chapter, we consider the probability density (1.1.2), where V is
a potential such that the equlibrium measure is single cut and non critical, and we want
to investigate universality of the rescaled eigenvalue gaps. If we are given two potentials
V, W : R -+ R, we know from optimal transport theory (see [86]) that there is a transport
map TN :N _ - N that transports P to i.e such that for all bounded measurable
function f :RN - R

f fo TNAl, . . ., AN) P (dAl , - - , AN) =- +W, B(dA, - -

(1.2.21)
However it is not clear how does this map depend on N and how to deduce universality results
from it. The main idea behind this Chapter is to find an approximate transport map that will
satisfy (1.2.21) up to an error (log N) 3 If I I/N and for which we have an explicit expansion
in N. This map is obtained as the flow of an approximate. solution of a linearized Monge-
Ampere equation, and can be written as TN = (T TNN) with TiN(A) = To(i)+T T1N(i
where To is a transport map from pv to pv+w and Tf' is of order log (see Theorem 2.1.3).
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Once the linearized Monge-Ampere equation is written, the construction of the main term
To involves the inversion of a linear operator 7 acting on smooth functions f by

f (X) := ( f duv (y) + V'(x)f (x), (1.2.22)

This operator is essential to the construction of the transport map, and to the analysis of the
loop equations and will appear in all subsequent Chapters. One of the key features of 3 is
that it is invertible in the space of smooth functions if the measure pUv is single cut (modulo
a constant term). The error terms are then controlled by explicit bounds on the moments
of linear statistics through the use of loop equations. From this expansion, we can deduce
the universality of the eigenvalue gaps in the bulk, as well as universality at the edge by a
Taylor expansion. More precisely, we prove for V, W E C31 (R)

Theorem 1.2.1. For a constant C, for all m C N*, f : R3 -+ R Lipschitz and compactly
supported in [-M; M] we have

1. In the Bulk

f (N(Ai+l - A ) . , N(Aj+m -Aj))d VW

f(N(To)'(Ai)(Ai+1 - A , N(To)'(Ai)(Ai+m - Aj))dPN>8

(log N)3  (log N) 2  (log N) M 2

N IfI1-+C(V' I N 112  + N 1/ 2 + ) Vf 0

2. At the Edge

f (N2/3(A, - ce+w),.. , N 2/3(Am-- a +w))dlN+wfl

f(N2/3(To) (a)(Ai - cr), , N2/ 3 (To)'(cei)(Am Ceap)df(

(logN)3  (log N) 2  log N M 2

C N 1f 1100 + C(V/7Y N5 / 6  + N1/ 3 + N13 Vf 100

where p denotes the measure on the ordered eigenvalues.

This establishes universality of the fixed eigenvalue gaps in the bulk and at the edge for
/3-ensembles in the single cut non critical regime.

The third Chapter extends the result to the multicut case and corresponds to [10]. In this
Chapter only, the potential will be assumed to be analytic. The main obstruction in carrying
the approach taken in the previous Chapter is that the operator 3 defined in (1.2.22) is no
longer invertible in the multicut case. To deal with this, one has to consider the auxiliary
fixed filling fractions model, introduced in [15, 17]. The fixed filling fractions model corre-
spond to the /3-ensemble model in which the number of particles in each cut is conditionned



18 - CHAPTER 1

to be fixed. One can then do a transport between the measure with fixed filling fractions,
and a measure in which the interaction between the cuts has been removed. As the latter
measure corresponds just 'to a product measure of -ensembles in the single cut regime, one
can use the results from the previous Chapter to study the local fluctuations. The sharp
concentration estimates derived in [15] on the number of particles in each cut then allow us
to extend the results obtained in the fixed filling fractions model to the original one. This
establishes fixed eigenvalue gaps universality in the bulk, and universality at the edge (see
Theorems 3.1.3, 3.1.4 and 3.1.5) in the multicut case.

In the two previous Chapter, we investigated the local fluctuations of the particles. In the
two last Chapters, we focus on the fluctuations of the linear statistics at the mesoscopic and
macroscopic scales, and prove Central Limit Theorems. The fourth Chapter describes the
results obtained in the article [13] written with A. Lodhia about the Central Limit Theorem
at mesoscopic scales for general 8-ensembles, with single cut regular potential. More precisely
the main point of this Chapter is to provide a proof of the following

Theorem 1.2.2. Let 0 < a < 1 , E a point in the bulk, V C7 (R) and f E C6(R) with
compact support. Then, under P'V

N

f (Nc(Ai - E)) - N f(N'(x - E))dlav(x) - - AP(0, o),

where the converyence holds in moments (and thus in distribution), and

2 1 ff (f(x) - f(Y)) 2
207r 2 j -YJ

The main idea is to use the rigidity estimates proved in [19] to obtain a bound on the linear
statistics with high probability, and use the loop equations described in Proposition 4.2.1 to
compute recursively the moments of these linear statistics. The operator E appears naturally
in this context and it is necessary to invert it in order to compute the moments of order
n + 2 in terms of the moments of order n.

The recent article [12] written in collaboration with T. Lebl6 and S. Serfaty constitutes the
final Chapter and investigates the global fluctuations of /-ensembles with general potential,
including the multicut and critical cases. As in these cases the operator : is not invertible
one cannot use the loop equations to deduce a Central Limit Theorem in a straightforward
manner as in the previous Chapter. A central observation, and trick that was already used
in [51] is that we can express the Laplace transform of the linear statistics as a ratio of
partition functions with different potentials: for a measurable bounded function and s E R

ZN
EN exp(s Z (Ai) = pB

where V, = V - 21. The idea is then to use the splitting formula (5.2.21), and do a transport
between the equilibrium measures Iptv and py, in order to compare the partition functions
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Z and ZN. One issue that we have is that once again, doing an exact transport for all
test functions is only possible when E is invertible, in the single cut non critical regime
that is. However, in the multicut and critical regimes, we are able to do a transport between
,iv and an approximation [tv, of pv as soon as ( lies in the image of -. Using this approach
we can prove the following theorem:

Theorem 1 (Central limit theorem for fluctuations of linear statistics). Let be a function
in C'(R), assume that H1-H3 (see Chapter 5) hold. We let

k = max 2k ,i=1,..,m

where the ki 's are as in (5.1.11), and assume that, p (resp. r) denoting the regularity of V

(resp. )
p (3k + 5), r > (2k + 3). (1.2.23)

If n > 1, assume that satisfies the n following conditions

f ((y)yddy = 0 for d = 0,..., n - 1. (1.2.24)

Moreover, if m > 1, assume that for all i = 1,... , m

L' dy = 0 for d = 1, ... ,2ki, (1.2.25)
fr, -(y)(y - s,)d

where R.,,d is the Taylor expansion of to order d - 1 around x given by

Rx,d (y) = (x) + (y - x))d(x) + - - d-+.
(d - 1)!

Then there exists a constant c and a function V/ of class C 2 in some open neighborhood
U of Ev such that Ev[4] = + c on U, and the fluctuation FluctN( ) converges in law as
N -+ oo to a Gaussian distribution with mean

= -- ) J ' dpv,

and variance

- fJ O'd pv.

This approach also yields a rate of convergence of the Laplace transform in the single cut
regular cases.

1.3 Future Directions

We discuss some possible continuations of the work done in this thesis.
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Universality in the critical case

A natural extension of the Chapters 3 and 4 would be to investigate whether universality
also holds for critical potentials. We distinguish two cases: universality in the bulk and
universality at the edge. In the bulk, the criticality should not play a role and the Sineo
process should still be the limiting point process. At the edge, everything changes and one
should expect different limits (see [28], [27] for the description of the possible limits in the
case # = 2, and [53] Section 13 for general #).

Fluctuations of the linear statistics at the edge

In Chapter 5, instead of considering a point E in the bulk, we can consider E as one of the
endpoints. We expect the same result to hold with a very similar proof, but with a different
variance for the limiting Gaussian

2 1 J1JC (f) W f(Y) 2 X + Ydxdy.
207r2 0 0 X _ VfXY

The only (mild) challenge would be to extend the lemma 4.2.5.

CLT at the mesoscopic scale in the critical and multicut cases

We expect the approach taken in Chapter 5 to carry on to the mesoscopic scale. Some
extra care is needed when we compare the measure ptv, and its approximation Ftv,, as these
measure would also depend on N in the mesoscopic case, and the current estimate (5.3.32)
would blow up.

Universality for higher dimensional Coulomb gases

Recently, a lot of work has been done to understand the local (see [25, 57, 58, 9]) and global

(see [59, 7]) behaviour of higher dimensional Coulomb gases. Rigidity of the particles has
been proved in two-dimensions, and a Central Limit Theorem on the fluctuations of the linear
statistics as well. However, at this point, there is no statement or proof about universality
in higher dimensions. It would be interesting to see if the transport methods would apply
in that context.



Chapter 2

Transport maps for -matrix models
and Universality

This Chapter is based on the article [111 written with A. Figalli and A. Guionnet.

2.1 Introduction.

Given a potential V : R -+ R and / > 0, we consider the #-ensemble

dA(di, . ) := .,d jAi - Aj e _NZ=i V(Ai) dA1 ... dAN, (2.1.1)
V 1 i<j N

where ZY f 11 i<jN N IAj - Av=1 V(A) dA -... dAN-
We assume that V goes to infinity faster than 3log lxj (that is V(x)//3log l -+ +oo as

lxj -+ +oo) so that in particular Z$ is finite.
We will use pv to denote the equilibrium measure, which is obtained as limit of the

spectral measure and is characterized as the unique minimizer (among probability measures)
of

Iv (A) : V(x) + V(y) - 3 log Ix - yI)dp(x)dM(y) . (2.1.2)

We assume hereafter that another smooth potential W is given so that V + W goes to infinity
faster than 8 log lx. We set V V + tW, and we shall make the following assumption:

Hypothesis 2.1.1. We assume that pv and pv1 have a connected support and are non-
critical, that is, there exists a constant E > 0 such that, for t = 0,1,

dv St (x)(x - at)(bt - x) with St > a.e. on [at,bt].

Finally, we assume that the eigenvalues stay in a neighborhood of the support [at - E, bt + E]

with large enough pW-probability, that is with probability greater than 1 - C N-P for some
p large enough. By [15, Leiruna 3.1], the latter is fulfilled as soon as:

21
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Hypothesis 2.1.2. For t = 0, 1,

Uv,, (W := W~ - # dpv, (y) log I x - y| (2.1.3)

achieves its minimal value on [a, b]c at its boundary {a, b}

All these assumptions are verified for instance if Vt is uniformly convex for t = 0,1.

The main goal of this Chapter is to build an approximate transport map between P'
and PVw: more precisely, we construct a map TN :N R N such that, for any bounded
measurable function X,

fxoTdN X J N g < oN)iixi (2.1.4)

for some constant C independent of N, and which has a very precise expansion in the
dimension (in the following result, To : R -+ R is a smooth transport map of ,Uv onto Pv+w,
see Section 2.4):

Theorem 2.1.3. Assume that V, W are of class C31 and satisfy Hypotheses 2.1.1 and 2.1.2.
Then there exists a map T N (T NJ, ... N,N N _RN-+R N which satisfies (2.1.4) and has
the form

TN~i(A) = To(Aj) + -T' '(A) Vi = 1,... , N, A:= (A,.... AN),N

where To : R -+ R and TN,i N -> R are smooth and satisfy uniform (in N) regularity
estimates. More precisely, TN is of class 023 and we have the decomposition T+ XNi

1X2Ni where

sup X NkHL4 (pN) Clog N, X2IL2(p) CN/ 2 (log N)2 , (2.1.5)
1<k<N V

for some constant C > 0 independent of N. In addition, with probability greater than
1 - N-N/C

max XN,k(A) - k'(A) < C log NVN A (2 1.6)
1<k,k'<N

As we shall see in Section 2.5, this result implies universality as follows (compare with
[19, Theorem 2.4]):

Theorem 2.1.4. Assume V, W c C31, and let To be as in Theorem 2.1.3 above. Denote PVN

the distribution of the increasingly ordered eigenvalues Ai under pN. There exists a constant
C > 0, independent of N, such that the following two facts hold true:
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1. Let M e (0, oo) and M E N. For any Lipschitz function f : R" - R supported inside
[-M, M] m

f f (N(A 1 - AX),. .. N(Ai+mrr - Al)) dPN+w

- f (T (A)N(Ai+I - Ai),. . ,T (Ai)N(Ai+m - Aj))d

lo )3.(log N) log N M2

.N ||f | + C "7 N 1/2 M N 1/ 2 +N KJNIVI

2. Let av (resp. av+w) denote the smallest point in the support of piv (resp. p1v+w), so
that supp(puv) C [av,oo) (resp. supp(pv+w) C [av+w,oo)). Let M E (0,oo). Then,
for any Lipschitz function f : Rm -+ R supported inside [-M, M]m ,

f f(N2/3(A 1 - av+w),..., N 2/ 3 (Am - av+w)) dP$'+w

- Jf(N2/3T2/(av)(Ai -y),.. ,N2/3T/(av)(Am - av)) dPvN
ff(N " av ( I- Nv) . N __ + logNAm

< +(log N) 2 Mlog) og N M log N
C N ||||O+C / N51/ 6+ N5/6 +N43 +]V1/3)

The same bound holds around the largest point in the support of Pv.

Remark 2.1.5. The condition that V, W E C31 in the theorem above is clearly non-optimal

(compare with [20]). For instance, by using Stieltjes transform instead of Fourier transform
in some of our estimates, we could reduce the regularity assumptions on V, W to C21 by
a slightly more cumbersome proof. In addition, by using [19, Theorem 2.4] we could also
weaken our regularity assumptions in Theorem 2.1.3, as we could use that result to estimate
the error terms in Section 2.3.4. However, the main point of this hypothesis for us is to
stress that we do not need to have analytic potentials, as often required in matrix models
theory. Moreover, under this assumption we can provide self-contained and short proofs of

Theorems 2.1.3 and 2.1.4.

Our strategy is very robust and flexible. For instance, although we shall not pursue
this direction here, it is possible using this strategy to prove universality of the correlation
functions (as was done in [20] and [78]) on an averaged window, using the same arguments
as in [44], Lemma 4.1.

The Chapter is structured as follows: In Section 2.2 we describe the general strategy to
construct our transport map as the flow of vector fields obtained by approximately solving
a linearization of the Monge-Ampere equation (see (2.2.8)). As we shall explain there, this
idea comes from optimal transport theory. In Section 2.3 we make an ansatz Ori the struc-
ture of an approximate solution to (2.2.8) and we show that our ansatz actually provides a
smooth solution which enjoys very nice regularity estimates that are uniform as N -- > oo. In
Section 2.4 we reconstruct the approximate transport map from pN to pl wvia a flow argu-

ment. The estimates proved in this section will be crucial in Section 2.5 to show universality.
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2.2 Approximate Monge-Ampere equation

2.2.1 Propagating the hypotheses

The central idea of the Chapter is to build transport maps as flows, and in fact to build
transport maps between P' and P, where t + V is a smooth function so that V = V,
V1 = V + W. In order to have a good interpolation between V and V + W, it will be
convenient to assume that the support of the two equilibrium measures [tv and uv+w (see
(2.1.2)) are the same. This can always be done up to an affine transformation. Indeed, if
L : R -+ R is the affine transformation which maps [a,, b1 ] (the support of pyv) onto [ao, bo]
(the support of pv), we first construct a transport map from P' to LIN P+w = +W
where

=V o L1 + W o L-1 - V (2.2.7)

and then we simply compose our transport map with (L-)ON to get the desired map from

P to +w. Hence, without loss of generality we will hereafter assume that Ipv and ltv+w
have the same support. We then consider the interpolation pv, with V = V + tW, t E [0, 1].
We have:

Lemma 2.2.1. If Hypotheses 2.1.1 and 2.1.2 are fulfilled for t 0,1, then Hypothesis 2.1.1
is also fulfilled for all t G [0, 1]. Moreover, we may assume without loss of generality that V
goes to infinity as fast as we want up to modify ]P and v+w by a negligible error (in total
variation).

Proof. Let E denote the support of pv and pv+w. Following [16, Lemma 5.1], the measure
pv, is simply given by

Pvt, = (1 - t)pv + tyiv+w.

Indeed, pv is uniquely determined by the fact that there exists a constant c such that

3 Jlogix - yjdpv(x) - V < c

with equality on the support of pv, and this property extends to linear combinations. As a
consequence the support of pv, is E, and its density is bounded away from zero on E. This
shows that Hypothesis 2.1.1 is fulfilled for all t E [0, 1].

Furthermore, we can modify P' and P{ outside an open neighborhood of E without
changing the final result, as eigenvalues will quit this neighborhood only with very small
probability under our assumption of non-criticality according to the large deviation estimates
developped in [16] and culminating in [15] as follows:

.1 #
lim sup - In Pv Z\j E F] <-- inf Uv (x),

N-*oo N - 2 XEF

lim inf-nPV43i \ c Q] > inf CT(x).
N-ao N 2 xC52

where 0v := UV - inf Uv, and Uv is defined as in (2.1.2). 0
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Thanks to the above lemma and the discussion immediately before it, we can assume
that yv and Atv+w have the same support, that W is bounded, and that V goes to infinity
faster than xP for some p > 0 large enough.

2.2.2 Monge-Ampere equation

Given the two probability densities P' to P' as in (2.1.1) with 0 < t < s < 1, by optimal
transport theory it is well-known that there exists a (convex) function ON such that V#NS
pushes forward P' onto P' and which satisfies the Monge-Ampere equation

det(D2 q5) (VON)__ d*P
Ps t' T dA 1 ... dAN

(see for instance [86, Chapters 3 and 4] or the recent survey paper [29] for an account on
optimal transport theory and its link to the Monge-Ampere equation).

Because #t,t(x) = Ix12/2 (since V~t,t is the identity map), we can differentiate the above
equation with respect to s and set s = t to get

aON_ a N
N = C + N > W(Ai) + N3 Vt'(A) Bi V), (2.2.8)

where ?/) := (sq I,# =t and

cN =N at dG=B log ZN-t Nf W(A) d Dvt ogZ'

Although this is a formal argument, it suggests to us a way to construct maps T R N _ RN
sending P' onto PN: indeed, if T sends pN onto pN then V#N OTN sends p onto pW.
Hence, we may try to find T5N of the form TN V a T + o(s - t). By differentiating
this relation with respect to s and setting s = t we obtain atTN = VtV)T)

Thus, to construct a transport map TN from PV onto P+w we could first try to find v4
by solving (2.2.8), and then construct TN solving the ODE X/ = V1 /4(X/) and setting
TN := XN. We notice that, in general, TN is not an optimal transport map for the quadratic
cost.

Unfortunately, finding an exact solution of (2.2.8) enjoying "nice" regularity estimates
that are uniform in N seems extremely difficult. So, instead, we make an ansatz on the
structure of N (see (2.3.12) below): -the idea is that at first order eigenvalues do not
interact, then at order 1/N eigenvalues interact at most by pairs, and so on. As we shall see,
in order to construct a function which enjoys nice regularity estimates and satisfies (2.2.8)
up to a error that goes to zero as N -+ oo, it will be enough to stop the expansion at 1/N.
Actually, while the argument before provides us the right intuition, we notice that there is
no need to assume that the vector field generating the flow X is a gradient, so we will
consider general vector fields YN (yN y... R N _+ RN that approximately solve

divYN CN - 3 + N W(A() + N Vt(Ai)YN (2.2.9)t A - Aj i't

We begin by checking that the flow of an approximate solution of (2.2.9) gives an ap-
proxiniate transport map.
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2.2.3 Approximate Jacobian equation

Here we show that if a C1 vector field yN approximately satisfies (2.2.9), then its flow

XNy YN(XtN), XON Id

produces almost a transport map.
More precisely, let YN : RN - RN be a smooth vector field and denote

yN - yN
lN(YN) CN - , + NE W(Aj) + NE V(A)YN' - divY[.

t t~ Aj - Aj

Lemma 2.2.2. Let x: RN - R be a bounded measurable function, and let XV be the flow

ofY . Then

t 7Zr(YN)IL1(N )ds.x(X f dP N _

Proof. Since YN E C1, by Cauchy-Lipschitz Theorem its flow is a bi-Lipchitz homeomor-
phism.

If JXtN denotes the Jacobian of Xt' and pt the density of PN, by the change of variable
formula it follows that

thus
I xdPV = Jx(Xfl)JX pt(X ) dx

x(XtN) dpv - x dPN 1|x100 J P - .JX/N pt(XN) | dx =: IIxI||At

Using that ot(JX/') = divyN JXt and that the derivative of the norm is smaller than the
norm of the derivative, we get

|atAtj J t(JXNpt(X)) dx

divYN JXN pt(Xf ) + JXtN (tpt)(XN) +

J (y XtN)

JXtN Vpt(XN) . OtXtfl dX

JX pt(XN ) dx

-RN ()IO

Integrating the above estimate in time completes the proof. .

By taking the supremum over all functions x with ixiK < 1, the lemma above gives:

Corollary 2.2.3. Let X/v be the flow of Y , and set P4N := (X )IPN the image of PN by
XN . Then

IIIPtN _ p <

(2.2.10)

t

0 Y
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2.3 Constructing an approximate solution to (2.2.8)

Fix t E [0, 1] and define the random measures

I
LN aid MN := 6\ - N v,. (2.3.11)

As we explained in the previous section, a natural ansatz to find an approximate solution of
(2.2.8) is given by

S -(A,..., AN) ,f t W + N i,t(x)1 dMN(x) + JJ 2 (x, y) dMN(x) dMN(y),

(2.3.12)
where (without loss of generality) we assume that 02,t(X, y) = 4'2,t(Y, x).

Since we do not want to use gradient of functions but general vector fields (as this gives
us more flexibility), in order to find an ansatz for an approximate solution of (2.2.9) we
compute first the gradient of Vh:

Ob t A) + N1+,t(Ai) + N t(Ai, MN), It (x,MN 12,t (x, y) dMN(y).

This suggests us the following ansatz for the components of Y[:

Yf' (A,..., AN) := yo,t(Ai) + I yi(A\) + +tAM) MN:=fzt(x, y) dMN(y),YNt N N N , 1tt(i, MN), t(x,.AMN) ZtN

(2.3.13)
for some functions yo,t, yit : R -+ R, zt : R2 -+ R.

Here and in the following, given a function of two variables V, we write E C C8v to
denote that it is s times continuously differentiable with respect to the first variable and v
times with respect to the second.

The aim of this section is to prove the following result:

Proposition 2.3.1. Assume V, W E Cr with r > 31. Then, there exist yot E Cr-2,

yiG E C'- 8 , and zt E C',v for s +v < r - 5, such that

yN :t + N W(-) + N ( )Y divYN

satisfies

11LN ( C (log N) 3

for some positive constant C independent of t 6 [0,1].

The proof of this proposition is pretty involved, and will take the rest of the section.
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2.3.1 Finding an equation for yo,, yit, zt.

Using (2.3.13) we compute

divYN = N Yot(x) dLN(x) + f ty(A) dLN(x) + a 1Ct(x, MN) dLN(x) + n(LN),

where, given a measure v, we set

q(v) := 82t(Y, y) dv(y).

Therefore, recalling that MN = N(LN - Vl), we get

t= - if x Y dLN(x) dLN(y) + N2 f V'yo,t dLN + N2

- O3N Yitr) - Yit(Y) dLN(x) dLN(y) + N Vt'yl,t dLN
2 ff x - y
N (Mx, MN (t N x)

-d LN(y) + NJ V'(x) C(x, MT

- 'q(MN) - N (1 - YtdLN

I W dLN

N) dLN(x)

- ( - ) y',1 dLN - Ja t(x, MN) dLN(x) ~- 'qt) + 

where afN is a constant and we use the convention that, when we integrate a function of the

form f(Y) with respect to LN 0 LN, the diagonal terms give f'(x).X-y
We now observe that LN converges towards py, as N -+ oc [671, see also [6, 3] for the

corresponding large deviation principle, and the latter minimizes Iv, (see (2.1.2)). Hence,
considering 1e := (x + Ef)#iv, and writing that IV,((p) > Iv,(pv,), by taking the derivative
with respect to E at E = 0 we get

V'(x)f(x) dyv,(x) = -f f(x) - dpv, (x) dv,, (y)
f2 x - y

(2.3.14)

for all smooth bounded functions f R -+ R. Therefore we can recenter
formula above: more precisely, if we set

Ef (x) = J dpv (y) +
x-Y

LNby pV in the

(2.3.15)

then

N2JV' f dLN ~ fN 2 JLNxxf (dL I N()

N f dMN - dMN(x) dMN(y)
2 x - y



Transport maps for 3-matrix models and Universality - 29

Applying this identity to f =yo,t yit( .Q, MN) and recalling the definition of t(., MN) (see
(2.3.13)), we find

t =N [Eyo,t + W] dMN

+ Jy1,t+
+ fJdMN(x)

K2 - )y 9+ zt(z, -)dpv,(z)

dMN(y) zt Y)[X1 - YOt - YO(

dMN

+CN + EN,

where

zzt (,y)[xl = J zt(x,y) -zt(X , y) dy,av(.) + Vt'(x)zt (x, y),

CtN is a deterministic term, and EN is a remainder that we will prove to be negligible:

I 2Zt(X,x) dMN(x) -

- 1 - f 1 zt(x, y) dMN(x) C

I1) J /'dMN

MN(y)

3 if ylt(x) - Y1it (Y) dMN(x) dMN (y)
2N x - y

_0 zJ (X, y) - zt (' y) dMN(x) dMN(y) dMN(z).
2N f X -x'

Hence, for RN to be small we want to impose

=yo't =-W + C,

yot(X) - yo, (y)
zt(-,y)[x] =2 x- y + C(y

- ) [Yt + J &iZt(Z, ) dpv(z)1 + c',

where c, c' are some constant to be fixed later, and c(y) does not depend on x.

2.3.2 Inverting the operator E.

We now prove a key lemma, that will allow us to find the desired functions Yot' Yip, Zt.

Lemma 2.3.2. Given V : R -+ R, assume that Iptv has support given by [a, b] and that

dlv(X) 
= 5(x)

dx
V(x - a)(b - x)

with S(x) ;> > 0 a.e. on [a,b].
Let g : R-+IR be a Ck function and assume that V is of class CP. Set

f(x) := - W ff dxv (x) + V'(x)f(x)

EN

(2.3.16)

y (2= -

(2.3.17)
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Then there exists a unique constant c9 such that the equation

=f(x) = g(x) + cg

has a solution of class C(k-2)A(p-3). More precisely, for j <_ (k - 2) A (p - 3) there is a finite
constant Ci such that

jfI|cj(R) Cjllg||ci+2(R), (2.3.18)

where, for a function h, IIhI|cj(R) :- h=o h (r) IL-(R)-
Moreover f (and its derivatives) behaves like (g(x) + cg)/V'(x) (and its corresponding

derivatives) when lx| -+ +oo.
This solution will be denoted by E-1g.

Note that Lf(x) = Bf'(x) can be seen as the asymptotics of the infinitesimal generator
of the Dyson Brownian motion taken in the set where the spectral measure approximates
jiv. This operator is central in our approach, as much as the Dyson Brownian motion is
central to prove universality in e.g. [20, 19].

