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Abstract

Natural gas is one of the world's leading sources of fuel in terms of both global
production and consumption. The abundance of reserves that may be developed
at relatively low cost, paired with escalating societal and regulatory pressures to
harness low carbon fuels, situates natural gas in a position of growing importance
to the global energy landscape. However, the nonuniform distribution of readily-
developable natural gas sources around the world necessitates the existence of an
international gas market that can serve those regions without reasonable access to
reserves. International transmission of natural gas via pipeline is generally cost-
prohibitive beyond around two thousand miles, and so suppliers instead turn to the
production of liquefied natural gas (LNG) to yield a tradable commodity. While the
production of LNG is by no means a new technology, it has not occupied a dominant
role in the gas trade to date. However, significant growth in LNG exports has been
observed within the last few years, and this trend is expected to continue as major
new liquefaction operations have and continue to become operational worldwide.

Liquefaction of natural gas is an energy-intensive process requiring specialized
cryogenic equipment, and is therefore expensive both in terms of operating and cap-
ital costs. However, optimization of liquefaction processes is greatly complicated by
the inherently complex thermodynamic behavior of process streams that simultane-
ously change phase and exchange heat at closely-matched cryogenic temperatures.
The determination of optimal conditions for a given process will also generally be
nontransferable information between LNG plants, as both the specifics of design (e.g.
heat exchanger size and configuration) and the operation (e.g. source gas composi-
tion) may have significantly variability between sites. Rigorous evaluation of process
concepts for new production facilities is also challenging to perform, as economic ob-
jectives must be optimized in the presence of constraints involving equipment size
and safety precautions even in the initial design phase. The absence of reliable and
versatile software to perform such tasks was the impetus for this thesis project.

To address these challenging problems, the aim of this thesis was to develop new
models, methods and algorithms for robust liquefaction process simulation and opti-
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mization, and to synthesize these advances into reliable and versatile software. Recent
advances in the sensitivity analysis of nondifferentiable functions provided an advan-
tageous foundation for the development of physically-informed yet compact process
models that could be embedded in established simulation and optimization algorithms
with strong convergence properties. Within this framework, a nonsmooth model for
the core unit operation in all industrially-relevant liquefaction processes, the multi-
stream heat exchanger, was first formulated. The initial multistream heat exchanger
model was then augmented to detect and handle internal phase transitions, and an
extension of a classic vapor-liquid equilibrium model was proposed to account for
the potential existence of solutions in single-phase regimes, all through the use of
additional nonsmooth equations.

While these initial advances enabled the simulation of liquefaction processes under
the conditions of simple, idealized thermodynamic models, it became apparent that
these methods would be unable to handle calculations involving nonideal thermo-
physical property models reliably. To this end, robust nonsmooth extensions of the
celebrated inside-out algorithms were developed. These algorithms allow for challeng-
ing phase equilibrium calculations to be performed successfully even in the absence
of knowledge about the phase regime of the solution, as is the case when model pa-
rameters are chosen by a simulation or optimization algorithm. However, this still
was not enough to equip realistic liquefaction process models with a completely reli-
able thermodynamics package, and so new nonsmooth algorithms were designed for
the reasonable extrapolation of density from an equation of state under conditions
where a given phase does not exist. This procedure greatly enhanced the ability of
the nonsmooth inside-out algorithms to converge to physical solutions for mixtures
at very high temperature and pressure.

These models and submodels were then integrated into a flowsheeting framework
to perform realistic simulations of natural gas liquefaction processes robustly, effi-
ciently and with extremely high accuracy. A reliable optimization strategy using an
interior-point method and the nonsmooth process models was then developed for com-
plex problem formulations that rigorously minimize thermodynamic irreversibilities.
This approach significantly outperforms other strategies proposed in the literature or
implemented in commercial software in terms of the ease of initialization, convergence
rate and quality of solutions found. The performance observed and results obtained
suggest that modeling and optimizing such processes using nondifferentiable models
and appropriate sensitivity analysis techniques is a promising new approach to these
challenging problems. Indeed, while liquefaction processes motivated this thesis, the
majority of the methods described herein are applicable in general to processes with
complex thermodynamic or heat transfer considerations embedded. It is conceivable
that these models and algorithms could therefore inform a new, robust generation of
process simulation and optimization software.

Thesis Supervisor: Paul I. Barton
Title: Lammot du Pont Professor of Chemical Engineering
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Chapter 1

Introduction

This thesis develops and demonstrates the efficacy of a new paradigm for the simula-

tion and optimization of natural gas liquefaction processes. Moreover, while liquefac-

tion processes have been the motivation and primary examples for this body of work,

the majority of the methods described in this thesis are in fact applicable to many

other processes that have complex thermodynamic and heat transfer considerations

embedded. In summation, this work represents the first concerted effort in model-

ing and optimizing chemical processes using nondifferentiable models in conjunction

with exact sensitivity analysis techniques, and the results herein suggest that this is

a viable and efficacious approach that could become the foundation for a new, robust

generation of process flowsheeting software. The contributions of this thesis include

a new nonsmooth model for multiphase multistream heat exchangers, robust non-

smooth algorithms for vapor-liquid equilibrium (VLE or "flash") calculations even

at extreme conditions and a simulation and optimization framework that integrates

these nonsmooth modeling elements in order to solve complex liquefaction process

flowsheeting problems reliably. The majority of the material that appears in this the-

sis has been either submitted for publication or published in peer-reviewed journals.

This introductory chapter elaborates upon the motivation, novelty, objective, scope,

structure and contributions of this thesis.
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1.1 Project motivation

Natural gas is the third-most consumed energy source in the world, ranking behind

only oil and coal and far ahead of all remaining sources (nuclear, renewables, hy-

dropower, etc.) combined.18 While new technologies continue to prolong the age of

oil's dominance as a fuel source, global production of coal has decreased substantially

in recent years, due both to the increasing availability of natural gas and in response

to societal and regulatory pressures to shift towards cleaner, lower carbon fuels. Nat-

ural gas, it therefore seems, is poised to be a major source of global energy for the

foreseeable future. However, growth of the international gas trade highlights a key

issue with the transportation of natural gas - namely, that it is in a gaseous state at

ambient conditions. Liquefaction processes are therefore necessary to produce lique-

fied natural gas (LNG), so that large volumes of fuel can be delivered economically

across long distances. Such processes require energy-intensive refrigeration over a wide

temperature range, including at cryogenic temperatures. Naturally, this translates to

processes with both high capital investment costs and significant operating costs.

Optimization of both the design and operation of liquefaction processes is therefore

necessary, and rigorous, accurate methods for such problems are highly coveted.

While traditional liquefaction plants, located onshore and with high capacity, are

typically optimized with the goal of improving throughput or energy efficiency and

thus improving profit margins, recent interest in new process concepts, especially for

remote gas production and floating operations, mean that objectives and constraints

related to compactness, environmental impact, safety, and flexibility may also factor

into optimal design and operation problems. As such, a versatile and reliable frame-

work for the optimization of these process concepts is needed. As an additional chal-

lenge, the composition of natural gas also varies quite dramatically between sources

worldwide, such that the optimal conditions for a liquefaction process that is designed

and optimized for LNG production in, say, northern Norway are likely to be subopti-

mal (or even entirely unusable) for LNG production in the continental United States.

In addition, the quality of natural gas entering a liquefaction plant can potentially
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change on a temporal basis, both in the long term as the act of gas production itself

impacts the source over time, and in the short term due to disturbances or equipment

train reassignment. In all cases, the need for optimization methods that can deter-

mine operating conditions to match specific process conditions is critical, and in the

latter cases it is important that these methods are able to perform flexibly, reliably

and efficiently.

A basic example of a liquefaction process to visualize throughout this exposition

is the Polyrefrigerated Integrated Cycle Operations (PRICO) process7 " that is shown

in Figure 1-1. In the PRICO process, pressurized, preconditioned natural gas feed at

Throttle valve Liquefied
natural gas

Low pressure
refrigerant

Multistream
heat exchanger

Compresor High pressure
refrigerant

Natural gas

Seawater cooler

Figure 1-1: An example of a simple natural gas liquefaction process.

ambient temperature enters a multistream heat exchanger (MHEX), and exits as a

subcooled liquid, the LNG product. In a process such as PRICO that, in the present

day, is used for small-scale production, this heat exchanger is usually a plate-and-

fin type exchanger, while larger scale and more complex processes will most often

usef spiral-wound heat exchangers with strictly proprietary (and often customized)

internal configurations. 48 After liquefaction, the LNG product may be re-expanded

to a lower pressure as necessary for storage and transport. The necessary cooling is

provided by a refrigerant mixture consisting of nitrogen and light hydrocarbons. This

mixture is cooled and partially liquefied in a condenser that rejects heat to a large sink
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such as seawater before entering the MHEX. In the exchanger, it is cooled to the same

temperature as the LNG product, then exits to be expanded adiabatically through a

throttle valve to a lower pressure. This expansion further lowers the temperature of

this stream, which is fed back to the heat exchanger to provide refrigeration for the

other streams, which is possible because the expansion to low pressure substantially

increases the heat capacity of the refrigerant stream. The low-pressure evaporated

refrigerant then exits the MHEX and is compressed to restart the cycle. The PRICO

process may therefore be viewed as a traditional vapor compression refrigeration cycle

that absorbs and removes heat from the natural gas stream. Further details about

liquefaction plants and other process concepts are given in the next chapter, and

the PRICO process itself is studied in many examples throughout this thesis. Note

that while this process appears quite simple on initial inspection due to the lack

of chemical reactors or multistage separation trains, the underlying thermodynamic

considerations for streams simultaneously exchanging heat and changing phase at

closely-matched cryogenic temperatures lead to complex process models and imply

complicated economic trade-offs that preclude straightforward design and evaluation.

Accordingly, rigorous thermodynamic models are required to ensure realism and fea-

sibility of the process design or operating state, further complicating simulation and

optimization problems involving liquefaction.

The most important and challenging unit operation to model in such a process is

the multiphase multistream heat exchanger. However, none of the widely-used process

simulation software suites include rigorous simulation-based models for this critical

unit operation. Running simulations of the PRICO process in software such as Aspen

PlusO or Aspen HYSYS® often involves a trial-and-error strategy due to the models

being overconstrained and therefore unable to guarantee satisfaction of the second law

of thermodynamics. This means that many parameter combinations chosen by the

user will result in infeasible heat transfer at the model "solution", with no feedback

given as to how to specify more reasonable conditions. Furthermore, the optimization

routines in these commercial products usually consist of a local optimization method

for smooth nonlinear programs (usually based on the sequential-quadratic program-
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ming (SQP) method) that acquires local sensitivity information about the flowsheet

outputs by perturbation of the inputs in a finite-differencing scheme. As will be shown

in this thesis, these processes are truly described by inherently nonsmooth behavior

and the performance of optimization and simulation algorithms are highly sensitive

to inaccuracies in derivative (or generalizations thereof) evaluation. As such, a key

element that sets the work detailed in this thesis apart from all of the existing litera-

ture on the topic of liquefaction process optimization is the use of nonsmooth models

and exact sensitivity analysis methods in the constituent flowsheet units. Nonsmooth

or nondifferentiable models have experienced somewhat niche usage within the pro-

cess systems engineering (PSE) community until very recently, despite their many

applications and benefits that will become apparent in the course of this thesis.

However, the use of nonsmooth models is by no means the only method for simu-

lating and optimizing liquefaction processes. Many frameworks for process and system

modeling have been proposed and championed in the PSE literature over the course

of the past 40-50 years that can and have been applied to such problems. Each of

these approaches fall somewhere on a spectrum that represents a level of trade-off

between applicability and ease of formulation and solution, as shown in Figure 1-2.

Differentiable models Nonsmooth models Discrete-continuous models

Limited Broad (near) Universal
applicability applicability applicability

Easy to model and Easy to model and Often challenging to
solve (recently) solve model and solve

Derivative saGeneralized Sys te . ering.
information a derivative decini b dfferatie

. I ~~information momto
No auxiliary
variables and _ No auxiliary ., Many auxiliary

equations |variables and | variables and
equations equations

Smooth approximation models Complementarity models

Increasing applicability>

Inceasng aseof odeling & solving

Figure 1-2: Modeling strategies in Process Systems Engineering.

For those problems that can be completely described by differentiable (smooth)
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models, doing so is virtually always the best approach. The majority of efficient

algorithms for equation solving and optimization exploit derivative information to

achieve robust and rapid convergence to solutions. Such algorithms show the benefits

of many decades of research, having been studied and modified continuously through-

out, resulting in highly reliable methods and implementations thereof. Unfortunately,

not all PSE problems can be modeled in this framework, and natural gas liquefaction

processes are one such example of this.

The next-most widely used modeling archetype is the far more applicable (nearly

universally so) discrete-continuous framework. In terms of steady-state process opti-

mization, there are two main types of discrete-continuous problems. The first of these

are superstructure formulations, in which many (or all) of the alternative configura-

tions for a proposed system are explicitly modeled and then the optimizer chooses

the optimal configuration or design. Most relevant to this thesis, this formulation

is commonly used for heat exchanger network synthesis. Other applications abound

however, including process synthesis, reactor network design and separation train se-

quencing. A comprehensive description of superstructure models may be found in e.g.

Grossmann et al.4 The other major type of discrete-continuous model used in chem-

ical engineering applications is known as a generalized disjunctive program. In these

models, subsets of the problem constraints are either active (enforced) or ignored de-

pending on the values taken by discrete decision variables that are implied by logical

propositions (or reformulations thereof). Generalized disjunctive programming has

been used for many of the same problem archetypes as the superstructure method-

ology, in addition to finding use in the simulation and optimization of multiphase

equilibrium systems, which will be further explored later in this thesis. The reader is

referred to the article by Grossmann and Trespalacios 45 for a detailed survey of these

methods. Both of these archetypes are formulated as mixed-integer programs, which

can be reasonably simple to solve if the remaining continuous constraints are linear

or affine, but potentially very difficult to solve otherwise. These latter mathematical

programs are known as mixed-integer nonlinear programs (MINLPs) and pose many

challenges to optimization algorithms, particularly if the nonlinear functions are also
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nonconvex. In all cases, a global optimization algorithm is required to solve a mixed-

integer problem, which are conjectured to have worst-case exponential complexity

in the number of variables. Such models are also prone to exhibiting pathological

behaviors during the solution procedure that are difficult to exclude a priori. How-

ever, for describing truly discrete or discontinuous model behavior, such formulations

are the only viable approach. Fortunately, the thermodynamic regime changes and

heat transfer considerations that must be included in a framework for simulating or

optimizing liquefaction processes need not be modeled in this way, for in actuality,

these are continuous (yet nondifferentiable) transitions and phenomena. Neverthe-

less, the discrete-continuous approach is the predominant modeling philosophy for

such problems in the literature.

In the comparatively-unexplored middle ground between the previous categories

sits the nonsmooth modeling paradigm. Modeling with nonsmooth functions has

traditionally been avoided because the classic measure of local sensitivity, the deriva-

tive, is undefined for those points at which a nonsmooth function instantaneously

and discontinuously changes slope. This behavior defeats most of the aforementioned

established methods for equation solving and optimization. However, notions of "gen-

eralized derivatives" and numerical methods that can exploit such information have

existed in the literature for some time, though until very recently, these objects have

remained impractical to compute. However, owing to the recent advances in au-

tomatable nonsmooth sensitivity analysis by Khan and Barton,6 4 described in detail

in Chapter 2, nonsmooth equations now represent essentially no greater challenge

than do smooth equations, at least for the purposes of equation-solving problems

(algorithms for reliable nonsmooth optimization remain somewhat in their infancy).

As will be demonstrated throughout this thesis, this enables the development of com-

pact equation-based models for complex systems that would otherwise be modeled as

challenging, large-scale MINLPs.

As indicated in Figure 1-2, there are other strategies that attempt to balance

some of the tradeoffs between the previously mentioned approaches, notably to avoid

tackling nonsmoothness directly. As the name implies, smooth approximation models

25



represent an attempt to relax the nonsmoothness in a model by replacing nondifferen-

tiable terms with smooth ones that exhibit similar behavior. The article by Gopal and

Biegler gives an overview of the applications of smoothing methods in the context

of PSE calculations. Complementarity constraints, on the other hand, recast nons-

mooth problems in an optimization context and generally also use approximations to

yield nonlinear programs that are solvable with established techniques. Baumrucker

et al.1 4 provide an overview of complementarity-constrained mathematical program-

ming for chemical engineering applications. A concrete illustration of these different

modeling approaches is now given in the context of a simple unit operation model.

Example 1.1. Consider the model of a one-way (check) valve in a process. The

flow, F, through the valve is related to the pressure difference across the valve, AP,

and for the purposes of this simple example, assume this relationship is described

by a locally Lipschitz function f : R -÷ R that returns positive values when the

pressure difference is positive, negative values when it is negative, and zero when

AP = 0. However, a check valve closes when the pressure difference across the valve

is negative to prevent reversal of flow direction. Using nonsmooth functions, this

continuous switching behavior is very simply modeled with the following equation:

F = max (0, f(AP)).

The mechanism of the equation is obvious by inspection, it includes only the relevant

physical quantities and it models the intended behavior exactly. It is therefore a

compact and accurate model of the valve, as desired.

However, as many authors have not had the mathematical tools to use nonsmooth

functions directly, one tactic for avoiding them has been to attempt to cast the prob-

lem as a differentiable one using smoothing approximations. Possible models for the

check valve using this strategy are

F f(AP) 2 +/ 2 f(AP)
2
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as suggested by Balakrishna and Biegler1 or

F = f (AP) + 431n(1 + exp(-AP/0)),

as suggested by Chen and Mangasarian,2 5 where in each case, 3 is a user-defined

parameter that represents a tradeoff between accuracy and numerical conditioning.

At AP = 0, the error in the first approximation is 0.53 and the error in the second

is ln(2)#, though the latter equation decays more rapidly to the true function as AP

moves away from zero.'" In either case, it is no longer so immediately obvious what the

model represents by inspection, and, in addition, the model includes a nonphysical

parameter 4 that must be tuned appropriately (by trial and error) and is always

inaccurate around the point of switching.

Instead of transforming the nonsmooth problem into a smooth one, another ap-

proach is to reformulate the nonsmooth terms in the form of complementarity con-

straints and then solve the model as an optimization problem. The constraints of

such a model for the check valve are as follows:

F = f(AP) + SB,

f(AP) = SA - SB,

0 < SALSB > 0,

where sA and SB are nonphysical slack variables that have been added to the prob-

lem and _L is the complementarity operator that is equivalent to requiring SASB = 0.

This problem may be solved by minimizing the product PsASB subject to the first

two equations and the variable bound constraints, where p is a user-defined penalty

parameter that must be tuned to balance accuracy and solvability. Once again, this

model obfuscates the problem with the addition of additional variables and tuning pa-

rameters, while requiring far more complex machinery to solve and still not achieving

the exactness of the basic nonsmooth formulation.

Finally, a discrete-continuous modeling framework may be applied to this prob-

lem, resulting in the following set of constraints for an optimization problem with a
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constant objective function:

fL < f(AP) < fu

F > f(AP),

F < fU(i - yO)

F < f(,AP) + (fU _ fL)(1 _Y2),

Y1 +Y2 = 1,
pL < Ap < pU

0 < F < FU,

y E {O, 1}2,

where now the values of AP and F are constrained to fall between prescribed lower

and upper bounds, as is the value of the function f (the bounds on which are, for

instance, chosen based the bounds on AP) and nonphysical binary variables y are

used to determine the state of the valve, that is, Y1 = 1 (true) when the valve is

closed and Y2 = 1 (true) when the valve is open. While this model is exact assuming

the bounds on f are properly chosen, the model complexity has now increased to

the point where an optimization algorithm that can handle mixed-integer problems

is required.

Even in this simple example, the potential advantages of handling model nons-

moothness directly are extremely evident. Curiously, the latter two formulations of

the problem are those most commonly used in the literature despite the significant

increases in complexity. This is likely due to the fact that reliable, practical methods

for obtaining the necessary local sensitivity information about the nonsmooth formu-

lation have, until recently, been unavailable. New advances in this area have been

used throughout this thesis to create compact and accurate models for such processes

where other authors have resorted to far more complicated frameworks.
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1.2 Objective and scope

The main objective of this work was to develop models, algorithms and software to

enable robust simulation and optimization of steady-state natural gas liquefaction pro-

cesses. These methods were to be designed so that they would be able to handle both

simple and complex liquefaction process concepts with thermodynamics described by

realistic models. The project also intended to demonstrate that a modeling strategy

based around the use of nonsmooth functions was a viable and altogether effective

approach to solving complex and realistic chemical engineering problems, capable

of avoiding many of the pitfalls associated with the other frameworks highlighted

previously.

Other operations in the LNG production chain, including both upstream of liq-

uefaction (e.g. dehydration and purification of the source gas) and downstream of

liquefaction (e.g. transportation, storage and regasification) have not been consid-

ered herein. Dynamic simulation and optimization of events such as process startup,

shutdown and disturbance rejection were also not in the scope of this project, nor was

determining optimal control strategies. Development of new optimization methods

themselves was also not a focus in this project. Additionally, validation of results

with either experimental or plant data was not possible during this project, and so

results are instead compared against models and data from Aspen Plus v8.4.

1.3 Thesis structure and summary of contributions

The primary contribution of this thesis is the development of new optimization meth-

ods for natural gas liquefaction processes based on nondifferentiable process models.

Achieving this required the development of nonsmooth simulation-based flowsheeting

strategies, which themselves required new advances in models for the constituent unit

operations commonly found in liquefaction processes. A concept map for the main

topics in this thesis is shown in Figure 1-3. In brief, the work flow of the project pro-

ceeded as follows. Building upon the development of efficient mathematical techniques
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for sensitivity analysis of nonsmooth functions, a new nonsmooth simulation-based

model for MHEXs was developed. This model was then augmented with methods for

automatically detecting phase changes in the streams exchanging heat and robustly

handling vapor-liquid equilibrium calculations with (possibly) single-phase results,

enabling the simulation of LNG production processes. This framework was useful

for simulations involving simple descriptions of mixture thermodynamics, but proved

challenging to use with more realistic equation of state (EOS) models. To address this,

new nonsmooth extensions of the celebrated inside-out algorithms for flash calcula-

tions were developed that extended the automatic handling of flash outlet conditions

to cases involving complex thermodynamics. However, even this was insufficient to

equip LNG process simulations with realistic EOS models, and so a nonsmooth density

extrapolation method was developed to help avoid failures in flash calculations at high

temperatures and/or pressures. Combining all these techniques, a new framework for

flowsheeting with nonsmooth models and generalized derivatives was established and

liquefaction process simulation and optimization with thermodynamics described by

a cubic equation of state was performed successfully and reliably.

s ai c PrereqNuisite

phase changes mrwr's

111)work
Nonsmooth model Nonsmooth Nonsmooth density First-authored
for ideal flash and inside-out wxrapolation work

phase changes methods methods

Advances i, (Chapter 4) (Chapter 5) (Chapter 6) Fuitnre
nonsmooth _I

analysis
(Chapter 2) "ultistream heat LNG process Realistic simulation Realistic local

exchanger (MHEX simulation with ideal ofsimple LNG optimization of

(Appe thdo m ics pr o s complex LN G processes

Realisti siulation

processes

"Proofofconlcept" Realit gnb
global optimization -- --- --- - -- -- -- --- --- - -- LNptiiztonesof

(Appendix C (Appendix C)

Figure 1-3: Concept map of this thesis project. Chapter numbers indicate where in
this thesis document the corresponding work is described in detail.

The specific contents and contributions of each chapter of this thesis are briefly

summarized in the following. The published or submitted articles associated with
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each chapter are also indicated by citation after the corresponding chapter title.

Chapter 2 - Background: This preliminary chapter gives a more in-depth

introduction to natural gas, LNG and liquefaction processes. It also introduces the

relevant mathematical background in nonsmooth analysis necessary to understand

the methods and algorithms developed in the remainder of this thesis.

Chapter 3 - A nonsmooth model for multistream heat exchanger sim-

ulation and design:1" A nonsmooth simulation-based model for MHEXs is devel-

oped in analogy to traditional models for countercurrent two-stream heat exchangers

and pinch analysis techniques. In contrast to the simulation models found in most

commercial software that only require energy balance in the MHEX, the nonsmooth

model includes equations that rigorously enforce heat transfer feasibility from both

second law and and equipment size perspectives. Flowsheets of processes involving

MHEXs are simulated in the absence of explicit thermophysical property models.

Chapter 4 - Modeling phase changes in multistream heat exchangers: 136

The necessary modifications to the basic MHEX model of the previous chapter to

allow for the incorporation of thermodynamic models are detailed. This primarily

includes provisions for automatically detecting and handling streams changing phase.

A nonsmooth formulation of vapor-liquid equilibrium equations is also developed

that allows flash calculations to converge automatically to single-phase or two-phase

solutions. Initial case studies involving the PRICO process simulated with idealized

thermophysical property models are also presented.

Chapter 5 - Nonsmooth inside out algorithms for robust flash calcu-

lations: "0 An improvement on the nonsmooth flash formulation from the previous

chapter is developed in the form of nonsmooth inside-out algorithms. Building on the

classic two-phase inside-out algorithms that allow for extremely robust and efficient

nonideal flash calculations, the addition of nonsmooth functions allows for reliable

convergence to solutions regardless of the true phase regime prescribed by the flash

parameters.

Chapter 6 - A nonsmooth method for density extrapolation and pseu-

doproperty evaluation: 13 A procedure for augmenting the nonsmooth inside-out
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algorithms from the previous chapter with density extrapolation methods is presented.

These methods handle instances that arise in the process of solving a flash calculation

where thermophysical property models are queried for the density (or equivalently,

volume or compressibility) of a phase that does not exist at the conditions of a given

iteration. The method improves on algorithms found in the literature for extrap-

olating reasonable properties for nonexistent phases by recasting them in terms of

nonsmooth functions that are amenable to exact sensitivity analysis.

Chapter 7 - Process flowsheeting with nonsmooth models and gener-

alized derivatives:1 39 The nonsmooth modeling elements of the previous chapters

are combined into a flowsheeting strategy that generalizes the sequential-modular

framework for process simulation. Elements of computationally-relevant generalized

derivatives are calculated and communicated throughout flowsheets containing nons-

mooth models and submodels, including those solved with the nonsmooth inside-out

methods. The PRICO process is again simulated, this time with the Peng-Robinson

cubic EOS providing the thermodynamic model.

Chapter 8 - An optimization strategy for liquefied natural gas produc-

tion processes:138 Flowsheets for the PRICO process and more complex liquefaction

processes described by the method of the previous chapter are optimized using a reli-

able interior-point method and a constraint formulation that results in optimal MHEX

area utilization. Highly accurate descriptions of the processes are included in compact

optimization formulations that can be automatically initialized and optimized with

little a priori information. The results indicate that the strategies developed in this

thesis project show great promise for the future of optimizing large-scale liquefaction

processes.

Chapter 9 - Conclusions and future research directions: This final chapter

provides a summary of the work completed in this thesis project and gives suggestions

for future work based on the contributions herein.

Appendices: This thesis contains three appendices. Appendix A is a summary of

the abbreviations and notation used throughout the manuscript. Appendix B details

the primary physical property methods used in Chapters 4-8. Appendix C describes
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some of the initial efforts in applying deterministic global optimization techniques to

liquefaction processes and their constituent submodels.
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Chapter 2

Background

This preliminary chapter introduces several of the major concepts that will be studied

throughout this thesis. Firstly, a brief introduction to natural gas, liquefied natural

gas and liquefaction processes is given to further contextualize and motivate the

project. The remainder of the chapter is devoted to mathematical background in

the area of nonsmooth analysis, which will be used heavily throughout the rest of

this thesis. More specialized preliminary information pertaining to the content of an

individual chapter of this thesis may also be found within the given chapter.

2.1 Natural gas

Natural gas is an odorless, colorless and noncorrosive hydrocarbon mixture composed

primarily of methane. Generally, natural gas also contains appreciable amounts of

nitrogen and heavier alkanes such as ethane, propane and butanes, along with lesser

amounts of heavier hydrocarbons depending on the exact gas source. Water, oxygen,

carbon dioxide, hydrogen sulfide and other sulfurous compounds, and trace contami-

nants such as mercury may also be present in untreated natural gas. Table 2.1 shows

the typical ranges of abundance for the compounds that comprise dry natural gas. As

a result of its light hydrocarbon composition, natural gas is also the cleanest fossil fuel

product in regards to CO 2 emissions as shown in Table 2.2, while also producing vir-

tually no sulfur oxides and only trace amounts of nitrogen oxides during combustion.
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In light of the overwhelming scientific consensus on anthropogenic climate change,

the development of greener energy sources is more vital than ever to meet the world's

future energy needs.

