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1. INTRODUCTION

In this note, we examine the question of the genericity of simultaneous stabil-
izability, strong simultaneous stabilizability, and simultaneous pole assignability. The
principal contribution of this note is to present simple proofs of some previously

known results. In addition, we prove one new result and present some lemmas on

generic greatest common divisors that may be of independent interest.

As is customary, let R(s) denote the field of rational functions with r;eal
coefficients; let R [s] denote the ring of polynomials with real coefficients; and let S
denote the ring of proper stable rational functions with real coefficients. It is known
that R(s) is the field of fractions associated with both R[s] and S. Let M(R (s))
denote the set of matrices (of whatever order) with elements in R(aj; M(R [s])

and M(S) are similarly defined.

Suppose we are given plants P, - - - ,P,€EM(R(s)), all having the same dimen-
sion. We say that these plants are stmultaneously stabdizable if there exists a con-
troller CEM(IR (8)) that stabilizes each plant p;. (The notion of stabilization used
here is that from [1,2].) The plants are strongly stmultaneously stabilizable if there
exists a CEM(S) that stabilizes each p;. The notion of these properties being gen-
eric was first broached in [3,4]. In [3] it was shown that a single plant P of dimen-
sion I Xm is generically strongly stabilizable if max{l,m}>1. In [4] it was shown that
two plants P, P,, each having dimension ! Xm, are generically simultaneously stabil-
izable if max{l,m}>1. This result was extended in [5], where it was shown that a

collection of plants P, - - - ,P,, each having dimenison /Xm, is generically simul-



taneously stabilizable if max{l,m}>r. In the present note, a simple proof is given of
this last result, and it is also shown that generic strong simultaneous stabilizability

holds if max{l/,m}>r; this is a new result.

The definition of simultaneous pole assignability. is a bit messy since each of the
plants may have a diffetrent dynamical order, but the term is essentially sélf—
explanatory. A precise definition is given in Section 5. The only results concerning
this property are in [5], where it is shown that generic pole assignability holds if
max{l/,m}>r, and in addition, an estimate is given of the dynamic order of a con-
troller that achieves it. In the present note, we give a simple proof of this result as

well.

2. PRELIMINARIES

In this section, we define precisely the concept of genericity used here, and state
without proof two results concerning the genericity of coprimeness and of Smith

forms.

Suppose X is a topological space. Recall that R is a binary relation on X if it is a

subset of XXX; more generally, R is an n- ary relation on X if it is a subset of X*.

Definition 1 An n-ary relation R on X is generic if it is an open dense subset of

X" where the latter is endowed with the product topology derived from that on X

In other words, R is generic if it has two properties: (i) If an n-tuple
x = (7, - - - ,z,) satisfies the relation R, then there exists a neighborhood of x
within which every element satisfies the relation. (ii) If x does not satisfy the rela-

tion, then every neighborhood of x contains an element that does.




Now we state two ‘‘well-known’’ result without proof; they can be proved as in
[6, Section 7.6].

Lemma 1 Suppose R is a topological ring with two properties: (i) the singleton

set {0} is closed, and (ii) the set

R = {(a,b): there exist z, y s.t. az+by = 1} (1)

is an open dense subset of R2. If R is also a principal ideal domain, then for any
integers m,n with m<n, the set of matrices in R™>* that have a right inverse in
R™X™ is an open dense subset of R™>*,

An equivalent way of stating the above lemma is as follows: Let R be as above,

and define

R ={A€Rmxn:A~[Im 0}}: (2)

where -~ denotes equivalence. Then R is an open dense subset of R™>*,

To apply Lemma 1 to our specific problems,it is necessary first to topologize the
various sets in question. If f€S, then let

I/ Ils=R§g§°lf(s)l=sgp!f(1w) | (3)