Proof. As a consequence of (2.3.14), we have

'3 PV J x dptv(y) = V'(x) on the support of pv. (2.3.19)

Therefore the equation Ef(x) = g(x) + cg on the support of ILv amounts to

# PV dyv(y) = g(x) + Cg Vx E [a, b]. (2.3.20)

Let us write
d(x) := d pv/dx = S(x) (x - a)(b - x)

with S positive inside the support [a, b]. We claim that S E Cp- 3([a, b]).
Indeed, by (2.3.14) with f(x) = (z - x)- for z c [a, b]c, we find that the Stieltjes

transform G(z) = f(z - y) 1 dpv(y) satisfies, for z outside [a, b],

-G(z)2 = G(z)V'(R(z)) + F(z), with F(z) dp V'(y) V(R(z))dpv(y) .
2 z- y

Solving this quadratic equation so that G 0 as -z+ oo yields

G(z) - - ('(RRz)) z[V ((z))12 + 20F( ) (2.3.21)

Notice that V'(R(z))2 +2F(z) becomes real as z goes to the. real axis, and negative inside
[a, b]. Hence, since -7r 1 IG(z) converges to the density. of tv as z goes to-the real axis (see
e.g [3- Theorem 2.4.3]), we get

-S(X)2(i - a)(b - x) = (37r)- 2
IV'(X)2 + 20F(x) . (2.3.22)
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This implies in particular that {a, b} are the two points of the real line where V'(X) 2 -+2f3F(x)

vanishes. Moreover F(x) - f J V"(ay + (1 - c)x) da dyv(y) is of class Cp- 2 on R (recall
that V E CP by assumption), therefore (V') 2 + 20F E Cp- 2(R). Since we assumed that S
does not vanish in [a, b], from (2.3.22) we deduce that S is of class Cp- 3 on [a, b].

To solve (2.3.20) we apply Tricomi's formula [83, formula 12, p.1811 and we find that, for
x E [a, b],

Of(x)V(x - a)(b - x)d(x) = PV
b V(y - a)(b - y)

(y -(g(y) + cg)dy + c2 :- h(x)
y- x

for some constant c 2 , hence

h(x). 3f (x)(x - a)(b - x)S(x)

- PVjfI ib((y) +cg)dy + c2

= PV f (y - a)(b - y)(Y (x) dy + (g(x) +

S (y a)(by)( dy - 7r (x - "

where we used that, for x E [a, b],

c b )PV-)(b-y) dy + c 2(g)PV +a y

(gx) + Cg) + C2 ,

a + b
2)

Set

Stho (x) =(y - a) (b - y) dy.

Then ho is of class C - (recall that g is of class Ck). We next choose c9 and c2 such that h
vanishes at a and b (notice that this choice uniquely identifies c.).

We note that f E C(k- 2 )A(p- 3 )([a, b]). Moreover, we can bound its derivatives in terms of
the derivatives of ho, g and S: if we assume j < p - 3, we find that there exists a constant

C2, which depends only on the derivatives of S, such that

I|I|f ( |IL-([a,b]) < C m ax ( |h( ) L-([a,b) +-+ Ig(P1)L o I ([)a,b]) C. m ax fg(p) "a
Let 0 p<j+2 e

Let us define

k(x) :- p f dpv(y) - g(x) -c Vx E R.

By (2.3.20) we see that k 0 on [a, b]. To ensure that Ef = g + c. also outside the support
of pv/ we want

f(x) ( PV f 1 dtv(y) -V'(x) = k(x)

Let us consider the function e : R -+ R defined as

I
f(x) := /PVJ 1 dpv(y) - V'(x).

S- y

Vx G [a,b] .

(2.3.23)

/~b V(y - a)(b - ) y) -- r(

P a dy = X
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Notice that, thanks to (2.3.21), f(x) = /G(x) - V'(x) = -3 /[V'(x)] 2 + 20F(x). Hence,
comparing this expression with (2.3.22) and recalling that S > C > 0 in [a, b], we deduce
that [V'(x)] 2 + 20F(x) is smooth and has simple zeroes both at a and b, therefore [V'(x)] 2 +
2fF(x) > 0 in [a - e, b + E]\[a, b] for some e > 0.

This shows that f does not vanish in [a - e, b + e] \[a, b]. Recalling that we can freely
modify V outside [a - E, b + E] (see proof of Lemma 2.2.1), we can actually assume that f
vanishes at {a, b} and does not vanish in the whole [a, b]c.

We claim that f is H6lder 1/2 at the boundary points, and in fact is equivalent to a
square root there. Indeed, it is immediate to check that f is of class CP 1 except possibly at
the boundary points {a, b}. Moreover

PV J dytv(y) = S(a) f 1  (y -a)(b - y) dy
b-y a I-

+ fax (I S'(aa + (1 -a)y)da)/(y- a)(b-y)dy.

The first term can be computed exactly and we have, for some c # 0,

1 X a+b (_a~ b)2 1

-V(y - a)(b - )d (b - a) 2 , 2(2.3.24)
a X - yy)d= b-a \ b-a 4)

which is H61der 1/2, and in fact behaves as a square root at the boundary points. On the
other hand, since S is of class CP- 3 on [a, b] with p > 4, the second function is differentiable,
with derivative at a given by

fb1
Sa1y (I S'(Qa + (1 - a)y)do) /(y - a)(b - y) dy,

which is a convergent integral. The claim follows.
Thus, for x outside the support of pv we can set

f(x) := f(x)-k(x).

With this choice Ef = g + cq and f is of class C(k- 2)A(p-3) on R \ {a, b}.
We now want to show that f is of class C(k-2)A(p-3) on the whole R. For this we need to

check the continuity of f and its derivatives at the boundary points, say at a (the case of b
being similar). We take hereafter r < (k - 2) A (p - 3), so that f has r derivatives inside

[a, b] according to the above considerations.
Let us first deduce the continuity of f at a. We write, with f(a+) = lim.,j f(x),

k(x) = f(a+)C(x) + ki(x)

with

k1 (x) := f vJ dv(y) - PV f aYdpv(y) + g(x) + cg + f(a+) '(x).
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Notice that since f =- 1k outside [a, b], if we can show that fE-(x)ki(x) -+ 0 as x 1 a then
we would get f(a-) f(a+), proving the desired continuity.

To prove it we first notice that k, vanishes at a (since both k and f vanish inside [a, b]),
hence

ki(x) = /3 PV f (Y)f a )dv(y) - PV f(y)-f(a+d ()v(y) + j(x)-.j(a)

/ fX - f a +Y

= (a - x) PV f ( f(a) dav (y) + j (x) - j(a)
S(x - y)(a - y)

with : g + f(a+)V' C C1. Assume 1 < (k - 2) A (p - 3). Since f is of class C' inside [a, b]
we have If(y) - f(a+)I K CIy - al, from which we deduce that Iki(x)I < C x - al for x < a.

Hence f- 1(x)ki(x) -+ 0 as x T a (recall that f behaves as a square root near a), which
proves that .

lim f(x) = lim f (x)
xta x4a

and shows the continuity of f at a.
We now consider the next derivative: we write

k(x) = [f (a) + f'(a+)(x - a) I(x) + k 2 (x)

with

f (y) f (a+) - (y - a)f'(a+) dpv(y)
k2 (rr) := /3(a - x2) PV Jd(-y)a-)

f (X - y)(a - y)
+ j (x) - j(a) + f'(a+)(x - a)Vt'(x).

Since k t 0 on [a, b] we have k 2(a) = k (a+) = k (a-) = 0. Hence, since f is of class C2

on [a, b], we see that Ik2 (x) I Cx - a12 for x < a, therefore k2 (x)/e(x) is of order Ix - a13/2,
thus

f (x) = f (a) + f'(a+)(x - a) + O(Ix - a13 / 2 ) for x < a,

which shows that f has also a continuous derivative.
We obtain the continuity of the next derivatives similarly. Moreover, away from the

boundary point the j-th derivative of f outside [a, b] is of the same order than that of g/V,
while near the boundary points it is governed by the derivatives of g nearby, therefore

1f (') IL-1([agb]) < j Rm x 1g~ 1L -1(R) .(2.3.25)

Finally, it is clear that f behaves like (g(x) + cg)/V'(x) when x goes to infinity. l

2.3.3 Defining the functions yot, yit) Zt

To define the functions Yot, Yip,, Zt according to (2.3.17), notice that Lemma 2.2.1 shows that
the hypothesis of Lemma 2.3.2 are fulfilled. Hence, as a consequence of Lemma 2.3.2 we find
the following result (recall that V) C CS," means that Vj is s times continuously differentiable
with respect to the first variable and v times with respect to the second).
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Lemma 2.3.3. Let r > 7. If W, V' E C, we can choose yo't of class Cr- 2 , Zt E C ', for
s + v < r - 5, and y1 E Cr-8 . Moreover, these functions (and their derivatives) go to zero
at infinity like 1/V' (and its corresponding derivatives).

Proof. By Lemma 2.3.2 we have Yo=t -W E Cr-2. For zt, we can rewrite

zZt(, y)[x1 = - y'(o (ax + (1 - a)y) da + c(y)

=- [y', (ax + (1 - a)y) + ca(y)] da

where we choose cQ(y) to be the unique constant provided by Lemma 2.3.2 which ensures
that '[yt(x + (1 - a)y) + c,(y)] is smooth. This gives that c(y) =f1 c(y)da. Since
E-1 is a linear integral operator, we have

Zt(X, y) = - j [y'o(a - !a)y)](x) da.

As the variable y is only a translation, it is not difficult to check that zt E C', for any
s + v < r - 5. It follows that

- - 1) y' + Jiz(z, -) dpyv(z) c'

is of class Cr-6 and therefore by Lemma 2.3.2 we can choose y1,t E Cr-8, as desired.
The decay at infinity is finally again a consequence of Lemma 2.3.2. El

2.3.4 Getting rid of the random error term EN

We show that the L N -norm of the error term EN defined in (2.3.16) goes to zero. This
Vt

could be easily derived from [20], but we here provide a self-contained proof. To this end,
we first make some general consideration on the growth of variances.

Following e.g. [64, Theorem 1.6], up to assume that V goes sufficiently fast at infinity
(which we did, see Lemma 2.2.1), it is easy to show that there exists a constant ro > 0 so
that for all T > ro,

DLN 0 log N <_ 2N1ogN

where D is the 1-Wasserstein distance

D(y,v) := sup f (dj - dv).

Since MN = N(LN - uV) we get

D(LN, AVI) = - sup f dMN , (2.3.26)
N 11f,11s,
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hence for T > To

P sup f dMN > TN log N) < -cT 2 N ogN (2.3.27)

This already shows that, if f is sufficiently smooth, f f(x, y)dMN(x) dMN(y) is of order at
most N log N. More precisely

J f(x, y) dMN(x) dMN(y) J e(XdMN(x) e' xdMN(x) < d(

so that with probability greater than 1 - e-crNlogN we have

J.f(xY)dMN(x)dMN(y) < -T2NlogN (2.3.28)

To improve this estimate, we shall use loop equations as well as Lemma 2.3.2. Given a
function g and a measure v, we use the notation v(g) := f g dv.

Lemma 2.3.4. Let g be a smooth function. Then, if MN = NLN - NEV, LN], there exists

a finite constant C such that

o (g) I MN(g) dP C m(g) =: Bh (g)

07(g) :=J

(TN ():

(MN(g) 2 dp < C(m(g)2 + rn(g)jjg 0  j I gII0  =: B12(g)

(IN (g)) 4 dp

<C(|I1g|||g'||o()(g) + ||gI|3m (g) + m(g)2a (g) + m(g)B

where

m(g) :1 -- (-g)o + - log N $1 gj( ) I13 d.

Proof. First observe that, by integration by parts, for any C1 function f

I (N ZV'(M)f (A)13E - A
fJ:.f'(A) dpt

which we can rewrite as the first loop equation

MN (zf)dpN

We denote

FN(g) = I0)

I
J)

f'dLN + f f x- dMN(x)dMN (y) -

(2.3.30)

dLN/+f13 g(x) - E-71 (Y) dMN(x) dMN(y)dN - x -

(2.3.29)

-0)
2

V (C, 1)|(ll( d(d .
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so that taking f := E-g in (2.3.30) we deduce

MN(g)dPN = fFNg9)dp-

To bound the right hand side above, we notice that 7-Fg goes to zero at infinity like 1/V'

(see Lemma 2.3.2). Hence we can write its Fourier transform and get

f B-g(x) - E 1 (y)dMN(x) dMN
X - y

= i d g da e a'z dMN(X) ei(l-) Y dMN(y)

so that we deduce (recall (2.3.26))

sup FN(9) < (1 + r2) m(g).

D(LNJAVt )<ro log N/N

On the other hand, as the mass of MN is always bounded by 2N, we deduce that FN(g)
is bounded everywhere by Nm(g). Since the set {D(LN, AVt) roN log N} has small
probability (see (2.3.27)), we conclude that

MN(g) dPN < Ne-cr 2 Nlog Nm(g) + (1 + T)m (g) C Cnm(g), (2.3.31)

which proves our first bound.
Before proving the next estimates, let us make a simple remark: using the definition of

MN and MN it is easy to check that, for any function g,

MN(9) - MgN 9 MN(g) d (2-3.32)

To get estimates on the covariance we obtain the second loop equation by changing V(x)
into V(x) + 6g(x) in (2.3.29) and differentiating with respect to 3 at 6 0. This gives

f MN IN(g)dP f LN(f g') dP (2.3.33)
+ J - ).f'dLN + 2 X - Y dMN(x) MN (y) N(g) d V-

We now notice that MN(Ef - MN(Ef) is deterministic and f MN(g) dPN = 0, hence the
left hand side is equal to

IN (Ef)MN(g) dIp

We take f := B~g and we argue similarly to above (that is, splitting the estimate depending
whether D(LN, IVt) > TovNlogN or riot, arid use that IMN(g)I < NllgllI,) to deduce that
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( (g) :f I J N)1dWV satisfies

Nf (g) < |g'- gloo + J |FN(g)M N(g)jd Vt

||11|| 0|c'|) + N 2 e- -o2N log N ]I (g)g -I O N (2.3.34)< ll1' glK- Ilg'I A- I. -1- Cm(g) J Vt~~dI% 2..4

= ||B4g||o|g'||o + N 2e-c N1ogNm(og) 100 Cm(g) (g) 1/2.

Solving this quadratic inequality yields

a () 1 C (g)2 + m(g)||g|. +| l g||o||'|oo1

for some finite constant C.
We finally turn to the fourth moment. If we make an infinitesimal change of potential

V(x) into V(X) + 61 92() + 62 g3 (x) and differentiate at 61 = 62 = 0 into (2.3.33) we get,
denoting g = g,

MNf)M N (91) fIfN(9 2 )MN(9 3 ) d = LN(fg (1)) N (go( 2))vN (9o( 3)) dWV,-
r(I 0 f~ f - f (y) dMN(x) dM4N(y)lN

l -J' d L N 91)N 92 N 93 d ,

(2.3.35)

where we sum over the permutation o of {1, 2, 3}. Taking Ef =g = 92 93 = g, by
(2.3.32), (2.3.31), and Cauchy-Schwarz inequality we get

ojN (g) C [NgErg|oouf (g) + |glHom(g) + m(g)Uo (g)3 /4 + mg)2 )

which implies

UN (9) <C N' g|IOOo Y A- +gl3m(g) + m(g)N (9) + M(g)

Applying the above result with g e we get the following:

Corollary 2.3.5. Assume that V', W E C' with r > 8. Then there exists a finite constant

C such that, for all A E R,

MN (e) I2 dlP- < C[logN(1 + A l7)] 2 , (2.3.36)

lNe 4 dP V, < C[logN(1 + JAl)] 4 . (2.3.37)
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Proof. In the case g(x) = ei X we estimate the norms of -- 1 g by using Lemma 2.3.2, and we
get a finite constant C such that

| 1- gjlo < CIA1 2,

whereas, since -- ig goes fast to zero at infinity (as 1/V'), for j 5 r - 3 we have (see Lemma
2.3.2)

|1< C I 1gjIc < C/,jjgci+2
- 1+ |I - 1+ IV|

< C,1 + |Aj+2
~ + | |

Hence, we deduce that there exists a finite constant C' such that

m(g) < ClogN A13 + 1 + d I =l

B1(g) < C'logN (1 + JA17),

B2(g) C'(log N) 2 (1 + IA)2,

B'(g) C'(log N)4 (1 + I A).

Finally, for k = 2,4, using (2.3.32) and (2.3.31) we have

C'log N (1 + JAI),

fIN(eiA)k d + (IBA(g))k

from which the result follows.

We can now estimate EN-
The linear term can be handled in the same way as we shall do now for the quadratic

and cubic terms (which are actually more delicate), so we just focus on them.
We have two quadratic terms in MN which sum up into

- a) i 1(x, y) dMN(x) dMN dMN(x) dN(y).
X -y

Writing

Yi,t (x) - yt (y) = y't (ax + (1 a)y) do
x=Y -

we see that

fYi]t) - Y dMN(x) dN (y) = J Y dt~~

do

|1=-1 g'11oo < CIA 13,

|mN eiA- ikd k-1

EN =N

y t(O)ea~ay (

da MN(e iay )MN(Ci(1-cx) )
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so using (2.3.36) we get

E'J dP C (log ) d Sy 1,( ) |(I (1 + 1

+ J d( j isj( , ()i(| (I + 1 17) (1 + IC7) ).

It is easy to see that the right hand side is finite if yl and zt are smooth enough (recall that
these functions and their derivatives decay fast at infinity). More precisely, to ensure that

+ j 72 C
y t|()|( 1+(| < -_ + (|2E L (R)

and

5 + + E I (R2),

we need yl,, C C17 and z, c C11,7 o C8'10, so (recalling Lemma 2.3.3) V', W E C25 is enough
to guarantee that the right hand side is finite.

Using (2.3.36), (2.3.37), and H6lder inequality, we can similarly bound the expectation

of the cubic term

E2Z(xy y) dMN(x) dMN(y) dMN (.)

2N Jf<'d(d i 0 zt

to get

J 2 dp < C (logN) 3

Jda MN ia NWi1 a MN(e

< d( js t (, ()I i|. ( + +|I) 2( 1 1(17).

Again the right hand side is finite if zt E 018,7 n c15,10, which is ensured by Lemma 2.3.3 if
V, W are of class C31.

2.3.5 Control on the deterministic term C[J

By what we proved above we have

thus, in particular,

S C N (log N) 3

C R ,Nd N

Ct E[7Z] < (log N)3
0~-~{7~] <~

Notice now that, by construction,

RN = Y + N NW+c

I

I--

Izt I( , () 11( I 1|17) (1I + 1(17)
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with cf = -E[N EZ W(A)] and

LY :divY +0 - N V'(A)Y',
i<j A j i

and an integration by parts shows that, under PV', E[LY] = 0 for any vector field Y. This

implies that ERf] = 0, therefore Cfl < C (log N) 3

This concludes the proof of Proposition 2.3.1.

2.4 Reconstructing the transport map via the flow

In this section we study the properties of the flow generated by the vector field YN defined

in (2.3.13). As we shall see, we will need to assume that W, V E Cr with r > 15.
We consider the flow of Yt given by

X N N N __ X

Recalling the form of YN (see (2.3.13)) it is natural to expect that we can give an expansion
for XN. More precisely, let us define the flow of yo,t,

Xo,t : R -+ R, Xot = y0't(Xo,t), Xo,o(A) = A, (2.4.38)

and let XN = (XNl,..., XfN) R N - RN be the solution of the linear ODE

k1, - - -., AN) - y,t(Xo,t(Ak)) - XNk(A 1,.. . , AN) + y1,t(Xo,t(Ak))

+ J z (Xo,t(Ak), y) dMxo (y)N (2.4.39)

+ a2Zt Xo,t (Ak), Xo,t (A - X1't(A1,,. . ., AN)

with the initial condition XfN = 0, and Mx" is defined as

f(y)dM"(y) = f(Xo t(A)) - ffdpj V f E Cc(R).

If we set
X .- , AN) (X0,t), ... Xo,t(AN))I

then the following result holds.

Lemma 2.4.1. Assume that W,V E C with r> 15. Then the flow'XN (XNl,..X xN)

RN - RN is of class Cr-8 and the following properties hold: Let Xot and XN be as in

(2.4.38) and (2.4.39) above, and define N RN w N via the identity

Xt =XOt N X + N2 2,t
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Then

sup |IXk|IIL4 (pN) < Clog N,
1<k<N

Xgt|L2(pN) =

||XflL2 (pN) < CN"/2 (log N)2 ,

|XI|:= I XNS j 2

j=1,..,N

In addition, there exists a constant C > 0 such that, with probability greater than 1 - N-N/C

max XN,k (A, , . ,N) - XN,k' (A 1 . . . , AN) < C log N V?/ 7 Ak - Ak.1<k~k< _ ' ' (2.4.41)

Proof. Since yN G C-8 (see Lemma 2.3.3) it follows by Cauchy-Lipschitz theory that X['
is of class Cr-8.

Using the notation A = (,, ... , AN) E RN and

NNk X N
XtN k (A) Xot(Ak) + (T + 7 (A= (T X0,t(Ak)

N,

and defining the measure MN' as

f(y) dM (y) = f ((I - s)Xo,'(Ai) + sXN,i(\) -

by a Taylor expansion we get an ODE for XN:

XN,k( )

+ N

+ f

, 

t ( N,k, ,

y'[ Xt t jXo,t Ak)) ds - Xftk

dsN, k,(s A s X + X((A))

[ -.zt J 

X tN,(k , sdM) dy)
- f 1 z Xo,t (A) ) dM "''(y)

ds (XfN,k(\) X A

X2 N

- D 2 Zt (XO,t(Ak), Xot(Aj) )

XNJ%
ds. X2, t

N

where

(2.4.40)

01,2.

+ XNk()

Vf E C,(R).

(2.4.42)

Jf dyv I

+

N

+ ->

N

+E

XN k( )

f I [a2Zt
J

Io 1

ds -X

(2.4.43)

0izt X0,004k, dM X(y)

1
XN,k,s() XNj,s

62tXN,k,,, () N~j,s (^

)1/2
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with the initial condition X2Nok 0. Using that

JjO'tjjC, 2(R) <- C

(see Lemma 2.3.3) we obtain

IIXo,tllCr-2(R) < C. (2.4.44)

We now start to control X{N. First, simply by using that MN has mass bounded by 2N we

obtain the rough bound IXN'kI < C N. Inserting this bound into (2.4.43) one easily obtain

the bound IXN,k CN 2

We now prove finer estimates. First, by (2.3.27) together with the fact that Xo,t and
X - zt(y, x) are Lipschitz (uniformly in y), it follows that there exists a finite constant C
such that, with probability greater than 1 - N-N/c,

zt(., A) dM "(A) C log NvW.

Hence it follows easily from (2.4.39) that

max IIXG'k |ko < Clog NvWN

outside a set of probability bounded by N-N/C.

In order to control XN we first estimate XN in L4 (PN): using

(2.4.45)

(2.4.46)

(2.4.39) again, we get

d{
- max
dt (k ||X1tk 1IL4(pN) )

< C max |1X1'; 11L 4 (pN) + 1 +

To bound XNi in L4(IP{ ) and then to be able to estimate X2 in L 2 (p), we will use the
following estimates:

Lemma 2.4.2. For any k = 1, ... , N,

91z, (Xo,t(Ak), y) dMot(y)

< Clog N,

< C log N.
L

4
(PN)

Proof. We write the Fourier decomposition of 7t(X, y) := zt(Xo,t(x), Xo,t(y)) to get

J 7t(x, y) dMN(y) = qt (X, 0Je iYdMN(y) d<.

Since zt E C"' for u + v < r - 5 and XO,t E Cr-2 (see (2.4.44)), we ,deduce that

C
6t(x, 0) ~ 5 + r- 5 '

(2.4.47)
L4(PN)

I
(2.4.48)

(2.4.49)

zt (Xo,t (Ak), y) dMN "(y)

zt (Xo,t (Ak), y) dMN " (Y)
L4(pN)V
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so that using (2.3.37) we get

sup frt (x, y) dMN(y) 'Jit Jei'YMN(y)
L4 (pN ) L4 (pN)

< Clog N qt- +) 1 1 |<

<Clog N,

provided r > 13. The same arguments work for 8izt provided r > 14, Since by assumption
r > 15, this concludes the proof. E

Inserting (2.4.48) into (2.4.47) we get

IIXN,k p) C log N (2.4.50)

which proves the first part of (2.4.40).

We now bound the time derivative of the L2 norm of XN:

bounded by 2N, in (2.4.43) we can easily estimate
using that MN has mass

(XN,k,s (i)) Y,,t (Xo,1(Ak))] ds . XN \) A

I
C|XN,+k N,kL+HIX2JIt

dM O t(y) ds

CNJI

92 Zt (Xo,t(Ak), Xo t(A ) ds XNt

IflC)

Nk2kC

f & 1 zXtN,k,s(j)
y) dM t (y)

I 1

I

NIX2

XO (Ak), Y)

2tXtN,k,s() XN,j,s '

C
< _ E IXNJ 12 +
- N i ( 1,t

1 yltNf 0
0
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hence

|2,t L2(pN= 2 fXNk 'N,k ON

: C (|X2N k12 pN+ Cf ( X 2jXN,k

k k

+ X' , t 2dP + C |Xt k V

+ |X2N k 3 pN CfEII2t dP +X N' j|X1N,kl IN,kl dN
k N k, 3t 2,

+ |X2N X2N
k , t

+ X 2,kt f t (Xot (Ak),

+ Cf: XN1N2 IN k IdN +

+C[fVIN,IXN,jl CjpN,

+ N k ' 2t .

y) dMNoL y ds . XN,k dpN

S xN,kl I IXNJ I dI
kjI

Using the trivial bounds IXN,kl C N and IX2Nk < C N 2, (2.4.49), and elementary in-
equalities such as, for instance,

1\Xf XI XN N,k| |XNj4 + |X2,kl 4 + N,k 2

kj ' ' , k~j ' t2,

we obtain

|2,t 2(pN < C ||2,t 2(p) + fJIXfNkl4 ON

(2.4.51)

+ J X 2 dP + 5logN NIX2INkL 2 (r )I))XNk

We now observe, by (2.4.50), that the last term is bounded by

XNt 2(pN) +(log N) |IX~k 4 (pN) ,X2t L2 (p + C N(log N)4 .
k

Hence, using that IIXN,k L 2 (pN) < IIXNk 1L4(pN and (2.4.50) again, the right hand side of

(2.4.51) can be bounded by CX2N 11 2 (pN) + C N(log N) 4 , and a Gronwall argument gives

X2,t 2 (pN _< C' N(log V.t,

thus

IIXN 1/2 )2,2,tIIL2(pN) < CN (logNV -
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concluding the proof of (2.4.40).
We now prove (2.4.41): using (2.4.39) we have

| Nfk' - Z Nk'(

Sy't (Xo,t ( k) - yt (XOt(Ak')) I 1, A) I
+ yt(Xo,t(Ak))| IX N,k XN,k' (A) I + |yjt(Xo,t(Ak)) - y1,tC7ot(k')

+ J (zt(Xo,t(Ak), y) - zt (Xo,t(Ak'), Y)) dMZ'ot (y)

+ H E 102zt (Xo,t (Ak) Xo,t(Aj) - 2zt (Xo,t (Ak), Xo,t(Aj) ds X ( A).

