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Abstract

In this thesis, we investigate the local and global properties of the eigenvalues of S-ensembles.
A lot of attention has been drawn recently on the universal properties of f-ensembles, and
how their local statistics relate to those of Gaussian ensembles. We use transport methods
to prove universality of the eigenvalue gaps in the bulk and at the edge, in the single cut
and multicut regimes. In a different direction, we also prove Central Limit Theorems for the
linear statistics of S-ensembles at the macroscopic and mesoscopic scales.
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Chapter 1
Introduction

1.1 Background

The question of universality in Random Matrix Theory arose in the 50’s with the pioneering
work of E. Wigner [87] when he observed that the gaps of energy levels of large nuclei tend to
follow the same law, irrespective of the material. According to quantum mechanics, energy
levels of large nuclei should be described by the eigenvalues of a Hamiltonian, an Hermitian
operator acting on a Hilbert space. Wigner had the idea to model this operator by a large
Hermitian matrix with random entries, and look at its eigenvalues. With appropriate scaling,
one would find that the spacings of such eigenvalues would match empirically those of the en-
ergy levels. This point of view was adopted subsequently by F. Dyson ( see [38] and also [65]):

The statistical theory will not predict the detailed sequence of levels in anyone nucleus, but it
will describe the general appearance and the degree of irreqularity of the level structure that
is expected to occur in any nucleus which is too complicated to be understood in detail.

From there emerged the universality conjecture in Random Matrix Theory, known as the
Wigner - Mehta - Dyson conjecture, which states that the distribution of eigenvalue gaps
are the same for random matrices within the same symmetry class. In Random Matrix The-
ory, there are several ensembles of matrices for which the question of universality has been
extensively studied.

1.1.1 . Random Matrix Ensémbles
Wigner Ensembles_ '

Wigner matrices correspond to random symmetric or Hermitian matrices with independent
and identically distributed entries (up to the symmetry), with mean 0 and variance equal
to 1/N where N denotes the size of the matrix. In this context, universality refers to uni-
versality with respect to the law of the entries. Wigner matrices with Gaussian entries were
the first to be studied (see [38]).
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Invariant Ensembles

These correspond to symmetric or Hermitian random matrices sampled from the probability
distribution
1 .
dPY (M) = ﬁe—N VM) d M (1.1.1)
v
where dM = [];<;dM;; in the symmetric case, dM = [I;dM;;[];<; dRM; ;dZM;; in the
Hermitian case and V' is a continuous potential with some growth assumptions. The nor-
malization constant Z{ is called the partition function, and log ZJ the free energy. These
ensembles are called invariant since they are invariant by resp. orthgonal and unitary con-
jugaison. The probability density of the eigenvalues from these ensembles can be explicitely
computed and has the form ' ‘

! I1 i — A Pe NI VD g dAy, (1.1.2)

N
VB 1<i<j<N

Ps(dhs, ..., dAy) =

where
N
Zgi= [ T = xlfe Vi V®ax L diy (1.1.3)
1<i<j<N

with 8 = 1,2 respectively.
S-Ensembles

The previous density can be seen as the density of a gas with logarithmic repulsion, a con-
fining potential V' and at inverse temperature f > 0. This system is often referred as the
B-ensemble, or Coulomb gas, and it will be the central object under study in this Thesis.
In this context, universality refers to universality with respect the potential, the factor g
corresponding to the symmetry class. (B-ensembles generalize invariant ensembles and note
that for generic values of 3, there is not necessarily an underlying matrix model.

The Gaussian Ensembles (resp. Gaussian Orthogonal Ensemble, Gaussian Unitary Ensem-
ble), represent the canonical exemple for these ensembles and correspond to random syminet-
ric or Hermitian matrices with independant Gaussian entries (up to the symmetry). They
also correspond to invariant ensembles with potential V() = 8A?/4 with 8 = 1,2 respec-
tively. The reader can refer to [65] for an extensive study of the Gaussian Ensembles. There
are several questions that are of great importance in Random Matrix Theory, and we discuss
some of them.

1.1.2 Some questions of interest

Law of Large Numbers

In the case of the Gaussian Ensembles, Wigner showed from a direct computation of the
moments that the empirical distribution of the rescaled eigenvalues
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. 1 X :
Ly = N;JA’ | (1.1.4)

converge in expectation towards a probability 'Ineasufe_ called the Wigner semicircle law and
with explicit density

pocle) = 5= VA= 2 | (1.15)

The convergence also holds for Wigner Matrices for which the entries have a finite second
moment, and the convergence happens almost surely. As shown in [6, 73, 67], the empirical
distribution of the particles also converge for (-ensembles with mild assumptions on the
potential V| but with a limit yy depending on V. In fact, py is the unique minimizer of the
encrgy functional

B = [ (P2 - Lroglos - ool duein@) (119

on the space M;(R) of probability measures on R, and a large deviation principle holds with
good rate function E(u) — E(uy) (see [6]). Moreover, the measure py has compact support
and is uniquely determined by the existence of a constant cy such that:

ﬂ/bmx—mmwww44m3cV,

with équality almost everywhere on the support. For now, we assume the following

e V is analytic on a neighbourhood of the support.

e lim lnfﬁél—x—l +00.

o The function 8 [ log|z — y|duv(y) — V(z) — cv does not vanish outside the support.

In that case the support of the equilibrium measure py is an union of intervals A =
Ul ole; s f] and has a density that can be written in the following form (see [34])

duv = H\/x—a \/oﬁ (1.1.7)

where S is analytic on a neighbourhood of the support. From there we can dlstmgulsh
several regimes, and the distinctions will be essential in what follows.

e We will say that we are in the single cut regime if the support of uy is connected (i.e
g = 0), and that we are in the multicut regime otherwise.

o We will say that the regime is non- cmtzcal if S > 0 on the support, and that the regime
is critical otherwise.
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Notice that there are two kinds of criticality: S can vanish either in the interior of the sup-
port, or at the edges of the intervals. It is shown in [35] that in either cases, S vanishes like
an even power.

Central Limit Theorems

From the previous paragraph, we see that for a continuous function f with compact support,

N
F LS00 = [ swute) (1.18)

A natural extension would be the study of the fluctuations of the linear statistics
N ,
5100 = N [ fe)duv(z) (119)
i=1

Note that, due to the rigidity of the eigenvalues (see next paragraph), there is no 1/+v/N nor-
malization. The fluctuations of linear statistics of the eigenvalues were shown to converge
towards a Gaussian random variable for Wigner ensembles (see [4, 63, 76]), and S-ensembles
in the non-critical onecut regime first in [51] and then in [16, 52]. However, it was shown
in [77, 15] that the result does not hold for all test functions f in the multicut regime. Al-
though the macroscopic limit uy is not universal, global fluctuations exhibit universality in
the sense that the mean and variance of the limiting Gaussian do not depend on the potential.

In a similar vein, one can also ask about the fluctuations of the linear statistics at the
mesoscopic scale @ € (0;1) around a fixed energy level E in the interior of the support of
the equilibrium measure:

N
g fIN* (A = E)) — N/f(N"(x - E))dpy(z) (1.1.10)

Results in this direction were obtained in a variety of settings, for Gaussian Ensembles
[22, 46], and for invariant ensembles [24, 55]. In many cases the results were shown at
all scales a € (0;1), often with the use of distribution specific properties. An early paper
studying mesoscopic statistics for Wigner Matrices was [23], here the regime studied was
a € (0;1/8). The recent work [50] has pushed this to all scales. ’

Local Laws and Rigidity

The Law of Large Numbers determines the asymptotic number of particles in a fixed interval
,[a;' b]. One could ask if the result still holds when the size of the interval scales with N; i.e
can we prove for E fixed in the interior of the support of the equilibrium measure

1
2Nn

#{i M e[E-nE+n} — uv(E), (111
where N=1*¢ < 5 < N=¢ for some ¢ > 0. - » | ' -
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Local Laws were proved first for Wigner Ensembles (see [39, 41], and [14] for a survey) and
subsequently for f-ensembles in the single cut non-critical case in [20, 19, 18] with various
assumptions on the potential (convex analytic, V € C*, and then V non-convex). In these
articles, the authors also prove the rigidity of the particles with the same assumptions on
the potential: for any ¢ > 0, there exists some constants C,c > 0 such that

PYs (3, [N = M| = N7H) < Cexp(=N9) (1.1.12)

where X denote the reordered eigenvalues. Rigidity is proved by a multiscale analysis, by
bootstraping concentration estimates through the use of loop equations, and was also proved
more recently in the multicut case in [61].

Partition function

For Gaussian Ensembles, there is an exact formula for the partition function given by a
Selberg integral (see [75])

LT+

ZN, 5 = (2m)NI2(N B j2) BN /4+8/4=1/2N HFélFJ(r ;/;)/3’152) C (1113)
For invariant ensembles, Partition functions can also be computed using orthgonal polyno-
mials (see [65]). In the case § ¢ {1,2,4}, orthogonal polynomial methods do not apply
anymore. In [77], M. Shcherbina derives an asymptotic expansion of log Z{/; with o(1) pre-
cision. Using the loop equations (or Dyson-Schwinger equations), G.Borot and A. Guionnet
derived in [16] a 1/N asymptotic expansion of the free energy at all orders for 3-ensembles
in the single cut non-critical case. The loop equations ( see Proposition 4.2.1) are a family
of exact equations that can be obtained by integration by parts and determine a relation-
ship between the correlators. They were used to study the global fluctuations of the linear
statistics first in [51]. Such a 1/N expansion does not hold anymore in the multicut regime,
but the authors provide in [15] an alternative formulation with oscillating terms.

Eigeniralue gaps
In the Bulk

Wigner’s original interest was to smdy the cigenvalue gaps. It was shown vby M. Gaudin
that for the GUE, if we fix an energy level £ € (—2;2) and define

- : l ‘
N—El < —2 3}, (1.1.14)

1, s
SN()\,S,E‘)=1—I\7# {i, i =N S Npse(E)

5 |
NNSG(E) ’

where [y — o0, I[y/N — 0, and A correspond to the reordered eigenvalues then

Edus (Sv(A.s,E)) | — [ pt)dt
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where p is a probability distribution - named the Gaudin distribution. In [35], P. Deift et
al. used the essential fact that for invariant Hermitian ensembles, the correlation functions
can be written in terms of orthogonal polynomials and used Riemann-Hilbert methods to
provide asymptotics for orthogonal polynomials, thus proving the averaged gap universality.
One might want to look instead at the distribution of a single eigenvalue gap. In fact T. Tao
showed in [79] that if eN <4 < (1 —¢&)N for € > 0 then

Piue(Npseh) Aip1 — Xi) < s) — /0 p(t)dt . (1.1.15)

As will be shown in Chapters 2 and 3, fixed eigenvalue gaps are universal for F-ensembles
with regular one-cut potentials (see also [20]), and regular multicut potentials. Their con-
vergence can be obtained using the translation invariance of the eigenvalue gaps as in [42].

At the Edge

Eigenvalues at the edge of the spectrum have a different behaviour than in the bulk. They
typically scale as N?/3 and C.Tracy and H.Widom showed (see [82]) that for the GUE

Plye(N*?(A\ +2) < 5) — F(s) (1.1.16)
Where F is the so-called Tracy-Widom law.

Correlation functions

Universality at the microscopic levels can also be stated in terms of the correlation functions.
We define the k — point correlation function by

(O M) = / PV (Ads o A)desn -+ Ay | (1.1.17)

Here pV denotes the density of the unordered elgenvalueb for a Matrix Ensemble Thus we
have for all continous and compactly supported functlon f on R¥ ‘

EV( Y f(/\il,---,)\,-k) FOW AR - AeddA - dXy . (1.1.18)
i £ Al N k ‘ C

With these notations, the Law of Large Numbers states that the one-point correlation func-
tion converges towards a probability density. At the microscopie level, it was shown by by
F. Dyson, M. Gaudin, M. Mehta (see [65]) using orthogonal polynomials that for the GUE
and F € (—2;2) fixed
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ESUE(" ;7&, f(Nusc(E)(Ail ~E), ,Nusc(E)(/\ik - E)))

N! Ak
... NE d
(N k 'Nk /J,s / f )‘17 pk (NE+ M,sc(E), A + NSC(E))dAl /\
— /f At Ak) det (B (A, Aj)ijer)dAs -+ - dXg
(1.1.19)
where K is the sine kernel:
z—y

This is proved using the fact that the eigenvalues of the GUE form a determinantal point
process, i.e its correlation functions can be written explicitely in terms of a determinant
det (K™ (Ai, Aj)ij<k), where K can be written in terms of the Hermite orthogonal polyno-
mials. For 8 # 2, it is not true anymore that the point process formed by the eigenvalues from
a fB-ensemble with Gaussian potential 3\?/4 is determinantal, and one has to use alternate
techniques to find the limit in law of this point process. In fact, A. Edelinan and I. Dumutriu
showed in [37] that we can realize these eigenvalues as the eigenvalues of a random symmetric
tridiagonal matrix. Using this representation, B. Valké and B. Virdg showed in [84] that the
point process (N pg(E)( A — E))n<n converges in law with respect to the counting measure
towards a point process called the Sineg point process (see also [85] for an alternative descrip-
tion). At the edge, and extending (1.1.16), it has also been shown by J. Ramirez, B. Rider
and B! Virdg in [72] that the eigenvalues are described by an operator called the Stochacstic
Airy Operator and the k first recaled eigenvalues (N?3(\; +2),--- , N?/3(\ + 2)) converge
in distribution to (Ay,- -, Ax) where A; is the i-th smallest eigenvalue of the stochastic Airy
operator SAOg. B

Universality of the correlation functions (in the weak sense) in the bulk states that if we
fix an energy level E € supp(uv) such that py(E) > 0, we have for all smooth compactly
suppoerted function f

lim BV ( 5 SN0 =B, N (B) - £)))
: = lim ]EgﬂE< Z )‘(N,U,SF(O)/\“, e ’Nﬂsc'(())/\‘iJ) ’

N =
o n# #u

(1.1.20)

Note that the latter limit depends nelther in E or V,-and is described by the Sme,g process. It
is often easier to prove "averaged energy universality”, where we consider the previous quan-
tity averaged on a window of size n = N71*¢ with 0 < ¢ < 1. Universality for S-ensembles
at the edge usually refers to the convergence in law of the first rescaled eigenvalues of non-
critical " B-ensembles to those of the stochastic Airy operator SAOgz. A-different limit is
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expected to appear for critical potentials, and the N%/3 scaling would differ.

Universality was proved first for invariant ensembles in the case § = 2 using the Christoffel-
Darboux formula for orthogonal polynomials (see [70] [69]), and subsequently for other clas-
sical values of § = 1,4 in [31],[32], both in the bulk and at the edge of the spectrum.
Universality of the correlation functions was proved more recently by P. Bourgade, L. Erdos.
and H.T. Yau for general non-critical S-ensembles with one-cut potentials in [20, 19, 18],
with various assumptions on the potential (eventually V € C?), both in the bulk and at
the edge. Universality of the correlation functions in the bulk was subsequently proved in
the multicut case for analytic potential in [78], using change of variable methods. - Similar
statements hold for Wigner Ensembles (see [40, 43, 42, 81, 80]). ‘

The main goal of these Thesis is to mvestlgate some of the universal features of S-ensembles.
More specifically we will focus on

e Universality of the eigenvalue gaps, in the bulk and at the edge. Chapter 2 treats the
single cut case, whereas Chapter 3 deals with the multicut case.

e Central Limit Theorems at all mesoscopic scales in the one cut regime in Chapter 4.

e Central Limit Theorems at the macroscopic scale in the multicut and crltlcal cases in
Chapter 5.

Each Chapter corresponds to a different article. We briefly present here the content of each
Chapter, and the main results they contain.

1.2 Results

The second Chapter corresponds to the article [11] written in collaboration with A. Figalli
and A. Guionnet. In this Chapter, we consider the probability density (1.1.2), where V is
a potential such that the equlibrium measure is single cut and non critical, and we want
to investigate universality of the rescaled eigenvalue gaps. If we are given two potentials
V,W : R — R, we know from optimal transport theory (see [86]) that there is a transport
map TV : RY — R" that transports Py ; to ]P’V W i.e such that for all bounded measurable
function f : RY = R :

/f TN, A ) (d)\l, L dAy) = /j Al,..,,\N)[Pegw(dxl,...,dAN).

| (1.2.21)
However it is not clear how does this map depend on N and how to deduce universality results
from it. The main idea behind this Chapter is to find an approximate transport map that will
satisfy (1.2.21) up to an error (log N)? || ||, /N and for which we have an explicit expansion
in N. This map is obtained as the flow of an approximate solution of a linearized Monge-
Ampere equation, and can be written as TV = (TN ... | TN) with TN(A) = To(A) + TV A)

where T is a transport map from py to py,w and T}V is of order ]—9%1—\'- (see Theorem 2.1.3).
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Once the linearized Monge-Ampere equation is written, the construction of the main term
T, involves the inversion of a linear operator Z acting on smooth functions f by

— o (L= g+ Vi@, (1.2:22)

This operator is essential to the construction of the transport map, and to the analysis of the
loop equations and will appear in all subsequent Chapters. One of the key features of = is
that it is invertible in the space of smooth functions if the measure py is single cut (modulo
a constant term). The error terms are then controlled by explicit bounds on the moments
of lincar statistics through the use of loop equations. From this expansion, we can deduce
the universality of the eigenvalue gaps in the bulk, as well as universality at the edge by a
Taylor expansion. More precisely, we prove for V,W € C*(R)

Theorem 1.2.1. For a constant C, for all m € N*, f : R™ — R Lipschitz and compactly
supported in [—M; M| we have

1. In the Bulk

JIV Ot =X N = X)) aB

/f (To)' (M) hirr = Ay -+ N(To) () (Aiem — As) ) dPY

<8y s oVt

2. At the Edge

og N)?2
N1/2 +M N1/2

g 2 w5,

/f(N2/3()\1 —ayw) S NP (A — a\—/+W))d]PV+Wﬂ

B / F(N(To) (a) (M — o), -+, N (To) (0) (A = ) ) dPY
(log N)3

og N)? logN M?

¢
”f” +C \/— N5/6 Nl/d N4/d

MVl

where ]P’f,\' denotes the measure on the ordered eigenvalues.

This establishes universality of the fixed eigenvalue gaps in the bulk and at the edge for
B-ensembles in the single cut non critical regime.

The third Chapter extends the result to the multicut case and corresponds to [10]. In this
Chapter only, the potential will be assumed to be analytic. The main obstruction in carrying
the approach taken in the previous Chapter is that the operator = defined in (1.2.22) is no
longer invertible in the multicut case. To decal with this, onc has to consider the auxiliary
fixed filling fractions model, introduced in [15, 17]. The fixed filling fractions model corre-
spond to the S-ensemble model in which the number of particles in each cut is conditionned
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to be fixed. One can then do a transport between the measure with fixed filling fractions,
and a measure in which the interaction between the cuts has been removed. As the latter
measure corresponds just to a product measure of S-ensembles in the single cut regime, one
can use the results from the previous Chapter to study the local fluctuations. The sharp
concentration estimates derived in [15] on the number of particles in each cut then allow us
to extend the results obtained in the fixed filling fractions model to the original one. This
establishes fixed eigenvalue gaps universality in the bulk, and universality at the edge (see
Theorems 3.1.3, 3.1.4 and 3.1.5) in the multicut case.

In the two previous Chapter, we investigated the local fluctuations of the particles. In the
two last Chapters, we focus on the fluctuations of the linear statistics at the mesoscopic and
macroscopic scales, and prove Central Limit Theorems. The fourth Chapter describes the
results obtained in the article [13] written with A. Lodhia about the Central Limit Theorem
at mesoscopic scales for general 3-ensembles, with single cut regular potential. More precisely
the main point of this Chapter is to provide a proof of the following

Theorem 1.2.2. Let 0 < o < 1, E a point in the bulk, V € C"(R) and f € C5(R) with
compact support. Then, under PY

N
> f(N* (N = E)) = N / f(N%(z — E))dpy(z) —2— N(0,07) ,

where the convergence holds in moments (and thus in distribution), and

o= e f] (222)

The main idea is to use the rigidity estimates proved in [19] to obtain a bound on the linear
statistics with high probability, and use the loop equations described in Proposition 4.2.1 to
compute recursively the moments of these linear statistics. The operator = appears naturally
in this context and it is necessary to invert it in order to compute the moments of order
n + 2 in terms of the moments of order n.

The recent article [12] written in collaboration with T. Leblé and S. Serfaty constitutes the
final Chapter and investigates the global fluctuations of S-ensembles with general potential,
including the multicut and critical cases. As'in these cases the operator = is not invertible
one cannot use the loop equations to deduce a Central Limit Theorem in a straightforward
manner as in the previous Chapter. A central observation, and trick that was already used
in [51] is that we can express the Laplace transform of the linear statistics as a ratio of
partition functions with different potentials: for a measurable bounded function £ and s € R

N Z\I/\iﬁ
EV,B(eXp(sZS(/\i)> = ZN )
V.8

where V; = V — %5, The idea is then to use the splitting formula (5.2.21), and do a transport
between the equilibriumn measures py and py, in order to compare the partition functions
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Z(,\i p and Z{}{ 5. One issue that we have is that once again, doing an exact transport for all
test functions £ is only possible when = is invertible, in the single cut non critical regime
that is. However, in the multicut and critical regimes, we are able to do a transport between
v and an approximation fiy, of uy, as soon as £ lies in the image of Z. Using this approach
we can prove the following theorem:

Theorem 1 (Central limit theorem for fluctuations of linear stafistics). Let € be a function
in C"(R), assume that H1-H3 (see Chapter 5) hold. We let

k = max 2k;,

i=1,...,m

where the k;’s are as in (5.1.11), and assume that, p (resp. r) denoting the reqularity of V
(resp. §)

p>(3k+5), r>(2k+3). (1.2.23)
Ifn > 1, assume that & satisfies the n following conditions
d
WY 0 ford=o0,....n—1 (1.2.24)
v o(y)
Moreover, if m > 1, assume that for alli=1,..., m

g(y) - Rsi,dg(y)

T =0 ford=1...2%, (1.2.25)
v 1

where R, 4€ is the Taylor expansion of & to order d — 1 around x given by

Regb(s) = €(a) + (= 2)€ ) + -+ LT,

Then there exists a constant ¢¢ and a function v of class C* in some open neighborhood
U of By such that Zy[¢] = % +ce on U, and the fluctuation Flucty(§) converges in law as
N — oo to a Gaussian distribution with mean

me = <§—1)/¢I dpy,

ve=— [ veduy.

and variance

This approach also yields a rate of convergence of the Laplace transform in the single cut
regular cases. '

1.3 Future Directions

We ‘discuss some possible continuations of the work done in this thesis.
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Universality in the critical case

A natural extension of the Chapters 3 and 4 would be to investigate whether universality
also holds for critical potentials. We distinguish two cases: universality in the bulk and
universality at the edge. In the bulk, the criticality should not play a role and the Sineg
process should still be the limiting point process. At the edge, everything changes and one
should expect different limits (see [28], [27] for the description of the possible limits in the
case = 2, and [53] Section 13 for general §). .

Fluctuations of the linear statistics at the edge
In Chapter 5, instead of considering a point E in the bulk, we can consider £ as one of the

endpoints. We expect the same result to hold with a very similar proof, but with a different
variance for the limiting Gaussian

§=267r2/ / ( y)) ’i/;_;dxdy.

The only (mild) challenge would be to extend the lemma 4.2.5.

CLT at the mesoscopic scale in the critical and multicut cases

We expect the approach taken in Chapter 5 to carry on to the mesoscopic scale. Some
extra care is needed when we compare the measure uy, and its approximation fiy,, as these
measure would also depend on N in the mesoscopic case, and the current estimate (5.3.32)
would blow up.

Universality for higher dimensional Coulomb gases

Recently, a lot of work has been done to understand the local (see [25, 57, 58, 9]) and global
(see [59, 7]) behaviour of higher dimensional Coulomb gases. Rigidity of the particles has
been proved in two-dimensions, and a Central Limit Theorem on the fluctuations of the linear
statistics as well. However, at this point, there is no statement or proof about universality
in higher dimensions. It would be interesting to see 1f the transport methods would apply
in that context. :



Chapter 2

Transport maps for S-matrix models
and Universality

This Chapter is based on the article [11] written with A. Figalli and A. Guionnet.

2.1 Introduction.

Given a potential V : R — R and 8 > 0, we consider the S-ensemble

1
PY(dAy, ... dAy) = o5 IT = APV ELYAI 4 day, (2.1.1)
V 1<i<j<N

where ZY = [ Tcicien [N = A Pe VTS VA dry - day.
We assume that V' goes to infinity faster than flog|z| (that is V(z)/Blog|z| — +oo as
|z| = +00) so that in particular Z{ is finite.

We will use py to denote the equilibrium measure, which is obtained as limit of the
spectral measure and is characterized as the unique minimizer (among probability measures)
of '

i) =5 [ (V@) + V() = Blogle — ol)d(a)duy). (2.12)

We assume hereafter that another smooth potential W is given so that V +W goes to infinity
faster than Slog |z|. We set V; :=V + tW, and we shall make the following assumption:

Hypothesis 2.1.1. We assume that py, and py, have a connected support and are non-
critical, that is, there exists a constant ¢ > 0 such that, fort = 0,1,

d . _
—-g;—‘ = St(ac)‘\/(z —a)(by — ) with Sy > ¢ a.e. on [ag, by).

Finally, we assume that the cigenvalues stay in a neighborhood of the support [a, — ¢, b, + €]
with large enough P{-probability, that is with probability greater than 1 — C N~ for some
p large enough. By [15, Lemma 3.1], the latter is fulfilled as soon as:

21
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Hypothesis 2.1.2. Fort = 0,1,

Unla) i= Vi(a) = 8 [ du ) oglz ~ (2.1.3)
achieves its minimal value on [a, b]® at its boundary {a, b}

All these assumptions are verified for instance if V; is uniformly convex for ¢t = 0, 1.

The main goal of this Chapter is to build an appfoximate transport map between P
and P, ,: more precisely, we construct a map TV : R —RY such that, for any bounded
measurable function ¥,

(log N)*

<
SC—5

\ [xorvapy ~ [ xar.,, o (2.1.4)

for some constant C independent of N, and which has a very precise expansion in the
dimension (in the following result, Ty : R — R is a smooth transport map of py onto py 4w,
see Section 2.4):

Theorem 2.1.3. Assume that V,W are of class C3' and satisfy Hypotheses 2.1.1 and 2.1.2.
Then there exists a map TN = (TN, ..., TNN) : RNSRN which satisfies (2.1.4) and has
the form

TN (R) = To(N) + NT A Vi=1..,N, A= (A,., ),
where Ty : R = R and T} . RY 5 R are smooth and satisfy uniform (in N) regulanfy

estimates. More precisely, TN is of class C? and we have the decomposition TV* = X
LX wh
2" where

Sup 1X aeyy < Clog Ny 1 XY |y < ONY*(log N)?, (2.1.5)

for some constant C > 0 independent of N. In addition, with probability greater than
1—- N-NC,

max
1<k,k'<N

IXN"()\) - X{V”“’(_A)[ <cC long\/NlAk =l (2.1.6)

As we shall see in Section 2.5, this result implies universality as follows (compare with
[19, Theorem 2. 4] -

Theorem 2.1.4. Assume V,W € C3', and let To be as in Theorem 2.1.3 above. Denote PY
the distribution of the increasingly ordered eigenvalues \; under PY. There exists a constant
C > 0, independent of N, such that the following two facts hold true:
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1. Let M € (0,00) and m € N. For any LIpS(hIfZ function f:R™ — R supported ms7dc
(=M, M]™,

TN O =00, N O = 00) B

- / F(TUOINOwer = A, TUOIN Qi — A)) 4P
.. (log N g N)?  logN  M?
A O e S I

2. Let ay (resp. ayi+w) denote the smallest point in the support of wy (resp. pyv+w), so
that supp(py) C [av,00) (resp. supp(pv+w) C [aviw,00)). Let M € (0,00). Then,
for any Lipschitz function f:R™ — R supported inside [—M, M]™

‘ /f(NQ/S(/M —aviw), .., N3\ — av+W)) APy, w

- / f(NmTé(av)()\l —av),. .o, NPTYay) (A - a,v)) dpY

(log N)3 (log N)? logN  M? logN
< C “f”OO \/— N5/6 M N5/6 + N4/3 + 17\]'1/3 ||vf||00

The same bound holds around the largest point in the support of py .

Remark 2.1.5. The condition that V, W € C3! in the theorem above is clearly non-optimal
(compare with [20]). For instance, by using Stieltjes transform instead of Fourier transform
in some of our estimates, we could reduce the regularity assumptions on V,W to C? by
a slightly more cumbersome proof. In addition, by using [19, Theorem 2.4] we could also
weaken our regularity assumptions in Theorem 2.1.3, as we could use that result to estimate
the error terms in Section 2.3.4. However, the main point of this hypothesis for us is to
stress that we do not need to have analytic potentials, as often required in matrix models
theory. Moreover, under this dSSlHIlp'(l()Il we can provide self-contained and short proofs of
Theorems 2.1.3 and 2.1.4. :

Our strategy is. very robust and flexible. For instance, although we shall not pursue
this direction here, it is possible using this strategy to prove universality of the correlation
functions (as was done in [20] and [78]). on an averaged window, using the same arguments
as in [44], Lemma 4.1.