If fER]|s] and f(s) = ij/;s‘, then define
i=0

é
I/ iy = X I/i 1 | (4)
1=
It FES™**, define
IFlls = 3 2 Iy lss- (5)
s g

If FER[s]™*", its norm is defined analogously. In this way, both M(S) and

M(R[2]) become metric spaces. The topology on the set R(s)™*" is the so-called



graph topolégy defined in [7]. To sketch the basic idea, suppose PER(s)™>** and
let (N,D) be any right-coprime factorization (r.c.f.) of P over the ring S; thus
NeS™>* DeS"**. Then a basic neighborhood of P consisfs of all plants
P, = N,D;!, where |[N;= N|s + ||D,~ D |s is less than a given positive number e.
The graph topology is the topology induced by the above base. It can be shown [7]
that the graph topology is metrizable, and is induced by the so-called graph metric.
Basically, in the graph metric, P, is close to P if P, has an r.c.f. thatis close to an

r.c.f. of P.

It is easy to see that both the rings S and R [s], topologized as above, satisfy

the conditions of Lemma 1. Thus we have the following result.

Lemma 2 On both S and R|[s], the mn- ary relation defined in Lemma 1 is

generic.

3. SOME RESULTS ON GENERIC GREATEST COMMON DIVISORS

In this section, we state and prove some results on generic greatest common
divisors in a principal ideal domain, which may also be of some independent interest.
For this reason, the results below are stated in greater generality than is needed for

the present ;Pplica.tion.

Throughout this section, R denotes a principal ideal domain which is at the
same time an algebra over an infinite field K Clearly both S and R|s] satisfy this
condition, with R playing the role of K

Lemma 8 Suppose a,b,c,dER, and that g.cd.{a,b,c,d} =1. If ad- be5%£0,

then




g.cd.{a+bk,ce+dk} =1 (6)
for all but a finite number of values of k€K

Proof Let r = ad- be, and suppose that, for some k€K, (6)does not hold. If
pER is a common divisor of a+bk,c+dk, then p also divides
(a+bk)d-(e+dk)b = r. Thus, whatever be k€K, the only possible common divi-
sors of a+bk,c+dk are the divisors of‘r. Let p;, - - - ,p; denote the distinct prime
divisors of r. We claim that each p; can be a common divisor of a+bk and c+dk
for at most one value of k. This is enough to show th:;t, for all except at most {
values of k, none of the p; divides both e+bk and c¢+dk. This in turn establishes
(6).

To prove the claim, suppose k;7k,, and that

pil(a+bky), p;|(a+bky), p;|(c+dk,y), p;|(c+dksy). (7)
Then subtracting the first two relations implies that p;|(k,— k5)b, ie. p;|b since

ki—ky is a field element. This in turn shows that p;|a. Similarly the last two rela-
tions imply successively that p; |d and p; |c. Since p; divides each of a,b,¢,d, it also
divides their g.c.d., which is 1. But this is absurd, since p; is a prime element.

Hence each p; can divide both a+bk and c¢+dk for at most one value of k.
Lemma 4 Suppose a,b,c,dER, and g.c.d.{a,b,c,d} = q. Then

ged{a+bk,c+dk}=g¢ : (8)
for all but a finite number of values of k€K

Proof Apply Lemma 3 to the collection {a /q,b/q,¢/q,d/¢}, whose g.c.d. is 1.
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Lemma 5 Suppose a;,b;€R for =1, : - - I, and define

q = g.c{.d.{a;, b;}. (9)

Suppose the matrix

a; b,
L (10)
o b
has rank 2. Then
g.c{.d.{a,»+b,‘k} =gq (11)

for all but a finite number of values of k€K

Proof Note that it can be assumed without loss of generality that 5,740 for all i.
To see this, suppose by renumbering if necessary that ;=0 for ¢=1, - - - ;m and

that 4,540 for m<¢<I. Then a;+b;k = q; for all k€K whenever 1<i<m. As a

result,

ig'sc':g'l{airbi} = g'c'd'{ah Tt ’amagf}%l{abbi}}’ (12)
and

%c.:g.l{a,--}-b;k} = g.cd.{a, - - ,am,’§.<c;.ds.la,-+b,-k}}. (13)

