
Learning Gaussisan Noise Models from

High-Dimensional Sensor Data with Deep Neural

Networks

by

Katherine Y. Liu

B.S., University of California, San Diego (2015)

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Feb 2018

@ Massachusetts Institute of Technology 2018. All rights reserved.

A uthor
Signature redacted

Department of Aeronautics and Astronautics
February 01, 2018

C ertified by

Accepted by..

MASSACHSES INSTITUTE
OF TECHNOLOGy

FEB 20 2018

LIBRARIES
ARCHIVES

Signature redacted
Neolas Roy

Professor
Thesis Supervisor

............. Signature redacted
Hamsa Balakrishnan

Associate Professor, Aeronautics and Astronautics
Chair, Graduate Program Committee

Learning Gaussisan Noise Models from High-Dimensional

Sensor Data with Deep Neural Networks

by

Katherine Y. Liu

Submitted to the Department of Aeronautics and Astronautics
on February 1, 2018, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

While measurement covariances are often taken to be constant in many robotic state
estimation systems, many sensors exhibit different interactions with their environ-
ment. Accurate covariance estimation allows graph-based estimation techniques to
better optimize state estimates by reasoning about the utility of different methods
relative to each other.

This thesis describes a method of learning compact feature representations for
real-time covariance estimation. A direct log-likelihood optimization technique is
used to train a deep convolutional neural network to predict the covariance matrix of
a Gaussian measurement model, given representative data. This method is algorithm-
agnostic, and therefore does not require the handcoding of representative features.
Quantative results are presented, showing that improved measurement covariances on
a frame-to-frame visual odometry system reduce trajectory errors after a loop closure
is applied.

Thesis Supervisor: Nicholas Roy
Title: Professor

3

4

Acknowledgments

I would like to thank my parents, Susan and Eric, for your support over the years.

Thanks to my brother and sister, Max and Lillian, for the phone calls, postcards,

and encouragement. Thank you to Bryan, for your endless patience and love. And

of course, thank you to Nick Roy, for giving me a chance to be a part of the Robust

Robotics Group, and for all of the invaluable guidance. Thanks to all the great people

in the Robust Robotics Group for all the good cheer and good advice. Thanks to

Kyel Ok for being an awesome research collaborator, and to William Vega-Brown for

the foundations of this work.

5

6

Contents

1 Introduction 13

1.1 Motivations for Covariance Estimation 13

1.2 Thesis Overview . 17

2 Related Work 19

2.1 State Estimation of Stochastic Systems 19

2.1.1 Recursive State Estimation 20

2.1.2 Smoothing methods . 24

2.1.3 The Role of Covariances in State Estimation 26

2.2 Covariance Estimation Techniques . 26

2.2.1 Sensor or Algorithm Specific Estimation Techniques 26

2.2.2 Reactive Estimation Techniques 27

2.2.3 Predictive Estimation Techniques 29

3 Neural Network Models 39

3.1 Hyperparametric Function Approximation 39

3.1.1 Fully Connected Layers . 40

3.1.2 Convolutional Layers . 41

3.2 Optim ization . 44

3.2.1 Mini-batch Stochastic Gradient Descent 45

3.2.2 Backpropagation . 45

4 Learning Covariances from Data 49

7

4.1

4.2

Preliminaries .

Approach .

4.2.1 Problem Formulation

4.2.2 Deep Convolutional Neural Network Model .

4.2.3 Negative Log-Likelihood Objective Function

4.2.4 Parameterization for Positive Definiteness .

4.2.5 Optimization

4.2.6 System Overview

5 Experiments

5.1 Simulation Results

5.1.1 Simulation Setup

5.1.2 Simulation Results

5.2 Experiment Results

5.2.1 Experiment Setup

5.2.2 Training Data Collection

5.2.3 Network Structure and Training

5.2.4 Test Set Selection

5.2.5 Measurement Likelihood Performance

5.2.6 Trajectory Estimation Performance .

6 Conclusions and Future Work

8

49

50

50

51

52

54

56

58

61

. 6 1

. 6 1

. 62

. 64

. 64

. 66

. 68

. 69

. 70

. 76

83

List of Figures

1-1 Examples of robotic products and concepts 14

1-2 Examples of image-based sensors for robotic state estimation 15

1-3 Examples of sensor images that affect sensor-algorithm measurement

qualities . 17

2-1 Graphical model of the state estimation problem, with the Markov

assum ption . 20

2-2 Recursive state estimation model . 22

2-3 Smoothing state estimation model . 24

2-4 Pictorial representation of kernel method for estimating covariance . . 31

2-5 Illustration of the effect of hand-coded feature space on algorithm per-

form ance . 32

3-1 Diagram of node activation in neural network 40

3-2 Examples of non-linear activation functions 41

3-3 Information flow in convolutional layers 42

3-4 Illustrative example of convolutional feature maps 44

4-1 Training data generation system diagram 53

4-2 Effects of dropouts on weights during train time vs. query time . . . 58

4-3 DICE system diagram . 59

5-1 Example raw measurements for the DarkRoom environment 63

5-2 Kullback-Leibler Divergence vs. training epoch for the simulation en-

vironm ent ..64

9

5-3 Visualization of convergence of covariance estimates 65

5-4 Visualization of selected training data examples 67

5-5 Neural network architecture used to approximate the covariance pre-

diction function . 68

5-6 Log-likelihood histograms comparing DICE and constant covariance

prediction performance 71

5-7 Constant and DICE measurement covariances for the Dynamic dataset 72

5-8 Constant and DICE measurement covariances for the Unseen-Dynamic

dataset....... 73

5-9 The trace of four prediction methods on the dynamic objects test

datasets with the label error magnitude for comparison 75

5-10 The trace of four prediction methods on the texture-less test dataset

with the label error magnitude for comparison 76

5-11 The trace of the predicted measurement covariances of all four methods

on the the TUM dataset . 77

5-12 Trajectory tracking results for Dynamic test set 79

5-13 Trajectory tracking results for Dynamic-Unseen test set 80

5-14 Trajectory tracking results for White-Wall test set 81

5-15 Comparison of orientation estimates (radians) using constant, Cramer-

Rao, CELLO, and DICE measurement covariances 82

10

List of Tables

5.1 Mean log-likelihood results are shown for each prediction method and

dataset pair . 71

5.2 Mean and standard error for the absolute positional error (meters)

loop-closed trajectories . 78

11

12

Chapter 1

Introduction

1.1 Motivations for Covariance Estimation

Stochastic State Estimation

After spending decades in largely artificial and carefully controlled environments,

robots are beginning to venture into increasingly realistic conditions. Entire indus-

tries are poised to be fundamentally accelerated by autonomy. For example, in the

transportation field autonomous cars are rapidly becoming an inevitable reality [13].

Other proposals for consumer-facing autonomous systems include delivery drones and

autonomous air taxis [1, 20].

The advent of robots successfully operating in increasingly natural environments

can be largely attributed to probabilistic models. Probabilistic frameworks explicitly

model the world and interactions with the environment as fundamentally stochas-

tic. These models allow autonomous agents to reason about the world in a manner

that takes into account the uncertainty that is present in any action or observation;

robustness generally requires reasoning about uncertainty. However, as robots ven-

ture into more complicated scenarios (i.e., as the levels of artifice and structure in

the environment decrease), they require increasingly complex and potentially hard to

specify models of uncertainty.

We would like to use size, weight, and power (SWaP) constrained micro-aerial

13

(b) Uber Elevate autonomous air taxi concept
(a) Waymo's autonmous car [13] [20]

(c) DARPA Fast Lightweight Autonomy (d) Amazon's delivery drone concept [1]
(FLA) mission concept [3] in

Figure 1-1: Examples of robotic products and concepts.

vehicles (MAVs) for a variety of tasks in uncontrived environments without relying

on external state estimation frameworks such as Vicon or GPS. Examples of environ-

ments without access to GPS include indoors, under the forest canopy, and in disaster

zones. In the absence of precise external positioning systems, a MAV must rely on

noisy on-board sensors to estimate its own position and orientation. This process,

often referred to as state estimation, is crucial in any robotic system, as the estimate

is then usually consumed by low-level controllers or high level motion planners. In

order to properly synthesize noisy measurements from lightweight sensors, stochastic

state estimation algorithms require well-specified models of uncertainty.

The Case for Predictive Heteroscedastic Covariances

Sensor measurements are commonly modeled as Gaussian random variables, con-

ditioned upon the state from which the measurement was taken. In practice, the

covariance of these random variables is often assumed to be a constant term either

14

(a) Kinect RGB-D sensor (vi) [2] (b) PointGrey Flea3 Camera [15]

Figure 1-2: Examples of image-based sensors for robotic state estimation include the
Microsoft Kinect RGB-D and the PointGrey Flea3 RGB sensor.

set by hand or derived from empirical data.

Sources of noise may rise from the physical mechanisms of the sensor itself. Con-

sider an inertial measurement unit, which directly measures acceleration and rota-

tional velocity by measuring physical quantities and producing an interpretable elec-

trical signal. Additive noise in these types of sensors is often assumed to be constant,

as noise is injected by physical phenomena in the measurement unit itself.

However, assuming constant noise models is not always a safe assumption to make,

especially when using more complex sensors that interact with their environments.

Furthermore, algorithms are generally used to synthesize raw sensor measurements

into lower dimensional measurements of state. We refer to such systems as sensor-

algorithm pairs, and use the term interchangably with the term sensor, without loss

of generality. Sensor-algorithm pairs can exhibit increased noise model complexity,

as different types of algorithms may have different shortcomings.

As an illustrative examaple, consider a visual odometry measurement that relies

on camera images from image sensors (see Figure 1-2) and a process (such as those

presented by Forster et al. 2014, Ok et al. 2016, and Engel et al. 2014) that aligns the

images of a static, textured, and constantly-bright environment. One such process

might identity a small set of unique features in the image space, and compare the

feature locations in a pair of images; the transform between the two image frames

can be inferred, given an appropriate camera model [62]. A dense approach to visual

15

odometry may instead attempt to align every pixel of the image based on an objective

function that minimizes photometric error [31].

Consequently, the accuracy of visual odometry measurements in dynamic scenes,

low texture environments, and poor lighting conditions is often degraded (the first two

scenarios are visualized are show in Figure 1-3). A flat, texture-less wall is an example

of a degenerate sensor reading for camera-based systems; without features to properly

constrain motion of the sensor, the optimization prcoess in state estimation can be

ill-posed. In dynamic scenes, sparse methods may track features on a moving object,

which introduces additional error into the triangulation process. Dynamic scenes also

introduce noise into dense methods, as the alignment of the pixels is corrupted by

non-static object. Furthermore, between dense and sparse methods, there may be

different noise characteristics given nuances in the respective optimizations.

The use of poor noise models in state estimation frameworks may have severe con-

sequences, as sensor noise characteristics are fundamental to applications such as the

optimal fusion of measurements from several noisy sensors into a single estimate of the

vehicle state. If the uncertainty in a measurement is mischaracterized dramatically,

the sensor fusion process will incorrectly synthesize measurements by emphasizing

high noise measurements. Even on vehicles with a single sensor, noise characteristics

are key to evaluating the uncertainty in past estimates and optimally correcting the

accumulated error in the presence of additional sources of information, e.g., loop-

closure detections added to visual odometry. We are therefore motivated to develop

better models of sensor uncertainty to improve the state estimation performance and

robustness of SWaP constrained autonomous vehicles.

In this work, we are interested in developing heteroscedastic approximations of

sensor models that exhibit complex environmental interactions by explicitly consid-

ering the uncertainty in the model as a function of some other underlying state. Such

models can be difficult to specify as the raw measurements can be very complex and

high dimensional.

16

11

2 2

(a) Example of dynamic vs. static scene (b) Example of textured vs. texture-less scene

Figure 1-3: Examples of sensor images that affect sensor-algorithm measurement
qualities. (a) illustrates a dynamic object (a person) which can corrupt the state
estimate of an algorithm that assumes a static environment. (b) is an example of a
sensor image with very low texture, compared to a scene with no texture.

1.2 Thesis Overview

We present a novel method of measurement covariance estimation that models mea-

surement uncertainty as a function of the measurement itself. We first outline existing

work in predictive sensor modeling, covering both homoscedastic and heteroscedastic

approaches. We discuss how existing non-parametric and parametric covariance es-

timation techniques for robotic stochastic state estimation outperform conventional

fixed models, but require domain knowledge of the sensors that heavily influence the

accuracy and the computational cost of the models. We devote a short chapter to a

review of neural network architectures, and how they are optimized.

17

We then introduce Deep Inference for Covariance Estimation (DICE), which uti-

lizes a deep neural network to predict the covariance of a sensor measurement from

raw sensor data. We show that given pairs of raw sensor measurement and ground-

truth measurement error, we can learn a representation of the measurement model

via supervised regression on the prediction performance of a hyper-parametric model,

eliminating the need for hand-coded features and parametric forms. In particular, we

motivate the use of a convolutional model for low-level feature identification in com-

plex high dimensional sensor measurements. Our approach is sensor-agnostic, requir-

ing only the measurement errors and raw sensor data. DICE is also constant time;

while computation is expensive at train time, once the model parameters have been

optimized, predicting is simply a single forward pass through the hyper-parametric

model.

Finally, we present results on simulated data and experimental data. We generate

simulated data with a known covariance function, allowing us to demonstrate the

convergence of the Kullback-Leibler Divergence values between the predicted distri-

bution and groundtruth covariance. We also demonstrate covariance prediction for

a visual odometry (VO) system by collecting pairs of RGB-D data and error labels

for a specific frame-to-frame VO algorithm. We benchmark DICE predicted covari-

ances against several others in terms of measurement log-likelihood and show that

our method better predicts the observed data. Finally, we utilize DICE predicted

covariances in a smoothing, graph based trajectory estimation framework, and show

that our method results in better positional tracking results than the other methods

surveyed.