The Chapter is structured as follows: In Section 2.2 we describe the general strategy to
construct our transport map as the flow of vector fields obtained by approximately solving
a lincarization of the Monge-Ampeére equation (see (2.2.8)). As we shall explain there, this
idea comes from optimal transport theory. In Section 2.3 we make an ansatz on the struc-
ture of an approximate solution.to (2.2.8) and we show that our ansatz actually provides a
smooth solution which enjoys very nice regularity estimates that are uniform as N —» co. In
Sectlon 2.4 we reconstruct the approximate tr ansport map from PY to PY 4w Vvia a flow argu-
ment The est1mates proved in this section will be crucial in Sectlon 2.5 to show universality.
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2.2 ApproXimate Monge-Ampére equation

2.2.1 Propagating the hypotheses

The central idea of the Chapter is to build transport maps as flows, and in fact to build
transport maps between P and ]P’% where t — V, is a smooth function so that Vy = V,
Vi = V+ W. In order to have a good interpolation between V and V + W, it will be
convenient to assume that the support of the two equilibrium measures gy and gy w (see
(2.1.2)) are the same. This can always be done up to an affine transformation. Indeed, if
L :R — R is the affine transformation which maps [a;, b;] (the support of uy,) onto [aq, bo]
(the support of uy,), we first construct a transport map from Py to LEVPY,,, = PR*"
where , o ‘ - :

W=VoL'+WoL -V, (2.2.7)

and then we simply compose our transport map with (L71)®" to get the desired map from
PY to Py, . Hence, without loss of generality we will hereafter assume that uy and pviw
have the same support. We then consider the interpolation uy, with V; = V +tW, t € [0, 1].
We have:

Lemma 2.2.1. If Hypotheses 2.1.1 and 2.1.2 are fulfilled for t = 0,1, then Hypothesis 2.1.1
is also fulfilled for all t € [0,1]. Moreover, we may assume without loss of generality that V
goes to infinity as fast as we want up to modify PY and P, by a negligible error (in total
variation).

Proof. Let ¥ denote the support of uy and py,w. Following [16, Lemma 5.1}, the measure
Wy, is simply given by .
=(1-tuy +tpyw.

Indeed, py is uniquely determined by the fact that there exists a constant ¢ such that

ﬂ/log |z — ylduv(z) =V < ¢

with equality on the support of uy, and this property extends to linear combinations. As a
consequence the support of py, is ¥, and its density is bounded away from zero on . This
shows that Hypothesis 2.1.1 is fulﬁlled for all t € [0, 1]. v

Furthermore, we can modify PY and PY.,, outside an open nelghborhood of ¥ without
changing the final result, as eigenvalues will quit this neighborhood only with very small
probability under our assumption of non-criticality according to the large deviation estimates
developped in [16] and culminating in [15] as follows:

limsup—-ln]P’V [Fi: NeF]< _B inf Uy (z),
N—-ooo N 2z

NNV SRRy B
lmlgfj—\l-lnﬂ”,v[az i GQ]>-—§ inf Uy (z).

€N

where Uy := Uy — inf Uy, and Uy is defined as in (2.1.2). -0
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Thanks to the above lemma and the discussion immediately before it, we can assume
that py and pyw have the same support, that W is bounded, and that V' goes to infinity
faster than z” for some p > 0 large enough.

2.2.2 Monge-Ampere equation

Given the two probability densities P{} to P{/ as in (2.1.1) with 0 < ¢t < s < 1, by optimal
transport theory it is well-known that ‘there exists a (convex) function ¢7, such that Ve,
pushes forward IF’ onto ]P’ . and which satisfies the Monge-Ampére equation

dPY
WD) = oy T D

pS(v¢£Va) ’
(see for instance [86, Chapters 3 and 4] or the recent survey paper [29] for an account on
optimal transport theory and its link to the Monge-Ampére equation).
Because ¢,,(z) = |z|*/2 (since V¢, is the identity map), we can differentiate the above
equation with respect to s and set s =t to get

AN =) —p Z % w;\ - i L + N Z W(N) + N Z V/(\)oaN, (2.2.8)

wherg P := 5| 5=t and
V= N / S W(A) dPY = 8, log Z3Y.

Although this is a formal argument, it suggests to us a way to construct maps TON, RN — RV
sending Py onto Py : indeed, if Tg%, sends P onto P/ then V@yY, o Tt sends P{ onto PY .

Hence, we may try to find TONS of the form TONS Vqﬁt Lo Tyy + o(s —t). By dlfferentiating ~

this relation with respect to s and setting s = t we obtain T, = VN (ToY).

Thus, to construct a transport map TV from PY/ onto Py, ,, we could first try to find ¥
by solving (2.2.8), and then construct 7V solving the ODE X = VyN(X]N) and setting
TV = XN, ‘We notice that, in general, TV is not an optimal transport map for the quadratic
cost. : :

Unfortunately, finding an exact solutlon of (2.2.8) enjoying “nice” regularity estimates
that ‘are uniform in N seems extremely difficult. So, instead, we make an ansatz on the
structure of ¥ (see (2.3.12) below): - the idea is that at first order eigenvalues do not
interact, then at order 1 /N eigenvalues interact at most by pairs, and so on. As we shall see,
in order to construct a function which enjoys nice regularity estimates and satisfies (2.2.8)
up to a error that goes to zero as N — oo, it will be enough to stop the expansion at 1/N.
Actually, while the argument before provides us the right intuition, we notice that there is
no need to assume that the vector field generating the flow XN is a gradient, so we will

consider general vector fields YN (Yf’t, .. Y%'t) RN —» RV that approximately solve
N
divY® = ~ﬂz Ly NZW()\ + NZV’ YN, (2.2.9)
i<j J

We begin by checking that the ﬂow of an approx1mate solutlon of (2.2.9) glves an ap—
pr oxunate tr anqport map

-,
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2.2.3 Approximate Jacobian equation ,
Here we show that if a C* vector field Y} approximately satisfies (2.2.9), then its flow
XtN = Yzf,v(XtN)v Xév =1Id,

produces almost a transport map.
More precisely, let YV : RN — RN be a smooth vector field and denote

N
RN(YN) =c¥ - 83 )\_/\”—kNZW +NZV’ YN, — divy).
z<7 ;

Lemma 2.2.2. Let x : ]RN —R be a bounded measurable function, and let X|¥ be the flow

of Y. Then
[xxiyael - [ ey

Proof. Since Y{v € C*, by Cauchy-Lipschitz Theorem its flow is a bi-Lipchitz homeomor-
phism.

If JX} denotes the Jacobian of X}¥ and p; the density of P}, by the change of variable
formula it follows that

t
< xllos / IRY (Y™ e ds.

/xd]P’N,, = /X(X;’V)JXZth(XZV)dw

‘/X<Xﬁ>dpﬁ—/xdw

Using that 8,(JX[Y) = divYY JX}N and that the derivative of the norm is smaller than the
norm of the derivative, we get

|0, A| < /

= / |divY N JXN pi(XN) + TXN (010) (X)) + IXN Vo (XN) - 0, XN | dx

thus

< Il [ 0= IXEp X o = oot (2:2:10)

dz

B (IX] pu(X1))

= [IRYCOIOE) IXE puX2) da

- [ RN () ap
Integrating the above estimate in time completes the proof. . S | s . O
By. taking the supremﬁm over all functions x with Ixlleo £ 1, ‘the lemma above gives:

Corollary 2.2.3. Let X} be the flow of YV, and set PV := (XN) ‘]P’I‘)’"the image of PY by
XN. Then :

IBY Pl < / IRY (Y™)| s oy s
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2.3 Constructing an approximate solution to (2.2.8)

Fix t € [0,1] and define the random measures
LN = -]%I—Z(S)‘i and MN = Zé,v —N,U,V‘. (2311)
i o

As we explained in the previous section, a natural ansatz to find an approximate solution of
(2.2.8) is given by

U O dn) = [ [ioa(o) + pneta) | abw(@) + o [ o) dMi(e) dbinty),
(2.3.12)
where (without loss of generality) we assume that (2, y) = ¥2,(y, z).
Since we do not want to use gradient of functions but general vector fields (as this gives
us more flexibility), in order to find an ansatz for an approximate solution of (2.2.9) we
compute first the gradient of v

/ 1 / 1 ‘
5'i?/1tN = Yy Ni) + Yv—wu(/\i) + Nf{\,ft(/\i, My), f{\,[t(ﬂfa My) := /81¢2,t(33,y) dMn(y).

This suggests us the following ansatz for the components of Y:

Y2 ) = YaeN) + el + € M), €(e M) i= [ aoy) M)
(2.3.13)
for some functions yq,,y,,: R = R, z; : R? - R.

Here and in the following, given a function of two variables 1, we write ¥ € C*Y to
denote that it is s times continuously differentiable with respect to the first variable and v
times with respect to the second.

- The aim of this section is to prove the following result:

Proposition 2.3.1. Assume VW € C" with r > 31. Then, there exist y,, € Ccr2,
Y1, € C"7%, and z; € C*" for s + v < r —5, such that |

RY . <C§V B T NY W)+ N Y w(%)yﬁ) ~divy?
i<y MY i i

satisfies
(log N)?

N
”Ré ”Ll(]P{‘,’t) <C N

for some positive constant C independent of t € [0, 1].

The proof of this proposition is pretty irivolved, and will take the rest of the section.
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2.3.1 Finding an equation for yg,,y,;, 2.

Using (2.3.13) we compute

leYéV =;N/y6yt(x) dLN(a:)+/y1,t(/\) dLN(SC)‘i-/al&t'(fE, MN) dLN(:L')+T7(LN),

= / 0a24(y, y) dv(y

Therefore, recalling that My = N(Ly — pv,), we get

where, given a measure v, we set

2 —_ ! ‘ :
RY = ..5N // y‘”(’”i — ZO)t(y) dLy(z)dLy(y) + N? / V! yordLy + N? / W dLy

,BN//YU(:” — Y1l )dLN(x)dLN(y)+N/V;.,yl,tdLN
ﬂN/ &(, MN €t(y’MN)

dLy(@)dLn(w) + N [ Vi(z)€(a, My) dLn(z)

- 'N-U(MN) - N(l - ‘g) /yz)’tdLN

- (1 - -g-) /y’u dLy — (1 - g) /alét(x, My)dLn(z) = n(uv,) + &, |

where ¢V is a constant and we use the convention that, when we integrate a function of the

form ﬂ%{—i@ with respect to Ly ® Ly, the diagonal terms give f'(z).

We now observe that Ly converges towards py, as N — oo [67], see also [6, 3] for the
corresponding large deviation principle, and the latter minimizes Iy, (see (2.1.2)). Hence,
considering . := (z + € f)xuy, and writing that Iy,(u.) > Iv,(pv,), by taking the derivative
with respect to € at ¢ = 0 we get

[ Vi@ i@ due) = 5 [[ P2 b ) (23.14)

for all smooth bounded functions f : R — R. Therefore we can recenter Ly by v, in the
formula above more premsely, 1f we set ’

5/f pramey duw( )+ V(@) f(z), (23.15)
ﬁhéﬁl : :
| N2/Vt",deN , 5N2//f Ly(2) dLn(y)

_N/wM ﬂ//“’” (:c)'dM'N@)J
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Applying this identity to f =y, y1,,&:(-, Mn) and recalling the definition of &,(-, M) (see
(2.3.13)), we find

RN =N / (Eyo. + W]dMy

# [ (2 (B=1) s+ [0t yaun@)]) v

+ // dMy(z) dMy(y) .(Ezt(w y)lz] - B uale) - yo,t(wv) +OT+ Ewy

2 -y
where
za()la] = =5 [ HEUZHEY g 3) Vi )ata.),
C} is a deterministic term, and Ey is a remainder that we will prove to be negligible:
Eyn = — 1 Ooz4(z, ) dMpy(z) — l(1 - —6—> /y'l,t dMy
N N 2

_ N 1 - g) //Blzt(:f:,y) dMy (z) dMn(y)
_ ﬂ [/ Y1,t(‘72 : Y1.e(y) dMpy (x) dMy(y)
s /ﬂ @) ~ @) dMy(z) dMy(y) dMy (7).

T— I

(2.3.16)

Hence, for RY to be small we want to impose

Eyg. =W +e

Bz (-, y)[a] = — gym(m)—ym(’t/) +e(y), (2.3.17)

Eth: ( [YOt /312t d#w(z)} d,

where ¢, ¢ are some constant to be fixed later, and ¢(y) does not depend on z.

2.3.2 Inverting the operator =.
We now prove a key lemma, that will allow us to find the desired functions Yo Y1t Zt-

Lemma 2.3.2. Given V : R — R, assume that uy has support given by [a,b] and that
d#v( )=
dr

with S(z) > &> 0 a.e. on [a,b)].
Let g : R—=R be a C* function and assume that Vs of class C?. Set

fz) - f (y)

"L'._

= 5(z)\/(z = a)(b—z)

| =f(z) :=-4 viz) + V'(z) f(z)
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Then there exists a unique constant ¢, such that the equation

Ef(z) = g(z) + ¢4

has a solution of class C*=27P=3) - More precisely, for j < (k —2) A (p — 3) there is a finite
constant C; such that

I flleimy < Cillgllcita(my, (2.3.18)

where, for a function h, ||h||cig) = Sieo ||| Loo(r)-

Moreover f (and its derivatives) behaves like (g(x) + c)/V'(z) (and its corresponding
derivatives) when |z| — +oo.

This solution will be denoted by =g

Note that Lf(z) = Zf'(x) can be seen as the asymptotics of the infinitesimal generator
of the Dyson Brownian motion taken in the set where the spectral measure approximates
wy. This operator is central in our approach, as much as the Dyson Brownian motion is
central to prove universality in e.g. [20, 19].

Proof. As a consequence of (2.3.14), we have
1
B PV/ ——duy(y) = V'(z) on the support of uy. (2.3.19)
r—=Yy
Therefore the equation Zf(z) = g(x) + ¢, on the support of py amounts to

ﬂPV/ a{(_—y)y dupy (y) = g(x) + ¢4 » Vz € [a,b]. | (2.3.20)

Let us write
d(z) := dpy/dz = S(z)y/(z — a)(b — z)
with S positive inside the support [a,b]. We claim that S € CP~3(]a, b]).
Indeed, by (2.3.14) with f(z) = (2 — z)™* for 2 € [a,b]°, we find that the Stieltjes
transform G(z) = [(z — y)~! duv(y) satisfies, for z outside [a, b],

gc( = G(z V’(’R,(z)) 1 F( ), with F(z)f / V"(y) ; -\-/’y(RF(z’)) diy (1)

Solvmg thls quadratlc equatlon so that G - 0 as 1z| — 00 ylelds ,

G(z) (v'(vz \/[V'(R 7 2,8F( )) S (232
Notlce that V’ ( ( ) + QﬁF(z) becomes real as z goes to the real axis, and: negative 1n51de
[a;b]. Hence, since ~7m~1ZG(z) converges to the density. of juy as 2z goes;to the real axis (see

e.g [3; Theorem»2.4.3]), we get

—5(7)2(1 —a)(b—x) : ([17;7')—2 [V)ifIJ)Q +.;‘2/3F(:1:)] . | (2.3.22)
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This implies in particular that {a, b} are the two points of the real line where V'(z)?+28F(z)
vanishes. Moreover F(z) = — [ fo V"(ay + (1 — a)z) daduy(y) is of class CP~2 on R (recall
that V € C? by assumptlon) therefore (V')? + 28F € CP~2(R). Since we assumed that S
does not vanish in [a, b}, from (2.3.22) we deduce that S is of class CP~ on [a, b].

To solve (2.3.20) we apply Tricomi’s formula [83, formula 12, p.181] and we find that, for
z € [a,b],

[ty — a)(b— A
Bf(x)\/(x —a)(b—z)d PV/ y y) + ¢g)dy + ¢ := h(x)

for some constant cy, hence
W) = BI(@)(x - a)(b~2)S(a)
= PV [ @(Q(y) +cg)dy +
- pvf /y_.a Mdy+ (g(z) + pvf @@4.62
- P Jy—a) 473_(1_657 ™ (= —“T“’)(g(-,)+cg>+@,

where we used that, for z € [a, b],

V/ (y—a )(b—y) y:~w(x~a;b).
=/ab\/(y»—a)(b—y)g%}%g—)dy

Then hg is of class C*~! (recall that g is of class C*). We next choose ¢, and ¢, such that h
vanishes at a and b (notice that this choice uniquely identifies ¢;).

We note that f € C*=220=3)([q, b]). Moreover, we can bound its derivatives in terms of
the derivatives of hg, g and S: if we assume j < p — 3, we find that there exists a constant,
Cj, which depends only on the derivatives of S, such that

Set

-(j +1
”f(J)”Lm([a,b]) <G Iglg;{(“hg’ )”LO"([a,b]) + ”g(p+1)“L°°([a,b])) <G %1]%3(2 Hg(p)“L“’([a,b])-

Let us define ' , ‘ -
) ='ﬂPV/%(_£)— ﬂv(y‘)—g(x.)—cg Vz € R.

By (2.3.20) we see that k£ = 0 on [a,b]. To ensure that Zf = g + ¢, also outside the support
of puy we want -

X
f(=z) (ﬁ PV/x—_—yd/AV(y).— V’(T)) = k(z) vV € [a, bl
Let us consider the function ¢ : R — R defined as

0z) = B PV / ﬁ duv(y) — V(). (2.3.23)
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Notice that, thanks to (2.3.21), £(z) = BG(z) — V'(z) = —,(3\/[‘/’(:r)]2 + 26F(x). Hence,
comparing this expression with (2.3.22) and recalling that S > ¢ > 0 in [a, b], we deduce
that [V/(z)]% +28F(x) is smooth and has simple zeroes both at a and b, therefore [V’(z)]? +
26F(z) > 0in [a — &,b + €]\[a, b] for some ¢ > 0.

This shows that ¢ does not vanish in [a — £,b + €]\[a,b]. Recalling that we can freely
modify V' outside [a — £,b + €] (see proof of Lemma 2.2.1), we can actually assume that ¢
vanishes at {a,b} and does not vanish in the whole [a, b]°.

We claim that ¢ is Holder 1/2 at the boundary points, and in fact is equivalent to a
square root there. Indeed, it is immediate to check that ¢ is of class CP~! except possibly at
the boundary points {a, b}. Moreover

PV/—dW y) = S(a) / \/_—m

+/a (/ S’aa+(1—a)y)da> (y —a)(b~- )dyv

The first term can be computed exactly and we have, for some ¢ # 0,

/ 2 \/—__(,)T,, o(b — a) (Tb"_?—é - \l (”’;_?)2 - i) (2.3.24)

which is Holder 1/2, and in fact behaves as a square root at the boundary points. On the
other hand, since S is of class C?~* on [a, b] with p > 4, the second function is differentiable,
with derivative at a given by

[+

a @—

which is a convergent integral. The claim follows.
Thus, for z outside the support of uy we can set

f(x) := £(x) " k(x).

With this choice Zf = g + ¢, and f is of class C*~2MP=3) on R\ {a, b}.

We now want to show that f is of class C*~2A®=3) on the whole R. For this we need to
check the continuity of f and its derivatives at the boundary points, say at a (the case of b
being similar). We take hereafter » < (k — 2) A (p — 3), so that f has r derivatives inside
[a, ] according to the above considerations.

Let us first deduce the continuity of f at a. We write, with f(a*) = limgyq f(z), .

k(z) = F(a")e(x) + ka(z)

y (/o1 Slaa+(1- O‘)y)da> (y —a)(b—y) dy,

with

o) :=5<Pv [ L% ) - pv /j;(f

(y>> +g(x) + ¢ + Fla V().
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Notice that since f = £~k outside [a,b], it we can show that £7!(x)k;(x) = 0 as = 1 « then
we would get f(a™) = f(a™), proving the desired continuity. :

To prove it we first notice that k; vanishes at a (since both k and ¢ vanish inside [a, b]),
hence

bnte) = 6 (Pv [ LI g ) - py [ L0 40 4 560) - g0

f (y) — fa®) . .
@=a)Pv [ L 0) + 3t) - 3t0)
with §:= g+ f(a*)V’' € C'. Assume 1 < (k—2) A (p—3). Since f is of class C" inside [a, b]
we have |f(y) — f(a™)| < Cly — a|, from which we deduce that |k;(z)] < Clz — a| for z < a.

Hence ¢~ !(z)ki(z) — 0 as z 1 a (recall that £ behaves as a square root near a), which
proves that-

lim f(z) = lim f()

and shows the continuity of f at a.
We now consider the next derivative: we write

k() = [f(a) + f'(a*)(z — )| €(x) + ko(2)

with

) = fla—x fly —(y—a)f'(a”)
k() = PV/ )(a_ » dpy ()

+§(z) = ga) + f(a” )(fr—a)Vt'(x)-

Since k = ¢ = 0 on [a, b] we have ky(a) = kj(a™) = kj(a~) = 0. Hence, since f is of class C?
on [a, b], we see that |ky(z)| < Clz — al? for = < a, therefore ky(z)/f(z) is of order |z — a|/2,
thus : '
f(@) = f(a)+ f'(a")(z —a) + O(|z - al*?) for z < a,

which shows that f has also a continuous derivative. . v
We obtain the continuity of the next derivatives similarly. Moreover, away from the

boundary point the j-th derivative of f outside [a, b] is of the same order than that of g/V’,

while near the boundary points it is governed by the derivatives of g nearby, therefore

1 oy < €5 o llg7 ey - (2.3.25)
Finally, it is clear that f behaves like (g(x) + ¢g)/V'(xz) when z goes to infinity. O

2.3.3 Defining the functions y;,y;, 2

To define the functions yg;, ¥, 2: according to (2.3.17), notice that Lemma 2.2.1 shows that
the hypothesis of Lemma 2.3.2 are fulfilled. Hence, as a consequence of Lemma 2.3.2 we find
the following result (recall that 1) € C*" means that ¢ is s times continuously differentiable
with respect to the first variable and v timeés with respect to the second).
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Lemma 2.3.3. Letr > 7. IfW,V’' € C", we can choose y,, of class C""2, z, € C*" for
s+v<r—>5,andy,, € C"8. Moreover, these functions (and their derivatives) go to zero
at infinity like 1/V' (and its corresponding derivatives).

Proof By Lemma 2.3.2 we have y,, = E7'W ¢ Cr=2. For z;, we can rewrite

Za,0)ls] = =5 [ Yooz -+ (1= ap) da+ cly)

B[t |
=-3 ), yoilaz + (1 = a)y) + ca(y)] dox
where we choose c4(y) to be the unique constant provided by Lemma 2.3.2 which ensures
that 2 [yg,(az + (1 — a)y) + ca(y)] is smooth. This gives that c(y fo co(y)da. Since
=-1 is a linear integral operator, we have
y) = p '-*—1 d
2(,y) = —3 yo.(a - +(1 = a)y))(z) de.

0

As the variable y is only a translation, it is not difficult to check that z, € C*" for any
s+ v <r—2>5. It follows that

—(-g- - 1) [yg,t + /8lzt(z, ) duy, (z)} +c

is of class C™~% and therefore by Lemma 2.3.2 we can choose y, , € C"78, as desired.
The decay at infinity is finally again a consequence of Lemma 2.3.2. a

2.3.4 Getting rid of the random error term Ey

We show that the Ly y -norm of the error term Ey defined in (2.3.16) goes to zero. This

could be easily derlved from [20], but we here provide a self-contained proof. To this end,
we first make some general consideration on the growth of variances.

Following e.g. [64, Theorem 1.6], up to assume that V; goes sufficiently fast at infinity
(which we did, see Lemma 2.2.1), it is easy to show that there exists a constant 75 > 0 so
that for all 7 > 79,

N

/j dp — dv)
| fan|,

log N .
]Pgt (D(LN, #m) >T 08 > < .e—LTleogN ,
where D is the 1-Wasserstein distance

D(p,v) := sup-
1 N s1

Since My = N(Ly — py,) we get

D(Ly,py,) = — sup (2.3.26)

N i<t
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hence for 7 > 7

/fdMN > T,/NlogN> < e T Nlog N, (2.3.27)

This already shows that, if f is sufficiently smooth [ [(z,y)dMy(z) dMn(y) is of order at
most N log N. More precisely o

IP’% ( sup

Ifllip<t

/ £(2,y) dMy(z) dM(y / £(¢.€) ( / €= dMy(z) / eiﬁdeN(a») de d,

so that with probability greater than 1 — e V16N we have

[ [ ) bt vt

<72 NlogN / FC.O)1 ¢l lel de de. (2.3.28)

To improve this estimate, we shall use loop equations as well as Lemma 2.3.2. Given a
function g and a measure v, we use the notation v(g) := [ gdv.

Lemma 2.3.4. Let g be a smooth function. Then, if My = N Ly — NEy,[Ly], there exists
a finite constant C such that

oP(g) = \ [ Mivto) apl;
o209 = [ (¥w(0)” aB < C(m(9)* + mi)lgle + IE gl o) = Bh(o)
(@)= [ (Vo))" ar)

< (12 9lellg oo (9) + lgllSm(9) + mlg) ol (g) +mlg)*) =: Bi(9),

< C'm(g) =: By(9)

where
i) = 1= SIE "0 I+ Slog N [ E0l€) 1€ de

Proof. First obserVé that, By ih‘tegra,tion' by parts, for any C? function f
/(NZV’(& ﬂZfA—i(—) dPy); '_:‘/Zf’(/\;)dlpfvf (2329
‘ ' B i<j - ;

Wthh we can rewrite as the first loop equatlon

N / f(z) = fy)
/ Mx (2 de / [ 1— 5 / de“'+2__1V / TrdMN(x)dMN(y)] df;y;.w)

We denqte

e
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so that taking f := Z7!g in (2.3.30) we deduce

/' Miy(g) dPY;, = / Fu(g)dP.

To bound the right hand side above, we notice, that Z7'g goes to zero at infinity like 1/V”
(see Lemma 2.3.2). Hence we can write its Fourier transform and get

/ E-'g(z) —E7'g(y) My (z) dMy(y)

=1y :
—z/d§§”‘1 / da/ itz dMN(T / 1=y My (y),

s0 that we deduce (recall (2.3.26))

sup Fn(g) < (14 73) m(g).
D(Ln,pv,)<104/log N/N

On the other hand, as the mass of My is always bounded by 2N, we deduce that Fn(g)
is bounded everywhere by Nm(g). Since the set {D(LN,/I,Vt) > 70v/Nlog N} has small
probability (see (2.3.27)), we conclude that

Wthh proves our first bound. ;
Before proving the next estimates, let us make a snnple remark: using the definition of
My and My it is easy to check that, for any function g,

< Ne~8N1eNm(g) 4 (1 4+ 72)m(g) < Cm(g), (2.3.31)

(o)~ Sn(a)| = [ Mwto) 23.32)

To get estimates on the covariance we obtain the second loop equation by changing V'(z)
into V(z) + 6 g(x) in (2.3. 29) and differentiating with respect to  at § = 0. This gives

[ MyEn) (o) ¥l = [ Lutrg) d

+/[(1 f g)/‘f’dLNJr Q—%/WdMN(x)dM&(y)] My(g) dPg,. -

We now notice that My(Zf) — My(2f) is deterministic and [ My(g) dPY = 0, hence the
left hand side is equal to

(2.3.33)

/ F(21) (o) dPY).

We take f := Z7'g and we argue similarly to above (that is, splitting the estimate depending
whether D(Ly, pv,) > Tov/N1og N or not, and use that ]MN( )] < N|lglleo) to deduce that
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o (g) == [|Mn(f)|?dPY satisties

cP(g) < 9= "glloo + / P (9)|| ¥ (9)| AP
< IE7glee oo + NN 28 g oumlg) + Cmlg) [ 101w(g) Py (233
= 127 )looll'llo + N2 NN (g [Iglloo + C m(g)ase (9) /2.

Solving this quadratic inequality yields

o$2(9) < C[m(@) + m(@glloe + IZ" g9 o]

for some finite constant C.

We finally turn to the fourth moment. If we make an infinitesimal change of potential
V(z) into V(z) + 81 g2(z) + d2 g3(x) and differentiate at §; = J = 0 into (2.3.33) we get,
denoting g = g1,

/A/[N(E.f)MN(gl)/WN(92)MN(93)dlpa, 2/[2 LN(.fQ:,(l))MN(Qa@)Mlv(ga(:s))] Py, +

/Kl N g) /fl A+ ziN / ﬂ%}g@ My (z) dMN(y)] MN(gl)MN(g2)MN(9$) dPy,
(2.3, 35)

where we sum over the permutation o of {1,2,3}. Taking Z=f = g1 = g2 = g3 = g, by
(2.3.32), (2.3.31), and Cauchy-Schwarz inequality we get

o0(9) < C[lg= gl (6) + lgliml) + m{9)ol )" + m(g)*0 P (s)],

which implies

o$0(9) < O[I9= gl (9) + lglilmle) + mlg)o(9) + mlg)"]

Applying the above result with ¢ = e** we get the following:

Corollary 2.3.5. Assume that V'\W € C” with r > 8. Then there exists a finite constant
C such that, for all A € R, ‘

/lM 1*|dPV'<C[1ogN(1+|Ay7)}2,  (2330)

/ | My (™) |dBY, < Cllog N(1 + 7). (2.3.37)
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Proof. In the case g{x) = e*** we estimate the norms of Z~!¢ by using Lemma 2.3.2, and we
get a finite constant C such that

157 gl < CIAP, 271l < CIAP,

whereas, since Z1g goes fast to zero at infinity (as 1/V"), for j < r — 3 we have (see Lemma
2.3.2)

I12-1g|lcs C,llgllw < ,1+1Alj+2'
L€ = 1406 = 1+|¢p

Hence, we deduce that there exists a finite constant C’ such that

= 2gl(6) < C

1+ A7
1+ [€f5

m(g) < ClogN(|)\|3 +1+ /d{
Bi(g) < C'log N (1+ A"},
B%(g) < C'(log M) (1 +|AI")”,
Bii(g) < C'(log N)* (14 A7) "

|§|3) =C'log N (1+ |A),

Finally, for k£ = 2,4, using (2.3.32) and (2.3.31) we have

[ ey amt < 2 (e et + (3io)')

from which the result follows.

We can now estimate Ey.

The linear term can be handled in the same way as we shall do now for the quadratic
and cubic terms (which arc actually more dclicate), so we just focus on them.