Using that IXot(Ak) - Xot(Ak,)I < ClAk - Ak'L, the bound (2.4.46), the Lipschitz regularity
of y',t, yit, zt, and &2Zt, and the fact that

J zt(-, A) dM X"(A) C log NVNT

with probability greater than 1 - N"N/C (see (2.3.27)), we get

I-N,k N,k k'(.)i cixN( - XN,k' (A )I + Clog NVWI Ak - Ak',

outside a set of probability less than NN/0, so (2.4.41) follows from Gronwall.

2.5 Transport and universality

In this section we prove Theorem 2.1.4 on universality using the regularity properties of the
approximate transport maps obtained in the previous sections.

Proof of Theorem 2.1.4. Let us first remark that the map To from Theorem 2.1.3 coincides
with XO,1 , where XO,t is the flow defined in (2.4.38). Also, notice that Xf : RN - R N is

an approximate transport of onto +w (see Lemma 2.2.2 and Proposition 2.3.1). Set

~ :=Xo + ( , with Xoe and Xf as in Lemma 2.4.1. Since X1 -= X2
recalling (2.4.40) and using H6lder inequality to control the Ll norm with the L2 norm, we
see that

g(ZNi N gXN dN <||Vg||j. |X2N

g||co X2N1 1 (pV) (2.5.52)

C g|o(log N)2

N3/12,

This implies that also Zf : RN -4 RN is an approximate transport of pN onto PNw

In addition, we see that X preserves the order of the Ai with large probability. Indeed,
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first of all Xo,t : R -+ R is the flow of yo,t which is Lipschitz with some constant L, hence
differentiating (2.4.38) we get

d
SXY Y't( Xot ) X L X XbO = 1,

so Gronwall's inequality gives the bound

e-Lt < Xt <eL

Since Xm 1, it follows by continuity that X6 ust remain positive for all time and it
satisfies

e-Lt < X <' (2.5.53)

from which we deduce that

e Lt(A - Aj) 5 Xo,t(Aj) - Xo (Ai) e 1  - At) VAj < Aj.

In particular,
e-L (A - Aj) Xo,1(Aj) - Xo,1(Ai) e - A-).

Hence, using the notation A = (A,... , AN), since

-X1Nf () Xfi ( ) 5C |

N N NY

(see (2.4.41)) with probability greater than 1 - N-N/C we get

h(Aj - AD) X, iA) kX(, C(j - A

with probability greater than 1 - N-N/c.

We now make the following observation: the ordered measures PV and PVw are obtained
as the image of PN and pN+w via the map R: RN _ N defined as

[R(xi, ... , XN):= minmaxxj.
J=i jEJ

Notice that this map is I-Lipschitz for the sup norm.
Hence, if g is a function of m-variables we have V(go R) x/mjVg so by Lemma

2.2.2, Proposition 2.3.1, and (2.5.52), we get

R(Xf')dI - fg R PN W C (logN) g|| +C N Vg|.
1g ~ '+WN N 3 12

Since ZfN preserves the order with probability greater than 1 - N-N/C we can replace
g o R(NXfN) with g(NXjN o R) up to a very small error bounded by gjNN/C. Hence,
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since R#P=
f : RN -(+ R,

ff (N(Aj+1

P$' and RgP +W VN+W, we deduce that, for any Lipschitz function

- A),. .. , N(Ai+m - Aj)) dP$N+W

f N(Zi,i+1 Nfi(g)) N(fNi~+m( 
-

C(log N) 3 lif 0.N C N 1 2

Recalling that

Z (A) = Xo,1(Aj) + I ( )

we observe that, as Xo, 1 is of class C2 ,

Xo,I(Ai+k) - Xo,1 (A ) = XO1 (Aj) (Ai+k - Aj) + O(lA+k - 2

Also, by (2.4.41) we deduce that, out of a set of probability bounded by N-N/C

IXfi+ i'(j)I C log NVI Aisk - Ai

As X() (Ai) ;> eL (see (2.5.53)) we deduce

1 jXN,ik _ Ni( Co (N A)
XN )| I C IX01(A) (Ai+k - A1, I N 1 12

and
O(lAi+k - Ai1 2) = Xo 1 (Aj) (Ai+k - A) 2

hence with probability greater than 1 - N-N/c it holds

kN,i+k(A) _ N,i() Xt(Ai) (Ai+k -Ai)

(2.5.54)

(Ai+k - Aj) -

Since we assume f supported in [-M, M]m, the domain of integration is restricted to A such
that {NX6,t (A) (Ai - Ai+k)I1<k<m is bounded by 2M for N large enough, therefore

,i+k - ,t(A) (Ai+k - A) + o 2M

from which the first bound follows easily.

+0 (4M

For the second point we observe that av+w = Xo,i(av) and, arguing as before,

I f(N2/3(A, - av+w),..., N2/ 3( Ant- av+w)) dPvN+w

- f(N2/3 ( ,1(A) - Xo,1(av)) ... ,N2/3(f 'm(A) - Xo,1(av)))

C /N 5 f 0.

-I

< C (logN) 0j|I +

dP$N

+ 0 / + 0( O, I (Ai)
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Since, by (2.4.40),

Z, i(A) = Xo,1 (Ai) + OL4(PN)( N)

= Xo,i(av) + XOj(av) (Ai - av) + o( Ai - av12) + OL4(p)oN

we conclude as in the first point. E



Chapter 3

Transport Maps for -Matrix Models
in the Multi-Cut Regime

This Chapter is based on the article /101.

3.1 Introduction

In the previous Chapter we construct an approximate transport maps with an accurate de-
pendence in the dimension. The dependence in N allows to compare the local fluctuation of
the eigenvalues under two different potentials. The potentials do not need to be analytic, but
an important hypothesis made in this previous Chapter was the connectedness of the support
of the limit of the spectral measure . Here, we assume that the potentials are analytic but
remove the one-cut assumption and use the same methods to construct approximate trans-
port maps in the case where the filling fractions of each cut is fixed. As a result, we obtain
universality of fixed eigenvalue gaps at the edge and in the bulk . The plan of this Chapter
is as follows: In the first section we intoduce some notations and state our main results. We
reintroduce in section 2 a more general model discussed in [17 of 3 log-gases with Coulomb
interaction and construct an approximate transport map between two measures froir this
model when the number of particles in each cut is fixed. We will see how this approximate
transport can lead to universality results in the fixed filling fractions case, and conclude for
the initial model in Section 4. The main results of this Chapter are Theorems 3.1.3, 3.1.4
and 3.1.5.

We consider the general /-matrix model. For a subset A of R union of disjoint (possibly
semi-infinite or infinite) intervals and a potential V : A -+ R and / > 0, we denote the
measure on AN

P 7 (dA, A - > exp N E V(A) fldAi (3.1.1)
,A<iJ< N 1<i<N

with

ZN j L Ai 113 exp (- fldA2 .
A N 1<i<j.<N 1<i<N

49
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It is well known (see [3], [6] and [30]) that under PWA the empirical measure of the eigenvalues
converge towards an equilibrium measure:

Proposition 3.1.1. Assume that V : A -- 1 R is continuous and if Oo E A assume that

lim inf > 1x+-oo ,log lx

then the energy defined by

E(Iu) = V(x)dp(x) - 0log xi - x 2 dp(xl)dp(x 2 ) (3.1.2)
f 2

has a unique global minimum on the space M11(A) of probability measures on A.

Moreover, under P the normalized empirical measure LN = N- 1 f_ 1 6 converges almost
surely and in expectation towards the unique probability measure pv which minimizes the
energy.
It has compact support A and it is uniquely determined by the existence of a constant C such
that:

3 jlog Ix - ydv(y) - V(x) < C
SA

with equality almost everywhere on the support. The support of pv is a union of intervals
A U [ah,-; ac,+] with Oah,- < ah,+ and if V is analytic on a neighbourhood of A,

O<h<g

= S(x) 1I Ix - Chil - Ch,+,
dx h=O

with S analytic on a neighbourhood of A.

We make the following assumptions:

Hypothesis 3.1.2.

" V is continuous and goes to infinity faster than / logixJ if A is semi-infinite.
" The support of. pv is a union of .g + 1 intervals A U Ah with Ah =kyh,-; yh,+,

O<h<g

ah,- < Oh,+ and

d/i
= pv(x) = S(x) i x - Chlx -- ah,+1 with S > 0 on [ah,-; ah,+]. (.3

dxh=O

* V extends, to an holomorphic function on a open neighborhood U of A, U U Uh)
O<h<g

Ah C Uh and Uh disjoints.
* The function V(.) - # fA log I -yldyv(y) achieves its minimum on the support only.
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The last hypothesis is useful to ensure a control of large deviations. Before stating the main
theorems, we will introduce some notations.

Notations

" For all 0 < h < g, 6*,h = Pv(Ah) and e, = (--* , - - - ,,)
" For all 0 < h < g, N,,h = Ne*,h, N, = Net, and LNi = (LNE*,oj, -, LNE*,gj).
" For a configuration A E RN, N(A) denotes the vector such that for all 0 < h < g,

(N(A))h is the number of eigenvalues in Uh.

" For an index i, we introduce the classical location EN of the i - th eigenvalue by

EVN'

In the case where the fraction i/N exactly equals to the sum of the mass of the first

cuts, we consider the smallest E satisfying the equality.
* For a configuration A E RN, let Ah,j be the i-th smallest eigenvalue in Uh.

* For avectorxER9+ and0 < hlig, [x]h =Xo ...+xh and [x]-l =0 .
" For a vector x E R9+1, 0< h g and i E N we write i[h, x] = i - [X]h_1.
* For a signed measure v and a function f c L'(dIv1) we will write v(f) = f fdv.

The main goal of this Chapter is to prove universality results in the bulk and at the edge in
the multicut regime.
Fixed eigenvalue gaps have been proved to be universal for regular one-cut potentials (see
[11], [20]), and their convergence can be obtained using the translation invariance of the
eigenvalue gaps as in [42] (see also [79] for the case of the GUE). More precisely, if V is the

Gaussian potential G(A) := # we have for i away from the edge

Npv(EivN)(Ai+i - Aj) - g (3.1.4)

where g, is some distribution (corresponding to the Gaudin distribution for 2).

Our first Theorem states that this result holds for any multi-cut potential satisfying Hy-
pothesis 3.1.2.

Theorem 3.1.3. Let # > 0 and assume that V satisfies Hypothesis 3.1.2.

Let i < N such that for some F > 0 and h E 0; g ,eN < i - [N]h_1 < Nh - EN. Then

Npv(EN )(Aji - A-)

We now state the results at the edge. Under a Gaussian potential and for general 3, the

behaviour of the eigenvalues at the edge is described by the Stochastic Airy Operator (We
refer to [72]). Indeed, J. Ramirez, B. Rider and B. Viraig have shown that the k first rescaled
eigenvalues (N 2/ 3 (A, + 2),. , N 2/ 3 (Ak -+ 2)) converge in distribution to (A 1, - . , As) where
Ai is the i-th smallest eigenvalue of the stochastic Airy operator SAO,.

In the following result, <1" are smooth transport maps (defined later).
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Theorem 3.1.4. Assume that V satisfies Hypothesis 3.1.2. Let fQA denote the distribution
of the ordered eigenvalues under pW.

If for all 0 < h < q f : R' -+ R is Lipschitz and compactly supported we have:

rlim fHA (N2/3(A4,1 -N I),. ,N 2 (Ah,m -- h,_))dVAN-+oo 0<h<g

riESAO, f((-2)A1, - h 2) ( rt
O<h<g

It would also be interesting to study the behaviour of the i - th eigenvalue where i

[[N*J]h-1 + 1. This eigenvalue would be typically located at the right edge of the h-th cut
or the left edge of the h + 1-st cut. The following theorem gives the limiting distribution
of such eigenvalues. We will use the following fact proved by G.Borot and A.Guionnet in
[15]: along the subsequences such that N* mod Z9+1 -- + r where K E [0; 1[9+1 and under

PA, the vector N(A) - LN*i converges towards a random discrete Gaussian vector (not
necessarily centered).

Theorem 3.1.5. Let 0 < h < g, i = [LN*Jh_1 + 1 and Ah(A) = [LN*J]h1 - [N(A)]h-l.
Define

h(A ) = 
+ts(A) f a + lA ,(A)<( +

ah 1A(A)
0 

Ch-1

where the expression above simplifies to a- for h = 0. Then along the subsequences N,
mod Z9+-1 -K and under IPIA

1 > ~ + 1A , +
A,_KOC Ah,<0 ah-1

N 2/3 (A - h 1 A,;>, A ,1) h (- + <o, A-a ,-
- !o AA,,,,1 -h(2 ) + 

1
Ah,,< Ah, 4b 1( 2 )

where (Ai)i denote the eigenvalues of SAO,3 , 4 h is a transport map introduced later and Ah,,
is a discrete Gaussian random variable independent from A if 1 < h < g, and equals to 0 if
h = 0.

We could state a similar result about the joint distribution of k consecutive eigenvalues as
well. We note also that using the transport methods of this Chapter, and adapting the meth-
ods presented in [44] (notably Lemma 4.1 and the proof of Corollary 2.8), we could prove
universality of the correlation functions in the bulk. This would require rigidity estimate for
the fixed filling fractions model introduced in the next section , which was done in [61]. As
this universality result has already been proved in [78], we do not continue in this direction.

In order to study the fluctuations of the eigenvalues we place ourselves in the setting of
the fixed filling fraction model introduced in [151, in which the number of eigenvalues in
each cut is fixed. The idea is to construct an approximate transport between our original
measure, and a measure in which the interaction inbetween different cuts has been removed.
This measure can then be written as a product measure and we can use the results proved
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for the one cut regime in [11. We will construct this map in the second section and show
universality in the fixed filling fractions models in Section 3. We will deduce from it the
proofs of Theorems 3.1.3, 3.1.4 and 3.1.5 in the fourth section.

3.2 Fixed Filling Fractions

3.2.1 Introducing the model

We consider a slightly different model with a more general type of interaction between the
particles and in which the number of particles in each cut is fixed. We will refer to [17]
for the known results in this setting. For each 0 < h < g, let Bh = [13h,-; Oh,+] be a small
enlargement of Ah = [ah,_; ah+ included in U, and B U Bh . It is well known (see for

O hig

instance [16]) that under our Hypothesis, the eigenvalues will leave B with an exponentially
small probability and we can thus study the behaviour of the eigenvalues under pN B instead
of PA without loss of generality.

We fix N = (No.... , Ny) E Ng+1 such that Eg-o NI, = N and we want to consider a model
in which the number of particles in each Bh is fixed equal to Nh. Let e = N/N C]0; 1 9+1
and for T : B x B -+ R consider the probability measure on B = Hg o(Bh)N:

p (dA) Ahi Ah exp T(A>3 A
T,B h=O 1 i<j Nh O<h,h'<g 1<i<Nh

l<j<Nfat

9 N1, (3.2.5)
I 

J Ah, -Ah,j fi 1Bh(Ah,i)dAh,i

O<h<h'<g 1<i<Nt, h=O i=1
1<j<Nlt

Note that with T(Al, A 2 ) = -(V(Al) + V(A 2 )) and without the location constraints, we are
in the same setting as in the previous section.

As in the original model, we can prove the following result ( see [171):

Proposition 3.2.1. Assume that T B x B -- R is continuous.

Assume also that the energy defined by

E(p) T(i, x2 ) + 0log xi -. X 2 dp(xl)dp(X 2 ) (3.2.6)
2 f .

has a unique global minimum on the space .M1(B) of probability measures on B satisfying

p[ Bh] = zh.

Then under PN the normalized empirical measure LN= N- Eg -0  [hA converges al-
most surely and in expectation towards the unique probability measure pjr which minimizes
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the energy.

Moreover it has compact support A' and it is uniquely determined by the existence of con-
stants CE, such that:

f log Ix - yIdy4r(y) + T(x, y)dp'(y) < Ceh on Bh (3.2.7)

with equality almost everywhere on the support. The support of p4 is a union of I + 1 intervals

A= U h'-; hi] with h,- <c' , I > g and if T is analytic on a neighbourhood of
Osh<I

=x ;x ) ri| x - a I||x - 7h,|
h=0

with ST' analytic on a neighbourhood of A"r

We point out the fact that the previous theorem is also valid in the unconstrained case. In
that case, we denote by AT the equilibrium measure. Let e*,T = (ptT(Bh))o<h g. Then it is
obvious that te*' = PT . It is shown in [17] that we have the following:

Lemma 3.2.2. If T extends to an analytic function on a neighbourhood of B and the energy
definied in (3.2.6) has a unique minimizer over M1 (B) then for e close enough from e,, the
energy has a unique minimizer over M'(B) and the number of cuts of the support of itr and
AT are the same. Moreover, a , aE and ST are smooth functions of e (for the LV norm
on B).

They also prove a control of large deviations of the largest eigenvalue under PN,,T,B'

We define the effective potential as

T'(x) =3f log |x - yldp'r(y) + T(x, y)dp'(y) - Cc, on B1. (3.2.8)
B B

Lemma 3.2.3. Let T satisfy the conditions of the previous theorem. Then for any closed
F C B \ Ar and open 0 c B \ A' we have

lim sup1 - logP'(Ii A E F) < sup T'(x).MSPN xog T 'BXF

lim inf log PN', (3i A E O) > sup i'(x).
N TXEO

We consider a potential V on A satifying Hypothethis 3.1.2 and the potentials To(x, y) =

(V(x) + V(y)) and Ti(x, y) = -(V (x) + V'(y) + W(x, y)) where

/ log(x- y) if x E U , y E U h > h'

W(x, y) = #log(y - x) if x E Ul , y E Ulh < h'

0 if x E Uh , y E Uh
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and

V,(x) = V(x) - W(x, y)dy' (y).

The key point is that dPN B is a product measure as the interaction between cuts has been
removed. Moreover, we can check by the characterization (3.2.7) that

We now consider
T = (1 - t)TO + t T, , t [0; 1]. (3.2.9)

Still by (3.2.7) we can check that for all t E [0; 1] we have:

P'f = (1 - t) 14 + tp4 = P1 v.

Remark 3.2.4. Note that, by Lemma 2.2, for e in a small neighbourhood of e, (that we will
denote ) the support A' of 4', = pfv has g + 1 cut and we can write

dp' = d1p = S'(x) f |x - aOJ|x - C4+|dx , (3.2.10)
h=O

with S' positive on A'.

Remark 3.2.5. Note also that by the last point of Hypothesis 3.1.2 and by Lemma 2.2, if
we fix a closed interval F C B \ A, then for e close enough to e, and all t E [0; 1] T, Tt < 0
on F.

The goal is to build first an approximate transport map between the measures dpN' for

a fixed e in i.e find a map X that satisfies for all f : RN _+ R bounded measurable
function

Ne pNc pN (log N)'
Jf(Xf'' ) dPV - f d TIB CNf N (3.2.11)

We will see that we can build a transport map depending smoothly on F and show universal-
ity in the fixed filling model. We will then use this result to prove universality in the original
model.

Proposition 3.2.6. Assume that V satisfies Hypothesis 3.1.2, and that T is as defined
previously. Let N = (NO, . , Ng) such that e = N/N is in and PN, denote the distribution

of the ordered eigenvalues under pN,W . Then for a constant C independent of e and N, and

if for all 0 < h < g f : R" -4 R is Lipschitz supported inside [-M, M]' we have:
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1. Eigenvalue gaps in the Bulk

f 171 fh(N(Ah,i,+1-Aha,ijL) - , N(Ai,+m - Ahi,))d VB
0 h~g

f rI fh (N(A,i+1 - Ahi,),i -, N(Ah,i +m - ) dIB
Oshig

C(iogN) 3 Ilfi| + C(V/(log N) + (logN)
N N1/ 2  N 112  fI

2. Eigenvalue gaps at the Edge

J 17 A (N2/ (A,1-a ), - , N2 /3 (Ah,m - a, d
Oh<g

J f(N2/3(A,1 - o ),- - ,N 2/3(Ah,m - Ozc ))dPNe

<C(logN) 3 I|fK+C(v/i(log N) 2 log N
N lflco+Cr N516 N 1/3 V 10

where we defined f Rm(9+1) -+ R by f(xo.. , xg) = Toh g fh (Xh)

We deduce the following corollary from the results obtained in the one-cut regime in [11],
and from the fact that ]B is a product measure.

Corollary 3.2.7. Assume the same hypothesis as in the precedent proposition. We write

1V = Zo< eh<g -h where M" h has connected support . For some transport maps Dh from

AG to Ap ,

1. Eigenvalue gaps in the Bulk

1 fh(N(A1 -,) - -., N(Ahi,+m - Ahi d)) ) )

- g fh(N(4) ePh)'(A )(A i) - A -), - N(eI )'(A,)(Ai, +m ) d
O<h<g

<C (N)3  coN) 2 + / M + )) + M2

11 10+CVMN 1 /2 N) 2 IIVJH110
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2. Eigenvalue gaps at the Edge

J41 fh (N2/3(Ahj - a(_ ),
Osltsg

,N2 3 (Ah,m -h , d

2/3 (<b )'(-2)(A1 + 2), . , N2/ 3 (4,e'h)'(-2)(Am +- H fh (N
O<h<g

<C (log N) 3

N
+F ~(\/r(log N)2

N5 /6

log N M 2

N 1/3 +N4/3 0 '

The proof of the theorem will be similar to what has already been done in the one-cut
case, one major difference being the inversion of the operator H introduced in the previous
Chapter.

3.2.2 Approximate Monge Ampere Equation

The analysis done in the one-cut regime suggests to look at the transport as the flow of an
approximate solution to the Monge Ampere equation Yt O(Y7 N E N _ R

where YN, R N _ Nh solves the following equation:

div (Y,E )

- Y
O<hjh'<g 1<i<Nf,

1<j<Nh,

-/3
9 ~ YN,c - N,e

S,i, h,j,t

h=O 1<i<j5N, Aj - h,

(DIT(Ahi, A )Y,N, _ - W(Ahi, Ahj)) - N
2 O<h<g 1<i<N

W(Ah,i, z)du' (z)

(3.2.12)

W(Ah,, z)dp'y(z) - 1
O<hh'<g 1<i N,

1<j<Nja

W(Ah,i, Ah,)

t log(Z, B)-

Let N,e (yN ) the error term defined as

RNE (yNe I :O 1 i < h ,i,t h ,

h=O 16i<j<Nh >h1i Ahj

SN,E S N,c
h,i,t h'jt

O<h<h'<g 1<i<Nh Ah,, -hj

1 j Nt,l

+ S S (01T(Ah,i, Ah, )YN e I W (Ah, Ahl,,)) +N 5
O<h,h'<g 1<i<N '' 2 O<h<g 1<i<Nu

(3.2.13)

We have the follbwing stability lemma

2)) dPG )

YN,E - N,c
h,i,t h',j,t

O<h<h'<g 1<i<NA - AhL,.
1<j<N

where

N,
(N O<h<g

S
1<i<NL

d pN,e

,e
jt

W(Ahj, Z)d/-' (z)
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Lemma 3.2.8. Let YtNIe RN _4 RN be a smooth vector field and let X',' be its flow:

X-N,eXvN,e uN,y N,e )

Assume that YtN,, vanishes on the bounda ry of B.
Let f : RN -- R be a bounded measurable function. Then

f(XtE) dPN,

Proof. Let

p(A) : =
T, B

Ah,i- Ahj 1 exp (
h=O 1<i<j<Nh

1 rj Jh,i -Ahj

O<h<h'<g 1<i<N1 ,
1<j<N,,

and JXN'" denote the Jacobian of XtN'. As Yt vanishes on the boundary of B X (B) -
B. By the change of variable formula we have

f dpN, =l
T, fB

f(A)pt(A)dA =
f X,NE (B)

f(A)pt(A)dA

Thus we have

- fdpN,eIB liIt11 00 j1po(A) - pt(XfNe),JXN E

at jl Po(A)-

Using t(JXNe div we have

pt e) JXN,e IdA.

At jBat (JXtNe pt(XtNE))Id

f Idiv (Y Nte) JtXNe Pt X + t p) X + JX pt X ) X

-IZN,E(yN,e) dI '~

and this gives the lemma.
0

(3.2.14)

O<h,h'<g
E Tt (i,h, j,h'

1<i<Nh
1<j<Nlal

I

if
Let

= f ( XN'')pt( XN J XtN,e
fB B d

dpNE 00 f IZNo (yN,6) ds.TtB 0 LI (pNe
f T, R)
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3.2.3 Constructing an Approximate Solution

The construction of the approximate solution will be very similar to what was done in the
previous Chapter.

We fix t E [0; 1] , N = (No, , Ng) E Ng+ 1 such that E= Nh = N and set e = N/N E

]0; 1 [g+1.

Let
1

LN-
N E -'-- S

h,i
MN =E - Ny.

hji

We look for a map t ,N ) RN approximately solving (3.2.12).
As in the one-cut regime, we make the following ansatz:

YN,(A) = yt( Ah,i) + k'(A,x, MN) MN (x, y)dMN(y) (3.2.15)

for some functions y',t : R -+ R and z' : R2 -- R.

Proposition 3.2.9. Let V satisfy Hypothesis 3.1.2 and T is as in (3.2.9) . Then there are
, in C'(R) and z' in Cx(R 2 ) such that for a constant C, for all t E [0; 1] and e E

N,c N,e< (log N) 3

Iy ) T',; B) N

Using the substitution (3.2.15), we have to find equations for y',t and z. To simplify the

notationswe will write )Z instead of )ZN,(eyNe). We obtain:

7. = WdLNdLN + N2 WdLNdpI

ON y t(X) - 1iy+ 23V fJ Yt)Y )dLN(x)dLN(y) - N
2x - y

J 1T(x, y)y t(x)dLN(x)dLN(y)

#N(y(, M MN) L~~L~)
+ O3N if ~(X, MN) N(y)+N ] 1T(x,y) E(x,MN)dLN(x)dLN(y)

2 ffx - yf

+ -ry(MN) Yt' - I
0)
2J

J 1 (x, MA)dLN(X) +

where -N is a constant and for any measure v./ we set

)= J 2 z(y, y)dv(Y).

We use equilibrium relations to recenter LN by p',. Consider f a bounded measurable
Cfunction oil B and (x + 6f(x))V, #AV Then as for 6 small enough [L'v,6(Bh) = Eh
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for all 0 < h < g, we have E(p,6) > E(ps ) where we defined the energy in (3.1.2). By
differentiating at 5 0 we obtain

dp if(f~d)y (y) +JTt (x, y)f (x)dAt{(x)d'(y) =0.

Thus, if we define the operator E acting on smooth functions f : B -+ R by

(3.2.16)

Bf(x) =f S3 fx - d14I(y

f~) - f ()dLN(x)dLN(Y) +x- y

N f -fdMN

J1 t(x, y) f(x)dLN(x)dLN(y)

+ I [I Jf f ( f Y)dMN(x)dMN(y) + J91Tt(x, y)f(x)dMN(x)dMN (y)

Therefore we can write

= / - 0) I az (z, .)dy' (z) dMN

+ if [-(-, y) [x] - W(x, y)] dMN(x)dMN(y) + CtN"6 + E

with

=ZB(-, y)[x] = / [/zt(x, y) - 4(z, y + O1T (x, z)z4(x, y)[ x- z

where C" is deterministic and E is an error term:

E=- z Ie4(x, x) dMN(x) + -I
NJ N \

N (1
+kNff

+ N-k/P

2.I Et'dMN

To make R small we need

{z' (,y)[1X] = W (x, y) + '1 (x, y),2

I 
(a-l)/Oz'(z, .)d[{ (z) + r12

we obtain

0iff

y) dp4 (z)

-0) if alz(xy)dMN(x)dMN(y)
[Y61,t W Y61, t(Y) + 01T (x, y) (x)

x y z,)+ T.(x, z)4(x,

(3.2.17)

dMN(x)dMN(y)

) dMN(x)dMN(y)dMN(z)

+ 2T(x, z)zf (z,
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where 62 and Kj(., y) are functions on B constant on each Bh.