18

Chapter 2

Related Work

This chapter outlines several filtering techniques to motivate and ground covariance

prediction. A brief overview is then given of existing covariance estimation tech-

niques, including sensor-specific, reactive, and predictive (including non-parametric,

parametric, and hyper-parametric techniques).

2.1 State Estimation of Stochastic Systems

We are interested in estimating the state of a robot, relying on noisy sensors to

observe the vehicle state. Specifically, we would like to estimate the n-dimensional

vehicle state Xt E Rn at time t based on a series of p-dimensional measurements or

observations, zo:t (where zt E RP). We assume that there exist some deterministic

functions f(x) and h(x) which define the motion model and measurement model

respectively. In stochastic frameworks, these models are assumed to be corrupted by

noise, leading to the following expressions:

Xt = f(ut-1, Xt_1) + Vt (2.1)

Zt = h(xt) + wt (2.2)

where v and w are additive noise samples drawn from the motion and measurement

noise models, respectively. A common choice of noise model is a Gaussian distribution,

19

X t-2 Xt-1 Xt

Figure 2-1: Graphical model of the state estimation problem, with the Markov as-
sumption. The white circles indicate hidden variables (the state), and the grey vari-
ables are observations (control inputs and measurements). Arrows indicate condi-
tional dependencies.

which is specified by a mean [t and positive definite covariance matrix F, i.e., K(pi, F).

The probability density function (PDF) of a multivariate Gaussian is as follows:

p(x) = j27rF-1/2exp(_ (x - p)Trl(x - p)). (2.3)
2

Measurements can be indirect measurements of xt, as in the case of cameras or

laser-based range sensors. In these cases, the raw measurements 6 are usually very

high dimensional, and must be synthesized into lower-dimensional measurements.

The measurement model, then, translates raw sensor measurements into measure-

ments of the vehicle state. From this general model, we will now explore both filtering

and smoothing techniques for estimating the vehicle state.

2.1.1 Recursive State Estimation

The stochastic state estimation problem can be viewed as finding an estimate for the

probability distribution of the current vehicle state, given a series of measurements

and control inputs, i.e., p(xt zo:t, uo:t). As in [71], we can factorize this conditional

20

distribution using Bayes' rule:

P(X'lzo~) UO:- 1) - p(ztlxt, zo:t_1, uo:t_1)p(xtzo:t-1, UO:t-i) (2.4)
P(ztlzo:t_1, I O:t_1)

However, we observe that this problem becomes quickly intractable as the memory

required to maintain the conditional distribution grows exponentially with time. In-

stead, it is common apply the Markov assumption, which asserts that the state at

t - 1 is a sufficient statistic for the state at t (see Figure 2-1). If we assume that our

model is Markovian, we can write the conditional probability of each measurement

zt as only dependent on the previous state xt (i.e., zt is conditionally independent of

the history of control inputs and measurements):

p(ztxt, ZO:t-1, UO:t1) =p(ztlxt). (2.5)

Equation 2.4 can then be re-written as

p(xtlzo:t, Uo:ti) = (ztIt)P(XtIz:t_1, UO:t_1) (2.6)

where we have subsumed the marginalization over xt that was previously in the

denominator into rj. The second term of Equation 2.6 can be further broken up:

p(Xt~zO:t_1, UO:t-1) = jP(XtjXt_1, Ut_1)P(Xt_1 |zO:t _1, UO-t-2)dxt-1 (2.7)

Approaches that exploit the elegant recursive relationship of Equations 2.6 and

2.7 are often called recursive Bayesian filtering techniques [71]. The most well-known

and popular of this family of techniques is the ubiquitous Kalman filter.

Kalman Filtering

The Kalman filter, introduced by Kalman et al. in 1960, is optimal in the sense that

it is an unbiased minimum variance estimator for linear Gaussian systems. Kalman

filters make the assumption that the motion and measurement models are linear

21

Xt-2Xt-1 Xt

Figure 2-2: In recursive state estimation, all previous measurements and control
inputs are marginalized out, and the previous state estimate becomes the prior for
the current estimate.

systems, and that the noise models are zero mean Gaussians. Gaussian models are

a popular choice of noise model due to their attractive computational characteristics

(convolutions and products are reduced to convenient algebraic expressions). Under

these assumptions, Equations 2.1 and 2.2 are re-written as:

xt+1 = Fxt + But +vt (2.8)

zt+1 = Hxt+1 + wt (2.9)

where F, B, and H are now constant matrices. Furthermore, the covariance matrices

must specified for the Gaussian noise models:

Vt ~ jV(0, Qt) (2.10)

Wt ~-'(O, Et) (2.11)

and Et E RPXP. Both covariances must be positive semi-definite. The state xt is

now a normally distributed variable with mean lt and covariance Pt. Constraining

the estimate of xt to be unbiased and minimizing the variance of the estimate, the

22

following equations are derived1 :

ft Ftqi- 1 + Btut1 (2.12)
Pt FtPtFet + Ut

Kt = PtHtT (Ht Pt Hf + Et)-' (2.13)

At t + Kt (zt - Htt) (2.14)

Pt = (I - KtHt)Pt

The equations in 2.12 are sometimes referred to as the prediction step, as they simply

propagate the previous state estimate through the motion model (Equation 2.1) to

predict the distribution of the state should be before any measurements are incorpo-

rated. The equations in 2.14 are also known as the update or innovation step. We

direct the reader to Kalman et al. [29] for more detailed derivations.

Extended Kalman Filtering

The Extended Kalman Filter (EKF) is an extension of the Kalman Filter for nonlinear

systems. The nonlinear system is linearized by taking a first order Taylor expansion

around the current estimate. The motion and measurement Jacobians (Ft and $t)

are defined as

S&f(t- 1, ut)

(2.15)

Ht = = (t)

The EKF derivation is largely similar to that of the KF. The main difference is that

the mean of the previous state estimate is propagated through the nonlinear models,

while the covariance of the state estimate is propagated using the linearized models.

'Thrun et al. 2005 show how these equations can be derived from Equations 2.6 and 2.7

23

X t-2 X t1Xt

Figure 2-3: Smoothing state estimation model. In the smoothing state estimation
problem, the measurements and control inputs are marginalized out, and the solution
is an optimal estimate of the entire trajectory.

This is summarized by the following equations:

At = f(At-) + b(ut1) (2.16)

Pt = tPt-1$t + Qt
- ^pfT -

Kt = PtHtT(HtPtHtT + Et)- 1 (2.17)

At = At + Kt(z, - Htft) (2.18)

Pt = (I - KAt)Pt

2.1.2 Smoothing methods

Incremental Smoothing and Mapping

While KFs and EKFs (and other variants of Bayesian recursive estimation) have at-

tractive computational benefits, they can suffer from brittleness due to the repeated

marginalization over the previous state. Smoothing methods attempt to combat this

problem by instead estimating a series of poses. Instead of estimating only xt, smooth-

ing methods estimate xo:t by exploiting the sparsity in the model induced by the

Markov assumption. Introduced in 2008 by Kaess et al., Incremental Smoothing and

Mapping (iSAM) is one of the most well-known modern smoothing methods [28]. In-

stead of marginalizing, the iSAM algorithm keeps the entire joint probability, which

24

can be written compactly as

t K

P(X O:t, Z"7e UO:0) ~~ pXO) JJPp *--1 U, fl QP(ZikIXi, 10). (2.19)
i=1 k=1

where we now also augment the state with the position of K observed landmarks 2

1k, and zi, represents the measurement of landmark k at time i (assuming known

correspondences). The landmark random variables can be expressed compactly in

vector notation, i.e., 1. The goal of the smoothing problem is to find the maximum a

posteriori (MAP) estimate of the trajectory and landmark positions, i.e.,

X*:t, *= argminp(xo:t, zo:t, Uo:)
XO~t'I'(2.20)

= argmnax -logp(xo:t, ZO:t, UO:t),
X :tl

Substituting Equations 2.1, 2.2, and 2.3, we can express 2.20 as a nonlinear least

squares problem:

t K

X3*:t, 1* = argmin Y |f(xi_1,ui) - xijI2 + llh(xi, ik) -- Zi2 (2.21)
XO:t,1 i=1 k=1

where I I e 11 is the Mahalanobis norm that directly scales the modeling error e inversely

proportional to the square root of the covariance term E, i.e.,

le| A -TEle = -T /2 e||2. (2.22)

Equation 2.21 can be solved using iterative nonlinear optimization techniques such

as the Gauss-Newton or Levenberg-Marquardt algorithms.

2 We observe that although iSAM is presented as a simultaneous localization and mapping (SLAM)
algorithm, it can also be used to estimate only the vehicle state, just as the the Kalman filter and
variants can be augmented to also estimate the landmark positions.

25

2.1.3 The Role of Covariances in State Estimation

Covariances play a critical role in both filtering and smoothing state estimation ap-

proaches. In Kalman filtering, the noise matrices are used to derive the optimal

Kalman gain (Equations 2.13 and 2.17). Not long after the Kalman filter was pub-

lished, researchers began to explore the role of incorrectly specified noise models in

the optimal filtering framework (see the work of Heffes [23] and Nishimura [501); this

work laid the motivations for what later became adaptive Kalman filtering.

When used in smoothing techniques, the covariance matrix generally provides the

scaling for the weighted nonlinear least squares objective function, as in Equation

2.21. Intuitively, the Mahalanobis distance penalizes errors from measurements with

small covariances more aggressively than those with larger covariances. It is clear

that the final solution is sensitive to the correct noise specification.

2.2 Covariance Estimation Techniques

Despite this clear dependence, noise matrices are still most commonly hand-tuned

constant values. While this may often work in practice for relatively simple scenarios,

as we turn to more complex sensors and measurements, the need to correctly specify

all parts of the model is exacerbated. In the next section, we discuss a few of the

main bodies of covariance estimation literature.

2.2.1 Sensor or Algorithm Specific Estimation Techniques

One approach to improving sensor noise models is to design algorithms to predict

the noise in specific sensors or algorithms. For example, Censi [9] and Barczyk and

Bonnabel [6] formulate methods for estimating the covariance of various iterative clos-

est point (ICP) algorithms in a variety of ways. ICP algorithms align sucessive sets

of points (such as those generated by laser-based sensors) to find the transformation

between measurements. Censi presents a computationally efficient method of covari-

ance estimation based on the curvature of the ICP objective function at the solution,

26

explicitly considering the algorithm used to estimate the odometry. [9]. The Fisher

information matrix is used to determine when the optimization is under-constrained.

Barczyk and Bonnabel claim that the discussed Gaussian white noise assumption is

inconsistent with observed noise models for ICP algorithms paired with Kinect VI

sensors, and results in severe underestimates of the covariance [6]. Instead, Barczyk

and Bonnabel formulate the covariance estimate by explicitly modeling quantization

errors. Algorithms formulated for select sensor-algorithm pairs are difficult to gen-

eralize or extend because they are developed for very specific systems. The breadth

of research itself into creating models for the covariance of specific sensor-algorithm

pairs 3 suggests that general purpose covariance estimation techniques will be useful

for quickly extending the benefits of covariance estimation to new domains.

The Cramer-Rao bound [10, 58] is also sometimes used as a heuristic for covari-

ance estimates. The Cramer-Rao bound provides a theoretical lower bound on the

covariance of an estimator, based on the Hessian of the objective function at the solu-

tion. However, because it is only a lower bound, it is often an extreme underestimate

of the covariance. Additionally, the guarantees of the Cramer-Rao bound only apply

if the estimated solution is truly at the global minimum.

2.2.2 Reactive Estimation Techniques

Early approaches to generalized covariance specification relied heavily on the statistics

of the innovation vector. Mehra introduced adaptive Kalman filtering, an approach

driven by the insight that if the covariance matrices are properly specified, the inno-

vation variable should well modeled as white noise [43]. Mehra presented a two stage

algorithm for adapting the covariance. First, a set of innovation updates are tested

to see if they are drawn from a white noise distribution, using a 95 percent confidence

test. If they do not fit the predicted model, a closed form solution of the new estimate

of both Q and R can be calculated, given that the number of measurements is greater

than the dimension of the state vector multiplied by the dimension of the measure-

3See also Barczyk et al. 2014, Prakhya et al. 2015, etc for more perspectives on ICP covariance
estimation.

27

ment. While theoretically satisfying (closed form solutions for continuous state space

models are also presented), this approach still assumes that Q and R are constant,

rather than time varying. Adaptive Kalman filtering and other similar approaches

are sometimes referred to as innovation adaptive estimation (IAE) techniques.

Another online estimation technique is multiple model adaptive estimation (MMAE).

In MMAE, several Kalman filters with varying noise models are run in parallel, and

the state estimate is expressed as a weighted combination of each estimate. Con-

sequently, MMAE methods must assume some prior distribution over weighting pa-

rameters, a. As in Magill [41], the weighted estimated of the state can be expressed

as:
L

x = Z k(a)P(ajjzk), (2.23)
i=1

where there are L filtering being run in parallel. Given a discrete model, P(aizk)

can be rewritten using Bayes rule

P(ajIzk') = p(zt kej)p(a) (2.24)
Ej p(ztlai)

So long as a parametric form of p(zt Iaj) is defined, Equation 2.23 is fully specified.