We have two quadratic terms in My which sum up into

1
B} = ‘N(l" / Oya(,1) dM () My (1)~ // i x_y“(y) My (@) dMi (y).
Writing o " | |
yl,t(x) }’I,t(y) _ / y/1 t(OéZ + (1 _ a)y) da = / /y/1 t(g)ez(a:c-f-(l—a)y)&d& do
wé ‘sée: thét" ’A o o | : |

J[ 222 gy o) st = [ a7 [ o Ml py(e-),
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so using (2.3.36) we get

[ 1Bk apy < o B (log V)" (/df\yul &) lel (1+ ¢l7)’

+ [f dedcrae.crlel (1+ 1er) (1+'C’7))'

It is easy to see that the right hand side is finite if y, , and z; are smooth enough (recall that
these functions and their derivatives decay fast at infinity). More precisely, to ensure that

C

STaEe <t

Fr© 1l (14 1) <
and ) i o .
12:/(€, Q) €l (1 +1¢") (1 +1¢17) < TIPS P < € L'(R%),

we need y, , € C'" and z, € C'" N30, so (recalling Lemma 2.3.3) V/, W € C? is enough
to guarantee that the right hand side is finite.

‘Using (2.3.36), (2.3.37), and Holder inequality, we can similarly bound the expectation
of the cubic term

B = 2N///Z' 20 =220 ah () M) M D)

= z— /dgdg&lzt £,0) / daMN( 1Y My (e 198 My (e)

to get
lo N R
[1m1aet < o LEIE [ deaciae, ol (14 167) (1 +1¢T7).
Again the right hand side is finite if z, € C187 N C11% which is ensured by Lemma 2.3.3 if
V,W are of class C*!,

2.3.5 Control on the deterministic term CN

By what we proved above we have '

. log N)?
/|Rgv _coNapy < o 1B NS
‘ ,- N
thus, in particular, |
. 1 N3
ICN E[’R,N]‘ <C Og )

—N
Notice now that, by constructlon '

RN—~£YN+NZW )+
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with ¢V = —E[N ¥; W()\,)] and

J
LY :=divY + B3 ¥ _:{ —NZV’

i<j

and an integration by parts shows that, under P}, E[LY] = 0 for any vector field Y. This
implies that E[RYN] = 0, therefore |C| < C’gl"—gNy—ﬁ.

This concludes the proof of Proposition 2.3.1.
2.4 Reconstructing the transport map via the flow

In this section we study the properties of the flow geherated by the vector field YV defined
in (2.3.13). As we shall see, we will need to assume that W,V € C™ with r > 15.
We consider the flow of Y given by

XN RV S RN, XN =vNXN).

Recalling the form of Y (see (2.3.13)) it is natural to expect that we can give an expansion
for XN. More precisely, let us define the flow of Yo

Xoy :R—-R,  Xoy=y0(Xop) Xoo(A) =, (2.4.38)
and let XP, = (X{%',..., X{%") : R¥ — RY be the solution of the linear ODE
X0, AN) = Y0, (Xoe(Mk)) - X1 (A, -0 An) + y1, (Kot (Ar))
+ [ Xos ), ) aM ()

(2.4.39)
1 X, N,j
+ ]—V_ Z dzzt (Xoyf‘(Ak), XO,t()\j)> . Xl,t (/\1, ey )‘N)
j=1
with the initial condition X7, = 0, and M is defined as
X N
/ FME ) = 3| Xaslh / fduv,} I € CR)
: i=1 ;
If we set o | |
X\, - .,AN) = (Xo,t(x.l), . ,Xo,t(AgN)),
then the following result holds
Lemma 2.4.1. Assume that W V € C" withr >.15. Then the flow XN (X VL XtN N) :

RN — R¥ is of class C™% and the followmg propertzes hold: Let Xo. and X{V, he as n
(2.4.38) and (2.4.39) above; and define X2, : RN RN via the identity g

1
XN =x{+ ]—V-Xﬁ NZXQNt
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Then

sup HX{Y,;’“HUM, < Clogh, [ X2l z2@y) < CN'Y?(log N)?, (2.4.40)

where

SoxNE =012

j=1,...,N

1/2 ’
Xy = ([ PRE) L I

In addition, there exists a constant C > 0 such that, with probability greater than 1 — N—N/C,

| Jnax XD O, ) = XD (O, M) € C log NVN| A = . (2.4.41)
Proof. Since Y} € C™# (see Lemma 2.3.3) it follows by Cauchy-Lipschitz theory that XY
is of class C"78. A

Using the notation A = (A,...,Ay) € RY and

. XN,Ic R XN,lc . R
XE7(R) = Xog(M) + 0 (W) +o Jé’; (A) = (1 = o) Xos (M) + o X (D)
and defining the measure M,i,(’N'S as
x )\ al N/}
/ Flu)dMyt () = D2 F((1 = ) Xon(A) + sX7(R)) = / fdpv| YV feC(R).
=1 .

(2.4.42)
by a Taylor expansion we get an ODE for le\,/&

, |
X0 = [y, (X)) ds - X3
4]
1
N [ [ (00) = v (Xouhw))] ds - X4
0

1 . . XN,Ic 3
+ / yhe (XA ) ds - (XDFO) + 2';\,@))
0

N / 1 [ / o (X (3),) dMit” ")
~ [ o (Xautr0).) ansioe )] s (2 + XL

\ o XNRR
+/81Zt(X0,t(’\k)yy> sz)\fO"'(y) : (Xﬁ]t’k()‘) + 27§V( )>

N 1 o .
+ Z [aﬂt (XtN>k,S()\),XtN’J»S(>\)> — Oz (Xo,t(/\k),Xo,t(/\j)XJ ds - XIN'{](/\)
j=1J0, . | . w0
3 1 N N Nj/
+> / {azzt (X;V,k,s(A), Xth,S()\))] gs . X2t (A
(2.4.43)
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with the initial condition XZA,/ 6k = 0. Using that

lyosllcr-2@m < C
(see Lemma 2.3.3) we obtain
| Xo,cllcr-2ry < C. ‘ (2.4.44)

We now start to control X fft First, simply by using that My has mass bounded by 2N we
obtain the rough bound | X fvtk| < C N. Inserting this bound into (2.4.43) one easily obtain
the bound [X5¢"| < C' N2. ‘

We now prove finer estimates. First, by (2.3.27) together with the fact that X,; and
z > z(y, z) are Lipschitz (uniformly in y), it follows that there exists a finite constant C
such that, with probability greater than 1 — N=N/C

H / ze(-, A) dM,’V(W(A)” < ClogNVN. (2.4.45)

o0

Hence it follows easily from (2.4.39) that

max || X1l < Clog NVN (2.4.46)

outside a set of probability bounded by N~N¢,
In order to control X2, we first estimate X7 in L*(P{/): using (2.4.39) again, we get

d
EZ(mI?X ”X{\,It’kHL‘l(uw‘)'))

< 0 (mpx X sy + 1+ | [ 2 XorW), ) M3 ()

). (2.4.47)
LA®Y)

To bound X{', in L*(P}) and then to be able to estimate X}, in L*(P}), we will use the
following estimates:

Lemma 2.4.2. Foranyk=1,...,N,

< ClogN, (2.4.48)
LA(PY)

H/ 2(Xou (M), y) My (y)

”/ 012 (Xo,t(/\k), y) dMﬁ/(U'L’(?J)

<ClogN. = -~ . (24.49)
L“(P{}l) . ” IR

Proof. We write the Fourier decomposition of n,(z, y) := 2:(Xo,:(z), Xo,:(y)) to get

[ @ ary) = [0 [ amn)de.

Since z; € C*" for u +v <7 — 5 and Xo; € C"~2 (sce (2.4.44)), we deduce that
-

|9 (%, )| < ﬂ‘m;ﬁga
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so that using (2.3.37) we get

dg

LA®Y)

a6 (1+16r) de

/ ne(, ) dMi(y)

ﬁt(-;&)i”wH [ earty)

sup
x

< /
LA(PY)

< C’IogN/
< ClogN,

provided r > 13. The same arguments work for 0,z; provided r > 14, Since by assumption
r > 15, this concludes the proof. O

Inserting (2.4.48) into (2.4.47) we get
IX75 | ey < Clog N Vk=1,...,N, (2.4.50)

which proves the first part of (2.4.40).

We now bound the time derivative of the L2 norm of Xé\'_t: using that My has mass
bounded by 2N, in (2.4.43) we can easily estimate :

1 .
/ s/ / Nk /R C
[ o (X050 0) - o (Xaatr0)) s xin’“(A)l < CIXQHP + S IXIE X,
' Nk,s /3 XN y Xo,t
/ / alz,(Xt *, (A),y) dM X (y) - / alzt(xo,tw),y) AMo ()| ds
0
C . C ; 1 i
< CIXL + X+ 5 S (1501 + i),
Al ! k,s/3 N,j,s /3 N,j
S [ 0w (X453, X093 ) = 0 (Xouhe), Xoun)) | ds X1
j=170
< 2R+ i)
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hence

||X 2y = Q/ZX#,X# APy
k
sc/Z|X§Yg’°|2dP +C/Z\X k2 |X kldPY
| XGF | X 1 2dPY + C |X 1 X255 dPY
14
/er HoapY + melx X Py
/DX H2 X3 dPY
)J
+3 / XD / { / alzt(xo,t(Ak) )dMX‘“( )] ds - XMk Py
k 0
C .
t | DPAIPIXENRY 4 g [ PG X X Py
k.j
c N
5 [ .
2

Using the trivial bounds |X ¥ < CN and |X k| < C'N?, (2.4.49), and elementary in-
equalities such as, for 1nstance

SR X < (X I X,
we obtain
Xy < C(IX 8y + [ 510041
(2.4.51)
/ IR 0BY -+ 3o N L 1% umN))

We now observe, by (2.4.50), that the last'tel'm is ' bounded by

||X ||L2(IP’N) + (log N)? Z”X

< 13y ||L2(PN) +C N(log N)*.
Hence, using that ||X{V,k||Lz(]pN) <"||Xngk]|L4(P5) and (2.4.50-) again, the right hand side of
(2.4.51) can be bounded by C|| X7 ||L2(P0,) +C N(log N)*, and a Gronwall argument gives

1 X212y < C N(log N)*,

thus
I|X2N,t”L2(IP")') < CN'Y?(log N)?,
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concluding the proof of (2.4.40).
We now prove (2.4.41): using (2.4.39) we have

R AONED G oY
< 1v6 .4 (Xot() = Yo (KXo (M) 1XT2E (V)]
+ 150, (Xo,. (Ax))] |XTE(A) = Xﬁik’(/\)] + 11,0 X0, (M) = ¥1.0(Xo, (M)l

=+ l/ 2 (Xo,e (M), ¥) — 2e(Xo (M), )) dMXOL( )

+~z/

Using that | Xg:(Ae) — Xo:(Ax)| < C|Ax — M|, the bound (2.4.46), the Lipschitz regularity
of ¥4 Y14 i, and 0oz, and the fact that

H/dlz, A AMYH (A )H < Clog NVN

0224 XOt(/\k) XOt()\ )) —822t(X0,t(Ak’) XOt( )) ds’ |X ( |-

with probability greater than 1 — N=/¢ (see (2.3.27)), we. get
XTHE (D) = X0 ] < O A) = XTF (V)] + Clog NVN A, = A

outside a set of probability loss than’N ~N/C 50 (2.4.41) follows from Gronwall.

2.5 ’I‘fanspbrt and universality

In this section we prove Theorem 2.1.4 on universality using the regularity properties of the
approximate transport maps obtained in the previous sections.

Proof of Theorem 2.1.4. Let us first remark that the map. Ty from Theorem 2.1.3 coincides
with Xo,, where Xo, is the flow defined in (2.4.38). Also, notice that XV : RN — RV is
an approximate transport of P onto Py, (see Lemma 2.2.2 and Proposition 2.3.1). Set
XN o="XN + NX11,‘W1th X8 and X{, as in Lemma 2.4.1. Since X{¥ — XV = L X},
I(,calhng (2.4.40) and using Holder inequality to control the L' norm Wlth the L2 noun we
see that

‘/ (XM d]P’N / (XN)dPN < IIVgHooNQ/IXévllle’N

< _IlVgHm =|1 X5 Ile(u»v> | (2.5.52)
log N
< OVl LB

This implies that also X : R — RY is an approximate transport of PY onto P{, .
In addition, we see that X N preserves the order of the \; with large probability. Indeed,
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first of all Xo; : R — R is the flow of y,, which is Lipschitz with some constant L, hence
differentiating (2.4.38) we get

d .
i Koo =1,

< IYG,t(Xo,t)l 'X{),,,' <L IX‘IM ’

so Gronwall’s inequality gives the bound
6'.—Lt S ’X(;)’L| S eLt

Since Xg, = 1, it follows by continuity that X, must remain positive for all time and it
satisfies

e It < Xy, < e, | (2.5.53)
from which we deduce that
e M(N = A) € Xou(h) — Xoa(h) e (N = N), V<A,

In particular,
et (N = N) < Xoa(h) = Xoa(A) < e (X = No).

Hence, using the notation A = (Ay.. ., An), since

1og N
N

(see (2.4.41)) with probability greater than 1 — N~/C we get

XIP0) - 2x 0| <0

-+ A= Al

1 A ;N A i ~
(= x) < XA - XK <o(y - )
with probability greater than 1 — N~N/€, _ :
We now make the following observation: the ordered measures P and PJ,,, are obtained
as the image of PYY and PY/_, via the map R : RY — R¥ defined as

[R(zy,...,zN))i —?Jnr}r?gcxj

Notice that this map is I-Lipschitz for the sup norm.
Hence, if g is a function of m-variables we have HV(go R) ]|oo < \/—||VgHoo, so by Lemma

2.2.2, Proposition 2.3.1, and (2.5.52), we get ‘

(log N)3 og N)?

N Vgl

[0 ro)avy - [g0rapy ) < B g+ oy BETL

Since X preserves the order with probability greater than 1 — N~N/C we can replace
go B’(NXN) with g(NX¥ o R) up to a very small error bounded by g/l N~/¢. Hence,
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since RyPY = }3‘1)’ and RyPY_ ,, = ﬁ‘I/V+W, we deduce that, for any Lipschitz function
f:R™ 5 R, :

l /f(N()\Hl =2, N i = \i)) AP, v

= [ (MR = RIER)), NG - RV )Ry

<o log ). 1l + © v J08 )

Recalling that

e 1 .
X)) = Xoa(N) + NXf,/i]()\)«,

we observe that, as X is of class C?,
Xo1(Mivk) = Xo1 (M) = X1 (As) ik — Xs) + O([Aiee — Xil?).
Also, by (2.4.41) we deduce that, out of a set of probability bounded by N—N/¢
IXDEHE ) = X )] < C log NVN|Aipk — Adf - o (2.5.54)
As X§(A) = e7b (see (2.5.53)) we deduce

ik R ; log N
—|XN TR = Xii ] < CIXG (A (/\i+k-/\‘i)]w
and )
OAisr = Ml?) = O(|X5,00) (i = M)
hence with probability greater than 1 — N=/€ it holds

log N
N1/2

XYHER) = XYY = X5 ,(0) vk — Xo) {1 + o( ) + O ([ X5,1 () Qs = M)

)]

Since we assume f supported in [-M, M]™, the domain of integration is restricted to \ such
that {NXg,(A:) (A — Aisk) }1<k<m is bounded by 2M for N large enough, therefore

o R log N 4M?2\
XiN, +k(/\) _ X{V! (/\) = XO,t()\i)_ ()\H-k — A ) +O(2M N3/2 ) + O< N2 )7

from which the first bound follows easily.
For the second point we observe that ayiw = Xo1(ay) and, arguing as before

J / F(N?PO = avaw), .o N3O — ayw)) dBY,

- / 7N (RIR) = Xoalar)) o N (X1 () = Xoa (o) ) dRY

(log N)?
N5/6

1
<c®Eypy iovm

IV floo-
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Since, by (2.4.40),

5N.i log N
X{V’ ()\) = XO,l()‘i) + OL‘*(Pd)( ng )

log N >

= Xoa(av) + X§1(av) (A — av) + O(|Ai = av[?) + Opaey ( ¥

we conclude as in the first point.



Chapter 3

‘Transport Maps for S-Matrix Models
in the Multi-Cut Regime

This Chapter is based on the article [10].

3.1 Introduction

In the previous Chapter we construct an approximate transport maps with an accurate de-
pendence in the dimension. The dependence in NV allows to compare the local fluctuation of
the eigenvalues under two different potentials. The potentials do not need to be analytic, but
an important hypothesis made in this previous Chapter was the connectedness of the support
of the limit, of the spectral measure . Here, we assume that the potentials are analytic but
remove the one-cut assumption and use the same methods to construct approximate trans-
port maps in the case where the filling fractions of each cut is fixed. As a result, we obtain
universality of fixed eigenvalue gaps at the edge and in the bulk . The plan of this Chapter
is as follows: In the first section we intoduce some notations and state our main results. We
reintroduce in section 2 a more general model discussed in {17} of S log-gases with Coulomb
interaction and construct an approximate transport map between two measures from this
model when the number of particles in each cut is fixed. We will see how this approximate
transport can lead to universality results in the fixed filling fractions case, and conclude for
the initial model in Section 4. The main results of this Chapter are Theorems 3.1.3, 3.1.4
and 3.1.5.

We consider the general f-matrix model. For a subset A of R union of disjoint (possibly
semi-infinite or infinite) 1ntervals and a potential V : A — R and B > 0, we denote the
measure on AN

: 1

T 1% = Al exp (-N ) V‘(A») Man, (L

V,A 1<z<7<N 1<i<N

=7y
with’ ‘ o o
ZVAA 1I ;Af,—xjwexp( Z V(A )Hd)\

AN 1<i<iEN ‘ S 1<i<N

49
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It is well known (see [3], [6] and [30]) that under P/ 4 the empirical measure of the eigenvalues
converge towards an equilibrium measure:

Proposition 3.1.1. Assume that V : A — R is continuous and if oo € A assume that

V@)
R Fogle]

then the energy defined by

- [V@du(o) - 2 o o — aaldis(a)du(z:) (3.1.2)

has a unique global minimum on the space M;(A) of probability measures on A.

Moreover, under PJY v a the normalized empirical measure Ly = Z —10», converges almost
surely and in erpectation towards the unique probability measure py which minimizes the
energy.

It has compact support A and it is uniquely determined by the existence of a constant C such
that:

ﬁ/ log |z — ylduy(y) = V(z) < C,
A

with equality almost everywhere on the support. The support of py is a union of intervals

A= U lon-;ans] with ap_ < any and if V is analytic on a neighbourhood of A,
0<h<y

d g
—lei‘—/_ =S(z) [] \/Ev— Qp, -
z h=0

with S analytic on a neighbourhood of A.

|.’E - ah,+| )

We make the following assumptions:

Hypothesis 3.1.2.

e V is continuous and goes to inﬁnity faster than S log|z| if A is semi-infinite.
e The support of uy is a union of g + 1 intervals A = | Ay with Ay = [an_;an 4],

0<h<g
op,— < oy and
% = py(z) = H \/lfr —ap ||z - ah+| wzth S > O on [ah_,ah 4] (313)

h=0

° Vve)it'ends_ to' an 'holomorp‘hi‘c fuﬁctioﬁ :()ri'a opeﬁ néighb.orhood‘ U ‘bof A, U = U Uy,
' Co ' - oghgg
“Ap, c Uy and Uy, d1SJ01nts v . T

e The function V(:) — 8 [, log]| - —qlduv( ) achieves its minimum on the support only.
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The last hypothesis is useful to ensure a control of large deviations. Before stating the main
théeorems, we will introduce some notations.

Notations

e Forall 0 < h<g, eon=pv(An) and €, = (€40, ,Exg)- :

e Forall 0 < h <g, Nop = Neyp, Ny, = Ne,, and | N, | = (| Newo], -+, [ Newgl).

e For a configuration A € R, N(\) denotes the vector such that for all 0 < h < g
(N(A))n is the number of eigenvalues in Up,. - N

e For an index 4, we introduce the classical location E N of the i — th eigenvalue by

V,N
E”

/-oo pv(z)dr = ]—i[—

In the case where the fraction ¢/N exactly equals to the sum of the mass of the first
cuts, we consider the smallest F satisfying the equality.

For a configuration A € R let s ; be the i-th smallest cigenvalue in Up,.

For a vector x e R9"™ and 0 < h< g, [X]p =x9+ -+ z, and [x]_1 = 0.

For a vector x € R9™!, 0 < h < g and i € N we write i[h, x] = 7 — [X]p_1.

For a signed measure v and a function f € L}(d|v|) we will write v(f) = [ fdv.

The main goal of this Chapter is to prove universality results in the bulk and at the edge in
the multicut regime.

Fixed eigenvalue gaps have been proved to be universal for regular one-cut potentials (see
[11], [20]), and their convergence can be obtained using the translation invariance of the
eigenvalue gaps as in [42] (see also [79] for the case of the GUE). More precisely, if V' is the
Gaussian potential G(A) := % we have for ¢ away from the edge

Nov(E{™) (A1 = M) - Gs (3.1.4)
where Gj is some dist_ribution (corresponding to the Gaudin distribution for § = 2).
Our first Theorem states that this result holds for any multi-cut potential satisfying Hy-
pothesis 3.1.2.
Theorem 3.1.3. Let § >0 qnd assume that V' satisfies Hypothesis 3,1.2.

Let i < N such that for some e > 0 and h € [0;g] ,eN < i— [Ny]n-1 < N,n —€eN. Then

Nov(EYMY (A1 — M) —5— G

We now state the results at the edge. Under a Gaussian potential and for general 3, the
behaviour of the eigenvalues at the edge is described by the Stochastic Airy Operator (We
refer to [72]). Indeed, J. Ramirez, B. Rider and B. Virdg have shown that the k first rescaled
eigenvalues (N#3(\; +2),---, N¥3()\; + 2)) converge in distribution to (A, -+, Ax) where
A, is the i- th smallest e1genvalue of the stochastic Airy operator SAOg. ’ '

In the foIlowing result, ®" are smooth ti'arlsport maps (defined latéf).
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Theorem 3.1.4. Assume that V satisfies Hypothesis 3.1.2. Let If”% 4 denote the distribution
of the ordered eigenvalues under PY 4.

If for all0 < h < g fy : R™ —> R is Lipschitz and compactly supported we have:

lim II fh(N2/3()‘h,1 —ap-), , N3Ny, — ah,—))d@%«x

N-—o00 0<h<g

H ]ESAOﬁ fh(q)h(_Q)Al7“' 7q)h(_2)A7n)'

0<h<g

It would also be interesting to study the behaviour of the i — th eigenvalue where i =
[[IVa|]n—1 + 1. This eigenvalue would be typically located at the right edge of the h-th cut
or the left edge of the h + 1-st cut. The following theorem gives the limiting distribution
of such eigenvalues. We will use the following fact proved by G.Borot and A.Guionnet in
[15]: along the subsequences such that N, mod Z¢*! —s k where & € [0; 1[¢*! and under
P 4, the vector N(A) — |IN,] converges towards a random discrete Gaussian vector (not
necessarily centered).

Theorem 3.1.5. Let 0 < h < g, i = [[Ne]no1 + 1 and Ap(A) = [ Ny]]n-1 — [N(A)]a-1
Define

En(A) = 1a, 20 o + 1a,0<0 @1

where the expression above simplifies to aqg for h = 0 Then along the subsequences N
mod Z+! — « and under P ,

£ - +
& — 1,20 a + 14, <0 Oh_q

N33\ — €,) —£ 1a,..20 Ay 41 dh(~2) + 1a,,.<0 Aoa, . dh=1(2)

where (A;); denote the eigenvalues of SAOg, " is a transport map introduced later and A
is a discrete Gaussian random variable independent from A if 1 < h < g, and equals to 0 if
h = 0.

We could state a similar result about the joint distribution of k consecutive eigenvalues as
well. We note also that using the transport methods of this Chapter, and adapting the meth-
ods presented in [44] (notably Lemma 4.1 and .the proof of Corollary 2.8), we could prove
universality of the correlation functions in the bulk. This would require rigidity estimate for
the fixed filling fractions model introduced in the next section , which was done in [61]. As
this universality result has already been proved in [78] we do not, contmue 1n this d1rect1on

In order to study the fluctuations of the: eigenvalues we place ourselves in the setting of
the fixed filling fraction model introduced in [15], in which the number of eigenvalues in
each cut is fixed. The idea is to construct an approximate transport between our original
measure, and a measure in which the interaction inbetween different cuts has been removed.
This measure can then be written as a product measure and we can use the results proved
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for the one cut regime in [11]. We will construct this map in the second section and show
universality in the fixed filling fractions models in Section 3. We will deduce from it the
proofs of Theorems 3.1.3, 3.1.4 .and 3.1.5 in the fourth section.

3.2 Fixed Filling Fractions

3.2.1 Introducing the model

We consider a slightly different model with a more general type of interaction between the
particles and in which the number of particles in each cut is fixed. We will refer to [17]
for the known results in this setting. For each 0 < h < g, let By, = [Bh,—; On+] be a small

enlargement of A;, = [ay,—; a4 ] included in Uy, and B= |J By, . It is well known (see for
0<h<g

instance [16]) that under our Hypothesis, the eigenvalues will leave B with an exponentially
small probability and we can thus study the behaviour of the eigenvalues under IP’{\,f p instead
of Pa 4 without loss of generality.

We fix N = (No, -+, Ny) € N9*! such that 37 _o Ny = N and we want to consider a model
in which the number of particles in each By, is fixed equal to N,. Let € = N/N €]0; 1[9+!
and for T': B x B —> R consider the probability measure on B = [T} _o(Bx)"":

I A - 1 |
Pg(dA) = ZN< [T II 1wi—nslPexp (5 > T(/\h,,ia)‘h’,j))
TB  h=01<i<j<N, 0<hh'<g 1<i<Nj,
‘ 155SN, (3.2.5)
X g N /R
IT  IT s = 2wl T 18 (Ani)ddng
| 0<h<h'<g 1<i<N, h=0i=1

155EN,,

Note that with T (A1, Az) = —(V(A1) + V(A2)) and without the location constraints, we are
in the same setting as in the previous section. : = ‘ A

As in the original model, we can prove the following result ( see [17]):

Proposition 3.2.1. Assume that T : B x B — R is (;()'ra,tll,#mous.

Assume also that the energy defined by

CE(u) = —% /T(azl,xz) + Blog |z —-,zﬂd@(zl)dg(xg) \ | (326)

has a unique global minimum on the space M$(B) of probability measures on B satisfying
#[Bh] = Eh-

' N - . N-1x9 Ny ;
Then under Pr'g the normalized empirical measure Ly = N7 357 _ 35,10 0», , converges al-
most surely and in expectation towards the unique probability measure ps which minimizes
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the energy.

Moreover it has compact support A5 and it is uniquely. determined by the existence of :con-
stants Cgp, such that:

B/loglx—y)duT(y) /B T(z,y)dus(y) < Cen on By (3.2.7)

with equality almos‘t everywhere on the support. The support of uS. is a union of [ +1 intervals
T = U [a oy +] wzth ozTE < ai’i , 1 > g and if T is analytic on a neighbourhood of

)
T »

d =
Wh _ s30T yflo— el — o

h=0
with S5 analytic on a neighbourhood of A%-.
We point out the fact that the previous theorem is also valid in the unconstrained case. In

that case, we denote by pr the equilibrium measure. Let €,7 = (ur(Br))o<h<g. Then it is
obvious that uz*" = ur . It is shown in [17] that we have the following:

Lemma 3.2.2. If T extends to an analytic function on a neighbourhood of B and the energy
definied in (3.2.6) has a unique minimizer over My(B) then for € close enough from e, the

energy has a unique minimizer over M5(B) and the number of cuts of the support of uj and

T, T, .
ur are the same. Moreover, ah’i , ahi and S5 are smooth functions of € (for the L norm

on B).

They also prove a control of large deviations of the largest eigenvalue under IP’%Y,’;;.

We define the effective potential as

T¢(z) = f /B log |z — ylduz(y) + /B T(z,y)dps(y) = Cep on B (3.2.8)

Lemma 3.2.3. Let T satisfy the conditions of the previous theorem. Then for any closed
F C B\ A% and open O C B\ A% we have

limsup—j—t,-logﬂ” p(F N €F) <supT€(x)
. zEF

lim inf 1 log PXg(3i A\ € O) >supT¢(x).
N ’ z€0

We con51der a potentlal V on .A satlfymg Hypothethls 3.1.2 and the potentlals To(z, y)
“‘(V( ) + V(y)) and T (, 7) —(Ve(x) + VE( )+ W(T ) Where ,

Blog( ?J) i xEUh,yGUh' h>h’
W(z,y) = ﬁlog(y—x) if xelUy,,yeUy h<h
0 ZfTeUhayeUh
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and

7e() = Viz) - / W (z, y)di (y).

The key point is that dP[TVl’fB is a product measure as the interaction between cuts has been
removed. Moreover, we can check by the characterization (3.2.7) that

v = W3, = By
We now consider ' . ;
Li=Q1-t)Th+tT , tel0l] (3.2.9)

Still by (3.2.7) we can check that for all ¢t € [0; 1] we have:

pr, = (L= pg, + tpg, = py.

Remark 3.2.4. Note that, by Lemma 2.2, for € in a small neighbourhood of €, (that we will
denote £ ) the support A€ of us, = py has g + 1 cut and we can write

dps, = dus, = S%(x H \/|T ~aof _||lx —af ,ldr, (3.2.10)

with S€ positive on A®.

Remark 3.2.5. Note also that by the last point of Hypothesis 3.1.2 and by Lemma 2 2, if -
we fiz a closed interval F C B\ A, then for e close enough to e, and allt € [0;1] , T," <0
on F.

The goal is to build first an approximate transport map between the measures le’7 EB for

a fixed € in £ i.e find a map X1 Ne€ that satisfies for all f RY — R bounded measurable
function

[ e / r gl <, (B (32.11)

We will see that we can build a transport map depending smoothly on £ and show universal-

ity in the fixed filling model. We will then use this result to prove universality in the original
model.