The following lemma shows how to invert and will give us the desired functions. We will
denote by O(U) the set of holomorphic functions on U.

Lemma 3.2.10. Let V satisfy Hypothesis 3.1.2 , Tt as in (3.2.9) and e = N/N in S. The
support of y' is a union of g + 1 intervals A' = [a _; c=,] with a', < a,+ and,

0<h<g

dp = S(x) JJ x - (I | - 4I+
dx =s 1V h-II

with S positive on A'.
Let k E 0(U) and set for f E 0(U)

E3 (x) - -(y) +1f ) + a1Tt (X, y)f(X) + 2Tt(x,y)f (y) d T.(y)
x-y y

Vx E U.

Then there exists a unique function Kk on U constant on each U1, such that the equation

f=k + k

has a solution in 0(U) . Moreover, for all x E Uh

1
f~) -2/3r2o(x)uh(x)S(x)

igh( )(k() + ch)

( - x)

where the contour surrounds x and A' in Uh and

02(x) = i (x - c)x - a',

hl

a (x) f-X+1

o(x) = (x - c4 ,) (x - aE,+)

0h (X) x

and the constants c1 and C2 are chosen in a way such that the expression' under the bracket
vanishes at x = a' and x = a', for each h (see the following Lernma).

Moreover f satisfies for all j

|1ffIcj(B) 5 Ci jk.+2(B) (3.2.19)

for some constants C. We will denote f by B'k.

Before proving this lemma we need another lenna

+ c ] (3.2.18)

,7f (x) = /
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Lemma 3.2.11. Let V C O(U) and /4t as in the previous lemma.

Then for all 0 < h < g the linear operator

Oh := C2 -- + C 2

(c1, c
2 ) -- + c J(0) d + c2, C) d- + c2

( - _) f ( - Ce )

is invertible and Ohl is analytic.

Proof. This comes easily from the fact that

a _

/,-

(y - a),)( , -
dy =

y - ad,

(y - ac',)(, - y)
h C d y =

y - Ceh,

E - C

2

S_ - a

2

0

Proof of Lemma 3.2.10. By the identity (3.2.16) with f(x) = (z - x)- 1 and z outside the

support, we obtain that the Stieltjes transform G(z) = f ' djy6(y) satisfies

13 (Z) 2 09iTt(9, y) - 09,T (Z, y)-G(z)2+G(z) J1Tt(z, y)dy' (y)+F(z) = 0 with F(z) ff dpy- T()dyO' (y)
2 f fy - Z

and this gives

OG(z) + J Tt(z, y)dl t6(y) = - ( iT(zy)dyJ,(y) - 23F(z).

As -7r- 1IG(z) converges towards the density of p'y as z goes to the real axis (see for instance

[3], Section 2.4 for the basic properties of the Stieltjes transform) and the quantity under
the square root converges to a real number, this number has to be negative on the support

(otherwise the density would vanish) and thus for x E A

d14 6 12
v - 20F(x) y &1T(x, y)d'4 (y)

Noticing that a becomes purely imaginary when z converges towards the support, we may
write

3G(z) + Ji&Tt (z, y)d4' (y) &SrS(z)u(z) (3.2.20)

where S is an analytic extension of S in U (we can assume S non zero on U by possibly
shrinking U). We will keep writing S for S.
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For f analytic in U \ A' and z E U \ A' let

Bf(z) = ( -027

where the contour surrounds z and each A'.h

-iS(x + i)o(x + i6) d we have
64+dx

e(z, f ( () nd ,

Then t5f E O(U \ A') and, noticing that

= f(z)
(3.2.21)

where the contour surrounds each A' (but not z), and we used Cauchy's formula and (3.2.20).
If furthermore f E O(U), by continuity this formula extends to z E U.

Let k E O(U). We want to show that the function defined on each Uh by

Y)f(Y) dyi4 (y) + f(z) ( 1iT(z, y)dy' (y) + f zJ (Y )

1
f(z) = - [f igh( )(k( ) + Ch)c<

( - z)
+ ch]

where the contour surronds A' and lays in Uh, and cl and c2 are defined as in the statement
of the lemma, is a solution of Ef = k + rk in O(U). The fact that f E O(U) is clear (the
function is meromorphic and the poles are removable by construction of c' and c2 ). Thus,
by previous remark, it suffices to prove that f k + rik.

By (3.2.9) We have
/= (1 - t) No.f + t 3 if + ct (3.2.22)

where ct is a function constant on each Uh depending on t and

{~f [ #i f( ) ()S(()
=jf (z) - d <

2 z-

where the first contour surronds z and each A', whereas the second one surrounds z and At
when z E Uh.

Let ft and fi be the functions analytic in U \ A' defined on each U, \ A by

207r2c(z)h (z)S( )
2

fi(z) = ch
2&i 20-(Z) or,{Z) S(Z)

I
2h(~)(k ) + c'

((-z)

f(z) -

2
I )f ()) S()u( )d + /37rf (z)S(z)a(z)

(O - 2T (Z,

-f (0 2T (Z,
z -(
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So that f fo + fi

~/#i fo( )S(O)o-(O)
0 fo) (Z) d

2 c z -

C' z - 27r2 W( )()Ch ) d

Ch a ()kr) + ch') dr7/-d
A2 a C sz -( r - j ()

ich(r)(k(ri) + c') dr) S( )o( )d
(r' -i)

where Ch surrounds z and A' (integral in () , and Ch surrounds Ch (integral in q).

Cauchy formula gives

O -(r)(k(r) + ch) d 2in(k( )- c)l) -3/
with Ch surrounding C'. Thus:

1 U-( 47 h(7)(k(7) + c') &7

4 hr h (Z- r -

0'h()(k(rl) + ch)d
(7 - )

A4 2 S
2ir(k( ) + cf)

z -

Letting each Ch go to infinity, we see that the first integral goes to zero and using Cauchy
formula again we see that the second term equals k(z) + cl.

We now prove 0o(fi) 0.

=0(fi)(z) 4721f
-o~~~ 

' 
72aCh

c 2

4r2 E I ( - = 0

where we let the contours go to infinity.

By the exact same reasoning, we show that Bi(fo) =k + c and -i(fi) = 0.

By setting 'e = ct c1 on each Uh we have the desired result. The unicity of I'k is implied
by the previous lemma. Formula (3.2.19) can be easily deduced by (3.2.18).

Remark 3.2.12. By Lemma 3.2.11 and (3.2.18) , if k defined on U x U is analytic in each
variable then f defined on U x U and solution of

4f(., y) = k(x, y)+ k(x,y)VyEU,

with r,(., y) constant on each Uh is analytic in each variable.

We can now construct our approximate solution of the Monge-Ampere equation. As we want

the domain B to be fixed by the flow of this approximate solution, we would like to choose

chS(o( d
0'(0 h( ) S (0)z ()Z
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y', and z' vanishing at the boundaries of B (and B x B).
B = U [/h,-+6; Oh,+ -6

Osh<q

Fix 6 > 0 small and denote

For a function f : B -- + R let T(f) be the multiplication of f by a smooth plateau function
equal to 1 on B' and 0 outside B.
satisfying E(f) k + sk , then:

If we are given a function k C O(U) and f c O(U)

* T(f) = f on B6 .
* T(f) is C' and has compact support in B (and can thus be extended by 0 to R).

E E(T(f)) = k + Kk on B' (By definition of : and the fact that f and T(f) coincide on
B6 ).

0 IIT(Rf|cI() < Cj ||kI|Cj 2(B) for some constants CO.

Note that by Remark 3.2.5, possibly by shrinking S we can assume Tt < 0 outside B6 . Thus
for N large enough and a constant q > 0

PC 1(3i V $ B6) < exp(-N). (3.2.23)

Moreover

- E(T (f ))d M$TN) d < (Jf - fdMN dpT + I. (I
The fist term on the right hand side is 0 as r1 k is constant on each Bh and the
is exponentially small by the large deviation estimate.

We first choose

f 7-(T (f ))IdAIN

(3.2.24)
second term

2 y) - (W(., y)) Vy E B2

y - 1 812[Z, )dpy (z)

and then

z'(-, ) - T( (., y)) Vy E B

With this choice of function and by inequality (3.2.24) we have that

7Z =E + Ct + o ( 
N j

(3.2.25)

We now have to control the error term E. To do so we will use a direct consequence of the
concentration result proved in Corollary 3'5 of 117] (adapted from a result from [64j):

j(Jk ) dINE"
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Proposition 3.2.13. Let V satisfy Hypothesis 3.1.2 and Ti is as in (3.2.9). Then there exist

constants c , c' and so such that for N large enough , s ;> so N and for any e = N/N G 5,
t G [0; 1] we have

PN,cB sup
$EC,(B)
II01'1, 1

f(x)d(LN - P4)(x) > s < exp(-cN2S 2 ) + exp(-c'N 2 ).

In order to control the error term we will make use of the following three loop equations.
We recall that MN= N(L - Ny4) and we will denote MN= N(LN - EN, [LN.

Lemma 3.2.14. Let f E C'(B) such that for all 0 K h Kg , f(Oh,-) f(Oh,+) = 0. 'Then

N,eB (MN(-) + ( 2/ J + I If (1
f(x)-f (y) +

X -

If k1 is also in C1 (B) then

+ MN(B.f)MN(kl)

1 f f(x) - f (y)
N J 2 x y Y

+ (1 -)LN (f 1 N(kl)(2
f(x) dMN (x) N 

If k2 and k3 are also in C1(B) then

EN ,B L ofk1)) MN(k a( 2)) MN(k( 3 )) + MN fMN(k)M)MN ( kMN 3)

1 [f+NL] (/ f(x) - f(y)12 x - y + &1T(x,y)f(x) dMjN(x)dMN (y) MN(kl) N(k 2 )N (k 3 )2 x -y I

+ (I LN(J)1, N(k 1)K7v (k 2)lCN (k3) 0.

(3.2.29)

where the sum ranges over the permutations of 5 3

Proof. Using integration by parts we show

1 (J (2f) ) + a,Tt(x, Y) f)(x) dLN(x)dLN(y) +

we deduce the first loop equation by using the definition of E.

1
N

/
2.

LN(f') 0

(3.2.30)

The second loop equation is obtained by replacing in (3.2.30) Tt(x, y) by Tt(x, y) -61(k (x)'+
ki(y)) and differentiating at 6 = 0

The third one is obtained by replacing in (3.2.30) Tt(x, y) by Tt(x, y) - 61(ki(x) + ki(y)) -
62 (k 2 (x) + k 2 (y)) - 63 (k3 (x) + k 3(y)) and differentiating at 61 - 62 = 63 = 0 .

(3.2.26)

ETNB (LN(f k1)

dMN(x)dMN

(3.2.27)

(3.2.28)
MN(k 1))

91Tt (X, y)J, x) (01) = 0.
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We will now put in use these loop equations and the concentration result of Proposition
3.2.13 to obtain some estimates.

Lemma 3.2.15. Let k be an analytic function on U. Then for some constant C:

E ,B (MN(k))i Clog N |Ik||C6(B)-

< C(log N)2 |lk|6(B)

E2.B (MN(k)4) < C(log N)4 IkIC 6(B).

Proof We apply (3.2.27) to f T(- 1 k). Using (3.2.24) we obtain

,',B (MN(k) + 1
[2 II
-I)

L -k))) =T ( -)k y)+ Tt(xp y)T

LN(T'3k))")) =0 (N jkflL( exp (-1P

( k) (x))

70 ))

dMN (x)dMN ()]

Let

A(k) [2 ./1 -T -k)(y) T(x y)T("Ek)(x) dM/IN (x)dMN(y)

+ - LNk))').

Denoting by F the fourier transform operator (for functions of either one or several variables)