Table 2.1: Typical component composition ranges in dry natural gas. 127

Component

Methane

Ethane
Propane

n-Butane

iso-Butane

n-Pentane

iso-Pentane

Heavier hydrocarbons

Nitrogen

Carbon dioxide

Oxygen

Hydrogen sulfide

Typical composition range (mol%)

87.0 - 97.0
1.5 - 7.0
0.1 - 1.5

0.01 - 0.3
0.01 - 0.3

trace - 0.04

trace - 0.04

trace - 0.06
0.2 - 5.5
0.1 - 1.0

0.01 - 0.1
trace - 0.02

Table 2.2: CO 2 emissions from burning various fuels (MMBTU = million British
thermal units). 129

Fuel type kg CO 2 / MMBTU

Coal 95.3
Crude Oil 74.5
Diesel Fuel 73.2
Gasoline 71.3
Natural Gas 53.1

At present, natural gas is the world's third largest source of fuel, accounting for

24.0% and 24.1% of global energy consumption in 2015 and 2016, respectively. 18

Production and consumption of natural gas continue to grow year over year and

proven reserves of over 186 trillion cubic meters of unrecovered natural gas exist on

the planet.18 The U.S. Energy Information Administration (EIA) projects that in the

timeframe from 2017 to 2040, natural gas usage (in terms of energy consumption) will

increase more than any other single fuel source, driven primarily by the industrial and

electric power sectors.130 By 2040, a full 40% of the energy production in the U.S. is
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expected to be attributed to natural gas.13 In terms of the global energy markets,

in 2016, over one trillion cubic meters of natural gas was traded (up nearly 5% from

2015), of which 68% was transported by pipeline and 32% was transported as LNG. 18

However, pipeline transmission's share of this trade is decreasing steadily and global

production of LNG is projected to increase by almost 30% by 2020 as major facilities

come on-line worldwide."8 The U.S. EIA expects LNG to be the dominant mode of

export for natural gas produced in the U.S. by the year 2020, accounting for over 70%

of the nation's gas trade. This is in large part due to the five new major LNG export

hubs that are scheduled to be operational by that time. 130

The inherent economic challenges of importing or exporting large volumes of a

gas make the production and transportation of LNG an attractive alternative, de-

spite the required cost and energy expenditure. Liquefied natural gas occupies about

1/600th of its vapor phase volume at 150 C and atmospheric pressure, which enables

bulk transportation in specialized vessels. Once natural gas has been liquefied, the

marginal cost of transportation as a function of distance is much lower than that

of pipeline transmission. While affected by many factors, the breakeven distance at

which it becomes more economical to liquefy natural gas prior to transport is on the

order of 2,200 miles (or 700 miles for the case of offshore gas production). 85

However, the production of LNG incurs significantly higher capital and operating

costs than preparing natural gas for pipeline transmission. Liquefaction operations on

average account for around 50% of the total investment in a plant, 85;90 and on average,

liquefaction also increases the total supply cost of natural gas by around $1.50-$2.00

per MMBTU.16 Table 2.3 summarizes typical ranges for costs incurred in the LNG

production chain. Some portion of the gas itself is also usually burned to provide

energy (e.g. to run the compressors in the liquefaction process), and these losses

are also shown in Table 2.3. As this operation accounts for such substantial costs,

and given the optimistic projections for increased production of LNG worldwide,

optimization of liquefaction process design and operation is of high importance to

many suppliers.
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Table 2.3: Typical module contributions to total capital cost, supply cost and gas
loss along the LNG production chain. 58:86;90

Upstream Liquefaction Shipping Regasification

Capital cost 20-30% 40-60% 5-25% 5-15%
Supply cost 20-30% 35-55% 10-25% 5-10%

Gas loss (as fuel) - 10-14% 1.5-3.5% 1-2%

2.2 Natural gas liquefaction processes

The first patent for a natural gas liquefaction process was granted to Godfrey Cabot

in 1914, however, it wasn't until 1941 that the first commercial LNG production

plant was built in Cleveland, Ohio. Despite initially successful operation, public

perception and general acceptance of LNG as a primary fuel source was shaken three

years later in 1944, when a storage tank that had been newly added to the Cleveland

facility ruptured. The resulting LNG spill ignited, killing 128 people. The ensuing

investigation revealed that the incident was caused by brittle fracture of the inner wall

of the tank resulting from the use of an inappropriate material of construction, which

led to stringent regulations.85 Since then however, no fatal incidents related to LNG

have been recorded in the United States, and only one additional fatality-producing

event has ever occurred worldwide, as the result of a fire in an Algerian LNG plant in

2004. Despite these two isolated events, LNG has gained acceptance as a reliable and

safe fuel source, and the associated production facilities do not represent significant

safety risks.

The goal of any natural gas liquefaction process is to use refrigeration to liquefy

and then subcool the feed gas stream to between -163'C and -155'C (110.15 K -

118.15 K), such that the mixture remains in the liquid state upon expansion to storage

pressure. As in any refrigeration process, heat is transferred from a source to a sink,

where the temperature of the sink is higher than that of the source. In accordance

with the second law of thermodynamics, heat transfer in this direction requires power

input. As mentioned in the first chapter, the refrigeration cycle most commonly used

for liquefaction processes is the vapor-compression cycle. This cycle is shown on a
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Figure 2-1: Temperature-entropy diagram for a vapor-compression refrigeration cycle.
Green solid lines show the ideal cycle and blue dashed lines indicate the nonideal cycle.

temperature-entropy (T - s) diagram in Figure 2-1 for both an ideal case and a more

realistic case. The ideal cycle has four basic steps:

* 1 -+ 2: isentropic compression,

* 2 -+ 3: desuperheating and isothermal condensation to the bubble point,

* 3 - 4: isentropic expansion,

* 4 -4 1: isothermal evaporation to the dew point.

However, for practical reasons, the real cycle will proceed more similarly to the fol-

lowing:

* 1' -+ 2': irreversible compression,

* 2' -+ 3': desuperheating, nonisothermal condensation and subcooling,

* 3' -- 4': isenthalpic expansion (throttling),

* 4' -- 1': nonisothermal evaporation past the dew point (to avoid formation of

liquid droplets in the compressor).
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Note that while a pure refrigerant will condense and evaporate isothermally in the

absence of pressure drop (as in the ideal cycle), the condensation and evaporation of

a refrigerant mixture are inherently nonisothermal processes that take place over a

temperature range.

There are three broad categories of liquefaction processes currently used for LNG

production: pure-refrigerant cascade processes, mixed-refrigerant processes and turbine-

based processes. More complex technologies may also incorporate elements from more

than one category in distinct stages, as discussed later.

Pure-refrigerant cascade processes are currently only used in a small number of

liquefaction plants, despite being the original process concept for LNG production. In

a cascade-style process, the natural gas feed is cooled and liquefied using different pure

refrigerants in different refrigeration cycles. Using industry terminology, "vertical

stages" are (generally closed-loop) refrigeration cycles that operate with a single type

of refrigerant, whereas "horizontal stages" are subcycles within a vertical stage that

operate at, for example, different pressure levels. Cascade processes often consist

of three vertical stages, using propane or propylene for desuperheating, ethane or

ethylene for liquefying, and methane for subcooling the natural gas feed." Each of

these stages consists of multiple horizontal stages so that each refrigerant is evaporated

at multiple pressure levels to provide cooling that matches temperatures along the

cooling curve of natural gas as closely as possible. As each horizontal stage requires a

heat exchanger, complex configurations result in a large number of small MHEX units

being needed for such a process. At present, the most successful commercial cascade

process is the ConocoPhillips Optimized Cascade@, which uses either propane or

propylene in the first stage, ethylene in the second stage and replaces the traditional

third stage with an open-loop process involving methane and boil-off gas from LNG

expansion for the final stage.2 8

Currently, the vast majority of liquefaction plants operate using some form of a

mixed-refrigerant liquefaction processes. The key difference between pure-refrigerant

cascade and mixed-refrigerant processes is illustrated in Figure 2-2. As natural gas

is a mixture, it liquefies over a temperature range rather than isothermally. The

40



Hot composite cure Pure refrigerant
!V cascade

Mixed refigerant

Enthalpy

Figure 2-2: Typical hot and cold composite curve shapes for mixed refrigerant and
pure refrigerant cascade processes.

use of pure refrigerants that evaporate isothermally at fixed pressure levels there-

fore necessitates many vertical and horizontal stages to provide refrigeration at small

temperature differences, in a procedure analogous to how a simple numerical integra-

tion technique would approximate the area under a curve. If a refrigerant mixture is

used, however, refrigeration of the natural gas can be feasibly performed in a single

stage by attempting to match nonlinear cooling curves directly. The PRICO pro-

cess introduced in the previous chapter is one such example of a single-stage, single

mixed-refrigerant (SMR) process. These processes may be enhanced by the addition

of horizontal stages, which in this case are created by phase separation of the refriger-

ant mixture to produce liquid- and vapor-phase mixtures with distinct compositions

within the same cycle. An example of such a process is studied in Chapter 8 (see

Figure 8-10).

Multiple vertical stages may also be used in mixed-refrigerant processes to yield

processes that are more appropriate for high-throughput (base-load) LNG produc-

tion facilities. As the name implies, dual mixed-refrigerant (DMR) processes use two

refrigerant mixtures in a cascade, the first for desuperheating the natural gas and the

second for liquefaction and subcooling. An example of a simple DMR process concept

is shown in Figure 2-3 in which the second vertical stage includes phase separation

of the main refrigerant to create two horizontal stages within the refrigerant cycle.
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The original DMR process concept was patented in 1985,89 though more recently

both Shell and Air Products and Chemicals, Inc. (APCI) have licensed DMR pro-

cess technologies. 43;103 A different two-stage mixed-refrigerant cycle is Technip/Air

Liquide's TEALARC process.80: 74 In its most-studied configuration, the first mixed

refrigerant is used only to provide cooling to the second. The natural gas stream is

then cooled only through heat exchange with the second refrigerant mixture. The

only commercially-licensed mixed-refrigerant process technology with more than two

vertical stages is the Statoil/Linde Mixed-Fluid Cascade (MFC) 118 that uses three

cycles in a cascade. The process design is analogous to that of the traditional cascade

concept with three pure refrigerants, except that here, each is replaced by a distinct

refrigerant mixture. The addition of mixed-refrigerant stages beyond three is unlikely

to be advantageous in practice, as significant diminishing returns are observed on the

improvement in process efficiency, while the cost and complexity of operation increase

substantially. 131;74

Turbine-based processes are based on the reverse-Brayon cycle instead of the

vapor-recompression cycle. In these processes, a refrigerant, typically nitrogen or

a mixture of nitrogen and methane, is first compressed to very high pressure (greater

than 10 MPa). The high pressure refrigerant is then precooled (along with the nat-

ural gas) in a multistream heat exchanger and expanded to low pressure through a

turbine, reducing the temperature further. The cold, low pressure refrigerant is then

used to liquefy and subcool the natural gas stream. 131;74 A example schematic of a

turbine-based LNG production process is shown in Figure 2-4. A notable difference

between these processes and those based on the vapor-recompression cycle is that

here the refrigerant is always in in the vapor phase. Additionally, the use of a turbine

in place of a throttle valve causes a much larger temperature drop and allows for the

extraction of work from the process, though such a process will still require a net

input of work to drive the compressor(s). However, turbine-based processes typically

have low efficiency, though they have much faster start-up times compared to the

other process concepts. This means that they are used primarily in peak-shaving

plants, which are smaller facilities connected to existing gas supply networks that
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Figure 2-3: Flowsheet of a DMR process concept.
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Figure 2-4: Turbine-based liquefaction process concept based on the reverse-Brayton
cycle.

store natural gas when fuel demand is low and then supply LNG to help meet peak

consumption demands."' Multiple vertical stages are possible in such processes by

including, for instance, both a nitrogen and a methane expansion cycle, whereas mul-

tiple horizontal stages are possible with the inclusion of multiple turbines that expand

to different pressure levels. Turbine-based processes have also found niche usage for

offshore and remote gas production, wherein the plant area is tightly constrained, the

use of inert nitrogen poses far fewer safety hazards than hydrocarbon mixtures and

the gas phase-only heat transfer simplifies heat exchanger design and maintenance. 21;8

Hybrids of these three process archetypes may also exist, as shown in Figure

2-5. One such widely-used process concept is APCI's propane-precooled mixed-

refrigerant process (C3MR). 96 In this process, a pure-component propane stage (pos-

sibly with multiple horizontal pressure stages) is combined with a mixed-refrigerant

stage. APCI's AP-X@ process combines all three concepts, using a propane cycle

for desuperheating, a mixed-refrigerant stage for liquefaction and a turbine-based ni-

trogen stage for subcooling the natural gas stream. 104 Due to their prevalence, this

thesis exclusively considers mixed-refrigerant liquefaction processes. However, there

is no reason that the methods and algorithms developed in this thesis could not be

applied to these other process concepts.

It is worth noting that liquefaction is usually the last operation that is performed
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Figure 2-5: Venn diagram of liquefaction process concepts and technologies.

in an LNG processing plant, as pretreatment of the natural gas is virtually always

required. In brief, hydrocarbon condensates, carbon dioxide, hydrogen sulfide, water

and mercury are sequentially removed from the raw gas stream. Depending on the

desired product and process configuration, heavier hydrocarbons may also be removed

by flashing the purified natural gas stream prior to liquefaction. The liquid products

of this operation are called natural gas liquids (NGLs) and can both be sold either

as separate products (after fractionation) or used to create the refrigerant mixture

for liquefaction. This process can also be integrated into the liquefaction process by

first precooling the natural gas and then performing the liquid separation at a lower

temperature level to control the component split ratios. An example of an integrated

NGL extraction and liquefaction process is studied in Chapter 8 (see Figure 8-13).

As noted earlier, purification operations that occur prior to liquefaction are outside

the scope of the present thesis project, and a more detailed description of these other

operations may be found in the literature, e.g. in the reference by Mokhatab et al.85

The abundance of liquefaction technologies invites comparison between processes.

However, it must be kept in mind that process designs may have specific and non-
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transferable goals and/or operating assumptions. SMR processes, for instance, are

generally designed to run with lower product throughput than C3MR processes, which

in turn run with lower capacity than DMR processes. Turbine-based processes op-

erate with lower efficiency than other processes because the ability to start-up and

shut-down rapidly to capitalize on peak demand or high-frequency fluctuations in

the price of electricity more than mitigates the additional energy expenditure. Some

of the process technologies are designed to run most efficiency in particular environ-

ments and will be suboptimal in less well-suited conditions. The MFC® process,

for instance, was designed for Statoil's Snovhit project and takes advantage of the

extremely low ambient temperature and cold seawater. Available plot area for a new

plant will also limit choices in liquefaction process configuration, as the higher ca-

pacity processes also generally have larger footprints. However, there are certainly

cases where comparisons between optimized processes would be desirable, and so a

tool that could be used robustly and flexibly in order to optimize the full range of

technologies discussed here would have great value. The work detailed in this thesis

represents a significant step towards building such a tool that takes advantage of

recent advances in nonsmooth analysis.

2.3 Nonsmooth analysis

This section describes the nonsmooth numerical toolkit needed for the sensitivity anal-

ysis implemented in the process simulation and optimization case studies throughout

this thesis. It reviews recent advances in the calculation of exact generalized derivative

information for nondifferentiable functions, including implicit functions, and methods

for solving nonsmooth equation systems. Notation and definitions largely follow from

the recent review article on the subject by Barton et al."

The motivation for the development of tractable and automatic methods for non-

smooth sensitivity analysis stems from the need for this information in equation-

solving and optimization methods. Consider the traditional form of Newton's method

for solving a square equation system involving a continuously differentiable function
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f : X -+ Rn , with X C Rn an open set, for a solution x* C X, which is a vector that

satisfies f(x*) = 0,. Given the current estimate for the solution on iteration k, x(k),

the iterations of Newton's method involve solving the following equation for x(k+1):

Df(x(k))(x(k+1) _ x(k)) = f (x(k)), (2.1)

where Df(z) denotes the classical Jacobian matrix of f at some z C X. Under

the condition that Df(x*) is nonsingular, Newton's method converges to x* at a Q-

quadratic rate in a neighborhood N(x*) of x*, that is, the sequence of iterates {x(k)}

tending to the limit x* obeys the relationship:3 4

lim sup - + (2.2)
k-+oc X(k) - 2 - +01

for x(k) E N(x*) \ x*. This simple, elegant method and its many variants have been

used reliably for hundreds of years for solving nonlinear systems of equations.

However, consider the case in which the function f is not continuously differen-

tiable, but is instead a locally Lipschitz function on its domain, as defined next.

Definition 2.1. A function f : X C R' -+ R", with X an open set, is Lipschitz near

(in a neighborhood of) x E X if there exist constants 6 > 0 and L > 0 such that

whenever ||x - z1i < 6, ||f(x) - f(z)l < L jx - zfl.

Definition 2.2. A function f : X c R' -+ R', with X an open set, is locally

Lipschitz on X if it is Lipschitz near x for all x E X.

A function satisfying Definition 2.2 is continuous but not necessarily differentiable

everywhere on its domain. Rademacher's theorem shows that a locally Lipschitz

continuous function f is in fact differentiable at each point in X\Zf, where Zf C X has

zero Lebesgue measure. An example of this is the absolute value function abs : x '-4

IxI, which is differentiable for all x - 0 with abs'(x) = sign(x), but has no classical

derivative defined at x = 0. Hence, if such a function were to appear in an equation

system, then Newton's method would fail upon reaching any x(k) C Zf. However,

if instead of the Jacobian matrix, an appropriate generalization of the derivative
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that provided useful local sensitivity information were available, then the method

could conceivably continue. The following section discusses some useful "generalized

derivatives" and how they may be calculated.

2.3.1 Notions of the generalized derivative

There have been numerous definitions offered in the literature for generalized deriva-

tives of functions that are locally Lipschitz continuous on their domains which vary

greatly in ease of computation and range of applicability. For the purposes of this the-

sis, the primary interest is in generalized derivatives that have elements that are both

easy (automatic) to compute and have desirable properties when used in equation-

solving methods. To this end, two extremely useful generalized derivatives are defined

as follows:

Definition 2.3. 3 Let the function f : X -> R m , where X is an open subset of R,

be locally Lipschitz continuous. The B-subdifferential of f at x, OBf(x), is the set:

9Bf(x) := H E R'm n : lim Df(x(z)) - H, lim x) - x, x G X \ Zf, Vi c NI
i-+00 Z_-+00 J

(2.3)

where Zf is the set of points of measure zero where f is not differentiable. The Clarke

Jacobian of f at x is defined as:

Oc f(x) :conv (Bf (X)) , (2.4)

where conv(-) returns the convex hull of its argument.

Note that these sets are always non-empty and are singletons with &f(x)

Ocf(x) = {Df(x)} at any point x E X for which f is continuously differentiable, so

that they are truly generalizations of the Jacobian matrix. As an example, consider

again the absolute value function. The B-subdifferential of this function at x = 0 is

the set {--1, 1} and the Clarke Jacobian is the interval [-1, 1]. For all other x E R,

each of these generalized derivatives is the set {sign(x) }.
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Two important subsets of locally Lipschitz continuous functions are now intro-

duced: the class of lexicographically-smooth functions and the class of piecewise

differentiable functions.

Lexicographically-smooth functions

The concept of lexicographic smoothness is a generalization of classical directional

differentiability as shown in the following definition.

Definition 2.4. 87 Given a locally Lipschitz continuous mapping f : X C R" -+I R',

X open, f is called lexicographically smooth (L-smooth) at x E X if, for any k E N and

directions matrix M = [m() ... m(k)] C Rnxk the following directional derivatives

are well-defined:

f ( : R h  R" : d '- f'(x; d),
X'M (2.5)

f :~j R" - R"' d - [fx 3,]'(mntj); d), Vj EIl k},

where the directional derivative of f at x in the direction d E RI is given by

f'(x; d) := lim f(x + 6d) - f(x) (2.6)
.5 0 6

The function f is said to be L-smooth on X if it is L-smooth at each point x C X.

Pertinent to this work, the class of L-smooth functions includes all continuously

differentiable and piecewise differentiable functions, all convex functions and all com-

positions thereof. L-smoothness is also inherited by implicitly-defined functions,6 5

which will be covered in detail in a later section. Another generalization of the

derivative may be defined for general L-smooth functions in terms of a matrix of

directions M E R'xk as follows:

Definition 2.5. " Let the function f : X C Rn -+ RI, X open, be L-smooth at

x C X and let M E Rnxk have full row rank. The mapping f (k) R R' is linearxM

and the matrix

D Lf(x; M) := DfX(O,) c R"n (2.7)
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is called the lexicographic (L-) derivative of f at x in the directions M. The collection

of these objects for all possible full row rank matrices is called the lexicographic (L-)

subdifferential of f at x:

OLf(x) {DLf(x; M) : k E N, M c R"xk, M has full row rank}. (2.8)

Despite its less intuitive definition, the L-subdifferential is in fact closely related

to the other definitions of a generalized derivative. In general, the L-subdifferential

is a subset of the plenary hull of the Clarke Jacobian, 64 and a subset of Clarke

Jacobian itself in the case of scalar-valued functions.87 If f is differentiable at x,

then the L-subdifferential is a singleton corresponding to the Jacobian matrix of f

at x, i.e., &Lf(x) = {Df(x)}.8 7 These facts imply that calculating an element of the

L-subdifffential is no less useful than calculating an element of the Clarke Jacobian

itself for all applications that require a (generalized) Jacobian-vector product, e.g.

all efficient equation-solving procedures. The L-subdifferential can also be directly

related to the B-subdifferential in the case of piecewise differentiable functions, as

indicated in the next subsection.

Piecewise differentiable functions

The nonsmooth functions used in the primary applications of this thesis are piecewise

differentiable functions. As the name perhaps implies, a piecewise differentiable func-

tion is a continuous function which consists of a set of "pieces" in its domain, each

of which is described by a continuously differentiable function. This is formalized in

the following definition.

Definition 2.6. '1 Given a locally Lipschitz continuous mapping f : X C R' -+ R"

with X open, f is called piecewise differentiable (PC') at x E X if there exists a

neighborhood N(x) C X of x and a finite collection of continuously differentiable

(C') selection functions on N(x), Ff(x) ={f(l),. - -. f(k)} for some k E N, such that f
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is continuous on N(x), and

f(TI) E ff (i)(7) :i E 1,. . . , k}}, V7 E N.

The function f is said to be PC' on X if f is PC' at each x & X. Given a family of

selection functions Ff (x), the set of essentially active indices of f at x with respect

to Ff(x) is given by:

I-s (x) := {i E {1, ... , k} : x E cl(int{?7 E N(x) : f() = f ()})}.

The set of essentially active indices is also associated with a set of essentially active

selection functions, given by:

Sf (X) :(f :i E Ifess (X

For a given x E X, the sets of essentially active indices and essentially active

selection functions must be nonempty by definition (else there would be no func-

tion defined at this point), and in the case that IIes (x) I = 1, then f is C1 at this

point. Additionally, all compositions of PC' functions are also PC' functions."'

The most widely-used PC' functions in PSE applications are functions such as

(x, y) - max(x, y), (x, y) - min(x, y), x 1-4 xI and compositions thereof. The

function (x, y, z) -+ mid(x, y, z) that returns the median value of its arguments is a

less commonly-used PC' function that is nevertheless very important for the work in

this thesis. The function is potentially not differentiable at any point where at least

two of its arguments are equal while differentiable elsewhere and may be expressed

directly in terms of more familiar PC' functions as follows:

mid(a, b, c) = max(min(a, b), min(max(a, b), c)), (2.9)

which can be obtained as the result of applying a bubble-sort procedure to the list of
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three arguments, or alternatively as follows:

mid(a, b, c) = a + b + c - max(max(a, b), c) - min(min(a, b), c), (2.10)

which is essentially the statement that the median value remains after the maximum

and minimum are removed from a list of three values.

A key result in Khan and Barton 64 states that if f is PC' at x, then f is also

L-smooth at x, and, OLf(x) C OBf(X). This is particularly useful from an applica-

tions perspective, as there exists an automatic and tractable method for calculating

elements of the L-subdifferential using lexicographic directional (LD-) derivatives,

discussed next.

Lexicographic directional derivatives

While useful theoretically, the definition of the L-derivative (Definition 2.5) is cum-

bersome and an automatic method for calculating the necessary high-order direc-

tional derivatives in the definition is not obvious. Fortunately, recent work by Khan

and Barton 64 established a link between the L-derivative and another object that is

convenient to calculate, the so-called lexicographic directional derivative, defined as

follows:

Definition 2.7. 64 Given k e N, any M [m(l) ... m(k)] E Rlk, and f : X -+ Rm"

L-smooth at x E X with X c R" open, the lexicographic directional (LD-) derivative

of f at x in the directions M is

V'(x; M) =L, f, (m1)f (M(2)) - fI (M(k))](.1
(2.11)

= [f (k) (gl) f (k( ) -- ( m

The LD-derivative is a generalization of the classical directional derivative that is

resolved sequentially along k directions instead of just one. This sequence of directions

systematically probes the local sensitivity of the function, and, assuming that the set

of directions is sufficiently well-chosen (e.g. M spans Rn), will eventually step away

from points of nonsmoothness and return a linear mapping, as is expected for a
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derivative-like object. Note that if k = 1, then f'(x; M) f'(x; m(1)), which is just

the classical directional derivative in the direction m(l). Continuing this analogy, it

is therefore also the case that if f is differentiable at x, then:

f'(x; M) = Df(x)M. (2.12)

The LD-derivative also satisfies several useful relationships with regards to the L-

derivative. For one, if M has full row rank, then:

f'(x; M) = D Lf(x; M)M. (2.13)

However, the directions matrix need not be full row rank in the case of the LD-

derivative, which is particularly important for intermediate calculations involving

compositions of functions. Critically, the LD-derivative also satisfies a sharp chain

rule, as shown in the following theorem:

Theorem 2.1. 64 Let X c R" be open and let the function f : X - Rm be L-smooth

at x E X. Let k E N and M E Rnxk. Let Z c Rtm be open and introduce a second

function g : Z -- R that is L-smooth at f(x) c Z, then:

[g o f]'(x; M) = g'(f(x); f'(x; M)). (2.14)

Additionally, for L-smooth functions u and v (with appropriate domains and ranges),

then defining f : (x, y) F x + y and g : x -* (u(x), v(x)) yields a summation rule:

[u + v]'(x; M) = u'(x; M) + v'(x; M), (2.15)

and for scalar-valued L-smooth functions u and v (with appropriate domains and

ranges) defining f : (x, y) -* xy and g : x H-- (u(x), v(x)) yields a product rule:

[uv]'(x; M) = v(x)u'(x; M) + 'u(x)v'(x; M). (2.16)

To date, the LD-derivative is the only known object that obeys a sharp chain rule

53



(Equation (2.14)) and also furnishes useful generalized derivatives for nonsmooth

functions. As a consequence of the relationship between the L- and B-subdifferential

for PC' functions noted in the previous section and the relationship given in Equation

(2.13), it can be seen that given an open set X C R' and f : X -+ R' that is PC' at

x E X,

f'(x; I1x), DLf(X; Inxn)lnxn,

DLf(x; Inxn) E Lf(X) C OBf(X),

where Inxn is the identity matrix in Rnxn . Therefore, for a PC' function, an element

of the B-subdifferential at a point in the domain can be obtained by calculating the

LD-derivative of the function at that point in the identity directions.

For clarity, a simple example that highlights many aspects of the previous defini-

tions and theorems is presented.

Example 2.1. Let the function f :R2 -+ R be given by

f (X, x 2 ) =min (Xi,x 2 ) -

Then f is a PC' function with Ef(x) = {x -+ xi} whenever x1 < x 2, Ff(x) = {x -

X2 } whenever X2 < x, and Ff(x) = {x - X1 , x - x 2} whenever x1 = x2 . For each

x E R 2 such that x1  x 2, the directional derivative of f in the direction d = (di, d2 )

is:

f' (x; d)= f ( ' + Jdi, x 2 + 6d 2 ) - f (x)
640 6

Slim min (xi + 6di, x 2 + Jd2 ) - min (X 1 , x 2 )
640 6

lim 6min (di, d2 )
640 6

- min (d, d2 ).

The mapping d f' (x; d) is clearly also directionally differentiable. Therefore, given
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an appropriate directions matrix, the first higher-order directional derivative given in

Definition 2.4 will be well-defined. Let k := 2 and for a full row rank matrix M =

[m( 1) m(2 )], then first-order directional derivative for x with x1 = x 2 is f$( (m(1))

min (m1 1 , n 2 1 ), as calculated earlier. If n1 1 = M2 1 , then nonsmoothness is still

present and the higher-order directional derivatives are required. Since M is of full

rank, if in 1 = M21 then M 12 z M 22 necessarily. If Mi1 1 = M2 1 then f (m(1))

evaluates to either mi1  or M 2 1 , depending on which is smaller.

assume that mi = M2 1 but M1 2 < M 2 2 , then:

For illustration,

= [f3 1 ]'(m(1); m(2))

. min (Mn11 + 6m 12 , M21 + 6m 22 ) - min (M1 1 , M21 )
60

=lim =mn(1,M2 min(M12, M22) = m12.
J O 6

and

f (d) - [f(1] (m(2); d)

lim M12 + 3d1 - M 1 2

= O hm

= di.

The lexicographic derivative of f in the directions M at x with x1

= 9d, (02)Dfx (02) (02)1

- X 2 is then:

= [1 0].

Now, from the earlier calculations and Definition 2.7, the LD-derivative is given

by:

f' (x; M) f(2) (m(1))

= [mu M 1 2]
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The directions matrix is invertible and so the L-derivative can be recovered from

the LD-derivative and M by solving Equation (2.13) (illustrated in a naive manner)

DLf (x, M) M f'(x; M)

->DLJ (X, M) = f'(x; M)M-I,

[mu Mi 1 2] M2 2  -M 1 2

det(M) -M 2 1  M11

[mM 2 2 - m 1 2m 2 1 m 1 1m 1 2 - m11m 1 2

det(M) det(M) '
det(M) 0
det(M) det(M)'

[1 0],

which is the same result as obtained previously. This is an element of the lexicographic

subdifferential of f at those x with x, = X2. The B-subdifferential of f at x with

X1 = X 2 is the set {[1 0], [0 1]}, so this vector is also an element of the function's

B-subdifferential for these x. Note that if M := 12x2, then f'(x; 12x2) = [0 1], as

M21 < mi, so it is also the case that f' (x; I2x2) c OBf(x), as expected.

As Example 2.1 shows, manual computation of elements of the L-subdifferential is

quite tedious. However, the computation of LD-derivatives can be made surprisingly

straightforward using the automatic algorithm first developed in Khan and Barton.64

Automatic differentiation (AD) techniques may be applied to any function that is

factorable, which includes all functions that can be represented finitely on a computer

in terms of compositions of so-called elemental functions (e.g. standard univariate

functions such as sin, exp, abs, etc. and multivariate functions such as +, -, x, max,

min, etc.) without the need for conditional statements (e.g. if statements) or loops

without a fixed number of iterations (e.g. while loops).42 The vector forward mode

of AD for evaluating LD-derivatives of an L-smooth factorable function developed by

Khan and Barton 64 is a generalization of the vector forward mode of AD for smooth

functions described by Griewank and Walther42 . When the elemental functions that
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appear in a factored representation of f are all classically differentiable, the method

is identical. Otherwise, the overarching mechanism is the same, but the rules needed

to evaluate the LD-derivatives of the elemental functions must be included in the

underlying library of calculus rules. For the presentation herein, let f : X - R' be

a factorable L-smooth function with domain X as an open subset of R" and let the

M be a directions matrix in R'xk.

A factored representation of f consists of I + 1 quantities vo ... vi, where vo - x

and vi = f(x). The intermediate quantities v1 ... v, are each obtained by applying

an elemental function pi : X, -+ R"w, (X~, C Ri7 open) with i E {1, ... , l}, to

some subset of the other intermediate quantities v with j E {0, ... , I - 1} and j < i.

This members of this subset are indicated using the Boolean precedence operator

"-", defined by Griewank and Walther,42 which indicates functional dependency, i.e.,

which subset of intermediate values vj are necessary for the evaluation of elemental

function pj. In context, j -< i evaluates to true if quantity v3 is needed to evaluate

an input to function Si and f alse otherwise. The argument of the function cpj

can therefore be denoted by ui - (vj)jsi, which is the vertical concatenation of all

elements of the set {v j i} in order of increasing j. A brief example is now given

to illustrate this concept.