Magill proposed letting p(zt Iaj) be the a Gaussian distribution defined by the co-

variance matrix observed by the i-th filter. MMAE can be viewed as an indirect

method of covariance estimation; the underlying covariance is implicitly present in

the weighting of different models with different noise specifications. Other examples

of MMAE include Maybeck and Pogoda [42] and Menke and Maybeck [44].

Mohamed and colleagues benchmarked the utility of several of these reactive tech-

niques in various flavors for a INS/GPS tracking application, noting that noise es-

timates are important for high accuracy tracking problems [47]. The authors found

that parameterizing the covariance matrices in an IAE framework and performing

maximum likelihood optimization over the values of a diagonal covariance matrix

achieved roughly half the position tracking error (in terms of root mean square error)

as compared to a traditional Kalman Filter on their task. For a more recent per-

spective and overview of reactive estimation techniques, the reader is referred to the

28

thorough survey in Dunk et al. [17].

While the aforementioned general covariance estimation techniques have shown

the promise of reasoning more intelligently about the covariance of stochastic systems,

they are inherently reactive methods. Several past iterations of the innovation vector

must in general be used to calculate a new covariance estimate, which can introduce

lag in the system. Furthermore, such methods are useful for state estimation only, and

less useful for planning into the future. While some of the techniques are constantly

evolving (an improvement from the constant covariance assumption), the statistics are

calculated from noisy measurements and therefore often dependent on the calculation

window size.

2.2.3 Predictive Estimation Techniques

Covariance estimation techniques that attempt to learn predictive functions present

many advantages over reactive techniques. Usually conditioned upon some represen-

tation of the state or measurement, predictive covariance estimation techniques dis-

card the assumption of constant covariances entirely and instead attempt to learn the

relationship between the observed data and the uncertainty, assuming a heteroscedas-

tic covariance (i.e., that the covariance is a function of some hidden variable, such as

the state, or environment).

Non-parametric techniques

Non-parametric estimation techniques are attractive for their model richness and

flexibility. Instead of committing to a pre-defined parametric form of the model,

non-parametric techniques build relationships based on data. For example, Gaussian

processes (GPs) assume that every combination of n variables (i.e., Xo, X1, ... , X2)

is a multivariate Gaussian distribution for any value of n [40]. As a consequence,

an estimate for any point in the continuous space of X can be found, along with a

covariance for that point, so long as an appropriate kernel function is defined.

29

Ko and Fox presented a class of methods called GP-BayesFilters, which incor-

porated the estimates of Gaussian processes into various flavors of Kalman filtering

(extended and unscented) and particle filtering [32]. GP-BayesFilters are flexible

in that they can leverage sparse GP methods to reduce computational complexity.

Given a training set of states x and measurements y, i.e.,

DXy = {xi, yi Vt E [1, N]}, (2.25)

the GP predicts the mean and variance of the query x,,

GP,=(x*,D,,) = kTK-lk, (2.26)

GPE(x*, D,y) = k(x*, x*) - kTK lk* (2.27)

where k() is some kernel function, k* is the kernel distance between the query point

and the dataset, and K E R NxN (the kernel matrix of the training data). The

hyper-parameters of the kernel function are optimized using a log-likelihood objective

function at train time. The approaches were validated experimentally on micro-blimp

state estimation task, and the authors showed that the model learns to assign larger

measurement covariances when the vehicle motor is on, which causes more aggressive

yawing motions, and is therefore causes the vehicle to be harder to track. While

modeling the covariance as a function of the state can be useful, if the state itself is

an estimate this can lead to complex filter interactions.

Vega-Brown et al. proposed CELLO, a kernel regression technique that estimates

the covariance as a function of the measurement itself [73, 72]. CELLO estimates

measurement covariances from a database of measurement errors ei and predictor

features 4i

Deo =ei, #i Vt E [1, N]} . (2.28)

#4 is a low dimensional feature representation of the raw measurements i, i.e.,

0(q) : Rq -+ RP (2.29)

30

*k-NN

Prediction Space

Figure 2-4: Pictorial representation of kernel method for estimating covariance, from
[53]. To determine the covariance for a specific patch of pixels, the patch is mapped
into a prediction space. The nearest neighbors in that feature space are then used
to predict the covariance. Prediction performance is therefore strongly related to the
prediction space selected. Figure reproduced with permission of author.

where , p < q. The authors extend the Nadaraya-Watson estimator [48] to estimate

the covariance as an average outer product over D,:

1 N

E(O; a) = N T (2.30)
K= 1 kj

where

ki = k(p. (0, 40)). (2.31)

In Equation 2.31, k(-) is a decreasing weighting function, and p,(.) is some distance

function between two predictors, parameterized by a. The parameters of the kernel

are then optimized using gradient descent to maximize likelihood:

N

a* = argmax E (E$(O; a), es). (2.32)

Choosing the right predictive feature space is key to the success of the kernel tech-

nique; a low dimensional representation that allows the weighting function to choose

the appropriately similar samples from the dataset is very important. Intuitively, the

covariance estimator presented in Equation 2.30 utilizes the low dimensional feature

31

Figure 2-5: Illustration of how a poorly specified feature space may result in poor
estimation. On the left, an example of a query laser scan (black) that looks very
similar to a hallway, but is constrained in all three dimensions. The error samples
associated with the nearest neighbors in the feature space are represented as red
dots, and the empirical covariance drawn in blue. To the right, plots of the raw
measurements of a few of the nearest scans. Hand-coded features that rely solely
on the appearance of the scan can struggle to properly associate the samples in the
dataset in these situations; the raw measurements in the defined feature space do not
exhibit a back wall.

representation 4 to find examples in D that are similar to the query vector #t. The

predictor space allows non-parametric approaches to define a low dimensional man-

ifold that is a function of a reduced set of features. An attractive consequence of

such formulations is that dot products (and distances) can be calculated in the newly

defined space, even if the relationship between the raw input and the predictors is

highly nonlinear. Optimizations are then carried out in the lower-dimensional feature

space. Poor feature selection may cause the the kernel approximation to fail to ap-

propriately weight these samples to form an empirical covariance, or fail to properly

disambiguate between samples.

One can attempt to manually define the predictive feature space (#) for a single

observation using intuitive properties. Ko et al. used very low dimensional pseudo-

measurements for the relationships, relying on a carefully hand-designed feature space

to allow for efficient estimation, i.e., the parameters of an ellipse fit to the observed

ellipse in the external camera frame. Vega-Brown et al. identified informative features

of a single laser-scan using the domain knowledge in the failure modes of laser scan-

matching algorithms (e.g., degeneracy) and the features that could identify those

32

modes (e.g., symmetry, no returns, etc). Peretroukhin et al. expanded this success to

cameras by defining the features that represent the quality of a visual observation as

a set of visual-inertial properties such as angular velocity, local image entropy, blur,

optical flow variance score, etc [54].

This approach, however, is fundamentally limited by the system designer's abil-

ity to identify the best set of features. In practical terms, it requires an iterative

improvement process by which features are added, removed, and altered, until the

performance of the filter is acceptable. In the case of CELLO, this is illustrated

by Figure 2-5, which shows the samples in an example dataset that are closest in

the defined feature space to the query laserscan (shown on the left). In ICP-based

approaches to laser scan-matching, the optimization can be poorly constrained in di-

rections without structure4 , and it is therefore extremely useful to correctly predict

when such poorly constrained optimizations will result in large measurement errors

(i.e., large covariances). While the query scan is a fully constrained environment, the

representation can group such a measurement with less constrained hallways (missing

the back hallway), when using a suboptimal set of hand-coded features. This suggests

that the feature representation may not be a sufficient statistic for the prediction task.

Ideally, we would like to be able to instead learn this low dimensional feature space

from representative data, and optimize the predictor representation itself.

Therefore, while non-parametric techniques have attractive modeling properties

(especially regarding the model-richness they support), they often require experts

with domain knowledge to hand-code a feature set for computational purposes. In

addition, non-parametric approaches tend to scale poorly with the size of the dataset.

While sparse Gaussian process methods do exist, they tend to decrease computation

by reducing the number of data points used for estimates (see Herbrich et al. [24],

Quifionero-Candela and Rasmussen [57]); for these approaches to succeed, the chosen

feature space must still adequately express the raw relationship to the quantity being

4For an extreme case of such a phenomena, consider the infinite corridor problem, with is an
example of degenerate environment for the laser-ICP sensor-algorithm pair. If a planar LIDAR with
a limited range and field of view sees two successive scans that are each only two parallel lines (each
wall of the hallway, with the end of the hallway is out of sight), then any objective function that
attempts to align the two measurements will have and infinite number of solutions.

33

estimated.

Parametric techniques

In contrast to non-parametric approaches, heteroscedastic parametric approaches do

assume a specified form of the function estimating the covariance matrix. Hu and

Kantor proposed a parametric covariance estimation technique for heteroscedastic

noise, in which a linear parametric model is assumed, such that

$(i) = M((); a) (2.33)

and

M(#(i); a) : Rm -+ S", (2.34)

where M is some function that maps a vector of predictor features to a positive

definite matrix [27]. In this framework, a (the output of the linear parametric model)

is used to construct an LDLT matrix (a modified Cholesky decomposition). The

optimal parameters a* are then found by minimizing the negative log-likelihood over

a training dataset as in Equation 2.28:

N

a* = argmin Ef(M(#((); a), ei). (2.35)

Like CELLO, the algorithm presented by Hu et al. assumes the existence of a low

dimensional feature representation; we have already discussed the difficulties of this

deceptively simple assumption. Parametric techniques tend to require even more

expert handling than non-parametric, as a good structure and form of the function

must be assumed - in this case the authors use a simple linear model. If a good model

exists a priori, parametric methods can be quite efficient and compact. For complex

heteroscedastic relationships, such models can be difficult to specify.

34

Hyper-parametric techniques

We distinguish hyper-parametric function approximation techniques (i.e., deep learn-

ing) from non-parametric and parametric by their often over-parameterized mod-

els'. Where non-parametric models gain their structure from the data itself, hyper-

parametric methods provide models with many parameters that are then optimized

for the task specified by the objective function. Neural networks are particularly at-

tractive for their potential model richness.6 . For the remainder of this work, we will

use the terms neural networks and hyper-parametric methods interchangeably.

Unlike some of the non-parametric models discussed in early sections, the general

purpose architectures of neural networks do not immediately provide closed form

solutions for well-formed probability density functions, which is required for any noise

model to be incorporated into a filtering or inference framework. One approach is

to estimate a probability for any input value of a joint (or conditional) probability.

Modha and Fainman [46] derived a loss function for general density estimation using

neural networks, seeking to find an expression for the joint p(X, W), where X are the

input variables, and W the bounded weights of a single layer deep neural network f,

i.e.,

p(X, W) = F(c(W) + f(x, W)), (2.36)

and F is chosen to be an exponential function for easy log-likelihood computation.

Because an explicit parametric form is not assumed, some care must be taken to

ensure that the probability function is proper: a normalization value c(W) must

be calculated to ensure that the probability density function is always positive and

integrates to one:

p(X, W) > 0 (2.37)

/p(X, W)dX = 1. (2.38)

The requirements in Equations 2.37 and 2.38 can be computationally expensive to

'We observe that single layer perceptron models are themselves essentially simple parametric
models when using hand-coded features to reduce the dimensionality of the input space.

'See Chapter 3 for a more detailed overview of neural network models.

35

enforce; the authors suggest using forms for which there are closed form solutions to

the marginalization, or using Gibbs sampling.

Sarajedini et al. extended learning the joint density function to learning the

conditional PDF p(ylx), which is also estimated without assuming a parametric

form of the PDF [61]. This is achieved by factoring the conditional probability as

p(y Ix) = p(x, y)/p(x). The authors derived a loss function for general density esti-

mation using an exponential function for easy log-likelihood computation, utilizing

hidden layers with logarithm activation functions and output layers with exponen-

tial activations, and also impose bounds on the network weights. As in Modha and

Fainman [46], the calculation of the gradients requires potentially expensive integral

calculations; the authors suggested methods such as Monte Carlo integration.

While learning arbitrary noise distributions is interesting, in practice many of the

efficient filtering algorithms at our disposal assume Gaussian distributions. Perhaps

the most popular family of filtering algorithm that can accommodate non-Gaussian

distributions is particle filtering (see Gordon et al. [221 and Doucet et al. [16] for

examples), but these techniques tend to be computationally expensive, as many state

estimators are run in parallel and enough samples must be generated to reflect the

underlying distribution. Additionally, the computational burden of enforcing proper

probability distributions for any arbitrary distribution can be non-trivial. In this

work, we focus on predicting Gaussian measurement noise distributions as a function

of high dimensional raw sensor measurements for use in robotic state estimation.

Williams described how neural networks could be used to model conditional mul-

tivariate densities [75, 76], circumventing the difficulty in ensuring properly specified

PDFs by constraining the estimation to Gaussian distributions. The objective func-

tion of the optimization is also to minimize the log-likelihood over the data:

N

E = Z E, (2.39)
p=1

Ep = 2 log|EI + 2(y' - p,)Tl E,~(y, - p). (2.40)

36

The authors propose special "dispersion" nodes to learn the parameters of a Cholesky

decomposition. They demonstrate the approach on one and two dimensional exam-

ples, and extend to time series financial data. In addition to the raw time series

data, the authors also add hand-coded features to the input vector to identify the

periodicity.

In practice, many examples of neural networks being used to estimate conditional

distributions still rely on some degree of expert feature extraction. In Cawley et al.