Hence, to prove the lemma, it is enough to show that

g.g;%l{a;+b.~k}= '§-<c}ds-,{a.-,b;} (14)
for all but a finite number of values of k€K

The proof is by induction on the integer I. The result is true for /=2, by
Lemma 4. Suppose it is true up to /-1, and suppose by renumbering if necessary

that the matrix




(15)
Gp-1 bm-l

has rank 2. Define

o= g5 lebik (16)

Then, by the inductive hypothesis,

85t fotbik) = q (17)

for all except a finite number of k€K Also, since a,b;70, it follows from Lemma
4 that, for all but a finite number of values of &,
gcd{o,a+bk} =g.cd{a+0k,a+bk}
= g.c.d.{a,q;,b;}
= g.c.d.{q;,b;
lgsc'_s‘{an :}7 (18)
where the last equality follows from (16). Now, by combining (17) and (18) proves

the inductive hypothesis for [.

Lemma 6 Suppose a;,b;€R for 1<i<[,1<j<m, and define

q9 = g'ﬁ'fi'{airbij}' (19)

Suppose that, for some j, the matrix

e; by;
L (20)
o blj
has rank 2. Then
m .
g.c:d.{a;+ Z b,,k,} =4q (21)
t J.'d

for all k = (k,, - - - ,k,)EK™- V, where V is a finite union of linear varieties.




Proof It can be assumed that, for each j, we have b,-ﬁéo for some ¢. Other-

wise, the corresponding kj does not appear anywhere and can be ignored.

The proof is by induction on-the integer m. The result is true when m=1, by
Lemma 5. Suppose it is true for m-1 “‘constants’” k;. To prove the result for m

constants, assume by renumbering if necessary that the matrix

e blm
. (22)
a blm
has rank 2, and select integers 1},i; such that a; b, ,, - ¢ b; ,,7%0. Then
a;, + Z biik; biim
m—l (23)
ai2+ E bs'gjkj bc’,m
7=
equals a; b; .- a;b; ,, plus a linear combination of ky, - -+ kp_q. Let V,,_, denote
the set of (ky, - - - ,k,_,;) where this quantity equals zero. Then V,,_, is a linear

variety in K™~ !, and it is not all of K™~ ! since the origin in K™ ! does not lie in
V,._;. Hence V,,_, is a linear variety in K™ ! of dimension at most m-2. Next, by

Lemma 5, we have, whenever (ky, - - - ,k,_1)€V,,_, that
§.<f:'g {[a + E bthJ]+bzm m}

= %f‘d {o;+ E biiksbim} (24)
for all except a finite number of values of k,. Of course, the number and values of
these exceptional k,, can depend on (ky, - - - ,k,_;). Now, what is the value of the

g.c.d. on the right side of (24)? By the inductive hypothesis, for almost all
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(kyy ** - yky), this g.c.d. equals

,b;,"',bim
Sﬁ,gl{ax 1 } (25)

provided that, for some j, the matrix

[a, bqu

e by
b, O (26)
bim O ]

has rank 2. But this rank condition is easily verified. Select an arbitrary j, say j=1.
Then b;;70 for some integer ¢, and b,,, 70 for some integer n (recall the first para-

graph of the proof). Then

6 b,
bnm 0 =- bilbum#o' (27)
Thus it has been shown that, for almost all k = (k,, - - - ,k,), (21) holds.

It only remains to show the exceptional set V is a finite union of linear varieties.
This is most easily done as follows. Suppose that, for a particular choice ko€ K™, the

condition (21) fails to hold. Then (21) also fails for all k€ K™ such that

m m
a;+ E buk; = a;+ E b.'jkjo, for all s, (28)

j=1 i=i
which defines a linear variety in K™. Thus V is certainly a union of linear varieties.
It is a finite union because, from (24), the projection of V along each coordinate axis

consists of only a finite number of points.