Example 2.2. Consider the function f : R2 -+ R : x H-4 exp(max(xi, x 2)). Here,

1 = 2, 91 is the bivariate max function and 'P2 is the exponential function. A fac-

tored representation of f in terms of intermediate quantities and elemental function

arguments is as follows:

vo = (Xi X2),

U 1 = )

vi = max(ui),

U2 -V1,

V2= exp(u 2 ),

f(x) = v2.
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Now, assume that a calculus rule describing the local sensitivity of each elemental

function (i is known, e.g. for the directional derivative in the classical vector forward

mode and for the LD-derivative in the nonsmooth version. Then the intermediate

sensitivities, V3 , and the sensitivity argument matrix U - (V)js can be calculated

analogously to v3 and uj by application of these calculus rules along the same compu-

tational sequence as the function value calculation (due to the sharp chain rule). In

this case, Vo - M and V f'(x; M) (= Df(x)M in the smooth case). An outline of

this procedure is given in Algorithm 2.1.64 In practice, the evaluation of the function

value and its LD-derivative given x and M can be performed simultaneously with

the use of operator overloading and a custom data type that holds both a value and

the associated sensitivity vector. More advanced and efficient numerical techniques

involving source code transformation are also possible, though outside the scope of

the implementation described in this thesis.

Algorithm 2.1: Evaluate the value y - f(x) and LD-derivative Y - f'(x; M)
of a factorable L-smooth function f given x and M

1 V 0 - X,
2 V 0 <- M,

3 for i =1 ... l do
4 u< (v4)-si,
5 vi +- (Uj),

6 UjE+-(T ,

7 V, +- '(ui; U),
8 end for
9 y +V,

10 Y<- V,
ii Return y, Y.

As noted before, if all elemental functions pj are differentiable, then this is exactly

the algorithm for the classical vector forward mode of AD. Therefore, the only addi-

tions that must be made to an existing AD library are the elemental calculus rules for

the LD-derivatives of the nondifferentiable functions. A full overview of these rules is

given in the review article by Barton et al.,13 but as an example, the LD-derivatives
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for the absolute value function may be calculated as follows:

abs'(x, m) = fsign(x, mT)m, (2.17)

for m E R xk and where here the fsign function maps from Rk+1 to {-1,0,1} and

returns the first nonzero sign of its argument list, or zero if the argument is the (k-+ 1)-

dimensional zero vector. Consideration of Equation (2.17) reveals that if x f 0, i.e.

the function is evaluated at a point of differentiability, then abs'(x, m) = sign(x)m,

which is exactly the directional derivative given by classical calculus rules. At x = 0,

the calculus rule (the sign function) is instead applied hierarchically to the direction

vector m. Similar insight yields the calculus rules for min, max, mid and the Euclidean

norm functions. 64;13

Approximations of LD-derivatives

Despite the apparent similarity at first inspection, directional derivatives in the coor-

dinate directions are not guaranteed to furnish B-subdifferential elements in the case

of PC' functions (or Clarke Jacobian elements in the case of general locally Lipschitz

functions), i.e., in general:

f'(x; I f [f'(x; e(j)) f'(x; e(2 )) ... f'(x; e(,))] (2.18)

at points of nondifferentiability, though they are equivalent elsewhere.13 Numerical

examples in Chapter 4 show that in challenging equation-solving problems, the set

of nondifferentiable points of a function implemented in finite precision arithmetic

is indeed reachable, and the differences are noticeable between using LD-derivatives

and the approximation with directional derivatives in the coordinate directions. The

right-hand side of Equation (2.18) also requires n applications of the forward mode

of AD to compute (or a vector forward pass), as compared to the LD-derivative in

the Inx, directions, which has its total computational cost bounded above (usually

weakly) by 3n + 1 times the function evaluation cost.6 4 Given that the LD-derivative
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is both more accurate and is at least as efficient to compute, it seems that there is no

convincing reason to use this approximation.

As noted in the previous chapter, finite difference approximations of derivatives

are ubiquitous in process simulation and optimization software. The commonly-used

forward finite difference approximation is as follows:

Of f(x + 6 e(j)) - f(x) (2.19)
(eJ)= (x) ~,(.9

Oxj 6

where e(j) is the jth Cartesian basis vector and 6 is the perturbation in variable xj

chosen by the modeler. This approach may incur either significant truncation errors

if 6 is too large or significant round-off errors if 6 is too small. Optimal values for

6 are challenging to ascertain and only offer at best a tradeoff between these classes

of errors. While sometimes useful for classical derivative approximations, finite dif-

ferences are particularly prone to calculating erroneous generalized derivatives when

used in nonsmooth sensitivity analysis. As finite differences only approximate di-

rectional derivatives, the aforementioned shortcomings of the approach are further

compounded with the fact that the directional derivatives themselves do not in gen-

eral return correct sensitivity information at points of nondifferentiability. Note also

that Equation (2.19) implies that n + 1 function evaluations are needed to obtain the

full approximate Jacobian matrix in the standard application of the method, so it is

also not significantly cheaper to compute than the LD-derivative in general. Several

examples throughout this thesis show the potentially dramatic differences in perfor-

mance obtained between using LD-derivatives, exact directional derivatives in the

coordinate directions and finite difference approximations when solving challenging

process simulation problems.

2.3.2 Equation-solving methods

Methods for solving square systems of locally Lipschitz continuous equations are now

discussed. First, methods for fixed-point problems that do not require sensitivity

information are introduced. Afterwards, methods for solving nonlinear equation sys-
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tems with the aid of generalized derivatives are discussed.

Fixed-point methods

The fixed-point problem is stated as follows: given g : X c R' -+ R", with X an

open set, find x* E X such that x* = g(x*). If g is a contractive mapping on a

closed subset X0 of X, meaning that there exists an A < 1 such that IIg(x) - g(z)I <

A IIx - z|I for all x, z E Xo, then there is a unique fixed point in X0 that may be found

using the method of successive substitution." The successive substitution method is

particularly simple: starting from an initial guess x0 E X0 , the following sequence

{x(k)} is calculated:

x(k+l) :- g(x(k) (2.20)

with limk_,oo x(k) = x* under the previous assumptions. While this iteration scheme

is very simple and requires neither assumptions on the differentiability of g nor any

local sensitivity information, it achieves only a Q-linear convergence rate, i.e. the

sequence of iterates obeys the following relationship: 34

x(k+l) _. X*
lim sup < +Co (2.21)

k-+oo 1lX(k) - X*H 1 (

for x(k) in a neighborhood of x* (excluding x* itself). This convergence rate is po-

tentially unacceptably slow (c.f. Equation (2.2)), especially when the evaluation of g

is computationally expensive. Therefore, in practice, accelerated successive substitu-

tion methods are generally used instead. For the algorithms that will be discussed in

Chapter 5, the method of Anderson acceleration was found to be particularly adept

at promoting rapid convergence for the embedded fixed-point problem. The Ander-

son acceleration (also called Anderson mixing) technique considers a particular linear

combination of the residuals from up to m previous iterations of the algorithm to

attempt to accelerate the solution procedure, where m is a parameter chosen by the

user. 2;134 If m := 0, then the method reduces to the successive substitution iteration.

Otherwise, the iteration takes the following form: on iteration k, mk := min(m, k)
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and the following unconstrained least squares problem is solved:

min I f(x(k)) - F(x(k))2y 2 (2.22)
-y

where - E Rmk, f(x(k)) - g(x(k)) - X(k), F(x(k)) ( (kf(X(k-Mk) Af(Xk- 1))) and

Af(x() -- f(x(i+1)) - f(x(')). The solution of Equation (2.22) is denoted by -y(k) and

the current iterate is updated by the following equation:

mk-i

x(k+l) _ gx(k)) _ S k) (g(x(k-mk+i+1)) - g(x(k-mk+i). (2.23)
i=O

As detailed in Walker and Ni, 134 there are techniques that reduce the computational

burden of solving the least squares problem. Most important among these is the idea

of solving Equation (2.22) with the QR decomposition technique while storing and

updating the QR factors of the matrix F(x(k)) on each iteration. This matrix only

changes throughout the algorithm by either adding a new rightmost column and/or

dropping the leftmost column, and these operations may be performed efficiently

(O(n2 ) flops to delete a column and 0(mn) flops to add a column for an m x n matrix,

as compared to the 0(2mn2 ) flops needed to recompute the QR factors nafvely). 39

Another useful modification that has been used in this work is to drop columns of

the matrix F(x(k)) when its condition number becomes large (which can again be

done inexpensively by checking the condition number of its R factor). Examples

in Chapter 5 highlight the efficacy of this acceleration technique compared to basic

successive substitution.

Sensitivity-based methods

Generalizations of Newton's method (Equation (2.1)) may also be used to solve nons-

mooth equation systems. If the function f : X c Rn -+ Rn (X open) is a semismooth

function as defined by Facchinei and Pang, 34 a class of function that encompasses all

PC1 functions, then the semismooth Newton method9 9 may be used to find a solution

of the equation system f(x*) = 0, for x* E X starting from an initial guess x(O) G X.
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The method proceeds identically to Equation (2.1), except that the Jacobian matrix

is replaced with an element of a generalized derivative of f at the current iterate x(k)

denoted G(x(k)) as follows:

G(x(k))M (k+l) _ (k)) __ _ (k)).(.4

When elements of the Clarke Jacobian are used for each G(x(k)), then the method

converges Q-superlinearly provided that the Clarke Jacobian at the solution contains

no singular matrices, which is to say that the iterates will obey the following: 34

x(k+l) _-y
limkcx(k) - < 0. (2.25)k->+oo I|Ix(k) - x* I -

When f is PC' and G(x(k)) is an element of the B-subdifferential of f at x(k) for

each k, the method converges Q-quadratically in a neighborhood of a solution, just

as the classical Newton's method does, under the assumption that all elements of

the B-subdifferential at the solution are nonsingular. 34 As a result of these conver-

gence guarantees, these generalized derivatives are considered the most useful from a

computational standpoint.

While generally highly effective, the semismooth Newton method will fail if G(x(k))

is singular, which may be problematic for some nonsmooth equation systems, e.g.

those with residuals containing expressions such as max(0, x). In such cases, an algo-

rithm that is amenable to these problems at the expense of increased computational

cost is the linear programming (LP) Newton method,33 in which the following linear

program is solved at each iteration in place of Equation (2.24):

min y

s.t. f(x(k)) + G(x(k))(X - x(k)) < y min (f(X(k)) JO, f((2.))2
(2.26)

(Ix - x (k)) 11 < YIf X(k)) 11.

x E X,

where -y is an auxiliary variable used to drive convergence to the solution and X is a
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set of known polyhedral bounds on the solution. The x part of the solution is used

as the next iterate x(k+l). Alternatively, the right-hand side of the first constraint

may be rewritten simply as y f(x(k)) 2 and the step-size constraint may instead be

replaced with

(x - x (k)) _' <y max ( f (X~)) I I 1f(x (k)) 12)

for the same effect of allowing larger steps to be taken far from the solution. 35 The

LP-Newton method can be further adapted to guarantee global convergence for C1

and PC' equation systems with the addition of a backtracking linesearch, as de-

scribed by Fischer et al.3' As with the semismooth Newton method, local quadratic

convergence can be achieved when G(x(k)) E OBf(X(k)). It is also possible to combine

the strengths of these two methods into a single method by taking steps with the

LP-Newton (or globalized LP-Newton) method if G(x(k)) is singular or poorly con-

ditioned and by taking steps with the semismooth Newton method otherwise. This

"hybrid" nonsmooth Newton method is shown in full in Algorithm 2.2.

2.3.3 Nonsmooth implicit functions

Methods for calculating generalized derivative information for implicitly defined func-

tions are needed in order to introduce several of the models described in this thesis

into simulation or optimization problems. In the case of differentiable functions, the

sensitivity analysis implied by the classical implicit function theorem can be applied

to obtain the derivatives of implicit functions. Fortunately, generalizations of the

classical result now exist for L-smooth and PC' functions. For L-smooth functions

this result is stated in the following theorem.

Theorem 2.2. 65;1" Let W c R' x R"' be open, and g : W -+ R" be L-smooth

at (p*, x(p*)) E W. Then, if g(p* x(p*)) = 0, and {X E R"xr" : 3[P X] c

acg(p*, x(p*)) } contains no singular matrices, then there exists a neighborhood N C

R" of p* and a Lipschitz continuous function x : N - R" such that, for each

q E N, (27, x(i)) is the unique vector in a neighborhood of (p*, x(p*)) satisfying
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Algorithm 2.2: Solve a square system of locally Lipschitz equations f(x) =0

1 Choose x(0 ) E X.
2 k +- 0.
3 while If(x(k)) > Eto and k < kmax do
4 Calculate f(x(k)) and G(x(k)) - f'(k); I ).

5 if cond(G(x(k))) < Nond then
6 Solve G(x(k))d(k) - -f (X(k)) for d(k).

(k+1) __ x(k) + d(k).
8 else
9 Solve Equation (2.26) for -(k) X(k+l).

10 d(k) X X(k+l) _ x(k).

11 a -1.

12 A +- - (1 - 7(k) f (x(k)) ) f .(X(k))

13 while I|f(x(k) + ad(k)) I > ( f (X()) + o-aA) and a > amin do
14 | a +- Oa.

15 end while

16 X(k+l) _ X(k) + ad(k).
17 end if
18 k +- k i 1.
19 end while
20 Return x(k).

The parameters in the algorithm are as follows. kmax: maximum number of iterations allowed. Et0I:
overall error tolerance for the solution. Ncorid: maximum condition number for which semismooth
Newton step is taken. arnin: minimum step size modifier. o, 0: linesearch parameters with values in
the open interval (0,1). The latter four parameters are fixed in all examples throughout this thesis
at the following values: Nond := 108, amiin := 10-13, - := 10-3, 0 := 0.05.

g9, X(77)) = 0m. Moreover, x is L-smooth at p*; for any k E N and any M E Rnxk

the LD-derivative x'(p*; M) is the unique solution N E Rmxk of the equation system

g'(p*, x(p*); (M, N))= Omxk. (2.27)

Equation (2.27) indicates that the generalized derivative information is obtained

from the solution of a nonsmooth nonlinear equation system. In the case of general

L-smooth functions, Equation (2.27) is solved by applying the following lemma from

Stechlinski et al. 117

Lemma 2.3. Let conditions of Theorem 2.2 hold. Then the ith column n(i) of N
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x' (p*; M) is the unique solution to the set of equations:

0 = g. . MM (2.28)
p*M(1:2._1) n(j)

x(p*)_N1g1

where the notation M(i.i-1) denotes the submatrix of M defined by columns 1 through

i - 1 of M. The residual function for this equation system, defined as

h : v -+g. MMi (2.29)
P* M(1:i_1) LV

-x(p*) N 1i-)

is L-smooth on Rm ; for any v E Rm and A c Rmq, q E N

h'(v;A) =g' ([p* M(:i-1) M(i) Omnxq Oix] (2.30)

( x(p*)j N(1:i_1) V A I qxqj

Lemma 2.3 enables solving for each column of x' (p*; M) sequentially using a non-

smooth Newton-type solver. At each step, n(') is found as the ith-order directional

derivative of g in direction [M(i) n(i)]T satisfying Equation (2.28). Previously eval-

uated LD-derivative elements N(l:i_ 1 ) of the implicit function, as well as the directions

matrix up to column i, M(1i:j), are used in the calculations, so necessitating a sequen-

tial computation. The search direction for the Newton-type solver is provided by the

LD-derivative h'(v; A) of the residual function h from Equation (2.29), where A is

an auxiliary directions matrix. Choosing A to be the m x m identity matrix is the

best choice for efficient solution of the equation system. Algorithm 2.3 presents a

procedure for solving Equation (2.27).

In the case of PC1 functions, the hypotheses and consequences of Theorem 2.2 can

be made more specific, in that piecewise differentiability of the implicit function x at

p* is inherited from piecewise differentiability of the participating functions (see the

implicit function theorem for PC' functions given by Ralph and Scholtes).101 Note
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Algorithm 2.3: Evaluate an LD-derivative of a lexicographically smooth im-
plicit function

1 Choose M E Rnxk

2 fori=1,...,kdo

3 ifk=Ithen
4 1 M() 1 M(1)-
5 else

6 1 M(.2)+ - [M(1:i_1) M(o].
7 end if

8 Provide an initial guess 0), e.g. v(0) <- 0,
9 Solve h(v) = 0, for v* with h defined as in Equation (2.29) with an

iterative nonsmooth method. LD-derivatives are given by Equation (2.30),
i.e. h' (v(); Inxn) for iteration j.

10 if k = 1 then

11 N(1) +-v*.

12 else

13 1 N(1.i) +-- [N(1:i_1) V*]
14 end if

15 end for
16 Return N.

also that in this case, the condition from Theorem 2.2 that the projection of Clarke

Jacobian of g must contain no singular matrices at (p*, x(p*)) may be weakened

to the condition that g must be completely coherently oriented with respect to x

at this point, which means that all matrices in the set i"7_ m{ (p*, x(p*)) :i E

I* (p*', x(p*)) } must have the same nonvanishing determinant sign (where H denotes

the Cartesian product). Moreover, if g is PC' at (p*, x(p*)) with known essentially

active selection functions {g(i) : i C Iess(p*, x(p*))}, it is often less computationally

expensive to use a different algorithm, Algorithm 2.4,65 to compute the sensitivities in

Equation (2.27). This algorithm iterates through the set of known essentially active

selection functions and applies the classical implicit function theorem result to each

differentiable piece in turn, stopping once the derivatives that satisfy Equation (2.27)

are found. In the worst case, Algorithm 2.4 must cycle through all JIess(p* x(p*))I

selection functions before returning the sensitivities. A method for improving the

robustness of Algorithm 2.4 in the presence of error in the linear solve in Line 5 is

discussed in Chapter 7.
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Algorithm 2.4: Evaluate an LD-derivative of a PC' implicit function

i Choose M E Rnxk
2 for i= 1, . . . , Iess(p*, x(p*))I do
3 if g(i)(p*, x(p*))) = Om then
4 if det(Dxg(2)(p*, x(p*)) 5 0 then
5 Solve the following linear equation system for N E(, Rmxk:

ag(i) Og(i)
p(p*, x(p*))M + (p*, x(p*))N = Omxk. (2.31)

ap Ox

if flg'(p*, x(p*); (M, N))H| < ens then
6 Return N.
7 end if
8 end if
9 end if

io end for

In Line 5, |i denotes the induced matrix 1-norm and Eiens denotes a user-defined tolerance on
the accuracy of the LD-derivatives.
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Chapter 3

A nonsmooth model for

multistream heat exchanger

simulation and design

A new model formulation and solution strategy for the design and simulation of

processes involving multistream heat exchangers is presented in this chapter. The

approach combines an extension of pinch analysis with an explicit dependence on

the heat exchange area in a nonsmooth equation system to create a model that

solves for up to three unknown variables in an MHEX. The compact nonsmooth

formulation keeps the method tractable even for MHEXs with many process streams,

and the advances in automatic generation of generalized derivative information for

nonsmooth equations reviewed in the previous chapter mean that the model can be

solved efficiently. Several illustrative examples and a case study featuring an offshore

liquefied natural gas production concept are presented that highlight the flexibility

and strengths of the formulation.

3.1 Introduction

Despite being ubiquitous in cryogenic processes, MHEXs are notoriously difficult to

model, simulate and design. Such processes are by nature extremely energy intensive,
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and therefore stand to benefit greatly from accurate process optimization. However,

without effective and flexible models for heat exchange unit operations, accurate

simulation and optimization of these processes cannot be performed. Among those

cryogenic processes that utilize MHEXs, LNG production plants are of key importance

in the current global energy industry and this application presents a compelling case

for the development of general, rigorous, and versatile models for multistream heat

exchangers for process design and simulation as described in the previous chapter.

The use of process simulation software is common in the literature involving pro-

cesses with multistream heat exchangers. Commercial simulators employ proprietary

models that generally permit solving for a single unknown variable, afforded by the

energy balance, typically taken as the one of the exchanger outlet temperatures. How-

ever, as an example, the author's experience using the MHEATX block from Aspen

Plus suggests there are no rigorous checks in place to avoid heat exchange between

two streams at very similar temperatures, or prevent temperature crossovers. This

leads to the somewhat frustrating experience of needing to know parameter values

that avoid this problem a priori, which then leads to a "guess-and-check" iterative

approach to the MHEX simulation.

A more rigorous approach to modeling MHEXs involves the use of a superstructure

concept.48149 This approach works by deriving a network of two-stream heat exchang-

ers that is equivalent to the multistream heat exchanger. This model can also handle

phase changes along the length of the heat exchanger, as long as the phase changes

are known to happen a priori. The major disadvantage of this methodology is that

simulating the MHEX involves the solution of a nonconvex MINLP model, which is

extremely challenging to find globally, and would be highly undesirable to use within

an outer optimization routine when the simulation is needed as part of a repeated

function evaluation.

Another method for MHEX modeling borrows heavily from pinch analysis and

the analysis of composite curves. A recent paper by Kamath et al.59 showed how to

create a fully equation-oriented model for MHEX by considering the unit operation

as a heat exchanger network that requires no external utilities. The authors use the
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classic Duran and Grossmann3 2 formulation for heat integration in their model, which

will be more thoroughly discussed in the following section. They also show how their

model can detect and handle phase changes through a disjunctive representation of

the phase detection problem, and also that their model is amenable to cubic equations

of state governing the thermodynamics. Note that the simulation and/or design of

MHEX here again cannot be performed independently of solving a hard optimization

problem.

A common theme in both the Kamath et al. article and much of the literature on

pinch analysis is the use of smoothing approximations to remove the nondifferentia-

bility inherent in the model, such as with the formulation presented by Balakrishna

and Biegler.12 Alternatively, some authors choose to use the disjunctive mixed-integer

model of the pinch operator from Grossmann et al.46 Both these approaches introduce

small, sensitive, user-set, non-physical parameters that can easily create numerical

difficulties and inaccuracies. However, with the recent advent of robust methods for

solving nonsmooth equation systems and optimizing nonsmooth functions, 75-77;34;33

such approximations are no longer a necessary evil, and the current work develops

a model that handles nondifferentiable functions directly. This relies heavily on the

use of tractable, automatic methods for calculating derivative-like information, more

information about which is found in the following section.

It is also notable that the MHEX modeling literature rarely makes mention of

the dependence of heat exchange area on the performance of the operation. Rather,

it is often assumed that an exchanger of sufficient size is simply available, and the

size is only calculated following determination of the output stream states, if at all.

With the above discussion in mind, this chapter develops a new model and solution

procedure for MHEX that solves for up to three unknowns, avoids returning infeasible

solutions, doesn't rely on approximations or solving a hard optimization problem, and

incorporates information about the available heat exchange area into the procedure.

This model and the proposed solution method can be used both in a standalone unit

operation model for use in a sequential-modular process simulation, or as the solution

algorithm and part of the equation system in an equation-oriented simulation. An
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example of the latter functionality is shown in a case study for an offshore LNG

production process later in the chapter. As a design tool, this model is intended for

use at the flowsheeting stage of design for processes involving one or more MHEX units

in order to determine stream states and evaluate feasibility. The detailed equipment

design necessary before constructing MHEXs is not considered in this chapter (nor is

it in any of the previously cited literature).

3.2 Background

This section reviews the traditional model formation for a two-stream heat exchanger

in preparation for the generalization to the mutlistream case. The nonsmooth formu-

lation of the pinch point constraints in heat integration problems that will be used in

a modified form in the MHEX model is also introduced.

3.2.1 Standard models for heat exchangers

The development of the new model for MHEX begins by analogy to the well-known

model of a countercurrent two-stream heat exchanger as shown in Figure 3-1. Here, a

hot stream with (assumed) constant heat capacity flow rate Fc, is cooled from inlet

temperature Tin to outlet temperature Tout by exchanging heat with a cold stream

with (assumed) constant heat capacity flow rate fc,, which in turn is heated from

inlet temperature ti" to outlet temperature tout.

F T * F Tou"

HEX

t 't

Figure 3-1: Schematic of a countercurrent two-stream heat exchanger.

The standard formulation of the model describing the transfer of heat in the
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exchanger shown in Figure 3-1 is given by the following equations:

Fc,(Ti" - Tout) = fc,(tout - t1"), (3.1)

Q = Fc,(Tin - Tou t ) = UAATLM, (3-2)

where Equation (3.1) is the energy balance and Equation (3.2) gives the relationship

between the total heat transferred Q and the overall heat transfer coefficient U, the

heat transfer area A and the log-mean temperature difference ATLm (average driving

force of heat transfer). Additionally, there exists a third relationship that governs

this system but is generally not explicitly considered:

A Tmin = min{Ti" - tou t , Tout - ti}, (3.3)

with ATmin referred to as the minimum temperature difference or the minimum ap-

proach temperature. Explicitly defining ATmin in this manner is nonstandard. In

practice, this quantity is often considered a parameter set a priori, which is then used

after Equations (3.1)-(3.2) are solved to judge the feasibility of the result. However,

for the current work, it is more useful to think of Equation (3.3) as an additional equa-

tion that provides information about the state of the system. Note that ATmin > 0

in any physically realizable process design.

Now, consider the case of the multistream heat exchanger model shown in Figure

3-2, in which a set of hot streams, indexed by a set H, exchange heat with a set of

cold streams, indexed by a set C. Each hot stream i E H enters at temperature Ti",

exits at temperature Tout (with T0 ;> To"t) and has a constant molar heat capacity

flowrate FC,,, which is defined as the product of the molar flowrate F and the (as-

sumed constant) molar heat capacity Ci of the stream at representative conditions.

Similarly, each cold stream j E C enters at temperature tn , exits at temperature tout

(with t." < tot) and has a constant molar heat capacity flowrate fcj. As shown

in the figure, assume that the MHEX operates as an ideal countercurrent exchanger,

so that all hot streams are codirectional with each other, and all cold streams are
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codirectional with each other and oppositely-directed to the hot streams. Beyond

this, the internal geometric configuration of the exchanger is not considered in the

present work.In addition, it is assumed that the heat transfer consequences of fluid

dynamics and the material properties of the MHEX are captured entirely by the value

of the overall heat transfer coefficient U. The available heat transfer area in a MHEX

is denoted by A, though often the product UA is used instead as the metric for the

physical ability of a MHEX to exchange heat to avoid the need for accurate estima-

tion of the value of U at the early stage of process design. For brevity, this quantity

UA is referred to as the heat exchanger conductance throughout this thesis.

FC'I Tn F T"Ou
C C'P' 3' C 1 .

FC T" F T*"u
CIHI' IHI' MHEX CIHl' JH

f out I

C I C , 1

out tin

fCq |C CI C C\ \C\

Figure 3-2: Schematic of a multistream heat exchanger with |H| hot streams and IC|
cold streams.

Equation (3.1) immediately generalizes to the following energy balance:

Z F,i(Tj" - Tout ) = S fc~,,(tgut _ t). (3.4)
iEH jEC

However, the MHEX analogues of Equations (3.2) and (3.3) are less obvious. Specif-

ically, the concept of the log-mean temperature difference has no immediate gener-

alization to more than two streams, and the minimum temperature difference could

occur at the inlet temperature of any stream. Fortunately, the problem of determin-

ing the minimum approach temperature in MHEX can be linked to the well-studied

field of pinch analysis for heat exchanger networks.
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3.2.2 Pinch analysis for heat integration

Pinch analysis is a methodology for minimizing the energy consumption of a chemical

process by optimizing heat recovery between process streams. Interpreted graphically,

this translates to shifting the process hot and cold composite curves on a temperature-

enthalpy (T - Q) graph to maximize their overlap (and hence minimize external utility

requirements) while maintaining a certain minimum temperature difference between

them (such that a non-negligible thermodynamic driving force exists). The classic

formulation of the pinch constraints for simultaneous heat integration and process

optimization (due to Duran and Grossmann 32 ) is given by:

3 ,,c(Tl'" - Tout ) - fc,(to"t - ti") + QH - o = 0, (3.5)
iEH jEC

APP - APj - QH < 0, Vp E P, (3.6)

where P = H U C is the index set of pinch point candidates, QH is the heat load of

the heating utilities, Qc is the heat load of the cooling utilities, and APHJ and APS

are defined by:

AP = Fcp,i[max{0, T" - TP} - max{O,Tio" t - TP}], Vp c P, (3.7)
iEH

APS = Zfcpj[max{0,tj"t - (TP - ATmin)} - max{0,t" - (TP - A Tmin)}], Vp E P.
j C

(3.8)

The temperatures of the pinch point candidates, TP, are defined by:

TP = T, Vp = i E H,

tT " + ATmin, Vp j E C.

As noted in Kamath et al., 59 a multistream heat exchanger can be viewed as a special

case of a heat exchanger network where the external utilities are not present (QH = 0

and QC = 0), which corresponds graphically to there being complete vertical overlap
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of the hot and cold composite curves on a T - Q diagram. Under the assumption

of maximum heat transfer in a heat exchanger network, it is known that for at least

one p C P, the heat deficit constraint (Equation (3.6)) is active for any feasible set

of stream conditions, 32 so the set of inequalities are equivalent to the single equality

constraint:

max{APP - APH} = 0. (3.9)

Additionally, the value of APS - APJ4 is greater than 0 whenever the heating re-

quirements of the cold streams above the assumed pinch p exceed the available heat

content of the hot streams above this temperature level, indicating infeasible heat

transfer. The left-hand side of (3.9) takes a positive value in this case. Together

with the cited result, this implies that the left-hand side of Equation (3.9) is always

greater than or equal to zero, with equality whenever all heat exchange is feasible.

Additionally, due to the nondifferentiability of the max{0, y} function at y = 0, the

following smoothing approximation is often used in practice, which is dependent on

a user-defined parameter #:12

max{0, f(x)} ( f(X)2~ 2 .f(X)) (3.10)
2

However, an attractive feature of the formulation proposed in this chapter is that no

such approximation is needed; the nondifferentiable nature of the equation system is

instead handled directly.

3.3 Formulation of MHEX minimum approach tem-

perature constraint

To enforce feasible heat transfer in MHEX, a variant of Equation (3.9) is used in

the model. However, using Equations (3.4) and (3.9) directly in an equation solving

procedure leads to a system that will usually have a nonunique solution; there are

many sets of stream conditions that give feasible heat transfer for a multistream heat
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exchanger in energy balance. While there are nonsmooth equation solving methods

that can tolerate nonuniqueness (one of which is discussed further later), the single

solution that is returned becomes dependent on the initial guess provided to the

solver.