[8] and Nunnari et al. [51], the authors presented case studies of neural network

techniques for various environmental prediction tasks; for some of the more complex

time-series data, the inputs to the network were hand-chosen from a variety of sensor

measurements. Avanaki et al. [4] proposed using a neural network to predict the noise

parameters of a Rayleigh distribution modelling the speckling in optical coherence

tomography by providing a neural network with extracted features from the image

such as kurtosis. The reliance on a hand-specified feature space is problematic as we

have discussed previously, and generally dilutes the promise of neural networks as

flexible feature-learning frameworks.

In the 1990s, neural networks largely fell out of favor for various reasons7 . In recent

years, they have experienced a resurgence in popularity due to increased availability of

computation power and data8 . Now that deep neural networks are affordable to train,

they are being exploited for increasingly high dimensional and complex tasks, ranging

from image and video classification [35, 33, 30], to video game playing [45, 64]. We

believe that data-driven feature discovery presents an exciting opportunity to develop

noise models that do not require hand selecting low dimensional feature manifolds or

careful data pre-processing.

In this work, we are interested in learning Gaussian noise models based on high

dimensional sensor data, and exploit recent advances in hardware to utilize more com-

plex network structures and implicitly learn low-dimensional feature representations.

7 See Goodfellow et al. 2016 for a review of the history of neural networks.
8Sarajedini et al., provided a useful historical perspective in [61]: the authors noted that kernel

methods for conditional probability estimation were more common at the time due to the computa-
tional costs of training neural networks, reporting that a neural network with 60 hidden layers took
over a day to train.

37

Instead of specifying a hand-coded features space, we use a deep convolutional neural

network as a function approximator to implicitly perform feature extraction.

38

Chapter 3

Neural Network Models

In this chapter, we briefly cover neural network fundamentals. We first describe how

network layers are specified, then discuss how backpropagation is used to optimize

the free parameters of the model.

3.1 Hyperparametric Function Approximation

Motivated by theories of neurological processes, neural networks approximate func-

tions through the connection of perceptrons1 . Fundamental to neural networks is the

notion of information passing; the outgoing signal of a single perceptron is based on

a linear combination of the incoming signals to that perceptron. This simple param-

eterization is extremely powerful: Cybenko et al. showed in their seminal 1989 work

[11] that a single layer perceptron of finite width can approximate continuous func-

tions under relatively mild conditions. The universal approximation theorem was later

strengthened for various combinations of networks and activation functions (such as

in Hornik et al. [26], Kurkova [34], and Leshno et al. [37]). Neural networks are spec-

ified by neurons composed into layers. Two popular layer types are fully connected

layers and convolutional layers.

'We will use the terms perceptrons, neurons, and nodes interchangeably here.

39

3.1.1 Fully Connected Layers

We begin by describing the fully connected layers of the network.

0

Layer k Layer I

Figure 3-1: An illustration of how the activation of a single node in the l-th layer of
a fully connected perceptron is calculated as the weighted sum of the nodes of the
previous layer, passed through a non-linear activation function.

In this work, we specifically consider a set of fully connected layers to be feed-

forward neural networks, where each layer I has incoming connections from layer k

(where generally k = I - 1) and outgoing connections to the next connected layer. We

denote the activation of the i-th neuron in layer 1 to be olh, and express it as weighted

sum of all the neurons (indexed by Nk) in the previous layer, as in Russell et al. [60]

i.e,:

o1i= w(W k,3 + b1 9, (3.1)
k3 ENk

where wk, is the weight value unique to each connection between two nodes 0 k,, o,

and bl, a bias term. The weighted sum is then passed through a differentiable non-

linear activation function, o. Popular activation functions include hyperbolic tangent

(tanh) and rectified linear units (relu), which are pictured in Figure 3-2. Figure 3-1

visualizes the direction of information flow from one layer to a single node in the next

layer; each edge in the network represents a weighted gain.

Stacking perceptron layers yields a multi-layer perceptron (MLP). Denote the

input to the MLP T. Equation 3.1 can also be expressed in vector notation for

40

3.0-1.00

0.75

2.5-

0.0-

2.0- 0.25

1.5 - 0.00

0.25

-0.25

-0.75

0.0 -1.00

-3 -2 -1 02 3 -3 2 -1 3
X X

(a) Rectified linear activation function. (b) Hyperbolic tangent activation function.

Figure 3-2: Examples of non-linear activation functions.

compactness, such that:

01= (), (3.2)

and

= i Wino + bik, (3.3)

where ol is now simply the concatenation of all the N individual neurons o,, 1i E NJ

in layer 1, bk (E RNI-1, and Wk E RN xNI_1. If we have m fully connected layers, then

we denote the network as a function fm : RNT R gNm

fm(T) = p(Wmp(... W(Wii + bi) ...) + bk), (3.4)

where we have renumbered the weight matrices and bias vectors sequentially for

readability. The number of nodes in each layer is a design parameter; Nm is set to

have equal dimensions as the quantity being approximated. The model f m can then

be optimized through the setting of the variables W 1,..., Wm and bl,..., bm.

3.1.2 Convolutional Layers

In contrast to fully connected layers, convolutional layers explicitly model local con-

nections in the feature space. At each convolutional layer m, k E N convolutional

41

filters W..k are defined. We introduce here the concept of three-dimensional out-

puts o E Rdi xd2 XCk which can be thought of as two-dimensional signals o' E R dixd 2

(indexed by i, j) with c E Ck channels, or feature maps. R.GB images are a common

example of a three dimensional output o. In this case, i, j index into pixel locations,

and c into the color channel (e.g., the red color channel) 2.

--------------- - -

--

Layer I Layer h Layer r

Figure 3-3: A simple diagram of information flow through convolutional layers in a
neural network. The value of a pixel in layer hk (where k is the filter number) is the
sum of the convolutional response over all channels of layer 1 at the query location.
Layers h and r show the information flow for maxpool layers; each patch of pixels in
layer h is downsampled to a single pixel in layer r.

Convolutional layers have been interpreted as feature discovery layers [36], [77].

Perhaps the simplest convolutional filter is that of a line detector; a convolutional

layer with a "horizontal-line" filter will create a "feature map" indicating where such

horizontal lines exist as defined by the convolutional response (see Figure 3-4). In

contrast to fully connected models, convolutional models share weights (i.e., each

channel of an incoming image is passed through the same filter); this allows the

layers to aggregate macro-level features across several channels.

As in Goodfellow et al. [21], we begin by defining the convolution operator * of

2 We will sometimes refer to these three dimensional outputs o as "images", and their features
oj as "pixels" in an effort to distinguish these signals from those used in the perceptron model
developed previously.

42

an input oi with a filter Wk REk XPk as

Wk * oi Oq+iP+jWqP, (3.5)
qEqk PEPk

where wq,p indexes into Wk; this is visualized conceptually in Figure 3-3. The value

of a single coordinate value oij of the k-th feature map in layer m is the result of

summing the convolutional responses over each channel 1 of the set of feature maps

of previous layer L, i.e.,

'1k k(ij) ZWmk ~+m
IEL (3.6)

where Wk, E Rdxd 2 is the filter to be convolved with the corresponding patch oij,

and bmk a bias value (p is again a non-linear activation function). Figure 3-3 illustrates

how the value of a neuron at a particular location depends on patches in the channels

of the previous layer3 . We compactly express a single feature layer activation as

0 MA, = ((Wink * ol + bmj)
1E L (3.7)

= P(WMk 0 o + bMk).

For convenience we define the 0 operator between filter Wa and input o with B

channels as

Wa O O = S W * b. (3.8)
bE B

We then concatenate the feature maps given by each convolutional filter for the re-

sponse of the m-th layer, assuming r7 convolutional filters are specified:

O (V) = [0"0 (V), . . . , 0" (V)]. I(3.9)

In deep convolutional networks, convolutional layers are chained together; the feature

3We note here that we have neglected to discuss topics such as stride, offset, and zero padding
as implementation details.

43

maps in o' are then interpreted as channels for the m + 1 layer, for which another set

of filters is specified. We assume here that in our architecture convolutional layers are

followed by maxpool layers to reduce the size of the input to the next convolutional

layer and introduce some measure of input invariance. The maxpool operator maps

patches of pixels into a single value, such that M : R" -+ R', and can be defined

as

m(o,) = max(P) (3.10)

where P is the set of all pixels being pooled. The maxpool operator downsamples the

image oC by keeping only the largest pixel value.

Given an input signal , we define the inapping fk(; W 1 , ... , Wk, b1, ..., bk) R "

where

f,() = (Wk D [...(...([p(W 1 0) + bi), ...]...)...] + bk) (3.11)

Pre-Conivolution Feature Man 1 Feature Mar) 2

Figure 3-4: A very simple illustrative example of the post-convolutional feature maps.
In this example, the first convolutional filter is a 3x3 matrix of zeros with a single
column of ones. The second filter is a 3x3 matrix of zeros with a single row of ones.
The resulting feature maps after passing the convolutional

3.2 Optimization

Supervised training of a neural network representation involves finding values of the

weight and bias matrices such that some objective function is minimized, given a

44

training dataset of V input and label pairs D {X , Y, V j C [1, Vj, i.e.,

W, b*.k = argmin IZ J(W:k, bl:k; yj) (3.12)
W1:k

where the objective J is a function of the parameters of the network and the training

dataset (examples include mean squared error, logistic loss, etc).

3.2.1 Mini-batch Stochastic Gradient Descent

Note that Equation 3.12 is a nonlinear optimization problem, and we can pose gra-

dient steps as
Vd J

P =_P - + Z dP (3.13)
j=1

where we have, in a slight abuse of notation, subsumed all the parameters Wl1 k, bk:k

into a single vector P, and Pa is the value of P after a steps of gradient descent.

Due to the computational constraints of readily available computing resources, it

is often infeasible to process all of the training data at once. Stochastic Gradient

Descent (SGD) randomly samples the training dataset, and takes one gradient step

using each sampled training datum (refer to Rosenblatt [59] for an early example of

SGD used in neural networks). Mini-batch SGD is a method of iteratively choosing a

random subset of v training samples from D, and creating a smaller, pseudo dataset

of indices Vmini c Rv. The optimization then becomes

V* :k) b* - arginin.

W :, b l~b ag J(Wl:k, bl:m; yi)- (3.14)
W1:k~iaoge

See Goodfellow et al. [21] for more details on different variants of stochastic gradient

descent.

3.2.2 Backpropagation

To optimize the objective function given in Equation 3.13, we rely on the back-

propagation technique for neural network optimization. Observe that in order to

45

evaluate any variation of Equation 3.13, we must be able to individually calculate

, i.e., the gradient step for each individual weight parameter in the network. Back-

propagation as an algorithm involves two phases: forward-propagation to determine

the output of the network and back-propagation to calculate the gradient at each

weight with respect to the objective function.

We first describe here the process of backpropagation for an arbitrary weight

wij in a fully connected network. As in Russell et al. [60], we can show that the

backpropagation equations are simply a consequence of sucessive applications of the

chain rule. We denote the objective function J, and use the chain rule to express the

gradient as a product of partial derivatives:

dJ dJ d'I'
= d i d .ly (3.15)

dwi, d~r- dwij'

If the node oj is an output node, U is simple to calculate, as it is simply the partial

derivative of the objective funtion with respect to the output node value, multiplied

by the partial derivative of the output node value with respect to xFJ i.e.,

dJ dJ do,
d'~ do, d' (3.16)

dJ d
do, dF,

If the node is a hidden node, then intutively we must determine what portion of

the error signal is a result of V . The term d can be further broken up into the

sum over the derivative inputs, ie.,

dJ VJ dW
dqf EW d'PEIElL I

J dF do(
d doj d' (.'

IEL I i

dJ d

-EL

where L is the set of indices such that ol receives input from oj.

46

The second term in Equation 3.15 is the the partial derivative of the function

governing the combination of inputs to oj, with respect to the weight wij. For the

fully connected layers, it is easy to see that this is simply oi:

d'I'5 d
ij = E Wqjoq + bjdwi- dwi, qEN wj b (3.18)

= oi,

where N-I is the set of all inbound edges to node oj. Equations 3.17 and 3.18 allow

us to recursively compute the gradient defined in Equation 3.15.

The derivation of d',' for convolutional networks is very similar, except that Alldwij

is instead given by the convolution operator. Let us refer generally to a weight in a

convolutional filter k between two arbitrary nodes as wxy; we then have:

d4. d C ,

=dw,, Oq+ip+jeqlp (3.19)
dwxy Y qEqx,,pEpk

and

do,, O+jpojWq,p, (3.20)
do Y~ qEqk PENk

where the indices for which the convolution is valid are determined by the filter and

input channels.

The calculation of the derivatives d and d allow error information to be

propagated through the convolutional layers (using the chain rule), just as in the

approach taken for fully connected layers (see Equation 3.17). The calculation of

the derivative of the objective function with respect to the bias vectors can be again

calculated using the same techniques. Modern neural network libraries generally use

computation graphs to handle the derivative information passing; for an in-depth

discussion of modern computation graphs for propagating gradient information in

convolutional neural networks, as well as how to calculate the gradient for different

types of convolution, we refer the reader to Goodfellow et al. [21].

The backpropagation algorithm, then, is a recursive algorithm that must be run

from the output of the network J to the input; after d" is calculated for a layer, it

47

can be used to calculate dJ for the preceding layer.

48

Chapter 4

Learning Covariances from Data

In this chapter, we present a method of using a deep neural network to estimate

the covariance matrix of a complex sensor-algorithm pair, assuming a multivariate

Gaussian noise model. First, we pose covariance estimation as a maximum likelihood

estimation problem over a training dataset of sensor measurements and associated

error measurements. We then describe how the uncertainty prediction is modeled with

a neural network, using a negative-loglikelihood objective function and a modified

Cholesky decomposition to ensure positive definiteness.