Since both S and R [s] are algebras over the infinite field R, Lemmas 3-6 apply

to these rings. In addition, since there is also a topology on these rings, Lemma 6
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can be strengthened.
Lemma 7 Suppose R is either S or R|[s]. Suppose e, b;ER for
1<i<!,1<j<m, and define ¢ as in (19). Finally, suppose that for some j the

matrix in (20) has rank 2. Under these conditions, the set S of elements

v=(vy, - ' ,v,)ER™ with the property that
gcd.{a;+Y b;v,}=¢ (29)
] Jaﬂ

is an open dense subset of R™.

Proof With ¢ as in (19), we have that for almost all vE R™,

S-c';d-{a;bn”l, o bimtm} =g (30)
Similarly, for almost all v, the matrix
ay byv,

S (31)
a; b,jvj

has rank 2 if the matrix of (20) has rank 2.

In proving the lemma, the openness of the set S defined by (29) is obvious,
and only the denseness requires some effort. Suppose (29) does not hold for some
vER™. We will construct a sequence in S converging to v. First, select a sequence

{v{*)} converging to v such that

ged{ai,biof"), -+ bimoi} = g forall m, (32)
a, b,jv{") :

rank | - = 2 for all n. (33)
a bljv](“)

Then, by Lemma 6, for each n there is a sequence of real m-tuples k(*P)
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converging to (1, - - -+ ,1) such that

g.c:d.{a;+§ b,-J-vJ(')k}"P)} = q for all p. (34)
$ jd

Finally, the sequence {k{"')v}')',‘ < ,k,&"")v,s")} lies in S for all n and converges

to v. Hence S is dense.

4. GENERIATY OF SIMULTANEOUS STABILIZABILITY

In this section, we show that, given a collection of plants Py, - - - ,P,€R (s)'*™,
simultaneous stabilizability is generic if r<max{l/,m}, and strong simultaneous sta-
bilizability is generic if r<max{/,m}. In both cases, the set R (s)!X™ is topologized
via the graph topology of [7]. The first result was proved in [5], but the present

proof is simpler; the second result is new.

Theorem 1 Suppose I,m are given positive integers, and equip the set R (s)!>™
with the graph topology. Let r be a positive integer, and define the r-ary relation R
on R (s)'*™ by

R ={Py, - ,P): P, - P, are simultaneously stabilizable }. (35)

Then the relation R is generic if r<max{l,m}.

The proof of the theorem is divided into two parts. First, it is shown that the
result is true in the case where min{l,m} =1, i.e. the case where all plants are
either single-input or single-output. Then it is shown that the general case can be

reduced to this special case.

Lemma 8 Suppose min{l,m} = 1. Then the relation R defined in (35) is gen-

eric if r<max{l,m}.
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Proof The proof is given for the case where | = 1 and r<m; the case m =1

and r<lI can be treated by taking transposes, i.e. by noting that C stabilizes P if

and only if C’ stabilizes P'.
Given plants Py, - - - ,P,, each of dimension 1Xm, find left-coprime factoriza-
tions (Lef.'s) (d;,N;) of P; for i=1, - - - ,r. Define the matrix Q€S"Xm+1) py
d; N,
Qe=1|. | (36)
d, N,