Instead, the problem is formulated so that its only solution is the one correspond-

ing to the minimum temperature difference between hot and cold streams in the

MHEX being exactly ATmin. A solution of this form maximizes the heat transferred

in the MHEX. Geometrically, this is the problem of attempting to reduce the small-

est vertical separation between the hot and cold composite curves to exactly ATmin.

This is equivalent to the problem of reducing the smallest horizontal distance between

the composite curves to zero after applying a temperature shift of ATmin to the cold

curve.

To obtain functions that describe the shape of the composite curves, the order of

the temperature terms as well as the signs inside the max statements of APP and

APC' are reversed. The resulting expressions therefore account for heat transfer be-

low, rather than above, the pinch. Note that both curves are not defined at every

temperature, and so the horizontal distance could be undefined at certain points.

This can be solved by creating nonphysical extensions of the curves that extend to

the maximum and minimum temperatures existing in the heat exchanger by adding

additional terms. With these modifications, the hot and cold composite curve en-

thalpy values corresponding to each pinch point temperature are defined using the

following expressions:

EBPP = Fc,,i[max{0, TP - T,"t max{0, TP - Tj"}
iEH (3.11)

- max{0, T"" - TP} + max{O, TP - T"ax}], Vp E P,

EBPS = fcp,j[max{0, (TP - ATmiij) - t"} - max{0, (TP - ATmin) - tout
jeC

+ max{0, (TP - ATmin) - t"ax} - max{O, t"in - (TP - ATmin)}1, VP E P,

(3.12)
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where T" is the maximum hot stream inlet temperature, T" is the minimum hot

stream outlet temperature, t" is the maximum cold stream outlet temperature,

and tmin is the minimum cold stream inlet temperature. In each equation, the last

two terms correspond to the nonphysical extensions of the curves. Whenever one

of these additional terms is nonzero in Equation (3.11), it will be multiplied by the

sum of all the hot stream heat capacity flowrates, and similarly for Equation (3.12)

with the sum of the cold stream heat capacity flowrates. Figure 3-3 shows the full

extended composite curves generated by evaluating Equations (3.11) and (3.12) for

an example set of inlet and outlet temperatures for a MHEX. In practice however, the

expressions need only be evaluated at the known pinch candidate temperatures. Note

that it is entirely possible to transform Equations (3.11) and (3.12) into expressions

that preserve the order of terms and signs in Equations (3.7) and (3.8), however,

the geometric interpretation for the form of the extensions is less obvious in this

formulation.

T

t m

Q

Figure 3-3: Illustration of the extended composite curves generated by the expressions
EBPS (blue) and EBPH (red) when P is expanded to include both inlet and outlet
temperatures. The dashed lines indicate the extended portions of the curves added
by the last two terms in Equations (3.11) and (3.12). The sign of EBPP - EBPH is
indicated in the various regions of the plot.

The smallest horizontal distance between the extended composite curves can now

be found by solving:

min{EBPS - EBPH} =0. (3.13)
PEP
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It can also be seen that the expression inside the min statement of Equation (3.13)

is negative at any pinch temperature where the hot composite curve lies to the right

of the shifted cold composite curve, and positive where it lies to the left, as indicated

in Figure 3-3. After calculating EBPS - EBPH, Vp E P, Equation (3.13) is solved

by searching through the finite set P to find the minimum. This can be done using

a PC'-factorable algorithm in analogy to Algorithm 6.1 from Khan and Barton13

(first computing T"ax, T""", tm , t"" and then evaluating Equations (3.11), (3.12),

and (3.13) in place of Equations (3.7), (3.8), (3.9)). As such, generalized derivatives

can be calculated automatically for Equation (3.13) with respect to the unknown

variables. A small example is now presented to examine the method thus far and

highlight an additional issue with the solution process.

Example 3.1. Consider the process data in Table 3.1 for two hot streams and two

cold streams in a multistream heat exchanger (adapted from a heat exchanger network

example in Smith" 4).

Table 3.1: Stream data for Example 3.1.

Stream Name T" or t" (C) Tout or tout (0C) Fc, or f'c (MWC')
HI 250 40 0.15
H2 200 X1 0.25
C1 20 180 0.20
C2 140 X2 0.30

Let ATiun = 10'C for this example. The equation system that must be solved for

the unknown temperatures x1 - TW]"t and x 2 - to"t consists of Equations (3.4) and

(3.13). For the solution to be feasible, it must also be that Tout < T", Vi E H and

;> t", Vj E C. When modeling a MHEX using this formulation, it is recommended

that one unknown correspond to a hot stream outlet and the other correspond to a

cold stream outlet, as is the case here. Figure 3-4 shows the residual functions for

Equations (3.4) and (3.13) plotted for a range of x1 and x 2 values around the solution.

The system is clearly nonsmooth, and so Equation (2.24) is applied iteratively to

the problem from the initial guess yo = (80,230), the solution from Smith 4 with

utilities present. The infinity norm of the residual functions serves as the basis for
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Figure 3-4: Residual of the MHEX model in the vicinity of the solution for Example
3.1. The intersection of the two surfaces is indicated by the solid line. The solution
point is shown both on the surfaces and projected onto the X-X 2 plane.

termination; here the problem is determined to have converged when the value is

less than 10-. The solution corresponding to the multistream heat exchanger that

maximizes heat transfer is found after just a single iteration to be y = (120, 205).

The (non-extended) composite curves at the solution are shown in Figure 3-5. Figure

3-6 shows the zero-level contours of Equations (3.4), (3.9), and (3.13) applied to this

example over a range of values for x. Note that the solution is unique using the

proposed formulation, but that there are infinitely many solutions if Equation (3.9)

is used in place of Equation (3.13), since its residual is zero over a large region that

partially overlaps with the zero-level contour of the energy balance residual. Note that

both of these formulations will have flat regions in the residual plots; such regions are

a natural feature of the MHEX problem because unknowns such as inlet and outlet

temperatures will only influence the minimum distance between the composite curves

over limited ranges of values. However, the extensions in the new expressions have the

effect of moving this flat region to a nonzero residual function value, which eliminates
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the nonuniqueness of the solution in many cases.

300 1_1

- Hot composite curve
Cold composite curve

250 -

200-

U

150-

0-
Ea)
1- 100-

50 -

0 10 20 30 40 50
Enthalpy (MW)

Figure 3-5: The composite curves corresponding to the multistream heat exchanger
simulated in Example 3.1.

Finally, note that if a nonsmooth Newton method is started from any point with

x1 > 130, where the surface corresponding to Equation (3.13) is flat, the method fails

to solve the Newton step for the next iterate because the generalized derivative is a

singleton corresponding to the standard Jacobian matrix, which is singular.

As a result of the unavoidable presence of singular Jacobians, the nonsmooth

Newton method based on Equation (2.24) cannot solve the problem starting from

any possible initial guess. Instead, the LP-Newton method (Equation (2.26)) can be

used, which has the added benefit of allowing bounds to be enforced on the solution.

An example of a useful bound that could be added in the case that ATmin is an

unknown is ATmin > ATt0 i, where ATti > 0 is the smallest approach temperature

that would be tolerated in operation. The bounds on the unknown temperatures

should also be enforced, for instance, if some yA corresponds to a hot stream outlet

temperature Tiout for some i, then the constraint y < T" is added. This prevents
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Figure 3-6: Zero-level contours for Equation (3.4) (black dashed line), (3.9) (purple
shaded region), and (3.13) (red dotted line) for the problem in Example. 3.1 over a
range of values for the unknown temperatures.

the hot stream from gaining heat as if it were a cold stream, which would invalidate

the model. Analogous constraints can be imposed for variables corresponding to inlet

or cold stream temperatures. Using the LP-Newton method on the problem given

in Example 3.1 gives the correct solution regardless of whether or not the Jacobian

is singular at the initial guess, although the method is no longer exact for linear

equations as the previous method was, so the number of iterations needed to converge

is greater (around 40 iterations were needed for all initial guesses tested).

3.4 Formulation of MHEX area constraint

Consider now an analogue of Equation (3.2) for the MHEX case. Define K as the

index set for the points at which the composite curves are nondifferentiable (kinks),

as well as their endpoints, then for k E K, let Qk denote the enthalpy value at this

kink or endpoint, which could occur on either the hot or cold composite curve. Now
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suppose a list of triples of the form (Qk, Tk, tk), ordered by nondecreasing Qk value

has been calculated. For each of these triples, Tk is the temperature on the hot

composite curve at Qk, and tk is the temperature on the cold composite curve at Qk.

An adjacent pair of triples in the list demarcates an interval of the composite curves

in which part of MHEX can be modeled as a two-stream heat exchanger. A simple

expression for the total required heat transfer area of a network of two-stream heat

exchangers that can be applied to MHEX is as follows: 114:52

UA= Z j k , (3.14)
keK LM

k5#IKI

where AQk - Qk+1 _ Qk is the width of enthalpy interval k, JKj = 2(jHJ + Cl),
and AT M is a modified version of the log-mean temperature difference across this

same enthalpy interval that is defined later in this section. Figure 3-7 illustrates the

definitions of Qk and AQk for a sample set of composite curves. Note that for this

work, it is assumed that there can be no transverse heat transfer between adjacent

enthalpy intervals.

In standard practice, heat transfer area is calculated after heat integration is per-

formed, and the integrated composite curves are used to define the enthalpy intervals.

However, in this work, it is desired that Equation (3.14) be included in the system

of equations being solved simultaneously, so that an additional unknown is available

for simulation pruposes and so that the area may be specified as part of the problem

input. This creates some difficulty, as the full sorted list of (Qk, Tk, tk) triples must

be calculated at each iteration, starting from an incomplete list of just the inlet and

outlet temperatures that are arranged in an arbitrary order. Furthermore, this must

be done using an algorithm for which valid generalized derivatives can be calculated.

The proposed procedure begin by arbitrarily ordering the set of inlet and outlet

temperatures into a list indexed by a set L of size JK|. Then for each I C L, the
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Figure 3-7: Example of the enthalpy intervals used in the calculation of Equation
(3.14). Solid circles represent the temperatures that are part of the data for the
problem, hollow circles represent those that must be calculated. In the case where
the endpoints of the composite curves do not align, one curve must be extrapolated
out to the end of the other (dashed line).

pre-sort enthalpy P1 is calculated using one of the following equations:

P' = ~ Fcp,, (max{0, T' - Ti ut - max{0, T' T' E {T1 n/out : i E H},
icH

(3.15)

P1= fc,,j (max{0, ti - t"} - max{0, It' - t7 ut}) , t' E {t n/out :j E C}. (3.16)
jEC

This provides all the enthalpy values needed to calculate the heat transfer area, but

they are out of order and not yet associated with the corresponding pair of tempera-

tures on the composite curves. To correct the order, a list of triples is created, each

of the form (P1, T', t'), in which each P1 is associated with either the hot or cold

temperature used in its calculation (and as such one of the temperature entries is

currently unknown in each triple). This list is then sorted into nondecreasing order

based on enthalpy value to set up the intervals for Equation (3.14) correctly. If the

sort is performed using a nafve bubble sort, implemented as shown in Algortihm 3.1,

then the only operations involve taking the max or min of two values. The loops are
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run over the entire length of the list to ensure that the same number of operations

are performed for a given input size, regardless of how well-sorted the input data is.

These conditions imply that the sort algorithm has an PC'-factorable representation

and therefore has well-defined LD-derivatives that can be calculated automatically.

Therefore, the sorting algorithm may be viewed as a nonsmooth function that maps

the unsorted input to the sorted output. Since LD-derivatives obey a sharp chain rule

(Theorem 2.1), evaluating the LD-derivatives of the sorting function in the directions

set by the LD-derivatives of the inner function that maps x to the list of P' values, as

given in Equations (3.15) and (3.16), valid LD-derivatives of the composite function

in the original directions I are obtained. Example 3.2 demonstrates this initial part

of the procedure.

Algorithm 3.1: The naifve bubble sort algorithm.
Input : An unsorted list, A with entries A[1],..., A[m].
Output: The list A, with the m entries sorted in order of increasing value.

1 for i <- 1 to m do
2 for j -ltom-ldo
3 a <- min(A[j], A[j + 1])
4 b <- max(A[j], A[j + 1])
5 A[j] <- a
6 A[j + 1] <- b
7 end for
8 end for
9 return A

Example 3.2. Consider the stream data from the previous example at the solution

point x. First, the enthalpy values and their LD-derivatives at k in the directions

I are computed. This is performed in the C++ programming language using the

implementation of automatic LD-derivative evaluation described in Chapter 2 from

Khan and Barton. 64 Table 3.2 contains these values for this example.

This data is arranged into triples of the form (P, T', t') and the bubble sort

algorithm is applied to sort by nondecreasing enthalpy value. The result of this

operation is the list of correctly ordered but incomplete triples as shown in Table 3.3.
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Table 3.2: Temperature-enthalpy data for the streams in Example 3.1.

1 Temperature ID Temperature (OC) P(k) (MW) Pi'(k; I)
1 T " 250 51.5 [-0.25 0]
2 Tout  40 0.0 [0 0]
3 T "n 200 44.0 [-0.25 0]
4 T2"t 120 12.0 [0.15 0]
5 ti 20 0.0 [0 0]
6tut 180 44.0 [0 0]

7 ti" 140 24.0 [0 0]

8tot 205 51.5 [0 0.3]

Table 3.3: Results of the bubble sort operation on the triples generated from Table
3.2. The symbol "--" represents those temperatures that have yet to be calculated.

k (Qk(k),Tk,tk) Qk'(k; I)
1 (0, 40, -) [0 0]
2 (0, -, 20) [0 0]
3 (12, 120, -) [0.15 0]
4 (24, -, 140) [0 0]
5 (44, 200, -) [-0.25 0]
6 (44, - 180) [0 0]
7 (51.5, 250, -) [-0.25 0]
8 (51.5, -, 205) [0 0.3]

Note that here, the LD-derivatives associated with each P1 prior to the sort remain

associated with the corresponding variable in the sorted order. In general, however,

this need not be the case. For instance, for I = 1, if P'(k; I) = [0.25 0], then

following the sort, the ordering of triples is identical, but Q7 '(k; I) = [0 0.3], and

Q8'(; I) = [0.25 0].

Now the missing temperature in each of the triples must be calculated. Given Qk,

if Tk is unknown, (3.17) is solved for T. Similarly, if tk is unknown, then (3.18) is

solved for tk.

Qk - ~ Fcp,, (max{0, Tk - T" t }
iEH

- max{0, Tk - 7i"}) 0,

Qk - fc (max{0,t tn} max{0, t out})=

jeC

(3.17)

(3.18)

Unfortunately, there seems to be no way to solve either of these equations for the
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unknown temperature without the use of selection statements, and so any such al-

gorithm would not have a factorable representation. Therefore, since it cannot be

guaranteed that valid B-subdifferential elements would be obtained by differentiating

the solution algorithm, a different method must be used.

If no restrictions are placed on the algorithm, the value of the unknown tempera-

ture, denoted by tk or ik, that satisfies Equation (3.17) or (3.18) can be determined

by a simple search and interpolation procedure over the piecewise affine segments of

the relevant composite curve. As shown in Figure 3-7, if the composite curves do not

exactly align, the shorter curve can be extrapolated to the end of the longer one to

find the corresponding temperature.

The LD-derivatives of this temperature at the value of the vector of unknowns,

k, in the original directions I, e.g., Tk'(*; I) or t"'(i; I) must then be calculated

independently. However, as this cannot be done directly, instead regard Equation

(3.17) (and analogously Equation (3.18)) as h(Tk, x, Qk(x)) = 0, for the function

h : R x R"" x R -+ R defined by the left-hand side of Equation (3.17). There-

fore, there exists an implicit function q : R"' x R -+ R defined by the equation

h(T k x, Qk(x)) = 0, such that Tk (X) - (X, Qk(x)), for all x in a neighborhood of

x. Note that the implicit function here depends on Qk, which is (possibly) a function

of the unknowns x, so the chain rule is applied to obtain the desired LD-derivatives

T/'k I) - '(( k(k)); M), where the directions M are determined by the LD-

derivatives of the previous operations that calculated Qk (Z). To calculate the LD-

derivatives of the implicitly-defined function r'((k, Qk(k)); M) correctly, Algorithm

2.4 can be invoked to searching through the essentially active selection functions h(

that comprise the piecewise differentiable function h.

The computational complexity of this algorithm applied naYvely to this problem

is exponential in the number of hot and cold streams because of the presence of

41H1 selection functions due to the binary max terms in the definition of h, where

each term has two possible differentiable functional forms that could be active at

h(Tk, Qk(k)). However, this unfavorable scaling can be mitigated by using the

calculated value of the unknown temperature itself to reduce the number of possible
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active selection functions. Once the value and the corresponding LD-derivative of the

unknown temperature have been calculated, they are copied into the appropriate ob-

ject type and used in the remainder of the procedure. Example 3.3 demonstrates the

application of Algorithm 2.4 to calculate the LD-derivatives of the implicit function.

Example 3.3. Consider the triples from the previous example. A kink in the cold

composite curve is located at Qk = 44 MW, corresponding to a cold stream temper-

ature value of jk = 180'C. Notice that here, the hot temperature value is actually

already known at this enthalpy value, so Tk = 200'C (if this were not the case, then

an interpolation on the relevant affine segment would be used to find tk). Note that

the LD-derivatives (and regular derivatives) of Qk at this x are all zero, since the

value of the cold stream outlet variable #2= 205 C is strictly greater than all other

cold stream temperatures, and so Equation (3.18) shows that only the zero selection

function of the max term involving X 2 =tut will be active when t = 180'C. For

notational simplicity, define z(y) = (x, Qk(x)), and then the direction matrix M is

given by:

- -1 0

M ==0 1

Then Equation (3.17) can be written for this example as follows:

h(Tk, z) = z3-Fc,, 1 (max{0, Tk - TI1" t } - max{0, Tk -Tlin"9

-Fc,, 2 (max{0, Tk - zi} - max{0, Tk - 0.

Naively, 16 different continuous selection functions would need to be considered here

to account for the four max terms; however, note that three of the max terms will

only have a single active selection function, since k > Tout, Tk < TI, and tk > zi.

In the final term however, 2k so there are two possible differentiable selection

functions to consider: hi, h2 E Ihss k

h(1)(T k, z) = Z3- FC,,1 (Tk - T1 "t) - Fcp,2 (Tk - z1
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h(2 )(Tk, z) - FC0 ,1 (Tk - - F 3,, 2 (Tk - z1 ) + FI,,2 (Tk - T2")

Evaluating the required derivatives gives:

00() k Oh (2)k

h)z ( iTk) = [Fc,,2 0 1], (T ) [FC,2 0 1],

00() (t Oh (2) ki _
__T ~k T -z= -(F,,1 + Fc,,2 )' - (Tk z) -F0 ,1 .
OTk OT k

In practical implementation of this algorithm, these expressions can all be calcu-

lated using automatic differentiation. Solving the linear system 0) ( tk ,)N (1) =

-- ) (Tk, i)M for NM1 then yields NM1 = [F 0] = [0.625 0]. However,

evaluation of the LD-derivative of h yields h'((tk, i); (N(1 ), M)) = [0.15625 0],

indicating that 77'(i; M) -/ N('). Solving the linear system involving h(2) gives

N(2) = [FP 0] = [ 0]. In this case, evaluation of the LD-derivative of h yields

h'((ik, i); (N(2 ), M)) = [0 0], and so T'(i; M) = N 2 ) Finally, by the chain rule for

LD-derivatives:

Tk~;) (Qk(k:)) rk/(k;J)1 M) = ()

Applying this procedure for all Qk completes the sorted list of triples at all nondif-

ferentiable points on the composite curves. Now, the log-mean temperature difference

between the endpoints of each enthalpy interval must be calculated. To do this, it

is necessary to slightly alter the standard definition of the log-mean temperature

difference so that evaluating the function never results in undefined behavior. The

definition used for this work is as follows (from Zavala-Rio et al. 150):

1 (ATk + ATk+1) if AT k = AT k+1
A Tk (AT T ak+1) __ 2 '(3.19)

L ATk+l-ATk h1n(ATk+1)--n(,ATk) otherwise,

where ATk = max{ATmin, Tk tk} is the temperature difference at the start of

enthalpy interval k, and ATk+1 = max{ATin, Tk+1 - tk+1} is the temperature dif-
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ference at the end of the interval. The max of this quantity and ATmin is taken here

so that this calculation of the temperature driving force is only based on feasible

heat transfer. The if statement in the definition of the log-mean temperature dif-

ference is necessary to make the calculation defined for all possible inputs ATk > 0

and ATk+ > 0. Fortunately, since this function is continuously differentiable on the

positive quadrant of R2, the if statement in Equation (3.19) does not introduce

any complications since the standard rules for automatic differentiation will produce

correct derivatives. Note that the function obtained by composing the function T (X)

(that is itself already a composition of several nonsmooth functions) with the max

functions defining ATk and ATk+, and then the log-mean temperature difference

function remains a nonsmooth function of the unknowns x. As before, correct LD-

derivatives of this composite function are computed through application of the chain

rule for LD-derivatives.

In summary, the set of equations describing the multistream heat exchanger now

consists of the following:

FcP,,(T'" - T"out ) - fC,, (to"t - ti) = 0, (3.4)
icH jeC

min{EBPH - EBP} =0, (3.13)
pEP

UA- =Ak =0. (3.14)
ATkj'

kEK LM
k=AIKI

This is a nonsmooth equation system involving three equations in three unknowns

that can solved using the LP-Newton method discussed previously. Additionally, it

should be enforced that Tout < Tj",Vi E H and t t > t",Vj E C, which is most

easily enforced by setting polyhedral bound constraints in the LP-Newton method.

Note also that since it is necessary to calculate the temperature difference between

the composite curves at each Qk in order to evaluate Equation (3.14), one can use

the following in place of Equation (3.13) in the previous equation system:

min{Tk -- (tk - ATmin)} = 0. (3.20)
keK
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This is a more expensive function to evaluate than Equation (3.13), although since

most of the computational work must be done to evaluate Equation (3.14), using it

in the system of three equations will be slightly cheaper computationally overall. The

authors' testing has not been conclusive as to which of these two possible formulations

results in faster convergence to the solution; it appears largely dependent on the

problem at hand and the initial guess provided.

A larger illustrative example that makes use of the full multistream heat exchanger

model is now given.

Example 3.4. Consider the following process data in Table 3.4 for five hot streams

and five cold streams in a multistream heat exchanger (adapted from a heat exchanger

network example in Chakraborty and Ghosh2 3 ). This MHEX is simulated under four

different conditions to highlight the flexibility of the new model. In all cases, the

CPLEX v12.5 callable library 55 is used to solve the linear program at each iteration.

The problem is considered converged to a solution when the infinity norm of the

residual functions is less than 10-.

Table 3.4: Stream data for Example 3.4.

Stream Name Ti" or ti" (0C) Tout or tout (0C) Fc, or fc, (kWC-1)
HI 160.0 93.3 8.8
H2 248.9 137.8 10.6
H3 226.7 65.6 14.8
H4 271.1 148.9 12.6
H5 198.9 65.6 17.7
C1 60.0 160.0 7.6
C2 115.6 221.7 6.1
C3 37.8 221.1 8.4
C4 82.2 176.7 17.3
C5 93.3 204.4 13.9

Case I. For a first example, let x1  TV~, x 2  toC's, and -- UA. Let all other

temperatures be fixed at their values in Table 3.4 and let ATmin = 10 C. Solving the

system of three equations (Equations (3.4), (3.13), and (3.14)) using the LP-Newton

method yields x 1 = 131.3'C, x2 = 259.00 C, and x 3 = 314.7 kW/K after 125 iterations

starting from the solution with utilities present given by Chakraborty and Ghosh 2 3
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and A = 200 kW/K. The composite curves for the multistream heat exchanger in

this case are shown in Figure 3-8(a). Observe that the composite curves resemble

those of a heat exchanger involving streams of nonconstant heat capacity, despite

actually consisting of a number of affine segments. The same numerical result is

obtained by applying only Equations (3.4) and (3.13) to resolve the composite curves

and then calculating the overall conductance afterwards.

Case II. The strength of the new approach is more apparent when UA is specified,

rather than calculated. Given a conductance (or area) value, a typical problem is to

calculate ATmin in the exchanger, which generally leads to better design than when

ATmin is specified5 7 (as it was in Case I). For a second example, assume that an old

heat exchanger with a UA = 400 kW/K is being re-purposed, let x1  17TJi, x 2 - th"?

as before, and now let x3 = ATmin. Starting from the conditions at the solution of the

previous case, the new solution is found in 13 iterations of the LP-Newton method

with x1 = 126.2'C, x 2 = 265.5'C, and x3 = 3.5'C. The composite curves for the

multistream heat exchanger in this case are shown in Figure 3-8(b). Here, the curves

are more closely pinched together than in Case I as a result of the increased heat

transfer potential afforded by the higher conductance value.

Case III. Now consider using the same variables as in Case II, but using a heat

exchanger instead with UA = 200 kW/K. The solution is found in 49 iterations

of the LP-Newton method with x1 = 162.4'C, x 2 = 219.4'C, and x3 = 16.7'C

starting from the conditions at the solution of Case I. The composite curves for the

multistream heat exchanger in this case are shown in Figure 3-8(c). In this case,

the location of the pinch shifts to a significantly lower temperature than in Cases I

and II. Additionally, TWt increases and tou decreases substantially in response to the

decrease in conductance, resulting in a larger temperature gap between the composite

curves than in the previous cases.

Case IV. Finally, consider the problem where x1 = TWt, X2 = tot, and x 3 is a third

temperature, say x 3 = TV, with ATmin = 100 C. A value of UA must also be specified

for this MHEX, though note that not all values of UA will lead to a feasible solution

due to the highly constrained nature of the problem. If UA = 340 kW/K, then the
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solution is found in 26 iterations with x1 = 140.10C, X 2 = 259.0'C, and x3 = 75.6'C

starting from the conditions at the solution of Case I. Increasing UA further, say to

345 kW/K results in an infeasible problem. Similarly, the area can be reduced down

to UA = 307 kW/K to obtain a solution with x1 = 121.0'C, x 2 = 259.0'C, and

X3 = 114.0'C in 31 iterations starting from the conditions at the solution of Case I,

but decreasing the conductance further again results in an infeasible problem. The

composite curves for this case are shown in Figure 3-8(d) for UA = 340 kW/K and

Figure 3-8(e) for UA = 307 kW/K. In both scenarios, the shape of the lower part of

the hot composite curve shifts in response to the change in UA, with the pinch point

remaining at the same location as in Case I.

The new nonsmooth model formulation for MHEXs can also be used as part of a

rigorous process design strategy in a way that other existing models cannot. Current

simulation-based models are over-constrained in the sense that they allow for only

one unknown that can be adjusted to meet two requirements: the energy balance

and the second law requirement that heat flows from hot streams to cold streams. In

many such models, the adjustable temperature is set by the energy balance, so there

is nothing left to adjust to satisfy the second law requirement; it is either satisfied or

not based on the values given for the degrees of freedom in the problem, leading to

temperature crossovers and other nonphysical solutions. The initial model proposed

in the previous section consisting of Equations (3.4) and (3.13) addresses this issue

by enabling the user to specify ATmin, thus freeing up two adjustable temperatures to

meet the two requirements. It is much easier to specify degrees of freedom that have a

feasible solution with this formulation. As noted in Jensen and Skogestad, " specifying

ATmin is somewhat artificial and can even be counterproductive; it is better thought

of as an output of the model, not an input. The three equation model presented

here consisting of Equations (3.4), (3.13) or (3.20), and (3.14) addresses this issue by

enabling two temperatures and ATmin to be adjustable. However, in order to make

this work, an area (or conductance) must be specified as a degree of freedom. Again,

it is much easier to specify degrees of freedom that have a feasible solution for this

formulation, which enables to user to adjust the area to get desirable temperature
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Figure 3-8: Composite curves of multistream heat exchangers simulated under con-
ditions of (a) Case I, (b) Case II, (c) Case III, (d) Case IV with UA = 340 kW/K,
(e) Case IV with UA = 307 kW/K in Example 3.4.

profiles in the MHEX. However, at the early stages of system design it may not be

clear what is a reasonable area to specify. Therefore, the two equation model is very
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useful at this preliminary stage because the user can specify a reasonable ATmi,

obtain valid composite curves, and then calculate the corresponding MHEX area (or

equivalently use the three equation model with the area as one of the unknowns, as in

Case I of Example 3.4). Once this area is known, the user can use the three equation

model with other quantities as unknowns while adjusting the area value around this

base value.

3.5 LNG process case study

An application of the proposed method to the simulation of a complex LNG produc-

tion process featuring compression and expansion of process streams as described in

Wechsung et al.1 41 is now presented.

Example 3.5. A flowsheet for an offshore LNG process is shown in Figure 3-9. Prior

to considering heat integration, many of the physical process streams must be split

into multiple independent substreams, each with constant heat capacity, to better

model the true cooling curves. As in Wechsung et al.,14 1 the natural gas process

stream (NG-x) is split into three separate hot streams (H1-H3), the cold carbon

dioxide stream (C0 2-x) is split into two separate cold streams (C1-C2), and the

cold nitrogen stream (N 2-x) is split into three cold streams (C3-C5). The remaining

process streams are not divided into substreams, resulting in a total of 4 hot streams

and 7 cold streams that are considered from the perspective of heat integration in

the model. HX-100 handles 3 hot streams and 6 cold streams while HX-101 handles

1 hot stream and 3 cold streams, as detailed in the first three columns of Table C.1.

This problem was originally designed as an optimization problem, so there are too

many unknown variables in the formulation from Wechsung et al.1 41 to simulate the

process. Therefore, some of the variables (namely all of the pressures and flowrates,

along with some of the temperatures) are fixed to their values from the solution

given in Wechsung et al.14 1 that involved no external utilities. Table C.1 gives the

values of the parameters used in the model as well as the quantities left as unknown

variables for this study. There are a total of nine unknowns in the simulation problem:
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Figure 3-9: Flowsheet for the liquefaction process in Example 3.5 (from Wechsung et
al. 141)

seven temperatures, of which two are solved for by each heat exchanger model and

three are solved for by the equations describing the three compression/expansion

operations, and two additional variables (one for each MHEX) that can be freely

chosen as UA, ATmin, etc., as shown in the previous example. The compression

and expansion operations are modeled as polytropic processes for ideal gases with

polytropic exponent , = 1.352, as in Wechsung et al.14 1

Several test cases are now explored, as in Example 3.4. As before, the CPLEX

v12.5 callable library is used to solve the linear program at each iteration and the

problem is determined to have converged to a solution when the infinity norm of the

residual functions is less than 10-'.