4.1 Preliminaries

We consider a robot with state xt E R', equipped with a sensor providing a direct

measurement zt c RP, where p < n, at each time step t. We assume that the

measurement process may consist of an initial stage to obtain a high dimensional raw

measurement t E R" and a follow-up stage to process the raw measurement into a

direct measurement zt of the state. Therefore, the measurement function could be a

function of both t and xt, i.e., h(xt, t). For example, consider a GPS sensor, which

first obtains a raw measurement t of time-of-flight to satellites, then processes it via

multilateration to obtain a direct measurement zt of the sensor position xt.

We assume Gaussian distributions for the conditional probabilities of observation

p(ztIxt; t, et), where et is a set of known variables specific to the measurement model.

49

Given appropriate functions for expected observation h(xt, Ct, ot) along with their

uncertainties in the form of positive definite covariance matrices Et E RP P, we can

write

Zt ~,. jV(h(xt , t ,et),I Et). (4.1)

4.2 Approach

4.2.1 Problem Formulation

We would like to predict the distribution over sensor measurement error et E RP at

time t, conditioned on the raw measurement t, i.e., predict the distribution p(et Jt).

We define

et =|z * - Ztf, (4.2)

where z* is the groundtruth measurement, and zt the observed measurement.

Assuming the distribution to be a zero-mean Gaussian (assuming an un-biased

sensor), we focus on predicting the covariance Et of the distribution as a function of

the raw measurement i.e., forming the predictive function g where

Et ~(4.3)

We choose to model the noise as a function of the raw measurement1 . The approx-

imator function g must capture the highly complex mapping between the raw sensor

data to the covariance matrix Ej. One way to predict a complex mapping is by

over-parameterizing the approximator function, then learning the parameters using a

labeled training dataset D. If an ideal training dataset V = {C2,Af(0, Ei)lVi e [1, V]}

is available (where j is a raw measurement and K(O, Ej) the distribution over mea-

surement error), one could directly minimize the distance between the predicted dis-

'While some noise models only consider the low dimensional synthesized measurement, this often
does not capture sufficient information about the varied performance of the measurement function.
For example, consider an ICP algorithm that aligns two successive laser scans, where reasoning on
the information quality based solely on the state or the output of the ICP measurement can fail to
capture nuances of the information in scans with varying geometric features.

50

0 - -Mmmmi

tribution N(O, g(i)) and the true distribution P(0, Ei) by minimizing a distance

metric such as Kullback-Leibler divergence

KL(Ar(O, g(J))|JX(O, Ei)), (4.4)
i=1

where the parameters of function g are varied.

However, there are two complications to this approach. First, it is often difficult

to obtain the true distribution over measurement error X(0, Ei) during training time.

Second, the approximator function g must only produce positive definite covariance

matrices, i.e., the optimization is constrained subject to vTEiv > 0 for any non-zero

v E Rn.

To overcome these difficulties, as in White [74], we reformulate Eq. 4.4 to instead

maximize the likelihood of drawing each measurement error ei from a predicted distri-

bution M(0, g(gi)), and add a decomposition to the approximator function g to relax

the constraint for positive definiteness in the optimization. In the following sections,

we describe the details of the function approximator, the objective function, and fi-

nally the optimization techniques used to robustly predict measurement covariances

without requiring difficult-to-obtain training data.

4.2.2 Deep Convolutional Neural Network Model

In order to learn the complex mapping g between the raw measurement i and the

covariance matrix Ei, we utilize an over-parametrized form of the approximator func-

tion. We take a similar approach to that of recent successes [36, 65] and utilize a deep

convolutional neural network (CNN) with fully connected output layers, shown in Fig.

5-5, as our model.

We express the final form of the function approximator as a combination of con-

volution and fully connected layers. Let fk(; W 1, ..., Wk, bi, ... , bk) -+ Rr be a k

layer convolutional neural network, where the parameters being optimized are weight

matrices W1:k and bias vectors bl:k, as in Equation 3.11. The cascaded operations of

convolution Wj * i and non-linear activation function < reduce the high dimensional

51

raw measurement (, E R" down to a set of low-dimensional features fk() E R'r

r < m.

These feature responses are analogous to the hand-coded features in [27], and

as in previous work, we linearly combine them to produce a vectorized form of the

covariance matrix ri G Rn,:

r ~ g(= Wk+1fk(i) + bk+1

= f m (fk(())

where the second line follows by using the definition of Equation 3.4.

Our method combines the optimization of feature representation (encoded in the

weight matrices W1:k and the bias vectors bl:k), as well as the weighting (Wk+1, and

bk+1) of the features fk to predict the final covariance parameters ri. The optimized

features are therefore specifically tailored for accurate covariance prediction and do

not require hand-coding. Additionally, after the network parameters have been opti-

inized, covariance prediction is simply the evaluation of the raw sensor data through

the network, and is therefore constant time. In the following section, we discuss the

objective function used to optimize the network.

4.2.3 Negative Log-Likelihood Objective Function

We would like to optimize the model presented in Equation 4.5 using supervised

learning techniques. Given a training dataset D = {i,K(O, Yi)IVi E [1, V]} of pairs

of raw measurement i and a distribution over measurement error K(O, Esi), one could

optimize for the parameters W1:k and bi:k of the network by directly minimizing a

distance metric between the predicted and the true distributions, as in Equation 4.4.

However, it is infeasible to obtain the true distribution over sensor measurement

errors. Instead, it is often much easier to obtain measurement errors ei (drawn from

A1(0, Ei)), given a reliable sensor such as an indoor positioning system (IPS) that can

obtain the same measurement z* with higher precision and accuracy. For example,

with a highly precise and accurate IPS, one could calculate the odometry between

52

ODOMETRY
ALGORITHM

(ir GROUDTRUTH
ODOMETRY

) = {, eiVi E [1, V]}

Figure 4-1: To generate the training dataset, raw sensor measurements are fed to
an odometry algorithm. The error label is the difference between the groundtruth
odometry and the estimated odometry.

two timesteps, and consider this measurement to be the groundtruth measurement.

Therefore, one can more conveniently obtain a training dataset D = {i, ei lVi E

[1, V]} where ei is the error made by the sensor, i.e., ei = lz* - zil. Figure 4-1

illustrates an example pipeline for generating the training dataset.

Given the training dataset D = {C, ei} of raw measurements i and measurement

errors ei, we can instead maximize the likelihood of drawing the measurement errors

from the distribution over the errors

V

argmax p (eiIE) , (4.6)
Ei=1

or minimize the negative log-likelihood

V

J = argin -log (p (eil Ei)) (4.7)

V
arii o E E lei. (4.8)

i=1V

V

~ argmin logIg(() I+ eig(j)-ei (4.9)
W1:kb,:ki

where Wl:k+1, bl:k J are the parameters of function g, i.e., the parameters of the

neural network being optimized.

53

4.2.4 Parameterization for Positive Definiteness

The optimization in Eq. 4.9 is subject to all predictions g(i) being positive definite

matrices. We would like to remove this constraint so that the function can be op-

timized using standard SGD techniques. To do this, we reformulate g to predict a

decomposition of the covariance matrix Ei, i.e., the free parameters ai E Rq where

q = 2+) instead of its vectorized form ri E R >". We then add a known function gd

that re-constructs the covariance matrix, i.e., splitting Eq. 4.3 intoEi ~ gd(gh(J),

where gh is the new predictor function for the free parameters aj:

ai J gh() = OWk+l x fk(() + bk+1). (4.10)

We choose the LDL decomposition as in [27],

Ei g(a) = L(1i)D(di)L(li) T (4.11)

where the free parameters ai = [di, 1]T consist of a sub-vector di c Rn for recon-

structing the diagonal matrix, and a sub-vector Ii E R(n 2 -n)/2 for the lower unitrian-

gular matrix. This decomposition exists and is unique for all positive definite matrices

as long as the diagonal elements of D(di) are constrained to be positive. A simple

way to enforce this constraint is to add an element-wise exponential function to the

diagonal vector, i.e., update the diagonal matrix to be D(exp(di)). Explicitly, we

have:

b = n2 _ (4.12)
2

54

dil

i = (4.13)

exp(di,) 0 0 0

D(exp(di)) = 0 exp(di2) 0 0 (4.14)
0 0 . 0

0 0 0 exp(di,)

1 0 0 0

L(l) i 1 0 0 (4.15)
.0

lb ... lj,_1 1

While any decomposition that does not impose difficult constraints on the free

parameters ai would suffice, the LDL decomposition is particularly attractive due to

its numeric stability in computing the log-determinant:

log lEil = logIL(l)D(exp(dj))L(l1) T |

= log (L(1j)) I ID(exp(di))I L(1i) TI

n (4.16)
= log (1)(exp(di))(1))

= dil|1,

where I di I|11 denotes the summation of the elements of the vector v. By predicting

the parameters of the a positive definite matrix, the search is now explicitly limited

to the hyperspace of positive definite matrices.

55

4.2.5 Optimization

The final optimization problem is then

V

argmin W1:k+1, bi:k+1 sum(di)
= ~(4.17)

+ e'(L(1i)D(exp(di))L(1i)T)-le,

where gh() r = [1i, di].

To optimize the objective function given in Equation 4.9 we must have a way to

select the best weight and bias parameters. We use non-linear activation functions,

it is therefore necessary to perform this optimization iteratively; the weights of the

model are updated using a gradient descent method, where each iterative update to

the weight wtl' is based on the value at the previous iteration w and the value of the

gradient evaluated at the last estimate (Equation 3.13). In this work, we use the Nes-

terov Accelerated Gradient (NAG) variant of the method [491. To prevent overfitting

to the data, we utilize dropouts as a form of regularization. These implementation

details are briefly discussed in the following sections.

Nerostov Accelerated Gradient

As outlined in Sutskever et al. [70], wtl' is calculated by adding a velocity term to

the previous estimate:

Wt+i = Wt + V (4.18)

where v t is calculated as

VdJl = 'Vt - ' , (4.19)

The parameters -y and ' are often called the learning rate and momentum rate,

respectively. The update to the bias vectors are similarly calculated. Due to the

volume of data we use in this work, we use Stochastic Gradient Descent (SGD) with

mini-batches, where the gradient is calculated from a randomly selected subset of the

training data at each iteration, for computational tractability. In order to evaluate

56

Equation 4.18 and update each of the weights, we use backpropagation2 to calculate

di for each weight in the model.

Regularization

We would like to regularize the output of the network to encourage smoothness in the

solution and prevent over-fitting. Hu et al. rely on a regularization of a (the output

terms of the network). We instead use dropouts to regularize the model predictions.

Proposed in Srivastava et al. [67], regularization via dropout involves stochastically

removing the output from certain nodes and has shown promise in improving network

performance on tasks such as image classification and speech classification [25], [12].

In practice, dropout is typically used for fully connected perceptron layers; this is

the formulation we present here. Specifically, as shown by Srivastava et al., node i in

the perceptron layer I has a probability of dropping out characterized by a Bernoulli

distribution parameterized by p. Let the sampled dropout value of ol, be denoted rl;.

We then have

rl ~ Bern(p), (4.20)

where rj E 0, 1. The vector of dropout indicators is then multiplied against the

output of the layer, i.e.,

61 = r, * o. (4.21)

The new output of the layer, 6. "drops" the original output of randomly selected

nodes.

Each optimization iteration in the training stage, a subset of nodes are randomly

dropped:

0 1,train =(Wjbk -+ b1k) . (4.22)

Back-propagation is done only over the nodes that were not dropped in the forward

pass.

2See subsection 3.2.2

57

Lkki

Layer k Layer I

WkiP

Layer k Layer 1

(a) Forward propagation phase (b) Query time

Figure 4-2: Effects of dropouts on weights during train time vs. query time. During

the forward propagation phase (a), weights are randomly set to zero, as defined by rki
(Equation 4.20). After the model has been optimized (b), each edge weight is then

multiplied by the hyper-parameter of the Bernoulli distribution p used for dropouts

at the training stage.

In contrast, at test time, each optimized edge weight W* is multiplied by p:

0 i'test P (=< lkOk + blk), (4.23)

with the modified weight matrix defined as

Wlk = P* Wk, (4.24)

where every element of W is multiplied by p.

4.2.6 System Overview

DICE is a two stage algorithm, which we distinguish as the training stage and the

query or test stage (see Figure 4-3). In the training stage, pairs of raw sensor data and

measurement error labels are used to optimize the weights of the hyper-parametric

function approximator with a log-likelihood loss function. In the second stage, raw

sensor measurements are passed through the function approximator with optimized

58

Triig data Log-likelihood loss function

Hyperparametric function
approximator

Query data State Estimation
r dFramework

Figure 4-3: DICE system diagram. The processes in the dotted lines are used in the
offline training stage.

weights to predict the parameters of the measurement covariance. The covariance

estimates can then be used in a state estimation framework.

In the following section, we evaluate the accuracy of the covariance prediction

function learned from solving the optimization problem.

59

60

Chapter 5

Experiments

To evaluate the performance of using deep neural networks to estimate the mea-

surement noise models for complex sensors, we tested the approach in both simu-

lation and real-world environments. For the simulation environment, we report the

Kullback-Leibler divergence between the predicted covariances and the groundtruth

covariance. For the real-world environment, we train the network on a frame-to-frame

visual odometry task, and report log-likelihood results. We then use the estimated

covariances in a pose-graph estimation framework to illustrate the benefit of accurate

covariance estimation in a real-world task.