Proposition 3.2.6. Assume that V satisfies Hypothesis 8.1.2, and that T, is as defined
previously. LetN = (No, -+, N,) suchthate = N/N isin & and ]P’]TV,’E denote the distribution

of the ordered eigenvalues under P%'g. Then for a constant C independent of € and N, and
if for all0 < h < g fr: R™ — R is Lipschitz supported inside [—M, M|™ we have:
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1. FEigenvalue gaps in the Bulk -

‘/ II fh(N(/\h,i;.—H“)\h,ih)a s, N(am — )\h,ih))d]py,,lg
0<h<g v ‘

[T A(NOnisr = i) s NOngrm = M) )P
0<h<g

(log N)3 og N M(log N)

< 71+ C/miEE 18R o gy

2 Eigenvalue gaps at the Edge

‘ / [I fa(N*2ni—af ), - N Onm — of, ) )dP5
0<h<g

: / TT (V0= 05,0, N%*( — 0, ) dBES,
0<h<g
(1og N)3 (log N)? logN
£l + O/ B R8T v i,

where we defined f : R™9+) 5 R by f(azg; Ce L Tg) = HOSth frlxn).

We deduce the following corollary from the results obtained in the one-cut regime in [11],
and from the fact that ]qu\fl’fB is a product measure.

Corollary 3.2.7. Assume the same hypothesis as in the precedent proposition. We write
By = Zo<h<gEh p,f,’h where uf,’h has connected support . For some transport maps =" from

pe to pt,

1. Eigenvalue gaps in the Bulk
’ / H fh (N(/\h,ih+1 - XI‘L,'ih)) ttty N()\h,ih‘f-m — Ah,ih))dﬁbl\z’g
0<h<g - _ . ) ’ R :

O<h<g

( / Ia(N @Y (0) et = Ay - aN(‘I)E"h)'())in)(&n+m~“-:’\ih);),d?gh)

1 log N log N M?
<c8B Ny b o(vm BNl p 08D M oy
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2. Eigenvalue gaps at the Edge

H fh(N2/3(/\h,1 — a;!_)’ . ,NZ/S()\h,m —_ ai’_))dﬁn{}{’;

0<h<y

) (/ Tn(N*2(@1) (=2)(\ +2), ,N2/3<<1>6>h>'<—z)<xm+2>)d1f»§">|

0<h<yg

log N) logN)?2 logN  M?

7l + Oy BT BN M) 19l

The proof of the theorem will be similar to what has already been done in the one-cut
case, one major difference being the inversion of the operator = introduced in the previous
Chapter.

SC(

3.2.2 Approximate Monge Ampere Equation

The analysis done in the one-cut regime suggests to look at the tlansport as the flow of an
approximate solution to the Monge Ampére equation va (YO T ,Yg’/ ) RN — RY
where Y/u RY — RN solves the following equation:

YN,E YNs Y}])V{E _ Y;\{,E
le \Y _ ﬁ h,lt h J, /B NNA (3 ,j,i
201<l<2j:<N’ Ah,i - /\/L,j Oghglsg lngh )‘h,i - /\/L’,j
1<F<Ny
1

- Z Z )\hu/\h J)Yhzt '2'W(/\h,i;/\h’,j)) - N Z Z W(/\}L'.L-,Z)d/li/(Z)

0<h <y 1<i< Ny, 0<h<g 1<i< Ny,

1<5<Ny,
(3.2.12)
where
‘ 1
e~ | (N S X W) -5 S S W0 ) e
0<h<g 1<i<N), , 0<hh'<g 1<i<N,

: 1<j<Ns

=0, log(Zy)%)
Let RYVE(YNe )-the error term defined as

— Yli-ve Yo=Y
RiVs YNe ﬂ Z hyi,t th 5 Z Z h,i,t h',jt
' " h= Ol<t<2_]:<Nf ’\h,i = A T 0<h<h<g 1<I<N), Ahi = Aw g
. _ 1<5EN,,
+ > Y @rT (Ani Aw, )Yhzt §W()\h1,/\h’ N+N D W(/\hz, z)duy (2)
¢ 0<h,h<g 1<i<Ny 0<h<g 1<i<Np ¢
I<j<Ny: : :
+ div (Y[VF) — &=,
' (3.213)

We have the following stability lemma
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Lemma 3.2.8. Let YV : RY — RN be a smooth vector field and let XN be its flow:
XYe =Y (xN) X =1Id (3.2.14)

Assume that Y€ vanishes on the boundary of B.
Let f: RY — R be a bounded measurable function. Then

| [ sexe aviis - [ 1 avlys

Proof. Let

t .
< ”f“oo/o !'Rfye(YMe)“Ll(Pﬁ:R) ds.

(N = =

IgI 11 |)\h,i_/\h,j|ﬁexp<“% >y Tt(/\i,ha)\j,h’))

ZNE
T,B  h=01<i<j<N, 0<hh'<g 1<i<Ny,

125Ny
II I 1Ani = Aw gl

0<h<h’'<g 1<i<Ny,
1<5EN,,

and JXN¢ denote the Jacobian of X{V'*. As Y™ vanishes on the boundary of B, XV(B) =
B. By the change of variable formula we have

[ ey = [ ranan - / F(N)p(A)dA
= /B f'(Xt’V‘)pL(XZ“E)JXéV’EdA |
Thus we have
[ rex aeligs = [ 1 )< 1Sl [ I = 614 IX0 4 ax,
Let
Ay = 8t/|p0 — po(XNOYTX e dA.

Using 8,(JXN¢) = div (YN*)J XN we have

A< [ 18, (XN p(X1))IdA
B
= / div (Y"€) I X, m(x )+ TXVE (D) (XNE) + TX NV p (X)X dA
/[RNE YN€)|dIP>

and this gives the lemma.
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3.2.3 Constructing an Approximate Solution

The construction of the approximate solution will be very similar to what was done in the
previous Chapter.

We fix t € [0;1] , N = (Np,---,N,;) € N9*! such that Y7 _o Ny, = N and set e = N/N €
10; 1[+T . .

Let 1
Ly = NZ%,,- , My =385, — Nug.
i h,i

We look for a map Yi¢ = (YO R Yg K RY — R approximately solving (3.2.12).
As in the one-cut regime, we make the followmg ansatz:

€ 1 € 1 € € &
YA = T¥EOn) + g€ My, € M) = [ af(op)dMuy)  B:215)

N

for some functions y§, : R — R and z{ : R* — R.

Proposition 3.2.9. Let V satisfy Hypothesis 3.1.2 and T, is as in (3.2.9) . Then there are
y$, in C*(R) and z{ in C°(R?) such that for a constant C, for allt € [0;1] and e € £:

(log N)*

N, N,
HRt E(Y E) LI(P;V B) — N

Using the substitution (3.2.15), we have to find equations for y{, and z;. To simplify the
notations,we will write R instead of R;"¢(Y V). We obtain:

N2 R
R= - // WdLydLy + N? / WdLndys,

+ ﬂ // yit(xi : ;’it(y) dLN(m)dL&(y) + N/ath(l“‘ y)Y?,t(ic)dLN(x)dLN(y)

,BN//fz (z, My) — & (y, MN)deN(:c)dLN(y) +N/61T.t(x, y)ES(x, My)dLy(z)dLy(y)

Ty

+ —Ilvn(MN) + <1 ~ g) /Y?t'dPN * <1,,_ g’) /8155(1’ M)+ &

where & is a constant and for any measure v we set

m=/@ﬁmwww.

We use equilibrium relations to recenter Ly by pf. Consider f a bounded measurable
function on B and w5 = (z + 6f(2))#uj,- Then as for § small enough uf5(Bn) = e
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for all 0 < h < g, we have E(u$;) > E(uf) where we defined the energy in (3.1.2). By
differentiating at 6 = 0 we obtain :

2 [ E22 s i) + [otio i@ @duye) =0 (32.16)
Thus, if we define the operator £ acting on smooth functions f: B — Rby
2t = [ [p LL2LD s o)1) + 0T 0] i ).
we obtain |
o [ 1LY winn) + [omieni@atsata)
=5 / zsaM + 5z |5 [ L2 LDy wpantn) + [ oo roastua)ansnty
Therefore we can write
R = /{_ylﬁ (1——)/8@ (2, )dps ( )] dMy
// _zt )] — 5W(gc,y)] dMy(z)dMy(y) + CV* + E

with

Z2i(,)lel = [ [ﬂzf(“’”’y)‘zf(z’y) 0Ty, 22 (2 ) + BuTu(, )2 (2, 9) | dyi (2)

r—=z

Ne . C e . .
where C;"¢ is deterministic and E is an error term:

= i./azzf(x,x)dMN(a:) + —jlv (1 - g) /Yit'dMN

+L (1_ _) [ ot t@ var(z)amnt)

*N // [ﬁ Vi) ylt('?+81Tt(x,y)yft(x)} M (2)dMy (y)

r=y

TN //] [ﬁ zila y (z v +81Tt(x 2)zf (, y)} dMN(a;)dMN(y)dMN(z)

| (3‘."21.'1'75

To make R small we nfeedf -
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where ko and k1 (-, y) are functions on B constant on each Bj.

The following lemma shows how to invert = and will give us the desired functions. We will
denote by O(U) the set of holomorphic functions on U.

Lemma 3.2.10. Let V satisfy Hypothesis 3.1.2 , T, as in (3.2.9) and € = N/N in £. The

support of yi, is a union of g + 1 intervals A* = U |[of _;af ] with of _ < o | and,
0<h<yg

d/u’i/ r ] € €
= S II \/l.’l,' —aof ||z —of |

with S positive on AS.
Let k € O(U) and set for f € O(U)

=)= [ [ﬁ IO = I0) | 5gi ) £(0) + 0T, 0) )] dii(w) Ve € U

r—y
Then there exists a unique funclion ky on U constant on each Uy such that the equation

=f =k + kg

has a solution in O(U) . Moreover, for all x € Uy,

o ionEE) + ), |
fla) = 20720 (z)on(z)S(x) [75 (§—1z) i h] , (?.2.18)

where the contour surrounds x and A; in Uy, and

and the constants ci and ci are chosen in a way such that the expression under the bracket
vanishes at T = of, _ and = of, , for each h (see the following Lemma,).

Moreover f satisfies for all j
[ Fllesmy < Cs ikl givags (3.2.19)
for some constants C;. We will denote f by = 'k.

Before proving this lemma we need another lemma,
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Lemma 3.2.11. Let V € O(U) and i, as in the previous lermma.

Then for all 0 < h < g the linear operator

@h = CZ —)CZ

(ct,c?) — (c1 % (?%%—jdg +c%, ¢t 56 -(-é—(:h—fi)—ﬁdf + 62)

is invertible and Oy is analytic.

Proof. This comes easily from the fact that

/“Hﬂy—% Che —¥), . ohe ol
af y-ah— 2

h,—

%+ \/(y —of Johs—y) of_—of,
. Yy —aof dy 2
aj _ h,+

O
Pmof of Lemma 3.2.10. By the identity (3.2.16) with f(z) = (2 — z)~! and z outside the
support, we obtain that the Stieltjes transform G(z) = [ z—i——dy,f,(y) satisfies

2627 +6(2) [ 0Tz, )it () +F(2) = 0 with F(z) = ] OT0.1) — 0Tl 1) e (5)dps ()

‘Ql

and this gives

BG(2) + /alﬂ(z,y)duf/(y) = —\j (/ 3171(2,y)d/t€/(y))2 — 2BF(z).

As —m71ZG(z) converges towards the density of p§ as z goes to the real axis (see for instance
[3], Section 2.4 for the basic properties of the Stieltjes transform) and the quantity under
the square root converges to a real number, this number has to be negatlve on the support
(otherwise the density would vanish) and thus for z € A® ~

| %? =51;\l 20F(z) = (/'&ﬂ(‘xw)du%(y))z -

Noticing that o becomes purely imaginary when 2 converges towards the support, we may
write : :

BG(z) + / BT (2, )i ) — ﬂ?rS(Z) R <32.2o>

where S is an analytic extension of S in U (we can assume S non zero on U by p0551bly
shrinking U). We will keep writing S for S.
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For f analytic in U \ A% and z € U \ A® let

z-¢
where the contour surrounds z and each A5. Then Zf € O(U \ Af) and, noticing that

— ; 5) —s v
iS(z + id6)o(z + 1d) o o We have

=)= - [ (422 - om0 i) = 162 ([ 0T ) + 5 [ 220

3= 6 (ﬁf ©) _ o, E)f(é)) S(€)o(€)de

_ L (BIE) 5, o 7 F(2)S(2)o (2
-1 ( o, ,5>f<£>) S(E)o(€)dé + fr1(2)S(2)o(2)

z2—¢
=Zf(2)
(3.2.21)

where the contour surrounds each A5, (but not z), and we used Cauchy’s formula and (3.2.20).
If furthermore f € O(U), by continuity this formula extends to z € U.

Let k € O(U). We want to show that the function defined on each U, by .

d¢ +c;

o) = — 1 { 55 104 () (k(€) + ch)

2pm?0(z)an(z)S(2) (€—2)
where the contour surronds A§ and lays in Uy, and ¢}, and ¢} are defined as in the statement
of the lemma, is a solution of Zf = k + ki in O(U). The fact that f € O(U) is clear (the
function is meromorphic and the poles are removable by construction of ¢* and ¢?). Thus,
by previous remark, it suffices to prove that =f = k + kg

By (3.2.9) We have o o i : ‘
Ef=01-1t) Zof +tEif +c (3.2.22)

where ¢, is a function constant on each Uy, depending on t and

= Bi L F00OSE
Zaf() = o  HEZE < ¢

ﬁzygf __‘5 -
z—k p

Whele the first contour surrondb z and each A5, whereab the second one surrounds z and Aj,
when z € U,

'mx

Let fo and f; be the functions analytlc in U \ A€ defined on each Uy, \ A

. . 1 ‘ 70h(5)( (€) + ¢3)
Jol2) = B (Z)n (156 55 - %
fl(‘z)b =- & ‘ |

ZZCCTORON
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So that f = fo + f1

£ § MOS0,

~o(fo (2)= §

L 1 i (n) (k(m) + cb) )

=25 c,tz—szﬂwza(aan() @ (5£ (-6 ‘“?) S@a(e)dt
Con(m)(k(n) +c1) - S

B ﬂz%g O

where C’h surrounds z and As (mtegral in £) , and C}, surrounds C}, (integral in n).

Cauchy formuls. gives .

?g an(n)(k(n) + c;)
, (n—=¢)

with Cj, surrounding C}. Thus:

:‘} ) +C}L) . 2”!- €)+c}b)l
Zolfo)(z 4w2z7§h55~ z—é)(n Don(6) M T 7 Z TS

Letting each Cj, go to infinity, we see that the first integral goes to zero and using Cauchy
formula again we see that the second term equals k(z) + c'.

)(k(n) + ci)
(n—=29 @

in = 20m(k(E) + Ron©) + . 2

We now prove Zg(f;) =0 .

. 25()(8) i _
Zo(fi)(2) = wz?gch GGG 4w2§?€,,ah(.s><z—od§ 0

where we let the contours go to infinity.

By the exact same reasoning, we show that él( fo) =k +ct and él( fi)=0.

By setting ki = ¢; + ¢} on each U, we have the desired result. The unicity of ki is implied
by the previous lemma. Formula (3.2.19) can be easily deduced by (3.2.18).
O

Remark 3.2.12. By Lemma 8.2.11 and (3.2.18) , if k deﬁned oh U x U 1is analytic in each
variable then f defined on U x U and solunon of

_ =f( y)—k(xy)+mk(wy)Vy€U
with k(.,y) constant on each Uy is analytzc in each variable.

We can now construct our approx1mate solution of the Monge-Ampére equation. As we want
the domain B to be fixed by the flow of this approximate solution, we would like to choose
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y$, and z¢ vanishing at the boundaries of B (and B x B). Fix § > 0 small and denote
B = U [Bn-+3Bns -4l

0<h<g
For a function f: B — R let T(f) be the multiplication of f by a smooth plateau function
equal to 1 on B? and 0 outside B. If we are given a function k € O(U) and f € O(U)
satisfying Z(f) = k + ki , then :

Y(f)=fon B’
e T(f) is C*™ and has compact support in B (and can thus be extended by 0 to R).
Z(Y(f)) = k + &, on B® (By definition of Z and the fact that f and T(f) coincide on
Bé

).
IT(Neiwy < Cillkllcivagpy for some constants Cj.

Note that by Remark 3.2.5, possibly by shrinking £ we can assume T, < 0 outside B®. Thus
for N large cnough and a constant n > Q

P (3i A & B®) < exp(—Nn). (3.2.23)
Morcover
/</|k =(Y( |dMM> APy </(/|k—5f|dMN) dIP%;,+/ (/1Ef‘~E(T(f‘;){d]\/IN) AP
(3.2.24)

The fist term on the right hand side is 0 as k; is constant on cach Bj and the second term
is (*{poncntmlly small by the large deviation estimate.

We first choose

and then

With this choice of function and by inequality (3.2.24) we have that
, R:E+C’“+o<i\ S (3.2.25)

We now have to control the error term E. To do so we will use a direct consequence of the
concentration result proved in Corollary 35 of [17] (adapted from a result from [64]):
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Proposition 3.2.13. Let V' satisfy Hypothesis 3.1.2 and Ti is as in (8.2.9). Then there erist
constants ¢ , ¢ and so such that for N large enough , s > 50\/1—"5,\71!, and for anye = N/N € £,
t € [0; 1] we have

N,e
Pr s

£y

sup
$cCH(B)
ll¢')l . <1

/ ¢(w)d(LN — us) (z)| >

s | < exp(—cN?s?) + exp(—c'N?). (3.2.26)

In order to control the error term we will make use of the following three loop equations.
We recall that My = N(Ly — Nps,) and we will denote My = N(Ly — ]E%EB[LN])

Lemma 3.2.14. Let f € C'(B) such that for all0 < h<g, f(Bn_) = f(Br+) = 0. Then
o (v + (1-5) 2t + 5 | (FE2LY s oitios@)) avtwterant) ) =

B (3.2.27)
If ky is also in CY(B) then
Ez,'s (LN(fka) + My (Ef) My (k1) + (1 - §-) Ly (f) My (ky)
o5 L (BE2=L9 s oo, s6a)) ant(@iansto)] v ) =0 o
If ky and ks are also in CY(B) then |
BN, ( Z‘Lw(flc;m)MN(kom)MN(kn(z)) My (2 )M (k) ¥ (ko) ¥ (k)
v L (BE2Y s ooniton) anrwtmantnty )| )t i 1 1)
(1 — é) Ln(f"YMu(ky) N(kg)MN(ké)> = 0.
(3.2.29)

where the sum ranges over the permutations of Gy

Proof. Using integration by parts we show

EYS, (// (ﬂf i I®) | 57a, y)f(x))d.L}v’(xidLN() %(1_2) LN(,»)>_:O

(3.2.30)
we deduce the first loop equation by using the definition of E.

The second loop equation is obtained by replacing in (3 2. 30) Ty (z,y) by Ti(z,y) — 51(:161(1‘) ¥
ki(y)) and differentiating at § = 0 .

The third one is obtained by replacing in (3.2.30) Ti(z,y) by Ti(z,y) — é1(ki(z) + ki(y))
02 (ko(x) + kaly)) — d3(ks(z) + k3(y)) and differentiating at 6, = dp = d3 = 0 .
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We will now put in use these loop equations and the concentration result of Proposition
3.2.13 to obtain some estimates.

Lemma 3.2.15. Letk be an analytic function on U. Then for some constant C':
| Exs (My(k))| < Clog N [kl e, -
ENe (MN (k) ) < C(log N)? [[kllZeg)
EIF\’LE (MN (k) ) < C( logN 4 |lkH('f>(R)

)-

Pro()f We apply (3.2.27) to f = T(27'k). Using (3.2.24) we obtain

BN, (MN V J ( E M@ = YETH) +am<x.,y>r<a*k><x>) d,MN(x)dMN(y)}
-y
(1 - 5) Ly((Y(Ek))) ) O (N 1K)l 5y exp(=Nm) )
Let , v
(E7%k)(x) = T(E k) (y) =10\ | o
/:_N[ // — +0,Ty(x. Y)Y (2 k)(z))dMN(w)dMN(y)}

+(1-5) Lt o).

Denoting by F the fourier transform operator (for functions of either one or several variables)
we have

// =2 _T( = hly )dM&ir>f1MN(u)
-y
=1 / < / da / T d My (x / e"“-a)fydMN(y)) F(Y(E71k))(€)Ede

[ ot vyrE @@ty

- / ( / 5 dMy (z) / e"@dMN@)) F(OT, T(E k)€, C)ded.

and

Now on the set 2 = {sup¢ec 1(B) '] P(x)d(Ly — p&)(z )' < sp l—oﬁ,ﬁ} we have -
o le'llo, <1

’/ z{deN

+2N€ Nn

< C+1€)yNlog N + 2Ne~ N7
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consequently, on this set

r—y

I// Y(E"1k)(z) - T(Ealk)(y)dMN(x)dMN(y)

< C(NlogN) / IF(CETR)EI + [€])°de + O(Ne ™).
The integral is bounded by the norm H*(R) of T’(‘E"lk‘) and we have:

-

e c( [tk

: , (1)
=1k )
L2(R) * ”(Y( )) L2(R)

As Y(Z7'k) has its support in B, the £2(R) norm can be in turn controlled by the £>(R)
norm and we can use (3.2.19). Similarly on 2 we have ‘

; / 0\ Ti(z, y) L (™ k) (z)d My (z)dMy (y)

< C(Nlog N) [|kllgs(py + O(Ne ™)

Note that here the constant depends on 7} but we can make it uniform in ¢ and € € E.
On Q¢ we can use the trivial bound

’/eiémdMN(:I;) < 2N

to prove that |A(k)| is bounded everywhere by CN ”k”CG(B)' By using Proposition 3.2.13
we obtain

ERSA)] < C((1og V) [l gngoy + Ve85 o )

and we can conclude the proof of the first inequality.
To prove the second inequality, using (3.2.28) and (3.2.24) we have

B35S (M (k)M (k) ) = ~E5% (AW () + Ly (K TEK))) + OV [kl iy e

By splitting on Q and Q¢ we see that

/

B35 (Mu (k)2 (8) )| < ©((10g N [y ER (19w (R )+ 1Kl 2y (1 -+ N2 08N o 2t
We notice that My (k) — MN(k) .:.‘ ]E%EB(M v(k)) is déterministic and that ]E%’fB(MN(k}))
B (M (6)?)

vanishes. The term on the left is thus equal to and we obtain

EN, (MN(k)2) < c(logN 1Kl oo s, \/E%’fB<MN(k)2)+||kH§,6(B) (1+N2e‘“'3N1°gN+Nze‘N"')).
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Elementary manipulations show that this implies that Eff'% (1\7[ N(k)2> < C(log N)? ||k||266( B)

with a different constant.
Writ.ing ‘
ER G (Mu(k)?) <2 B (Mw(0)?) +2 B ((W1(k) - Mu (k))?)
= 2B (Wn (k) + 2 BN (M (k)
and using the first inequality yields to the second one.

Finally, to prove the last inequality, (3.2.29) gives :
Eq;' <MN(]€)4> < C( log N ||kllce s En. (MN(k)4> %+||/€Hé6‘(3) ((108 N)2+N4€_cs‘2’Nl°gN+N46_N">)
which shows Ef'% (MN(k)4> < C(log N)* ||k||4cﬁ(B)~ We conclude by using the identity

BN (Mu(0)') < 8 B (Vn(0)*) + 8 B3 (W (k) = M ())").

We will need a last lemma to estimate the error E.

Lemma 3.2.16. There exists a constant C such that for ¢ € C®(R) (resp. 1 € C*(R?),
x € C*®(R3)) of compact support in B (resp. B%, B*) we have

55| [ 6@)dn(2)]) < € 16llncs oe N

J ECETOYTARmS
23 (| [J] xten rtnioasnasi)

w(IJ y) - '(/}(Z, y) dMN(;E)dMN(’y)dMN(Z)

r—Zz

) < Clloll s py log N*

P(x, y)dMN(x)dMN(y)D <C llecﬁ(Bz) log N2

) <C HX”(;'zl(Ba) log N?

) < C [l ey log NV?

N,e
ET],B(

Proof. We will prove the last inequality as the other ones are simpler and can be proved the
same way. ’

// U@ Y) =Y s yaMa )dMN(z)

r—z

=1 // / daMy( mﬁ‘)MN(ei“-a)ﬁ')MN(eM)f(alqp)(g,gjd§d§
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and by using Holder inequality we obtain

o |

// EN MN(emf>) BN (M ("‘“-“’f')) BN (My(e<))’ )\£|F(w><s,<>d§dc
< ClogN° [[ 1+ e+ eI (o) 6, ) ldedc

P(z,y) —¥(z,v)

r—z

dMpy(x)dMn(y)dMn(2)

where we used the last identity of Lemma 3.2.15. The last term is controled by the H*(R?)
norm of 3 and we have

e
¥l sy < O (19l + sup 0%

o) S C Ml
|

A direct application of this lemma shows that ]E%EB E |) < CQ’ENLVX, and we could prove
similarly using higher order loop equations that for all integer k£ > 1

(ENs(E

In order to prove Propostion 3.2.9 it remains to control the deterministic term CtN . Let

ok \ 1/2k (1()gN)3
)" <ol

(3.2.31)

J Yhi— Y, Y. — Y, .
— h, h,j h,i h',j
I=F2 2 T P X T
h=01<i<j<N; “hii h,j 0<h<h/<g 1<i<Ny hi h',j
1<i<Ny
+ ) > (O T (Mnyis A g) Yi) + div (Y).
0<h,h'<g 1<i<N,
1<5<Ny,

Integratlon by part shows that any vector field Y that vanishes on the boundary of B satisfies
(£(Y)) = 0. Thus

1

]E?ieB(RNE(YNE)) — IE%TE( — 5 Z W(/\h;,ia’\h’ +N Z Z W )‘hu )d:“V( )
N 0<h,h <g-1<i<N,, - . o -.0<h<yg 1<1<Nh : . |
: 2N : o

+L(YMe) - cf“) —0.
and by (3.2.25)

icN I—‘IE (RY (YN’E)—E)}+0<—)§C——————3-.
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3.2.4 Obtaining the Transport map via the flow

In this section we will discuss the properties of the transport map given by the flow of the
approximate solution Y™¢ of the Monge-Ampeére equation. ‘As the equilibrium measures of
the initial potential and the target potential are the same, this map is equal to the identity
at the first order. The smaller order are then given by the expansion (3.2.15) of YV .

Lemma 3.2.17. Let V satisfy Hypothesis 3.1.2, T; is as in (3.2.9) and €= N/N €é.
Then the flow XN can be written

XM _1d+~XN“+mXN62 o (3.2.32)

where XtN’E'l and XtN’E’2 are in C®(RY) supported in B, and for some constant C > 0

N.e,1 N,e,2 2
Oiliigg HXhz,t L@l <ClogN | HX L@ < CV/N(log N) (3.2.33)
1<i<N),
and with probability greater than 1 — Nt
sup  [X 5 (A) = X ()] < CVN Tog N = A | (3.2.34)
121, /</£<7h Q
sup \X,QV;Q X) = XV (N)| < CNVNlog N|dns — Al (3.2.35)
1572 R -
sup - ‘X,llvget’l ' <CVNlogN , sup ”X,Ilvf,jQ l < CNVNlog N (3.2.36)
0<h<g v oo 0<h<g oo
1<i<Ny, 1<i<Ny,

Proof. The expansion (3.2.15) suggests to define X} ! = (Xé\’/ft’l, e ,X;’/,\i;‘lt) as the solu-
tion of the linear ODE

- . o ‘ o E

X (A) = y“()\/u) /Zf(Ah,i,y)dMN(y) += DY 007 (s ) X5 (A

N O0<h/ <g 1<j<Ny:

(3.2.37)

with initial condition X;"*' = 0. We then define X,"*? through the identity (3.2.32).
Using the fact that y{, and z§{ have compact support and arc thus bounded, along with
equation (3.2.37), we obtain:

).

d o '

= sup X0 o )<c(1+ sup Hx,?’fﬁ e, SUD / 25 (A ) dM (y)

dt \ o<h<g © LAY ) 0<h<g LAPy's)  o<h<g La@Ns)
1<i<Ny, 1<1<N;, : 1<i<N), v.B

As in Lemma 3.2.16, we can prove that the last term is of order log N. Using Gronwall S
Lemina, this proves
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< Clog N. (3.2.38)

Ny =
L1 (]PV,E')

sup HXh i, f
0<h<g
1<i< Ny,

Furthermore, Pxopomtlon 3.2.13 shows that for some constant C, with probability greater
than 1 — N~¢ we have

H/alzf(-,y)dMN(y)H < C\/_Nlogjv

[e.¢]

and similarly, this proves (3.2.34). We now have to bound the norm of X;"*2. For s € [0; 1]
let

XN 14 4+ 1\,)<'IV51+]-V—2)(’VE2 (1—s)Id+sX*

s,N,e
and define the measure M,)\f" by

/ FWAMy )y = XY FXENE ) = N / Fu

0<h<g 1<i<Ny

Then a Taylor expansion gives us an ODE for X¢?