Case I. As a base case, the process is simulated with the variables x1 through x7

assigned as in Table C.1, y8 - UAHX-100, and y9 - UAHX-101- ATmin is specified as

4 K for both exchangers. The model converges to the solution shown in the Case

I column of Table 3.6 after 128 iterations from the initial guess xO = [300 200 100

150 150 100 300 100 100]. This solution differs slightly from the solution reported in

Wechsung et al.,1"' however, note that the authors used the disjunctive formulation

from Grossmann et al., 46 whereas here the nonsmooth equations are solved directly,
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Stream Inlet Outlet Fc,, fc,(f) T'", ti"(K) Tout, tout(K) P (MPa)

H1 NG-2 NG-3 3.46 319.80 265.15 10.0
H2 NG-2 NG-3 5.14 265.15 197.35 10.0
H3 NG-3 NG-4 3.51 197.35 104.75 10.0
H4 N2 -8 N2-9 1.03 X1 X2 2.7
C1 C0 2 -2 C0 2 -3 5.19 221.12 252.55 6.0
C2 C0 2 -2 C0 2 -3 6.10 252.55 293.15 6.0
C3 N2-2 N2-3 2.23 103.45 171.05 10.0
C4 N2-3 N2-4 1.62 171.05 218.75 10.0
C5 N2-3 N 2-4 1.06 218.75 221.11 10.0
C6 N2-6 N2-7 0.96 3 221.15 0.4
C7 N2-5 N 2-6 0.96 4 3 0.4
C8 N2 -11 N 2-12 0.93 5 6 0.1
C9 N2 -10 N 2-11 0.93 X7 X5 0.1

Table 3.5: Given data and unknown variables for the offshore LNG process case study.

so a small difference is not unexpected. The composite curves for the two MHEXs in

this case are shown in Figure 3-10(a) and (b).

Case II. Now consider a case where the available UAHX-100 is fixed at 120 kW/K,

and UAHX-101 is fixed at 30 kW/K. Variables x, through 7 are as assigned as in

Table C.1, Y8 ATmiiin,HX-100, and y9 - ATnin,HX-101. The model converges to the

solution given in the Case II column of Table 3.6 after 28 iterations starting from the

solution found in Case I. The composite curves for the two MHEXs in this case are

shown in Figure 3-10(c) and (d). As can be seen, the curves are more closely pinched

together throughout HX-100 than in Case I as a result of the increased conductance,

with the pinch point location shifting to the high temperature extreme. Note that

ATmin,HX-101 also decreases relative to Case I in order to satisfy the overall process

model (even though UAHX-10 1 was specified as a lower value), so the other variable

cold outlet temperatures decrease significantly to compensate.

Case III. Now consider the problem where x1 through 7 are as assigned as in

Table C.1, y8 TW, and yq = to".. For this case, let UAHX 1 0 = 85 kW/K and

UAHX-101 = 35 kW/K. ATmin is specified as 4 K for both exchangers. The model

converges to the solution given in the Case III column of Table 3.6 after 48 iterations

starting from the solution found in Case I, and the composite curves for this case are
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Variable Case I Case II Case III

X1 365.07 K 365.07 K 365.07 K
X2 225.44 K 217.66 K 231.10 K
X3 193.35 K 196.09 K 195.06 K

X4 95.08 K 95.08 K 95.08 K
X5 180.85 K 174.75 K 194.58 K

X6 357.14 K 362.46 K 352.12 K

X7 95.14 K 91.85 K 97.52 K

Y8 97.54 kW/K 2.62 K 199.06 K
y9 31.09 kW/K 1.26 K 168.25 K

Table 3.6: Results for the different cases of the LNG process case study.

shown in Figure 3-10(e) and (f). The reduction in UAHx-loo as compared to Cases I

and II leads to larger temperature differences throughout the exchanger than in those

simulations, while the increase in UAHX-101 leads to closer temperature approaches in

this exchanger (though both exchangers maintain the same pinch points from Case I).

However, as in Example 3.4, the feasibility of the problem is highly dependent on the

specified conductance values. This again highlights the fact that for this particular

designation of unknowns and degrees of freedom, there is only a small region in which

all the constraints can be satisfied.

3.6 Conclusions

A new method for the simulation and design of processes with multistream heat ex-

changers has been presented, based on recent developments in nonsmooth analysis.

While traditional models for multistream heat exchange operations can only be solved

for a single unknown variable (using the energy balance), this new model allows for

up to three unknown quantities to be calculated simultaneously. The model proposed

here also allows for the specification of parameters such as the heat exchange area

or the minimum approach temperature as inputs to the model, rather than simply

calculating these quantities after the energy balance has already been solved. The

nonsmooth equations in these formulations can be solved precisely and with a guar-
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Figure 3-10: Composite curves of the simulated results of Example 3.5 under the
conditions of (a) Case I for HX-100, (b) Case I for HX-101, (c) Case II for HX-100,
(d) Case II for HX-101, (e) Case III for HX-100, (f) Case III for HX-101.

anteed local quadratic convergence rate, owing to the automatic calculation and use

of B-subdifferential elements in the equation solving methods. The performance and
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versatility of the solution procedure has been demonstrated in illustrative examples

and on a LNG process flowsheet containing multiple MHEXs in addition to several

other process units. In the next chapter, this basic MHEX model will be enhanced

by including equations for the detection and simulation of phase changes, which are

commonly encountered in cryogenic processes within multistream heat exchangers.
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Chapter 4

Modeling of phase changes in

multistream heat exchangers

In this chapter, a new method for modeling phase changes in multistream heat ex-

changers is presented. In many industrially relevant applications, streams in MHEXs

will undergo phase changes between their inlet and outlet. In this model, nonsmooth

equations are formulated that properly account for the existence or nonexistence of

phases in heat integration, flash and physical property calculations in a MHEX. These

new equations are used in conjunction with the nonsmooth model for MHEXs from

the previous chapter to create a compact equation system that can be used for the

simulation and design of complex processes. Notably, this formulation does not in-

volve the solution of a difficult optimization problem, since it avoids the use of either

disjunctive or complementarity constraints. The robustness and functionality of the

new formulation is illustrated through several simulations of the PRICO process for

liquefied natural gas production.

4.1 Introduction

Multistream heat exchangers are commonly found at the heart of many industrially

relevant cryogenic processes, such as natural gas liquefaction processes. However,

among the many difficulties of simulating MHEXs in cryogenic processes is the de-
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tection and handling of phase changes. Taking LNG production as an example, the

streams in the process MHEXs are usually both multicomponent and multiphase.

Handling the nonlinear physical property variations associated with such streams

during heat exchange creates a challenging simulation problem, especially when the

phases traversed are not known a prori.

Methods for multiphase MHEX or heat exchanger network simulation have been

reported by several authors in the literature. Among these, the focus is often placed on

modeling pure component (isothermal) phase changes. An early approach along this

theme is that of Grossmann et al.,4 6 that adapts the earlier Duran and Grossmann 32

model for simultaneous process optimization and heat integration by accounting ex-

plicitly for streams that are known to be isothermal. This is done with the use of dis-

junctive constraints, which are reformulated with binary variables to yield a MINLP.

Ponce-Ortega et al.98 tackle isothermal streams in the context of heat exchanger net-

work synthesis by applying a similar extension to the classic staged-superstructure

approach from Yee and Grossmann. 149 However, these methods for isothermal phase

changes do not extend to methods for the multicomponent case, which are more

relevant for many practical applications.

Several approaches do exist in the literature for handling non-isothermal phase

changes. Castier and Queiroz 2
' describe a method based on solving a series of global

optimization problems in successive temperature intervals to find pinch points and

minimum energy targets in a HEN where the temperature-enthalpy relationship is

possibly nonlinear. While more precise than methods that use piecewise-affine seg-

ments to approximate the composite curves, the approach requires significant com-

putational effort.

Hasan et al.4 ;49 use the superstructure concept as a basis for their work with

mixed refrigerant processes by deriving a network of two-stream heat exchangers

that is equivalent to an MHEX. This model handles phase changes in an MHEX by

modeling the heat transfer in each phase as taking place in a separate two-stream

heat exchanger in the superstructure bundle. The existence of the heat exchangers is

determined by a disjunctive formulation and a set of propositional logic constraints to
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formulate a very complex MINLP. The bubble and dew points are taken as constants

in their model, so that stream pressures and compositions cannot change during

optimization. Additionally, the temperature-enthalpy relationship in each phase is

given by an empirical cubic correlation instead of a rigorous physical property model.

An alternate method for modeling phases changes in MHEX that is also based

on the Duran and Grossmann3 2 formulation is given by Kamath et al." Here, the

authors make the analogy between a heat exchanger network that requires no exter-

nal utilities and an MHEX to derive an equation-oriented model. The authors use a

simpler disjunctive representation of the phase detection problem than Hasan et al.,"

which is subsequently handled by using complementarity constraints rather than bi-

nary variables. The model is also able to incorporate thermodynamics described by

cubic equations of state. Applied to the PRICO process, the formulation results in a

moderately-sized mathematical program with complementarity constraints (MPCC)

(3,426 equations using Soave-Redlich-Kwong thermodynamics) that requires complet-

ing a rather involved initialization procedure to obtain a suitable initial guess from

which to solve the problem and a solution method suitable for MPCCs.

Of particular note here is that all the approaches mentioned above require the so-

lution of a hard optimization problem, with those methodologies that involve the so-

lution of a nonconvex MINLP being particularly challenging. Among the approaches

which avoid the use of binary variables, the use of smoothing approximations to

remove the nonsmoothness caused by approximating the temperature-enthalpy rela-

tionship of streams as a piecewise-affine function is common. This is often done with

the reformulation of the max operator given by Equation 3.10. In contrast, the model

presented in this work is presented as an equation solving problem, rather than an

optimization problem. Furthermore, the equations developed herein are substantially

simpler than the mixed-integer or complementarity constraint formulations developed

in previous works, at the expense of being nonsmooth. However, this is no longer

a significant obstacle to practical implementation due to the recent development of

automatic techniques to calculate generalized derivatives 64 and robust methods for

nonsmooth equation solving.99; The model size and problem complexity is thereby
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substantially reduced compared to the models presented thus far in the literature.

4.2 Background

In this section, existing methods for the detection of phase regime in MHEXs and in

flash calculations that do not rely on nonsmooth functions are discussed.

4.2.1 Equation-oriented approaches to phase detection in

MHEXs

In the context of heat integration and MHEX simulation problems, the most signifi-

cant challenge associated with a stream changing phase is modeling the change in the

heat capacity flowrate. Heat integration and pinch analysis techniques are based on

the assumption that every stream has a constant heat capacity flowrate, and there-

fore an affine temperature-enthalpy relationship. The classical algorithms for solving

these problems cannot be applied readily when this assumption is violated. Since the

MHEX model described in Chapter 3 relies on a modified pinch-locating strategy,

it is also only applicable for such problems without the development in the present

chapter.

Figure 4-1 shows an example of a cooling curve for a natural gas stream from am-

bient temperature to -160'C. The overall temperature-enthalpy relationship is clearly

not affine, though the single phase (superheated and subcooled) regions show near-

affine behavior, which is indicative of a near-constant heat capacity flowrate. Since

natural gas is a mixture of hydrocarbons, the two phase region persists over a large

temperature range and exhibits nonlinear temperature-enthalpy behavior. Clearly,

naively assuming this stream has constant heat capacity in a heat integration calcu-

lation would introduce significant error and likely invalidate the solution, so in order

to apply pinch analysis techniques reasonably, the cooling curve must be approxi-

mated by a series of affine segments. A good choice is to approximate each of the

three individual phase regions in Figure 4-1 with one (or possibly more) affine seg-
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ments. However, this is not so straightforward in the general case where the process

stream inlet/outlet temperatures, pressures and compositions are possibly variables

in the simulation. This requires the phase boundaries to move from iteration to it-

eration during the solution process (since the dew and bubble points are functions

of pressure and composition) or even entire phases to disappear as the temperatures

vary.

2 4 6 8
Enthalpy (MW)

10 12 14

Figure 4-1: A typical cooling curve of a natural gas stream.

To address these issues, Kamath et al.5 9 propose a model in which the physical

streams in the process are subdivided into substreams corresponding to superheated

(sup), two-phase (2p) and subcooled (sub) regions. The heat integration calculations

for the MHEX are then performed using these substreams instead of the physical pro-

cess streams. Each of the substreams therefore has an associated inlet temperature,

outlet temperature and heat load. The inlet and outlet temperatures of these streams
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are assigned by the following set of disjunctive constraints:

yIN yIN yIN
sup 2p sub

TIN > TDP TBP TIN TDP TIN <TBP

T" = TIN V ,up =TDP T TDP (4.1)

T = TDP Tp TIN Tp =TBP

sub - BP sub BP lub = TIN

Here, YI, Yp and sujb are indicator binary variables for the phase of the inlet stream,

TIN is the temperature of the physical process stream entering the MHEX, TDP is the

dew point temperature, TBP is the bubble point temperature and T 4/2p/sub are the

inlet temperatures assigned to the substreams used in the actual heat integration. An

exactly analogous disjunctive formulation exists for assigning the outlet temperatures,

and an additional set of logic constraints governs the relationships between the inlet

and outlet Y variables. In order to pick the correct set of constraints to enforce,

Kamath et al.59 formulate the following LP to be added to the MHEX formulation

and solved for Ysup, Y2p and Ysub for both the inlet and the outlet of each physical

process stream (IN/OUT superscripts omitted for clarity):

arg min - [Ysup(T - TDP) +Y2p(TDP - T)(T - TBP) +Ysub(TBP-T)]
YsupY2p ysub

s.t. Ysup + Y2p + Ysub =1 (4.2)

Ysup, Y2p, Ysub 0.

However, since their overall MHEX model uses the simultaneous optimization and

heat integration formulation of Duran and Grossmann,12 these LPs would have to be

included as embedded subproblems in a larger optimization problem. Since embed-

ding LPs in an outer optimization problem is usually undesirable, their equivalent

optimality conditions are instead formulated as complementarity constraints, which

are then added to the equation-oriented optimization formulation to create an MPCC.

The full formulation is then solved using the penalty formulation, 14 in which a user-

defined penalty parameter multiples the inner product of the vectors formed by the
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variables on each side of the complementarity operators.

The possible appearance and disappearance of phases from iteration to iteration

also causes issues in the solution of vapor-liquid equilibrium calculations, described

in the following section.

4.2.2 Steady-state flash simulation

Consider a typical steady-state flash operation as shown schematically in Figure 4-2,

in which a feed stream with molar flowrate F with n, components at molar compo-

sition z1P separates into a liquid stream with molar flowrate L at molar composition

XL and a vapor stream with molar flowrate V at molar composition yv.

F,zF Fh

Figure 4-2: Schematic of a steady-state single-stage flash operation.

The standard model for vapor-liquid equilibrium calculations around such a flash

unit is as follows:

F = V + L, (4.3)

FzF,i = LXL,i + VyVi, i 1,... nc, (4.4)
nc Tic

Yv,i XL,i 0, (4.5)
i=1 i=1

yv,i = kiL,i i = 1, ... , nc, (4.6)

where ki is the equilibrium ratio for component i, which is in general a function

of temperature, pressure and composition of both phases. Additionally, an energy

balance is required if either there is a specified heat duty, Qflash, related to the flash
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unit, or if there is a pressure drop from the feed stream to the flash unit. In both

cases, the flash temperature is unknown and must be found by solving the following

enthalpy balance together with Equations (4.3)-(4.6):

Vhv + LhL - FhF = Qflash, (4-7)

with hV, hL and hF as the molar enthalpies of the vapor, liquid and feed streams,

respectively. Assuming the feed conditions are known, for an n, component system,

there are 2n, + 3 equations, but 2n, + 5 unknowns (XL, Yv, T, P, V, L, Qflash) in the

previous model, so two quantities must be specified. In this chapter, the focus will

be on flash calculations in which the specified quantities are the pressure and heat

duty (usually referred to as a PQ-flash) and flash calculations in which the speci-

fied quantities are the pressure and temperature (usually referred to as a PT-flash).

Respectively, these are the most difficult and least difficult of the typical flash cal-

culations to solve, as well as being the most commonly encountered types in process

simulation.

The system of equations given by (4.3)-(4.7) is rarely solved directly in this form.

The following formulation due to Rachford and Rice1 00 is often employed for its

desirable convergence characteristics:

L = (1 - a)F, (4.8)

XLi- ZF~i Zi,(49
XL 1 - 1a(ki-) ,..ri,(49

YV~z = kizF,i

1 + a(k - 1)
Zj 1 (k - 1) - 1 (4.11)

ahV + (1 - a)hL - hF Qflash/F, (4.12)

where a =, the fraction of the feed that is vaporized. Note that for specified P and

Qflash, this is still a set of 2nc+3 equations in 2n,+3 variables (XL, Yv, T, a, L). For an

idealized system in which the ki values have no composition dependence (e.g. when
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assuming Raoult's Law holds), the mole fractions can be calculated from Equations

(4.9) and (4.10) as a post-processing step after converging the other equations.

However, under conditions where only one outlet stream exists, the equilibrium

constraints (Equations (4.5) and (4.6), or equivalently, Equation (4.11)) cannot be

satisfied. A suggested extension of the Rachford-Rice formulation of the flash equa-

tions for finding single-phase solutions is the concept of the "negative flash". 144 In

this approach, values for a calculated during the solution procedure are considered

acceptable within a range from 1 < 0 to 1 > 1, where kmin and kmax are(l-kax) (l-kmin)

the minimum and maximum equilibrium ratios of the mixture at the solution, respec-

tively. Values of a in this range will produce positive mole fractions for all components

and therefore can be used to evaluate all thermophysical properties. Convergence to

a solution with a < 0 or a > 1 indicates the presence of single-phase solution which

can be post-processed to obtain a physically meaningful result.

An alternative procedure is suggested by Baumrucker et al., 14 in which a new

variable #3 is introduced to the formulation to relax Equation (4.6). A small linear

program is then solved to determine the value of /3. The vapor-liquid equilibrium for

a flash operation is therefore calculated by solving Equations (4.4), (4.5), (4.7) and

the following:

yv,i = #kjxL,i, -i 1,. - ,

(L, V) c arg min (1 - /)(L - V)
L,Y (4.13)

s.t. L +V = F,

LV > 0.

Then, as before, instead of solving this embedded LP explicitly, its optimality con-

ditions are used to generate complementarity constraints involving slack variables sv

and SL that replace Equation (4.13) in the previous formulation:

= 1 - SL + SV, (4.14a)

F = L + V, (4.14b)

0 < L _L sL > 0, (4.14c)
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0 < V_L sv > 0. (4.14d)

This system of equations and inequalities can then be included in an optimization

problem and solved using the penalty formulation or another appropriate solution

method for MPCCs.

4.3 Nonsmooth models for phase phase detection

in MHEXs

The models for handling phase changes described in the previous section give rise

to either MINLPs or MPCCs when performing the heat integration calculations nec-

essary for simulating multistream heat exchangers. However, this section will show

how this significant increase in problem complexity can be avoided by the use of non-

smooth expressions in conjuction with the MHEX model from Chapter 3. However,

in augmenting this model to simulate phase changes, care must be taken that any ad-

ditional equations are also 'PC' functions to preserve the desirable local convergence

characteristics in equation-solving methods.

Consider the disjunctive model given in Equation (4.1) for assigning substream

inlet temperatures. From inspection of the constraints, the behavior of these expres-

sions for the substream inlet temperatures as a function of TIN can be plotted as

shown in Figure 4-3. The outlet temperatures follow an analogous trend. This sug-
Ti/u nout Tin/out i atc

gests that the values of Tiut " Ti"/ and are in fact continuous nonsmooth

functions of TIN/OUT, TDP and TBP.

Therefore, instead of needing either binary variables or complementarity con-

straints to assign the temperatures Tut T u and Tin/out correctly, the followingsub 2 p

nonsmooth equations may instead be used:

sup max{TDP, TIN}, (4.15)

= mid{TDP, IN, TBP}, (4.16)
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Isup

DP B2p

E

Process stream inlet temperature (Tmv

Figure 4-3: Inlet temperature of the three nonphysical substreams as a function of

physical inlet stream temperature.

T,Un" = N min{ TI IBPjj (4.17

Tout = max{TDp, TOUT

T2put =T mid{ TDp, ToU 7BP}j (4.19)

Toess = mitn{T TneBP e (420)

The function mid: R a3 R maps to the median of its three arguments and is indeed

a PCi function, as can be seen from its equivalent representation in terms of the

binary min and max functions:

mida, b, c} = max min{a, b}, minTmaxa, b}, c}}. (4.21)

In cryogenic applications, it is not uncommon to find that some of the streams that

change phase will do so over a very small temperature interval or isothermally. This

includes streams that contain only a single pure component, such as in the propane

precooling stage of the C3MR process for LNG production. In such systems, the pure

component undergoes a phase change at a constant temperature, which is not possible
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to model directly using a piecewise-affine approximation. However, the inclusion of

nonsmooth functions in this work allows this behavior to be modeled more precisely

than in approaches that rely on smoothing approximations, while avoiding the need

for binary variables or disjunctions. For instance, if it is likely that a cold substream

will undergo a very small or no temperature change in the two-phase region during

iteration, Equations (4.16) and (4.19) can be replaced with the following expressions

based on the discussion in Kamath et al.:59

t i- f ,I mid{tDP, tIN, tBP + mid{tDP, tOUT, tBP} - E
2p= m mid{tDP tN, tBP2

(4.22)

out -max tOUT I mid{tDP, tIN, tBP} + mid{tDP, tOUT, tBP} + &
t2p = max mid{tDP tT, tBP2

(4.23)

where E is a user-defined but small fictitious temperature change. Conventionally,

this approach is considered undesirable (hence the existence of methods that avoid

needing to assign a fictitious temperature change). However, in the specific context

of nonsmooth equations, nonsmooth equation solvers will not be affected by the usual

ill-conditioning caused by making such a parameter too small. Analogous equations

can also be written for a hot two-phase substream, as well as the substreams in the

other regions of the phase diagram.

Another problematic aspect of simulating cryogenic processes is that certain light

components, such as nitrogen or methane, may be present both above and below their

pure component critical points. This affects the calculation of certain physical prop-

erties, such as the enthalpy of vaporization, Ahvap, which is needed to obtain liquid

enthalpy values, and is in general a function of temperature for a pure component.

The form of this correlation used by default in Aspen Plus v8.4 is the Design Institute
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for Physical Properties (DIPPR) Equation 106:

T B+C -!+D()

Ahvap(T) = A (I - )BC ,Y+DF T < T, (4.24)

0, T > T,

where Tc is the critical temperature and A, B, C and D are species dependent pa-

rameters. The use of if-else logic in this statement makes it incompatible with the

automatic generalized derivative evaluation procedure needed in this work. However,

this expression can be recast using a nonsmooth expression as follows:

B+C (-1 +D (T)

Ahvap(T) = A (max {0, 1 - T (4.25)

This modified correlation can now be used for simulation in the current computational

framework. Example 4.1 illustrates the phase change model that has been developed

thus far on a simple process.

Example 4.1. Consider the flowsheet shown in Figure 4-4, which is based on the

motivating example from Kamath et al.,59 in which three hot streams with constant

heat capacity flowrate exchange heat with two cold streams of constant heat capacity

flow rate and a nitrogen stream at two pressure levels. The stream data for the

constant heat capacity streams is found in Table 4.1. The liquid nitrogen stream at

95 K and 6 bar is first pressurized and then enters the multistream heat exchanger

as a subcooled liquid. On the first pass, the nitrogen stream is modeled using three

phase segments since it will leave as a superheated vapor. After exiting the exchanger,

it is isentropically expanded to ambient pressure through a turbine and enters the

heat exchanger a second time as a superheated vapor. This second pass is modeled

using a single phase segment since the nitrogen stream will not recondense.

Two simulations are performed that each converge to the solution given to the

original optimization problem from Kamath et al.59 To model the isothermal phase

change precisely, a value of e = 10-9 is used in Equations (4.22) and (4.23) for

the two-phase nitrogen substream on the first pass. The simulation is deemed to
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Figure 4-4: Process flowsheet for Example 4.1.

Table 4.1: Stream data for Example 4.1.

Stream Name Ti" or ti" (K) Tout or tout (K) Fc, or fc, (kW K-')
H1 298 250 3.0
H2 265 180 4.0
H3 195 150 2.0
C1 220 245 3.0
C2 255 280 3.5

have converged when the infinity norm of the function residuals is below 10-9. The

ideal physical property model used in this example is given in Appendix B, and the

necessary pure component model parameters for nitrogen were obtained from Aspen

Plus v8.4.5

Case L. Let x, - to" tOUT and X3
CitTass, X2 2ndpass - UA be the unknown variables

afforded by the base MHEX model consisting of Equations (3.4), (3.13) and (3.14).
Then let x4  tI s be given implicitly by Equation (B.15) and =5 tIN be

ThnltX -t 1 st pass 
2 "t pass

given by Equation (B.14). The minimum temperature difference in the exchanger

is set as 4 K and the pump discharge pressure is set as 7.25 bar. This is therefore

a simple case where the phase boundary will not change from iteration to iteration

and the boiling temperatures of nitrogen can be calculated at 7.25 bar and 1 bar

outside of the iterations. Given an initial guess of x0 = (300, 300, 50, 95, 150), the

solution x* = (265.23, 294.00, 34.79, 95.11,154.10) is found after 76 iterations of the
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LP-Newton method taking 0.041 seconds.

Case II. With x1 , x 3, X4 and x5 as before, let x 2 be the discharge pressure of the

pump. The minimum temperature difference is again set at 4K, and tOUT is set2ndpass

as 294 K, the value from the solution of Case I. Unlike the previous case, here the

boiling temperature of nitrogen needs to be recalculated at each iteration from the

current value of x2 . Given an initial guess of x0 = (300,6,50,95,150), the solution

x* = (265.23, 7.25, 34.79, 95.11, 154.10) is found after 45 iterations of the LP-Newton

method taking 0.023 seconds.

The composite curves for the MHEX simulated in this example are shown in

Figure 4-5(a.) and a convergence plot for both cases is shown in Figure 4-5(b.).

Figure 4-5(a.) shows that the isothermal phase change is properly captured by the

model, while Figure 4-5(b.) shows this model exhibits the well-known Newton-type

method behavior of relatively slow convergence far away from the solution, followed

by quadratic convergence in a local neighborhood of the solution point.

300

250 --

10-2
20 1004

104S200
0 -

E C
1 150 10

*-Case1 I
100 .- 10-12 . Case 11.

j - 1 10 1

0 100 200 300 400 500 600 10 0 10 20 30 40 50 60 70 80
Enthalpy (kW) Iteration

(a) (b)

Figure 4-5: (a.) Hot composite curve (red) and cold composite curve (blue) for the
MHEX simulated in Example 4.1. (b.) Plot of convergence behavior for Cases I and
II.
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4.4 Nonsmooth models for vapor-liquid equilibrium

calculations

As noted in Section 4.2.2, the appearance and disappearance of phases also makes

equilibrium calculations challenging. However, in place of the complementarity for-

mulation of Equation (4.14), a new nonsmooth model that accounts for the disappear-

ance of phases while performing flash calculations is given by solving the following

equation in place of Equation (4.11) in the Rachford-Rice form of the flash model:

( ZF i(k ~1)

mid a, ->3 (k 1) a - 1 =0. (4.26)
1 + ce(ki 1)

This formulation is an extension of the classical Rachford-Rice equation for solving

flash calculations, where here the three arguments in the mid function correspond to

finding an all liquid outlet, a two-phase outlet and an all vapor outlet respectively.

Note that the second term in Equation (4.26) is just the negative of the standard

Rachford-Rice expression (left-hand side of Equation (4.11)). The working mechanism

of the equation is as follows. When the outlet is all vapor, a = 1 and the Rachford-

Rice expression is positive, so that here, the first term is equal to 1, the second term is

negative and the third term is equal to zero. Thus, the mid expression picks the third

term and evaluates to zero, satisfying Equation (4.26) with a = 1. Similarly, when

the solution is a two-phase mixture, 0 < a < 1 and the Rachford-Rice expression

equals zero, so, the first term is greater than zero, the third term is less than zero and

the second term is exactly zero. Thus, the mid expression picks the second term and

evaluates to zero, satisfying Equation (4.26). The argument for an all liquid outlet is

analogous. Equation (4.26) can also be equivalently written as follows:

mid (a, XL,i - YV,i, a - 1 0, (4.27)

and substituted in place of Equation (4.5) in the standard flash formulation. A de-

tailed proof of the correctness of this formulation, which follows from the minimization
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of the total molar Gibbs free energy of a mixture, is presented in the following section.

4.4.1 Proof of the nonsmooth flash formulation

The minimization of the Gibbs free energy at constant temperature and pressure is

expressed with the following optimization problem:

mn GC= L x LiGr + V yviG (4.28)
L,11 xL,yV

s.t. F = L + V

zF,iF = XL,iL + yvjV, i = 1,., nc,
ne ne

YV,i - L i 0,

L > 0, V > 0,

XL,i >0, YVi > 0, , n.,

where G is the extensive Gibbs free energy; Gf and Gf are the partial molar Gibbs free

energy of component i in the liquid and vapor phases, respectively. Note that since,

in general, the partial molar Gibbs free energy depends on temperature, pressure and

the (intensive) composition of the relevant phase, the optimization problem must be

formulated with the mole fractions as explicit decision variables to prevent them from

becoming undefined if either L or V is zero. This is necessary to avoid a common

critical error in other published proofs of similar concepts, as described next.

The domain of definition for partial molar Gibbs free energy

At constant temperature and pressure, the molar Gibbs free energy of a mixture is

given by a function G : R"c -+ R, where R+ denotes the set of nonnegative real

numbers. Note that the total molar Gibbs free energy is an extensive property of the

mixture, and so G is a positively homogeneous function of degree 1, defined formally

as follows.

Definition 4.1. Let X C Rn be a cone. A function f : X - R is positively
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homogeneous of integer degree k if for any real A > 0 and any x C X,

f(Ax) = Af(x) (4.29)

The partial derivative (2) i, denoted by 0j, is the partial molar Gibbs free

energy of component i. A well-known consequence of Euler's Homogeneous Function

Theorem shows Ci is a positively homogeneous function of degree 0 for each i, 122

that is, Oi is an intensive property of the mixture. Importantly, since the domain

of definition for G is R'2, G is not classically differentiable on the boundary of R ne.