5.1 Simulation Results

To validate our approach, we first picked a virtual environment where we could sim-

ulate a sensor with known measurement covariances. Ground-truth covariances are

normally difficult to obtain, but using a simulation environment circumvented this

difficulty.

5.1.1 Simulation Setup

We chose to use the same simulation environment as in Vega-Brown et al. [73], where

the simulated position sensor's performance is correlated with the brightness of the

61

location x c R2 within a known 2D map m e Rkxk, ie.,

= f(x, M). (5.1)

We designed the sensor noise model f to include exponential and cosine components,

introducing complex non-linear noise characteristics. We then randomly sampled 1000

locations xi within a known map m and for each sample, computed the measurement

covariance Fi from which to draw an error label ei, i.e.,

ei ~. (0, f(xi, m)). (5.2)

We chose the local region of the map m around the robot position xi to be the

raw measurement i, i.e.

i = h(xi, m), (5.3)

and obtained the training set D = {E, ei, 4i lvi E [1, V]}. The local region is simply

a 10 x 10 patch of pixels roughly centered at the measurement location'. Example

measurements are shown in Figure 5-1.

5.1.2 Simulation Results

We optimized the objective function g in Equation 4.17 using SGD. Due to the simplic-

ity of this problem, we were able to reduce the complexity of the function, removing

convolution and reducing the network size. The network was implemented using the

open-source neural network library, Lasagne [14]. After optimizing for 25 epochs,

we obtained predicted covariances g(i) for each raw measurement i. With access

to ground-truth covariance labels Ei, we evaluated the Kullback-Leibler divergence

(KLD) in Equation 4.4 at each epoch.

As shown in Fig. 5-2, minimizing the negative log-likelihood quickly reduced

KLD, an evidence of the alternative optimization in Equation 4.6 reducing the direct

'Due to discretization, we arbitrarily choose the pixel location (6,6) in the measurement to
correspond to the measurement location.

62

1 71. US A0 i 171,

(a) Simulation environment map.

(b) (c)

Figure 5-1: Example raw measurements for the DarkRoom environment. Each mea-
surement is a local pixel patch from a larger map, which is visualized in subfigure
(a). Subfigures (b) and (c) are examples of 10 by 10 measurements at (118.6, 58.2)
and (40.5, 88.3) respectively.

63

F. "I

1.4

1.2

1.0 -

0.8 -

0.6

0.4 -

0.2 -

0.0

0 5 10 15 20 25

epoch

Figure 5-2: Kullback-Leibler Divergence vs. training epoch for the simulation envi-
ronment. The KLD is quickly reduced in just 25 epochs, supporting the convergence
properties seen visually in Figure 5-3.

distance metric. We also compared a few representative covariance predictions against

the ground-truth for qualitative evaluation at various epochs. These are visualized in

Figure 5-3.

5.2 Experiment Results

In this section, we benchmark our method against several other covariance estimation

techniques for the task of estimating covariances for a visual odometry algorithm.

5.2.1 Experiment Setup

Direct Visual Odometry (DVO) Overview

We evaluated the performance of DICE on predicting the measurement covariances

of the output of a 2D visual odometry (VO) algorithm based on DVO [31]. The

algorithm densely aligns each new RGB image to the previous image by projecting

the image into the world using an associated depth measurement, then solving for the

best back-projection into the previous image that minimizes the photometric error

64

(a) Epoch 0

0 -

;25 -

50 -

75 -

> 100 -

125 -

10 -

175 -

(c) Epoch 5

0-

25 -

50 -

75 -

>- 100 -

125 -

150 -

175

X

(e) Epoch 9

(b) Epoch 1

(d) Epoch 7

X

(f) Epoch 11

Figure 5-3: Visualization of convergence of covariance estimates. Predicted covariance
ellipses (red) and ground-truth covariance ellipses (green) are shown for a few samples
in the simulated map.

65

25

50

75

A 100

125

150

175

0 -

25 -

50 -

75 -

> 100 -

125 -

150 -

175 -

X

0

25

50

75

>, 100

125

170

170

X

25

50

75

100

125

150

175

between the two. The difference between our 2D VO algorithm and standard DVO

is that back-projection is limited to 2D motions, and no motion prior is used2 .

To use DVO, we must have access to RGB and depth images. Therefore, we chose

the Microsoft Kinect [781 as the raw measurement sensor to pair with the algorithm,

as the Kinect provides RGB-D measurements. We consider the sensor-algorithm pair

to be a Kinect-DVO sensor that measures relative 2D motion. Based on the fact

that the odometry is computed by minimizing a metric in the image-space (while

the depth information is only used for projections) and the similarity of consecutive

RGB images under moderate motion, we assumed that most predictive features of

uncertainty are in the latest RGB image. We therefore chose only the latest RGB

image as the input to our predictor function g, although the VO algorithm required

both RGB images and a depth image to solve the alignment.

The measurement process is then modeled as

x71 e xi1 = hDvo() + wi (5.4)

Wi ~,, V(O , Ej) (5.5)

where @ denotes pose composition in SE(3). In terms of previous filtering frameworks,

the measurement is the relative transform between the two state: zi = xil 1 xi-.

5.2.2 Training Data Collection

To generate training data, we collected RGB-D images in an environment equipped

with a Vicon motion capture system. We obtained relative pose measurements using

the Kinect-DVO sensor, and computed the error in the measurements as deviation

from the Vicon measurements. We collected approximately 42,500 pairs of images

and error labels as training data. In this experiment, we specifically explored two

2We observe here that our method requires that the measurement model to be frame-to-frame,
or a function of only the two most recent measurements.. Explicitly considering more than one prior
measurement into the prediction is left to future work.

66

0.016

0.05

0.01

0.03

0,02

0.01

6.00

-0.01

--0.02

0.06

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

-01.0W

0 200 400 600

Time index
10b0

(b) Textureless training example

Figure 5-4: Visualization of selected training data examples. In these plots, the
groundtruth odometry is shown in orange, and the measured odometry shown in
blue. Dynamic objects can be seen to induce more error in the odometry estimates.

67

f-i

0

40

-vo
- Groundtruth

0 2041 40 411 400 1000

Time index

(a) Dynamic training example

-Vo
-- Groundltruth

common failure modes of VO algorithms: low texture scenes and dynamic scenes.

The environment was set up to include varying degrees of texture. In some parts

of the dataset, a person periodically walked in and out of the sensor frame during

data collection. Examples of training data are shown in Figure 5-4. The objects in

the environments were also moved around to prevent over-fitting to the environment.

The sensor was constrained to move in a 2D plane.

5.2.3 Network Structure and Training

INPUT FEATURE DISCOVERY OUTPUT COVARIANCE
Downsampled Optimize feature representation LDL RECONSTRUCTION
image decomposition Construct PD matrix

Figure 5-5: Neural network architecture used to approximate the covariance predic-
tion function. The input to the network is the raw measurement, e.g., a (possibly)
down-scaled camera image, and the output is the vector of the free parameters of the
covariance. The narrowing architecture in the beginning reduces the raw measure-
ment into low-dimensional features, and the following fully-connected layer optimally
combines the features for the covariance prediction task.

While representing the covariance predictor as a CNN removes the need to care-

fully specify a parametric form of the covariance approximation function, high-level

design choices (width, depth, etc) are required for the network.

We used an eight layer deep CNN and the. input RGB images were down-sampled

to 48x64 pixel grey-scale images. Each of the two convolutional layers consisted of

32 kernels of size 5x5, followed by a 2x2 max pooling layer. Before the output, there

was one fully connected layer of 256 units, and a dropout layer with a dropout rate of

50% to prevent over-fitting. As with the simulation experiments, the neural network

was implemented using Lasagne. The network, visualized in Fig. 5-5, was trained

using an Nvidia GeForce GTX 1080 for 6000 epochs, with a learning rate of 0.0001, a

Nesterov momentum of 0.9, and a mini-batch size of 500. After experimenting with

68

different nonlinear activation functions, we found that a leaky rectify activation [39]

provided the most stable optimization process.

5.2.4 Test Set Selection

We chose four test sets to benchmark DICE. The first three, Dynamic, White-wall

and Unseen-Dynamic, were drawn from the environments in the training data. The

third is an open-source dataset. For reporting the likelihood metric, we removed data

points where Vicon measurements were measurably wrong (approximately 2% of the

measurements).

Dynamic Objects Dataset

In this dataset, the sensor moved in a box pattern around an environment present in

the training dataset. Early in the trajectory, as the Kinect was moving forward, a

person present in the training dataset walked across the camera frame one time. The

sensor completed the rest of the trajectory without any dynamic disturbances. This

test set is intended to test covariance estimation of odometry estimates for dynamic

scenes.

White Wall Dataset

The White-wall dataset was also collected in an environment present in the training

dataset. In this dataset, the Kinect moved in a loop with two separate low texture

scenes. The White-wall dataset is designed to test covariance prediction performance

for texture-less scenes.

Unseen-Dynamic

The Unseen-Dynamic dataset was collected in an environment present in the training

dataset. The Kinect moved in a loop; in two instances, a person walked through the

sensor frame. Unlike the Dynamic objects test set, the person who walked into the

69

field of view was not present in the training dataset. The Dynamic-Unseen test set

is designed to test covariance estimation on partially novel scenarios.

TUM

We denote the freiburg3-walking-static dataset (from the TUM RGB-D SLAM bench-

marks [69]) as the TUM dataset. In this dataset, the Kinect was static and two people

walked in and out of frame. We choose this dataset in particular due to 3DOF as-

sumption made in the odometry optimization; because the Kinect in this dataset is

static, this does not violate the 3DOF assumption. This dataset was chosen to test

the generalization potential of different covariance estimation techniques.

5.2.5 Measurement Likelihood Performance

In real environments, we do not have access to the true distribution over measurement

error to compare directly against the predicted distributions as done in Section 5.1.

Instead, we can compare the likelihood of drawing true measurement errors from

predicted distributions as in Equation. 4.6.

We benchmarked the covariance prediction performance of DICE against a con-

stant covariance model, DVO's internal prediction based on the Cramer-Rao bound

[58], and CELLO. To determine an appropriate constant covariance, we calculated

a single covariance over all of the training data. The Cramer-Rao covariances were

obtained by inverting the Fisher information matrices of the dense photometric align-

ment and multiplying by an empirically-determined factor to compensate for the

bounds being lower-bounds and largely conservative. We used the empirical factor

provided in the open-source implementation of DVO, noting that this parameter can

also be tuned to perform arbitrarily well on any given dataset. The CELLO covari-

ances were obtained using 10 image-space features proposed in [72] (e.g. dynamic

range, pixel entropy, image gradients, etc) and the entire training dataset for DICE

was used as potential neighbors in the kernel estimator. A few representative constant

and DICE measurement covariances are shown in Fig. 5-8.

70

m DICE
4 - Constant

400-

200 J

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Log-likelihood bin

(a) Dynamic

400 - - DICE
- Constant

300-

200-

m100-
0*.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Log-likelihood bin

(b) Unseen-Dynamic

400 - DICE
Constant

300-

200-

100-

0-
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Log-likelihood bin

(c) White-wall

Figure 5-6: Log-likelihood histograms comparing DICE and constant covariance pre-
diction performance.

Table 5.1: Mean log-likelihood results are shown for each prediction method and
dataset pair. Values marked with t were generated after the prediction method was
further trained with the augmented training dataset. On average, DICE predicted
covariances better model the errors over all four test sets.

Dynamic White-wall Unseen-Dynamic TUM
Constant 9.20 8.84 9.27 8.62

Cramer-Rao -26.72 -2.92 -29.06 4.95
CELLO 10.61 9.52 10.36 9.15t
DICE 11.80 10.38 11.13 9.63t

71

2.5-

2.0

1.5. 3
2 3

0.5-

0
0.0-

4 5
-0.5 . 5

-1.0 -0.5 0.0 0.5 1.0

(a) Constant and predicted covariances (b) RGB images

Figure 5-7: Constant (blue) and DICE (red) measurement covariances are plotted
for the Dynamic dataset. The thumbnail images show the RGB frames at the cor-
respondingly labeled points on the ground-truth trajectories (black). The constant
covariance, which is empirically fit to the training data and non-spherical, underesti-
mates the error in non-static scenes (i.e., 1 and 2 in Dynamic and overestimates in
static scenes. DICE covariances vary largely both in magnitude and shape (larger
and elongated in non-static scenes, while small and spherical in static scenes), more
accurately representing the distribution of measurement error in different scenes. The
major and minor axes of the covariance were enlarged by a factor of 20 for visualiza-
tion purposes.

72

A

2 0 1
2.0 -

1.5

1.0 -

0.5. 2 31
0

0.0 -

-0.5 I
-. 0- 5 4 5

-1.5-

-1.0 -0.5 0.0 0.5 1.0

(a) Constant and predicted covariances (b) RGB image

Figure 5-8: Constant (blue) and DICE (red) measurement covariances are plotted
for the Unseen-Dynamic (right) dataset. In this test case, the constant covariance
underestimates the error in scenes 2 and 5, which correspond to images where a
previously unseen person walks through the sensor frame. The major and minor axes
of the covariance were enlarged by a factor of 20 for visualization purposes.

73

Table 5.1 summarizes the performance of the four methods on each test set de-

scribed in Section 5.2.4. We observed that on average, the covariances estimated by

DICE better explained the observations than those of the other approaches. Fig. 5-9

illustrates the predictive performance of DICE on Dynamic test set; regions of the

trajectory characterized by larger measurement error magnitudes were paired with

larger covariance estimates by DICE. In comparison, the constant covariance method

was unable to adapt, the Cramer-Rao approach was still a severe underestimate, and

CELLO adapted but underestimated the magnitude of the covariance.