X = [y (R (X o+ L)
s $,N,e ]_
/ /31Zt XimE(N) ,y)d Myt /alzt Ahiiy )dMN(y)]dS (Xfllvzi’l(A) N X (N
/ Onzf (Mir ) M (y ( Mel(n) + X,’ffﬁk))

DYDY [asz(XiifV,t'e(/\),XZ%f,Y,’f (N)) = B2 (Anis )| ds XAV
0<h/<g 1<j<N,, JO
' . . XA
+ Y [ e xai)|ds —_’L»y\;( )
0<h <g 1<j<N,/ /O

(3.2.39)

We then use the bounds .

d

1 P ' '
/ 8lzf(Xg:Q't’€()\),y)dMN / 8lzt Ahi ! )dMN( )
S o : S » C 1
o coxie+ S lx,iift P> (1t + X)),
A o

ds |X,i“ <A

a7 (XS (), Xt (N)) =025 (Anss A, )

1
2
k. /O

C N L N Nel
< N > <|Xh',’;e',}1‘2 + 'N‘|Xh':§,’t2||xh',§,t )
W
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to obtain

o N,e N2 N,e,2
N.e 2]EVB<ZX}LLt Xhm)

' (IP B) h,i

o )
< 0w St i) + § e S )

h,i h,i

”XN52

v € £, € C £, €
o miE( Tt i) + § eie( Sk )
. hyi . o\ hi . ..

h,i

¢ N Ne2):
N2 Evg (Z [ Xnat I°

C N — Nge,1 N,e,1 N,,2 C N,e N, 1 N.g,2 N2
+ = Eyg| Do I1Xnd | IXwi | IX 5 ) + e Evi| Do 1Xes | 1 X5 | 1 Xn5

N h,i hi

h.j k'

N h,i h,i

h'j r'\j
N,e
+Eyp (Z
hi

C  Nel = wNe2i | oNel N2y |y Ne2 | Vel
+ N E\/,'E(Z:‘Xh,i;’ | 1 X550 |2 N2 IEVB Zthzet | X 5o | 1 X5
hi
Lt
J

C N, Ne2i2 | v Nel C N, N2 Ne2
+ == ]Ev,g(Z’X/L,f{ | th',’j‘,‘t N3 Evi Zth L,EL 2 ‘Xh'j,tl

[ o ow vt i) + o mie( St

h,i

C -~ Ne2 N2
EVE(Z|X11,2,€[ X5l
hi :

g

(3.2.40)

ve. < Clog N (see Lemma 3.2.16), |X,;Vf,1| <
LAPBYE)

Using the bounds Hf 012¢ (,\h’.i’ y)dMN'(?})

CN,|X ,llvft2| < CN? and inequalities such as

S I < (5 (s o))
h,i

> hyi
N1 N1 Neg2y . f- N1 Ne,l N.e,2
Z IXh,i,eL | ]Xh‘,;t i ‘Xh,'i,et ' S <Z ((X/L Let ) + (Xh,ii ) (Xh’jt) )) ’
h,i h,i
h'\d h’fj

along with (3.2.38) and Holder inequality, we get

xNe2 Nie, 2 . 2) )
dt H ‘LZ.( = (“X Lzlnm’“ + N(log N) ) (3~2-41)
Using Gronwall’s Lemma, we can conclude the proof. The bounds (3.2.35) and (3.2.36) are
O

proven the same way.
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Remark 3.2.18. Using (3.2.36), (3.2.37) and (3.2.40) we see that we have in fact for all
integer k > 1

N2
sup || Xi5Y| e e, < Cilog N, sup XN e, < CoV/N(log N)?
L2k (P ) , L2’\'(IP )
0<h<g V,B 0<h<g v,B
1<i<Np 1<i<Ny,

3.3 From Transport to Universality

In this section we will prove Proposition 3.2.6 and Corollary 3.2.7. We prove the results in
the bulk as the proof is almost identical at the edge.

Proof of Proposition 3.2.6. Note that by Lemma 3.2.8 and by our construction of Y{V X {V '
is an approximate transport map from ]P’g 5 to [P’QI‘SB in the sense that it satisfies (3.2.11).

Now, keeping our notations from the previous section, set XNe = Id'+ L X1 Nel Then for
all f € CY(R)

i/f(f(”@)dﬂ»(} /fx’“dlp

||VfHoo H KN
L‘z(PQ_r;)
log N
<1v | NQ)
and thus
N, € log N log N
[ scmaets - [ raeke] < B gy v o, LS j’;,j.

Now for all 0 < h < g let R*: B,?f" — B,[LV" the ordering map (i.e the map satisfying for
all (A, -- /\Nh) € BN’L RM(Ap, - An,) S Ry, Ay,) i s < jand {A, - Awe} =

{Rhl()\l, ’\Nh) RhN"'-(/\l,---', )\Nh)}, sothat lfR(A) = (RO()\()J,""',)\()‘,NO),'_" ,RQ()\y,l,---

we have Rﬂa’lP’Ne APy
Then if fh is a function of m vanables we have HV(fh o Rh)Hoo < \/7—71_ ||th||OO
It is clear from (3.2.34) that X Ne preserves the order of the eigenvaldes with probabil-

ity greater than 1 — N-%. Thus, if we define f : R™9+) — R by flxo, -+ ,xy) =
[To<n<g fr(xn) where f, : R™ — R we obtain
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‘ / H fh /\h,ih+l - /\h,ih>7 Tt ;N(/\h,ih+m - )‘/L.ih))dp’lf\“]l’fB

0<h<g

IT (N ) = KO0, N (V) = X)) apyig| - (3342)

hyip+1
0<h<g

<o(fE ., +||v.flloo\/ﬁ(’”107gvg_)2)'

Now, using (3.2.34) we notice that with probability greater than 1 — N"%, foralll1 <k<m
and 0 < h <y

X;Q’,’i%()\) )A(;iV{,E()\) = Mitk — Min + (Anin+k — )\h,ih)O(T/-:)~
As f1, has compact support in [=M, M]™, (A, +k — An,,) remains bounded by -2—1{‘—,4— and

M log N

XN A = XNEA) = Mpior — Mgy + O(—2—
() () ‘h,+k h.ip ([V\/]—\/:

hyi+k hyip

),

we casily deduce the first part of Proposition 3.2.6 .

Proof of Corollary 3.2.7. Noticing that d]P’rIAw,l’fB is a product measure we can write

) ) 1. .
II fh( (Mhip41 — /\h,,ih)7 oo, N(Xpiom — /\h,ih))dﬂj’TNfB = —“—/ 1T I 15 .(niddArn:

0<h<g » Z’f‘i',eB 0<h<g 1<i< Ny,
[fh (N(/\h,ihﬂ - /\h,ih)a T QN(/\h;i}mn - /\h,ih)) H |/\h,z‘ - /\h.,j’ﬂ exp ( - N }: Ve(/\h,i)>ji

1<i<j <Ny, _ 1<i<N,

H fh( /\h KT Ah,ih)z e vjv(/\h,ih-km - Ah,i;;))dlpcg/gh B,

0<h<y

We notice using (3.2.7) that
'u‘?el/EhvBh, = Nf} "'
We conclude using Theorem 2.1.4. ' ‘ ‘ R 0

3.4 Unlversahty in the initial model

To donvo umvomahty in the 1mt1al model we oxpand the expectation of the quantity we
want to compute in terms of the filling fractions, and we make use of Corollary 3.2.7.

First, we notice that for all 0 < h < ¢ the map ®=" is smooth in € € £ and we have a bound

((I>5’h)'(/\h,,7¢) = (@E”h')’(/\;,,,i) +»O(’€ - &,]) 'u,n'i:fo'r"rn,(_ely in A € B (3.4.43)
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Indeed, it is shown in [11] (4.1) that our transport map ®" is equal to X¢ where Xf solves
the ordmary diffential equatlon

XE=ys(XE) , X¢ =1d

and yf is given by inverting =. By formula (3.2.18) and Lemma 3.2. 2 we see that y; is
regular in €, and from the standard theory of ordinary differential equations, so is €.

We will use the following result proved in section 8.2, equations (8.18) and (8.19) of [15].

Lemma 3.4.1. Along the subsequences such that N, mod Z9*! — k where k € [0;1[9*!
and under Py, the vector |IN,] — N(X) converges towards a random discrete Gaussian
vector Ay . In particular

PYS(INO) = L1 2 ) = O oxp(-67)).

Note that the limit is not necessarily centered, and although the result is proved for IV, —
N(X), it obviously also holds for |IN,| — N() since we are only considering subsequences
such that IV, — [IN,] — . We will also need the following result, which can be proved
using the previous result or Lemma 3.2.16

- NY o ZNe log N
S fw gple el =B X (B - m(Ba)) < 0=

N=(No,"Ng) 0<h<g

(3.4.44)

We now provide a proof of Theorem 3.1.3. Let f be a function of compact support and ¢
such as in the hypothesis of the theorem. Using Corollary 3.2.7 we have

/f(NPV(Ezy'N)(/\iH - /\'i)>dﬂi>]l>[,8

= 3 F(Nov(ESY)(Aier — M) Inoy=n dPY
N:(N(),~~~,N_,,)
Nz <N
= : F(Npv(EY™MY O nasannNg = Aninng) ) APy S
N:(M,Z;..,Ng)HNn’, Zy ( N = A 1)) APy
N ZY; Vil N
= > = " Npy (B )(Anir1nN] — AninNy) ) APy 5
N=(Np,,N,) [N 205 ( )

IN)-[N.JISK
+O( Il exp(=K?)
N!

R Z

N=(No,,Ng) [T Na!
CINOY= VL JISK

N((I)E’h)/()\i[h,N])pV(EiV’N)()\i+1[h,N] - Ai[iL,N]))dpg"

log N)?2 M(IogN)

log N M
QOB o+ (v lEDL 8B 2y yo ).

+O((exp( Kz). (
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If we manage to replace the term N(@e”b)’(/\i[h,N])pv(El-V’N) by N, pG(EﬁhAI:I"]) then, using
the convergence (3.1.4) we can conclude.

By (3.4.43) we can replace (®°")'(A\ij ) by (@) (Aipnn) in the last equation and obtain
an error of order K/N. Now, using that ®*=" is a transport from pug to pf}’h we sce that

pa(Ain,N))
(@) () = =7 ’ ’
Pf/”’ (@R (AijnN))
q)s,,,h(E‘C'Nh) Ey,N
i[h,N] e h i e h
/ o @da = [ " @)da + O,

Thus (DE*'h(Ef[",’Lf}/\I"]) = E/Y + O(K/N) and using py = e, , pi"" on A, we sce that

N((I)s*’h)l(/\'hN])pV(E-V’N) — N ] pG(/\[hN]) ’of;'h(EiV’N) '
R T G @ ()

We can replace Ajnnj by Eff,ﬁ'n in the right hand side with an error term o(N) with high
probability under Pa* using a very rough rigidity estimate that can be proved for instance
using Proposition 3.2.13. As (®*>")" is bounded by below and f is compact we notice that
N(/\,;H(h,N] - /\i[h,N]) is of order 1 and we can conclude.

We can now proceed with the proof of Theorem 3.1.4. To simplify the notations, we will do
the proof when m = 1 but the proof for gencral mn is identical.
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g , B
[T fa( N2y = a0-))dBY

h=0
= Z H f (N / /\h 1 — Qo,- ))1N(A)=N dngB
N=(Np,,Ny) '
N'  Z)f , e
-y AL ek [T g (VO — ) )dBYS
N=(No,~-~,N_q) H Nh' Z(XB h=0 ( | . )
N ZYe g ‘ .
= 3 ZVE T fa(N*3 (g — o) ) dPY s
N=(Np,",Ng) H ]vh| ZV,B h=0 ( )
N Z)%
vo( % 2|1V £l NP le - &)
N=(Np, )HN ' Z\IYB
N!  ZV% , v
= 2 Zeb [T fu(N s — of, ))aBY
N=(No,,Ngy) [T N! Z{/\,,B h=0 ( )

IN(A) =LV HISK

(lo :
+ O(SER NV + 1 50~
N Zy5 ¢

- Y o SR m(eeeety-no - 2)dR
N= 1"‘»Nq : V.B h=0
|N(A)(1V(L)N*J|§}<

(Iog N)3 (log N)2 logN = M?

i+ o+ v IV e )

+ O (exp(=K?) + 2520) |l + (Vi
Using the fact that (®5")’ is bounded by below on B and that f, is supported in [—~M; M]

we obtain that |A; + 2| remains bounded by g{‘jﬂ Using (3.4.43) we get

u(NPH@M) (=2) (A +2)) =fu( N2 (@5 (ac,-) (M — ac,-))
+O(M |V £l le = &.l):

This equation, along with (3.4.44), shows that. .

g o L |
H fh(Nz/a(/\h,'l - dh,_')),dPI‘)f‘B o
h=0 A N
3 N! . ZN,E g ' ‘: . . ;,,:
= Z J| —"ZY\}B_ H /fh'(N2/3((I)6,h)/(_2>()\l + 2))d[[])gh
N=(No,,Ng) TN 29
IN(A)— | N, I<K

+O((exp(—K2)

(log N)? (log N2 log N M?

N5/6 N1/3 N4/3 ”Vf“ )

)1l (\/_
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As Theorem 1.1 of [72] ensures the convergence of the expectation, we can conclude.

We now come to the proof of Theorem 3.1.5. Let 0 < h < g, ¢ = [[INy]]h-1 + 1 and
Ap(A) = [| No]]h=1 — [N(A)]s_1. As before we obtain

(e : Ntz | ~
/ (N —&))dPYs = Y I N.! Z{‘:V’i /f<N2/s(/\h,,i[h,N] — o)) AP
N=(Ng,,Ng IVp! : g )
A(’A(OA)?_O )
N'  Zy% ‘ -
' Z W —ZYNE/'f(N2/3(/\fL—l,i[IL——1,N] — ah_17+))d]py’,8.
N=(N, ""qu . V.B
A(h(oz\)<0‘)

We focus on the first term. Applying Corollary 3.2.7 we see that this term equals to

N,

Z N!' Zyx

N

IN(/\)—LN*J!SKHNh! "
AR(N)>0

[ 2(N @y (<2 + D) aBE

Noticing that i[h, N] = [[Ny|]n—1 — [N]a—1 + 1, we deduce the theorem from Lemma 3.4.1.
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Chapter 4

Mesoscopic central limit theorem for
general S-ensembles

This Chapter is based on the article [13] written with A. Lodhia.

4.1 Introduction

In this Chapter, we study the linear fluctuations of the eigenvalues of general 3-ensembles
at the mesoscopic scale; we prove that for @ € (0;1) fixed, f a smooth function (whose
regularity and decay at infinity will be specified later), and E a fixed point in the bulk of
the spectrum

§~f(Na(>\i - E)) - N/f(Na(I — E))dpy ()

converges towards a Gaussian random variable. At the macroscopic level (i.¢ when a = 0),
it is- known that the eigenvalues satisfy a central limit theorem and the re-centered linear
statistics of the eigenvalues converge towards a Gaussian random variable. This was first
proved in [51] for polynomial potentials satisfying the one-cut assumption. In [16], the
authors derived a full expansion of the free energy in the one-cut regime from which they
deduce the central limit theorem for analytic potentials. The multi-cut regime is more
complicated and in this setting, the central limit theorem does not hold anymore for all
test functions (see [15, 77]). Similar results have also been obtained for the eigenvalues of
Random Matrices from different ensembles (see [4, 63, 76]).

Interest in mesoscopic linear statistics has surged in recent years. Extending the results
to one dimensional 8-ensembles is a natural step. We prove convergence at all mesoscopic
scales. The proof: of the main Theorem relies on the analysis of the loop equations (see
Section 2.1) from which we can deduce a recurrence relationship between moments, and
the rigidity results from [20, 19] to control the lincar statistics. Similar results have been
obtained before in [21, Theorem 5.4|. There, the authors showed the mesoscopl( CLT in the
case of a quadratic potential, for small o (see Remark 5.5).

In Section 1, we introduce the model and recall some background results and Section 2 will
be dedicated to the proof of Theorem 4.1.4.

81
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4.1.1 Definitions and Background

We consider the general 5- matrix model For a potentlal V:R — R and § > 0, we denote
the measure on ]RN

P (d)\l, ) = =

zy I1 &l)\z‘—/\ﬂﬂewzv(ki)nd)‘i’ (4'1‘1)
1<i<j<
with '

Zi= [ T - rfe v Lo,

1<z<]<N

From the previous Chapters we know that under IPN the empulcal measure of the elgenvalueb
converge towards an equilibrium measure.

4.1.2 Results
Hypothesis 4.1.1. For what proceeds, we assume the following

o V is continuous and goes to infinity faster than B log|z|.
o The support of py is a connected interval A = [a;b] and

% = py(z) = S(z)\/(b—z)(xr —a) with S >0 on [a;b].
o The function V() — B8 [log |- —y|duv(y) achieves its minimum on the support only.

Remark 4.1.2. The second and third assumptions are typically known as the one-cut and
off-criticality assumptions. In the case where the support of the equilibrium measure is no
longer connected, the macroscopic central limit theorem does not hold anymore in generality
(see [15, 77, 12], and the next Chapter).

Remark 4.1.3. If the previous assumptions are fulfilled, and V € CP(R) then S € CP73(R)
(see Chapter 2).

Theorem 4.1.4. Let 0 < o« < 1, E a point in the bulk (a;b), V € C(R) and f € C*(R)
with compact support. Then, under PY

S F(N"(—E)) = N / FIN®(z — B))dpy (z) — s N(0,02) |

i=1

where the convergence holds in moments (and thus in distribution),, and

i %2//( - )édidy

Note that, as in the macroscoplc central limit theorem, the variance is universal in the
potential with a multiplicative factor proportional to 1/3. Interestingly and in contrast with
the macroscopic scale, the limit is always centered. k

The proof relies on an explicit computation of the moments of the linear statistics. We will
use two tools: optimal rigidity for the eigenvalues of S-ensembles to provide a bound on the
lincar statistics (as in [20, 19]) and the loop equations at all orders to derive a recurrence
relationship between the moments.
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4.2 Proof of Theorem 4.1.4
For what follows, set

1Y o
LNZN}_/“&M, My =) "6\ — Npuy.
=1

i=1

and for a measure v and an integrable function A set

Cu(h) = / hdv  and  o(h) = / hdy — EY ( / hdu),_ | (.4. 2,2)

when v is random and where Ef is the expectation with respect to PY. Further f will be
any function as in Theorem 4.1.4, and

fn(z) = f(N%(z — E)).

Finally, for any function g € CP(R), let

Y4
HQHCT‘(R) = ZSUP lg(l)($)|,
=0 7€

when it exists.

4.2.1 Loop Equations

To prove the convergence, we use the loop equations at all orders. Loop equations have
been used previously to derive recurrence relationships between correlators and derive a full
expansion of the free energy for S-ensembles in [77, 16, 15] (from which the authors also
derive a macroscopic central limit theorem). The first loop equation was used to prove the
central limit theorem at the macroscopic scale in [51] and used subsequently in [21]. Here,
rather than using the first loop equation to control the Stieltjes transform as in [51] and [21],
we rely on the analysis of the loop equations at all orders to compute directly the moments.

Proposition 4.2.1. Let h, hy, hy, . bea sequence of bounded functions in C*(R). Define

‘dn.d,‘:for alz k>1

k-1

EN (hyhy, o hi) = FN(ho by, b )My (hy) + ( MN(h,l)) Ly(hhy)  (4.2.4)

=1

i

where the product is equal to 1 when k = 1 and My was defined by the convention eq. (4.2.2).
Then we have for allk > 1

EY(FY(h by, b)) =0, . (425)

,zbu"h‘z"ch zs‘ called the loop equation of order k,‘. y
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Proof. The first loop equation (4.2.3) is derived by integration by parts (see also [51] eq.
(2.18) for a proof using a change of variables). More precisely, for a fixed index [, integration
by parts with respect to A; yields the equality:

EY(h'(N)) = ~EY (h(,\, <5K > )\z (A,))) .

il

Summing over [ we get by symmetry

( & _TM N NZN:V’(’\l)h()\l) + gﬁ'()\l)> _0

I=11<i<N =1
i#l

Writing the sums in term of Ly and taking the diagonal terms to be equal to h'(\;) gives
eq. (4.2.5) for k = 1.

To derive the loop equation at order k + 1 from the one at order k, replace V by V — dhy
and notice that for any functional F' that is independent of 4,

0 BY _sn (F)

= — NEY (FMN(hk))

d=0

Also observe that the loop equation eq. (4.2.5) is now

k-1
EY_sn (F& (hohy, -+ b)) + ONEY g, ((H Mwm)) L (hh ))
=1

by induction and the definitions given in eqns. (4.2.3) and (4.2.4). Differentiating both sides
with respect to d and setting § = 0 yields the loop equation at order k£ + 1. a

It will be easier to compute the moments of My(fy) by re-centering the first loop equation
— that is, we wish to replace Ly by Ly — pyv. To that end, define the operator = acting on
smooth functions A : R — R by

Sh(z) = f / "‘y dy(y) — V'(2)h(z)

This operator is once again central to our approach. We now use

b // ) = MY 4 @y () = [ V@@ (4.2.6)
to get

b // M&) = M) 41 (@)dLly) — In(V") =

NMN + o // ) = hY) 0y (o) dMn ().
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Consequently, we can write

FIN(h):MN(Ell)Jr(l—-g)LN )+ — V’//’1 — Y M@y dMa)| . (@2.7)

One of the key features of the operator = is that, under the one-cut and non-critical assump-
tions, it is invertible (modulo constants) in the space of smooth functions. More precisely,
we recall the following Lemma proved in Chapter 2 (written in a slightly different form):

Lemma 4.2.2. Inversion of =
Assume that V € CP(R) and satisfies Hypothesis 4 1.1. Let [a;b] denote the support of Hy

and set
dpy

— = S@) (b - 2)(z - a) = S(z)o(2),

where S > 0 on [a; b].
Then for any k € C"(R) there exists a unique constant ¢, and h € CU~ANP=3)(R) such that

E(h) =k+ C .
Moreover the inverse is given by the following formulas:

e Vz € supp(uy)
L [Pk - k@) -
B W A () B e

B[ h(y)d,u )+ k() + ek
/5] =duv(y) = Vi(z)

e Vx ¢ supp(pv)

hz) = (429

And g, = -3 [ 22 hy) du —k(a). Note that the definition (4.2.9) is proper since h has been
defined on the support : : ,
We shall denote this inverse by = k.

Remark 4.2.3. For f and V as in Theorem 4.1.4, p =7 andr = 6 so 27 fy € C*(R).

Remark 4.2.4. The denominator 3 [ -% (y) = V'(z) is identically null on supp py and
behaves like a square Toot at the ’édges Sznce by the last point of Hypothesis 4.1.1 we can
modify freely the potential outside any nmr;hborhood of the support (see for instance the large
deviation estimates Section 2.1 of [16]), we may assume that it does not vanish outside py .

Tt order to bound the linear statistics we tse the following lemma to bound Z~'(fy) and its
dcrlvatxves

Lemma 4.2. 5 Let suppf C [-M, M] jor some constant M > O For each p € {0, 1,2, 3}
there is a constant C > 0 such that

H"—l f) i < CNPlog N, (4.2.10)

("(R)

%
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Moreover, there is a constant C such that whenever x € supp py and N*|x — E| > M +1

—_ C
)P (z )‘ ___———Na(a:— B (4.2.11)
and when = ¢ supp py o .N
| og
(fn)P(w)| < & (4.2.12)

Proof. We start by proving (4.2.10) on the support. For z: € supp py we use

_ . N¢ b 1 1 y agle wr B
=)@ = g [ 37 ), £ (Ve = )+ N = 0y — B))dsdy

so that

=00 =~ 3 {( )(3) @

) / N+ D / £ fO (Not(x — B) + N*(1 - t)(y ~ E>)dtdy} |

o(y) Jo
Let A(z) = {(t,y) € [0;1] x [a;8] , Ne|t(z - E) + (1 - t)(y — E)| < M} We have

: oM |
Loyt y)dt £ ———— A1 4.2.13
| taortena < o (4213)

and thus

N(l+l o 1
/ / | fED (Nt — B) + N*(1 — t)(y — E))|dtdy < Clog NN',
a a(y) 0

and this proves (4.2.10).
We now proceed with the proof of (4.2.11). First, let € supp puy such that N%x — E| >
M+ 1. The inversion formula (4.2:8) writes = =~ R D

L [RGB
= U= prS(z) Ju oly)ly =) d.y | | (4.2.14)
_ 1 /M - flu) , du.
Br2S(z) J_p o(E + 75)(u— No(z —;‘E))

and we can concludé in this bettmg by dlﬁexcntlatmg under the mtegral Moxeovex we bee
that Z71( fN) is in fact of class C® on supp uy and similar bounds holds for p € {4 5},

We now prove the bounds for z ¢ supp py. Let ¢y be an arbitrary extension of Z7( fn)|supp uv
in C®(R), bounded by C/N® outside the support (and its five first derivatives as well). This
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is possible by what we just proved and a Taylor expansion. Using (4.2.9) we notice that

B [ LWy (y) + ¢y,

z—y

E7Nfw)(x) =

ﬂf—d/lv = V'(z) '
B[ wm(r) wN v) U@ =YWl g, (y) + ﬁwN(ac ey dW(y) + Crn (4.2.15)
ﬁf.—-duv - V'(z)
:”(ﬁN( ) (wN)( )_CfN

B[ 5du(y) - V'(z)

Since f has compact support we may write Z(Yn) — ¢sy = E(Yn) — ¢5y — fv on [a5a + €]
and [b — ¢;b] for € small enough. Furthermore this quantity vanishes identically on these
intervals by definition of 1. In particular, Z(¢n) — ¢y, and its four first derivatives vanish
at the edges. By definition, and using the previous bounds we also get that

lesu] = ‘ﬁ [ duv(y)I

< Clog N - dpv(y) L & / dpsv (y)
ly-E|<2M/N« Y — Q Ne [ _gsomne (¥ — a)ly — E|

log N
Na

<C

On the other hand, for p € [0;4] and » ¢ supp uv,

Un(y) — P () — - — P () (y — 2)?/p!

(y — z)p+1 dpv (y)

=) (a) =60t |
_ (V’i/)N)(") (x)

By doing a similar splitting, and bounding the fifth derivative of ¢y uniformly away from
E, we obtain the same bound Clog N/N® on Z(un)® outside the support. By Remark
4.2.4 and (4.2.15), we conclude that we can bound the C* norm of Z7(fy) by Clog N/N®
outside the support. ‘ “ o a

4.2.2 Sketch of the Proof

We have developed the tools we need to prove Theorem 4.1.4. In order to motivate the
technical estimates in the following section, we now sketch the proot by computing the first
moments. The full proof of the theorem will be given in Section 2.4. Consider a function f
satisfying the hypothesis of Theorem 4.1.4. Applying (4.2.7) to Z~}(fy) yields

R (27 m) =Mwi) + (1 5) Ly (27 w))
A ]
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If the central limit theorem holds, we expect terms of the type My (h) where h is fixed to
be almost of constant order, and this an easy consequence of the rigidity estimates from [19]
(stated as Theorem 4.2.6 below). Due to the dependency in N of fy (and its inverse under
Z), a little care must be taken for these estimates to yield a bound on the last term in the
right handside, and this is precisely the point of Lemma 4.2.9. Similarly, we have

1

Ly (Efn)) = wv (Ew)) + 5 Mu (EN))

and Lemma 4.2.8 shows the last term in the right handside is a small error term. Thus
admitting the results of the next section, we would get with high probability and for ey
small :

rY (E"I(fN)): My(fn) + (1 - g) Hv ((E—lfN),) Ten

By the first loop equation from Proposition 4.2.1, the expectation of F}V is zero and this
shows that the first moment

IE{}’(MN(fN)) = - (1 - -g-) pv (E7n)) +o(1)

The term on the right handside is deterministic and is shown to decrease towards zero in
Lemma 4.2.10. Thus the first moment converges to 0.

In order to exhibit all the terms we will need to control, we proceed with the computation
of the second moment. By definition

FY (27 (In) fn) = FY (27 () Mu(fx) + Ly (7N 1)

which we can write (with now an ey incorporating the deterministic mean converging to
Z€ero)

FyY (E_l(fzv), fN) = Mn(fn)Mn(fn) +en Mn(fn) + Ly (E_l(fN)f;v) ,

Lemma 4.2.8 ensures that ey My(fx) remains small, and that the term in the right handside
of the decomposition

Sy (ETNUWN) = v (BTN ) + —,%sz (B wfn) »

is also controlled. Consequently, v;usin,g the second loop equation we see that
EY (My(w)?) = = (E7Uw)I%) +01) (4216)

The limit of the term appearing on the right handside is then computed in Lemma 4.2.10,
equation (4.2.34). The following moments are computed similarly (see section 2.4).

In the following section, we establish all the bounds we need for the proof of Theorem 4.1.4.
The previous steps will then be made rigorous in the last section.
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4.2.3 Control of the linear statistics

We now make use of the strong rigidity estimates proved in [19] (Theorem 2.4) to control
the linear statistics. We recall the result here

IheOIeIIl 4'2-6~ L(/L Y4 the (]U,(NLLH,L dCﬁn(id bz/
d H — . 42.1 i

Then, under Hypothesis 4.1.1 and for all £ > 0 there exists constants c >kO such that for N
large enough

PY |\ =yl 2 N2+ 4713) < oo
where 7 =1 N (N + 1 —1).
We will use the following lemma quite heavily in what proceeds.

Lemma 4.2.7. Let v; and i be as in Theorem 4.2.6. Let \;, i € [1, N]] be a configuration
of points such that |\ — v| < N™¥3H3713 for 0 < < (l—-a)Ag, andlet M > 1 bea
constant. Define the pairwise disjoint sets:

Ji={ie[;N], |IN“(v; — E)| <2M}, (4.2.18)
Jf;%EﬁM%~EH§5E—@Aw~Eﬁ, (4.2.19)

Js = JinNJs. (4.2.20)
The following statements hold:

1. Forallie JyUJy , 1> CN, for some C > 0 that depend only on py . For all such i,
Vi — Yig1]| < % for a constant C > 0.
2. Uniformly in all i € J{ = JoU Js, z € [vi,vis1] and all t € [0; 1],

IN®t(Nj — 2) + N¥(x — E)| > M + 1, (4.2.21)

. for N large enough.
; 3 The cardinality of J, is of order CN1~ ", where again, C > 0 depends only on py in a
neighborhood of E.

Proof. The first part of statement 1 holds by the observation that for 7 € J1 U Ja, i is in
the bulk, so

. v .
O<c§/ duv(m)————]%SC'<1

for constants C, ¢ > 0 depending only on py. For the second part of statement 1, the density
of py is bounded below uniformly in 7 € J; U Jy, so

Yi+1 1
=l < [ duv(z) = 5

Yi
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Statement 2 can be seen as follows: let i € J, and consider first zz = ;. On thisset 7 > CN by
1, so uniformly in such ¢, N¥|\; — ;| < CN*1*¢ which goes to zero, while N®|v;— E| > 2M.
On the other hand, for i € J3, we have N9|y; — El > $N%(E — a) A (b— E), which goes to
infinity faster than N%|\; — v| < N a-3+¢ , by our choice of £&. When we substitute v; by z,
the same argument holds because N*|z — ;| < N®|v; — ¥i41], which is of order N*~! on J,
(as we showed in statement 1) and bounded by CN®"% on J.