Therefore, the partial derivative function C, is only defined on R++, where R++

denotes the set of strictly positive real numbers. Now consider the identity:

n-c n-c

G(1, v) = liOL (1112 .. n) !(i 2 ... , v) , (4.30)
i=1 i=1

where li and vi are the liquid and vapor phase moles of component i, respectively,

and note that this identity is only well-defined when li > 0, Vi and vi > 0, Vi since

Gf and Cf are only defined on R+. This restriction requires L > 0 and V > 0, and

so the mixture must be in the two-phase region for Equation (4.30) to hold.

Additionally, the following general result establishes that a partial molar property

function defined in terms of molar amounts, as in Equation (4.30), cannot be con-

tinuously extended to zero amount of substance (i.e. when li = 0, Vi or vi = 0, Vi)

except in one case.

Lemma 4.1. Let X c R1 \ {O} be a blunt cone. A continuous function f : X -+ R

that is positively homogeneous of degree 0 has a continuous extension f(0) to the

origin if and only if it is a constant function.

Proof. Suppose f is continuous, positively homogeneous of degree 0 and has a con-

tinuous extension to the origin. Then VE > 0, -16 > 0 such that for d G X, when-

ever IIdII < 6, If(d) - f(0) < E. Since f is positively homogeneous of degree 0,

f(Ad) = f(d),VA > 0, so that If(Ad) - f(0)1 < E also. However, any x C X can be

expressed as x = Ad for some choice of A and d as defined previously, and so this
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implies |f(x) - f(0)1 < e, Vx E X, so f must be a constant function with value f(0).

Now suppose f is a constant function such that f(x) = c, Vx C X. Then f is

clearly continuous on X, and also positively homogeneous of degree 0 since for any

A > 0, f(Ax) = c = f(x). Furthermore, if the definition of f is extended as follows:

f X = x E X, (4.31)
cx=0,

then f is continuous at 0, since VE > 0, 36 > 0 such that for d E X with IIdII < 6,

If (d) - f (O)l = Ic - cl = 0 < E. E

The constant function condition of the previous theorem would be met if each Gi

had no concentration dependence, such as if each was equal to the pure component

Gibbs free energy of component i at the system temperature and pressure. However,

even for a mixture of ideal gases this is not the case, as 0 ideal = Go + RT ln(P/P),

where P is the partial pressure of component i in the mixture. Therefore, any ex-

tension of O and GV to zero substance will be discontinuous at the origin in any

physical case. Analysis of the KKT conditions for the optimization problem mini-

mizing G defined as in Equation (4.30) is therefore only applicable in the two-phase

region, contrary to what has been claimed in many previous works.

Instead, this proof will make use of the identity:

G(XL, yv, L, V) = L YxLCf(x1, x2 , ... , xne) + V 3yviGY(yi, Y2, ..., Yc). (4.32)
i=1 i=1

The same results regarding the domain of definition apply here; however, L = 0 does

not imply XL,i = 0, Vi (or vice-versa), and likewise V = 0 does not imply yvi = 0, Vi

(or vice-versa). Thus, the partial molar properties defined in terms of mole fractions

are well-defined even in the single-phase regimes, so long as XL > 0 and yv > 0.

These constraints are enforced in the Gibbs free energy minimization problem used

in the proof. Importantly, these constraints do not affect the physical solutions of the

problem, as in the two-phase regime, XL > 0 and yv > 0 are already implied by the
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other constraints; in the liquid regime, XL > 0 is implied by the other constraints,

while the choice of yv is arbitrary beyond satisfying the KKT conditions of Equation

(4.28), as will be shown next, and similarly in the vapor regime, yv > 0 is implied

by the other constraints, while the choice of XL is also arbitrary aside from satisfying

the KKT conditions of Equation (4.28).

Returning to Equation (4.28), the Lagrangian function of this equation is written

as

nc nc

L = L I XL,i i V Vi$
i=1 i=1

ii=1
+ 7~F (F - L - V) + L-yt(ZFF - XL,iL -yviV) (4.33)

n. n.

+ YS ( V i -- XL,i ~- CeLL - avV,

with 'Yi, -YF, -YS E R and aL, av > 0 being the Lagrange multipliers. Noting that zFiF

are constant, the Karush-Kuhn-Tucker (KKT) conditions read

n.

XL,i - Yi) - - CL = 0, (4.34a)

YV'i (OY -Y7) - F - aV = 0, (4.34b)

L + n X ) -7n) - 7s=, i= n (4.34c)

V GY+ +7 sy=, i=1,...,c, (4.34d)

F-L-V=0,

zF,iF XL,iL - yyiV = 0, i = 1,.. n,
nc nc

YVi -- XL,i = 0,

L>0 V>0

XL,i > 0, YVi > 0, i -1... nc,
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0 < aL I L ;> 0,

O;av I V>0,

From the Gibbs-Duhem relation, the summations in the LHS of Equations (4.34c)

and (4.34d) are zero. 122 There are now three phase regimes to consider.

Liquid-vapor coexistence: In this regime, L > 0 and V > 0. The complementary

slackness conditions therefore imply aL = 0 and av = 0. The KKT conditions for

this case then read

Tic

XL,(

yv,i (OV

- 71) - iF = 0,

- 7Yi) - 7F = 0,

L(Cf- y2) -7s =0,

V (&f -yii) + s = 0, i = 1,...,

F - L -V =0,

zF,iF - XL,jL - yviV = 0,
nc nc

Yv-i XL,i = 0,
= i=1

L >0, V >0,

XL,i > 0, YVi > 0, i = 1,

, nc,

, nc.

From Equations (4.35c) and (4.35d), it can be seen that

7ij = OL - Is/L, i = 1, . .. , nc,

7Y' = Ov + -YS/V, i = 1, . .. , nc.

Substituting Equation (4.36a) into (4.35a) yields

iF (is/L) XL,i,
i=1
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(4.35b)
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Tsc

=(7 s/L) yy,3,
i=1

where the latter follows from equality of the sums of the mole fractions. Substituting

both these results and Equation (4.36b) into Equation (4.35b) gives

nc

(7s/L + 'ys/V) yvi, = 0, (4.38)
i=cl

and since 1 yvi > 0, it must be that ys/L = -7s/V. Therefore, Equations

(4.36a) and (4.36b) imply that G O =Y in this case. This equilibrium condition can

be rewritten as

Go + RT ln = Go + RT In (4.39)

where R is the gas constant; ff and ff are the partial fugacities of component i

in the liquid and vapor phases, respectively; G9 is the pure component molar Gibbs

free energy at an arbitrary standard state at the system temperature and f7? is the

fugacity of pure component i in this standard state. This expression reduces to

equality of the partial fugacities, If = fi(. These partial fugacities can be written as

fL,i XL,i q(T, P, XL)P and fV, = yvi V(T, P) yv P, where q5 and < are fugacity

coefficients. Noting ki := , the following results:

yv,i = k iXL,i -1 - , nc, (4.40)

which is the well-known equilibrium condition for two coexisting phases.

Liquid-only: In this regime, L > 0 and V = 0. The complementary slackness

conditions therefore imply aL = 0 and av > 0. The KKT conditions for this case

then read

XL,i (&fL _ _yi) _-Y = 0, (4.41la)
i1

ny

Z Vi(i yv~ - _y) -OV -YF =O0, (4.41b)
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L (- 'Yi) - Ys= 0, i = 1,... , n,

i = 1,.

F- L -V =0,

zFiF - XL,jL - yviV = 0,
n1

i = 1, ... n,
nc

YVi - XL,i = 0,
2=1

L>0, V=0, av>0,

XLi r 0o yai > 0, (,- - , nc.

From Equation (4.41c), it call be seen that

i = 1, . . . , n,

and as in the previous case, substituting Equation (4.42) into Equation (4.41a) yields

-YF = (ys/L) xL,i

n.

= (s/L) yv,2 .
i=1

Substituting this along with Equation (4.42) into Equation (4.41b) gives the following

inequality:

yv ( - Of) > 0. (4.43)

Introducing partial fugacities and equilibrium coefficients as before, this is equivalent

to
nc n

Z yv'ilIn(yvji) > Zyvi ln(kjXL,i).
i=1

(4.44)
i=1

This inequality is satisfied for any constant # > 1 such that

yv,i = #kjxL,i,
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Vapo'r-only: In this regime, L = 0 and V > 0. The complementary slackness

conditions therefore imply av = 0 and aL > 0. Following an analogous procedure to

the previous case, the following inequality is obtained

Z O _L~ - &) > 0 (4.46)
2=1

which is equivalent to

XLi ln(kiXL,i) > XL,i n(yvi) (4.47)
i=1 i 21

This inequality is satisfied for any constant 0 < < 1 such that

y /,= 3kXL,,i 1,. -, r. (4.48)

Taken together, the KKT conditions of the three regimes give that yvi = #kjXL,i,

where / = 1 when both phases exist, /3 > 1 when no vapor phase exists and 0 < 1

when no liquid phase exists. This behavior can be captured by an expression in

terms of the mid operator, and so the three equality constraints in the Gibbs free

energy minimization plus the implications of its KKT conditions are equivalent to

the nonsmooth model presented in the previous section:

F = L + V, (4.49a)

zF,iF = XL,jL + yvjV, i 1, ... , nc, (4.49b)

n. n.

YV'i - XL,i 0, (4.49c)

yv,i = #kjxL,i, i = 1,.. . , nc, (4.49d)

mid (oz, #3 - 1, a - 1) = 0. (4.49e)

To obtain a formulation where / is eliminated as a variable, the substitutions yVi -

C , Vi with each y' > 0 and XL,i = IC ,Vi with each x',i > 0 are made.
i=1 V' ,E = XIL,i
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An alternative formulation expressed in terms of x', and y' is as follows:

F = L +V, (4.50a)

/ flc
zF~iF = c L L + ncVi/V i =1, . .. , nc, (4.50b)

_1 Li i=1 Li
Yc / SC /

zV' 7  i _ ~j #k i =,I~c X1, 45d

iV Xvi L,i

mid (ce, # - , a - ) = , (4.50e)

where k' is evaluated at T, P, y' and x'L. Note that in the case where the equilibrium

coefficient is not a function of composition, k' = ki, Vi. Equation (4.50c) is clearly

always satisfied and can be eliminated from the formulation. From Equation (4.50d),

take # = L=C , so that Equations (4.50d) and (4.50e) can be rewritten

y'v, = k xLi 1,. ..- , nc, (4.51)

I c nc

mid a, E XL - 1 ,0- . (4.52)
i=1 Lii=1 V

Finally, noting that when L = 0, y' = y, Vi to preserve material balance, and

likewise when V =0, X' XL,i Vi, Equation (4.50b) can be rewritten without refer-

ence to the summation terms, which yields the alternate nonsmooth model from the

previous section with x'i, y'i and k' replacing XL,i, yyi and ki everywhere. These

new variables can be thought of as pseudo mole fractions and equilibrium coefficients

that reduce to the physical mole fractions when their corresponding phase exists, and

to the true equilibrium coefficient when two phases coexist. For notational simplicity,

the superscript is omitted elsewhere. Moreover, the only difference between the for-

mulation using Equation (4.49e) and the formulation using Equation (4.52) are the

values assigned to the equilibrium coefficients and the composition of a missing phase

in the single phase regimes. In the former, the mole fraction values are constrained

to sum to unity even for a nonexistent phase, whereas in the latter, the pseudo values
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will sum to less than unity (and the equilibrium coefficients will differ accordingly).

The solution is therefore only changed mathematically; there is no physical difference

between the results given by the two models.

Practical usage of Equation (4.26) is now demonstrated in a small example.

Example 4.2. A refrigerant mixture flowing at a rate of 1.0 mol/sec with the molar

composition 5.82% N2 , 20.62% CH4 , 39.37% C2H6 and 34.19% n-C4 H0 is initially at

298.15 K and 0.1 MPa. Assuming ideal thermodynamic behavior and Raoult's Law,

a series of PQ-flash calculations are performed by solving Equations (4.7) and (4.26)

for the flash temperature and outlet vapor fraction. The compositions of the resulting

phases are then calculated with Equations (4.9) and (4.10). The details of the ideal

physical property model used is found in Appendix B and the pure component model

parameters for these correlations were obtained from Aspen Plus v8.4.5

The semismooth Newton method was used to solve the nonsmooth equation sys-

tem in each case, with iterations stopping after the infinity norm of the function

residuals was less than 10-. The specifications and results are detailed in Table 4.2.

Figure 4-6 shows the nonsmooth behavior of the value of the left-hand side of Equa-

tion (4.26) as a function of the vapor fraction at the solution conditions for Case I.

In all cases, the solutions were found in only a few iterations, even in Case III where

the initial guess is in the two-phase region but the vapor outlet is not present at the

solution, and similarly in Case IV, where the liquid outlet does not exist. Results

were also verified against the results of identical simulations in Aspen Plus, which

were found to predict virtually identical outlet conditions in all cases, with the ex-

ception that the mole fractions of phases not present are not normalized to sum to

unity here.

4.5 Flowsheet simulation with multiphase MHEXs

The nonsmooth model components developed in Sections 4.3 and 4.4 can be com-

bined with the base multistream heat exchanger model from Chapter 3 in order to

simulate MHEXs in complex processes where the phase behavior of the streams is
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Table 4.2: Flash specifications and results for the refrigerant mixture in Example 4.2.

Case I Case 1I Case III Case IV
Specification

Pressure (MPa) 0.24 0.24 0.24 0.24
Heat duty (kW) -10.0 -20.0 -30.0 10.0

Initial guess
Temperature (K) 250 200 150 300

Vapor fraction 0.6 0.5 0.4 0.7
Results

Iterations 7 7 6 7
Temperature (K) 244.02 188.40 104.42 434.55

Vapor fraction 0.698 0.319 0.0 1.0
Liquid composition (mol %)

Nitrogen 0.01 1.34 5.82 3.33 x 10-
Methane 0.38 3.23 20.62 3.26 x 10-3
Ethane 11.31 46.54 39.37 0.23

n-Butane 88.30 50.10 34.19 1.88
Vapor composition (mol %)

Nitrogen 8.33 17.98 25.32 5.82
Methane 29.35 57.82 4.59 20.62
Ethane 51.48 24.04 4.42 x 10- 39.37

n-Butane 10.84 0.15 4.36 x 10-" 34.19
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Figure 4-6: Plot of the value of the nonsmooth flash function as a function of j atF
the solution conditions of Case I of Example 4.2.

not known a priori. In many such cases, splitting a physical stream into the three

substreams described thus far will be insufficient to capture the true extent of the

nonlinear temperature-enthalpy relationship. Therefore, as described in Kamath et

al.,59 the superheated, subcooled, and two-phase substreams are further discretized

into nsup, nsub and n2p affine segments, respectively, to further improve the approx-

imation of the nonlinear behavior. The substreams are subdivided into segments

of equal enthalpy difference. This means the inlet/outlet temperatures of each seg-

ment are implicitly given by solving energy balances in each phase. For example, the

temperatures intervals along the superheated substream are defined by the following

equations:

F (hiPj(TsuP4) - hout (Tout s) = _- 1, . . . , nsup - 1, (4.53)Su sup sup) nsup 7

with QSuP as the total heat transferred by the superheated substream. The temper-

atures in the subcooled region are found analogously, while the temperatures (and

corresponding vapor fractions) in the two-phase region are implicitly defined by Equa-

tions (4.7) and (4.26). Once the temperatures and heat loads of each segment are
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known, a constant heat capacity flowrate can be determined for every stream, e.g. as

follows for the superheated region of a hot stream:

(h i (Tin) - hout ut

Fc,=F (T - Tup) ,up 1, . (4.54)

and analogously for the other phase regions and for cold streams. Note that the use

of (4.22) and (4.23) will never allow this quotient to become undefined. These heat

capacity flowrates are then used in evaluating Equations (3.4), (3.13) and (3.14). The

total size of the MHEX model is then given by:

nvar= 3 + 2 nstreams + nstreams Knsup - 1) + (nsub - 1) + 2(n2p - 1)] , (4.55)

where nvar is the number of variables/equations needed to model the MHEX, and

nstreams is the number of physical process streams that enter the MHEX in the flow-

sheet. The first term of Equation (4.55) accounts for the base MHEX model consisting

of Equations (3.4), (3.13) and (3.14), the second term accounts for calculating the dew

and bubble points of each stream involved in the heat exchanger, and the last term

accounts for all the temperatures that must be calculated for the piecewise-affine

segments. The calculation of the dew and bubble points is necessary to track the

point where each stream changes phase, which in the multicomponent case requires

the solution of nonlinear equations.

Despite the reduction in complexity as compared to other approaches in the litera-

ture, the model remains difficult to solve. Most significantly, the LP-Newton method

does not exhibit the same invariance to affine scaling as the classical and semismooth

Newton methods. Scaling of the equations such that the residual values are bounded

by +1 over the domain of interest results in substantially improved convergence behav-

ior compared to solving the same system with poorly-scaled equations. Additionally,

improved performance of the solution algorithm was observed by replacing all the in-

finity norms in Equation (2.26) with the 1-norm. The change of norm was motivated

by the observation that the step size calculated by Equation (2.26) at each iteration
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is bounded by unity if the largest residual value corresponds to an equation with a

zero row in the generalized derivative. This can occur for Equation (3.13), as any

temperature variables in the simulation only influence the minimum distance between

the composite curves over a limited range of values, as shown in Chapter 3.

Finally, it is important that the initial guess provided be as near to the solution

as possible to aid convergence. However, providing good initial guesses for the many

unknown temperatures is challenging, and so a robust initialization subroutine was

developed for such a purpose. In this procedure, only guesses for the three MHEX

model variables and the bubble/dew point temperatures of each stream are required

from the user. The bubble and dew point estimates are then refined by solving

Equations (B.12) and (B.13). Initial guesses for the remaining temperatures are

obtained by first assuming an affine relationship between temperature and enthalpy

in each phase, and then improved by solving each of the energy balance equations

independently to generate a better temperature estimate. This initial point is then

passed to the main flowsheet simulation routine.

Example 4.3 shows the method developed in this chapter being applied to simu-

late the PRICO process under the assumption of ideal thermodynamic behavior and

Raoults Law.

Example 4.3. Figure 1-1 shows the PRICO process for producing LNG. As described

previously, the PRICO process is a single-stage single mixed refrigerant (SMR) pro-

cess with the MR stream supplied at two pressure levels in the process by means of

expansion and compression operations. The MR stream therefore serves as both a

hot stream, high-pressure refrigerant (HPR), and as a cold stream, low-pressure re-

frigerant (LPR). The full ideal physical property model used in this example is given

in Appendix B, and the pure component model parameters for these correlations were

obtained from Aspen Plus.5 Aspen Plus simulations were also used to validate the

model solutions, as shown in the individual cases that follow.

Tables 4.3 and 4.4 give the data for the streams involved in the MHEX for the

PRICO process under three different sets of simulation conditions. In each case,

nsup - 4, n2p = 8 and nsub = 8 for all three process streams entering the heat
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Table 4.3: Natural gas stream data for Example 4.3.

Property Natural gas
Flowrate (kmol/s) 1.00

Pressure (MPa) 5.500
Inlet temperature (K) 298.15

Outlet temperature (K) 118.15
Composition (mol %)

Nitrogen 1.0
Methane 95.6
Ethane 3.1
Propane 0.2
n-Butane 0.1

exchanger (20 segments for each stream if all three phases exist). By Equation (4.55),

the MHEX model contributes a total of 81 equations and variables to the problem.

Variable Set I: In this case, the pressures and compositions in the flowsheet are

held fixed and ATmin is specified as 1.2 K. Let x1 - THPURT, X 2 - UT andX 3 = UA

be the unknown variables afforded by the base MHEX model consisting of Equations

(3.4), (3.13) and (3.14), while x 4  LtILPR and x 5  LPR are given by performing a

fixed pressure/enthalpy flash calculation around the throttle valve. The remainder

of the variable set comprises the internal variables of the MHEX model: unknown

temperatures given by the energy balances of the form shown in Equation (4.53) in the

superheated and subcooled regions, and unknown temperatures and vapor fractions

given by Equations (4.7) and (4.26) in the two-phase region. Note that in this case

with the pressure and composition held fixed, the bubble and dew points can be

computed in a preprocessing step.

Using the CPLEX callable library v12.5 55 as the LP solver, the simulation con-

verges to a solution with IIf(x*) 11 < 10-9 after 107 iterations of the modified LP-

Newton method. The initial point and the solution values for the key variables in

this simulation are shown in Table 4.5. The remainder of the variables had initial

points generated by the initialization subroutine. To validate these results, an Aspen

Plus model was also built to run the PRICO process under ideal thermodynamics

and Raoult's Law using the MHeatX block discretized into 20 zones, with the option
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Table 4.4: Refrigerant strea

Property
Flowrate (kmol/s)

High pressure level (MPa)

Low pressure level (MPa)

HPR inlet temperature (K)

HPR outlet temperature (K)

LPR inlet temperature (K)

LPR outlet temperature (K)

Composition (mol %)
Nitrogen

Methane

Ethane

Propane

n-Butane

UA (MW/K)
ATmin (K)

m and MHEX

Case I
3.47

3.695
0.165
303.15
X1
X4

X2

15.32
17.79
40.85
0.41 26

25.62

X3
1.2

data for E

Case II
3.47

3.695
0.165

303.15
107.22
X 4

X 2

15.32
17.79
40.85

.04 - 100x1
100x1
17.5
X3

xample 4.3.

Case III
3.47

3.695
X1

303.15
118.15
X 4

x2

15.32
17.79
40.85
0.41

25.62
10
x3

enabled to automatically add additional points at stream inlets and the bubble/dew

points. The MHeatX block in Aspen Plus only allows for the outlet condition of one

stream to be left as a variable, which was chosen as TL0pU, while THP was specified as

the solution value from the nonsmooth model simulation. Note that if instead, TOPU[

is specified, the Aspen Plus simulation is unable to converge to a physical solution

(despite the existence of such a solution). Additionally, the Aspen Plus simulation

model has no way to enforce the ATmin constraint, so it is simply a calculated output

of the simulation. The numerical results of this simulation for the key variables in the

process are shown in Table 4.5 and show good agreement with the nonsmooth model

results.

Figure 4-7(a) shows the resulting composite curves for this simulation and Fig-

ure 4-7(b) shows the profile of the temperature difference between the hot and cold

composite curves from both the nonsmooth model and the Aspen Plus simulation,

which show good agreement. In spite of the piecewise affine approximations used, it is

clear that the calculated composite curves capture much of the true profile curvature,

particularly around the bubble point of the natural gas stream (196.5 K).

Variable Set II: In this case, the composition of the refrigerant mixture is allowed
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Table 4.5: Numerical results for the process simulation in Case I. Quantities marked
with a t were specified rather than calculated. Note that the set of specifications
changes between the nonsmooth model and the Aspen Plus simulation.

Quantity Initial Guess Solution Value Aspen Simulation

TOUT (K) 100 107.22 107.22t
TLpT (K) 300 285.58 285.59
UA (MW/K) 20 18.82 19.03

TfR (K) 98.8 116.02 106.02
PR 0.10 0.025 0.025

A Tmin (K) 1.2t 1.2t 1.21
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Figure 4-7: (a.) Hot composite curve (red) and cold composite curve (blue) for the
MHEX in the PRICO process simulated in Case I. (b.) Approach temperature profile
for the MHEX in the PRICO process simulated in Case I from the nonsmooth model

(solid line) and the Aspen Plus simulation (open circles).

to vary and the conductance of the exchanger is fixed at 17.5 MW/K. Let x, be the

mole fraction of n-butane in the refrigerant, X2 =TPT and X3 ATmin with X4

and X5 as before. The simulation converges to a solution with tIf(x*)flo < 10-9

after 151 iterations of the modified LP-Newton method. The initial point and the

solution values for the key variables in this simulation are shown in Table 4.6. The

initial point for the remainder of the variables was generated by the initialization

subroutine. These results were verified as detailed previously; however in Aspen

Plus, the refrigerant composition has to be specified as an input to the model and the

conductance value is a calculated output, in contrast to the inverse problem that our
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model is able to solve. The numerical results of the Aspen Plus simulation for the

key variables in the process are shown in Table 4.6. The results once again mostly

show good agreement with the proposed model results, with the exception of a slight

over-prediction of the conductance by Aspen Plus, which can be attributed to its

discretization missing some of the profile nonlinearity between 20,000 kW and 30,000

kW (see Figure 4-8(b.)).

Table 4.6: Numerical results for the process simulation in Case II. Quantities marked
with a t were specified rather than calculated. Note that the set of specifications
changes between the nonsmooth model and the Aspen Plus simulation.

Quantity Initial Guess Solution Value Aspen Simulation

THpT (K) 1 0 7 .22 t 107 .2 2t 10 7 .2 2t
TLpT (K) 280 291.06 291.06
UA (MW/K) 1 7 .5t 1 7 .5 t 18.22

TLjPR (K) 106.02 106.01 106.01

aLPR 0.10 0.025 0.025
ATmin (K) 1.2 1.21 1.21
n-Butane mole % 25.62 22.58 22.58t

Figure 4-8 shows (a.) the resulting composite curves and (b.) the approach

temperature profiles from both the model proposed in this chapter and the Aspen

Plus simulation. Due to the specification on the available heat transfer area (which

is lower than the value calculated in Case I), the separation between the composite

curves is slightly greater than in Case I.

Variable Set III: In this case, the pressure of the MR stream is allowed to

vary while the conductance of the exchanger is fixed to only 10 MW/K. Let x1 be

the discharge pressure of the throttle valve, X2 - TLpT and x 3  ZATmin with x4

and X5 as before. The simulation converges to a solution with flf(x*)1|Ko < 10-'

after 158 iterations of the modified LP-Newton method. The initial point and the

solution values for the key variables in this simulation are shown in Table 4.6. The

initial point for the remainder of the variables was generated by the initialization

subroutine. These results were again verified using Aspen Plus, though in this case,

the valve outlet pressure has to be specified as an input to the model while the

134



320 45

300 40

280

260 -5

240 30

220 5 25

220 - D.

E

1205

100 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 0 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Enthalpy (kW) Enthalpy (kW)

(a) (b)

Figure 4-8: (a.) Hot composite curve (red) and cold composite curve (blue) for the
MHEX in the PRICO process simulated in Case II. (b.) Approach temperature profile
for the MVHEX in the PRICO process simulated in Case II from the nonsmooth model
(solid line) and the Aspen Plus simulation (open circles).

conductance is a calculated output. The numerical results of the Aspen simulation

for the key variables in the process are shown in Table 4.7, which show excellent

agreement with the nonsmooth model.

Table 4.7: Numerical results for the process simulation in Case III. Quantities marked
with a twere specified rather than calculated. Note that the set of specifications
changes between the nonsmooth model and the Aspen Plus simulation.

Quantity Initial Guess Solution Value Aspen Simulation

THPJT (K) 11 8 .15t 1 18 .15 f 118.i5f
T 1 P0 (K) 280 285.58 285.59
UA (MW/K) 1.0 10.Of 10.02
TER (K) 116.95 112.86 112.66

A Tmin (K) 1.2 3.04 3.03
Low pressure level (MPa) 0.165 0.122 .22f

Figure 4-9 shows (a.) the resulting composite curves and (b.) the approach tem-

perature profiles from the model proposed in this chapter and the Aspen Plus simu-

lation. Satisfying the conductance specification requires the pressure at the throttle

valve exit to approach atmospheric pressure, leading to a larger temperature change

across the valve and greater separation of the composite curves.
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Figure 4-9: (a.) Hot composite curve (red) and cold composite curve (blue) for
the MHEX in the PICO process simulated in Case III. (b.) Approach temperature
profile for the MHEX in the PRICO process simulated in Case III from the nonsmooth
model (solid line) and the Aspen Plus simulation (open circles).

In each case, the nonsmooth model is able to simulate the PRICO process success-

fully. Cases II and III particularly are challenging simulation problems since many

of the equations in the model are sensitive to the composition and pressure of the

refrigerant stream. However, as a result of the strategy developed in these previous

sections, the results are found without requiring significant computational time or

effort. Additionally, note that while Aspen Plus is a useful tool for validating the

results of the nonsmooth model, it cannot solve the problems proposed in Cases 1, 11

and III directly.

In the following, the results from these case studies are expanded upon to assess

the true impact of the nonsmooth toolkit. Flowsheet simulations with each of the

three variable sets were performed from a large number of initial guesses taken from

a uniform grid in a region containing a solution. The performance of three methods

for evaluating the generalized derivative information needed to solve the flowsheeting

problems was compared:

" LD: B-subdifferential elements computed using LD-derivatives evaluated in the

identity directions;

* DD: generalized derivative elements approxmated by concatenating directional
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derivatives in the coordinate directions (i.e. the nafve construction from Equa-

tion (2.18)); and

FD: generalized derivative elements approximated using finite differences.

The results are presented in Table 4.8. The finite differencing approach performs

poorly, particularly for simulations with Variable Set II in which the method fre-

quently fails to converge to the solution. Additionally, even in the cases where the

finite differencing approach finds the solution, on average significantly more iterations

are required to converge compared to the other methods.

Table 4.8: Iteration count statistics for simulating the PRICO process from a range of
initial guesses with different variable sets and methods used to calculate generalized
derivatives.

Variable Set I Variable Set II Variable Set III

X1 [100, 160] [0.2, 0.3] [0.1, 0.2]
X2 [250, 300] [275, 300] [275, 300]
X3 20 [0.5, 3.0] [0.5, 3.0]
N 143 216 216

Method LD DD FD LD DD FD LD DD FD

Solve %* 100.0 100.0 97.2 100.0 100.0 20.4 82.8 82.8 79.6
Mean 217.7 218.2 225.8 139.8 140.7 159.7 129.3 130.3 191.5

Std. dev. 129.4 129.6 137.1 37.0 36.7 27.2 49.3 49.1 76.5
Median 206 207 217 138 138.5 155 130 130 178.5

Min 25 25 25 61 62 125 31 33 50
Max 455 455 483 206 206 218 221 223 471

'Percentage of simulations that converged in fewer than 500 iterations of the LP-
Newton method. Statistics are only based on those instances that met this criterion.