we have

I T(E k) (x) - T(E-k)(y)
dMN-N

x- y

da J eiaxdMN(x)
~~~f(f1

and

JJ 01 Tt(x, y) T (F-k)(x)dMN(x)dMN(y)

exdWN (x) J e'(YdAMN(Y))

Now on the set = {supocc(B) Jf,
110#'1-11

O(x)d(LN - P6V)(X) K

J e2 dMN(X) < J T(eN)(.)dMjr(x)- + 2Ne -N?

C(1 +]V) N log N + 2Ne-N77

-1 (I
s. } we have

EN eB N 2)

T (7--k) (x)

fei(1-a)N y ) )F( E )

1 at -) <
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consequently, on this set

I T(E- k)(x)x
(y) dMN(x)dMN(y)

-

< C(N log N) f IT(T(E 1 k))( )(1 + I 1)3 d + O(Ne-N).

The integral is bounded by the norm 'V4(R) of T(--k) and we have:

T(E-Tk) 4() < C( T(f k) L2(R) + ( k)) C2( R)

As T( -1 k) has its support in B, the L 2 (R) norm can be in turn controlled by the CEC(R)

norm and we can use (3.2.19). Similarly on Q we have

if 1Tt (x, y)T (E-'k)(x)dMN(x)dMN(y) C(N log N) |kIc6(B) + O(Ne-Ny )

Note that here the constant depends on Tt but we can make it uniform in t and e -
On Qc we can use the trivial bound

JeixdMN(X) < 2N

to prove that IA(k)I is bounded everywhere by CN Ik1 fc(B).
we obtain

By using Proposition 3.2.13

+E (A(k))j 5 C((logN) Ilkflcb(B) + 2e-cs NlogN IlkIIc6(B)

and we can conclude the proof of the first inequality.
To prove the second inequality, using (3.2.28) and (3.2.24) we have

EN Bc NN) N(k)(A(k)N(k) + LN(k' T (lk)))

By splitting on Q and QC we see that

C (log N| lklC6() EN N112 -S6(B ( 2 Nlog: N

We notice that MNk N -E(M(B )is dterministic and that EB(MN(k))

vanishes. The term on the left is thus equal to IEN'I(N (kX ) and we obtain

TE B k\N (k ) < C( log N |lkl|cG B) Er(MN)2) ~6(B) 1+N 2e-cs2N log N +N2e-N)

O(N2|Ik| e -N7

......................... ...... . ....... A

N 2C-N?))E,,T I B ( N N)R(k))
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Elementary manipulations show that this implies that EN,e (N(k)2) < C(log

with a different constant.

N) 2 Ilkl| 6(B)

Writing

ENc (MN( k )2 ) T B N

2 Ee(MN(k)) +2 IETN,e (MN(k)) 2

and using the first inequality yields to the second one.

Finally, to prove the last inequality, (3.2.29) gives :

N,e
EIT, B (IN(k ) ) C log N ||kIc6(B) EK , (N(k)4 4 Ilk C6(B) (log N) 2+N4 csN o N+.N eN ))

which shows ET,_B (N(k

ENE M )4) <

)4 < C(log N) 4 Ilk 14 6(B). We conclude by using the identity

8 B N T, B (]IN (k) - AN(k)

We will need a last lemma to estimate the error E.

Lemma 3.2.16. There exists a constant C such that for $ G C (R) (resp. 7) c CO (R2),
x C (R3 )) of compact support in B (resp. B2 , B3 ) we have

EN B J(x)dMN (x)

IJ OW(x) - O(dMN(x)dN (y) )
EN,cB fV(x, y)dMN(x)dMN(y)

< Cflc/5C0 (B) log N

C I/IIC14(B) log N 2

< C II'IC14(B2) log N 2

7, (E x(x, y, z)dMN(x)dMN(y)dMN(z) C ICXII021(B3) log N3

EN,<1J x N(x)dMN N IkbIIC21(B2) log N3

Proof We will prove the last inequality as the other ones are simpler and can be proved the
same way.

(, y) - 4(z, y) dMN ()dMv(y)dMN (z)

if 
(

=iJJ~j

+ 2 iTN B ((AIN (k) - MN (k)2

Nc

-daMN (e *)Ne(1a()N(e
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and by using H6lder inequality we obtain

0i(x, Y) -)(Z, Y) dMN(x)dN(y)dMN (z)
x-z

< f (N,e (MN (eiaQ-) 
4 EN3 D

< C(log N) 3 JJ(I + I|I6)2(1 + II 6)I1||F(V)(, ) dd(

where we used the last identity of Lemma 3.2.15. The last term is controled by the H2 1 (R2 )
norm of < arid we have

-'t21(R2) C L I2(R2) + s
L2(R2) C IV'C21(B2)

A direct application of this lemma shows that ET, B( E ) C ,N) and we could prove
similarly using higher order loop equations that for all integer k > 1

EN,eB(E 2k)) 1/ 2 k (log N) 3 (3.2.31)

In order to prove Propostion 3.2.9 it remains to control the deterministic term CtNC. Let

(Y)= 1i<jN Ah,i - Ah,j
zY ,,Y-Y, E Y''i - ',.

O<h<h'<g 1<i<Nrj, A - Ah'j
1<jNl,

+ E 13 (O 1T(At,i, Ah,,J)Yh,i,t) + div (Y).
O<h,h' g 1<i Nh

1< j<N1&'

Integration by part shows that any vector field Y that vanishes on the boundary of B satisfies

EN,EB(C(Y)) = 0. Thus

NE RNexyN,e) EN,',B ("t) = t, W(Ah, Aj) +-

-1<j < NI'
- h 

E 9

20<h h '9
OE E

;.,<h<g 1:S-CNj .

+ r(YNE) - 0 ,

and by (3.2.25)

0( NICN = ErN(, B NE) - E) +

E

C N) 3

N

,EN,e

I

Aj, N Z E Nc (MN (li(. )4
Tt, B

W(A\h,i,.z)dpy (z)
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3.2.4 Obtaining the Transport map via the flow

In this section we will discuss the properties of the transport map given by the flow of the
approximate solution YNe of the Monge-Ampere equation. As the equilibrium measures of
the initial potential and the target potential are the same, this map is equal to the identity
at the first order. The smaller order are then given by the expansion (3.2.15) of yN,.

Lemma 3.2.17. Let V satisfy Hypothesis 3.1.2 , T is as in (3.2.9) and e
Then the flow XN', can be written

X = Id + X + 1X
N N2

N/N ES.

(3.2.32)

where Xt and X;! are in C'(RN) supported in B, and for some constant C > 0

sup
O<h<g
1<i<Nt,

X Nt L4 pN,e <C log N
SV,a B

X NL[2 LNe) CvV(log N)2

V, B)
(3.2.33)

N
arid with probability greater than 1 - N- C

sup X7 (A) - XhN E1 (A) < C log NIA, - Ah,j|
O<h<g

I i,j<Na

sup XN 2 (A) - <N (A) < CN Nlog N Ah, -
U h~i. rij~ I. - _

(3.2.34)

(3.2.35)

1<i,j<N

Xi C v7Vlog N sup X N 2  < CN Nlog N
O<h<g 0L

1<i< Np,

Proof. The expansion (3.2.15) suggests to define X - (X ... N ) as
tion of the linear ODE

(3.2.36)

the solu-

O<h'<g
< 02z (Ah,i, Ahj)Xhj'7(A)

(3.2.37)

with initial condition Xt 1'- 0. We then define XNe,2 through the identity (3.2.32).
Using.,the fact that yi, and z' have compact support and are thus bounded, along with
equation (3.2.37), we obtain:

sup XN4l
hi,t L (p~

1<h<g B )
1 i<N W

sup
O<h<g
1 <iNa

X~ ,L4(14N,) +
, B~)

sup ZfAh,i, y)dMN(y)
0<ihpg
1<i<Nl,

As in Lemma 3.2.16, we can prove that the last term is of order log N. Using Grdnwall's
Lemma, this proves

sup
O<h<g
1iN h

(1 N,e)V, 1

XkNfe (A) = y' , (Aj,j) + Z'(A,,i, y)dMN

< C (1+
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sup XN <Clog N.
O<h<g (V 

1 i<N

(3.2.38)

Furthermore, Proposition 3.2.13 shows that for some constant C, with probability greater
than 1 - N- we have

I 9iz'(-, y)dMN(y) < CV' log N

and similarly, this proves (3.2.34). We now have to bound the norm of XN,, 2 . For s C [0; 1]
let

X sN,e Id+XN,E,1 N,e,2 StN,t N X T (1 s)d

a d, N,t b
and define the measure MN by

X y ,MN, ( =f (y d.Al ' (y) E
O<h<g 1

5 f(X:( (A)) - N f dp4'.
i<N

Then a Taylor expansion gives us an ODE for XtN

kN,,2 ( XN~ (.x) +
1_XN ,2 (.x(

N h,t

+ 11 aze (XSi(A), y)dM ,Nx"

+ 1
- f 914 (Ahi, Y) dMN(y) ds (XN 1(A)

O<h'<g 1<j<Nh'

+ : E
O<h'<g 1<j<Nh,

/ 2 (XN1(X) Xs (),

0
X 8 1E(A))

ItJ -

-92z Ah, d X (X()

N

(3.2.39)

We then use the bounds

tiz (X8 (A), y) dM N e - 1 h N

Chi~ + X N , +t |X t

X 12 + H IXN:f,'jII X%;tI)

XH N E 2

N It2)}

h',j
I 1

0

Xi x ,C21+N I h',Jit/

C
<N

.. ... .. .. ....

o (lt) '(Xhi' (-\)) ds

a, Zt(h,i, y dMN(y)

02Z e (X s: NE (A), X s, N)E (A) t (Ahi N
it It t (92Z' Al,,,.j) ds Xh"E 1 (A)
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to obtain

dt L2(PN,c,2 Q
2N( It'

2

(h,i

< C E( Xl
(h i

+ C 'N~ ( S ,2N VB X h, 2
hi

C EN,

h,i

C
E \ hV Xe 2 2  ) 2

XNi~ 2 i I

+ EN~e X |NE

+ EN N 2

C (
H ~'B

h',j

x NX 1
C

f7 1 ZejAh y)dMN,(y) XN/' I Ne'2)

h i

NXi;t 2Xh J?7) +Nh'

h i

N,( EjX, 2 IV,1 .h~i hit 1"

(3.2.40)

Using the bounds E (AzQhiy) dMNv(y) < Clog N (see Lemma 3.2.16), IXN' 11 <

C N IXN;, 2 I CN 2 and inequalities such as

Z|XNfc |XN 2| ( XN c,1)2 + (XNc2)2))
h,i h,i

hIXI ixN/, 1ix?2i <'( ((xN, 1) 4 + (X ) ,1 4 ( ,)2)

h,i h~i
h',j h'j

along with (3.2.38) and H6lder inequality, we get

d XN,e,2 2C XC( 2 N(log )4
- t L2 +Nilog (3.2.41)

Using Gr6nwall's Lemma, we can conclude the proof. The bounds (3.2.35) and (3.2.36) are
proven the same way.

|XN '2 2)

C
+-~ IE

h',j

N

C

N

o ENe
Y2_ IVB

NX ' 2 )2

h',j

+ EN c + c ENE
h,i

XN~,

| ljt ~~XN l iXNE2i

ENe E XNE212 |XN,,
hi
h',
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Remark 3.2.18. Using (3.2.36), (3.2.37) and (3.2.40) we see that we have in fact for all
integer k > 1

V, 13X,, L2k() ~ C ,k log N sup XhiN e2kpN,e < Ckv'K(log N)2

O<h<g ,( 1)
1<i Nl,

3.3 From Transport to Universality

In this section we will prove Proposition 3.2.6 and Corollary 3.2.7. We prove the results in

the bulk as the proof is almost identical at the edge.

Proof of Proposition 3.2.6. Note that by Lemma 3.2.8 and by our construction of YfN,e, xiNVE
is an approximate transport map from pN', to pN in the sense that it satisfies (3.2.11).

Now, keeping our notations from the previous section, set NNe Id 1 XNEl Then for

all f E C'(R)

f(Ze)dP, - J .f(X)EN, N,e
V X N,c,

2  N,

<o N,c,2

N 2  1 L(pN

(log N) 2

||Vf 10 3
N2

and thus

) V ,B -B (l 3 p (log N )2

Now for all 0 < h < g let Rh : BN -+4 BN' the ordering map (i.e the map satisfying for
all (A,-- ,ANh) BN Rh,i ' , ANJ ) hj(A 1,... ,ANh) if i <j and {A,-.. ANh -
{ .R(A1, . .. AN), , RhN.(A , A)}, so that if R(A) (RO(Ao, 1, Ao,NO , R, (A,
we have RWdPN,e N,e

Then if fh is a function of m variables, we have V(ful o Rh) Vn IIVAK.
00

It is clear from (3.2.34) that XN,,5
N

ity greater than 1 - N-. Thus,

Ho<h<g Af(xh) where fh : R"' -- + R

preserves the order of the eigenvalues with probabil-

if we define f :R(g+1) -4 R by ff(xo,.-. , xg)
we obtain

sup
O<h<g

1<i Na
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f f, (N(AILi'+ - Ah,Lh), ,N(A,i/,+mrr - Ah )) T1, B
O<h<g

J h~g (N , +1 (A) _ k ),.- , N(XN ) N dI (3.3.42)
Osh<g

(log N)V3fl (log N)2
5 C (oN)1f 1Q + |Vf1 )2).

N N-

Now, using (3.2.34) we notice that with probability greater than 1 - N-, for all 1 K k K m
and 0 < it < g

NN +k( h) -iNe~~~ Ahi, + ,j+k A ,in log N
K, i h + kh tX, I kht, +k A,)O(v 1N

As fh, has compact support in [-M, M]"1 (Ah, i 4-k- Ah,ih) remains bounded by 2 and

(A) -NeA~ * - ~ M log N
XL - X )= se--Ah,i LJ+ r ),NV N

we easily deduce the first part of Proposition 3.2.6

Proof of Corollary 3.2.7. -Noticing that dITEB is a product measure we can write

J~~~~~~~~i~N, .f((hf,+ -Ai,, ,(Aihr Ahl))JjB z7'I L91V1B,,(Ah~i)dA/,.N N(Ahi, +1 N(Ah,i a+m -T, Ahhndd Z (A<Nj,0< 1BO<h<g 1iN

h (N(Ah,i,+1 Ah,i, ,N(Ah,i+m ~ Ah,iL) J -A,- Ah. 3K exp N > V'(Ahi)
1<i<j<N J1<i<N

h NAhi,,+1 Ah,ij, N(Ah,i,+m - Ah,i)dp B
O<h<g

We notice using (3.2.7) that

eh

We conclude using Theorem 2.1.4.

3.4 Universality in the initial model

To derive universality in the initial model, we expand the expectation of the quantity we

want to compute in terms of the filling fractions, and we make use of Corollary 3.2.7.

First, we notice that for all 0 K h I < the map (D' is smooth in E E & and we have a bound

)(Ahi) (<b'*')' d + O( E -- e) o (3.4.43),afrmrely 'n A, E B



76 - CHAPTER 3

Indeed, it is shown in [11] (4.1) that our transport map 1'," is equal to Xf where X' solves
the ordinary diffential equation

X =y (X) , XO = Id

and y' is given by inverting E. By formula (3.2.18) and Lemma 3.2.2, we see that y' is
regular in E, and from the standard theory of ordinary differential equations, so is Y.

We will use the following result proved in section 8.2, equations (8.18) and (8.19) of [15].

Lemma 3.4.1. Along the subsequences such that N, mod Zg+1 _+ , where , E [0; l[g+1

and under V, the vector LNj - N(A) converges towards a random discrete Gaussian
vector A,,. In particular

VB(I N(A) - [N*]jI > K) 0 (exp(-K2)).

Note that the limit is not necessarily centered, and although the result is proved for N* -
N(A), it obviously also holds for [N,] - N(A) since we are only considering subsequences
such that N, - LNJ -+ r. We will also need the following result, which can be proved
using the previous result or Lemma 3.2.16

N! zVB E N
|N - eI| =EVB

N=(No,---,N9) H h VB
|LN(Bh) - lIv(Bh)| < C .

05hsgN

We now provide a proof of Theorem 3.1.3. Let f be a function of compact support and i
such as in the hypothesis of the theorem. Using Corollary 3.2.7 we have

J (N Ev( E ,N - A i) )dI B

J.f(Npv(EN )(Ai+1i ~ i )1N(A)=N d VB
N=(No,-- ,NO)

N! ZN EV
E ,Bf (Npv(E N(Ah,i+1[h,N] - Ah,i[h,N]))d B

N=(No,---,N9 ) Nh vB

N(A)- LNJI K

Nh! N f (Npv (EN h,i+1[h,N - Ah,i[h,N])) lB

- O00| exp(-K

S! Z j N()(Ai[,N])pv(EN (A+1[hN] - ij[h,N]) G
N(No,--,N) Hh- ZB
IN(A)-LN*JIIK

(log N) 2 M(log N) M 2

+ 0 (exp(-K2) + NN) f (

(3.4.44)
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If we manage to replace the term N(bEIL)'(Ai[hN])pv(EYN) by Nh pG(E) then. using
the convergence (3.1.4) we can conclude.

By (3.4.43) we can replace (4E'h)'(Ai[h,Nj) by (,.,h)/(i[/,,N]) in the last equation and obtain

an error of order K/N. Now, using that is a transport from PG to pE*,h we see that

J e

-f 0

ePG(A[N])i,N]

PVe*')(dX E ,N (Ai[hN]))

p' () d -E v, *'(x)dx +V-o )(K/N).

Thus 4)e*h(Ef,) = EjN + O(KI/N) and using pv = E*,I pe,*"l on A/ we see that

N(V*' a)(Ai[h,N])pv(EV,) N*,h pG(Ai[h,N]) e -
PV * (E\i[h,N]))

We can replace Ai[hN] by E,'I,] in the right hand side with an error term o(N) with high

probability under PN using a very rough rigidity estimate that can be proved for instance
using Proposition 3.2.13. As ( 4 * 1)' is bounded by below and f is compact we notice that
N(Ai+1[h,N] - Aijh,N]) is of order 1 and we can conclude.

We can now proceed with the proof of Theorem 3.1.4. To simplify the notations, we will do
the proof when n = 1 but the proof for general i is identical.

4
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J h=O
fA (N2/3(Ah,1 -- )d

fh (N2/3 (Ah - CO,_)) 1N(A)=N d B
N=(No,--,Ng) h=O

N=(No,... ,Nq)

N=(No, ---,Ng)

N! Zv,
HNh! ZNY

N! ZN

H Nh! ZVB

I
I

h9

'9'
h=O

.fh (N2/3(Ah,l

f (N2/3(Ahl

- 2_)djff,-- 0d 'B

N=(No,--- ,N)

N!

N=()o,--,N) K
IN(A\)-[N]I<K

N h! Z A IIV f 11 N 2 2/3 1 _
V, B

ZNe

V,B
C- a ) d)D 'f fh (N2/3(Aj

. h=O

+0 IVf 1 + If 11exp(-K2)

N=(No,--K,Nq) HNh! N
ia (N2/3(, h)'(-2) (A1 + 2)) d~PDN

+ O (exp(-K2) + (log N)3 )
N

(log N) 2

N
5/ 6

log N

N 1/3
M2 ) Ivf 11).

N 4/3

Using the fact that (D'h')' is bounded by below on B and that fh is supported in [-M; M]
we obtain that IA + 21 remains bounded by -N. Using (3.4.43) we get

fi (N2/3( eh)'(--2) (A- + 2) =fh (N 2/3(,) )(aG,)( ~- aG,,

+O(M IIVf 0 16 - E ).

This equation, along with (3.4.44), shows that

f 213(N2/(A,1 -

,:N! zNE g
H~!ZN I

N=(NO -,Ng) ,h B h=O
IN(A\)-[N.]I<K

2/3 4 ,h

(log N) 3 Hf+1O(exp(-K2) + N
(log N) 2

N
5/ 6

log N

+ N 1/3 IIV.f 1K).

I '-W-WI-Rrm FIT IM -_11 I

hOrig f

IV2

+ N 4/3)
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As Theorem 1. 1 of [72] ensures the convergence of the expectation, we can conclude.

We now come to the proof of Theorem 3.1.5.

Ah(A) = [[N]h_ 1 - [N(A)]h_ 1. As before we ot
Let 0 < h < g, i = [LN,]]h_1 + 1 and

-- Vh)d B N! ZN
N=(No,-.-,AN ,) V f

A,(A) o

f (N2/3 (Ah,i[hN] - ah,-)) d B

+ ~ N! ZVB J
N=(No,--,N q) h VB

dA,(A)<O

f (N/3 (A,-1,i[J-1,N] - Oh-1,+))

We focus on the first term. Applying Corollary 3.2.7 we see that this term equals to

N! Z
IN(A)-[N.JI K HlNh! ZB

Aj,(A) 0

f (N2/3(<j1L)'(-2)(Aj[h,N] + 2)) dG '

Noticing that i[h, N] = [[N*j]h-1 - [Nlh_1 + 1 , we deduce the theorem from Lemma 3.4.1.

I f (N 2/3 (A

79
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Chapter 4

Mesoscopic central limit theorem for

general -ensembles

This Chapter is based on the aTrtiCle [131 'written with A. Lodhia.

4.1 Introduction

In this Chapter, we study the linear fluctuations of the eigenvalues of general O-ensembles
at the mesoscopic scale; we prove that for a E (0; 1) fixed, f a smooth function (whose
regularity and decay at infinity will be specified later), and E a fixed point in the bulk of
the spectrum

N

(Na(A, - E)) - N f(N'(xr - E))dpv(x)
i=1

converges towards a Gaussian random variable. At the macroscopic level (i.e when a = 0),
it is known that the eigenvalues satisfy a central limit theorem and the re-centered linear
statistics of the eigenvalues converge towards a Gaussian random variable. This was first
proved in [51] for polynomial potentials satisfying the one-cut assumption. In [16], the
authors derived a full expansion of the free energy in the one-cut regime from which they
deduce the central limit theorem for analytic potentials. The multi-cut regime is more
complicated and in this setting, the central limit theorem does not hold anymore for all
test functions (see [15, 77]). Similar results have also been obtained for the eigenvalues of
Random Matrices from different ensembles (see [4, 63, 76]).
Interest in mesoscopic linear statistics has surged in recent years. Extending the results
to one dimensional /3-ensembles is a natural step. We prove convergence at all mesoscopic
stales. The proof' of the main Theorem relies on the analysis of the loop equations (see
Section 2.1) from which we can deduce a recurrence relationship between moments, and
the rigidity results from [20, 19] to control the linear statistics. Similar results have been
obtained before in [21, Theorem 5.4]. There, the authors showed the messcopic CLT in the
case of a quadratic potential, for small a (see Remark 5.5).
In Section 1, we introduce the model and recall some background results and Section 2 will
be dedicated to the proof of Theorem 4.1.4.

81
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4.1.1 Definitions and Background

We consider the general 3-matrix model. For a potential V : R -+ R and / > 0, we denote
the measure on RN

P ( '' ,dN) -AN: w Ai N -AdA, (4.1.1)
V 1<i<j<N

with

ZN 1,3-N V(Aj)zV= f r j A j HNV( ~~dAi.
1<i<j<N

From the previous Chapters we know that under P the empirical measure of the eigenvalues
converge towards an equilibrium measure.

4.1.2 Results

Hypothesis 4.1.1. For what proceeds, we assune the following

" V is continuous and goes to infinity faster than / logIx|.
" The support of pv is a connected interval A = [a; b] and

dx =pv(x) = S(x)(b - x)(x - a) with S > 0 on [a; b].dx
" The function V(.) - / f log I -yldpv(y) achieves its minimum on the support only.

Remark 4.1.2. The second and third assumptions are typically known as the one-cut and
off-criticality assumptions. In the case where the support of the equilibrium measure is no
longer connected, the macroscopic central limit theorem does not hold anymore in generality

(see [15, 77, 12], and the next Chapter).

Remark 4.1.3. If the previous assumptions are fulfilled, and V E CP(R) then S G Cp- 3(R)
(see Chapter 2).

Theorem 4.1.4. Let 0 < cy < 1 , E a point in the bulk (a; b), V G C7 (R) and f C6(R)
with compact support. Then, under V[

N

E f (NO(A, - E)) - N f(N'(x - E))ditv(x) - - > (0, o-')
i=1

where the convergence holds in moments (and thus. in distribution),, and

S 1 ff (f(X .f(y) 2 dxdy
2r 2 J] - y

Note that, as in the macroscopic central limit theorem, the variance is universal in the
potential with a multiplicative factor proportional to 1/3. Interestingly and in contrast with
the macroscopic scale, the limit is always centered.
The proof relies on an explicit computation of the imoments of the linear statistics. We will
use two tools: optimal rigidity for the eigenvalues of /-ensembles to provide a bound on the
linear statistics (as in [20, 19]) and the loop equations at all orders to derive a recurrence
relationship between the moments.
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4.2 Proof of Theorem 4.1.4

For what follows, set
N N

LN Ek 6A

N

AIN - A - Nlapv.

and for a measure v and an integrable function h set

when vi is random and where EN is the expectation with respect
any function as in Theorem 4.1.4, and

fNv(x) f(N' (x - E)).

Finally, for any function g E CP(R), let

p

to P . Further f will be

g||cI(R) := SUP 1 (X)1,
1=0 ER

when it exists.

4.2.1 Loop Equations

To prove the convergence, we use the loop equations at all orders. Loop equations have
been used previously to derive recurrence relationships between correlators and derive a full
expansion of the free energy for /3-ensembles in [77, 16, 15] (from which the authors alsa
derive a macroscopic central limit theorem). The first loop equation was used to prove the
central limit theorem at the macroscopic scale in [51] and used subsequently in [211. Here,
rather than using the first loop equation to control the Stieltjes transform as in [51] and [21],
we rely on the analysis of the loop equations at all orders to compute directly the moments.

Proposition 4.2.1. Let h, hl, h2 ,.- be a sequence of bounded functions in C1 (R). Define

N/ ff h(x) - h(y)
FiN(h) 2 x-y dLN(x)dLN(y) - NLN(hV')

and for all k > 1

k-1

FkN (h, hi,.. ,hk) :=FN(h h 1,.- ,hk1)MN~h, k H

where the product is equal to 1 when k 1 and MN was defined
Then .wc have fr all k > 1

EhfN, orde k. k-1)

.which is called the loop equation of order k.

- O)LN(hl)
2

(4.2.3)

byN(h) LN(hh (4.2.4)

by the convention eq. (4.2.2).

(4.2.5)

and 0(h) = hd-T EN( J hdv)
(4.2.2),/( h) = fhdu
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Proof. The first loop equation (4.2.3) is derived by integration by parts (see also [51] eq.
(2.18) for a proof using a change of variables). More precisely, for a fixed index 1, integration
by parts with respect to A, yields the equality:

(h'(\)) = -E V(h(,I)
1<i<N

1A

A, - Aj NV'(A)))

Summing over I we get by symmetry

E = i o

ii,

h(Al) - h(Ai)
A, - Ai

N N

- N V(I\) h (,\) +S
1=1 1=1

Writing the sums in term of LN and taking the diagonal terms to be equal to h'(Al) gives
eq. (4.2.5) for k = 1.
To derive the loop equation at order k + 1 from the one at order k, replace V by V - 6hk

and notice that for any functional F that is independent of 6,

V E _ 6 (F)

6=0
N E(FIN(hk)).

Also observe that the loop equation eq. (4.2.5) is now

EV-6hk (F,N (h, h1 ,.'' , hk-1 NJE -shk N )
6hk= + 6

by induction and the definitions given in eqns. (4.2.3) and (4.2.4). Differentiating both sides
with respect to 3 and setting 6 = 0 yields the loop equation at order k + 1. 13

It will be easier to compute the moments of MN(fN) by re-centering the first loop equation
- that is, we wish to replace LN by LN - pv. To that end, define the operator B acting on
smooth functions h : R -+ R by

Bh(x) := 3J h(x) I (y) dyv(y) - V'(x)h(x)
Ts ex - y

This operator is once again central to our approach. We now use

13 Jf h(x) - h (y)-Y dpv (x) dpv(y) = V'(x) h(x) dpv (x) ,
2 X- -

(4.2.6)

to get

jj h(x) - h(y) dLN(x)dLN(Y) - LN(hV')
2 X - y

1 #f h(x) - h(y)
-MN( 1) + 2N dMN xdN y)-

h'(A) = 0

LN(hhk)) = 01

L- - - . - '- - I wilkilwimilm" : I 1 .1 1 - -. --. 1- .. ..............
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Consequently, we can write

#/ 1 # h(x) -h(y)
FN(h) = N(h) + I -~ O)LKNJ h) ) ' dMN(x)dMN(y). (4.2.7)

2 N 2 x -y

One of the key features of the operator E is that, under the one-cut and non-critical assump-
tions, it is invertible (modulo constants) in the space of smooth functions. More precisely,
we recall the following Lemma proved in Chapter 2 (written in a slightly different form):

Lemma 4.2.2. Inversion of 3
Assume that V E CP(R) and satisfies Hypothesis 4.1.1. Let [a; b] denote the support of /ptv

and set

dpv = S(x) (b - x)(x - a) S(x)o-(x),
dx

where S > 0 on [a; b].
Then for any k E Cr(R) there exists a unique constant Ck and h C C(r-

2
)A(P-S)(R) such that

=(h)= k + Ck

Moreover the inverse is given by the following formulas:

" Vx C supp(pv)

/I(X) f~ ) ( k(y) - k(x) dy) (4.2.8)
#37r2S(x) la U-(y) (y - X)

" Vx d supp(/pv)
# f dpv(y) + k(x) + ck

h(x) = - (.29
hx J dyv(y) - V'(x)

And Ck -- 3 f LYidpv (y) - k(a). Note that the definition (4.2.9) is proper since h has been
defined on the support.
We shall denote this inverse by 'k.

Remark 4.2.3. For f and V as in Theorem 4.1.4, p = 7 and r= 6 fN C4(R).

Remark 4.2.4. The denominator / f ' dpv( y) - V'(x) is identically null on supp Pv and
behaves like a square root at the edges. Since by the last Point of Hypothesis 4.1.1 we can
modify freely the potential outside any neighborhood of the support (see for instance the larqe

deviation estimates Section 2.1 of [16), we may assume that it does not vanish outside pUv.

In order to bound the linear statistics we -use the following lemma to bound 3E 1(fN) and its

derivatives.

Lemma 4.2.5. Let supp f C [-M, MI for some constant M,> 0. For each p E {0, 1, 2, 3},
there is a constant C > 0 such that

- (fN) CNP' log N, (4.2.10)
IC(R
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Moreover, there is a constart C such that whenever x E Supp pv and N'lx - E| > M + 1

(4.2.11)F-7(fN)' (-(X) C
ANo(x -E)P+l'

and when x 0 supp /pv

<C log N
Nce

Proof. We start by proving (4.2.10) on the support. For x E supp pv we use

a 1 fN(

f37r2S(j
f' Not(x - E) + N'(1 - t)(y - E))dtdy

1 2  P (-0
E-(fN) 2P X (X)

/ N+1)a ft(+1) (Nat(x - E) + N"(1 - t)(y - E))dtdy.
a (Y) J

Let A(x) = {(t, y) [0; 1] x [a; b] , N It(x - E) + (1 - t)(y - E)j M}. We have

Io I
2M.A

A(x)(t, y)dt / 2 , A Nlxlx - y|
(4.2.13)

b N 1+ 1)0 
I

o-(y) o

and this proves (4.2.10).
We now proceed with the proof of (4.2.11). First, let x E
M 4- 1. The inversioi formula (4.28) writes

/ ) jbf(Na(y E))
(fN) [72S -d

supp 1 v such that NOIx - El >

(4.2.14)
ifM .f(u) d-I- -du

,r2S(x) M 0,(:E + u.)(u - Nl( X - E))

and we can conclude in this setting by differentiating under the integral. Moreover we see
that - (fN) is in fact of class C' on supp pv and similar bounds holds for p E {4, 5}.
We now prove the bounds for x supp lv. Let /N be an arbitrary extension of B'(.fN) supp pv
in C5 (R), bounded by C/N" outside the support (and its five first derivatives as well). This

so that

(4.2.12)

and thus

f(+1) Nt(x - E) + N"(1 -t)(y - E))Idtdy Clog NN"
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is possible by what we just proved and a Taylor expansion. Using (4.2.9) we notice that

-3. dp v(y) + cN
N 3f L';dpv(y) - V'(x)

fIN(X)-ON(Y) d i v (y) + 00N(X) f d 4 C, (4.2.15)
f'dltv (y)-V'(x)

VBN(N)(X) 
- CfN

f'ydpuv(y) - V'(x)

Since f has compact support we may write E(ON) - CfN (N) - fN fN on [a; a + E]