To test how well our method generalizes to new scenarios and enviromnents, we

considered the Unseen-Dynamic dataset. Although this dataset was set in the same

environment as was used to train DICE, the person in this test set was not present

in the training dataset. We observed that DICE predicted more likely measurement

models, on average, than the other covariance prediction methods, indicating that

the low-level representation was general to some degree.

To test the adaptability of our approach, we considered the TUM dataset, which

has both an entirely new environment and new people. We augmented the origi-

nal training dataset with the first 400 samples of the TUM dataset, and tuned the

pre-trained network with the augmented dataset (for comparison purposes, we also

augment the CELLO training dataset). The average log-likelihood results over the

entire TUM dataset are reported in Table 5.1. Fig. 5-11 illustrates that given exam-

ples of a new environment, DICE can be re-optimized to predict better measurement

models than constant, Cramer-Rao, and CELLO models, better distinguishing the

measurement error in static and dynamic scenes. This example further illustrates a

strength of data-driven feature discovery, providing evidence that the predictions can

be further improved in new environments by taking pre-trained models and resuming

optimization on new data.

We also considered the distribution of the log-likelihood performance over the test

sets, and specifically compared constant and DICE predicted covariances to highlight

the benefits of our heteroscedastic covariance approach. As visualized in Figure 5-6,

we see that constant covariances have an implicit limit to their ability to explain

74

0 200 400 600 800 1000 1200

- Constant
- Cramer-Rao
- CELLO

- DICE

0 200 400 Tim 800 1000 1200
Time index

(a) Dynamic

0 20 400 600

Time index
800 1000

(b) Dynamic-Unseen

Figure 5-9: The trace of four prediction methods on the dynamic objects test datasets
with the label error magnitude for comparison.

75

- 0.06

M 0.04

0.02-
0

0.00-

0.003 -

0.002 -

0.001

-e

0.000

4.0.06

910.04

0.02
0

0.00

0.003

0.002

0.001

0.000

0 200 400 600 800 1000

- Constant
Cramer-Rao

- CELLO
DICE

1- .11 .. L -

-

-

-

-

-

-

-

-

-

-

Q)0.05 -
0.04-

bfl 0.03 -

0.02 -

0.01 -

0 200 400 600 800 1000 1200

0.0010

0.0008. - Constant
- Cramer-Rao

0.0006 - - CELLO
.4- DICE

0.0004 -
0.0002 - I __________M_____________W _______

0.0000- -
0 200 400 600 800 1000 1200

Time index

Figure 5-10: The trace of four prediction methods on the texture-less test dataset
with the label error magnitude for comparison.

observations. In contrast, our predictive method, which considers the covariance to

be a function of the measurement itself has not only a larger mean log-likelihood, but

also a smoother distribution.

5.2.6 Trajectory Estimation Performance

To demonstrate the utility of accurately predicting measurement covariances, we ad-

ditionally benchmarked DICE in a standard pose-graph optimization framework [38]

N

argmin x0 :N ZIzi E x 9 D -11 + Is e 0 e 2NII. , (5.6)

Our DVO-based VO measurements zi = x ' were incorporated as measurement

factors between states (i.e., odometry measurements)3 . The ground-truth loop-closure

s* between the first and the last pose were used to optimize 2D poses xi E SE(2).

The source of measurement covariances !j was varied to the different methods, and

the loop-closure covariance Si was chosen to be orders of magnitude smaller.

3 We observe that this differs from the smoothing optimization discussed in 2.1.2 only in that
the conditional probabilities are of measurements between poses, rather than of a the measurement
obtained by a single pose.

76

0.075 -

Ce 0.050-

F 0.025 -
0

-4 0.000-

0 100 200 300 400 500 600 700

1 2
0.0015 --Constant

- Cramer-Rao

0-0010 - - CELLO
- DICE

H 0.0005 -

0.00oo4 -
0 100 200 300 400 500 600 700

Time index
0 1 2

Figure 5-11: The trace of the predicted measurement covariances of all four methods
on the the TUM dataset are shown, with representative images for small (1) and larger
(0 and 2) magnitude trace predictions. The grey shaded region indicates the samples
that were used to augment the existing training dataset, while the unshaded portions
were reserved for testing. DICE outperforms the other three methods, predicting
larger covariances in regions of higher error.

77

Table 5.2: Mean and standard error for the absolute positional error (meters) in
the loop-closed trajectory are shown. DICE outperformed constant and Cramer-Rao
approaches on every dataset, and for the Dynamic dataset where the error in the raw
odometry was the greatest, the performance gain using DICE was also the greatest. In
this dataset, the mean positional error in DICE was less than half of that of constant.
Comparing DICE to CELLO, in datasets where CELLO's features were inadequate
(dynamic scenes), DICE outperformed CELLO. For the dataset where the CELLO
features were representative, DICE was tied with CELLO.

Dynamic White-wall Unseen-Dynamic
Constant 0.57 0.015 0.74 0.013 0.70 0.012

Cramer-Rao 0.59 0.015 0.77 0.011 0.67 0.011
CELLO 0.37 0.014 0.50 0.0093 0.45 0.010

DiCE 0.25 0.011 0.50 0.010 0.39 + 0.010

We compared the mean and the standard error of the absolute positional error

in the loop-closed trajectory. Summarized in Table 5.2, DICE significantly outper-

formed the other methods, reducing the average error by more than a factor of two

in the Dynamic dataset. In this dataset, where a person walking across the cam-

era corrupted the raw odometry, DICE distrusted the dynamic region and allowed

the rest of the trajectory to be recovered more accurately (shown in Figure ??). In

comparison, CELLO distrusted the region noticeably less than DICE, while constant

and Cramer-Rao methods did not distrust the dynamic region, resulting in the error

being distributed across the entire trajectory.

Similar results were obtained for the Unseen-Dynamic test set, where a previously

unobserved person came into the view two times. Unlike the CELLO predicted tra-

jectory, is better to recover the initial portion of the trajectory; this suggests that

DICE is able to more precisely identify the boundary between scenes with high and

low sensor-environment measurement error. The results for this test set are visualized

in Figure 5-9.

Additionally, in the White-wall dataset (visualized in Figure 5-14), DICE per-

formed significantly better than constant and Cramer-Rao methods, but was on par

with CELLO. We observed that for failure modes that are well explained by the

hand-coded features of CELLO, i.e., white walls form a tight cluster in the feature

space defined using image-space statistics, CELLO could perform as well as DICE.

78

I I I I I
-2 -1 0 1 2 3 4

I I I I I I
-2 -1 0 1 2 3 4

3-

2-

1 -

0-

3-

2 -

0-

-2 -1 0 1 2 3 4

-2 -1 0 1 2 3 4

- Ground truth vicon trajectory
- Raw trajectory (no loop closure)
- Constant covariance optimized trajectory

Cramer-Rao covariances optimized trajectory
- CELLO covariances optimized trajectory (loop closure)
- DICE optimized trajectory

I I I I I V-
-2 -1 0 1 2 3 4

Figure 5-12: Trajectory tracking results for Dynamic test set.

However, for failure modes that are difficult to explain with the expert-specified fea-

tures, DICE outperformed CELLO, demonstrating the utility of learning the feature

space directly from the data.

In terms of the average rotational error, there was no significant difference between

the covariance prediction methods. As shown in Fig. 5-15, the different methods were

relatively accurate in estimating the orientation, and the empirically-fit constant co-

variances often performed the best. In the White-wall dataset, the constant covari-

ance method outperformed DICE by 3.3 degrees, and this was the greatest difference

79

3-

2-

M

-1 0 1 2

5-13: Trajectory

3

2

1

0*

-1

3

2-

1-

0-

-1 -

3 -

2 -

1 -

0-

-1 -

~ 7

- -2 -1 0 1 2 3 4 5

-3 -2 -1 0 1 2 3 4 5 3 4 5

- Ground truth vicon trajectory
- Raw trajectory (no loop closure)
- Constant covariance optimized trajectory

Cramer-Rao covariances optimized trajectory
- CELLO covariances optimized trajectory (loop closure)
- DICE optimized trajectory

3 4 5

tracking results for Dynamic-Unseen test set.

across all datasets. In conclusion, we observed that in cases where the raw estimates

were accurate, there was negligible difference between DICE and the other methods,

but in cases where the estimates were noisy, DICE out-performed other methods by

a significant margin.

It is useful to comment on where the biggest gains can be made in terms of these

loop closure experiments. Due to the fact that there is only one source of information,

the most drastic improvements are evident when sensor measurement characterized

by large covariances occur early in the trajectory; if a covariance prediction algorithm

properly predicts a large covariance in this region, the later portion of the trajectory

can be better reconstructed. However, small to negligible gains will generally be

80

3.

2

1

0

-1

3

2

1-

0-

-1

-3 -2 -1 0 1 2 3 4 5
I- -r

-3 -2 -1 0 1 2

-3 -2

Figure

gn

-

-

-

-

-

3.0- 3.0-

2.5 - 2.5 -

2.0 - 2.0 -

1.5 1.5 -

1.0 - 1.0 -

0.5 - 0.5 -

0.0- 0.0

-0.5 - -0.5 -

-3 -2 -1 0 1 2 -3 -2 -1 0 1 2

3.0 - 3.0-

2.5 - 2.5 -

2.0 - 2.0-

1.5 - 1.5 -

1.0 - 1.0 -

0.5 - 0.5 -

0.0 0.0-

-0.5 - % J- 0.5 -

-3 -2 -' 2 -3 -2 -1 0 1 2

3.0 -

2.5 -

2.0 - - Ground truth vicon trajectory
- Raw trajectory (no loop closure)1.5 -- Constant covariance optimized trajectory

1.0 . Cramer-Rao covariances optimized trajectory
--- CELLO covariances optimized trajectory (loop closure)

DICE optimized trajectory

0.0-

-0.5
I I I I I I

-3 -2 -1 0 1 2

Figure 5-14: Trajectory tracking results for White-Wall test set.

made if the noisy measurements are concentrated at the end of the trajectory. This is

because while we have a measure of uncertainty, the measurement itself may have too

much error to correct. Were a second sensor available, improved covariance prediction

could then allow for optimal sensor fusion over the entire trajectory. We have chosen

test sets to highlight the benefits of improved covariance estimation in the absence of

a second sensor.

We have shown that a deep convolutional neural network can be used to predict the

covariance of Gaussian noise models for a RBG-D odometry algorithm. Covariances

predicted by DICE outperform the constant covariance method, a scaled Cramer-Rao

bound method, and an implementation of CELLO in terms of average log-likelihood

81

- 4 6 8 1 1
0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

--- Groundtruth yaw
- Constant yaw

Cramer-Rao yaw
- -CEL LO yaw

DICE yaw

0 200 400 600

Time index
800 1000

Figure 5-15: Comparison of orientation estimates (radians) using constant, Cramer-
Rao, CELLO, and DICE measurement covariances. The orientation tracking of all
methods is comparable and the constant covariances often performed the best.

over several test sets. Furthermore, we have demonstrated that using DICE predicted

covariances can also improve loop closure performance.

82

Q 0

-1

2-

-

2 -

2 -
--

1200

Chapter 6

Conclusions and Future Work

We have presented DICE - a method for predicting measurement noise of complex

sensors without using extensive domain knowledge. We demonstrated that DICE

can accurately predict the measurement covariance of a simulated light sensor, and

a visual odometry sensor. We have shown that predicting accurate measurement

covariances can help improve trajectory estimates, and achieved accuracy significantly

better than conventional methods for difficult scenes.

DICE is a two-stage algorithm. The first stage is the data collection and offline

training stage. Raw sensor data and the accompanying error labels are collated into

a dataset, which is then used as training data for the supervised training of a deep

convolutional neural network. The network uses a deep neural network to predict the

parameters of a modified Cholesky decomposition that best explains the observed data

by minimizing a negative log-likelihood loss function. After the weights of the model

have been trained, DICE can then be used for the second stage, i.e., online query. At

query time, raw sensor measurements are passed through the model in the standard

feed-forward formulation. The measurement covariance is then reconstructed from

the output vector of the CNN.

Our approach presents several benefits over other approaches to predictive Gaus-

sian noise models. Firstly, DICE is a flexible, algorithm-agnostic method that does

not require hand-coded features to be specified by a domain expert. Instead, feature

discovery is handled through the optimization of the model itself via the optimization

83

of convolutional layers. This allows for a more straight-forward and accessible deploy-

ment model. All that is required is a representative dataset of sensor measurements

and errors.

Another benefit is that ground-truth covariance labels are not required to predict

the noise parameters of the measurement models. It is often infeasible to obtain

such labels (one approach might involve running many expensive simulations, and for

some applications it is not straightforward to construct such a simulation). Instead,

the network optimizes the overall likelihood over the observed error data, which is in

general easier to collect.

Furthermore, DICE is computationally efficient; while offline training can be ex-

pensive due to the volume of data that must be processed, at run-time the feed-

forward loop is fast enough for real-time filtering applications. Low computation

times are a requirement for a predictive noise model to be relevant on real systems.

Unlike non-parametric techniques, the CNN does not scale at run time with the

amount of data. Unlike parametric techniques, the CNN does not sacrifice represen-

tational richness for computational efficiency.

Of course, using convolutional neural networks to predict noise parameters is

not without some disadvantages. The burden of tuning the low dimensional feature

representation has been shifted to network design; network structure, learning rates,

etc., are design parameters that must be chosen. More hands-off network design is

an area of active research (see Smith et al. [66] and Baker et al. [5], etc).