In contrast, the LD and DD methods perform very similarly. However, the fact

that a difference exists at all between the LD and DD methods implies that at least

some of the simulations in each case must encounter points of nonsmoothness, i.e.,

that the set of points at which the model is nondifferentiable is reachable. Since

the difference is not substantial, it is clear that the LP-Newton method is robust

enough to be able to converge even with the slightly incorrect approximate general-

ized derivatives provided by the DD approach at these points. Based on the number
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of simulations in which the iteration count differs between the two approaches, nons-

mooth points are encountered in 12.6% (18/143) of Variable Set I simulations, 18.5%

(40/216) of Variable Set II simulations and 45.4% (98/216) of Variable Set III sim-

ulations. To better test the extent to which this subset of simulations encountered

nonsmooth points, these problems were rerun using the LD-derivative approach; this

time however, at each iteration the approximate generalized derivative from DD was

also constructed. These matrices only potentially differ exactly at points of nons-

moothness, so a calculation of the induced 1-norm of the difference of these matrices

was used to detect nonsmoothness along the iterate sequence of the LD-derivative

approach. Statistics on the number of nonsmooth points encountered in these sim-

ulations are presented in Table 4.9, and the corresponding histograms are shown in

Figure 4-10.

Table 4.9: Nondifferentiable point count statistics from PRICO process simulations
in which at least one such point was encountered.

Variable Set I I Variable Set II Variable Set III

Mean 7.9 3.9 7.6
Std. dev. 7.5 7.4 8.2
Median 5 2 4
Min 1 1 1
Max 27 46 37

As these numerical results demonstrate, it is entirely possible to visit multiple

nondifferentiable points while solving an equation system with a high degree of nons-

moothness. This highlights the need for computing generalized derivative information

accurately and automatically for such problems using the methods reviewed in this

chapter.

4.6 Conclusions

A new method for simulating phase changes in multistream heat exchangers has been

presented. The proposed method differs significantly from those presented thus far
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Figure 4-10: Histograms of the number of nonsmooth points encountered in MHEX
simulations: (a.) Variable Set I (b.) Variable Set II (c.) Variable Set III.

in the literature in that it does not require solving a difficult optimization problem

involving binary variables or complementarity constraints. Nonsmooth equations are

used to define the variable inlet/outlet temperatures of substreams corresponding to

different phase behavior, as well as to perform vapor-liquid equilibrium calculations

robustly. This leads to a compact nonsmooth model that is solved purely through

equation-solving methods. Accordingly, the model is significantly less complex and

allows for realistic simulation of process flowsheets involving multiphase MHEXs out-

side of an optimization framework.
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Chapter 5

Nonsmooth inside-out algorithms

for robust flash calculations

Dependable algorithms for nonideal vapor-liquid equilibrium calculations are essential

for effective process design, simulation and optimization. Inside-out algorithms for

flash calculations serve as the basis for many of the algorithms used by process simu-

lation software due to their robustness with respect to initialization and inexpensive

computational cost." However, if the specified flash conditions imply a single-phase

result, the conventional inside-out algorithms fail, as the solution is constrained to

obey equilibrium relationships which are only valid in the two-phase region. These

incorrect results can be post-processed to determine the true single-phase solution;

however, such approaches either carry a high computational cost or are heuristic in

nature and vulnerable to failure (or both). Such attributes are undesirable in a process

simulation/optimization problem where many flash calculations must be performed

for streams where the phase regime at the solution is not known a-priori. To address

this issue, this chapter presents modifications of the classical inside-out algorithms

using a nonsmooth equation system in the inner loop to relax equilibrium conditions

when necessary, allowing reliable convergence to single-phase results. Numerical re-

sults for simulations involving several common flash types and property packages are

shown, highlighting the capability of the new nonsmooth algorithms for handling both

two-phase and single-phase behavior robustly and efficiently.
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5.1 Introduction

The ability to solve vapor-liquid equilibrium (flash) calculations consistently and ef-

ficiently is critical for many process systems engineering applications. These calcu-

lations are necessary for accurate process simulation, whether for single-stage flash

unit operations, for larger operations such as distillation columns, for performing

energy balance calculations on mixed-phase streams, etc. The flash equations are

well-known to be challenging to solve, particularly for non-ideal systems, and nafve

solution methods will generally fail unless an extremely good initial guess of the result

is provided.

The early work of Rachford and Rice1 00 proposed an often-used formulation of the

equations which was more amenable to numerical solution methods. In the following

decades, many algorithms were suggested based on the Rachford-Rice formulation,

with much attention given to nested-loop style algorithms. In these procedures, values

of certain variables are fixed by an outer loop, while the remaining variables are used

to converge a subset of the equations in an inner loop. The choice of inner versus

outer loop variables is generally determined by whether the mixture at hand is wide-

boiling or narrow-boiling." An excellent summary of such methods can be found in

King's perennial separations text.70 However, these methods were largely superseded

by the work of Boston and Britt,16 who developed the "inside-out" class of flash

algorithms, so-named because they use a unique nested-loop strategy which entirely

separates the problem of converging the flash equations from the calculation of all

rigorous thermophysical properties. Unlike the other approaches suggested at the

time, the inside-out algorithms were broadly applicable, whether the problem dealt

with wide-boiling or narrow-boiling mixtures, or ideal or highly non-ideal systems

while remaining computationally inexpensive.

To this day, the Boston-Britt inside-out formulation (and modifications- thereof)

serves as the basis of the primary algorithms for flash calculations used by process

simulation software such as Aspen Plus,' due to both its reliability and efficiency. The

inside-out paradigm has also been extended to handle more complex behavior, such as
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simultaneous chemical and phase equilibrium calculations."' However, these inside-

out algorithms were developed assuming that the solution of the flash calculation

would always lie in the two-phase vapor-liquid coexistence regime. In many situations,

this is certainly the case; however, if it is unknown a priori whether the result of a

flash calculation will actually be a two-phase mixture, this can be problematic. This

can easily occur in the course of solving a process simulation or optimization problem

where the convergence or optimization algorithm adjusts the flash parameters to

values that lead to an all-vapor or all-liquid result. Methods which post-process the

results to find the true single-phase answer are often used; however, these tend to rely

on heuristics and/or increase the computational cost of the flash calculation and are

vulnerable to failure.

Several authors have suggested reliable (non-heuristic) techniques for handling

uncertainty in the number of equilibrium phases present in a mixture. Phase stabil-

ity calculations, as developed by Michelsen,81;8 2 check whether or not a postulated

number of equilibrium phases is stable using the Gibbs tangent plane criterion. How-

ever, this ostensibly requires the solution of a global optimization problem for each

set of trial phases until the set corresponding to a stable mixture is found, and then

further requires the solution of the appropriate phase-split problem to determine the

physical results. Mitsos and Barton recast this formulation by using the dual of the

tangent plane criterion, which removes the guess-and-check nature of the solution

process but still requires the solution of multiple global optimization problems. 84 In

a similar vein to the guess-and-check approach, interval arithmetic based methods

can also be applied to the flash equations to determine reliably whether or not a

solution exists. An interval Newton/generalized bisection approach 1 0 can be used

to reduce and partition an initial box which is thought to contain the solution(s) to

the flash equations iteratively, such that each new box generated is also guaranteed

to contain a solution, if it exists. If the method terminates having found no solution,

then the user can be sure that there is indeed no equilibrium solution. However, such

a method is both computationally expensive (particularly if not implemented using

code generation) and prone to slow convergence or stalling before reducing boxes to
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high accuracy, especially when there are points within the domain with singular Jaco-

bians/generalized derivatives. Finally, fully equation-oriented approaches to the flash

problem which are agnostic to the number of phases present have also been proposed.

In such a formulation, the problem of determining if a single-phase mixture is present

is generally recast using complementarity constraints. 40;41;60 However, this leads to a

substantial increase in complexity (a single 3-component flash requires 86 variables

and 93 equations/inequalities to model in the formulation of Kamath et al.60) and

solutions must be obtained by solving an optimization problem in which comple-

mentarity constraints are modeled appropriately. Such a formulation also requires

an initial guess for the values of all physical and non-physical variables, which can

be potentially challenging to generate without a priori information about either the

solution or the result of a similar flash calculation and can result in slow convergence

when it is far from the true solution. 60

Instead, this chapter proposes modified algorithms which retain all the benefits of

the Boston-Britt inside-out algorithms without sacrificing reliability due to heuristics,

therefore extending the celebrated robustness and efficiency of the original algorithms

to finding single-phase solutions.

5.2 Classical inside-out algorithms

The formulations of the flash equations discussed in the previous chapter are often

difficult and computationally expensive to solve when the equilibrium ratios and en-

thalpy departure functions are defined by complex models. To this end, Boston and

Britt proposed a new class of solution algorithms for the single-stage flash prob-

lem, the inside-out algorithms. 16 As mentioned previously, this class of algorithms

is almost universally applicable to different types of flash calculations and mixtures.

Impressively, this versatility does not come at the price of high computational cost,

as the method also reduces as much as possible the number of required calls to the

thermophysical property system for fugacity and enthalpy evaluations.

The inside-out approach is an iterative nested loop procedure, and the two loops
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are referred to as the inner loop and the outer loop throughout this work. In the

outer loop, complex phase equilibrium and enthalpy models are used to generate

parameters for simple models of the equilibrium ratios and vapor and liquid enthalpy

departure functions. The constants and coefficients involved in these simple models

become the independent variables in the flash problem and serve as proxies for the

actual temperature, pressure, vapor/liquid composition and vapor fraction of the

system. Then, in the inner loop, the simplified models are used to converge the

flash equations. The nested procedure repeats until the values of the outer loop

iteration variables do not change significantly from iteration to iteration, at which

point the flash equations are solved. The outer loop variables were carefully designed

to be independent of each other and not to depend strongly on multiple physical

quantities, e.g., both temperature and composition. Due to this, the performance of

the algorithm is not strongly dependent on good initial guesses, unlike many other

such algorithms.

The inside-out formulation of the PQ-flash algorithm is now discussed. The main

outer loop iteration variables are referred to as "volatility parameters", and defined

as:

Ui = ln(ki/kb), (5.1)

where kb is a reference equilibrium ratio defined by the following equations:

n.

In kb - wi ln ki, (5.2)
i=1

ti (5.3)zi=1 tj'

tiaYv,i aT ~ g 54
tj ~ O - g XL,YV(54

1 + ao(ki - 1)

where wi and t2 are weighting factors derived by Boston and Britt. Accuracy of the

partial derivative terms in Equation (5.4) is not essential as the weights themselves

were derived from approximations of more complex conditions; therefore it is most

conveniently approximated by finite differences since the procedure already requires
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evaluation of the equilibrium ratios at two temperature levels, as will be explained

next. The dependence of kb on temperature is represented by the following model:

1 1
In kb= A + B - TreI ) (5.5)

where A and B are variables in the outer loop and Tref is a user-defined reference

temperature. In the algorithm, the variable B is calculated by evaluating a second

reference equilibrium ratio, k , at a second temperature level, T', with the same

pressure and composition as kb, as follows:

ln(k//kb)
B = n b , (5.6)

and then A is determined from the following relationship:

A =Inkb-B ( - Ie). (5.7)
(T Tref

The inner loop iteration variable, R, is given by the following identity:

R kbV (5.8)
kbV + kgL'

where ko is just a constant used to avoid numerical issues when kb becomes very large

or very small. Boston and Britt also introduced a vector p with each element defined

as follows:

A ii (5.9)
1 - R - R +koReui'

where 1i are the individual component liquid phase flow rates. Only the second

identity in Equation (5.9) is actually used in the implementation of the algorithm.

The value of defining the quantities pi in this way is that it allows kb to be expressed

entirely in terms of p and u:

kb = . (5.10)
Tel enpi

The flash temperature, liquid phase flowrate and liquid/vapor phase compositions

146



can then be calculated from these quantities as follows:

1
T = In kb-A (5.11)

T71-4 + B

L= (1 - R) p, (5.12)

X~ A (5.13)x L,i n. 5.3
Ei=1 Ai

euip
Vy'i = . euip. (5.14)

Ei=1 P
Knowing the temperature, pressure and compositions of each phase allows the vapor

and liquid enthalpies to be calculated for the energy balance residual function in the

inner loop:

I (L/F)(Ahv - AhL) - - Ahv + hF Qflash/F, (5.15)

where AhL and AhV are the liquid and vapor enthalpy departures, respectively, and

hi E n2 zF,ih'd is the ideal gas enthalpy of a mixture with the feed stream's

composition at the flash temperature. The individual component ideal gas enthalpies,

hid, are functions of temperature only and can be evaluated using a suitable empirical

correlation. Note that by definition:

nc

Ahv - hy -- h i = hy - yiid, (5.16)
i=1
n,

AhL - hL - hid = hL - xi. (5.17)
i=1

Inspection of Equations (5.9) - (5.15) reveals that T is actually only a function of R

for a given feed condition and fixed values of the outer loop variables. Thus, in this

algorithm, the inner loop consists of a single variable iteration procedure, varying R

to satisfy Equation (5.15) following the calculation sequence just described. Addi-

tionally, when evaluating T, the models for the liquid and vapor enthalpy departures
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are also expressed in terms of simpler models (analogous to the simplified equilibrium

ratio model) with only temperature dependence:

Ahv = C + D(T - Tref), (5.18)

AhL = E + F(T - Tref ), (5.19)

where C, D, E and F are also variables in the outer loop and are updated in an

analogous manner to A and B by evaluating the real liquid and vapor enthalpy

departure functions at a second temperature level (Tref is an appropriate choice).

Therefore, there are a total of n, + 6 outer loop iteration variables in the inside-out

PQ-flash formulation, which will be represented in shorthand by the vector v:

V = (u, A, B, C, D, E, F) (5.20)

The inside-out algorithm terminates when the vector v does not change substantially

from iteration to iteration; therefore, the outer loop error function, Q, is defined as

follows:

Q - 1|f - vII., (5.21)

where ii is the vector of calculated iteration variables after a pass through the outer

loop with the vector v as a starting point.

As mentioned previously, owing to the use of these largely independent non-

physical variables, the performance of this algorithm is quite insensitive to the quality

of the initial guess. However, there is a substantial amount of initialization that must

take place to begin calculations, even if it requires almost no input from the user.

One such initialization strategy that has been used in this work is given by Algorithm

5.1. Alternatively, should the user have a better initial guess for the solution (e.g.

from a previous, similar flash calculation), then this information can be used in place

of that which is calculated in Steps 1, 2 and 5.

The full implementation of Boston and Britt's inside-out strategy is given in Algo-

rithm 5.2. The inner loop convergence problem can be solved with a simple Newton-
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Algorithm 5.1: An initialization subroutine for the PQ-flash inside-out algo-
rithm.
i Guess T = 0.8 1 zFi jIcrit and a = 0.5
2 Solve (4.7) and (4.26) for T, a assuming ideal thermophysical properties and

Raoult's Law
3 Set Tref <- T - 1
4 Set T' <- T + 1
5 Calculate XL, Yv from (4.9) and (4.10) assuming Raoult's Law
6 Calculate k(xL, Yv, P, T) using real property models
7 Calculate k'(XL, Yv, P, T') using real property models
8 Calculate kb and k' using (5.2) - (5.4)
9 Set ko +-

lo Calculate u, A, B from (5.1), (5.6), (5.7)
11 Calculate Ahv(yv, P, T) and AhL(XL, P, T) using real property models
12 Calculate Ahef(yV, P, Tref) and Ahef (xL, P, Tref) using real property models
13 Set C - Ahre
14 Calculate D from (5.18)
is Set E <- Ahye
16 Calculate F from (5.19)

type iteration. Outer loop convergence can be achieved through simple successive

substitution, though can be accelerated through derivative-based procedures. As

noted in the original paper, a full Newton-type iteration is more computationally

expensive than necessary; however, the Broyden method works very well since the

Jacobian matrix for the iteration variables generally does not differ significantly from

the identity matrix. Additionally, since the variables B, D and F each require two

calls to the real thermophysical property models to update, they are only updated

once during the procedure for efficiency.

However, if the solution of the flash problem actually lies in a single-phase region,

the iterates generated by Algorithm 5.2 will reach either the bubble or dew point

and then fail to improve further, despite the residual error in the energy balance. To

see this, observe that the value of R can only vary between 0 and 1 in any physical

solution, as dictated by Equation (5.8). In the inner loop, only R is allowed to vary,

so Equations (5.9) and (5.10) define a single value of kb for a given R value. However,

Equation (5.10) assumes that vapor-liquid equilibrium holds, so R = 0 gives a bubble

point (BP) kb value, and R = 1 gives a dew point (DP) kb value. Therefore, outside
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Algorithm 5.2: Boston and Britt's inside-out algorithm for a PQ-flash.
1 Initialize v and set T', Tref, k1, ko, e.g. by using Algorithm 5.1
2 Calculate initial guess for R using (5.8)
3 Set Q +- 2Eout
4 while Q > Eout do
5 while I > Em do
6 Calculate p, kb, T, L from (5.9) - (5.11), (5.12)
7 Calculate hF
8 Calculate Ahy, AhL from (5.18)-(5.19)
9 Calculate T from (5.15)

10 Assume new value of R
11 end while
12 Calculate ce, XL, YV from (4.8), (5.13), (5.14)
13 Calculate k, AhL, AhV (and k ', ,A A $ on first iteration only) using

real property models
14 Calculate f) using (5.1), (5.6), (5.7), (5.18), (5.19)
15 Calculate Q from (5.21)
16 Assume new values for u, A, C, E (and B, D, F on first iteration only)
17 end while

of the two-phase region, there is no way to satisfy the phase equilibrium relationships

for all components while independently adjusting the temperature (which is found

from kb using Equation (5.11)) to satisfy the energy balance.

As this is a known short-coming of the method, several methods have been pro-

posed to mitigate this behavior for PQ-flash types:

1. The (documented9 2) Aspen Plus 5 approach is to start from the non-converged

all-liquid (R = 0) or all-vapor (R = 1) result returned by the PQ-flash inside-out

algorithm and perform an iterative calculation that varies the temperature in

order to satisfy the unconverged energy balance. Once a candidate temperature

for the (possibly) single-phase solution is found, a PT-flash is performed. Based

on the result of this calculation, the single-phase candidate solution is either

accepted or rejected. If it is rejected, the PQ-flash is restarted using an improved

initial guess provided by the PT-flash results.

2. The approach suggested by Parekh and Mathias 92 is similar to the Aspen ap-

proach, except that if an all-liquid) or an all-vapor solution is indicated on any
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iteration of the PQ-flash procedure, the temperature iteration is performed.

3. A more rigorous approach, which relies on the work of Michelsen,51;52 is to

perform phase-stability analysis on any possibly single-phase solution returned

by the PQ-flash algorithm (R = 0 or R = 1 with inner loop residual error).

If this procedure confirms that a single-phase is present, then a temperature

iteration is performed starting from the values suggested by the stability analy-

sis. Otherwise, the PQ-flash is restarted using the initial estimate of the phase

composition provided by the analysis.

The third option is computationally expensive and not a reasonable option when

a large number of flash calculations need to be performed. The first two options

tend to be inexpensive and show comparable behavior to each other (it is not entirely

clear which approach is implemented in the modern versions of Aspen Plus), however,

they are heuristic approaches which cannot provide a guarantee of success, as will be

shown later in an example problem. Especially near bubble or dew points, all three

approaches can potentially cycle back-and-forth between the single-phase and two-

phase iterations, increasing solution time in the average case and not converging at

all in the worst case. The need for a computationally inexpensive modification of

this inside-out algorithm that will produce correct results for all flash conditions is

therefore apparent.

5.3 Proposed Algorithms

To address the inability of the conventional Boston-Britt inside-out algorithms to

converge automatically to single-phase solutions, a modification of the procedure is

proposed in this section based on the ideas introduced in the simple nonsmooth flash

formulation introduced in Chapter 4.

The central idea of the modification is to add an extra variable to the inner loop

to avoid the problem discussed in the previous section of R = 0 always corresponding

to a bubble point solution and R = 1 always corresponding to a dew point solution.
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Since the objective is to relax the phase equilibrium constraint outside of the two-

phase region, it is reasonable to use a variant of Equation (4.27) as the residual for

the new variable. Replacing a with R in this equation yields the following:

n. nc
mid (R, ZXL,i y-y i, R - 1 =0.

i=1 /=

Now, the term involving the liquid and vapor compositions in this equation can be

rewitten in terms of the inside-out formulation variables as follows:

mid (R~

nc

mid R, n.

mid R 7

mid R,

ne

liL vi/V, R - 1 =0,

12 L - kili/L, R -1 =0,

mcc

i=1

p - kb(1- R) eipi, R - 1

n.

pi - kb euip, R - 1 0.
i=1

From inspection of this last equation, kb is clearly a reasonable choice for the addi-

tional variable in the new inner loop. Thus, the inner convergence problem is now to

solve the following nonsmooth equation system:

mid (R, _'Z pi - kb EcI euipi, R - 1)
I(R, kb) I

(L/F)(/hv - AhL) - - Ahv + hF + Qflash/
F=0,

F
(5.23)

wherein the original single variable problem based on satisfying the energy balance

has been transformed into a two variable problem which also includes equilibrium

and material balance considerations. Note that since kb is treated as a variable in

addition to R, it is no longer determined as a function of R by Equation (5.10) during

the inner loop computational sequence. In the two-phase region, the solution of this

equation system both satisfies Equation (5.10) and zeroes the residual of Equation
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(5.15), exactly as in the original procedure. Outside the two-phase region, the energy

balance is still always satisfied, while the first equation allows for relaxation of the

equilibrium relationships using kb as a new degree of freedom.

There are also a few subtler changes that must be made from Algorithm 5.2. The

first is that it is no longer possible to ignore updating the variables B, D and F after

just the first iteration. This is due to the fact that if the initial guess provided to or

calculated by the algorithm suggests an incorrect number of phases, then B, D and

F will need to be substantially adjusted to avoid extremely slow convergence, and

there is no guarantee that the algorithm will predict the correct number of phases

after just one iteration (especially if the solution is close to the mixture bubble/dew

point). Therefore, all n, + 6 outer loop variables must be calculated in each iteration.

As in the classical case, a full-Newton type iteration is not recommended, as the cost

of evaluating a single element of the generalized derivative is 3(n, +6) + 1 = 3n, + 19

times the cost of a function evaluation in the worst case. 64 As will be seen in the

numerical examples, the derivative-free methods generally require substantially fewer

than 3n, + 19 function evaluations to converge. In this work, the most effective

method for rapidly converging the outer loop variables has been found to be Anderson

acceleration, 2;134 a technique that computes the next iterate as a linear combination

of the residuals from the past m iterations of the algorithm. Interestingly, the more

widely known Wegstein acceleration technique was found to be largely ineffective for

this application, showing very similar performance to basic successive substitution.

As the numerical experiments later in this chapter suggest, the use of a version of

Broyden's method appropriate for PC' functions" would not provide a significant

advantage over Anderson accelerated successive substitution.

In addition, it has been observed that defining u using the following rule (in place

of Equation (5.1)) is beneficial from a numerical standpoint:

ui = In ki . (5.24)
mid min ki, kb, ma ki
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This modification is simply to prevent the values of each ui from becoming very large

or very small (and thereby eui becoming extremely large or small) in the single-phase

regimes when kb is being used only to adjust the temperature to satisfy the energy

balance. The new PQ-flash solution procedure is provided in full in Algorithm 5.3.

Algorithm 5.3: The proposed nonsmooth inside-out algorithm for a PQ-fiash.

1 Initialize v and set T', Tref, k1, ko using Algorithm 5.1
2 Calculate initial guess for R using (5.8)
3 Set Q +- 2EOut
4 while Q > Eot do
5 while IIx(R, kb) > elo ,i do
6 Calculate p, T, L from (5.9), (5.11), (5.12)
7 Calculate hid
8 Calculate AhV, AhL from (5.18)-(5.19)
9 Calculate I(R, kb) from (5.23)

10 Assume new values of R, kb
11 end while
12 Calculate a , XL, YV from (4.8), (5.13), (5.14)
13 Calculate k, k', AhL, Ahv, AhL , AhV using real property models
14 Calculate b using (5.24), (5.6), (5.7), (5.18), (5.19)
15 Calculate Q from (5.21)
16 Set v +- f
17 end while

Alternatively, the nonsmooth problem in the inner loop can be written using a

nonphysical slack variable /3 as follows:

mid (R, /3-1, R - 1) /F1  (5.25)
(LIF)(Ahv - AhL) - h i - Ahv + hF + Qflash/F

and kb is then a calculated quantity in the inner loop, though given by the following

equation in place of Equation (5.10):

kb -- (5.26)
ncZ euipi

This formulation accomplishes the same relaxation of the equilibrium relation-

ships outside of the two-phase region as described above. This formulation is more
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notationally consistent with work found in the equation-oriented simulation and op-

timization literature, such as in the work of Gopal and Biegler,40;41 which has also

been modified to handle single-phase flash conditions by Kamath et al.60 However,

the standard approach in these works is to formulate and solve such problems as

large mathematical programs with complementarity constraints, which differs greatly

from the highly efficient and reliable nonsmooth modular strategy suggested in this

chapter.

Nonsmooth modifications of the inside-out algorithms for other specification sets

are also possible. A PT-flash algorithm using the nonsmooth strategy is given as

Algorithm 5.4. For the PT-flash, the outer loop and inner loop residual functions are

as follows:

qIPT(R) -mid R, >pi - kb euipi, R -1 (5.27)
i=1 i=1

QPT I 11h - ulloo. (5.28)

Nonsmooth algorithms for specified pressure-entropy and pressure-internal energy

flash calculations can be simply adapted from the nonsmooth PQ-flash algorithm as

described by Parekh and Mathias9 2 for the original algorithm. The remaining flash

types which fix the vapor fraction (or vapor flowrate) are not of interest here, as fixing

this quantity automatically determines the phase regime and an appropriate method

can be chosen a priori to solve the problem.

5.4 Example problems

A series of examples are now provided to show that the proposed algorithm indeed

allows flash calculations to converge to single phase regimes while still performing

as intended in the two-phase region. The examples described in this section were

all coded and solved in the C++ programming language on an Intel Xeon E5-1650 v2

workstation using six cores at 3.50 GHz and 12 GB RAM running Ubuntu v14.04. All

feed streams in this section are assumed to be flowing at a rate of 1 kmol/sec and the
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Algorithm 5.4: The proposed nonsmooth inside-out algorithm for a PT-flash.

i Guess a = 0.5
2 Solve (4.26) for a assuming Raoult's Law
3 Calculate XL, YV from (4.9) and (4.10) assuming Raoult's Law
4 Calculate k(xL, YV, P, T) using real property models
5 Set kb <- 1.0
6 Calculate u from (5.1)
7 Set R +- a
8 Set QPT - 2 Eout
9 while QPT > Eout do

10 while I'j!PT > E, do
11 Calculate P, XL, YV, L from (5.9), (5.12) - (5.14)
12 Calculate XFPT from (5.27)
13 Assume new value of R
14 end while
15 Calculate a from (4.8)
16 Calculate k(xL, YV, P, T) using real property models
17 Calculate ft using (5.1)
18 Calculate QPT from (5.28)
19 Set u <- h
20 end while
21 Calculate AhV(yV, P, T) and AhL(XL, P, T) using real property models
22 Set hmix <- a(hi + Ahv) + (1 - a)(hid + AhL)

following termination tolerances were used in all examples: ei, = 10-9, Eut 10- 8 .

The inner loop equation solving problem was converged using the semismooth Newton

method unless otherwise noted. In each case, the outer loop convergence problem was

converged using successive substitution both with and without Anderson acceleration

(with m = 3) for the purpose of comparison. The least-squares problems associated

with the Anderson updates are solved as recommended in the article by Walker and

Ni1 3 1 using the C interface to LAPACK v3.6.1. 3 All flash calculations were initialized

using either Algorithm 5.1 or the first seven steps of Algorithm 5.4; the results of

previous flash calculations were never used as initial guesses in order to highlight

the robustness of the algorithm with respect to an ab initio starting point. All

required pure component and binary interaction parameters were obtained from the

Aspen Plus v8.4 databanks. 5 The results of the two-phase flash calculations and,

when possible, the single-phase flash calculations were validated using Aspen Plus.
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Example 5.1. This first example involves a PT-flash of the 5-component hydrocar-

bon system from Section 5.1.2 of Kamath et al. 0 The mixture is 2.5 mol% nitrogen,

65 mol% methane, 15 mol% ethane, 15 mol% propane and 2.5 mol% butane and is

initially at 5.5 MPa and 300 K. Both the liquid and vapor phase are described by the

Peng-Robinson (PR) cubic equation of state (this differs from the thermodynamic

model used in the source article, for the sake of variety in these examples). As in

the Kamath et al. article, a series of flash calculations were performed starting from

this feed stream and parametrically varying the flash temperature. Results for tem-

peratures in the range from 205 K (subcooled liquid) to 300 K (superheated vapor)

were simulated in 0.1 K increments. Algorithm 5.4 was used for all problems, and

the results are shown in Figure 5-1. For clarity, only the mole fraction of the most

abundant component is shown in this figure and all others in this section. The 951

flash calculations take a total of 0.72 seconds to perform (average 0.76 ms per prob-

lem) using Anderson acceleration. Figure 5-2 shows histograms of the total number

of outer loop iterations needed to converge the flash calculations, both with and with-

out using Anderson acceleration, showing that the acceleration technique improves

the convergence rate substantially. Overall, few outer loop iterations, and therefore

few rigorous thermophysical property evaluations, are required to converge the flash

calculations.

Another study was performed on the same mixture, this time fixing the tempera-

ture at 275 K and varying the pressure parametrically between 0.1 MPa and 12.0 MPa

in increments of 0.01 MPa. The results are shown in Figure 5-3. Using Anderson ac-

celeration, the 1,200 flash calculations take a total of 1.07 seconds to perform (average

0.89 ms per problem). This study is particularly interesting because it demonstrates

correct prediction of retrograde condensation behavior by the nonsmooth algorithm,

which is known to be challenging for simulation-based models using equation of state

models. 119;143 The calculations also pass very close to the mixture critical point, as

can be seen by the vapor and liquid mole fractions becoming almost indistinguishable

from one another at high pressure; however, the values do remain distinct throughout

this pressure range.

157



0

-2000

0.8

-4000

0.6 - -6000

E

-8000

0.4 -0

o- -10000
CU

0.2 -- 12000
hmix

XCH - -14000
0 ' YCH4-

210 220 230 240 250 260 270 280 290 300
Temperature (K)

Figure 5-1: Results from parametrically varying the flash temperature in the hydro-
carbon mixture problem described in Example 5.1.