Statement 3 follows by the observation that on the set z € [a,b] such that |z — E| < 24 the
density of sy is bounded uniformly above and below, so

¢ Vi1 C

| Na S A Pre3 duv (T 15211 5 duy () + O <N> No

giving the required result. , : -

The rigidity of eigenvalues, Theorem 4.2.6, along with the previous Lemma leads to the
following estimates

Lemma 4.2.8. For all 0 < £ < (1 — a) A £ there exists constants C, ¢ > 0 such that for N
large enough we have the concentration bounds

PY(IMy(fw) = CN¢ [ fllgrmy ) S €7, (4.2.22)
PY (IMy(E7(fn))] = CN | fllny ) < e (4.2.23)
Pl\yoMN(E_l(fN)f}lv)I 2 CNee “f“cl(m)> < e (4‘224)

Proof. Let M > 1 such that supp f C [-M, M]and fix 0 < £ < (1—a)A%. For the remainder

of the proof, we may assume that we are on the event 1 := {Vz’ i =] < N7+ 3}.
This follows from the fact that, for example,

PY (IMy(fw)] = CN| fllerw))
<P} ({IMn(fn)] = CN|fllermy } N Q) + PY(Q),

and by Theorem 4.2.6, we may bound P () by e~"* for some constant ¢ > 0, and N large
enough. On , as the \; satisfy the conditions of Lemma 4.2.7 we will utilize the sets J;, Ja,
and .J3 as defined there.

We begin by controlling (4.2.22). We have that

| lMN(fzy)\ = 2; (Na()\‘ - E)) - NMV(fN)

Z SN = B = | N = E)duv (o)

'Yt

’ N ‘ ‘71+1 l i . . .' ‘
| Z / N" A —E)) - FN*(@ = B)|diav (a)

<N / A= BN~ B) + N1 — 1)z — B didp(z) - (4.2.25)

i€Jy vV [§]
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where we used eq. (4.2.21). Using Lemma 4.2.7 itein (3) and the definition of Q we obtain

Yit+1
| Mn(fn)l < NYToLLINST ||f||m<m/ dpy (z) < CN* | fll oy -

This proves (4.2.22). We now proceed with the proof of (4.2.23).

(= uwon - |

Yi+1

My (E7H(fN))| =

= (fw) (@) () )

=1 i
N rrvial
SN E 00 - 2N @) di ()
= vy [ /1 i — 2] [ETH ()P (O = ) + )| dtdpy (),
1=1v7Y 0

Recall from the proof of Lemma 4.2.7 that uniformly in i € J; and z € [v;, viq1), [ —E| > Na
while |2 — | < £. For what follows, as |\, — 2| < CN ¢ for N large enough we can
replace |t(A; —z) + (v — E)| by |7 — E| uniformly in ¢ € [0;1]. Likewise, uniformly in ¢ € J3,
T € [, Vi1) and t € [0; 1] we can bound below |t(\; — z) + (z — E)| by a constant.

For ¢ € Jy, by the observations in the previous paragraph, along with Lemma 4.2.7 2, Lemma

2.5 (4.2.11) and Lemma 4.2.7 1,

Yit1 1
N[ [ = sl U - ) + o) ded (@)
i€dy v i 0
Yit1 1 CI)\ __xl N{ l-a
<N - : dtduy (
SN T - e B W) < 2 TR

The same reasoning for ¢ € J3 using also (4.2.12) yields

Yi+1 1
Ny / A= 2l [ET () PN~ 2) + 2)] dt dpay (2)
i€J3 Y Vi 0
<logN S CN¢ "'52
i€Jg
For i € J), by Lemma 4.2.5 eq. (4.2.10) and Lemma 4.2.7 1,
| : %/v,+1 1 ) "
NS [ el P - o) + o) d da (2
iEJ] i _‘0 ) ‘ )
<N CNzalogNI/\ — z|dpv(z < > CNZ"“LE "log N.
e Y i€y
It follows that
' ’ E-1-a 2
(My(E7(fn))] < 30 CNZHEtog N | Z tlog N Y CNé-e8773
i€Jy 1€ /2 E> 1€.J3

< ON®*log'N + CNEe < CN“+5 log N,
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where we have used |J1| < CN1=® and the following estimates:

Né-a-1 E-%%  dr b dx
— < CNé—«@ / . +/ — < CN€+(X’
g}l (vi — E)? ( a. (z - E)® E+3% (z — E)?

N -3

CNé_a_‘Z -1 < f—a i ( ) < {—a.

3 g; i3 <CN X 57 Z <CN |
i€Js =

This proves (4.2.23). The bound (4.2.24 ) is obtained in a similar way and we omit the

details. O

For convenience we introduce the following notation: for a sequence of random variable
(XN)NeN we write Xy = w(1) if there exists constants ¢, C' and ¢ > 0 such that the bound
|Xn| € 5 holds with probability greater than 1 —e™"".

Lemma 4.2.9. We have

Proof. The proof will be similar to the proof of Lemma 4.2.8. As m Lemma 4.2.8 we may
restrict our attention to the event Q = {Vi: |\; — y| < N-3+63- 3} by applying Theorem
4.2.6. Further, we use again the sets .J;, Jp and J3 defined in Lemma 4.2.7.

The general idea will be that we can use the uniform bounds (4.2.10) for particles close to the
bulk point E (corresponding to the indices in .J;), and control the number of such particles.
In the intermediary regime we will use the bounds (4.2.12) or the explicit formula (4.2.14).
On the other hand, for the particles far away from F (corresponding to J3;) we can use the
uniform decay of 27! f and its derivative by (4.2.11) and (4.2.12).

Define for j € {1,2, 3}:

MP =3 (% - Nﬂ[%ﬂmwv)

1€J;
so that My = M(l) + M(z) + M,(\?). We can write

// M fn)(x) — :—1(fN)(y)dMN(:c)dMN(y)

T—y
= U UMW) (j2)
dMy dMY? (4
1<J1J2<3/ T—Yy ( ) N (U)

Integrating repeatedly for each ( Ji )2) and using that Nuy ([, %ix1]) = 1 for all indices i
y1e1ds B ' ’ o

// s U)o )de()dM;ga_(y)‘; .
‘71.1+l Yig+1 »
NS [ bt [ du(en) [ dudvar{n, - a0, - 2t ~ 1)
i1€J5; Y Yy Yig T
i2€Jj,

X E_l(fN)(s) (t’U()\il - .’Iil) + ’LLt(.’IIz - )\m) + u’()‘iz - .’1’52) + IL(’L'l — .’172) + Tg)}
(4.2.27)
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where T' = [0; 1]3. We will bound (4.2.27) for each pair (j1, j2).

For (ji,j2) = (1,1). Recall by Lemma 4.2.7 3 that |J;| < CN'=% and rom the proof of
Lemma 4.2.7, uniformly in i € J; |A; — x| < CN! whenever z € [’y,,%ﬂ} We use (4.2.27),
Lemma 4.2.5 eq. (4.2.10) to obtain the uppcr bound ‘ '

// = UM = 27U 400 4Oy <
r—y )

9 Yip+1 Yig+1 0 . ' . 26+ .
N* > / N**log N|Ai; — 1| Ai; — 22| dpv (1) dpy (z2) < CN=T log N,

i €Jy Y Yiy
12€J1

which is w(1) when divided by V.
For (j1,72) = (3,3), we do as in the previous case. Usmg (4.2.12) instead and the fact that
uniformly uniformly in i € Jy, [\ — 2| < CN-3+655

-y
. Yiy+1 Yig+1 lO 1V _
ey [ [T R s, — al duv(an) duv () < ON¥ S Log N,
11€J3 Vv Vi Yig

ig€J3

which is w(1) when divided by N.

For (ji1,j2) = (2,2). We remark that the strategy is not as straightforward as the case i € .J;
in the proof of Lemma 4.2.8 eq. (4.2.23). This is because the term t(x; —x3) +x2 appearing as
an argument in (4.2.27) may enter a neighborhood of F depending on the indices i3, € J5
and we may not use the bound Lemma 4.2.5 eq. (4.2.11) uniformly in iy, i3 € Jo. Some carc-
is needed also because My is & signed measure so | My (g)| need not be bounded by My(|gl): -
It will be convenient to use directly eq. (4.2.14) from the proof of Lemma 4.2.5 (this can be
done as J, corresponds to indices ¢ such that ~; is located outside the support of f). We can
write for z,y € {z € supp uy, N*|z — E| > M + 1}

=1 (fw) () — E7 () ()
r—y

\

L[t [sn-sw !
B JowaEBr | E-9) S@SE - Ny E)

1 M (u 1
:f”?/mm%(r—q (s u—Nau—E>>‘s<m><u—Na<m~E>>>“’“‘

i v i ‘ du. (4.2.28)
S(z)(u— N*(z — E)){(u— No(y — E)) : v

When we integrate the term on the third line of (4.2.28) against MP @ MY, we obtain

/MaE+N {/ (/ = ((> <)y;y)dt>'<u—‘.zval<y—E))dM(z)( fen |
| | (4.2.29)
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Define the function

o) = 0P ([ SR ar).

First, g(y) is bounded for any 'y.e [a; b):

o ([ 2 )

(
N (S —y) +y) S -y) +y) N
swal ) ( ST S) ) & duv ()

Pt —y) +y) - Stz —y) + )
S(Ai)

_N_ Yit1 1M i )
5(9) ier/;i /o S50 Uz =) +y)diduy (@)

where in the final line we used S and S’ are smooth on [a;b] (and therefore uniformly
Lipschitz), S > 0 in a neighborhood of [a;b], further |z — A;] < CN471, and |Jo| < CN.
Moreover, g(y) is uniformly Lipschitz in [a;b] with constant CN¢, since:

@[S —y) +y) S’(t( z) +2)
My (/ S05() S05() ‘”)

(z— yMP ( / / 57 uilz S‘l(’ (;()'_‘)“Ly)dtdu)

5 |
S(z) - S(y), 2 S'(t(-—2) + 2)
* TS5 W </ s<-) dt)

@)
SE
p

>
é:.
=
5
N

dtduy (z)

< CN§,

and both terms appearing in M,(\?) above are of the same form as g so they are bounded by
CN¢. Returning to (4.2.29), we may bound

| (=)

_ T g(A) - g(x) Ne(\ — 2)g(z) N
\NZ W - N E) T wo Nty = ENu - Na(z —E)) )
CN% C N%+o
: /[a;bln{w—EnzzNMG} W NGB w-N@- B

< ON*%-%log N + CN%,

uniformly inue [—M; M]. Thus (4.2.29) is bounded by CN % as f is bounded
The remaining term in (4.2.28) is

v [t e (somer=m) ¥ (rmmcmp) & 6290
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Repeating our argument in the previous paragraph gives:

u=Ne(- = B))

1
< 3
<1A—N“(~—E))|"CN7

where in the first inequality we use 1/5 is uniformly bounded and uniformly Lipschitz on
la; b]. Inserting the bounds into (4.2.30) gives an upper bound of CN%*% as f is bounded.
Altogether

1 ‘ ,
MP ( )‘ < CN&2log N + CN¢,
l MS((
|

T =1y

271 (fn)(2) = Z7H () (y) de(Vz)( )d (2)(y)' < CN%+o

which is w(1) w en divided by N.
For (j1.j2) = (1,2). By the bounds [\, — 7| < ONY, |y, — 2] < & for 5, € [, 41),
whenever

Neto(Ni, —x1) +ut(zo — Aiy) + 821 — 22) +u(Ayy —22) + 20— E| > M+ 1, (4.2.31)
we have : '
]va(|t(7j1 - 7]'2> + (7j2 - E)’ + CNE—l) > M+1,
and ' '

: 1. .
[tv( N, — 1) + ut(zy — Aiy) + t{z1 — x2) + ulXi, — 22) + 22 — E)|

C
N ’t('yn - 712) + (71'2 - E)|,

where the constant C only depends on M. Therefore, when@vor (4.2.31) is qamned applylng
Lemma 4.2.5 eq. (4.2.11) yiclds : :

H“l(fN) (fr)(/\ — 1) + ut(wy — Aiy) + () = x9) + u(Xiy, — 19) + ~:1;2>i
' C
Ne@t(vy = 7i) + v, — E)Y

(4.2.32)

Now fix t € (0,1) and define the sets

, . 2M 2M
Ki={ien t(B-Sn—v)+yu-E2 ),

N« - Na
, 2M 2M
R e AR R e

By construction, if 4y € K} then

1t(’7i1 - 71'2) + (A/iz - E)‘ 2 o
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uniformly in #; € J;. Thus for such iy € Ktl, (4.2. 31) is satisfied for N sufficiently large. The
same statement holds for K7?.

We now proceed to bound (4 2.27) for j; = 1 and j, = 2 by splitting J, into the regions K}/,
K} and J,\K,. We start with K} (the argument for K7 is identical). Our observations from
the previous paragraph along with (4.2.32) gives:

Yig+1. “Yig+1 : . »
/ du dv df’N2 Z d#v(-’ﬂl)/ d/,l,v(!lig){(/\il —x1)( N, — xo)t(1 — 1)
T . .

11€J1 Yiy Yip
12€K ’

X E‘l(fN)(a)(tv(r/\i1 —xy) +ut(ze —Ay,) + u(/\i'2 — x2) + t(x1 — x2) + l‘z)}i

- /1 S ON% 2l —t) o /1 > CN#T2(1—t)
“Jo e, G0 — )+ (e - BN T o T ((1 —t)(yi, — E) - %{.)4

izEKtl
where in the final line we used |J;| < CN'™® from Lemma 4.2.7 eq. (3). Next, note that

1 1

N €K} ((1 - t)(7’i2 - E) - %%)4
E’+%(E—a)/\(b—E) dx C N3
<cC oG =
2 (L2t (A=t —E) -85~ 1-t’
since, by definition of K}, v, > E + f\% (}“_Lﬁ) We conclude,

1 2%—1-20x _
/ CNTTTA =Y g < onere,
Y Ty
CNY-

We continue with J,\K;. By the same argument as in Lemma 4.2.7 3 [ L\ K;| < =" where
the constant C' does not depend on ¢, we use this in addition with Lemma 4.2.5 eq. (4.2.11),
|1l < CN'= and |);; — z;| < CN¢! to obtain the bound

Yiyp+1

Yipg+1
/ du dv dt‘N2 Z duv(:cl)/ dﬂ\/(.’lfg){(/\il - -’rl)()‘iz - xz)t(l — t)

T i1€J) iy Vig
i2€J2\ K :

S (0, = 2+ s = )+l )+ = 2) )|

< C’/ N¥log N x N¥72 x N?72tdt < CN*T% log N.
Combining the bounds we have obtained gives

E N —ETNNY) oy, ey A2 A
— dMP (2)dM P (y)| < CN*+% log N,

which is w(1) when divided by N for £ small ecnough.
For j; =1 or 2 and j, = 3. the proof is similar and we omit the details. O
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Using Lemma 4.2.8 we also prove the following bounds:

Lemma 4.2.10. The following estimates hold:

Ly (E‘l(fN)’> =w(l), (4.2.33)

L (27wt + 0} =w() | (4.234)

Proof. For both (4.2.33) and (4.2.34), we use

L (= y) = HUELID) =gy,
Ly (E_l(fN)fz/v> = My (E_N(fN)f[lV) + by (H_l(f )fN)

Lemma 4.2.8 implies that the first term in both equations are w(1) so (4‘2.33) and (4.2.34)
simplify to deterministic statements about the speed of convergence of the integrals against
(v above.

To show (4.2.33), integration by parts yiclds:

b
JE I @du(o) = = [[E ) @) @) + S(@)0 (@))de

Inbcztlng the formula for =71 jN we obtain
a'(z)

/ /b'fN (y)[< a(y)

Recall that S is bounded below on [d,b],‘ S’ is bounded above on [a,b], further, up to a

constant, (;)) can be bounded above by (o(z)o(y))~!. We define the sets

S’(x)a(x)

S(z)a(y) |

+

) dxldy .

[ @ o

Ay = [N%a - E) N - E)], |
By = ENé(a - B), %‘N“(b - E)} .

By the observations above, and the change of variable . = N*(z — E) and v = N (y — E)
we get : :

- )/( U‘N)v( Nz >'

_Na//Az,

For large enough N, on the set (u,v) € ( ~v\Bn)?, the function |f(u) — f(v)| is always zero,
thus the integral on the right above can be divided into integrals over the sets:

)| (o(E + ) !
<(E+Za):+ S(B T =)o (E+Nw))dudv. (4.2.35)

u—v

(An'x An) N (AN\ By x Ay\By)® = By x By U By x (Ay\By)U(An\By) x By. (4.2.36)
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We bound the integral in (4.2.35) over each set in (4.2.36). We begin with the first set in
(4.2.36). For (u,v) € By X By, o(E + #) and o(E + 7%) are uniformly bounded above
and below. Therefore, the integral in (4.2. 35) can be bounded in this region by

1L,

dudv

M
_ // dudv + 2 / / ,
(- M; M2 ~M JByO{|u[zM}

the integral over [—M; M]? exists by the differentiability of f, while:

M )
/ /;;WW{Iul>]\4}

uU—v
for N large enough.

For the second set in (4.2.35), observe that for (u,v) € By x (Any\Bn), f(v) is 0 for N
sufficiently large, and o(E + {%) is bounded uniformly above and below while f(u) is 0
outside [—M; M]. This implies that the integral in (4.2.35) can be bounded in this region
by

/ M
An\Bn /

fw) - fv)
u

- v

f(w) — J(v)

u—v

f()

u-—v

du dv,

dudv < C/ f@)|log[Njv + M|lv — M|]dv < ClogN,

E+ %) 1 |
< Ev ) oBT meET 2 >) dudv

u—v

N N« Na
< C”./I“C(R) / 1 - dv < C,
Na AN\Bn O'(E“_ NE)

where in the final line we used |u — v| > ¢N® for u € [-M; M] , v € An\Bn.
We can do similarly for the third set in (4.2.35) and putting together these bounds on the
right hand side of (4.2.35) gives

Clog N
Ne

} [E i @it <

which is w(1) as claimed.
We continue with (4.2.34). Recall that we reduced this problem to computing the limit, of
wy (2 (,fN)fN) Using the inversion formula we see that

| / S o) s R / / UN(z) P oy

T—t/)

Observe that

%azgij(@)—f()) fN< >(fN(> Iv@),

o, (J(x) ) —3(a+b)(z+y)+ab+ Ty. |

t—y) o(z)(w —y)?
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Therefore, integration by parts yields

T (e

By changing variables again to (u,v) = (N“ (:1: — E), N*(y — E)) and observing that

1 s u+vfa+bd U
ab+x1—§(a+b)(a:+y)=—a(E) +W< 5 +E>+W,

we obtain

/‘E—l.fmm)f;v(m)duv(m)

flu) — f(0)\" (0(E)? — 52 (42 + E) - Nm) ,
~ o5 //A2 ( — ) ( B+ Z)o B+ %) dudv. (4.2.37)

As before, (f(u) — f(v))? is zero for all (u,v) € (An\Bn)? for large enough N, therefore we
split the above integral into the regions defined in (4.2.36).
Notice that uniformly in u € By

1 . O } |
o(E+ %) ~ o(E) Ne )
and further notice (u+v)/N® and uv/N?* are bounded uniformly by constants in the entire

region Ay X Ap.
Consequently the integral (4.2.37) over the region By X By is:

// ( ") — f(@) o(Ep — (k1 B) - o
o\ u—v E+ m)o(BE+ ) A

//32 ( uu-v ))2dudv+() —]\%//B?V (W)Q(M—Hv\)dudv) . (4.2.38)

The first term of (4.2.38) is equal to,

| ( 1 SO gy (1)

whllc the second term in (4.2. 38) can be WIltth as

//32 ( = ) (Ju| + Jv| dudv~//MM ( : :5(”)) (] + [o])dud
L2 / /B o (uf(_)v) (Il + o) dudv,
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the integral over [~ M; M]? is finite by differentiability of f while the second is bounded by

M 1 2|v| )
) 2 d d
/—M /BNn{|u|>M} @) (lu V] ” |U ~vf? He

\ 1
<C'/ ]fv)]( ] l +v‘+log[N|v—M||v+M]]>gClogN

since supp f C [-M, M] :
In the region (u,v) € By x (An\Bn), 0(E + §%) is bounded above and below while, for N
large enough f(v) = 0, thus the integral over By x (Ax\By) is bounded above by

A =T (R S, Pt
1

2
s/ / (f(”)> dudvg—(i;—/ o w< S
AN\Bn J -M u—v U(E+m) N2 AN\BN (E+ N") Ne

where in the second line we used |u—wv| > ¢N® for u € [-M; M] and v € Ay\B. By symme-
try of the integrand in (4.2.37) this argument extends to the region (u,v) € (An\Bn) X Bn.
Altogether, our bounds show

/E'lfN(x)fN( )duy(z) = 2ﬂ7r2// ( I )2dﬂ7d9+0 <1(;;g,iv>,

which shows (4.2.34). 0

4.2.4 Proof of Theorem 4.1.4

We proceed with the proof of Theorem 4.1.4. As we did in the sketch of the proof, (4.2.7)
applied to h = Z71(fy) yields

P (2 0w) = M)+ (1= 5) 2 (@)
+~[ // =i _j f(?)dMN(z)dMN(y).

Combining Lemma 429 eq 4.2.26 and Lemma 4.2.10 eq. (4.2.33) we can bound the two
terms on the right hand side to get g -

FNEMfn)) = My(fv) +w(1). o (4.2139)

—N¢

We consider an event A; of probability higher than 1 — e on which

C

FYE () = Mu(f)] < 35 (4.2.40)
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for some positive constants ¢, C and §. Using the first loop equation from Proposition 4.2.1,
and the trivial deterministic bounds

My(i) = O(Nlfllw)  FYE7 () = O( Nl + 127 (llcre) ) = O(N)

we obtain
0= (=) = BN (RNE (Ut ) + Y (ENE U1 )
—RY (MN(fN)]lAl) o(1) + O(N*PY (43)) » (4.2.41)
= EY (My(/w)) + (1)
and thus
EY (Mu(fi) = o1). (4.242)

We now show recursively that
FYETMN) s fn) = Mu(fw)F = (k — D)o My(fn)* 2 +w(1), (4.2.43)

Here, the set on which the bound holds might vary from onc k to another but each bound
has probability greater than 1 — eV for each fixed k. )

The bound holds for k = 1, by (4.2.39). Now, assume this holds for £k > 1. On a sct of
probability greater than 1 — e ¥**' we have by the induction hypothesis, Lemma 4.2.8 eq.
(4.2.22) and Lemma 4.2.10 eq. (4.2.34), for some 6 > 0 and a constant C

C

EYET U, T ) = M)+ (k= 1o} M () ] < 5

)LN(!_I(fN)fN> '*'Uf‘ < 136 ;
‘MN(fN)| < N

On this set, using the definition of F{, from Proposition 4.2.1,

FACET N v ) = FYGETN N, e fn) M (fw)
+ My (fn) "V Ly(E(fN) frr)

. (MNW ~ (k=)o By (f) + 0 (Ni)) Fin (/)

+ kMN(,fN)"c_l ( ~ (r/ + O(;a))
=My(fn)**' =k of MN(fN)k L+ O(N%W)

and this proves the induction. Using the fact that F} is bounded polynomially and deter-
ministically as before, we see that for any £ > 1.
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E{)’(MN(]'N)’““) = o2 K EY (MN(fN)"““l) to(1). (4.2.44)

Coupled with (4.2.42), the computation of the moments is then straightforward and we
obtain for all k € N -

]EC’7<MN(fN)2k) =03 2kk" +0(1)v

(4.2.45)
EY (My (1)) = o(1). -

This concludes the proof of Theorem 4.1.4.

4.2.5 A few Remarks

The result of Theorem 4.1.4 naturally extends to the joint law of the fluctuations of finite
families of test functions. More precisely, for any fixed k, if f!,--- , f* satisfy the hypothesis
of the theorem then (Mn(fY), -, Mn(f%)) converges in distribution towards a centered
Gaussian vector with covariance matrix

- g ff (L) (£ g,

We would also like to point out that a similar proof should also yield the macroscopic central
limit Theorem already shown in [51, 15, 77] (one-cut and off-critical cases) with appropriate
decay conditions on f. Indeed, in the macroscopic case we get uniform bounds on Z71f
and its derivatives instead of the bounds obtained in Lemma 4.2.5. The major issue when
dealing with the multicut and critical cases is that the operator Z is not invertible (as an
operator acting on smooth functions). When dealing with functions that lie in the image of
= and with additional regularity assumptions, one can show using transport methods similar
to [59] that the central limit Theorem do hold at the macroscopic scale. This is the object
of the next Chapter.

Another interesting direction would be to study the fluctuations at the edge (i.e, £ = a or
b). We expect the same result to hold with covariance matrix(if for instance E = a) equal

to | |
%2/ [ (f =1 ))(ff(xl:;”(y))%dxdyi

Additional te(,hm(,al estlmateq as in Lcmma 4.2.5 would be needed to xcproduce the proof
in the edge case. These estimates are not straightforward because of the singular. behawour
of Z71(fy) at the edges and this is the object of a future work. However:the covariance (in
the case k = 1) would still be given by taking the limit of —uy (271(fn)fx) as in Lemma
4.2.10, which yields the above formula. an




Chapter 5

CLT for Fluctuations of $-ensembles
with general potential

This Chapter is based on the article [12] written with T.Leblé and S.Serfaty. In this Chapter
we adopt some slightly different notations.

5.1 Introduction

Let 8 > 0 be fixed. For N > 1, we are interested in the N-point canonical Gibbs measure
for a one-dimensional log-gas at the inverse temperature 3, defined by

= 1 S S
dPy 5(Xw) = A (—%%}\/’(XN)) dXn, (5.1.1)
N,

where Xy = (z1,...,zy) is an N-tuple of points in R, and ’H,‘\/,(XN), defined by

N
H(Xn) = Y. ~loglei— | + Y NV(z), (5.1.2)
1IN ‘ i=1

is the energy of the system in the state X N, given by the sum of the pairwise repulsive
logarithmic interaction between all particles plus the effect on each particle of an external
field or confining potential NV whose intensity is proportional to N. We will use dXx to
denote the Lebesgue measure on RY. The constant Z}Gﬁ in the definition (5.1.1) is the
normalizing constant,. called the partition function, and is equal to

| Zhgi= [ o (~5k(%0) a.
Ty ' RN
Such systems of particles with logarithmic repulsive interaction on the line have been exten-
sively studied, in particular because of their connection with random matrix theory, see [45]
for a survey.

Under mild assumptions on V, it is known that the empirical measure of the particles
converges almost surely to some deterministic pfoba.bility measure on R called the equilibrium

103
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MEASUTE Ly, with no simple expression in terms of V. For any N > 1, let us define the
fluctuation measure
. N .
flucty := ) &, = Npv, ' (5.1.3)
i=1 '
which is a random signed measure. For any test function £ regular enough we define the
fluctuations of the linear statistics associated to £ as the random real variable

Flucty (&) ::/E;ﬁdﬂuctN. (514)

The goal of this Chapter is to prove a Central Limit Theorem (CLT) for Flucty(£), under
some regularity assumptions on V and €.

5.1.1 Assumptions

(H1) - Regularity and growth of V' The potential V' is in CP(R) and satisfies the grbwth
condition

V() .
i 1.5
M 10g1a 7 619

It is well-known, see e.g. [73], that if V satisfies H1 with p > 0, then the logarithmic potential
energy functional defined on the space of probability measures by

Ty(u) = /R ~loglz — 3l du(e / V() due (5.1.6)

has a unique global minimizer py, the a,f(_)rementioned equilibm’um measure. This measure
has a compact support that we will denote by £y, and uy is characterized by the fact that
there exists a constant ¢y such that the function {y defined by

Viz _
oie) = [ ~Tog o~y y) + T2 — v (5.17)
satisfies the Euler-Lagrange conditions
(v >0in R, (v =0o0n%y. (5.1.8)

We will work under two additional assumptions: one deals with the p0351ble form of by
and the other one is a non-criticality hypothesls concelnmg Cv.

(H2) - Form of the equilibrium measure The support ZV of Hv is a finite union ofn+l
non-degenerate mtervals

Sy = U log-; sl w1th Q- <CY1,+.
0<i<n .

The points ¢y 1 are called the endpoints of the support Ly. For z in Xy, we let

n
o(z) =] \/I.’L‘ —oy e — o). (5.1.9)
=0
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We assume that the equilibrium measure has a density with respect to the Lebesgue
measure on Yy given by - o . ;
py(z) = S(z)o(z), : (5.1.10)

where S can be written as

S(z) = So(z)

(x —8;)*, Sy >0o0n Ty, (5.1.11)

1=1

where m > 0, all the points s;, called singular points!, belong to Yy and the k; arc
- natural integers. 7
(H3) - Non-criticality of ¢ The function (y is positive on R\ Zy.

We introduce the operator Zy, which acts on C! functions by
Sy ] = /d YY) g (1), (5.1.12)

5.1.2 Main result

Theorem 2 (Central limit theorem for fluctuations of linear statistics). Let & be a function
in C"(R), assume that H1-H3 hold. We let’ ‘

k-= o nax 2k;,

1=

where the k;’s are as in (3.1.11), and assume that; p (resp. r) denoting the reqularity of V.
(resp. &)

p>(3k+5), r>(2k+3). (5.1.13)
If n > 1, assume that & satisfies the n following conditions :
d
f(y)y dy=20 ford=0,...,n—1. (5.1.14)
S
- Moreover, if m > 1, assume that for alli=1,...,m .
W) = Routly) ) =0 ford=1,...,2k, (5.1.15)

sy oY)y — s

where Ry 4€ is the Taylor expansion of & to order d — 1 around z given by

N / (y —=)*! (d—1)
xdﬁ() 5($)i(y—x)§($)+"'+—(m'—§ ()-
Then fhere exists a w"zstant ce and a function 1) of claS> C? in some open naaghborhood
U of By such that Zy[¢] = § + ¢ on U, and the Jtuctuation Fluctn (&) converges in law as
N — o0 to a Gaussian dzetrzbm‘wn with mean -

, 2
Mg = <1‘ - E)y/wl dity,

'Let us emphasize that a singular point s; can be cqual to an endpoint o+ -
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and va riance

-2 v

It is proven in (5. 6. 122) that the variance v¢ has the equivalent expression

Let us note that 1), hence also m¢ and vg, can be explicitly written in terms of .