and [b - E; b] for e small enough. Furthermore this quantity vanishes identically on these

intervals by definition of ON. In particular, =( 4 N) - CfN and its four first derivatives vanish
at the edges. By definition, and using the previous bounds we also get that

CN I = 13Jy f aydvy(y)

< ClogN d +v-(y) + C f d;tvy)
Ily-EI 2M/N" y - a No IY-E;>2M/N- (y - a) y - El

<Clog N
-Nce

On the other hand, for p E 10; 41 and x supp iv,

E~yN)~~() =3p!J N(Y) - V/N(X) .- ' /<Q)() -X,)P!4N)pNX =M - ' '~t '(y)vxy

(y - x)P+'

-(V1V)N)~())

By doing a similar splitting, and bounding the fifth derivative of /N uniformly away from
E, we obtain the same bound Clog N/Ne on Z(/N)(P) outside the support. By Remark
4.2.4 and (4.2.15), we conclude that we can bound the C3 norm of 3'(.fN) by Clog N/N'
outside the support. E

4.2.2 Sketch of the Proof

We have developed the tools we need to prove Theorem 4.1.4. In order to motivate the
technical estimates in the following section, we now sketch the proof by computing the first
moments. The full proof of the theorem will be given in Section 2.4. Consider a function f
satisfying the hypothesis of Theorem 4.1.4. Applying (4.2.7) to -'(.fN) yields

FN -1(.fN)) =MNIfN -I - LN ( N)

# I fN(X) - 'fN(Y)
NdMN(x)dMN (y)
N 2 x - y
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If the central limit theorem holds, we expect terms of the type MN(h) where h is fixed to
be almost of constant order, and this an easy consequence of the rigidity estimates from [19]
(stated as Theorem 4.2.6 below). Due to the dependency in N of fN (and its inverse under
3), a little care must be taken for these estimates to yield a bound on the last term in the
right handside, and this is precisely the point of Lemma 4.2.9. Similarly, we have

LN ((N-1V.)1 N MN fN)

and Lemma 4.2.8 shows the last term in the right handside is a small error term. Thus
admitting the results of the next section, we would get with high probability and for EN
small

Ff E-(- N-N V Nl + EN-

By the first loop equation from Proposition 4.2.1, the expectation of FN is zero and this
shows that the first moment

(MNT)) - - PV 1 + o(1)

The term on the right handside is deterministic and is shown to decrease towards zero in
Lemma 4.2.10. Thus the first moment converges to 0.
In order to exhibit all the terms we will need to control, we proceed with the computation
of the second moment. By definition

F2 (3-m(fN),JN) = Fv (-1N INN)+LN ( (fN) fN

which we can write (with now an EN incorporating the deterministic mean converging to
zero)

F2N -NN N |N)fN)N+ LN N Nf+LNF2 ( (fiv), fAT) =MN (fN)MCN (fA) + -N M fN+LN (3'f~v

Lemma 4.2.8 ensures that ENMN(fN) remains small, and that the term in the right handside
of the decomposition

is also controlled. Consequently, using the second loop equation we see that

E(MNN 2) -1(fN)N) + o(1) (4.2.16)

The limit of the term appearing on the right handside is then computed in Lerma 4.2.10,
equation (4.2.34). The following moments are computed similarly (see section 2.4).
In the following section, we establish all the bounds we need for the proof of Theorem 4.1.4.
The previous steps will then be made rigorous in the last section.

....... .........
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4.2.3 Control of the linear statistics

We now make use of the strong rigidity estimates proved in [19] (Theorem 2.4) to control
the linear statistics. We recall the result here

Theorem 4.2.6. Let 7i, the quantile defined by

dAvx =W - (4.2.17)
N

Then, under Hypothesis 4. 1.1 and for all { > 0 there exists constants c > 0 such that for N
large enough

P JAi - il > N-2/3+ i-1/3) e-N

where E i A (N + 1 - i).

We will use the following lemma quite heavily in what proceeds.

Lemma 4.2.7. Let -i and i be as in Theorem 4.2.6. Let Ai, i E (1, N , be a configuration
of points such that |Ai - T| N- 2/3+ -1/3 for 0 < l < (1 - o) A 1, and let M > 1 be a
constant. Define the pairwise disjoint sets:

J {i E [1; N, NO(yi - E)J < 2M}, (4.2.18)

C1
J2 iJ, (yi - E)J < (E -a) A (b-E) (4.2.19)

,J3 :=cJ nJ2. (4.2.20)

The following statements hold:

1. For all i E J1 U J2 , i > CN, for some C > 0 that depend only on Mv For all such i,
|-i - 'i+1I < % for a constant C > 0.

2. Uniformly in all i E Jf = J2 U J3 , x E [i, 7yi+1] and all t E [0; 1],

N't(A, - x) + N'(x - E)I > M + 1, (4.2.21)

for N lacrqe enough.
3. The cardinality of J1 is of order CN 1 ", where again, C > 0 depends only on ptv in a

neighborhood of E.

Proof The first part of statement 1 holds by the observation that for i C J1 U J2 , -Y7 is in
the bulk, so

0 < C < dIv(x) = <C < 1

for constants C, c > 0 depending only on pv. For the second part of statement 1, the density
of pv is bounded below uniformly in i c J U J2 , so

+1if- 1

clys - 7i+) I duv(x)
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Statement 2 can be seen as follows: let i E E 2 and consider first x = yj. On this set s > CN by
1, so uniformly in such i, NIAi-y I < CNa- +4, which goes to zero, while Nly - El > 2M.
On the other hand, for i E J3 , we have NI-yh - El > !NO(E - a) A (b - E), which goes to
infinity faster than N'lAj - yl < N + by our choice of . When we substitute yj by x,
the same argument holds because N'jx - -yl < N'I-ys - yil I, which is of order No- on J2

(as we showed in statement 1) and bounded by CNO- on J3 .
Statement 3 follows by the observation that on the set x E [a, b] such that Ix - El < ' the
density of puv is bounded uniformly above and below, so

-- < dyjv(x) = E dpjv(x) + 0 <

giving the required result.

The rigidity of eigenvalues, Theorem 4.2.6, along with the previous Lemma leads to the
following estimates

Lemma 4.2.8. For all 0 < < (1 - a) A there exists constants C, c > 0 such that for N
large enough we have the concentration bounds

IP~jN~f < 6N- Nllc()) e' (4.2.22)
vN (| MN (N )| > C N Il |If|CI(R) )&B

PN N N'|>Ca+|||1() N'

S(I MN (E-(N y)j >: CNa+l Ilf IC1(R) ) N

Proof. Let M > 1 such that supp f c [-M, M] and fix 0 < ( < (1-a)A . For the remainder

of the proof, we may assume that we are on the event Q := {Vi , IAi - I < N- 2 /3+ ^-1/3

This follows from the fact that, for example,

Ny (| MN|N)| > C NI If||IC1(R

K wy ({|MNUAl > CN llf|'c1(R)} N + w
and by Theorem 4.2.6, we may bound PV(QC) by e-NC for some constant c > 0, and N large
enough. On Q, as the A satisfy the conditions of Lemma 4.2.7 we will utilize the sets J1 , J2,
and J3 as defined there.
We begin by controlling (4.2.22). We have that

N

IMN(fN )I Zf(N(Ai - E)) - Npv(fN)

N

- NA - E)) - NN - E)).dyv()

NN
N If(Na(Ai- E)) f(N (x - E))1 dMaV M

N 1+U E f Ai - x I f'(Nat(A - E) + N0 (1 -t)(x E)) 1dtdyv (x) (4.2.25)
iE J1 f'Y
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where we used eq. (4.2.21). Using Lemma 4.2.7 item (3) and the definition of Q we obtain

I MN (.fN) I< N'+OJIIlN 11f i C J

This proves (4.2.22). We now proceed with the proof of (4.2.23).

MNN ( -1()'(Aj) - N

" N f E-'(fN)(Ai) - N-1 (fN)(x) dpv(x)

" N(fij jAj - x - (fN) (2) ((i-x ~ tdv()

Recall from the proof of Lemma 4.2.7 that uniformly in i C J2 and x E [ , 1-y-El > N

while Ix - -7| < L. For what follows, as JAj - xj < CN- 1 - for N large enough we can
replace jt(Aj - x) + (7j - E)l by 17y - El uniformly in t c [0; 1]. Likewise, uniformly in i c J3 ,
x E [ci, 7i+1] and t E [0; 1] we can bound below Jt(Aj - x) + (x - E)I by a constant.
For i E J2, by the observations in the previous paragraph, along with Lemma 4.2.7 2, Lemma
4.2.5 (4.2.11) and Lemma 4.2.7 1,

N >3 f f /A - xj E-1(fN (2) (t X) + X) dtdlv(x)
iE-J2 _7i 0

CNM-"
dtd[pv(x) < E

~ J2

The same reasoning for i E J 3 using also (4.2.12) yields

N 3+] A - x1 1 (fN) 2 )(t(Ai - x) + x) (2dt divW
i EJ3 fi 0

< log N E CN '- 3Z.

iEJ3

For i E J1 , by Lemma 4.2.5 eq. (4.2.10) and Lemma 4.2.7 1,

f - x I(, )(2)(/j - x) + X) dtN

CN 2 , log NAj - xldyv(x) <

It follows that

NIN UN (N)') < E CN2a+ l log N CN>E + log N
ic1 1  iE12  -

< CN+ logN + CN +a < CNa+( log N,

E CN 2a+ 1 log N.
iE Ji

21

iE CN-i -
iE.13

< N
iEji 71

< N E f '+14 1 'C|Ai - x| 13
EJ2 , () N"(lt(A - x) + x - E )

dptv(x) < CNI 1f ICl(R) -

HE-( fN)'x) d[Lv W
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where we have used 1J| I CN 1 ~- and the following estimates:.

N a-1 E- b
N -<CN N*d + dx < CM- )

(7; - E) 3 -f- 2 (x - E)3

N -

CN-*- E ^- < CNM- x CN_-".
iEJ3

This proves (4.2.23). The bound (4.2.24) is obtained in a similar way and we omit the
details. l

For convenience we introduce the following notation: for a sequence of random variable

(XN)NEN we write XN = W(1) if there exists constants c, C and 6 > 0 such that the bound

|XN < C holds with probability greater than 1 - e-N.

Lemma 4.2.9. We have

1 I -'(fN)(X) (N)
N fdMN(x)dMN(y) w(1) - (4.2.26)

Proof. The proof will be similar to the proof of Lemma 4.2.8. As in Lemma 4.2.8 we may
restrict our attention to the event. Q = {Vi : j - - N3 + Z- 3} by applying Theorem
4.2.6. Further, we use again the sets J1, J2 and 13 defined in Lemma 4.2.7.
The general idea will be that we can use the uniform bounds (4.2.10) for particles close to the
bulk point E (corresponding to the indices in J1 ), and control the number of such particles.
In the intermediary regime we will use the bounds (4.2.12) or the explicit formula (4.2.14).

On the other hand, for the particles far away from E (corresponding to J3 ) we can use the
uniform decay of '-:fN and its derivative by (4.2.11) and (4.2.12).
Define for j E {1, 2, 3}:

i E iJ

so that MN = M + M) + M(. We can write

J f X 1(fN) dMN(x)dMN(y)

N N

Integrating repeatedly for each (j ,12), and using that Npv([yj, 7/i+1]) = 1 for all indices i
yields:

(fN()(x (() 2A ( ")

N2 5 J d pv(xi) j dIpV(x2) f du dv dt (Ai - x 1 )(A 2  x 2 )t1 t
ii Ej fyi, f 2

i2 E J72

x -1(fN (3 ) (tv(Ai, - X1) + Ut(X 2 ~A~) + U(Ai2  X2) +F 1 - X2) + X 2

(4.2.27)
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where T : [0; 1]. We will bound (4.2.27) for each pair (.)1,32).
For (j 1 , j 2 ) = (1, 1). Recall by Lemma 4.2.7 3 that IJi1 I CN 1'-, and from the proof of
Lemma 4.2.7, uniformly in i E JI Ai - x CN whenever x E [-yi, -/i+ We use (4.2.27),
Lemma 4.2.5 eq. (4.2.10) to obtain the upper bound

ff N'(fN)(X) - 3 'CfN)(Y) dM (x)dM(y)
x -y

N 2 N" log Nj~j - x1 | IAi 2 - x 2 \ duv (x 1) dg v(x 2 ) < CN+ log N,
ilE Ji 7yii 7 2
i2 EJi

which is w(1) when divided by N.
For (j 1, j 2 ) = (3, 3), we do as in the previous case. Using (4.2.12) instead and the fact that

uniformly uniformly in i E J3 , Aj - xj < CN-2i+-I

J d-1 (t) x N y dM (x)dMNj3(y) <

f 1+i fY* 2 +1 log N
N 2  N" KM1 - xlAi2 x 2 | d pv(xi) d pv(x 2) < CN "log N,

i2EJ3 i

which is w(1) when divided by N.
For (Ji, j 2 ) = (2, 2). We remark that the strategy is not as straightforward as the case i E J2
in the proof of Lemma 4.2.8 eq. (4.2.23). This is because the term t(xi -x 2 ) +x 2 appearing as
an argument in (4.2.27) may enter a neighborhood of E depending on the indices i 1 , i 2 C J2

and we may not use the bound Lemma 4.2.5 eq. (4.2.11) uniformly in i 1 , i 2 E 12. Some care
is needed also because MN is a signed measure so IMN(g)l need not be bounded by AN(19g).
It will be convenient to use directly eq. (4.2.14) from the proof of Lemma 4.2.5 (this can be
done as J2 corresponds to indices i such that -yj is located outside the support of f). We can
write for x, y C {z E supp Pv, Nalz - El > M +1}

'(fN)(X) - Ny

x -,y

[372 o-(E + u)(x - y) S(y)(u - Na(y N E)) S(x)(u - Na(x E))
f [(U) S(x) - S(y) 1

r2 oM a(E + #)l(x - y) S(x)S(y)(u - N"(y - E))

NaI- Nd } (4.2.28)
S(x)(u - Na(x - E))(u - N"(y - F)) 4.

When we integrate the term on the third line of (4.2.28) against M(2) M( , we obtain

______7__ (U (f(2), (f' I S'(t(()( du
MN dt dMN(y) da.

M \JE + O S(-)S(Y) (u - N"(y - E))
(4.2.29)
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Define the function

g(y):

First, g(y) is bounded for any y E [a; b]:

S1 S'(t(. -y) +y) dt

N y YL+l f
S(y) iCJ2 yi

(S'(t(\ - Y) - Y)
S(Ai)

S'(t(x-y)+y) dtdctv(x)
S(x) /

N) > f-yL+l f 1 S'(t(A, -y) +y) -S'(t(x-y)+Y

- S~ ~2 2  kS(Ai) +YdtdIv(x)
S(Y) iE2 '(')

N fY+1fl
+ (

S(y) il1 o

S(x) - S'(t(x - y) + y) dt dpv(x) CN,
S(x)S(Ai)

where in the final line we used S and S' are smooth on [a; b] (and therefore uniformly
Lipschitz), S > 0 in a neighborhood of [a; b], further Ix - Ail < CN 1 , and IJ2| I CN.
Moreover, g(y) is uniformly Lipschitz in [a; b] with constant CN, since:

S'(t(. - y) + y)
S(-)S(y)

(z - y)MN

S'(t(. -z) + z) dt =
S (-) S~ W

(f 1 f 1 tS"(ut(z
- y) + t(- - z) +
S(H)S (Y)

S(z) - S(Y) M )

S(z)S(y) (jo 1

S'(t(. - z) + Z) dt
S(-) J

and both terms appearing in MN( above are of the same form as g so they are bounded by
CN. Returning to (4.2.29). we may bound

(2) ( (Y)
MN u - NcI(y - E)f

= fYi+1 g(A) g(x) + NO(Ai - x)g(x)

iEJ21f (u - Na(Ai - E)) (u - N(A, - E))(u - Na(x - E))

CN 2  + CN 2 +e - dx
J[a;bjn{x|-EI> I}u NA(x - E) (u- N'~x -

d pv(x)

< CN' " log N + CN 

uniformly in u [-M; M]. Thus (4.2.29) is bounded by CN 2 as ] is bounded.
The remaining term in (4.2.28) is

M ( U) MNN -m (E +)T. N
(4.2.30)

S(.)(u - NN(E- E))d

S'(t y) + y) dt

(2)

\Ao

y) dtdu)

L , - - - - .1 -- , I I

V (
I du.

u - No,( -- E))

MN y
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Repeating our argument in the previous paragraph gives:

M(2) CN- log N + CN,
S(.)(u - N"( E)) -

M (2) 1<CM)
N u-N1( . - E )

where in the first inequality we use 1/S is uniformly bounded and uniformly Lipschitz on
[a; b]. Inserting the bounds into (4.2.30) gives an upper bound of CN 2 +a, as f is bounded.
Altogether

1 (fN) (X) - y-(IN) dM(Y (x)dM (y) < CN 2 +a

S- y

which is w(1) when divided by N.
For (jij 2 ) (1, 2). By the bounds I, -yeJ CNA- 1, Lxj, - x l for x, e [7ii!; 7j+1 ,
whenever

NaItv(\i - x 1) + ut(x 2 - /\ 2 ) + t(xi - x 2) + u(A 2 - x 2 ) + x2 - Ej > M + 1, (4.2.31)

we have
NA (lt(yJ - 732) + (732 - E)I + CN-') > Al + 1,

and

1.

|v - x1) + -ut(x 2 - A?) + t(x1 - x2 ) -4 u(Ah - x 2 )+- x 2 - E

-- Kt(Yi
C

- ^ ) + (y 2 - E)1'

where the constant C only depends on M. Therefore, whenever (4.2.31) is satisfied, applying
Lemma 4.2.5 eq. (4.2.11) yields

I(.fN) (3) 2 - 2 2 2 - + 2

K
_ Na (t4-y~,

C

- i2 ) + Y 2 - E)
(4.2.32)

Now fix t E (0, 1) and define the sets

E "2, t (E -

C J2 t ( E d-

2M)

2M)

No
Kt:- K' U Kt.

By construction, if 12 E K' then

- E)j> 2M

Kt' j

K {

1>- 2M+ yy E

+ -Y - E < 2MI
Na

lt(- i - 7i2) + (-N2
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uniformly in i, E .11. Thus for such i2 E K7, (4.2.31) is satisfied for N sufficiently large. The
same statement holds for K C.

We now proceed to bound (4.2.27) for ji = 1 and j2 = 2 by splitting J2 into the regions K',
Kf and J2\Kt. We start with K' (the argument for K, is identical). Our observations from
the previous paragraph along with (4.2.32) gives:

dudv dt N 2  J
i2E K'

Yi2 +1

dav(xi)
-Yi 2

dyv(x 2 ) {(Ai - x1)(Ai2 - X 2)t(1 - t)

x ='(fN (3)( - X) + Ut(X 2  Ai2) + U(Ai2 - X2 ) + (x~- X 2 ) + X2

CN-2-at( t)- ) < CN2 -1-2et(1 - t)

1- i (t(lyg- y)+ - )) ~ (('1 - E)(' - E) -
i2 E K't 2 K' \~

where in the final line we used IJI| CN1 -' from Lemma 4.2.7 eq. (3). Next, note that

1 1
N ((1 - t)(y12 - E) - )4

E+ (E-a)A(b-E)
<C

+a 2M

dx CN3 "
( -t)( - E) - 2 )4 ~ 1 - t

since, by definition of K1, y > E + .!(- We conclude,

1  CN2 1 - 2at(1 -t) 2 .
E - -dt < CNx~

O iEK ((1 - t)(6 - E) - )
We continue with J2 \Kt. By the same argument as in Lemma 4.2.7 3 I.J2\Kt 1 5 ON' where
the constant C does not depend on t, we use this in addition with Lemma 4.2.5 eq. (4.2.11),
|Jil < CN -", and IAi, - xjI CN -1 to obtain the bound

dudvdt N 2 E f/"+1

iiEJi ii
is EJ2\Kt

dgv(X1) dpv(X 2 ) (Ail - X 1)(Ai 2 - X 2 )t(1 - t)

x - 1 (fN)( 3 (tv_(A _ 1 ) + ut(X 2  i i2)- U(Ai2 - X2 ) + t(x1 - X2) X2

< C N 3,logN x N 2 - 2 x N2-2a tdt <CNa+2 .log N.

Combining the bounds we have obtained gives

if ~ JN - dMj(x)dM (y) < CN 2  log N,

which is w(1) when divided by N for c small enough.
For Ji = 1 or 2 and J2 = 3. the proof is similar and we omit the details.

IT

IT

El
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Using Lenna 4.2.8 we also prove the following bounds:

Lemma 4.2.10. The following estimates hold:

LN '(fN)'

LN (fN) fN O WM

Proof. For both (4.2.33) and (4.2.34), we use

(4.2.33)

(4.2-34)

AIN~ (3 (f N))'(N))
- N

MN N +bv(-1fNf'

Lemma 4.2.8 implies that the first term in both equations are W(1) so (4.2.33) and (4.2.34)
simplify to deterministic statements about the speed of convergence of the integrals against

p.v above.
To show (4.2.33), integration by parts yields:

S(E- 1fN)'(x)d1,v(x) = - I ba (BG -f A T ) (x) (S'(x) a(x) +- S (x ou'(x)) dx.

Inserting the formula for 31fN we obtain

'fN)'(X)dV(X) f j b fN (X)- fN(Y) (S'(X)or() + (? )dxdy
07r2 a fa y - x iS W (y) W, -(yW) '

Recall that S is bounded below on [a, bj,' S' is bounded above on [a, b], further, up to a

constant, ! can be bounded above by (u(x)-(y)) 1 . We define the sets

AN := [Nt (a - E); N'(b - E)],

BN := N' (a - E); 1N'(b
12 2

By the observations above, and the change of variable u.
we get

-E)].

- NO~Q - E) and v = N'(y - E)

J'f z)'(x) dp v(x)E N

<C -f(U) - f~ M (E + - + 1uv
-- N 2 U o-(E + ) o-(E + )o-(E + ")

(4.2.35)

For large enough N, on the set (71., v) E (AN\BN) 2 , the function |f(u) - t(v)I is always zero,
thus the integral bn the right above can be divided into integrals over the sets:

(AN x AN) (AN\BN x AN\BN)-. BN x BNU BN X (AN\BN) U(AN\BN) x BN. (4.2.36)

J (3

L N (N)

L N (N) f
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We bound the integral in (4.2.35) over each set in (4.2.36). We begin with the first set in
(4.2.36). For (u, v) E BN x BN, o(E + u) and o(E + v) are uniformly bounded above
and below. Therefore, the integral in (4.2.35) can be bounded in this region by

JfB f(u)- f (v) dudv
BN

f (u) - f(v) f ffvf U f()dudv + 2 du dv,
f/[M;M]2 U- uv -MBNfluI M} U V

the integral over [-M; M] 2 exists by the differentiability of f, while:

.v dudv <
- MU - V

C |f(v)log[NKv + MIIv - MI] dv Clog N,

for N large enough.
For the second set in (4.2.35), observe that for (u,v) E BN x (AN\BN), f(v) is 0 for N
sufficiently large, and u(E + u) is bounded uniformly above and below while f(u) is 0
outside [-M; M]. This implies that the integral in (4.2.35) can be bounded in this region
by

IAN\BN / M f ( )
MU -v

a(E+*) + 1 dudv
u(E+ ) x(E + u()o(E + V)

C< Na) Cjf f 1 d < C
NfjAN \BN

where in the final line we used ju - v> cNa for u E [-M; M] , v E AN\BN-
We can do similarly for the third set in (4.2.35) and putting together these bounds on the
right hand side of (4.2.35) gives

(? 1 fv)'(x)dpv(x) - Clog N

which is w(1) as claimed.
We continue with (4.2.34). Recall that we reduced this problem to computing the limit of

Av(-1V(fN v). Using the inversion formula we see that

f fN (X) f(x)d[ x) -7r2

f(x) (N (x) - fN (y))
f j a(y)(x - y)

Observe that

a (fN (X) N y 2 fIN (X)(fN(X)! fN (y))2 - --. . -.
-!(a + b)(x + y) + ab + xy

u(x)(x - y)2a x Y
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Therefore, integration by parts yields

J -I.'fN(x)f (x)djv(x)

1r jbj (
207T2 ja ja

By changing variables again to (u, ))

Y (X) ) (N -f N (y)) 2dxdy

Ja ' oa' 0 u(Y)(x - y)

N fN (Y) 2

y Y

(N"(x - E), No(y -- E)) and observing that

ab + xy - -(a + b)(x + y) = -o(E)2 +
2 N (a + b+

we obtain

i' fN(x).fNv( )duv (x)

_ 1 / Jj2 _f(./u) - V2Nr u-o )

a(E)2 - #v("- + E) - dudv.
\ -(E + u )o(E + v)

As before, (f(u) -- (v)) 2 is zero for all (u, v) E (AN\BN ) 2 for large enough N,
split the above integral into the regions defined in (4.2.36).
Notice that uniformly in u C BN

1 1

u( E +S u(E )

(4.2.37)

therefore we

+0 N|e
+ I'l )o I

and further notice (u + v)/Na and uv/N 2
' are bounded uniformly by constants in the entire

region AN x AN.
Consequently the integral (4.2.37) over the region BN x BN is:

f 01) - f(7) 2

f(U) (V)

2 u -- VN)

c(E)2 - + E) -2

o-(E + u)c(E + 

dudv + O( - f(u)
Nc, f f

) dudv

-f Mv 2

V
(Ju| +| v|)dudv)

The first term of (4.2.38) is equal to,

fu ) dudv + 0(

while the second term in (4.2.38) can be written as

(Ju +| v|)dudv =
ff - ;M2

( (u) - -
.u- v

+ 2 j BNn{juI>m

(|u| + |v|)dudv

2

(fl-V) 2 (Jul + Ivldudv,

(ab+xy-!(a+b)(x+y)

I'

E) uv
+~

11 2

(4.2.38)

2

-f ('11') - -f ( 'I'l
ff8 2 ( u - V
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the integral over [-M; M] 2 is finite by differentiability of f while the second is bounded by

JBNfluI M}
|f(v)1 2 (U V

< C f1

+ -vI . dudv

f(v) 2 ( + 1M 1 - + log[Njv - M||v + MI]
(V - MI t +V|

< Clog N

since supp f C -M, M].

In the region (u, v) E BN x (AN\BN), u(E + u) is bounded above and below while, for N
large enough f(v) = 0, thus the integral over BN X (AN\BN) is bounded above by

J \BN L N ( f (u V) ) 2

fAN\BN BN V
1 dudv

a( E + u )-( E + v)

1 M (U 2_M -
(dud <

-( E +) v ) N2ce AN\BN

C
u(E )dv <

or( E + 7,- -

where in the second line we used 'u - v > cNa for u E [-M; M] and i E AN\B. By symrne-

try of the integrand in (4.2.37) this argument extends to the region (u, v) E (AN\BN) x BN-
Altogether, our bounds show

J I f N(x)fN(x)d1v(x) = - 1 fif dxdy + Og N)I

which shows (4.2.34).

4.2.4 Proof of Theorem 4.1.4

We proceed with the proof of Theorem 4.1.4. As we did in the sketch of the proof, (4.2.7)
applied to h = "- 1(frN) yields

N -- kiN)) = MN(fN) + 2)

+ f [ FlfN( ) -- -- lfN(Y)dMN(x)dMN(Y)
N 2 x -y

Combining Lemma 4.2.9 eq 4.2.26 and Lemma 4.2.10 eq. (4.2.33) we can bound the two
terms on the right hand side to get

(412.39)F7( 1 (fN)) MN(fN)-W(1).

We consider an event A, of probability higher than 1 - e-N on which

C
Ff2-1( - MN(N) - o, (4.2.40)

-M

< AN\BN

loll 11 NNINIM 0 pw"Mm

X~ Y

LN (---1fN
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for some positive constants c, C and 6. Using the first loop equation from Proposition 4.2.1,
and the trivial deterministic bounds

MN(fN) = 0(Nf 1)

we obtain

F (E-(fN)) + IE-(fN)lc1(R) = O(N3 )

0 = N- F (fN

EyN MN(INv)AI + o(1) + O(N P(A))

a ndN N + (1)

and thus

EN M~N -(1).

We now show recursively that

F N( -'(fN), IN< fzv) N(fN) _ (k - 1)o_ MN(fN) k-2+W

Here, the set on which the bound holds might vary from one k to another but
has probability greater than 1 - e-NA: for each fixed k.

(4-2.42)

(4.2.43)

each bound

The bound holds for k = 1, by (4.2.39). Now, assume this holds for k > 1. On a set of
probability greater than 1 - e--N(k+1 we have by the induction hypothesis, Lemma 4.2.8 eq.
(4.2.22). and Lemma 4.2.10 eq. (4.2.34), for some J> 0 and a constant C

F( (1 ) -N, , IN) - MN (N)k+ (k - 1)0_2 MN(IN) k2 <N9
f- N 6 '

LN ( U(f N)
- N6

MN (fN) N 2

On this set, using the definition of FkN, from Proposition 4.2.1,

FN 1 (fN),fN,''' .fN)= F -1 (fN), fN, N N (.fN)

+ NfN) k ( 1(Nf

MN N) kk

+ IN N k(-

=MN(fN)k+1 - k 2N

-~ 1)oMN(f N)k 2

2

(fN)k- 1 0
N6/2

and this proves the induction. Using the fact that Fk is bounded polynomially and deter-
ministically as before, we see that for any k > 1.

+ N (F -(fN)) A)

(4.2.41)

N(N -1'(fN)) 1 
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iEN (mNyN)k+1) Nr MN cwk-144
IK(MN~jzv~k 1 u~kl MNtrk) + o(1). (4.2.44)

Coupled with (4.2.42), the computation of the moments is then straightforward and we
obtain for all k c N

E N M N N2k) 2k 2l

( M N 2 k k . + 0 1 ) 11( 4 .2 .4 5 )
EN MN(fN)2k+l --

This concludes the proof of Theorem 4.1.4.

4.2.5 A few Remarks

The result of Theorem 4.1.4 naturally extends to the joint law of the fluctuations of finite
families of test functions. More precisely, for any fixed k, if f 1, - - - , fk satisfy the hypothesis
of the theorem then (MN(.fN), * * , MN (.f )) converges in distribution towards a centered
Gaussian vector with covariance matrix

22 / fi(x) -fi(X) f(x) - fi(x)

We would also like to point out that a similar proof should also yield the macroscopic central
limit Theorem already shown in [51, 15, 77] (one-cut and off-critical cases) with appropriate
decay conditions on f. Indeed, in the macroscopic case we get uniform bounds on if
and its derivatives instead of the bounds obtained in Lemma 4.2.5. The major issue when
dealing with the multicut and critical cases is that the operator E is not invertible (as an
operator acting on smooth functions). When dealing with functions that lie in the image of
B and with additional regularity assumptions, one can show using transport methods similar
to [59] that the central limit Theorem do hold at the macroscopic scale. This is the object
of the next Chapter.

Another interesting direction would be to study the fluctuations at the edge (i.e, E = a or
b). We expect the same result to hold with covariance matrix(if for instance E = a) equal
to

1 1  (fi(x) - fi(y) (f(x)f(y) X + Y
Ei,. = T) ( W P(Y) dxdy.

Additional technical estimates as in Lemma 4.2.5 would be needed to teproduce the proof
in the edge case. These estimates are not straightforward because of the singular behaviour
of -1 (fN) at the edges and this is the object of a future work. However the covariance (in
the case k = 1) would still be given by taking the limit of -pv (~ 1 (fN)f2 as in Lemma
4.2.10, which yields the above formula.



Chapter 5

CLT for Fluctuations of -ensembles
with general potential

This Chapter is based on the article [121 written with T.Lebli and S.Serfaty. In this Chapter
we adopt some slightly different notations.

5.1 Introduction

Let 13 > 0 be fixed. For N > 1, we are interested in the N-point canonical Gibbs measure
for a one-dimensional log-gas at the inverse temperature 0, defined by

1#dPv -(i 0~ R'( N) d , (5. 1. 1)
N,1 (X) 7 eP NX XN

where XN I , XN) is an N-tuple of points in R, and R((XN), defined by

N

NX log 1x x-|+ E NV(xj) .. 2
1 i4j N i=1