Let CER(s)™* be a controller, and let ([b,...b,,]’,¢) be an r.c.f. of C. Then by
[1,2] the controller C stabilizes each of the plants P; if and only if each of the return

differences u; defined by

(4]
Uy bl
L|=e|: (37)
M
is a unit of the ring S. Turning this argument around, the set of plants {P,, - - - |P,}
is simultaneously stabilizable if and only if there exist units u;, f=1, - - - | r such that
(37) has a solution in M(S) for the unknowns a,b, - - - ,b,, where the first ele-

ment (¢) is nonzero. Now, if r<m, the matrix @ has more columns than rows.
Hence, by L;zmma 2, @ is generically right-invertible. That is, if @ is not right-
invertible, it can be made so by an arbitrarily small perturbation in each of its ele-
ments, which is precisely the same as slightly perturbing each of the plants P; in the
graph topology. Thus by slightly perturbing each of the plants if necessary, we can

ensure that (37) has a solution in M(S), whatever be the left side. In particular, one
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can choose Any arbitrary set of units {u;, - - - ,%,}, and (37) has a Solution in M(S).
The only additional point to be worried about is that the first element of this solution
(corresponding to a) should be nonzero so that C is well-defined. But this too can
be guaranteed by perturbing the units slightly if necessary. The details of this argu-

ment are routine and are left to the reader.

The next step is to reduce the multivariable case to the case of single-output

plants.

Lemma 9 Suppose l,m are given positive integers, and let PER (s)'*™. Let
(N,D) be an r.c.f. of P over S. Under these conditions, the set of vER' such that

vN,D are right-coprime is generically an open dense subset of R*.

Proof As always, the openness is obvious and only the denseness needs a proof.
Let n(!), - -+ n(!) denote the rows of the matrix N. By Lemma 2, by slightly per-
turbing the matrices D and N if necessary, we can ensure that the Smith form of the

matrix

D
Mi=1 (38)

is [1,, 0}’ for all 5. In other words, this means the g.c.d. of |D | and of all minors of

the m Xm minors of the matrix

M= [f,] (39)

involving exactly one row of N is equal to 1. Now, if vis a 1 X! vector, then D and

vN are right-coprime if and only if the g.c.d. of all m Xm minors of the matrix
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-3
is equal to 1. We show that this is generically the case for almost all veR'. Now
the matrix Q has dimensions (m+1)Xm, as do the matrices M; defines in (39).
Moreover, since the determinant function is multilinéar, a minor of @ involving the
last row cé.n be expressed as a linear combination of the corresponding minors the
various M;. To be precise, let g; denote the minor of @ obtained by omitting the i-
th row of the matrix D, and define m;; to be the minor of M; obtained by omitting

its 1-th row. Then

l
g = Y myv;. (41)
J=d
Since the Smith form of M; is [I,, 0], it is true that
cd{|D]|m.}=1.
Bes {ID |, m;} (42)
Hence, if the rank condition of Lemma 6 is satisfied, it follows that, for almost all

vectors vER ', we have

g-cjd{lD lg;} = 1. (43)
To complete the proof it only remains to verify that the requisite rank condition
is satisfied generically. Since P = ND-!, it follows from Cramer’s rule that the
minor m; equals + p;;|D | Now the rank condition of Lemma 6 requires that, for

some j, the matrix
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I

Dl 0 (44
0 py;ID]

| 0 Pmj |D |J

bas rank 2. But this is true provided p;;740 for some i,4, i.e. if P5£0.

The significance of Lemma 9 is in showing that, generically, a multivariable
plant can be stabilized using a rank one controller. Suppose P is a given multivari-
able plant with an r.cf. (N,D), and suppose one can find a vector v such that vN,D
are right-coprime. Then one can find a pair of elements (a,B)EM(S) such that
avN+BD = I. Note that a is a column vector. The Bezout identity above implies
that the controller B~1av stabilizes the plant P. Hence one can stabilize the plant P
using a rank one controller if one can find a vector v such vN,D are right-coprime.
Lemma 9 states that generically such a vector always exists, and that generically

almost any vector v will do.

Note that the only property of the ring S used in the above lemma is that gener-
ically a rectangular matrix has a one-sided inverse. Thus Lemma 9 is valid over any

ring satisfying the conditions of Lemma 1.

With the aid of Lemma 9, the proof of Theorem 1 can be completed.