5.1.3 Comments on the assumptions

The growth condition (5.1.5) is standard and expresses the fact that the logarithmic repulsion
is beaten at long distance by the confinement, thus ensuring that py has a compact support.
Together with the non-criticality assumption-H3 on (y, it implies that the particles of the
log-gas effectively stay within some neighborhood of Xy, up to very rare events.

The case n = 0, where the support has a single connected component, is called one-cut,
whereas n > 1 is a multi-cut situation. If m > 1, we are in a critical case.

The relationship between V and piy is complicated in general, and we mention some
examples where 1y is known to satisfy our assumptions.

e If V is real-analytic, then the assumptions are satisfied with n ﬁmte m finite and S
analytic on Ly, see [34, Theorem 1.38], [35, Sec.1].

e If V is real-analytic, then for a "generic” V' the assumptions are satisfied with n finite;
'm = 0 and S analytic on Zy, see [54].

e If V is uniformly convex and smooth, then the assumptions arc satisfied with n = 0,
m = 0, and S smooth on Zy, sce e.g. [67, Example 1].

e Examples of multi-cut, non-critical situations with n = 0,1, 2 and m = 0, are mentioned
in [67, Examples 3-4].

° An example of criticality at the edge of the support is given by V(z) = ——:v4 — 14—5:1:3 +
x?+3 x for which the equilibrium measure, as computed in [27, Example 1 2], is given
by
= le— (-2)lfe 2z~ 2101 (a).
e An example of criticality in the bulk of the support is given by V(z) = % — 22, for

which the equilibrium measure, as computed in [28], is

pv(z) = —%I 2)|lz - 2|(z — 0)*1-2(x).

Following the terminology used in the literature [35, 54, 28], we may say that our assumptions
allow the existence of singular points of type II (the density vanishes in the bulk) and III
(the density vanishes at the edge faster than a square root). Assumption H3 rules out the
possibility of singular points of type I, also called "birth of a new cut”, for which the behavior
might be quite different, see [26, 66].
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5.1.4 EXIStlng literature, strategy and perspectlves
Connection to prev10us results

The CLT for fluctuations of linear statistics in the context of S-ensembles was proven in the
pioneering paper [51] for polynomial potentials in the case n = 0, m = 0, and generalized in
[77] to real-analytic potentials in the possibly multi-cut, non-critical cases (n > 0,m = 0),
where a set of n necessary and sufficient conditions on a given test function in order to satisfy
the CLT is derived. If these conditions are not fulfilled, the fluctuations are shown to exhibit
oscillatory behaviour. Such results are also a by-product of the all-orders expansion of the
partition function obtained in [16] (n = O,m = 0) and [15] (n > 0,m = 0). A CLT for
the fluctuations of linear statistics for test functions living at mesoscopic scales was recently
obtained in [13]. Finally, a new proof of the CLT in the one-cut non-critical case was very
recently given in [56]. It is based on Stein’s method and provides a rate of convergence in
Wasserstein distance.

Motivation and strategy

Our goal is twofold: on the one hand, we provide a simple proof of the CLT using a change
of variables argument, retrieving the results cited above. On the other hand, our method
allows to substantially relax the assumptions on V', in particular for the first time we are
able to treat critical situations where m > 1. : :

Our method, which is adapted from the one introduced in [59] for two-dimeusional log-
gases, can be summarized as follows

1. We prove the CLT by showing that the Laplace transform of the fluctuations converges
to the Laplace transform of the correct Gaussian law. This idea is already present in
[51] and many further works. Computing the Laplace transform of Flucty(€) leads
to working with a new potential V' + t£ (with ¢ small), and thus to considering the
associated perturbed equilibrium measure. '

2. Following [59], our method then consists in finding a change of variables (or a transport
map) that pushes iy onto the perturbed equilibrium measure. In fact we do not exactly

~ achieve this, but rather we construct a transport map I + ¢, which is a perturbation

» of identity, and consider the appmzzmate perturbed equilibrium measure (I +tp)#py.

The map 1 is found by inverting the operator (5.1.12), which is well-known in this

~ context, it appears e.g. in [16, 15, 77, 11]. A CLT will hold if the function ¢ is (up to

constants) in the image of =y, leading to the conditions (5.1.14)—(5.1.15). The change

~ of variables approach for one-dimensional log-gases was already used e.g. in [78, 11],
 see also [48, 49] which deal with the non-commutative context. :

3. The proof then leverages on the expansion of log Z} p up to order N provon in [58]

- valid in the multi-cut and critical case, and whose dependency in V' is explicit enough.
This step replaces the a priori bound on the commutators used e.g. in [16].

More comments and perspectives

Using the Cramer-Wold theorem, the result of Theorem 2 extends readily to any finite
family of test functions satisfying the conditions ((5.1.14), (5.1.15)): the joint law of their
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ﬁuctuatlons converges to a Gaussian Vector using the bilinear form associated to (5.1.16) in
order to determine the covariance.

In the multi-cut case, the CLT results of [77] or [15] are stated under n necessary and
sufficient conditions on the test function, and the non-Gaussian nature of the fluctuations if
these conditions are not satisfied is explicitly described. In the critical cases, we only state
sufficient conditions (5.1.15) under which the CLT holds. It would be interesting to prove
that these conditions are necessary, and to characterize the behav1or of the ﬂuctuatlons for
functions which do not satisfy (5.1.15).

Finally, we expect Theorem 2 to hold also at mesoscopic scales.

5.1.5 The one-cut noncritical case

In the case n = 0 and m = 0, following the transport approach, we can obtain the convergence
of the Laplace transform of fluctuations with an explicit rate, under the assumption that &
is very regular (we have not tried to optimize in the regularity):

Theorem 3 (Rate of convergence in the one-cut noncritical case). Under the assumptions
of Theorem 2, if in additionn =0, m =0, p> 6 and r > 17, then we also have

'Iog EP,\’:,a (exp(sFluctn(€)) — sme — szvgl
s & st
<C ‘]\7||§||017(m) + 'ﬁ”f“czm) + m”f“cﬂ(m , (5.1.17)

where the constant C' depends only on V.

The assumed regularity on £ allows to avoid using the result of [58] on the expansion
of log Z,‘é’/,. Our transport approach also provides a functional relation on the expectation
of fluctuations which allows by a boostrap procedure to recover an expansion of log Z}\/,,ﬁ
(relative to a reference potential) to arbitrary powers of 1/N in very regular cases, i.e the
result of [16] but without the analyticity assumption. All these results are presented in
Appendix 5.5.

5.1.6 Some notation
We denote by P. V the principal value of an 1ntogral havinga smgularlty at xg, i-e.
' © pEQ—E oo }
P..V./fi,: lim/ S f+ f.o- (5.1.18)
e—0: oo Jzo+e

If ®isa C! dlffeomorphlsm and u a probablhty rheasure, we dénote by @#,u '(hf" push—
foxwald of u by <I> ‘which i is by deﬁmtlon buch that for A C R Boxel

(‘P#u)(z‘l) —ﬂ(@ (4 ) _

If A C R we denote by A its interior.
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" For k > 0, and U some bounded domam in R, we endow the spaces C’k( U ) with the usual
norm -

||1/1Hc'~ () ‘= ZSUP |1/)(J) (z)].

J OTE

If z is a complex number, we denote by R(z) (resp. Z(z)) its real (résp. imaginary) part.
- For any probability measure x4 on R we denote by h* the logarithmic potential generated
by u, defined as the map

r € R* = h'{z) = /— log |z — y|du(y). . (5,1.19)

5.2 Expressing the Laplace transform of the fluctua-
tions |

We start by the standard approach of reexpressing the Laplace transform of the fluctuations
in terms the ratio of partition functions of a perturbed log-gas by that of the original one.
This is combined with the energy splitting formula of [74] that separates fixed leading order
terms from variable next order ones.

5.2.1 The next-order energy
For any probability measure f, let us define,
" N
Fo(B == [ togle=sl(Ldn-n)@) (Lo -n)w)  G220)
: RxR\A i=1 i=

where A denotes the diagonal in R x R.
We have the following splitting formula for the energy, as introduced in [74] (we recall
the proof in Section 5.6.1).

Lemma 5.2.1. For any Xy € RY, it holds that
HG(Xn) = N* Ty (uv) + 2N Y Cv(z) + Fn(Xn, pv) - C o (5.2.21)
i=1
Using this splitting formula (5.2.21), we may re-write Py, 4 as
HIP’ (X ) L ex ( b (F(X | )+2Ni( (1 )))d)z o ("“2 22)
———¢ - (XN, iv) Cv (x5 XN, 5.2.
NA\AN KNﬁ(H%CV) p‘ 5 NUAN, v 2 v N

with a next—order partition function Ky g(pv, (v) defined by

Kf\/ﬁ(uv CV) = G‘Xp( (FN X[\, ,u,v +2NZCV )) (f)?N (5223)

i=1

We extend this notation to Ky g(u C ) where p is a probability density and (isa conﬁnemen’c
potultldl .
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5.2.2 Perturbed potential and equilibrium measure

Let £ be in C°(R) with compact support.
Definition 1. For any t € R, we define

e The perturbed potential V; as V; :=V + €.

o. The perturbed equilibrium measure yu; as the equilibrium measure associated to Vy. Since
& has compact support, V; satisfies the growth assumption (5.1.5) and thus p, is well-
defined. In particular, pg coincides with py .

e The next-order confinement term ¢ := (y,, as in (5.1.7).

e The nert-order energy Fy(Xn, ) as in (5.2.20).

e The next-order partition function Ky g(u, ;) as in (5.2.23).

5.2.3 The Lépfacé transform of fluctuations as ratio of partition
functions

y . =28
Lemma 5.2.2. For any s € R we have, letting t := il
Bpy,  [oxp (sFlucty (€))]

_ Kwp(u, G) 5,
" Enalio @) T <—§N (IV»(M) — Ty (o) —t/Sduo». (5.2.24)

Proof. First, we notice that, for any s in R

ZVr
Ep Py, [exp(sFlucty(€))] = v exp( Ns/fd,uo> (5.2.25)
8 |

Using the splitting formula (5.2.21) and the definition of Ky g as in (5.2.23) we see that for
any t

Knp(pe, G) = NB exp <—§'N21Vt(ut)) , (5.2.26)

thus combining (5.2.25) and (5.2.26), with ¢ : —3 we obtain (5.2.24). d

5.2.4 Comparison of partition functions

If p is a probability density, we denote by Ent(x) the entropy function given by Ent(u) :=
g plog u. The followmg asymptotic expansion is plove,n [08 Corollary 1 o] (cf [08 Remaxk
4. 3]) and vahd in a general multl—cu’c critical 31tuat10n S

Lemma 5 2.3. Let p be a probabzlzty density on R. Assume that " has the form (5 1 10),
(5.1.11) with So in C*(X), and that ¢ is some Lipschitz functwn on R, satzstzng

(=0o0n¥%, ( >0 on R \ %, / —ANC=) g < oo for N large enough
Then, with the notation of (5.2.23) and for some Cﬁ dependmg only on ﬁ, we h(we

log, Knp(p, C) ?—NlogN + CgN — N (1 - p—) Ent(,u) + N()N( ). (5.2.27)



CLT for Fluctuations of S-ensembles with gencral potential — 111

5.2.5 Additional bounds

Exponéntial moments of the nextQOr'der'eﬁergy

Lemma 5.2.4. We have, for some constant C depending on 3 and V

<CN.  (5228)

log EP,‘G , {exp </)) (FN(XN,,Uv) + N log N))

Proof. This follows c.g. from [74, Theorem 6], but we can also-deduce it from Lemma 5.2.3.
We may write S o

ELD}QJ, {CXP (ﬁFN(XN Hv )}

[3 . N .

——\{ Fn(Xn, pv) — 2N Y 2Cy(xy dX

- ey [ o (5 (P - 28 S 2@ ) )
Ky, %)

—" Knpglpv,Cv)

Taking the log and using (5.2.27) to expand both terms up to order N yields the result. O

The next-order energy controls the fluctuations

The following result is a consequence of the analysis of [74, 71|, we give the proof in Section
5.6.2 for completeness. It shows that Fy controls fluct. Here |Supp €| denotes the diameter
of the support of .

Proposition 5.2.5. If £ is compactly supported and Lipschitz; we have, for some universal
constant C

’/foﬂuctN‘

1/2
< C|Suppé|? HV£“L°° (Fv(Xw, pv) + Nlog N + C(llpv e + DN) . (5.2.29)

Confinement bound

We will also need the following bound on the confinement. The proof is very simple and
identical to the proof of Lemma 3.3 of [59]. -

Lemma 5.2.6. For any fized open neighborhood U of 2,
]Mﬁ@NFU)>1—MM%W)
where ¢ > 0 depends on U and f3. o 7

Lcmma 5.2.6 is: the only place where we use the non-degoneracy assumptlon H3 on the
next-order confinement term (y .
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5.3 Invertmg the operator and defining the approx1—
mate transport

The goal of this section is to find transport maps ¢; for ¢ small enough such that the
transported measure ¢, # 1o approximates the equilibrium measures y;. Since the equilibrium
measures are characterized by (5.1.7) with equality on the support, it is natural to seek ¢,
such that the quantity

[ ~1oglén@) - eutu)lduos) + 5Vi(6:(z)

is close to a constant.

5.3.1 Preliminaries

Lemma 5.3.1. We have the following

e The non-vanishing function Sy in (5.1.11) is in CP—3~2(Zy).
e There exists an open neighborhood U of Sy and a non-vanishing function M in CP~3=2%(U\
Yv) such that

G (x) = M(z)o(x) ﬁ(7 — 5;) %, (5.3.30)

In particular, (5.3.30) quantifies how fast ¢{, vanishes near an endpoint of the support.
We postpone the proof to Section 5.6.3.

5.3.2 The approximate equilibrium measure equation

In the following, we let

e U be an open neighborhood of Xy such that (5.3.30) holds.
e B be the open ball of radius 1 in C%(U).

We define a map F from [~1,1] x B to Cl(U) by setting ¢ := Id + ¢ and
Few): / log 16() )|duv( )+ gVee ¢>< Vi (s

Lemma 5.3.2. The map F takes values in Cl(U ) and has continuous partial derivatives
in both variables. “Moreover there exzsts C dependmg only on V such that for all (t Y) in
[ll]waehave" ' : :

H“r(t %) - Flo, 0)-—£+;V w]”  < Ctz]lz?llcz(U) -  ~(’5'3‘32)

The proof is postponed to Section 5.6.4.
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5.3.3 Inverting the operator
Lemma 5.3.3. Let ¢ be defined by '

1 ([ -w I
P(z) = —2ﬂ25( ( ) = )dy) for z in Xy, - (5.3.33)
/w duv(y g+c - . AL PES
— Jorz € U\Zy, (5.3.34)
T—y

then v is in CY(U) with | = (p —3 — 3k) A (r — 1 — 2k) and

[l <

Jor some constant C' depending only on V', and there exists a constant c¢ such that

®) (5.3.35)

_.v['g/)] —:§-+<,§ in U,

with Zy as in (5.1.12).

 The proof of Lemma 5.3.3 is postponed to Section 5.6.5. We may extend 1/ to R in such
a way that v is in C'(R) with compact support. :

5.3.4 Approximate transport and equilibrium measure

We let 40 be the function defined in Lerama 5.3.3, and cé be such that
e & o
__V[z,}] = 5 + ¢¢ on U.

-1
Deﬁnition 2 For t € [_tmax» tmax]; w}l‘w‘re t'max = (QH-wll(ﬁ”(L")) ’

We let ¢, be given by 1, := t. ,

We let ¢, be the approzimate transport, defined by ¢, := Id + 1.

We let ji; be the approximate equilibrium measure, dFﬁnP(i by iy = Gy
We let Q be the approzimate confining term ¢, := (y o ¢; ! R
We let IP’, N be the probability measure

N

. 1 ' B :
APy (X )=~ exp <—§ <FN(XN i) + 2N S G (x )) dXy, (5.3.36)
’ KNﬁ(Mt) Ct)

=1
‘ where K}v,@(ﬁt, Ct) 18 a.s‘m (5223) _
Finally, we let 7, be defined by

7= Fta) — F(0,0) — . o (5.3.37)
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This quantifies how close fiy is from satisfying the Euler-Lagrange equation for Vi and thus
how well iy approzimates the real equilibrium measure ;. We also define the extension 7y of
o ¢; ! to R? by ‘

| - #(w,y) = x(x;9) T 0 ¢; 1 (x), (5.3.38)

where x s equdltb one in a ﬁmedneighborhbod bf supp(py) included in U and is in Cf“(Rz)‘
Lemma 5.3.4. The following holds

e The map 1 satisfies , ;
. - t _ ) ~

‘:V[wt] = _2-5 + Gy, f()?" Ct = th.

e The map ¢, is a C*-diffeomorphism which coincides with the identity outside a compact

support independent of t € [—tmax, tmax)-
e The error 7; is a O(t?), more precisely

Imellerwy < CNY G, (5.3.39)
[7llcrmey < CE [l 0y (5.3.40)
e On ¢(Zv), we have
. -V
G = W + ?t — & —cy —Tog . (5.3.41)

Proof. The first two points are straightforward, the bound (5.3.39) follows from combining
(5.3.32) with the conclusions of Lemma 5.3.2, and then (5.3.40) is an easy consequence.
For (5.3.41), let us first recall that '

1
Fle.p) = [ 1og160) — euu)lduolu) + 5Vio b
which, with the notation of (5.1.19), yields

" 1
F(t, ) = h 0 gy + 5Vio g

On the other hand, by definition of 7 as in (5.3.37), we have
f(t, Tpt) = F(O, O) -+ 6t “f' Tt-
Finally, we know that, on Xy |

We thus see that )
S Qﬁmv+@+n:h”d@+§Wo@-

Since, by definition, G=Cyo é;t, we get (5.3.41). O
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5.4 Study of the Laplace transform

The next goal is to compare the partition functions associated to u; and po = puy. We split
the comparison into two steps: first, we compare Ky g(p, () with Ky, ([Lt,@) using the
bounds, obtained in the previous section, showing that i is a good approximation to 7,
and then we compare Ky g(jis, ¢;) and Ky g(po, Co) using the transport ¢, as in [59].

5.4.1 Energy comparison: from u; to i

Lemma 5.4.1. We have
[ RE < ot g (5.4.42)
/Ctdﬁt + / Gidpy < Ct4|]?/°||?72((,')7 ‘ (5.4.43)
R R

where C 1s universal.

Proof. For t small enough, ¢,(U) contains some fixed open nclghborhood of ¥y, which itself
contains the support of yi;. Integrating by par’(s we thus get ' :

1 - T T
27_ L IVhlh ﬂttI — /hm—ll/,d(utv _ ut)
/ Qr“Tr“ﬁf Y ( = fut)

/Ctd#z /Ctduz /Tt°¢t d(pe — )

<~ [rosdiu - ). (3440

In the first equality, we have re-written A% and h# using the confining terms ¢, and G,
see (5.1.7) and (5.3.41), discarding the constants which disappear when integrated against
d(p — f11). In the second equality, we have used the fact that ¢, vanishes on the support of
1y and Q on the support of fi,. Finally, the last 1n0quahty is due to the fact that Q and Q
arc nonnegative on R. Using (5.3.38) and (5.3.40), we may thus write

< IVF 2wl VR L2ge)

’ 1 _71' - . ~ .
%HVh”‘ "'”%Z(Rz) < - 7o ¢t — fu)dw
| o < C Y lIEa VAR 2 gy,
which proves (5.4.42). Coming back to (5.4.44), we also obtain
0 S ‘,/Qdﬁt - /5/,(1/,14 +0 (t4i|¢|l4()2(U)) y

which in turn implics (5.4.43). o » O
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Lemma 5.4.2 (Energy comparison : from g, to ;). For any Xy E (p:(UNN, we have - -

(P + zzvictm) - (Putws + QNZQ(%))I

i=1 i=1

< G (N |2 (Fa (X, i) + Nlog N2 N2t[llbay) . (5.4.45)

Proof. By the definition (5.2.20) of the next-order energy, we may write

Fy(Xn, ) — Fn(Xn, i) = N2/ —log|z — ?J| d (fis — pe) (2)d (B — ) (y)
R RxR

+2N/ —10g|x—y|d fu — pue)( <Z(5x, Nm) y)
RxR

= N2 [ |VRHR2 42N / hit= ﬂ'( Z(s —N/1,> (5.4.46)
R‘Z

i=1

On the other hand, using that ¢, vanishes on the support of f;, we get

f: (Glx) = Glw)) = N/R(Ct — G)dju + /R(Ct - &) (i Oz, — Nﬂz)

~ N -
= N/RQdut + /R(Ct = Gt) <§1 Oz, — Nut> . (5.4.47)

Combining (5.4.46) and (5.4.47), we obtain

~ N . N
(FN()(’N, ,[14) + QNZCI(’I%)) - (F’:‘V(X[\,[Lf) + 2N2C1(’I7))

i=1 i=1
N
= N2 [ R [ GdpraN [ G- ) (Z b — m) .
R? R R i=1
From (5.1.7), (5.3.41) (see also the notation (5.1.19)), we have
Rt L ¢, — C, = 7, 0 ;! + constant,
hence we find

(FN(XNa ) +2N Y Ct(%)) - <FN(XNaﬁt) +2NY E‘t(%))

i=1 i=1
= N2/ ‘Vhllt,—ﬂtp =+ 2N2/ Ctd/j't + 2N /Tt o (bt— (Z 6 - N/‘Lt) . (5448)

By the results of Lemma 5.4.1, the first two' terms in-the right-hand side of’ (5 4.48) are
O(N?t*), while the last term is bounded, using (5.3.39) and Proposition 5.2.5, by .

oo,

N
N/Tt op; ! (Z Ou; — Nﬁt) =0 (Ntz(FN()—("Nzﬂtv),’*‘ N log N)il/2) ;
i=1

which concludes the proof. O
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Lemma 5.4.3. We have, for any fired s € R, with t = [_j—lz\f

\log ‘[{Nﬁ(tah ét)
AN,ﬂ(p't: CI.)

< CNtz\/—]VHZ/JHéz(U) + Ct4N2H¢H402(U)

= O (s*N2u|ge + s'N2glée) . (5.4.49)

Proof. By definition of the next-order partition functions we may write

KN,B(/]L,@) _ B L N
m B /RN exXp <_‘2“ ((FN(XN,M) + QNZ;CL(:M))

- (Ao +2N 3 Gan) ) )

i—1
The result follows from combining (5.2.28) and (5.4.45), and using Lemma 5.2.6 to argue that

the particles Xn may be assumed to all belong to the neighborhood U for ¢ small enough,
except for an event of exponentially small probability. O

5.4.2 Emergy comparison: from ji; to ug
Let us define N
flucty) = S8, — N,  Fluet'?(€) = / £ dftucty.
i=1

For any 1, let us define the tollowulg quantity (that may be called anisotropy by analogy
with [59]) '

AD Xy, ] = / V@) = W) 100t O () diuct Q). (5.4.50)

RxR r—Y

Lemma 5.4.4. Assume € C3(R). Forany Xy € UV, letting ®,(Xx) = (¢e(21), -+, dulzn)),
we have

N .
_ - t -
Fn(®u(Xn). fir) — Fn(Xn, po) — Zlog Cb;(’fz) + 3 A<0)[XN»?/1]

=1

< Ct? (Fy(Xy, po) + Nlog N). (5.4.51)

Proof. Since by doﬁnition /Tt = ¢ #1190 We may write

FN(<I> (XN) /Lt }'N(XN» /-LO)

' | N
[/ 108 Ix - y_| ( Z 5@(@) - N/jt> (:C) < Z 6¢>t(<ﬁi) - Nlll) (y)
TRXR\A oA Ng=1 : i=1

=1

+ // log |z — y|dfluct v (z)dfluct v (y)
: IR<><[R<\A .

l: - // log |—gwdﬂuc‘w(:1:)(1lﬂuctj\z(‘ )
RxR\A -

Ix—yl

// |¢t uly )‘dﬁuctN( Jdflucty (y) +Zlog S a:,)
RxR : l.’L’ - Ul

i=1
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Using that by definition ¢; = Id + t1) where 9 is in C%(R), we get by the chain rule

g 1948) = 6|, 9(@) ~ ()

+ 1% e(z, y),
EE T—y e(@,)

with |[e¢|lc2@xry uniformly bounded in ¢. Applying Proposition 5.2.5 twice, we get that

l// ez, y)dﬁuctN(x)dﬂuctN(y)i < Ct (FN()ZN, ko) + N log N) ,

which yields the result. O

5.4.3 Comparison of partition functions I: using the transport

In this section and the following one, we will write A instead of AQ[Xy, 1]

Proposition 5.4.5. We have, for any t small enough

Knpliie, G)

K.5(t10, Co) = exp (N (1 — g-) (Ent{uo) — Ent(;lt))>

E,o (exp <§tA + t2Errory (X n) + tErrorz(XN))> , (5.4.52)
N,

with error terms bounded by
|Error (X n)| < C (FN()?N, wo) + N log N) , ' (5.4.53)
|Errors(Xn)| < € (Ew(Xy, o) + Nlog V)" (5.4.54)

Proof. By a change of variables and in view of (5.4.51), we may write
- B - N N "
KN,/?(ﬁ't, Cf) = /exp (Mg(FN((I)t(XN)a [l,,) -+ QNZ Ct o ¢t(7"1)) -+ Z log (]5;(7‘1)) dXN
i=1 i=1

= [ exp b FN(QL(XN),ﬁt)Jr?NiCo(%) +»i‘10g¢2($i) dXy,
2 Ji=1. - : 1=1 . / :
(5.4.55)

since ¢ = ¢ o ¢;. by definition. Using Lemma 5.4.4 we may write

oslin) Lo (St r v )

Kng(po,G)  Knp(po, Co) . 2 =0
A Y ,Z,Og.ﬁbt(xi)fgt + t°Errory (Xn) | dXn
i=1 ' -

= EPS\?,)/i (exp ((1 - g) > log ¢ (z:) + gtA + t2Error1()?N)>> , (5.4.56)

i=1
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where the Error; term is bounded as in (5.4.53). On the other hand, since ¢, is regular
cnough, using Proposition 5.2.5 we may write

N .
> log ¢y(x:) = N/ log ¢; duo + tErrora(Xy)
i=1 R

with an Errory term as in (5.4.54). Finally, since by definition ¢;#puo = iy we may observe
that ¢, = =£2- and thus

oy
/ log ¢ dug = / log po dug — / log ps 0 ¢y dug = Ent(ug) — Ent(g,). (5.4.57)
R R R
This yields (5.4.52). O

5.4.4 Comparison of partition functions II: the anisotropy is small

Proposition 5.4.6. For any s, we have
_s _
log Epy | (exp (WA>) = on(1). (5.4.58)

Proof. Applying Cauchy-Schwarz to (5.4.52) we may write

prﬁ (cxp (gtA) )

< E‘P’K-,u (exp (—g—tA + t*Error, + tErrorg>> E]pl\\”’ﬁ (exp (~t2Error1 - tError2)>

< I<N,ﬁ (ﬁ’tu 51)

B o | , |
= Kos(ro o) exp ((1 - —) N (Ent(f,) — Ent(,uo))) Epy | (exp(——t Errory — tError2)) :

2

(5.4.59)
In view of (5.2,28) we get, for ¢ small cnough,
log EPX/,a (éxp(tErrorQ) < CtN, log EP,‘?\/I,,H (exp(tErrory)) < CtN. (5.4.60)
Inserting (5.2.27) into-(5.4.59) we obtain that for ¢t small enough,
’ (5 . .
log Epy (exp f\ZtA>> < C(Nt? + le%) + Noy, (5.4.61)

for some sequence {dy}y with limy oo Oy = 0. Applying this to t = 4¢/ with € small and
using Hélder’s inequality, we deduce :

Is|
€

sl

-5
. ‘IQgAEPXJ:ﬂ;(exp (—]—V—A>) < Ne log E,pxm (exp(eA)) < Clsle +

£

ON.

1

In particular, choosing ¢ = /oy, we get (5.4.58).
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5.4.5 Conclusion: proof of Theorem 2

Proof. Combining (5.4.52) for t = —— (where s is independent of N) and (5.4.58) we find
Knp(fizz:) 8
gt = Y - [ - 8
tog Kivs(o) = (1 2) N (Ent(ﬂo) Ent(uﬁ%)) +on(1). (5.4.62)

Using again (5.4.57) and ¢, = 1 + t', we may rewrite this as

KN’ﬁ(’uzf?vs) _ . B 2s ’

Combining (5.4.49) and (5.4.63) and sending N to +oo we obtain,

. Mz_(ij) 2s
& Knp (o) 2]

/ Wi + o (1), (5.4.64)

with an error on(1) uniform for s in a compact set of R.
To conelude, we need the following relation, whose proof is given in Section 5.6.6.

Lemma 5.4.7.
2 [, : '
Tuu) = T (o) = t [ €dho + 5 [ € + O ey + 10l (54.69)

where the O only depends on V.

Combining (5.2.24) with (5.4.64) and (5.4.65) we obtain,

log pr'ﬂ (exp(sFlucty(€)) = (1 — —) /z//d,uv - — / EPduy + on(1),

with an error on(1) uniform for s in a compact set of R.