is the energy of the system in the state XN, given by the sum of the pairwise repulsive
logarithmic interaction between all particles plus the effect on each particle of an external
field or confining potential NV whose intensity is proportional to N. We will use dXN to
denote the Lebesgue measure on RN. The constant Z in the definition (5.1.1) is the
normalizing constant, called the partition function, and is equal to

0 j-exp- N(XN)dN .
fR NX -2 N

Such systems of particles with logarithmic repulsive interaction on the line have been. exten-
sively studied, in particular because of their connection with random matrix theory, see [45]
for a survey.

Under mild assumptions on V, it is known that the empirical measure of the particles
converges ahost surely to some deterministic probability measure on R called the equilibriumi
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,measure pv, with no simple expression in terms of V. For any N > 1, let us define the
fluctuation measure

N

fluctN x - Nyvl, (5.1.3)
i1

which is a random signed measure. For any test function c regular enough we define the
fluctuations of the linear statistics associated to as the random real variable

FluctN() : u dfiuCtN. (5.1.4)

The goal of this Chapter is to prove a Central Limit Theorem (CLT) for FluctN( ), under
some regularity assumptions on V and .

5.1.1 Assumptions

(H1) - Regularity and growth of V The potential V is in CP(R) and satisfies the growth
condition

lim inf V(x) > 1. (5.1.5)
lx-*oo 2 log (1

It is well-known, see e.g. [73], that if V satisfies Hi with p 2 0, then the logarithmic potential
energy functional defined on the space of probability measures by

JV) = -log x - yj dp(x) dt(y) + J V(x) dp(x) (5.1.6)

has a unique global minimizer liv, the aforementioned equilibrium measure. This measure
has a compact support that we will denote by Ev, and gv is characterized by the fact that
there exists a constant cv such that the function (v defined by

(v(X) := - log |x - yldpv(y) + 2 CV (5.1.7)

satisfies the Euler-Lagrange conditions

(v > 0 in R, (v = 0 on Ev. (5.1.8)

We will work under two additional assumptions: one deals with the possible form of pv
and the other one is a non-criticality hypothesis concerning (v.

(H2) - Form of the equilibrium measure The support Ev of pv is a finite union of n + 1
non-degenerate intervals

- U [r ,_; j,+]), with ae < at,+.
0<1<n

The points a,1 are called the endpoints of the support Ev. For x in Ev, we let

n
o (x) : I I x - 11 _1.17 - 01,+|. (5.1.9)

1=0
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We assume that the equilibrium measure has a density with respect to the Lebesgue
measure on Ev given by

p v(x) S(x)ox),
where S can be written as

S(x) = So(x) J(x - si)2k,
i=1

(5.1.10)

(5.1.11)So > 0 on Ev,

where m > 0, all the points si, called singular points1 , belong to Ev and the ki are
natural integers.

(H3) - Non-criticality of (v The function (v is positive on R \ Ey.

We introduce the operator :v, which acts on C1 functions by

1

2
(.) - pv(y). (5.1.12)

5.1.2 Main result

Theorem 2 (Central limit theorem for fluctuations of linear statistics). Let ( be a function
in C'(R), assume that H1-H3 hold. We let

k max 2k,

where the k I's are as in (5.1.11), and assume that, p (resp. r) denoting the regularity of V

(resp. )
p > (3k + 5),

/r V(yyWdy 
= 0

r > (2k + 3). (5.1.13)

for d = 0,..., n - 1. (5.1.14)

(5.1.15)

where R ,,d is the Taylor expansion of to order d - 1 around x given by

R + (Y - X)dl (d- 1)
Rd (Y) = S(x) + (y - x)'(x) + + (d).

(d -1)!

Then there exists a constant c and a function V of class C2 in some open neighborhood
U of Ev such that vK] = + c on U, and the fluctuation FluctN( ) converges in law as
N -+ oo to a Gaussian distribution with mean

1Let us cmphasizc that a singular point si can be equal to an endpoint aj, .

If n > 1, assume that satisfies the n following conditions

Moreover, if m > 1, assume that for all i1,..., m

c (y) -yR ~,,,d dy = 0 for d = 1, . .. ,2ki,

,f 'dytv
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and Variance

It is proven in (5.6.122) that the variance vo has the equivalent expression

S((Xdv()dv(y) f )2d v 5.1.16)

Let us note that V), hence also m and v , can be explicitly written in terms of {.

5.1.3 Comments on the assumptions

The growth condition (5.1.5) is standard and expresses the fact that the logarithmic repulsion
is beaten at long distance by the confinement, thus ensuring that pv has a compact support.
Together with the non-criticality assumption H3 on (v, it implies that the particles of the
log-gas effectively stay within some neighborhood of Ev, up to very rare events.

The case n - 0, where the support has a single connected component, is called one-cut,
whereas n > 1 is a multi-cut situation. If m > 1, we are in a critical case.

The relationship between V and -tv is complicated in general, and we mention some
examples where pv is known to satisfy our assumptions.

" If V is real-analytic, then the assumptions are satisfied with n finite, m finite and S
analytic on Ev, see [34, Theorem 1.38], [35, Sec.1].

" If V is real-analytic, then for a "generic" V the assumptions are satisfied with n finite,
m = 0 and S analytic on Ev, see [54].

* If V is uniformly convex and smooth, then the assumptions are satisfied with n = 0,
m = 0, and S smooth on Ev, see e.g. [67, Example 1].

* Examples of multi-cut, non-critical situations with n = 0, 1, 2 and m = 0, are mentioned
in [67, Examples 3-4].

* An example of criticality at the edge of the support is given by V(x) = 1x' - 4X +

2+ x. for which the equilibrium measure, as computed in [27, Example 1.2], is given
by

1071Lv(X.) io z -- (-2)|j{x - 21(x -2)1 ,2()

* An example of criticality in the bulk of the, support is given by V(x) - X 2 , for
which the equilibrium measure, as computed in [28], is

pv() = - (-2)lx - 2 (X - 0)21[2,21().

Following the terminology used in the literature [35, 54, 28], we may say that our assumptions
allow the existence of singular points of type II (the density vanishes in the bulk) and III
(the density vanishes at the edge faster than a square root). Assumption H3 rules out the
possibility of singular points of type I, also called "birth of a new cut", for which the behavior
might be quite different, see [26, 66].
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5.1.4 Existing literature, strategy and perspectives

Connection to previous results

The CLT for fluctuations of linear statistics in the context of /-ensembles was proven in the
pioneering paper [51] for polynomial potentials in the case n = 0, m = 0, and generalized in
[77] to real-analytic potentials in the possibly multi-cut, non-critical cases (n > 0, m = 0),
where a set of n necessary and sufficient conditions on a given test function in order to satisfy
the CLT is derived. If these conditions are not fulfilled, the fluctuations are shown to exhibit
oscillatory behaviour. Such results are also a by-product of the all-orders expansion of the
partition function obtained in [16] (n = 0, m = 0) and [15] (n > 0, m 0). A CLT for
the fluctuations of linear statistics for test functions living at mesoscopic scales was recently
obtained in [13]. Finally, a new proof of the CLT in the one-cut non-critical case was very
recently given in [56]. It is based on Stein's method and provides a rate of convergence in
Wasserstein distance.

Motivation and strategy

Our goal is twofold: on the one hand, we provide a simple proof of the CLT using a change
of variables argument. retrieving the results cited above. On the other hand, our nethod
allows to substantially relax the assumptions on V, in particular for the first time we are
able to treat critical situations where m > 1.

Our method, which is adapted from the one introduced in [59] for two-dimensional log-
gases, can be summarized as follows

1. We prove the CLT by showing that the Laplace transform of the fluctuations converges
to the Laplace transform of the correct Gaussian law. This idea is already present in
[51] and many further works. Computing the Laplace transform of FluctN() leads
to working with a new potential V + t (with t small), and thus to considering the
associated perturbed equilibrium measure.

2. Following [59], our method then consists in finding a change of variables (or a transport
map) that pushes piv onto the perturbed equilibrium measure. In fact we do not exactly
achieve this, but rather we construct a transport map I + to, which is a perturbation
of identity, and consider the approximate perturbed equilibrium measure (I + t ,)#pv.
The map V) is found by inverting the operator (5.1.12), which is well-known in this
context, it appears e.g. in [16, 15, 77, 11]. A CLT will hold if the function ( is (up to
constants) in the image of Ev, leading to the conditions (5.1.14)-(5.1.15). The change
of variables approach for one-dimensional log-gases was already used e.g. in [78, 11],
see also [48, 49] which deal with the non-commutative context.

3. The proof then leverages on the expansion of log Z, up to order N proven in [58],
valid in the multi-cut and critical case, and whose dependency in V is explicit enough.

This step replaces the.a priori bound on the commutators used e.g. in [16].

More comments and perspectives

Using the Cramer-Wold theorem, the result of Theorem 2 extends readily to any finite
family of test functions satisfying the conditions ((5.1.14), (5.1.15)): the joint law of their
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fluctuations converges to a Gaussian vector, using the bilinear form associated to (5.1.16) in
order to determine the covariance.

In the multi-cut case, the CLT results of [77] or [15] are stated under n necessary and
sufficient conditions on the test function, and the non-Gaussian nature of the fluctuations if
these conditions are not satisfied is explicitly described. In the critical cases, we only state
sufficient conditions (5.1.15) under which the CLT holds. It would be interesting to prove
that these conditions are necessary, and to characterize the behavior of the fluctuations for
functions which do not satisfy (5.1.15).

Finally, we expect Theorem 2 to hold also at mesoscopic scales.

5.1.5 The one-cut noncritical case

In the case n = 0 and m = 0, following the transport approach, we can obtain the convergence
of the Laplace transform of fluctuations with an explicit rate, under the assumption that (
is very regular (we have not tried to optimize in the regularity):

Theorem 3 (Rate of convergence in the one-cut noncritical case). Under the assumptions
of Theorem 2, if in addition n = 0, m = 0, p > 6 and r > 17, then we also have

log Epy (exp(sFluctN()) - sm - S2

C (|C1(R) + -IKIIC2(R) + Ic() , (5.1.17)

where the constant C depends only on V.

The assumed regularity on allows to avoid using the result of [58] on the expansion
of log ZV. Our transport approach also provides a functional relation on the expectation
of fluctuations which allows by a boostrap procedure to recover an expansion of log Z),
(relative to a reference potential) to arbitrary powers of 1/N in very regular cases, i.e the
result of [16] but without the analyticity assumption. All these results are presented in
Appendix 5.5.

5.1.6 Some notation

We denote by P.V. the principal value of an integral having a singularity at. xo, i.e.

X0 -E0

P.V.f = lim] f + . (5.1.18)

If 4 is a C'-diffeomorphism and yp a probability rheasure, we denote by 4#p th, push-
forward of p by 4), which is by definition such that for A c R Borel,

If A c R we denote by A its interior.

I ........... 1- 1 1 - , ..- - 1. 7 1 Z Z J
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For k > 0, and U some bounded domain in R, we endow the spaces Ck(U) with the usual
norm

k

kI./ck(U) : sup Iv)()W .
j=0 -CU

If z is a complex number, we denote by R(z) (resp. 1(z)) its real (resp. imaginary) part.
For any probability ieasure p on R we denote by V the logarithmic potential generated

by p, defined as the map

x E R2 - h"(x) = - log Ix - yId (y). (5.1.19)

5.2 Expressing
tions

the Laplace transform of the fluctua-

We start by the standard approach of reexpressing the Laplace transform of the fluctuations
in terms the ratio of partition functions of a perturbed log-gas by that of the original one.
This is combined with the energy splitting formula of [74] that separates fixed leading order
terms from variable next order ones.

5.2.1 The next-order energy

For any probability measure A, let us define,

FN(X N, P) =- IixR\
N

log x - y os
i=1

where A denotes the diagonal in R x R.
We have the following splitting formula for the energy, as introduced in [74] (we recall

the proof in Section 5.6.1).

Lemma 5.2.1. For any XN RN it holds that

N

(5.2.21)H (XN) = N2 v ( +V) + 2N ( CV(xi) + FN (XN, AV) -

Using this splitting formula (5.2.21), we may re-write Pv, as

dP N pKNfJ(At( FN

with a next-order partition function KN,,l(pV, (V) defined by

IN eXp
FN (N PV) + 2N

N

i=1 /1)dXN

We extend this notation to KN,l(A, () where A is a probability density and ( is a confinement
potential.

- it) (y) (5.2.20)

N

N, AV), +2NZ vxi) dXN, (5.2.22)

(5.2.23)

N

- p (X) Eo

KN,[1 (V, (V)
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5.2.2 Perturbed potential and equilibrium measure

Let c be in CO(R) with compact support.

Definition 1. For any t E R, we define

* The perturbed potential V as V := V + t .
* The perturbed equilibrium 'measure pt as the equilibrium measure associated to Vt. Since

has compact support, V satisfies the growth assumption (5.1.5) and thus At is well-
defined. In particular, po coincides with pv.

* The next-order confinernent term (t (v,, as in (5.1.7).
o The next-order energy FN(XN, pt) as in (5.2-20).
* The next-order partition function KN,O(pt, (t) as in (5.2.23).

5.2.3 The Laplace transform of fluctuations as ratio of partition
functions

Lemma 5.2.2. For any s E R we have, letting t

Epy [exp (sFluctN(0))

KN,-(Pt, 0 exp N2 v(At -v(pm) -t dp . (5.2.24)
KN,f3(PO, (0) 2

Proof. First, we notice that, for any s in R

E, [exp(sFluct N( )) = exp -Ns ( dgo (5.2.25)

Using the splitting formula (5.2.21) and the definition of KN,l as in (5.2.23) we see that for
any t

KN,)3 (Pt , (t) = , eXp N2 t (Pt) ,(5.2.26)

thus combining (5.2.25) and (5.2.26), with t := - we obtain (5.2.24). EjSN

5.2.4 Comparison of partition functions

If /p is a probability density, we denote by Ent(u) the entropy function given by Ent(p)

fRp log pL. The following asymptotic expansion is proven [58, Corollary 1.5 (cf. [58, Remark
4.31) and, valid in a general multi-cut critical situation.

Lemma 5.2.3. Let A be a probability density on R. Assume that p has the form (5.1.10),
(5.1.11) with So in C2(), and that ( is some Lipschitz function on R. satisfying

=0 on E >0on R \E, e-Nd x < 00 for N large enough.

Then, with the notation of (5.2.23) and for some CO depending only on ,3, we have

log KN,#( , ) =Nlog N + CfN - N 1 - -)Ent(pt) + Nopr(1). (5.2.27)lo , 2 2)
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5.2.5 Additional bounds

Exponential moments of the next-order energy

Lemma 5.2.4. We have, for some constant C depending on 3 and V

log Epv exp ( FN(N IV) + Nlog N)) CN. (52.28)

Proof This follows e.g. from [74, Theorem 6], but we can also deduce it from Lemma 5.2.3.
We may write

Epv exp -FAN 11,V)

= N,3 , I (V( exp FN XN,PV) 2N 2(v dN

'2

KN,O(PV, (V)

Taking the log and using (5.2.27) to expand both terms up to order N yields the result. D

The next-order energy controls the fluctuations

The following result is a consequence of the analysis of [74, 71], we give the proof in Section
5.6.2 for completeness. It shows that FN controls fuctN. Here ISupp g| denotes the diameter
of the support of E.

Proposition 5.2.5. If is compactly sup ported and Lipschitz, we have, Jor sorre universal
constant C

J dfluctN

1/2
C|SupP L|j|V '||L- (FN(N, AVi) + NlogN + C(||pv||L + 1)N). (5.2.29)

Confinement bound

We will also need the following bound on the confinement. The proof is very, simple and
identical to the proof of Lemma 3.3 of [59].

Lemma 5.2.6. For any fixed open neighborhood U of Z,

P UN > 1 - exp(-cN)

where c > 0 depends on U and f3.

Lemma 5.2.6 is. the only place where we use the non-degeneracy assumption H3 on the
next-order confinement term (v.
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5.3 Inverting the operator and defining the approxi-
mate transport

The goal of this section is to find transport maps O for t small enough such that the
transported measure #t#po approximates the equilibrium measures At. Since the equilibrium
measures are characterized by (5.1.7) with equality on the support, it is natural to seek #t
such that the quantity

log Ot#(x) - qt (y) dpo(y) + Vt(#t(x))

is close to a constant.

5.3.1 Preliminaries

Lemma 5.3.1. We have the following

" The non-vanishing function So in (5.1.11) is in Cp- 3 - 2k( Ev).
" There exists an open neighborhood U of Ev and a non-vanishing function M in Cp-3 - 2k(U\

Zv) such that

(x) = M (x)(x). (X - si)2k (5.3.30)

In particular, (5.3.30) quantifies how fast (( vanishes near an endpoint of the support.
We postpone the proof to Section 5.6.3.

5.3.2 The approximate equilibrium measure equation

In the following, we let

" U be an open neighborhood of Ev such that (5.3.30) holds.
* B be the open ball of radius j in C2 (U).

We define a map F from [-1, 1] x B to C(U) by setting q: Id + 4 and

F(t, ) log #() -(y) dg v(y) + Va ( (5.3.31)

Lemma 5.3.2. The map F takes values in C'(U) and has continuous partial derivatives
in both variables. Moreover there exists C depending on y on V such that for all (t, 4') in

:1] have

F(t, 4') - F(0 0) - v[ (5.3.32)2 v[']q Ctl4'I 2()

The proof is postponed to Section 5.6.4.



CLT for Fluctuations of /3-ensembles with general potential - 113

5.3.3 Inverting the operator

Lemma 5.3.3. Let V) be defined by

O(x) - 127r 2S(X)

I
I

d(y)
x-

J (y) - (x) Y
07~~~d (Y -X

uv(y) -- + c"
2

1-V'(x)
2

for

for x in Ev,

X E U\Ev,

then V) is in C'(U) with I = (p - 3 - 3k) A (r - 1 - 2k) and

e1130u) <; CRIHCI(R) (5.3.35)

for some constant C depending only on V, and there exists a constant c such that

v IV)] + c in U,

with Ev as in (5.1.12).

The proof of Lemma 5.3.3 is postponed to Section 5.6.5. We may extend i/) to R in such
a way that V is in C'(R) with compact support.

5.3.4 Approximate transport and equilibrium measure

We let 4 be the function defined in Lemma 5.3.3, and c4 be such that

E[V~] = + c on U.

Definition 2.. For t E [-tmax, tilmaxi, ere triax (2IL.b1c(u) >

* We let ot be given by t := t'Q.
* We let ot be the approximate transport, defined by $t := Id + ot.
* We let it be the approximate equilibrium measure, defined by Ai :=#/tv.
* We let (t be the approximate confining term Ct V o $1

( We let ) be the probability measure

dP (XN) 1~
Ar,/3(XN) KN,O (At , t)

S(N- At) + 2NZ
2=

where KN,(l(t, I t) is as in 5.2.2.

Finally, we let -T be defined by

t : F(t, ) -t0) -- Ct.

1_dpv(y)
x-y

(5.3.33)

(5.3.34)

Sxi dXN, (5.3.36)

(5.3.37)
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This quantifies how close Tt is from satisfying the Euler-Lagrange cquation fOr Vt and thus
how well At approximates the real equilibrium measure ft. We also define the extension ^t of
7- o #5[t to R2 by

(X, Y) = k(X, Y) 'te 0 -'(X), (5.3.38)

where is equal to one in a fixed neighborhood of supp(pv) included in U and is in C, (R 2 ).

Lemma 5.3.4. The following holds

* The map Vt satisfies
__ t

=V [4t] = + t, for : tc .
2

* The map #t is a C1-diffeomorphism which coincides with the identity outside a compact
support independent oft E [--tMax, tillax].

" The error rt is a 0(t2 ), more precisely

IItHC1(U) Ct 2 lC2 (U) (5.3.39)

1 t c1(R2) CtI2 cU). (5.3.40)

" On t( Ev), we have

Vt
= h" + - -t - cv -- t 0 t. (5.3.41)

2

Proof. The first two points are straightforward, the bound (5.3.39) follows from combining
(5.3.32) with the conclusions of Lemma 5.3.2, an;l then (5.3.40) is an easy consequence.

For (5.3.41), let us first recall that

.F(t, Vbt) = J log Lt(-) - ot (y)fdpo (y) + V 0 #t,

which, with the notation of (5.1.19), yields

1-F(t, V))=hV o Ot+ V 0O~t.2

On the other hand, by definition of Tt as in (5.3.37), we have

- t, V)t= F(0,0) + t - Tt.

Finally, we know that, on Zv
F(0,0 = (v + cv.

We thus see that
1

v +cv + -+ T&r h' oq #+ -V o #.
2

Since, by definition, Qt (v o -1 we get (5.3.41).
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5.4 Study of the Laplace transform

The next goal is to compare the partition functions associated to Ut and po ='v. We split
the comparison into two steps: first, we compare KN,(At, (t) with KN,,(At, 1) using the
bounds, obtained in the previous section, showing that t is a good approximation to ftc,
and then we compare KN,O(At, t) and KN,lQI, (0) using the transport 6t, as in [591.

5.4.1 Energy comparison: from /it to at

Lemma 5.4.1. We have

Vh"'-'j 2  Ct2II C2(U), (5.4.42)

C (fd ft + j 3dp Ct ||C|2 (), (3.4.43)
fR J R

where C is universal.

Proof. For t small enough, Ot(U) contains some fixed open neighborhood of Zv, which itself
contains the support of pq. Integrating by parts we thus get

K - dTt # d(t -

-- -Jd/21 -f Qdtv-jto95'd(ptt ftt

-- t J n d(p - p. (5.4.44)

In the first equality, we have re-written h"' and hA using the confining terms (t and ,
see (5.1.7) and (5.3.41), discarding the constants which disappear when integrated against
d(pt - At). In the second equality, we have used the fact that (t vanishes on the support of
pt and , on the support of At. Finally, the last inequality is due to the fact that ( and i
are nonnegative on R. Using (5. 3.38) and (5.3.40), we may thus write

1f
l h" 11 2 T d( t- 2(R2) ||Vh t- II2 2)

2,7r 2

K5C~jVj2C (U1 VhbL"' 11L2(R2).,

which proves (5.4.42). Coming back to (5.4.44), we also obtain

0 < - J dt - /db + 0 (t4|Ipl|0 211 ),

which in turn implies (5.4.43). 0
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Lemma 5.4.2 (Energy comparison from pt to at)'. For any N t(U))N we have

FN(XN,t)

N

2N Zt(xi)J
i=1 /

- (FN (XN, At)+2N E t(xi)
i=1

C 2 ( FN Ntt)+ Nlog N) 1 2 + N2 t |2|(U).

Proof. By the definition (5.2.20) of the next-order energy, we may write

FN (XN, At) - FN(XN, Pt) = 2 j

+ 2NJ -loglx -

-log x -y d (ft - At) (x)d (t - t) (y)

N

yId(At - pt)(x) 6xi - Nft (y)

= N2 IVh-1t| 2 + 2N h " NI=1 - N t). (5.4.46)

On the other hand, using that t vanishes on the support of t, we get

R
- t)dt + ((t

N

- t)(6x - Nt)

(5.4.47)- Nt).C iN ( 4 (dat +

Combining (5.4.46) and (5.4.47). we obtain

N

FN (XN, At) +2N (t(xi)
i=1/

= N 2 jVh"-17iL|2 + 2N 2 j (tdft + 2N f(hIt-lt +

From (5.1.7), (5.3.41) (see also the notation (5.1.19)), we have

'- + T- t 0-1 + constant,

hence we find

N

+ 2N (t(xi))-
i=1 /

/ N

FN(XNi ft) + 2N
\ i 1

|Vh t'I| 12 + 2N 2 jR tdpt + 2N t 0

By the results of Lemma 5.4.1, the first two terms in the right-hand side of (5.4.48) are
O(N 2 t4 ), while the last term is bounded, using (5.3.39) and Proposition 5.2.5, by

6 - Nt 0 (Nt2(FN( NAtt) + N log N)1/2

which concludes the proof.

(5.4.45)

N

f ((t(x )
i= 1

FN (XN,At)+2N (t(xi)
\ i=1 /

S ( N

61

(FN (XN, At)

- Nt.

= N2 f

N JTt 0 0 -

Nit) (5.4.48)

.R((t - t)3

N

$- ( 6

0
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-2s

log KN,O(At, t) < CNt-
KN,1314 0t ,

NI|||| 2( U) + CtCNN2 ||H2(U)

O (s2N 12 + s N 2 11 42)

Proof. By definition of the next-order partition functions we may write

KNO (t, Q)
KNI10t t)t

feXp
JN

- FN (N, Pt)K 1 (( )
N

+ 2N (t(xi)

- (FN (NAt)

The result follows from combining (5.2.28) and (5.4.45), and using Lemma 5.2.6 to argue that
the particles XN may be assumed to all belong to the neighborhood U for t small enough,
except for an event of exponentially small probability.

5.4.2 Energy comparison: from fit to uo

Let us define

Ffuct= 6,

For any V5, let us define the following quantity
with [59])

Axt ' ~ y

luctN(() - J dfluct t).

(that may be called anisotropy by analogy

)dfluCt (x) dfluct (y). (5.4.50)

Lemma 5.4.4. Assume V C C2 (IE. For any XN C UN, letting t (XN) (qt (XI),' qt(XN)),

we have

N t
FN (t (XN) , t) - FN (N, O) - log 4(xi) + - A(0 [N

<Ct (FN (N, AO)

Proof. Since by definition ftt =t#l'o we may write

FN(t(XN),ft) - FN(XNALO

- -i/i-y
-Nit)

+ f
JJRxll~j

- 1 x

(x) __

+ Nlog N) .

- Nt) (Y)

log Ix - yldfluctN(x)dfluctN(Y)

g dfluctN- t (y) Ilog x- dfluCtN(x)dfluCtN(Y)

qot(x) - OtYlN
log dfiuctN(x)dfiuCtN(y) + 9logq (Xi).

-yR x R i

Lemma 5.4.3. We have, for any fixed s E R, with t

(5.4.49)

N

+- 2N>3
i=1

td(xi) dZN-

(5.4.51)

Np,t
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Using that by definition # Id + tV) where V is in C,(R), we get by the chain rule

log = -
ix - y|

with 11EtIjc2(RxR) uniformly bounded in t. Applying Proposition 5.2.5 twice, we get that

f Et(x, y)dfluctN(x)dfluctN(y)

which yields the result.

5.4.3 Comparison of partition functions I: using the transport

In this section and the following one, we will write A instead of A( 0M[XN

Proposition 5.4.5. We have, for any t small enough

= exp (N -2 (Ent(Mio) - Ent(,t))

E (o> exp
PN, [

(2tA + t2Error,(XN) + tError 2(XN)) (5.4.52)

with error terms bounded by

|Error1(XN)| C (FN (N, /o) + N log N),

IError 2 (XN)| < C (FN (XN , 0) + N log N) /

(5.4.53)

(5.4.54)

Proof. By a change of variables and in view of (5.4.51), we may write

3 (FN t N, t)

N

+ 2N t o #t(xi)

N

+ 2N ( o(xi))

since (o = t o by defin.ition. Using Lemma 5.4.4 we may write

KN,O (At, _ 1 f p (
KN,3(IMC ()-KN,,O (PO, o N .

FN(XN,
N

) + N

12 - log# ~x t A.+ tErrori(XN dXN
2i=1'

- 0 log (x ) + -tA + t2Error(ZN))

J -XIt
= f exp

log t(xi dXN

N

+( log t(xi dEN,

(5.4.55)

(5.4.56)

....... ........ .................. ......