Proof of Theorem 1 If min{l,m}=1, then the truth of the theorem is established
by Lemma 8. If not, suppose without loss of generality that /<m,r<m; the case

{>m,l>r can be handled by taking transposes. Let (N;,D;) be an r.cf. of F;, for

t=1,--,r. Then, for each fixed ¢, the set of v such that vN; D; are right-
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coprime is an open dense subset of R’ Moreover, since the intersection of a finite
number of such sets is again open and dense, it follows that the set of v such that
VvN;,D; are right-coprime for all 1is also an open dense subset of R'. Let Q, denote
the 1Xm plant vP;. By Lemma 1, generically there is a common stabilizing con-
troller C; for the collection_ @y ' ,@,. Now let C = C,v; then C stabilizes each

of P, " ,P,.

The advantages of the present proof over that in [5] are: (i) it is simpler, and

(ii) it suggests a constructive procedure for finding a common stabiizing controller.

It is shown in [4] that the problem of simultaneously stabilizing r plants is
equivalent to that of simultaneously stabilizing r- 1 plants using a stable controller.
Thus, in view of Theorem 1, it is natural to conjecture that r plants of dimension
I’ Xm are generically strongly simultaneously stabilizable if r<min{l,m}. This is in

fact true.

Theorem 2 Suppose I,m are given positive integers, and equip the set R (s)!>"

with the graph topology. Define an r-ary relation on R (s)'*™ by

= {(Py, ' - - ,P,) that are strongly simultaneously stabilizable }. (45)
Then R is generic if r<max{l,m}.

Using Lemma 9, it is possible to restrict attention to the case where
min{l,m}=1. Suppose I=1,m>r; the other case can be handled by taking tran-
sposes.

As shown in [4], the plants P,, - - - P, are stronlgly simultaneously stabilizable

if and only if the r+1 plants Py=0,P,, - - - ,P, are simultaneously stabilizable. As
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before, let (E;,N,-) be any l.c.f. of P; over S, and define

1
d, N
S = :l :l = [l Q o}es('“)xi"*“). (46)

.

dr N, |
Now by Lemma 2, the matrix @ is generically right-invertible if r<m. It is a simple

matter to verify that S is right-invertible if @ is. Finally, if S is right-invertible,
then 0,P,, - - ,P, are simultaneously stabilizable, whence P,, - - - | P, are strongly

simultaneously stabilizable.

6. GENERIC POLE ASSIGNABILITY

In this section, we give a simple proof of a result from [5] concerning generic
simultaneous pole assignability. In order to prove the main result, it is necessasry
first to define the concept of characteristic polynomials. Suppose PEM(R (s)); then
the characteristic polynomsal of P is the monic least common multiple of the denomi-
nators of the various minors of P. Alternatively, factor P as ND“=§‘1N, where
N,D are right-coprime matrices in M(R [s]), and N,D are left-coprime matrices in
M(R|[s]); then (within a nonzero constant) |D| and |D | are both characteristic
polynomials of P. If P is proper, it is possible to give yet another equivalent
definition. Let (A,B,C,E) be a minimal realization of P; then |s/-A| is the
characteristic polynomial of P.

Note that hereafter all factorizations are over the ring of polynomials R [s]; this

is in contrast with earlier sections where all factorizations are over the ring S of

stable rational functions.
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Considef now a feedback interconnection of a plant P and a controller C. If
[I+PC | # 0, then the interconnection is well-posed, and the characteristic polyno-
mial associated with the closed-loop transfer matrix is denoted by ¥(P,C). Alterna-
tively, let (D,,N,) be a left-coprime factorization of P, and let (N,,D,) denote a
right-coprime factorization of C. Then, within a nonzero constant,
Y(P,C)=|D,D, + N,N,|. Further, suppose P is strictly proper and that C is
proper, and suppose without loss of generality that Ibp |, |D, | are both monic. Then
¥(P,C) equals [D,D, + N,N,|.