Thus the Laplace transform of Flucty(£) converges (uniformly on compact sets) to that
of a Gaussian of mean mg and variance vg, which implies convergence in law and proves the
main theorem. a

5.5 The one-cut regular case

In the one-cut noncritical case, every regular enough function is in the range of the operator
=, so that the map v can always be built. This allows to bootstrap the approach used for
proving Theorem 2. In this appendix; we expand on:how we can proceed in this simpler
setting without refering to-the result of (58] but assuming more regularity of £, and retrieve
the findings of [16] (but without assuming analyticity), as well as a rate of convergence for
the Laplace transform of the fluctuations.
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5.5.1 The bootstrap argument

Let us first explain the main computational point for the bootstrap argument: by (5.4.55)
and in view of Lemma 5.4.4, we may write

d o [ B gd X
dt|t:ologKN’ﬂ(ut’<t)—Eps\(l),)ﬁ[ —2—A (Xn, ¢+ (1 Q)Eu:oiz::lbg(ﬁt(xl) . (5.5.66)

Differentiating (5.2.24) with respect to ¢ and using Lemma 5.4.7 we thus obtain

—fN (0) B B o e B\ d & .
—5 B [Fluctyy (6)] = By | =5 A Xy, 9] + {15 %tzoz;log by(xi)| -
This is true as well for all t € [—tmax, tmax], 1-¢-
N
4O ey = _ 2 _Bamx B 4 S e 5.5
E[Px?ﬁ[FluctN ©)] = ﬁNEPS\?ﬂ [ 2A (XN, ¥+ |1 5 tizzllog, ()| . (5.5.67)
We may in addition write that
d Yy / _ d /g~ (t) d /
— > log ¢y(x;) = N | —log ¢, dji, + Flucty | — log ¢, - (5.5.68)
dt = ; dt dt

so that

t d | A
EP%?H [Fluctﬁ\,) (&)] = "E (1 - g) /EE IOg sz dﬂt

2 [)) OIB% /H (t) i / =4
— —BJ—V—EPS\'}?/j Ii—EA [XN, 1/)} + 1 - 5 FthtN i log ¢t . (0569)

This provides a functional equation which gives the expectation of the fluctuation in terms of
a constant term plus a lower order expectation of another fluctuation and the A term (which
itself can be written as a fluctuation, as noted below), allowing to expand it in powers of
1/N recursively. |

5.5.2 Improved control on the fluctuations
Lemma 5.5.1. Under thevassumptions‘of Theorem 2 and assuming in addition _ v
 p>3k+6  r>2%+4 (5.5.70)
we have for any t in (—tmax, tmax) and® s in R
() ey
log E”’f\(r’,)n {exp (sFluctN (5))}

s? s? st
<C <$”£”()2k+4((}) + 32H£H%2k+.’5(u) + N‘|£IIC‘2(U) + e H€I|(72k+3(y) + 'N—Z”f”?)zws(y)

(5.5.71)

where C' depends only on V.

2Tn this statement, s and t are not related.



122 — CHAPTER 5

Proof. Note that in view of Lemma 5.3.3, the assutnption (5.5.70) ensures that the transport
map ¢ is in C*(U). By (5.4.55) and in view of Lemma 5.4.4, we may write

b,d
2

4 log KN'B(,LLt,Ct) E PO, [—gA(O)[XN; P+ (11— E- Zlogqﬁt x,)} (5.5.72).

dt|t=0
Similarly, we have for all t,

d _ = : I5) ﬁ d
108 Ky g (A, G) = By [—§A<'>[XN Y+ (-3 d—tZIOg ¢i(:) } : (5.5.73)

Indeed, V;, has the same regularity as V and ji; the same as .
Next, we express the anisotropy term as a fluctuation, by writing

AOXy, ] = /g(:lz)dﬂuct(,\t,)(:r,), (5.5.74)

where we let

¥(z) —P(y)

g(z) = /Q/A)(a:,y)dﬂuct%)(y), Pz, y) = p— (5.5.75)
It is clear that )
lbllc2wxuy < lllosw)- (5.5.76)

Using Proposition 5.2.5 twice, we can thus write

.

IVl <| [ 9uble et 0)] < CIVLT,blm (Fu(Ew, ) + ¥ log N + ON)

and

AOLEw, ]l = | [ s@)diuct) (@) < 1 9glim (X ) + Nlog ¥ + CN)

< C”’&”CZ(UxU) (FN(XNa i) + Nlog N + CN) .
In view of (5.2.28) and (5.5.76), we deduce that

[ Bawie
EE’(N‘?/; [‘EA X, v

< CN|[Yllcswy.- (5.5.77)

For the term log ¢, we use (5.5.68) and in view of Pvropositi_o;rix 5.2.5, since ¢y = Id + t) is
regular enough we may write : ‘

| 1
l / = log ¢, dftuct?| < cuq/;ucg(u, (Fv(Xn, Mt) +N log N + CN) 2. (5.5.78)
We conclude from (5.5.73), using again (5.2.28) that -
| |d
T log Ky g(fie, )| < CN|9llcs - (5.5.79)
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Int(gm‘rmg this relation between 0 and — and combining with (5.4.49), we find that, for

—2s ﬂN’
t = 52, o
KNﬁ /’th)’
log =PV < Cgllpl| page. 5.5.80)
Jog F A8 < o (

Inserting this, (5.4.49) and (5.4.65) into (5.2.24), we deduce that
log Epss)ﬁ [exp(sFIuc’cN(ﬁ))]f
| | - 2 | | s® 54 '
<C <8H¢||m(u) + sl lEllerwn + Flllos) + 5z Illexwy
82 2 34 4
+ ﬁ”w”C'z(U) + TV—EH’(/)”c'z(U) . (5581)

In view of (5.3.35), 1t yields the result for the expectation under IP’NH, and then this can be
generalized from ]P’ 5 to IP’(t) for ¢ in (—tuux, tmax) because fi; has the same regularity as
Ho- 0

Assuming from now on that n = 0 and m = 0 (so that every regular function is in the
range of =, up to a constant) we can upgrade this control of exponential moments into the
control of a weak norm of Fluct. Here we use the Sobolev spaces H*(R). -

Lemma 5.5.2. Under the same assumptions for a > 8 we have

[Hﬂuo’r(t) HH_,,J

<c (5.5.82)

PU)

where C' depends only on V.

Prébf. The proof is inspired by [5], in particular we start from [5, Prop. D.1] which states
that

. rl '
fulfer < € [ 7 ux (e, ) dr (5.5.83)
0

E )2 )
where ®(r,-) is the standard heat kernel, i.c. ®(r,z) = 74176—%. It follows that

1
o ¢ Y L , o
By [lfuct§ |l -] < / By [0ty < 20, ) [fa] dr. (5.5.84)

On the other hand we may easily check that, letting &= D(r,x — ), we have
[“ﬁuct() *<I>(r |iL2<R, = / By »[(Fluct“)(gm,,,)) ] dr. - (5.5.85)

Applylng thc rcsult of Lemma 5. 5 1 to fm gives us a control on the second moment of
FIU(‘TN [, .| of the form

g [(Fluctd (6,))°] < C (l€arllosw) + 16erllEsw) -
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Inserting into (5.5.84) and (5.5 85), we are led to

Epgyﬁ [”ﬂuc'@ ”H—“(]R < C/ / ||§zr||c4(u + ”g:cr“C’(U)) dz dr.

Since U is bounded, we may check that this right-hand side can be bounded by C fol ro LT dr,
which converges if o > 7. -0

5.5.3 Proof of Theorem 3
For any test function ¢(z,y) we may write
/ d)(él?, y)dﬂuctgf,)(x) dﬂuctgf,)(y) < ||¢‘ic2"(UXL’) Hﬁuctg\t,) ||2H~(1(R)

and so by the result of Lemma 5.5.2, we find

Es,, ( / ¢(z, y)dfluct (z) dﬂuct&?(:u))‘ < C|l¢llcrewxe)- (5.5.86)

We may now bootstrap the result of Lemma 5.5.1 by returning to (5.5.74) and, using (5.5.86),
writing that

‘Emm [A® [XN’W” < Cllgllczesiwy. | (5.5.87)

On the other hand, by differentiating (5.5.71) applied with £ = E‘-’; log ¢}, we have

d 71 (f)
E]PS\QH [ / 7 log ¢,dfiuct

Inserting (5.4.57) and (5.5.87) and (5.5.88), (5.5.68) into (5.5.73), and integrating between
0 and t = —2s/Nf3, we obtain

K, (fins G) B
log LB\ St _Z
° KN,H(/J'U) Co) (1 2

Using agam (5.4. 57) and ¢t = 1 + ty, we may rewrxte thls as

< Cllles (5.5.88)

) ¥ (@at) = B + 5 O0lEllenn0)

KN/i(/.L 29,C2,) ; 5 2,,¢ 4 S
log KNﬁ(uo,Co) :—(1—5) 5 /u; du()+0( H5||C2(,H(U))

Combmmg thls with (5 4.49), (5.2.24) with (5.4. 64) and ( 4A6’) we obtam

log E“’X/,ﬂ (exp(sFluctN(Q)‘ (1 - —) /UJ dpy + 2 / ¢ ¢dﬂv

ey

<c(—n5ucm+ Nl + Sgleles) . (5559

with C' depending only on V. This proves Theorem 3.
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5.5.4 Iteration and expansion of the partition functlon to arbi-
trary order -

Let VW be two C® potentials, such that the associated equilibrium measures py, pw satisfy
our assumptions with n = 0, m = 0. In this section, . we explain how to iterate the procedure
described above to obtain a relative expansion of the partition function, namely an expansion
of log Z,‘Gf[j — log Z%ﬂ to any order of 1/N. Up to applying an affine transformation to one
of the gases, whose effect on the partition function is easy to compute, we may assume that
py and pw have the same support ¥, which is a line segment.

Since V, W are C'° and puy, uw have the same support and a density of the same form
(5.1.10) which is C* on the interior of ¥, the optimal transportation map (or monotone
rearrangement) ¢ from py to pw is C® on ¥ and can be extended as a C™ function with
compact support on R. We let ¢ := ¢ — Id, which is smooth, and for ¢t € [0,1] the map
¢y = Id + ty is a C*-diffeomorphism, by the properties of optimal transport. We let
[t 1= ¢y # v as before.

We can integrate (5.5.73) to obtain

Kns(pw, Cw)
Knpg(pv,(v)

o ( B oo B Jé) d A | d B R
o . _ A § = o~ Py v ‘(t) f
/0 Eﬁ”}v>ﬁ [ 2A,\ (XN 9] + (1 2) /d loggb, di + (l 2> /-——dt log ¢,Hﬂuctlv} vdf

=N (1 - g—) (Ent(,uw) Ent(u))

: o . :
B '; B (t)y S :
+A pr?ﬁ {_EA(“ (X, ) + (l — 5 FluctN / 7 log (btdﬁuct | dt.

The integl‘al on the light hand side is of order 1, and we claim that the terms in the integral
can actually be computed and cxpanded up to an error O(1/N) using the previous lemma.

This is clear for the term E]P(“ [F luct'y) v (% log gbt)] which can be Computed up to an error
N8

O(1/N) by the result of Theorem 3. The term EP(,) [——A(’ (Xv, w]} can on the other hand

be deduced from the knowledge of the covariance structure of the ﬂuctuatlons Let F denotc
‘rho Fourier transform. In view of (5 5. 74) usmg ‘the identity

o) = 4ly) /w s+ (1= s)y)ds

-y
and the Fourier inversion formula we may write

log

—

By [AY Xy 9l] = By (s (L8 )dsdﬁuctN(l )dﬁuu;(t)( )
Fva Lo F N ' P‘V” JRxR Jo . £

i
4

: 1F1uct(t)( “’\)Flu(r (1““9A )| dsdA. (5.5.90)

(t
Ny v

- [ [ rrwom,

On the other hand, let ¢, \ be the map as&ociated to €** by Lemma 5.3.3. Separating the
real part and the imaginary part we may use the Imults of the previous subsection to et
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and obtain

. 2 1
)¢ _isa\] _ - / ~
- By [Fluct®) (e**)] = (1 ﬁ) / ordiie + O(5) -

By polarization of the expression for the variance (see (5.1.16)) and linearity

Egw [Fluctg\t,) (ei""\')Fluct(i)(e"'(l's)’\')]k = E;o {Fluotg\t,) (eis’\')] Epo {Fluctg\t,)(ei(l_s)’\')}
N.p N,G N,3

'B // (% A - (fs,’\(v)> (fp(l“s)’A(tZ : f(l_s)"\( )) dfi(u)dfi,(v)

/V Ps AP (1-s) ,\dut> +O(N)

Letting N — co, we may then find the expansion up to O(1/N) of E P, [ A“)[)ZN 1/;]]

Inserting it into the integral gives a relative expansion to order 1/N of the (logarlthm of the)
partition function log Ky g. This procedure can then be iterated to yield a relative expansion
to arbitrary order of 1/NN as desired.

5.6 Auxiliary proofs

5.6.1 Proof of Lemma 5.2.1

Proof. Denoting A the diagonal in R x R we may write

N
Hy(Xn) = ~log|z; — a;] + NZV(:r
i£] =

//(.—loglx~y|<;<.5:zj) n(e

Writing SN | 8, as Npuy + flucty we get

+N/ 2511 (z).

i=1 i=1

W) = 3 ]~ log o~ yld (a)dur () + N* [ Ve
. . , A IR
+2N // -—log |z — y|duy(z)dfluctn (y) + N/ Vdfiuct v
o R ‘

+// —-l()g\:x;—y|dﬂuctN(:1:)dﬂuét;Q(1y). (5.6.91)



CLT for Fluctuations of S-ensembles with general potential — 127

We now recall that (v was defined in (5.1.7), and that ¢y = 0 in Xy. With the help of this
we may rewrite the medium line in the right-hand side of (5.6.91) as

QN// —log |z — yldpyv (z)dfluct v (y +N/Vdﬁuct,v

|4
—ZN/ —log | - ]*dpv)( :) + 2>dﬂuctN:2N/ (Cv + ¢)dflucty

R i:l i=1

The last equalities arc due to the facts that {y vanishes on the support of py and that flucty
has a total mass 0 since py is a probability measure. We may also notice that since py is
absolutely continuous with respect to the Lebesgue measure, we may include the diagonal
back into the domain of integration. By that same argument, one may vecognize in the first
line of the right-hand side of (5.6.91) the quantity N*Zy (uy ). O

5.6.2 Proof of Proposition 5.2.5

We follow the energy approach introduced in {74, 71], which views the energy as a Coulomb
interaction in the plane, after cmbedding the real line in the plane. We view R as identified
with R-x {0} ¢ R? = {(x,y),z € R,y € R}. Let us denote by dg the uniform measure on
R x {0}, i.e. such that for any smooth p(z,y) (with z € R,y € R) we have

‘/wékz/ga(r,O)da:.
R? R

Given (z;....,7xn) in R, we identify them with the points (z;,0),. .., (zn,0) in R% For
a fixed X and a given probability density u we introduce the electric potential H%, by

Hy = (—log|-| (Z O(zi,0) — N;M[R) : - (5.6.92)
Next, we define versions of this potential which are truncated hence regular near the point

charges. For that let §{” denote the uniform measure of mass 1 on dB (x r/) (where B denotes
an Euclidean ball in RQ) We deﬁne H 1‘\‘, in R2 by

CHl, = (—log) | (z 50— NWR) | (5.6.93)

These potentials make sense as functions in R? and are harmonic outside of the real axis.
Moreover, HY; , Solves S

—AHY, =2n (Z o0) —‘Nmsu) Ty
, i=1
Lemma 5.6.1. For any prbbabilz’ty density p, Xy in RN and n in (0, 1),‘we have

B 1 T .
Fn(Xy,op) > %/ IVHY ,* + Nlogn — 2N ui . (5.6.95)
. . R? . g
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Proof. First we notice that fma? [VHp ,|% is a cbnvergent integral and that
N N
/ |VHy | = 2n // —log|z —y|d (Z 8¢ — Nuélk) (z)d (Z 5o — Nmm) (y). (5.6.96)
R2 i=1 i=1

Indeed, we may choose R large enough so that all the points of Xy are contained in the ball
Br = B(0, R). By Green’s formula and (5.6.94), we have

oH N
/ \VHy | = / HN,?TZK +2m / Hpy,, <Z &M — N,u5|R> : (5.6.97)
Bp 8Bpg v Bp : ’ :

i=1

In view of the decay of H ~ and VHy, the boundary integral tends to 0 as R — oo, and so

we may write
N
/ |\VHy,|* =27 / Hyn <Z 5 — N,u)
R2 R? i=1

and thus (5.6.96) holds. We may next write

// —log |z — y|d (Z (5(") NM(SR) (Z 5(" N/1'5R> (v)
//( —log |z — y| dfluct y(z) dfluct v (y)

= —Zlogn+2//—log lz—y| ((552’)5;?) — 02,0z, +2NZ/]—log|x y| O(”)>
i#] '
(5.6.98)

Let us now observe that [ —log|z — y|(5§’i’) (y), the potential generated by 6;’1,') is equal to
[ —log|z — y|b,, outside of B(x;,n), and smaller otherwise. Since its Laplacian is —27d{?,
a negative measure, this is also a superharmonic function, so by the maximum principle, its
value at a point z; is larger or equal to its average on a sphere centered at x;. Moreover,
outside B(x;,n) it is a harmonic function, so its values are equal to its averages. We deduce
from these considerations, and reversing the roles of ¢ and j, that for each ¢ # j,

/log|x — y|5(")6(") < — /log|x — y]dziég) < —/logix — Y|0z,04, .

We may also obv1ouslv write

/ —log|T — yléxia,,. = / —log|z — y6M8P < —log|z; — 2|1}z, —ay|<2n-

We conclude that the second term in the right-hand side of (5.6.98) is nonpositive, equal
to 0 if all the balls are disjoint, and bounded below by 3=;.; log |z; — :c,,|1|A7r | <on Finally,
by the above considerations, sincé f —log |z — y|5(") coincides with [~ log |z = Y|z, outside
B(z;,7n), we may rewrite the last term in the rlght hand side of (5.6.98) as

N . ‘ '
2N (—log |z — z;| + logn))dudr.
i B(zi,m)
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But we have that
: / (—loglz| +logn)dg =n - (5.6.99)
B(0,n)

so if 4 € L, this last term is bounded by 2||p||L~ N?n. Combining with all the above results
yields the proof. O

Proof of Proposition 5.2.5. We now apply Lemma 5.6.1 for py with n = L,\, We abtain

= / IVHE > < Fa(Xu,pv) + Nlog N + C(lluvlli= + 1N, (5.6.100)
R2 :
Let £ be a smooth compactly supported test function in R. We may extend it to a smooth

compactly supported test function in R? coinciding with £(z) for any (x,y) such that |y| <1
and equal to 0 for |y| > 2. Letting #I denote the number of balls B(z;,n) intersecting the

support of £, we have
N B
[ (et = (300 - ) o) = | [ (06 - 01 ) ¢
“i=1
< #I|VE|| L= = ~—|!V£||Lm (5.6.101)

But in view of (5.6.94), we also have
NollL2(suppey- (5.6.102)

N
’/ (Z (77) NMV) } 1 }/ vH#v
=1 -
| < |Supp£\%i|wnm VH

Combining (5.6.100), (5.6.101) and (5.6.102), we obtain

l/{ﬁuctN

I 7
| Lo (#]7 + |Supp§| (FN(XN,/W) + NlogN + C(lluv ||~ + 1)7\7) ) . (5.6.103)

Boundmgj #I by N yleldb the rebult ' |

< C|Ive

5.6.3 . Proof of Lemma 5.3.1

Proof. Since py minimizes the logarithmic potential energy (5.1.6), for any bounded contin-
uous function h we have

// @) = hW) ) / V/(2)h(z)dpy (z). (5.6.104)
—y

Of course, an identity like (5.6.104) extends to complex-valued functions, and applying it to
h = - for some fixed z € C\ y leads to

G(2)? = G(2)V'(R(2)) + L(2) = 0, (5.6.105)
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where G is the usual Stieltjes transform of uy

1 A
6(2) = [ ——duv(i) (5.6.106)
and L is defined by
V(R - V'(y,
L(z) = / ( (j)z - W) iy (). (5.6.107)
Solving (5.6.105) for G yields
Gz) = % ( )~ JVI(R(2) 4L(z)) . (5.6.108)

As is well-known, —1Z(G(x + ie)) converges towards the density py(z) as ¢ — 0%, hence we

have for z in 2y
1

(2m)?

pv(z)? = S(x)%0?(z) = — (V'(z)* — 4L(x)). (5.6.109)
This proves that uy has regularity CP~2 at any point where it does not vanish. Assuming
the form (5.1.11) for S, we also deduce that the function Sy has regularity at least CP~3-2
on Yy.

Applying (5.6.108) on R\ X, we obtain

3V@) - [ —di(y) = 3V - L),

xr —

and the left-hand side is equal to ('(z).
Using (5.1.11), (5.6.109) and the fact that V is regular, we may find a neighborhood U

small enough such that ¢’ does not vanish on U \ y and on which we can write ¢’ as in
(5.3.30). O

5.6.4 Proof of Lemma 5.3.2

Proof. We first prove that the image of F is indeed contained in C(U).
- For (t,4) = (0,0), we have indeed F(0,0) = (v + ¢ and {y is in ‘CY(R) by the regularity
assumptions on V. We may also write ‘

v -A;:l T \
Fieow) = 0.0~ [ o OB g ) + 506~ V o ).
and since ||9||c2y < 1/2, the second and thlkrd terms are also in C*(U).
Next, we compute the partial derivatives. of F at 2 ﬁxed pomt (to,%o) € [-1,1] x B. It
is easy to see that
oOF

8t = '—6 ¢0a

(to,o)

and the map (g, 10g) — € o ¢q is indeed continuous.
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The Fréchet derivative of F with Imp(ct to the se (*ond variable can be (’omputcd as
follows ‘

Flto, 0 + 1) = — / log|(¢o(-) = o)) + (¥ <>—w1<y))ldw<y>+%wnowowo

_ D) o) =), L D) — Vo d
= F(to, ¢o) /log I+ 50() = do(v) bduv(y) -+ 5 (VLD (o + 1) — Vi Q)()) ‘
hi(+) — apq( 1
= F(to, o) — %duv(w + 51/)1‘4; ° ¢o} + ergpo(¥0) 5 -

where €, 4, (11) is given by

_ o Lb () =) () — ¥i(y)
Eto,wo(wl) = / {1 g ll + ( ) ¢O(y ’ ¢U() — ¢O(y)
)

1
+5(Vio© (d0 +41) = Vig 0 o — 91V 0 o) -

]duv(y)

By differentiating inside the integral we get the bound
ll€tom0 (W)llctwy < Clto, Yo) I ]2y

with a constant depending on V. It implies that

ol SO RS AC) 1o
awi(tm%)hﬁ;]— /%(.)_%(y)dw(y)ﬁtgwlem do ,

and we can check that this expression is also continuous in (tg, o). In particular, we may
observe that

oF
oY
Finally, we prove the bound (5.3.32). For any fixed (t,%) € [—1,1] x B, we write

L dF (st s1) 197
N F0.0) — (st,s9) ¥ )ds |

ol =—2vlv] (5.6.110)

L OF
A(st,s1) 8’(/)

we get

. : 1 U
IF () = F(0,0) = 56 + Svlillens < [ (EHfochs—EHcl(w
| OF

(sz s) ) 5%/) W)]

ds, (5.6.111)
(0,0) cH(U)

+|%
with ¢, = Id + sy. It is straightforward to check that

1€ 0 ¢s —&llerwy < Clléllcxanllvllerwy -
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To control the second term inside the integral we write

oF oF
% (st,sv) B —0_1/) (0,0 [1/}]
_ () —v(y)  ¥() - 1/’(9)) d 1 Viods — V)
/ (@(-) Tl oy ) gt sm
and we obtain
oF
H Y lst, 31,0) ) (0,0)[1/)] cyu)
() —vly) ¥ -9 du (4
= /' $s()—os(y) =y e )
+ H (Vslt °¢s — V,>chl(U)
We now use that
H w(y _w(-)—wy)) H( —¢(y>>< -~y _1>
—y S —y ¢s(-) — &s(y) c Uy
Cllvollagn ll———Y
< ClYllezwy 3 () — 65() 1 P
P() = ¥(y)
= Csllll 2 —_—
sl HC ) bs() — bs(y) o)
C 22 __:_2_ ‘
< “7/)”0 ) ¢S() _ ¢S(y) )

< ClYllZewy -

In the second and the fourth line, we used Leibniz formula. In the last line we used that
s(y(-) — ¥(y))/(- — y) is uniformely bounded by 1/2 in C?(U) so its composition with the
function z — 1/(1 + x) is bounded in C?(U). We conclude by checking that

(Vi 6 = V')llorwy < (Vo Itllerey + Hiblleawn ) I llonw -

5.6.5 Proof of Lemma 5.3.3 |
P?b(if. First, we solve the equation Sy[y) = %5 T ce ih.iv, where Zy is operator defined in
(5.1.12). For z in ¥y, we have the following Schwinger-Dyson equation

Vi(z) _
2

dpy (y). (5.6.112)

r—=1y
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In particular, for o in ¥y, it implies

- h -
Ev[yl(x) = PV. z/(—y)uv(y)aly, (5.6.113)
Sy Y-
and we might thus try to solve V
1 R |
P.V. () pv(y)dy = =€ +ce. (5.6.114)
Iy y—x . 2 . . ST

Equation (5.6.114) is a singular integral equation, we refer to [68, Chap. 10-11412] for a
detailed treatment. In particular, it is known that if the conditions (5.1.14) are satisfied,
then there exists a solution g to

, 1 . ,
PV. wo—(!/)dy = —2—5 + ¢¢ on Ly, (5.6.115)

0 Y2
which is explicitly given by the formula

__o(=) £(y) : o )
to(z) = 55 PV. /EV mdy. (5.6.116)

Since we have, for 2 in Xy
1

P.V./ — dy =0,
sy o)y —x) 7

we may re-write (5.6.116) as

where the integral is now a definite Riemann integral. From (5.6.117) we deduce that the
map J’f,—o is of class C"™! in Yy and extends readily to a C"~! function on %y
Ford=0,...,r—1 and for z € ¥y, we compute that

W\ A [ EW) ~ Ruanfly)
<?>' (:c’)‘_MQ_’”-Q_/EV (50 - st ¥

In particular, if conditions (5.1.15) hold, in view of Lemma 5.3.1 the map

v Wo()
M Se@

extends to a function of class (p — 3 — 2k) A (r — 1 — k), hence C* on v, and in view of
(5.6.115) it satisfies Sy [1h] = § + c¢ on Sy
Now, we define ¥ cutside Xy. By definition, for z outside ¥y, the equation

1
2y lyl(x) = 56(2) + o
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can be written as

ve) [ — / 2y SV (3) = 3€() + ce,

and thus the choice (5.3.34) ensures that Zy[y] = 3£ + ¢;. Moreover, 1 is clearly of class
C™P=1) on R\ Xy. It remains to check that ¢ has the desired regularity at the endpoints
of Xy. For a given endpoint a we consider ¢ the Taylor development of order | := (p — 3 —
2k) A (r — 1 — k) at a of 1. We can write (5.3.34) as

Yy (y) + 42 + ¢ — [ HDMD gy (y) + (a) [ Arduv(y) + 52 + o
f;{j;dﬂv(y) - %V'(I) ‘ f;;‘_—yduv( ) — %V’(m)
£(x) = [
. 22+ — Ev[¢](z)
O TS - )

As Ey[y] = 5 + ¢¢ on Xy, the numerator on the right hand side of the last equation
and its first { derlvatlws vanish at a. From Lemma (5.3.1) we conclude that 1 is of class
l—k=(p—3—-3k)A(r—1—2k) at a, hence C? from (5.1.13).

a

5.6.6 Proof of Lemmma 5.4.7

Using definition (5.1.6) we can write Zy, (i) in the following form

Zvi() = /hm dﬂt+/thM-

To prove Lemma 5.4.7, we introduce the auxiliary quantity

Z(ju) := /hﬁ” dji +/Vt dfi,
and we first prove that Z(fi;) is close to Zy,(i).

Claim 1. We have » L _ . :
Tvi(m) = (i) + O (L10liEewy) - (5.6.118)

Proof. Let us write

L) = [ W dpc+ [ Vid

= /h‘l" dﬂ,tJr/(h,“" + Y d (e — Jie) J'r«/\/}dy}t. S

We have used the fact that, integrating by parts twice,

/ h dfi, = / ey

(5.6.119)
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We have, using the definition of ¢, g;t‘aild (5339) ‘ | |
/(h”" + R (e — i) = / (Ct - %Vt —a+G— %Vt _ G + O(t2||1/1||%2(,0))> d(pe = fie)-
In view of (5.4,42), ‘(5.4.43); we thus get | |
/(hm + h‘l‘)d(ut — ) + /Vt dpe = O(t* 19 llcaqy) + /thﬁt- (5.6.120)

Combining (5.6.119) and (5.6.120) vields the result. =~ - 0O
We may now compare Z(f;) and Zy (uy) using the transport map.

Claim 2. We have
I([Lt) = Iv(,u,\/) + t/EdHV

v ( // (W)gdm () + / V'R + 2 / 5'wduv>

+O(Bllcawy)- (5.6.121)

Proof. We may write

(i) = — /103 |pe(z) — ¢a(y)|duo(ﬂr)duo(y) ‘f"/ Vo duo + t/f o e dpso

/hﬂu (i/.l,() //'105 l/}(

By a Taylor expansion, we obtain

2(4) = Zotuo) =t [ X eyt + ] (AL l_;“y) o ()nly)

i / Vi duy + / Vg + t / Edpuy + 12 / Epdpio + O(E||E o).

1 ‘H o () dpo(y) + /V o ¢ dug + t/ £ o ¢ dug.

Let us recall that by definition po = py. By (5.6.104) we have

// (Jw(m)dw( ) = / Vi sy,

hence we obtain (5.6.121). R .- g
. To conclude the proof of Lemma 5.4.7 it remains to prove the following identity.

Claim 3.

/ ¢ wa’m - // ( | = J) dw( Wv(y) / V'fw2duvﬁ B (5:6122)
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Proof. By definition of ¢ we have

1
S+ <) /“’ W iy () = 50V
and thus
5 _ 2/ w(y 2( (y — z)duv(y) _ '(/),V/ . wV” )
Integrating both sides against ¢Nv ylelds
/é Ydpy = 2// @ L_b f/:)c) W(I)duv(y)duv(fv)

—/Un//V’duv—/V"?/)Zduv.

Using (5.6.104) for the second term we obtain

[ iy =2 [[ G = Vo) = )d/tv( e
Ny O

We may then combine the first two terms in the right-hand side to obtain (5.6.122).

d/lv(T)d/Lv( ) — /V”i/)zdm/.

d
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