Additionally, while this method circumvents the need for ground truth covariance

labels, the algorithm still requires groundtruth error labels as a training signal. Neu-

ral network approaches are notoriously data-hungry; coupled with the ground-truth

requirement, this may cause some datasets to still be expensive to collect. A pos-

sible solution in these scenarios may be to leverage simulation environments; recent

successes have shown simulated data to be useful for generating vast quantities of

labeled data (see Shrivastava et al. [63] and Stein and Roy [68]).

Like all machine learning techniques, DICE can suffer from data imbalance issues.

This can largely be mitigated by ensuring that the run-time queries are drawn from

84

the same distribution as the training data. It may ultimately be useful to perform

novelty detection. Given some metric on the novelty of the input data, the state

estimation algorithms can fall back to conservative estimates when the query appears

to be novel by some measure.

While the potential advantages of using DICE for state estimation have been

shown in this work, we observe that there are exciting applications in the planning

domain as well. Given predictive noise models for complex sensors, uncertainty-aware

planning techniques could be leveraged to plan trajectories that optimize tracking

performance (see Prentice and Roy [561). For example, if visual odometry is used

to localize in known maps or meshes (see Ok et al. [52]), the learned measurement

covariance could be used to minimize tracking error by avoiding paths that result in

low-texture sensor readings.

A useful extension to the applications presented in this work would be to extend

the frame-to-frame formulation into a frame-to-keyframe formulation; i.e., instead of

predicting the uncertainty in the odometry between two frames, predict the uncer-

tainty between two arbitrary frames. This would allow for the learned covariances to

be used in keyframe-based SLAM techniques; not only could more constrained graphs

be constructed to reduce drift, the measurement covariance is a natural metric for

keyframe selection.

Beyond keyframe selection, a frame-to-keyframe measurement covariance could be

used to enforce graph sparsity in the graph based optimization techniques discussed in

this work. Instead of keeping all dense measurements, which can lead to longer solve

times, with informative and accurate covariances, only those factors which contain

the least uncertainty could be maintained.

85

86

Bibliography

{1] Amazon Prime Air. https: //www. amazon. com/Amazon-Prime-Air/b?node=
8037720011. Accessed Dec 18 2017.

[2] Kinect sensor main page. https://msdn.microsoft.com/en-us/library/

hh438998. aspx. Accessed Dec 18 2017.

[3] Zoom in, Zoom out: Speedy, Agile UAVs Envisioned for T r1oops in Urban Mis-
sions. https: //www. darpa.mil/news-events/2014- 12-22, 2000. Accessed Dec

18 2017.

[4] Mohammad RN Avanaki, P Philippe Laissue, Tae Joong Eom, Adrian G
Podoleanu, and Ali Hojjatoleslami. Speckle reduction using an artificial neu-

ral network algorithm. Applied optics, 52(21):5050-5057, 2013.

[5] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Design-

ing neural network architectures using reinforcement learning. arXiv preprint

arXiv:1611.02167, 2016.

[6] Martin Barczyk and Silvere Bonnabel. Towards realistic covariance estimation

of ICP-based Kinect V1 scan matching: The ID case. In American Control

Conference (ACC), 2017, pages 4833-4838. IEEE, 2017.

[7] Martin Barczyk, Silvere Bonnabel, and Frangois Goulette. Observability, covari-

ance and uncertainty of icp scan matching, 2014.

[8] Gavin C Cawley, Gareth J Janacek, Malcolm R Haylock, and Stephen R Dorling.

Predictive uncertainty in environmental modelling. Neural networks, 20(4):537-

549, 2007.

[9] Andrea Censi. An accurate closed-form estimate of ICP's covariance. In Robotics

and Automation, 2007 IEEE International Conference on, pages 3167-3172.
IEEE, 2007.

[10] Harald Cramer. Mathematical Methods of Statistics (PMS-9), volume 9. Prince-
ton university press, 2016.

[11] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems (MCSS), 2(4):303-314, 1989.

87

[12] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep neural
networks for LVCSR using rectified linear units and dropout. In Acoustics, Speech
and Signal Processing (ICASSP), 2013 IEEE International Conference on, pages
8609-8613. IEEE, 2013.

[13] Alex Davies. Google's Self-Driving Car Dream Is Fi-
nally Coining Real. https: //www . wired. com/story/
waymo-google-arizona-phoenix-driverless-self-driving-cars, Nov
2017. Accessed Dec 18 2017.

[14] Sander Dieleman et al. Lasagne: First release., August 2015. URL http: //dx.
doi.org/10.5281/zenodo.27878.

[15] D'Orazio, Dante. Point Grey Flea3 camera captures 4K video in a 1.2-inch
cube form factor for $949. https://www.theverge.com/2012/7/1/3128515/
point-grey-f lea3-worlds-smallest-4k-video-camera, Jul 2012.

[16] Arnaud Doucet, Nando De Freitas, Kevin Murphy, and Stuart Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings of
the Sixteenth conference on Uncertainty in artificial intelligence, pages 176-183.
Morgan Kaufmann Publishers Inc., 2000.

[17] Jindfich Dunk, Ondfej Straka, Oliver Kost, and Jindfich Havlik. Noise co-
variance matrices in state-space models: A survey and comparison of estimation
methodsPart I. International Journal of Adaptive Control and Signal Processing,
2017.

[18] Jakob Engel, Thomas Sch6ps, and Daniel Cremers. LSD-SLAM: Large-scale
direct monocular SLAM. In Proc. ECCV 2014, pages 834-849. Springer, 2014.

[19] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast semi-direct
monocular visual odometry. In Proc. ICRA 2014, pages 15-22. IEEE, 2014.

[20] Samuel Gibbs. Uber signs contract with NASA to develop flying
taxi software. https : //www.theguardian. com/technology/2017/nov/08/
uber-signs-contract-nasa-develop-f lying-taxi-sof tware, Nov 2017. Ac-
cessed Dec 18 2017.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http: //www. deeplearningbook. org.

[22] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to
nonlinear/non-gaussian bayesian state estimation. In IEEE Proceedings F (Radar
and Signal Processing), volume 140, pages 107-113. IET, 1993.

[23] H Heffes. The effect of erroneous models on the Kalman filter response. IEEE
Transactions on Automatic Control, 11(3):541-543, 1966.

88

[24] Ralf Herbrich, Neil D Lawrence, and Matthias Seeger. Fast sparse Gaussian
process methods: The informative vector machine. In Advances in neural infor-
mation processing systems, pages 625-632, 2003.

[25] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580, 2012.

[26] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359-366, 1989.

[27] Humphrey Hu and George Kantor. Parametric covariance prediction for het-
eroscedastic noise. In Proc. IROS 2015, pages 3052-3057. IEEE, 2015.

[28] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Transactions on Robotics, 24(6):1365-1378, 2008.

[29] Rudolph Emil Kalman et al. A new approach to linear filtering and prediction
problems. Journal of basic Engineering, 82(1):35-45, 1960.

[30] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE conference on Computer Vision and Pat-
tern Recognition, pages 1725-1732, 2014.

[31] Christian Kerl, Jirgen Sturm, and Daniel Cremers. Robust odometry estimation
for RGB-D cameras. In Proc. ICRA 2013, pages 3748-3754. IEEE, 2013.

[32] Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian
process prediction and observation models. Autonomous Robots, 27(1):75-90,
2009.

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

[34] Wra Ku'rkov. Kolmogorov's theorem and multilayer neural networks. Neural
networks, 5(3):501--506, 1992.

[35] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recog-
nition: A convolutional neural-network approach. IEEE transactions on neural
networks, 8(1):98--113, 1997.

[36] Quoc V Le. Building high-level features using large scale unsupervised learning.
In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 8595-8598. IEEE, 2013.

[37] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate
any function. Neural networks, 6(6):861-867, 1993.

89

[38] Feng Lu and Evangelos Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4(4):333-349, 1997.

[39] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. ICML, volume 30, 2013.

[40] David JC MacKay. Information theory, inference and learning algorithms. Cam-
bridge university press, 2003.

[41] D Magill. Optimal adaptive estimation of sampled stochastic processes. IEEE
Transactions on Automatic Control, 10(4):434-439, 1965.

[42] Peter S Maybeck and Donald L Pogoda. Multiple model adaptive controller
for the stol f-15 with sensor/actuator failures. In Decision and Control, 1989.,
Proceedings of the 28th IEEE Conference on, pages 1566-1572. IEEE, 1989.

[43] Raman Mehra. On the identification of variances and adaptive Kalman filtering.
IEEE Transactions on automatic control, 15(2):175-184, 1970.

[44] Timothy E Menke and Peter S Maybeck. Sensor/actuator failure detection in
the Vista F-16 by multiple model adaptive estimation. IEEE Transactions on
aerospace and electronic systems, 31(4):1218-1229, 1995.

[45] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[46] Dharmendra S Modha and Yeshaiahu Fainman. A learning law for density esti-
mation. IEEE Transactions on Neural Networks, 5(3):519-523, 1994.

[47] AH Mohamed and KP Schwarz. Adaptive Kalman filtering for INS/GPS. Journal
of geodesy, 73(4):193--203, 1999.

[48] Elizbar A Nadaraya. On estimating regression. Theory of Probability a Its
Applications, 9(1):141--142, 1964.

[49] Yurii Nesterov. A method of solving a convex programming problem with conver-
gence rate O (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372-376,
1983.

[50] T Nishimura. Error bounds of continuous Kalman filters and the application to
orbit determination problems. IEEE transactions on automatic control, 12(3):
268-275, 1967.

[51] Giuseppe Nunnari, Stephen Dorling, Uwe Schlink, Gavin Cawley, Rob Foxall,
and Tim Chatterton. Modelling SO 2 concentration at a point with statistical
approaches. Environmental Modelling & Software, 19(10):887-905, 2004.

90

[52] Kyel Ok, W Nicholas Greene, and Nicholas Roy. Simultaneous tracking and ren-
dering: Real-time monocular localization for MAVs. In Robotics and Automation
(ICRA), 2016 IEEE International Conference on, pages 4522-4529. IEEE, 2016.

[53] Valentin Peretroukhin, Lee Clement, Matthew Giamou, and Jonathan Kelly.
PROBE: Predictive robust estimation for visual-inertial navigation. In Proc.
IROS 2015, pages 3668-3675. IEEE, 2015.

[54] Valentin Peretroukhin, William Vega-Brown, Nicholas Roy, and Jonathan Kelly.
PROBE-GK: Predictive robust estimation using generalized kernels. In Robotics
and Automation (ICRA), 2016 IEEE International Conference on, pages 817-
824. IEEE, 2016.

[55] Sai Manoj Prakhya, Liu Bingbing, Yan Rui, and Weisi Lin. A closed-form esti-
mate of 3D ICP covariance. In Machine Vision Applications (MVA), 2015 14th
IAPR International Conference on, pages 526--529. IEEE, 2015.

[56] Samuel Prentice and Nicholas Roy. The belief roadmap: Efficient planning in
belief space by factoring the covariance. The International Journal of Robotics
Research, 28(11-12):1448-1465, 2009.

[57] Joaquin Quifionero-Candela and Carl Edward Rasmussen. A unifying view of
sparse approximate Gaussian process regression. Journal of Machine Learning
Research, 6(Dec):1939-1959, 2005.

[58] C Radhakrishna Rao. Information and the accuracy attainable in the estimation
of statistical parameters. In Breakthroughs in statistics, pages 235-247. Springer,
1992.

[59] Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

[60] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach.
Artificial Intelligence. Prentice-Hall, Egniewood Cliffs, 25:27, 1995.

[61] Amir Sarajedini, Robert Hecht-Nielsen, and Paul M Chau. Conditional proba-
bility density function estimation with sigmoidal neural networks. IEEE Trans-
actions on neural networks, 10(2):231-238, 1999.

[62] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE
robotics & automation magazine, 18(4):80-92, 2011.

[63] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh Susskind, Wenda Wang,
and Russ Webb. Learning from simulated and unsupervised images through
adversarial training. arXiv preprint arXiv:1612.07828, 2016.

[64] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, loannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484-489, 2016.

91

[65] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556, 2014.

[66] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating uncertain spa-
tial relationships in robotics. In Autonomous Robot Vehicles, pages 167-193.
Springer, 1990.

[67] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research, 15(1):1929-1958, 2014.

[68] Gregory J Stein and Nicholas Roy. GeneSIS-RT: Generating Synthetic Images
for training Secondary Real-world Tasks. arXiv preprint arXiv:1 710.04280, 2017.

[69] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark
for the evaluation of RGB-D SLAM systems. In Proc. IR OS, Oct. 2012.

[70] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning, pages 1139-1147, 2013.

[71] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[72] William Vega-Brown. Predictive parameter estimation for Bayesian filtering.
Master's thesis, Massachusetts Institute of Technology, 2013.

[73] William Vega-Brown, Abraham Bachrach, Adam Bry, Jonathan Kelly, and
Nicholas Roy. CELLO: A fast algorithm for covariance estimation. In Proc.
ICRA 2013, pages 3160-3167. IEEE, 2013.

[74] Halbert White. Parametric statistical estimation with artificial neural networks:
A condensed discussion. From statistics to neural networks: theory and pattern
recognition applications, 136:127, 1994.

[75] Peter M Williams. Using neural networks to model conditional multivariate
densities. Neural Computation, 8(4):843-854, 1996.

[76] Peter M Williams. Matrix logarithm parametrizations for neural network covari-
ance models. Neural Networks, 12(2):299-308, 1999.

[77] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818-833. Springer,
2014.

[78] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE Multimedia Mag.,,
19(2):4-10, 2012.

92