t () M + t Et(X, IY),x -y

C2 (FN (XN, AO) + N log N),

KN, (ftt, t

KN,8 (Ao , (0)

+KN,13(Pt,5 t

2(FN (Dt XN), At)

=E(O) exp I
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where the Error, term is bounded as in (5.4.53). On the other hand, since t, is regular
enough, using Proposition 5.2.5 we may write

N

> log 0 (xi) = N log $'t dpo + t Error2 (XN)
i=1 R

with an Error 2 term as in (5.4.54). Finally, since by definition Ot#po = t we may observe
that #' - I and thus

j log $' d0po JR log Po d po - JR log pt o t d po
Ent(po) - Ent(,at).

This yields (5.4.52). El

5.4.4 Comparison of partition functions II: the anisotropy is small

Proposition 5.4.6. For any s, we have

log Epv exp A = ON(1).

Proof. Applying Cauchy-Schwarz to (5.4.52) we may write

SEv exp

KN, (t, *t

KN,[3 Oo, o

(tA + t 2 Error, + tError 2 )) E,

- ) N (Ent(At) - Ent(p-o)))

(exp (-t2Errori - tError 2 )

Epv (exp(-t2Errori - tError 2 ))

(5.4.59)

In view of (5.2.28) we get, for t small enough,

logEpv (exp(tErrori)) < CtN,
N 0

log Epv (exp(tError2)) < CtN.

Inserting (5.2.27) irto (5.4.59) we obtain that for 4 small enough,

log EPv exp t A)) < C(Nt2 + N 1 /2 t) + NAN,

for some sequence {6N}N with limN,,, 6N = 0. Applying this to t = 4-/f with E small and
using H6lder's inequality, we deduce

log Epv (exp
-S \\ 1s
SNA)) < log E, (exp(eA)) < CIsJE + -SN-

In particular, choosing E = V/N, we get (5.4.58).

(5.4.57)

EL exp ( tA))2

(5.4.58)

(5.4.60)

(5.4.61)

exp (
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5.4.5 Conclusion: proof of Theorem 2

Proof. Combining (5.4.52) for t = -2 (where s is independent of N) and (5.4.58) we find
ION

K'N,3 2s~)_ Et"
log K 1N = - 2 N Ent(po) - Ent(fAt) + ON(1). (5.4.62)

(KN, 2 'N

Using again (5.4.57) and #'4 1 + t4', we may rewrite this as

KN,8 (A 2
log (N /1 2) f O'd/o+ oN(1). (5.4.63)

KN,,3(MO)

Combining (5.4.49) and (5.4.63) and sending N to +oo we obtain,

KN,___ sI
log -(1-N 2) f /dpo ON(1), (5.4.64)

KNf (m)2

with an error oN(1) uniform for s in a compact set of R.
To conclude, we need the following relation, whose proof is given in Section 5.6.6.

Lemma 5.4.7.

1V (pt) -v = d + d + - t 'dpo + O(tI|c2(u) + t |c2(U) (5.4.65)

where the 0 only depends on V.

Combining (5.2.24) with (5.4.64) and (5.4.65) we obtain,

log Ep 0 (exp(sFluctN( )) = - 1 - f Vidliv -- J "4 dpv + oN(1),

with an error oN(1) uniform for s in a compact set of R.
Thus the Laplace transform of FluctN( ) converges (uniformly on compact sets) to that

of a Gaussian of mean m and variance tv, which implies convergence in law and proves the
main theorem. 0

5.5 The one-cut regular case

In the one-cut noncritical case, every regular enough function is in the range of the operator
, so that the map 0 can always be built. This allows to bootstrap the approach used for

proving Theorem 2. In this appendix, we expand on how we can proceed in this simpler
setting without refering to the result of [58] but assuming more regularity- of 6, and retrieve
the findings of [16] (but without assuming analyticity), as well as a rate of convergence for
the Laplace transform of the fluctuations.

.11.-, L. 1111.1 .................i" Addlu m I ........... ..... ..... .....
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5.5.1 The bootstrap argument

Let us first explain the main computational point for the bootstrap argument: by (5.4.55)
and in view of Lemma 5.4.4, we may write

d ~ , d N
d log KN(t,) = E o A o)[ZN, ] + (1 - -og t(xi).
dt lt=o N,3  2 2 dt 1t=0

Differentiating (5.2.24) with respect to t and using Lemma 5.4.7 we thus obtain

-13N (0 E 3AEP(0) [FluctN(()] E EO jA [XN, V + 1
2 N,is Nr, 2

This is true as well for all t (E [-tmax, tmax]i ie.

d N
dt jt= =

(5.5.66)

log

2
E(0> [Fluct()] = EP()

N,1 N ON N,

We may in addition write that

d N
log 05(x) =N

At L N, 0 +
2

/ d

(1

log 0' dt + Fluct2

so that

-I) J log #' dq t
(t

2 E J)X0 A , 01 +
E5N AN/ 2+ (1 S) Fluct(t) d'N (, dt

This provides a functional equation which gives the expectation of the fluctuation in terms of
a constant term plus a lower order expectation of another fluctuation and the A term (which
itself can be written as a fluctuation, as noted below), allowing to expand it in powers of
1/N recursively.

5.5.2 Improved control on the fluctuations

Lemma 5.5.1. Under the assumptions of Theorem 2 and assuming in addition

p > 3k + 6

we have for any t in (-tmax, tmax) and2 s in R

log E >(0) exp (sFluct(()
N,l 

N

r > 2k + 4

<C S R(-2k+4[ + S 112 02k+3(,) + - 0HC2(U) +

(5.5.70)

fl ,2k+3(lU) + H C,2k+3

(5.5.71)

where C depends only on V.

2Ini this statement, s and t are not related.

d
dt2) log i) (5.5.67)

( log 0 (5.5.68)

(5.5.69)

2

(t) 2
EP~ty [FluctN() = 1

N, [

log ot .I
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Proof. Note that in view of Lemma 5.3.3, the assumption (5.5.70) ensures that the transport
map 0 is in C3 (U). By (5.4.55) and in view of Lemma 5.4.4, we may write

A(C [XN,1 0] + (1 -
L 2

[2 A(0 [ZXN,01 + (1 -

0 ) d
2d t=o

/ dN
2 )dtE

N= log 0't(xi)

log uA(xi)1 .

(5.5.72)

(5.5.73)

Indeed, V has the same regularity as V and At the same as Io.
Next, we express the anisotropy term as a fluctuation, by writing

ACt)[ZN,0 g (x)dfluCtN(),

where we let

g(x) ,(x, Y)dfluct (Y), (X( - yY

It is clear that

Usig PC2(x) 55 c at wri |C(U).
Using Proposition 5.2.5 twice, we can thus write

(5.5.74)

(5.5.75)

(5.5.76)

IIVgl l J- < VrS(x, y)dfluct N(y) < CIVxVy flL- (FN (XN, t) + NlogN +

and

|A() [XZN, I= I g(x)dfluctl(x) < CIIVgIjL- (FN (N, t) + N log

_ C (FN (XN, ft)

N + CN)2

+- N log N + CN).

In view of (5.2.28) and (5.5.76), we deduce that

EP) -A [XN' o CN IVIC3(v).
N,

(5.5.77)

For the term log 0 we use (5.5.68) and in view of Proposition
regular enough, we may write

log 0 dfluct C1V)I c2(U) (FN (N, At) + N log N

We conclude from (5.5.73), using again (5.2.28) that

d
-log KNf(At, t) CN| IVIc3(U).
dt

5.2.5, since #t = Id + tV) is

+ CN) 2 (5.5.78)

(5.5.79)

d=
dt lt=o

log KN,3(ft, 0t EPco)
N 3

Similarly, we have for all t,

d
log KN,l(At, 0 = Euo)

dt N, 0

CN)2
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Integrating this relation between 0 and - and combining with (5.4.49), we find that, for

K 

-2s

log ' Csj C3(U). (5.5.80)
KN,O (P., 0)

Inserting this, (5.4.49) and (5.4.65) into (5.2.24), we deduce that

log E,o) [exp(sFluctN())]
N,3

S s | | C 3((J) + S 2 cV )l|lc 1 v + | || 2((;) + c 2(4

8 22 I14
+ ||0||2() + V2I C2(U) . (5.5.81)

In view of (5.3.35), it yields the result for the expectation under P , and then this can be

generalized from to Pt) for t in (-tiax, triax) because At has the same regularity as

/10.

Assuming from now on that n = 0 and m = 0 (so that every regular function is in the
range of 3, up to a constant) we can upgrade this control of exponential moments into the

control of a weak norm of Fluct t. Here we use the Sobolev spaces H (R).

Lemma 5.5.2. Under the same assumptions, for a > 8 we have

EN F lfluct IVI K C (5.5.82)

where C depends only on V.

Proof. The proof is inspired by [5], in particular we start from [5, Prop. D.1] which states
that

~u ~ Cj r * b(r, -)f|2( dr (5.5.83)

where <b(r, -) is the standard heat kernel, i.e. D(r, x) e 4r. It follows that

E~) [>Tflu' t  E fuc * b( .)I 2 dr. (5 5 84)(0 NNH)- M C T

On the other hand we may easily check that, letting := (r, x - .), we have

E fluKt * <b(r, .)112 2 R) E (Fluct~ ( Xr)) dx. (5.5,85)

Applying the result of Lemma 5.5.1 to gives us a control on the second moment of

F'Iu t [t of the form

E M '(Fluct )) 2 (x,r (U) + 112 -
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Inserting into (5.5.84) and (5.5.85), we are led to

T -( x,rC4(U) + gIxr 23(U)) dx dr.

Since U is bounded, we may check that this right-hand side can be bounded by Cfa r"r- 7 dr,
0which converges if a > 7.

5.5.3 Proof of Theorem 3

For any test function #(x, y) we may write

(noyytereut (x) dfluct (Y) oLC2e5(.2),wflUCt 

and so by the result of Lemma 5.5.2, we find

E (N, O~,y uCt) (x dfuCt) C01 2at (UX). (5.5.86)

We may now bootstrap the result of Lemma 5.5.1 by returning to (5.5.74) and, using (5.5.86),
writing that

(5.5.87)EPM [A(t) [XN ,V1] < Cj )1C2(+1(y .
N,

On the other hand, by differentiating (5.5.71) applied with ( = log #t', we have

EP) [ log # dfluctt) ClioIsju) (5.5.88)

Inserting (5.4.57) and (5.5.87) and (5.5.88), (5.5.68) into (5.5.73), and integrating between
0 and t = -2s/No, we obtain

log KN,(_ t, t =
KN,,3 (PO, (0)

- ) N (Ent(It) - Ent(/po)) + -O(8 Ic22v1 ).
2 N N0 j

Using again (5.4.57) and 0 - 1 + to', we may rewrite this as

log 3N

KN,#l(A0, 0 (I1 2s

Combining this with (5.4.49), (5.2.24) with (5.4.64) and (5.4.65) we obtain

(exp(sFluctNO) + ( 1 2s
o'd[tv
.

N11 11C2-+1 
+

dpV

8 j |JC2 + 1|1 ||14 (5.5.89)

with C depending only on V. This proves Theorem 3.

log Epv

............ ............ ......................... ........

2
VM[to + 0 (- I I 11 C2,, i- I (U))

f . . I . N.

112 

< 
C 

fi

EP(t) N H (R)
N,[3 111flUCt(')
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5.5.4 Iteration and expansion of the partition function to arbi-
trary order

Let V, W be two C ' potentials, such that the associated equilibrium measures Iv, pw satisfy
our assumptions with n = 0, m = 0. In this section, we explain how to iterate the procedure
described above to obtain a relative expansion of the partition function, namely an expansion
of log ZNw1  - log Z'f to any order of 1/N. Up to applying an affine transformation to one
of the gases, whose effect on the partition function is easy to compute, we may assume that

pv and pw have the same support E, which is a line segment.
Since V, W are CO and "v, 1pw have the same support and a density of the same form

(5.1.10) which is C' on the interior of E, the optimal transportation map (or monotone
rearrangement) # from pv to pw is C' on E and can be extended as a C" function with
compact support on R. We let 0 := b - Id, which is smooth, and for t C [0, 1] the map

:= Id + t ' is a C -diffeomorphism, by the properties of optimal transport. We let
At t#p as before.

We can integrate (5.5.73) to obtain

log KA,8(/'w, (1)

E [ N -) + 1  N log 0 dit + I - log 0 dfluct dtN, f A3 )[ 2 J + (1 2) J H t ' N]

=N 1 - (Ent(pw) - Ent(ILv))

+ jE A [ ] + (1 - FiuctN log 'dfluctt) dt.

The integral on the right-hand side is of order 1. and we claim that the terms in the integral
can actually be computed and expanded up to an error O(1/N) using the previous lemma.

This is clear for the term E [Fluct ( log') which can be computed up to an error
PN, 1

0(1/N) by the result of Theorem 3. The term E [) A[N, ] can on the other hand

be deduced from the knowledge of the covariance structure of the fluctuations. Let F denote
the Fourier transform. In view of (5.5.74), using the identity

()- (YQ) f
' ,<'(sr + (1 - s)y)ds

and the Fourier inversion formula we may write

ELA Z E(s + (1 - s)y)ds dfluct (X)dfluct y)

= AF(V) (A)E Fluct~2 ( A)Fluct2 (ei(18)A) ds dA. (5.5.90)

On the other hand, let (PA be the map associated to e isA by Lemma 5.3.3. Separating the
real part and the imaginary part wne inayT use the results of the previous subsection to C
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and obtain

By polarization of the expression for the variance (see (5.1.16)) and linearity

E,<m Fhict(e M )lc (s1 E o(t FluctO (esA.) E,toFut(
N,3 N( FlcN( N,#j [( N , ,[lc()e(

(x(u) - SA(V)

V-V

+ JWPs,,(P(l_8 )AdIt)

Letting N -+ oc, we may then find the expansion up to 0(1/N) of E..) -2A(t[LN -

Inserting it into the integral gives a relative expansion to order 1/N of the (logarithm of the)
partition function log KN,fl. This procedure can then be iterated to yield a relative expansion
to arbitrary order of 1/N as desired.

5.6 Auxiliary proofs

5.6.1 Proof of Lemma 5.2.1

Proof Denoting A the diagonal in R x R we may write

WNV(XN)

N
-log lxi - x1 -4 N V(xi)

i$ji=

=J J(oglXy N N
JR

Writing EN 1  as NAv + fluctN We get

N( N ) ffA - logIx - yIdyv(x)dyv(y) + N2 Vdiiv

+ 2N log Ix - yldpvy(x)dfluctN(y) + N

+ ff - log Ix - yld

VdfluctN

iuctN(x)dfluCtN(y). (5.6.91)

-) I P',,dt + 0( )

'P(1_-s), u) -

EN Fluct('(e ")] = (1

W(1s)A ())d~t(u)dftt(v)+ 2 f

+ 0( 1).

(NV (X) E s(X).
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We now recall that (v was defined in (5.1.7), and that (v = 0 in Ev. With the help of this
we may rewrite the medium line in the right-hand side of (5.6.91) as

2N - log |x - yjd pv(x)dfluctN(y) + N VdfluctN
fR

2N - log |* dpv)(x) + dfiuctN 2N j((v + c)dfluctN

N N

2N (vd(j2 - NAv 2N Z (v(xi).
R i= 1

The last equalities are due to the facts that (V vanishes on the support of pLv and that fluctN

has a total mass 0 since Iov is a probability measure. We may also notice that since /-v is
absolutely continuous with respect to the Lebesgue measure, we may include the diagonal
back into the domain of integration. By that same argument, one may recognize in the first
line of the right-hand side of (5.6.91) the quantity N 2 Iv(pv).

5.6.2 Proof of Proposition 5.2.5

We follow the energy approach introduced in [74, 71], which views the energy as a Coulomb
interaction in the plane. after embedding the real line in the plane. We view R as identified
with Rx {0} C R2 ={(x, y), x E R, y C R}. Let us denote by 6R the uniform measure on
R x {0}, i.e. such that for any smooth p(x, y) (with x E R, y E R) we have

JCh =J (x, 0) dx.
R 2 R

Given (xI . XN) in RN, we identify them with the points (X1 , 0),. . . , (xN, 0) in R2. For
a fixed XN and a given probability density p we introduce the electric potential Ht by

N

H = (- log I - 1) * ( (,O) - Nyis . (5.6.92)

Next, we define versions of this potential which are truncated hence regular near the point
charges. For that let Sr denote the uniform measure of mass 1 on OB(X, r) (where B denotes
an Euclidean ball in R2). We define HN, in, R 2 by

H 1 ( log ) * (RNp . (5.6.93)

These potentials make sense as functions in R2 and are harmonic outside of the real axis.
Moreover Hit solves

N

-AH=2r( 2F- Ny,) . (5.6.94)
N, Xi

Lemma 5.6.1. For any probability density i1 XN in R and rj in (0,1), we have

F(N, Li) > | j H 12+ N log - 2N2||i||wr. (5.6.95)
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Proof First we notice that fR2 |VHN,rf 2 is a convergent integral and that

/ IN N12VHNJ 1 2 =-27r flogJx-Y~d (r) - NOR (x) d (") - N ) (y). (5.6.96)

Indeed, we may choose R large enough so that all the points of XN are contained iii the ball
BR= B(O, R). By Green's formula and (5.6.94), we have

H N,r12 HN,7 N +/2Nr HN T - N p5.6.97)
JB R fBR + ](

In view of the decay of HN and VHN the boundary integral tends to 0 as R - oc, and so
we may write

N

IVHN,r 2 = 27rI HN,, -- N)
fR2 1R2

and thus (5.6.96) holds. We may next write

if log Ix - yld _ 67) - Niy6R (x)d _ ) - Npy) (y)

- - log Ix - yJ dfluctN(x) utN(Y

N ppN

=~~~~ -'11 o + lgx-y 6 ("r ) - 6X 6X +2 _ logx --_y (6, 60p.

(5.6.98)

Let us now observe that f - log x - yI161)(y), the potential generated by 60) is equal to

f - log Ix - y|6, outside of B(xi, TI), and smaller otherwise. Since its Laplacian is -27rx7),
a negative measure, this is also a superharmonic function, so by the maximum principle, its
value at a point xj is larger or equal to its average on a sphere centered at xj. Moreover,
outside B(xi, rj) it is a harmonic function, so its values are equal to its averages. We deduce
from these considerations, and reversing the roles of i and j, that for each i -/ J

-Jlog Ix y| 6)67) _ - Jlog Ix - y6x%6 < logx -YI6x.

We may also obviously write

log x 6 - log x yJ6 6 -log hri - XjJJx-l x<;2?7.

We conclude that the second term in the right-hand side of (5.6.98) is nonpositive, equal
to 0 if all the balls are disjoint, and bounded below by Zi, log I x - xj I . Finally,
b the above considerations, since f - log Ix - 167) coincides with f - logI yK outside

B(x , 77), we may rewrite the last term in the right-hand side of (5.6.98) as

N

2N E log IX - xi|I+ log 77) dpha
i=1 Ban

I p""'I'11PIRM 10
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But we have that

( g + log )-h = (5.6.99)

so if p E L?, this last term is bounded by 2|1-t LN 2y. Combining with all the above results
yields the proof. E

Proof of Proposition 5.2.5. We now apply Lemma 5.6.1 for pv with y = . We obtain

| V Hr,|7 2 < FN XN, pv) + N log N + C(||pv||tx + 1) N. (5.6.10 0)

Let be a smooth compactly supported test function in R. We may extend it to a smooth
compactly supported test function in R 2 coinciding with (x) for any (x, y) such that y I 1
and equal to 0 for lyl > 2. Letting #I denote the number of balls B(xi, 1) intersecting the
support of , we have

(N NJ fluctN ( 07) - Npv J (6-)

#1
#I'riV(K - flV(I~ (5.6.101)2 N

But in view of (5.6.94), we also have

6(77- Ntpv V H '

KSupplI V I VH IIL2(supp ). (5.6.102)

Combining (5.6.100), (5.6.101) and (5.6.102), we obtain

J fluctN

<Cl Vj|I- + Supp~j (FN (XN, pIv) + N log N + C( vII L- + 1)N (5.6.103)

Bounding #I by N yields the result.

5.6.3 Proof -of Lemma 5.3.1

Proof. Since pjv minimizes the logarithmic potential energy (5.1.6), for any bounded contin-
uous function h we have

i h(x) - h dpv(x)dpv(y) J V'(x)h(x)duv(x). (5.6.104)
ff X - y

Of course, an identity like (5.6.104) extends to complex-valued functions, and applying it to
h = -- for some fixed z E C \ E. leads to

G(z)2 - G(z)V'(R7(z)) +- L(z) = 0, (5.6.105)
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where G is the usual Stieltjes transform of Mv

G(z) =1 dv(y), (5.6.106)

and L is defined by

L(z) f (7(z)) - V(Y) dv(y). (5.6.107)

Solving (5.6.105) for G yields

G(z) = (V'(R(z)) - V'(7(z)) 2 - 4L(z)). (5.6.108)

As is well-known, - I(G(x + ie)) converges towards the density pv(x) as E -> 0+, hence we

have for x in Ev
1

pV(X)2 = S(x) 2 ,2 (X) 2 (V(x)2 - 4L(x)). (5.6.109)
(27r)2

This proves that pv has regularity Cp-2 at any point where it does not vanish. Assuming
the form (5.1.11) for S, we also deduce that the function So has regularity at least Cp-3-2k

on Ev.
Applying (5.6.108) on R \ E, we obtain

1 1 1-V'(x) - dtpv(y) - 1V'(V 2- 4L(x),
2 f -y 2

and the left-hand side is equal to ('(x).
Using (5.1.11), (5.6.109) and the fact that V is regular, we may find a neighborhood U

small enough such that (' does not vanish on U \ Ev and on which we can write (' as ill
(5.3.30). E

5.6.4 Proof of Lemma 5.3.2

Proof. We first prove that the image of F is indeed contained in Cl(U).
For (t, ) (0, 0), we have indeed F(0, 0) = v + c and (v is in C' (R) by the regularity

assumptions on V. We may also write

F(t, ) F(0, 0) flog dv(y) 2

and since 11V'11c2(U) < 1/2, the second and third terms are also in C1 (U).
Next, we compute the partial derivatives of F at a fixed point (to, o) c -1, 1] x B. It

is easy to see that
8F 1

at OO) 2

and the map (to, 0o) - o #o is indeed continuous.



CLT for Fluctuations of 3-cnsembles with general potential - 131

The Frechet derivative of F with respect to the second variable can be computed as
follows

J log (i0(.)

J log 1 +

- 0o(y)) + (?1(-) - 1(y)) dpv(y) + Vto

(.) -0 d(y)v(y) + I

00 H* - 00 (Y) 1VY) +2 (t0

= .F(to, 0) - I k() 01 (Y)dpv (y)

O (Oo +'01) - V o 0o)

00 + EtO,'p (01)

where Eto,g0 (VJI) is given by

to,'O (Vi) = - [log 1 + 0 1(-) -
- #o(Y)

b H 01 ( ) d v(y)
#0 (H - #0 (Y)I

+ -jVo 0 (00 + 1) - Vo 0 0 - Vlt' 0 00

By differentiating inside the integral we get the bound

1t tcta (de pCd (U) t (U)

with a constant depending on V. It implies that

1() - V1() d()

0 () - 0(Y)

1
+ 10 o 0 0,

and we can check that this expression is also continuous in (to, '/o). In particular, we may
observe that

(5.6.110)
(0,0)

Finally, we prove the bound (5.3.32). For any fixed (t, 7/) c 1-1, 11 x B, we write

we get

7t
LIT(t, ~4)- T(0, 0) -

2

f' d.F(st, sV) -s

0 ds+ o d . -

+ -BvK] c(v) I

f0
+ 9F ( ds ,

02 - ( c1(U)

with 0, = Id + sVj'. It is straightforward to check that

j 0 - 'JJI~C(U) < CII -jC2(U) fl)pjC1(U)

-F(to, 'o) -

OT (
(to,0o)

LIV 1 =-

+ [ 9.F [] ds,
I a (st P ev) 8 (0,0) C I(U))

(5.6.111)

+ 1 Vt' 0

.F(t, T(O -F,0)
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To control the second term inside the integral we write

[ -] -[' ]d'1 (st,s4') ) (0,0)

0() - )(y)(Oq55Q) -qOS (Y)
S )(y)dpv(y) +

and we obtain

[4,] [- O,]
0 (sts'eP) (0, 0) C()

(.) -(y) (.) - ,(y)
#S() - #b(Y) - Y C'(U)

dyiv(y)

+ ( V't o s 8 1 -V)C1(U)

We now use that

(-) - 0(y)
0()-,(y))

- -- Y C'(U)

_ (,I() - b (y)) ( - - y
\ ~- Y / 8() -- 08(Y)

<C j~jC2(U) Y - I
#'s(- - #s(Y) 01(U)

Cs~,fl2 () 4(-) - 4,(y)
C s I )IC2(U) V s) ~ ) #(Y ) ( )

CS) 2q#s(y) C1 (U)

< ClII)112U ) - O1s(Y) C1 (U)

< C|,C 2(U) .

In the second and the fourth line, we used Leibniz formula. In the last line we used that
s(V)(.) - V;(y))/(- - y) is uniformely bounded by 1/2 in C2 (U) so its composition with the
function x -+ 1/(1 + x) is bounded in C2 (U). We conclude by checking that

I ' #S't - V') ||ciu _ C (i|Vc-() |I IIC1(U) + t||10||C2(U) ||,l|co(u)

E

5.6.5 Proof of Lemma 5.3.3

Proof. First, we solve the equation Bv[V,] + c in Zv, where Ev is operator defined in

(5.1.12). For x in Ev, we have the following Schwinger-Dyson equation

1 dpuv(y).
x - y

<

/ C1(U)

V'(x)
2= P.V. (5.6.112)

2(VSt 0 3- V') V
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In particular, for x in Zv, it implies

v(.](x := P. Y p v (y) dy, (5.6.113)
y - x

and we might thus try to solve

f4(y) 1
P.V. pv(y)dy - c. (5.6.114)

Y - X 2

Equation (5.6.114) is a singular integral equation, we refer to [68, Chap. 10-11-12] for a
detailed treatment. In particular, it is known that if the conditions (5.1.14) are satisfied,
then there exists a solution 0o to

P.V. dy = -+ c on Zv, (5.6.115)

which is explicitly given by the formula

0 ) = _ _ P._V. dy. (5.6.116)
2r2  V ory)(y- x) d

Since we have, for x in Zv

P.. - dy 0,
(y) (y - x)

we may re-write (5.6.116) as

C'(X) ((y) - (x
O(X) dy on Zl, (5.6.117)

27r2  V (y)(y-x)

where the integral is now a definite Riemann integral. From (5.6.117) we deduce that the

map 3-is of class C-' in Zv and extends readily to a Cr1 function on Ev.
For d 0,..., r - 1 and for x E Ev, we compute that

d! f (y) -Ros (y-0 () - !- y s~~ Y dy.
2-r2  a(y)y - S,)d

In particular, if conditions (5.1.15) hold, in view of Lemma 5.3.1 the map

o W)
() :

extends to a function of class (p - 3 - 2k) A (r - 1 - k), hence C2 on Ev, and in view of
(5.6.115) it satisfies Bv[V] =+ c on Zv.

Now, we define ?P outside Ev. By'definition. for x outside Ev, the equation

vLV](x) =1(x) + c
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can be written as

1 (y)- 1 1
( 1) dv (y) - dv(y) )' ( -(x) + c4,VX) -y j - y 2 2

and thus the choice (5.3.34) ensures that Bv[5] = i + c . Moreover, V) is clearly of class
CA(p-1) on R \ Ev. It remains to check that 4' has the desired regularity at the endpoints
of Ev. For a given endpoint a we consider 0 the Taylor development of order I := (p - 3 -
2k) A (r - 1 - k) at a of V). We can write (5.3.34) as

+ C LL )bX~Y d + (y) (x) V) Xdp-v ( + c
f dyv(y) + +c y+ f )dv(y)+ +c

f ' dpv(y) - !V'(x) f 1 dlv(y) - 1V'(x)

~+ C V - V]

(X) +f dyv(y) - V'(x)

As [41 = b + c on Ev, the numerator on the right hand side of the last equation
and its first I derivatives vanish at a. From Lemma (5.3.1) we conclude that is of class
I - k = (p - 3 - 3k) A (r - 1 - 2k) at a, hence C2 from (5.1.13).

5.6.6 Proof of Lemma 5.4.7

Using definition (5.1.6) we can write Iv,(pt) in the following form

-TV,(Pt) =- h"t dpt + fV dyt.

To prove Lemma 5.4.7, we introduce the auxiliary quantity

I(At) := hl df + f V dp,

and we first prove that I(fit) is close to Iv,(lit).

Claim 1. We have

IvE (Pt) = (At) + o (t40 (5.6.118)

Proof. Let us write

Iv,(lt)= ht dpit+ Vt dpt
(5.6.119)

h' t dfit + (h"' + h1")d(t - ) +] Vt dptz.

We have used the fact that, integrating by parts twice,

J h"dit = Jhdpt.
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We have, using the definition of it, t and (5.3.39)

hVI'd(pt - At) = J ( - Vt - C +-
V- t + O(t2l'VkIIC

2 (U))) d(pt - At).

In view of (5.4.42), (5.4.43), we thus get

+ hil )d(pt - At) + Vt dpt= 0 (t4| ||b2(U + fVtd t.

Combining (5.6.119) and (5.6.120) yields the result.

We may now compare I(At) and Iv(pv) using the transport map.

Claim 2. We have

,(At)=IV(1v) + t dpv

dyv(x)dpv(y) + I V"4' 2duv + 2 J'@Vdpv
+ OP(t itj|c2(U)).

Proof. We may write

I pt) = - log|dx) -

= hA' dp() - log 1

qpt(y) |dpo(x)d po(y) + V o $t d po + t

+ t OW -+(Y) dpjo(x)dpt(y) + 
x - YI

By a Taylor expansion, we obtain

t) = v(po) - t ( d)() :(x)dpto (y)
x -y

+ t WO lt +- dtt

2 , i~t 1

+ -Jt2

+ t J dpv + t2 f'@dpo

J o-$t d po

V o dt dpo +

)2dpo (x)do(y)

+ O(t3 |||cJ2(R) ).

Let us recall that by definition to = pv. By (5.6.104) we have

II OW - dv(x)dyv(y) JV' dpv,

hence we obtain (5.6.121).

To conclude the proof of Lemma 5.4.7 it remains to prove the following identity.

Claim 3.

I '4;div -,/ (~) Q dpv)2 d() - (..12

J (hI" +

(5.6.120)

t 2

2 (II
(5.6.121)

11

t 0 l4t dpto.

x-y

w)2dptV. (5.6.122)
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Proof By definition of V) we have

P c~)= 4(x) - ()1
- + c ) = (X -OYdpv(y) OV

2 x-y 2

and thus
2 (y) - O(x) - '(x)(y - x) dpv(y) - -

(x - y)
Integrating both sides against ipv yields

f ~'4'~av 2f ('y) - 4'(x) - '(x)(y - x))4'(x)'Odyv = 2 (0()0W 0 W( ) dp v(y) dyv (x)
f ff (x - Y)2

- f 4'4"V'd pv - J V"4' 2 d pv.

Using (5.6.104) for the second term we obtain

J 'dpuv 2 (yff - 4'(x) - 4'(x)(y - x))O(x)
(y - X) )

-fVV'Y V))()dpv(x)dytv(y) - V"#V2 dyv.
- y-x f

We may then combine the first two terms in the right-hand side to obtain (5.6.122).

.............. .............. .............

0
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