Now we can define simultaneous pole assignability. Given a collection of strictly
proper plants Py, - - - ,P,, let n; denote the McMillan degree of P;. Then the collec-
tion of plants is stmultaneously pole assignable if there exists an integer ¢ such that,
given any set of monic polynomials ¢,, - - - ,¢, with degrees deg (¢;)=n,;+¢, there

exists a controller C such that ¢(P;,C)=¢; for all 1.

Theorem 8 Suppose the plants P; has dimension ! Xm and McMillan degree n,,
for ¢=1, - - - ,r. Then simultaneous pole assignability is generic if max{l,m} > r.
Moreover, generically the integer ¢ in the above definition can be any integer that

satisfies

r

g[max{l,m} - r+1] > ¥ n; - max{l,m}. (47)
il

Proof The proof hinges on two generic properties of polynomial matrices, apart

from that in Lemma 2. First, generically a square matrix is column proper. Second,

generically the highest column (or row) degrees of a matrix are all nearly equal.

That is, if AER[s]* and deg |A |=6, then generically all the column degrees of A




will equal & /k if k divides § exactly. If k does not divide 6 exactly, let 3 denote the
integer part of §/k, and let a denote émodk; then generically a columns of A will

have degree S+1 while the rest will have degree S.

As in Section 4, we first deal with the case where min{/,m}=1. If this is not
true, then Lemma 9 can be applied to convert the problem to this case. (Observe
that the validity of Lemma 9 is not affected if N,D are polynomial matrices.)
Accerdingly, suppose I=1,m > r, and let (g;,B;) be an l.c.f. of P;,, with a; monic.
Note that a,cR [s], B,€R[s]'*™. Form the matrix

¢, B

Q=|: - |eR[s]™Xm+), (48)
a, B,

If r < m, then generically @ has a right inverse. Thus, given any set of monic poly-

nomials ¢, * - - ,4,, generically there exist zER[s], YER [s]™ > such that
[z ]
Y ¢.1
ol = (49)
gm] L7

So if we define C=Yz !, then we would have achieved the desired simultaneous

pole assignment, provided C is proper.

The proof is completed by showing that if (47) holds, then generically the above
C is proper. For this purpose, we make the following claim: If deg (¢;)=n;+¢q, deg
rz=q, deg (y;) < ¢q for s=1, - -- ,m-r, and z is monic, then generically C is

proper. To prove this claim, let
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1(8)
P(s)=| + [eR(s)™>"=[P() PO}, (50)
F,(s)
where P(2€R (8)". Since P is-strictly proper, its Laurent series is of the form
P(s)=Pys~' + - - - ' (51)
Partition Py as [Py, Pgs] where Pg,€ R ™. Then generically [Py, |5%40. Now multi-
ply both sides of (49) by the diagonal matrix Diag{(a,z)"?!, - - - ,(¢,2)"1}. This
leads to
1 1/,

|+ P(s)Cle)=] - | (52)
1 .Ja.z

Now note that deg ¢,=deg a;+deg z, and that all polynomials are monic. Hence
¢;/a;z is proper and has the value 1 when s==co. Using this fact in (52) shows that
PC is strictly proper, i.e. that PC(oo)=0. Partition C as [C; C,], where
C,€R(8)™. Then C, is proper, by the hypothesis that deg y < ¢ for
t=1, - -+ ,m-r, whence P“)C, is strictly proper. Since PC’=P“)C’1 + P(Z)Cz, we
see that P(2) C, is also strictly proper. Now, suppose by way of contradiction that C,
is improper. Then the Laurent series of C, contains a term of the form Coqs',
where C9,70 and ¢ is a positive integer. Since |Pyq|5£0, it follows that Py, Cgy50,

so that P(2?) C, is not strictly proper. This contradiction shows that C, is proper.

In order to complete the proof, it is shown that if (47) holds, then generically
ope can always find z,Y satisfying (49) such that z is monic, deg z < ¢, deg
y; < ¢ for i=1, - - - ,m-r. Let Z,Y be any particular solution of (49) correspond-

ing to a given set of polynomials ¢,, - - - ,¢,. Then the general solution of (49) can




be written as follows: Let p denote m-r+1, and select FER[s]*>, GER[s]™>

such that

' a
oo [ .

where ~ denotes equivalence. Then the general solution of (49) is

1]

where ay, - - - ,a,ER[s] are arbitrary. The proof consists of showing that the o,’s

can be chosen such that deg z=¢ and z is monic, and deg y, < ¢ for

Partition Q@ as [Q, @,] where Q,ER|[s]"™. Then generically |Q,|40 and
@, @, are left-coprime, in which case (G,F) is a right-coprime factorization of
@5 'Q,. In particular, deg |F |=deg |@,| Since each plant P is strictly proper, each

element of the i-th row of @, has degree no larger than n,—1. Hence generically

deg |F |=deg |Q, |=i:(n,-— 1)=N-r, where N denotes in,-. Now we consider two
i=d i=l

cases: (a) p divides N- r+l,. and (b) p does not divide N-r+1. In the former case,
generically the matrix F is column proper, and the column degree of each column is
(N-r+1)/p = : k, except for the first column whose degree is k- 1. By multiplying
F on the right by a unimodular matrix if necessary (which can be absorbed into the
free parameters oy, - - - ,a,), we can assume that F is already in Hermite form.
Thus f,; has degree k-1 and f; has degree k for all 1 > 2. Now, we proceed

sequentially as follows: First, by Euclidean division, choose a, such that deg




(- ,+f’pa;)‘ < deg f,,=k. Next, choose @, ,; such that deg
(Tmer1HS p-1,0@p+  po1,p-19,-1 < deg (f,_y,.;=k. In this way, choose
ay, -+ * ,a, such that deg (y;, - - ‘2 ¥m-r) £ k-1. Then, by the claim above, gener-
ically C=Yz~! is proper with McMillan degree g=k- 1. Finally, choose a, such that
deg z=k-1 and such that z is monic; this can be done since f,; is k- 1. In case
(b), suppose p does not divide N- r+1, and let k denote the integer part of the frac-
tion (N-r+1)/p. Then the first several column degrees of F can be assumed to be
k, while the rest are k+1. By an argument similar to the above, C=Yz"! is generi-

calfy proper with McMillan degree g=k. In case (a), we have

qZ_IX:__v_'_-i_-_l__1=N——r+l—p=N—m, (55)
P P P
pg 2 N-m. (56)

In case (b), we have that p(g+1) > N-r+1, since g=k is the integer part of
(N-r+1)/p. This again leads to the same inequality (56), which is the same as (47)
when min{/,m}=1.

We have thus proved the theorem for the case when =1, m > r. If [ > 1, we
can invoke Lemma 9 to find a constant row vector v such that (vN;,D;) are right-
coprime for =1, - - - ,r, where (N;,D;) is a right-coprime factorization of P;. Then

we apply the foregoing result.

8. CONCLUSIONS

In this paper, we have derived some results concerning the genericity of simul-
taneous stabilizability, simultaneous strong stabilizability, and simultaneous pole

assignability. The results in the first and third category are already known [5], but
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the present proofs are simpler. The result concerning simultaneous strong stabiliza-
bility is new, and as far as we are able to determine, cannot be derived using the
methods of [5]. In addition, we .have presented some lemmas concerning generic

greatest common divisors which may be of some independent interest.

In contrast with [5], the proofs here are formulated in input-output setting,
without recourse to state-space realizations. As a consequence, the proofs given
here suggest simple procedures for the computation of a common controller that
achieves the desired property. These procedures are actually quite numerically
robust, and have been applied with success to the design of reliable controllers for a

jet engine. These results will be reported elsewhere.
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