The same parametric study was performed in Aspen Plus and the results are

compared in Figure 5-4. From this, it appears that the heuristics used in Aspen

Plus fail near the higher-pressure dew point, leading to the incorrect reporting of a

liquid phase which is inconsistent with the true behavior of the mixture. Aspen Plus

does not issue any warnings or errors for the cases where it reports that the vapor

fraction is zero, indicating that it considers these results to be accurate. Similar poor

performance of the Aspen Plus approach is observed when this same experiment is

repeated at fixed temperatures of 260 K and 290 K, and also when holding the pressure

constant at 9.5 MPa and varying the temperature (Figure 5-4). Note that if the flash

calculation algorithm in Aspen Plus is changed from the inside-out algorithm to the

Gibbs tangent plane method, then the results obtained by the nonsmooth inside-out

algorithm are verified.

It is important to note that the algorithm presented here is not completely im-

mune to numerical issues at extreme conditions (e.g. above critical temperature and

pressure). These issues manifest through convergence to the trivial solution of the
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Figure 5-2: Histogram of total number of outer loop iterations needed to converge the
flash calculations shown in Figure 5-1 using basic successive substitution (red; mean:
18.5 iterations) and Anderson acceleration (blue; mean: 14.3 iterations).

equilibrium relationships, ki = 1, Vi, and are caused by difficulties in the cubic root

evaluation algorithm (Cardano's analytic method was used in all examples herein

which required root finding). However, this is the only instance where the nonsmooth

inside-out algorithms have numerical issues, although even in these cases, correct

and continuous results for physical quantities (e.g. temperature, vapor fraction and

composition of a single existing phase) are still obtained. A detailed discussion of

this well-known issue can be found in a 1982 paper by Gundersen, 47 and several

other empirical strategies for avoiding this behavior have been reported in the liter-

ature. 97;79;151;148 Further discussion of this topic, along with strategies for preventing

discontinuous jumps in the solution when varying the flash parameters will be ex-

plored in Chapter 6.

Example 5.2. In this example, consider the non-ideal mixture described in Example

3 of Boston and Britt's original paper.16 The mixture is 10 mol% ethanol, 45 mol%

iso-octane and 45 mol% benzene, initially at 348.17 K and 0.101325 MPa. The liquid

159



I A

0.8 -2000

t5

0.6 -4000

0.4 -6000 uw

c.

0.2 - -*-8000

hmix

XCH4 .

YC' -- 10000
2 4 6 8 10 12

Pressure (MPa)

Figure 5-3: Results from parametrically varying the flash pressure in the hydrocarbon
mixture problem described in Example 5.1.

phase is described by the Wilson activity coefficient model, while the vapor phase is

described by the ideal gas equation of state. Flash calculations were performed start-

ing from the initial point and parametrically varying the heat duty. A PT-flash was

performed at the feed conditions to obtain the feed enthalpy. Results for heat loads in

the range from -30,000 kW (all-liquid) to 50,000 kW (all-vapor) were simulated in 50

kW increments. The initialization for each problem was performed using Algorithm

5.1, and the results from Algorithm 5.3 are shown in Figure 5-5. In this case, singular

or near-singular generalized derivative elements were generated frequently while con-

verging the inner loop. To overcome this, whenever the semismooth Newton method

encountered this behavior, the inner loop calculations were restarted and converged

using the LP-Newton method instead. When necessary, the LPs given by Equation

(2.26) were solved using the CPLEX 5 C++ callable library v12.5. Using Anderson

acceleration, the 1,601 PQ-flash calculations take a total of 6.44 seconds to perform

(average 4.0 ms per problem), and Figure 5-6 shows histograms of the total number of

outer loop iterations needed to converge the flash calculations in this example. From

160

NIL MA

1 0



1

C
0

0
CL

1

0.8

0.6
L

00.4

0.2

0

1

2 4 6 8
Pressure (MPa)

0.8

0.6

0.4

0.2

0

Aspen Plus, 275 K *
This work, 275 K

2 4 6 8 10 1
Pressure (MPa)

Aspen Plus, 260 K *
This work, 260 K

10 12

Aspen Plus, 290 K *
This work, 290 K

2 4 6 8 10 1
Pressure (MPa)

I 3 . .

260 270 280 290
Temperature (K)

300

Figure 5-4: Comparison of vapor fraction prediction between Aspen Plus v8.4 and
the algorithm described in this work for the hydrocarbon mixture problem described
in Example5.1.

these results, it is clear that the nonsmooth inside-out algorithm does not experience

difficulty in simulating the highly non-ideal two-phase region, indicating that the ro-

bustness of the original algorithm is preserved there, and transitions automatically

to performing reliable single-phase simulations when needed.

Example 5.3. In this example, consider a mixture of 50 mol% water, 25 mol%

isopropanol and 25 mol% n-butanol initially at 350 K and 0.5 MPa. The liquid phase is

described by the non-random two liquid (NRTL) activity coefficient model, while the

vapor phase is described by the Redlich-Kwong cubic equation of state. A series of PT-

flash calculations were performed starting from the feed conditions and parametrically

varying the temperature. Results for temperatures in the range from 350 K (all-liquid)

to 470 K (all-vapor) were simulated in 0.1 K increments. The flash calculations were

performed as described in Algorithm 5.4, and the results are shown in Figure 5-7.

The 1,201 PT-flash calculations take a total of 0.72 seconds to perform (average 0.60
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Figure 5-5: Results of the flash calculations performed in Example 5.2.
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ms per problem) using Anderson acceleration. Figure 5-8 shows histograms of the

total number of outer loop iterations needed to converge the flash calculations in this

example. Thus this nonsmooth inside-out algorithm has been demonstrated to work

efficiently on the mixed cubic equation of state/activity coefficient model case and

reliably performs simulations far into the single-phase regions.
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Figure 5-7: Results of the flash calculations performed in Example 5.3.

Example 5.4. This final example involves a PQ-flash of the 3-component air-like

mixture from Section 5.1.1 of Kamath et al.60 The mixture is 60 mol% nitrogen,

35 mol% oxygen and 5 mol% argon and is initially at 0.7 MPa and 95 K. Here,

the thermodynamics of the two phases are described by the Soave-Redlich-Kwong

(SRK) cubic equation of state. Flash calculations were performed starting from the

initial point and parametrically varying the heat duty. A PT-flash was performed

at the initial point to obtain the feed mixture enthalpy. Results for heat loads in

the range from -1,000 kW (all-liquid) to 6,250 kW (all-vapor) were simulated in 5

kW increments. The initialization for each problem was performed using Algorithm

5.1, and the results of Algorithm 5.3 are shown in Figure 5-9. The 1,451 PQ-flash

calculations take a total of 4.77 seconds to perform (average 3.3 ms per problem)
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Figure 5-8: Histogram of total number of outer loop iterations needed to converge
the flash calculations in Example 5.3 using basic successive substitution (red; mean:
7.2 iterations) and Anderson acceleration (blue; mean: 5.5 iterations).

using Anderson acceleration and Figure 5-10 shows histograms of the total number

of outer loop iterations needed to converge these flash calculations. Note that the

issue of the trivial solution discussed in the first example manifests in this example

beyond Q = 6300 kW. At this point, the predicted molar composition of the fictitious

liquid phase jumps to become equal to the molar composition of the physical vapor

phase. The other physical variables (e.g., temperature, vapor fraction) however, still

take correct values at the reported solution.

If the formulation involving # given by Equation (5.25) is used instead of Equation

(5.23), then the same values of 3 reported in the Kamath et al. article are also

obtained here, as shown in Figure 5-11. Our formulation involving 3 also does not

avoid the problem of trivial solution convergence (the value of / becomes 1 at all Q

beyond 6300 kW).

A study varying the flash pressure was also performed on the same mixture, this

time initially at 1.75 MPa and 110 K, by expanding the feed adiabatically down to
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Figure 5-9: Results from parametrically varying the heat duty in the air-like mixture
problem described in Example 5.4.

0.1 MPa in increments of 0.001 MPa leading to vapor formation. The results are

shown in Figure 5-12. The 1,651 PQ-flash calculations take a total of 7.70 seconds to

perform (average 4.7 ms per problem).

An overall comparison of the computational cost of the nonsmooth inside-out al-

gorithms with the Boston-Britt inside-out algorithms is now given. Rom each of

the previous examples, the two-phase region from each simulation was identified and

discretized into 1000 points, and the times required to solve either the relevant PQ-

or PT-flash calculations were compared. For additional comparison, the nonsmooth

versions of the algorithms were tested using both basic successive substitution and

Anderson-accelerated successive substitution, while the classical versions of the algo-

rithms were tested using basic successive substitution, Anderson-accelerated succes-

sive substitution and Broyden's method for updating the inverse of the approximate

Jacobian. The results are shown in Table 5.1.

As Table 5.1 shows, in the classical case, Anderson accelerated successive substi-

tution is actually more efficient than Broyden's method for solving problems of this
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the flash calculations shown in Figure 5-9 using basic successive substitution (red;
mean: 9.0 iterations) and Anderson acceleration (blue; mean: 7.2 iterations).

scale in all but one instance (where it is still comparable). It is expected that this

trend will hold for the nonsmooth case as well. Also of note is that for PT-flash

calculations (Examples 1 and 3), there is very little additional computational cost as-

sociated with using the nonsmooth version of the algorithm. In the case of PQ-flash

calculations (Examples 2 and 4), the nonsmooth version of the algorithm is 30-40%

slower on these problems than the classical version. This is an expected price for

algorithmic robustness, since as previously discussed, the nonsmooth version must

update all of the simple model parameters (A - F) at every iteration, which requires

additional thermophysical property evaluations and results in a problem size of nc+ 6

variables instead of just n, + 3.
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Table 5.1: Computational cost comparison for several implementations of the inside-
out algorithms. CPU times are presented as values normalized by the minimum time
within each row.

Simulation
Ex. 1 (vary T)
Ex. 1 (vary P)
Ex. 2
Ex. 3
Ex. 4 (vary Q)
Ex. 4 (vary P)

Nonsmooth

Succ. Sub. Anderson Succ. Sub.
1.15 1.04 1.06
1.37 1.03 1.21
1.60 1.40 1.20
1.20 1.04 1.12
1.63 1.36 1.18
1.58 1.34 1.13

Classical

Anderson
1.00
1.00
1.01
1.00
1.00
1.00

5.5 Conclusions

Modifications of the classical inside-out algorithms have been presented. These new

algorithms use an additional nonsmooth equation in the inner loop to relax equi-

librium conditions when necessary and feature a modified scheme for updating the

outer loop variables. This new class of nonsmooth inside-out algorithms is capable

of robustly solving the flash equations regardless of the number of phases present

without the use of heuristics or significant computational burden. Numerical results

for simulations involving different mixtures, flash types and property packages have

been shown, highlighting the capability of the algorithms to handle both two-phase

and single-phase behavior reliably and efficiently for any choice of inputs.
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Chapter 6

A nonsmooth approach to density

extrapolation and pseudoproperty

evaluation

It is essential for reliable process simulation and optimization software to have ex-

tremely robust subroutines for thermophysical property evaluation and vapor-liquid

equilibrium calculations. However, in the course of obtaining such values or solving

such a problem, it is possible that the thermodynamic model will be queried for liquid

or vapor properties of a mixture at conditions far from the physical solution or where

one phase physically does not exist. Under these conditions, and in the common

situation where both phases are described by the same equation of state, the model

may return a liquid-like density for the vapor phase or vice-versa. It is well known

that this behavior can cause a flash calculation algorithm to converge to the trivial

solution of the equations (indistinguishable liquid and vapor phases) or simply fail.

To mitigate this behavior, a number of articles have suggested methods for evaluat-

ing and post-processing the density calculated by the EOS to promote convergence

of the flash calculations to physical solutions through creatively-defined extrapola-

tions. In keeping with the efforts of the previous chapter, this chapter describes new

nonsmooth algorithms for robustly evaluating appropriate density values for mixtures

at conditions where use of the EOS alone yields unreasonable results. Unlike many
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such proposals in the literature, this new approach requires only a simple evaluation

procedure and may be augmented with accurate sensitivity analysis through the use

of nonsmooth operators and automatic generalized derivative computation. Applica-

tions of this new strategy are highlighted for commonly studied equations of state in

hydrocarbon systems.

6.1 Introduction

In many applications, use of the same equation of state to describe both the vapor

and liquid phases of a mixture is either highly desirable or essential. This is due to

such models requiring (generally) few parameters to describe fluid behavior reasonably

over a wide range of temperatures and pressures, in addition to allowing for consistent

prediction of properties close to vapor-liquid critical points. In most applications, the

primary role of the EOS is to furnish a value for the mixture density (or volume) of

each phase at a given pressure, temperature and composition. These liquid and vapor

density values are then used in simulations to evaluate key thermodynamic properties

such as fugacity coefficients and enthalpy or entropy departures.

However, the possible numerical issues associated with the dual-EOS approach

in flash calculations are well-known and well-studied. In terms of properties easily

derived from the EOS, the equal-fugacity criteria for phase equilibrium of an n,

component mixture can be written as:

XL,OL(T, PXL) =yV~jO(T, Pyv)) Vi =1, ... , n., (6.1)

where #i is the fugacity coefficient of component i (with the corresponding phase

denoted by the superscript), P is the system pressure, T is the system tempera-

ture, XL (with components XLi) is the liquid phase molar composition vector and yv

(with components yvj) is the vapor phase molar composition vector. Note that the

dependence of the fugacity coefficients on the density of the corresponding phase is

implicit in the statement of Equation (6.1). Throughout this chapter, it is assumed
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that the domains of pressure, temperature, and composition are physical, that is:

P E R+ \ {0}, T E R+ \ {O} and XL, YV E (0, 1)ne. Problematically, Equation (6.1)

is always satisfied if XL = YV component-wise when the same EOS model is used to

describe both phases. This is known as the trivial solution of the flash equations and

is only physically correct at the mixture critical point and in the supercritical region

of the phase diagram. However, it is possible for flash calculations with a subcritical

physical solution to converge to this solution incorrectly.

Many authors have proposed methods for circumventing or mitigating this prob-

lem. An early work by Asselineau et al.6 details a modified Newton-type flash cal-

culation algorithm that checks on each iteration whether calculated values are valid

(e.g. the liquid density PL is greater than the vapor density, pv), and if not, itera-

tively dampens the Newton step until the result is physical. This can clearly become

computationally expensive in regions where nonphysical specifications lie close to the

current iterate, and, moreover, it is generally agreed in the literature that such ap-

proaches are inferior to methods in which the EOS subroutine, not the VLE solution

algorithm, ascertains the suitability of e.g. density values. 83;97;78;116

Along this line of thinking, Gundersen4 7 proposed an algorithm for updating the

parameters of an EOS to yield an appropriate solution for the compressibility factor

of a given phase. This approach, while effective for certain cubic equations of state is

not readily generalizable to other models. Poling et al.9 7 established general heuristic

criteria for accepting or rejecting the density value calculated from an EOS based on

the value of the predicted isothermal compressibility, j -- -- where j=L

and j = V for the liquid and vapor phases, respectively, v is the system volume

and z is the appropriate phase composition. Note that z is used in this chapter to

denote a composition whenever the formulation of an equation is identical for both

phases or it is otherwise unnecessary to differentiate between phases, whereas XL

and yv always specifically denote liquid and vapor phase compositions, respectively.

The Poling et al.97 criteria are that !L < 0.005 atm- 1 and 0.9/P < f3v < 3/P.

However, while often a useful heuristic, cases can be found in the literature where

these rules do not adequately differentiate between liquid-like and vapor-like phases,
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see e.g. Zhao and Saha. "' A further iteration on this concept was described by

Pasad and Venkatarathnam, 9 3 who proposed criteria based on the derivative of the

predicted isothermal compressibility. Their criteria are stated as (O-) < 0 and

(a) > 0. However, the authors note that these criteria are not valid above

the mechanical critical temperature, which is quite limiting as will be seen in the

following section.

The authors of the previous approaches do not offer rigorous methods for obtain-

ing new density values that comply with their criteria. Instead, the authors suggest

modifying values of temperature, pressure and composition used in the density cal-

culations until the criteria are met, and then restarting the flash calculations from

these points. This can lead to expensive guess-and-check style iteration schemes and

discontinuities in the values returned to the higher-level flash algorithm. A different

school of thought that was proposed initially by Mathias et al.79 involves constructing

nonphysical extrapolations of density values into problematic regions based on gener-

alizations about the P - p behavior of mixtures. These extrapolations are intended to

mimic the physical behavior and trends that are characteristic of each phase and to en-

sure continuity at the boundary points of non-equilibrium regions. This in turn allows

for reasonable and continuous pseudoproperties (e.g. fictitious values for departures

and fugacity coefficients) to be calculated from the extrapolations. This method has

been implemented in the Aspen Plus 5 software and has evidently enjoyed much suc-

cess. Their method forms the basis for the ideas presented in this chapter; however,

the algorithms described in the original paper are designed for use with higher-level

methods that do not require derivative information, leading to procedures involving

several levels of nested iterative calculations and conditional statements. Moreover,

there is potential for their extrapolations to be non-differentiable, which must be han-

dled rigorously in a modeling environment that relies on exact sensitivity information.

Since the present authors are interested in algorithms that will service higher-level

methods that use exact derivatives and generalizations of the derivative at points of

nondifferentiability, alternative algorithms must be formulated.

Several other authors have presented methods that either use similar concepts or
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attempt to improve on the ideas of Mathias et al.79 A recent patent authored by

Xu et al." 8 describes an implementation of a conceptually similar method with dif-

ferent extrapolation functions and boundary definitions to assist in process control

calculations. Stateva et al. "' propose a method based on extrapolations of pressure-

volume behavior, rather than pressure-density behavior. They propose dividing the

P - v space into several regions wherein either the EOS itself or a quadratic/cubic

spline is used to describe the local fluid behavior. Their method could have been

used as the basis for the method in the current chapter; however, due to the need

for both numerical integration methods and the computation of many parameters to

ensure continuity across region boundaries, the simpler method of Mathias et al.79

was deemed a more appropriate starting point. In an article by Zhao and Saha,15 1

a method is proposed that eliminates the iterative process for determining the den-

sity values at which to begin extrapolation in the special case of cubic equations of

state. Instead, an auxiliary equation is solved to determine the pressure (at a given

temperature and composition) at which the number of roots of the original cubic

EOS changes from three to one, and this is taken as the boundary between physical

and extrapolated values. Their final algorithm for density computation is however

dependent on many conditional statements (enough that a sizable flowchart is used

to describe the procedure in the original article) and therefore obtaining analytical

sensitivity information about the extrapolations would not be possible directly. The

method also generates potentially non-differentiable extrapolations and is only appli-

cable to cubic equations of state. Additionally, as concluded in an article by Mathias

and Benson, 78 the computational cost of evaluating the density root of an equation of

state is minor compared to the cost of evaluating the mixture composition-dependent

parameters. Therefore, reducing the cost of the density evaluation by eliminating

iterative procedures is unlikely to have a substantial impact on the overall cost of

the EOS computation. This also implies that the earlier methods that function by

modifying variables that influence the EOS parameters are likely to be substantially

more expensive than the extrapolation-based methods.

Yet another approach to the phase identification problem comes from a series of
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articles focused on discriminating between the roots of cubic equations of state. Ka-

math et al.6 0 proposed criteria for distinguishing vapor-like and liquid-like roots of a

cubic EOS based on the derivatives of the equation with respect to the compressibility

factor. Their mathematical analysis of cubic equations leads to the conclusion that

the first and second derivatives must be nonnegative for a vapor-like root, whereas the

first derivative must be nonnegative and the second derivatives must be nonpositive

for a liquid-like root. If a phase disappears in the course of solving a flash problem,

the second derivative criteria are relaxed to allow an optimizer to choose the single

real root that remains. This approach was further refined by Dowling et al.3 0 who

observed several cases in which these criteria did not lead to correct phase classifica-

tion, such as in the supercritical region of the phase space. These authors propose

additional thermodynamically-motivated constraints to correct for these inconsisten-

cies. Most recently, an article by Glass and Mitsos3 8 gives alternative criteria to those

suggested by Kamath et al.60 for root discrimination and proposes a method based

on relaxing the equality constraint implied by the cubic EOS itself (rather than the

root discrimination criteria) when a phase disappears during flash calculations. These

methods are designed to be implemented in an equation-oriented simulation or opti-

mization environment. Indeed, the most rigorous of these formulations due to Glass

and Mitsos necessitates global optimization techniques for its solution. 38 Accordingly,

they incur a substantial cost in terms of both model complexity and computational

burden in simulations where many such calculations are needed. These approaches

also cannot exploit the power of tailored external subroutines for converging challeng-

ing VLE problems, in part because the formulations necessitate simultaneous solution

of the root-finding problem and the flash equations, and also because the problem

of obtaining sensitivity information about the solution of an optimization problem is

still an area of active research."'

As noted earlier, this work also builds on the extrapolation concept of Mathias et

al.79 However, the approach detailed herein addresses some of the deficiencies of the

aforementioned methods, particularly in the calculation of exact sensitivity informa-

tion for the extrapolations. The new method is also applicable to general equations of
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state and uses an easy-to-implement density evaluation procedure that only requires

one (robust) iterative procedure beyond what is needed to solve the original EOS.

The sensitivity analysis may be included at little additional cost by means of recent

advances in generalized derivative computation for nonsmooth functions.

6.2 Background

This preliminary section gives a brief overview of the variation of mixture density

with pressure and temperature, summarizes prior approaches to the unacceptable

density problem and introduces relevant concepts in nonsmooth analysis and gener-

alized derivative evaluation.

6.2.1 Behavior of mixture density

The majority of commonly used equations of state are explicit in pressure, that is,

they are of the functional form: P = f(T, v, z). These equations are often rewritten

and evaluated in terms of the mixture density, p, or the mixture compressibility factor,

Z -- P = R, where RG is the universal gas constant. Since equations of state

are primarily used when P, T and z are known, evaluating the corresponding volume,

density or compressibility factor requires an equation solving procedure. The most

widely-used equations of state are the cubic equations of state, e.g. the SRK and PR

models, which may be solved either analytically or through iterative numerical meth-

ods. More complex models such as the Benedict-Webb-Rubin-Starling (BWRS) EOS

necessitate iterative solution methods but may provide higher accuracy predictions

of fluid behavior. For reference, the functional forms of the PR and BWRS equations

and parameters used in this chapter are given in Appendix B.

As in several other works of similar focus, an example fluid that will be used for

illustration purposes in this chapter is a equimolar mixture of ethane and n-heptane.

Several pressure-density (P - p) isotherms generated by the Peng-Robinson cubic

EOS for this mixture are shown in Figure 6-1. Superimposed on these isotherms are

the mixture stability and coexistence boundaries. The outermost dashed dome is the
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Figure 6-1: P - p profiles of an equimolar ethane/n-heptane mixture and the stability
regimes of the liquid and vapor phases, based on Figure 2 from Mathias et al.79 Not
labeled in the diagram is the narrow metastable vapor region between the binodal
and spinodal curves to the left of the critical point. Note that non-physical negative
pressures are predicted by the EOS at 400 K as a result of specifying a density value
and calculating the corresponding pressure, rather than the usual case of calculating
the density given a physical pressure.

binodal coexistence curve, defined by the densities of saturated liquid and saturated

vapor in equilibrium mixtures. Inside this region lies the spinodal curve (dash-dot),

which is the stability limit defined (for a binary mixture) by:

det A AvN = 0. (6.2)
( L[AN,v AN,N

where A is the Helmholtz free energy of the mixture, the subscript v indicates a partial

derivative with respect to volume and the subscript N indicates a partial derivative

with respect to mole number of the first component.5 1 In general for a mixture with
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nc components, this matrix is of size n, x n,. Expressions for these derivatives may be

obtained in terms of quantities more readily evaluated from a pressure-explicit EOS,

for instance:

Ayy = Pp = . (6.3)
ST,z

Expressions for the other terms may be found in Beegle et al.15 At conditions inside

the binodal dome but outside the spinodal dome, a fluid will be metastable, that is,

it will not spontaneously phase separate, though any perturbation will induce a split

and lower the free energy of the mixture. At conditions inside the spinodal dome, a

fluid will be unstable and spontaneously phase separate. As such, any specification of

pressure, temperature or composition that lies within the binodal and spinodal regions

cannot correspond to an equilibrium state. However, there is also no effective way to

ensure that an iterative higher-level algorithm, e.g. for a flash calculation, will not

stray into this region. Unmanaged, the liquid and vapor density values returned by the

EOS here could potentially change discontinuously between iterations, which is likely

to cause numerical issues in the VLE algorithm, or the values could coincide, which

is likely to cause convergence to the trivial solution. Unfortunately, determination

of the boundary of the spinodal dome is computationally expensive, as suggested by

Equation (6.2).

However, a much easier to ascertain boundary lies further inside the spinodal

dome. This is the curve corresponding to the limit of mechanical stability (dotted

line), which is calculated by applying the spinodal condition for pure components

directly to the mixture, i.e. A, = Pp = 0. Note that for a mixture, this curve has

no physical significance and will always lie inside the spinodal curve."5 The peak of

this curve, where the second partial derivative of pressure with respect to density

is zero, is referred to as the mechanical critical point, and coincides with the true

critical point only for pure substances. O' As Figure 6-1 shows, the true critical point

of the mixture occurs where the spinodal and binodal meet tangentially, and is almost

always slightly higher in terms of density than the mechanical critical point 79 (in this

instance, the mechanical critical density, pm,,, is 3.01 kmol/m 3 while the true critical
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density, pc, is 3.37 kmol/m3 ). Fortunately, an EOS will generally return reasonable

properties up until close to the boundary of the mechanical instability dome (dotted

line in Figure 6-1), though as reported by Poling et al.97 and Mathias et al., 79 the

values and derivatives of the physical properties derived from density can exhibit

erratic behavior in the immediate vicinity of the boundary.

6.2.2 Density extrapolation models

The core concept behind the density extrapolation approach introduced in the lit-

erature review is that when an EOS is evaluated at conditions that correspond to

unstable states or nonexistent phases, it is not necessary that the density returned by

the subroutine be a solution of the EOS. Rather, it is more beneficial to ensure that

the calculated density is "liquid-like" if a liquid phase density is requested or "vapor-

like" if a vapor phase density is requested. Accordingly, extrapolation functions have

been proposed that mimic the behavior of a given phase with respect to changes in

pressure, temperature and composition and return reasonable density estimates for

each phase. A key point to take away from the discussion in the previous section is

that while it would be ideal to begin extrapolating density values at either the bin-

odal or spinodal boundary, these points are far too expensive to calculate repeatedly.

However, the boundary of the mechanical instability dome is far less expensive to

compute, and the mechanical critical density is generally a tight underestimate of the

critical density. Due to the numerical issues in the immediate vicinity of this bound-

ary however, the common practice is to begin extrapolating density values slightly

before reaching the mechanical instability dome, as measured by the derivative of

pressure with respect to density attaining a small positive value. In this chapter, the

value p3 (with j as a placeholder for the phase identifier) is defined as the density

value at which the partial derivative of pressure with respect to density is equal to

the limiting value. Mathias et al.79 propose that the limiting density value for each

phase be the solution of the equation:

P (pj,T, z) - 0.1RGT = 0. (6-4)
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for a given temperature and composition. In what follows, the value of P, at (pr, T, z)

will be denoted by P2. This is not the only reasonable choice for the boundary of

the acceptable region. Xu et al.148 suggest p2 and p~v be the points at which:

P
Pp (pL, T, XL) -- + = 0, (6.5)

PL

J(Ppv (pv, T, yv) - RG) + (1 - 6)PQ + A = 0, (6-6)

for the liquid and vapor phase, respectively, where , -y, F and A are user-defined

relaxation and offset constants. Note that the vapor phase criterion depends on the

result of the liquid phase calculation unless 6 = 1. Zhao and Saha1 5 1 take a different

approach to locating the boundary of the acceptable region that is specific to cubic

equations of state. These authors calculate the point at which the real part of the

complex roots and the single real root of the cubic coincide by solving an auxiliary

cubic equation, then use a series of conditionals to decide whether extrapolation is

needed based on the result of this additional calculation.

As noted in the aforementioned articles, these criteria alone do not rule out the

possibility of unacceptable liquid densities being returned at high temperatures where

the isotherms exceed the mechanical critical temperature, Tmc, and yet never have

near-zero derivatives (e.g. the isotherm at 500 K in Figure 6-1). For this case, they

note that it suffices to make use of the previous observation that pmc is a useful

underestimate of the true critical density, and extrapolate liquid density whenever

the calculated value from the EOS model would fall below this value.

In summary, these criteria address three cases in which the EOS model may return

invalid properties for the phase requested. These are as follows:

1. A vapor density is requested but the EOS solution is liquid-like, e.g. at high

pressure. This case is handled by extrapolating values for vapor density based

on a derivative criterion such as Equation (6.4) with j = V or Equation (6.6).

2. A liquid density is requested but the EOS solution is vapor-like and T < Tmc,

e.g. at low pressure. This case is handled by extrapolating values for liquid

179



density based on a derivative criterion such as Equation (6.4) with j = L or

Equation (6.5).

3. A liquid density is requested but the EOS solution is vapor-like and T > Tm_.

This case may be handled by extrapolating values for liquid density based on

the PL > Pmc criterion.

In the cases where extrapolation is needed, the previous authors have proposed

various models for extrapolating the density values. The Mathias et al.79 liquid phase

model is of the following functional form:

P = AL + BL ln(pL - 0-7pmc), (6-7)

where AL and BL are constants to be determined by equating P and P, with values

from the EOS model on the boundary of the acceptable region. This model is used for

both the cases numbered 2 and 3 in the previous list. The mathematical form of this

model will cause the pressure to tend to -oc as the liquid density decreases to 0.7pmc,

which prevents the liquid phase density from ever becoming unrealistically small for

any physical pressure specification. Zhao and Saha15 1 use the same logarithmic model

in their article, while Xu et al.' 48 suggest a quadratic model:

P = AL + BL(PL - p2 ) + CL(PL - 2

where the constants are again determined by matching values and derivatives at

the boundary point. In either case, once the boundary conditions are introduced,

by design the pressure predicted by these extrapolating functions will be a strictly

concave function of density that shares a value and tangent line with the pressure

predicted by EOS model exactly at the boundary of the acceptable region. As any

realistic EOS will predict pressure to be a strictly convex function of density between

its highest density inflection point and +oo (see e.g. Figure 6-1), note that this

common tangent line will underestimate the pressure calculated from the EOS and

overestimate the pressure calculated from the extrapolating function at all densities
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in this region containing the boundary point. Therefore, the pressure calculated from

the EOS will always be greater than the pressure given by the extrapolating functions

at any density in this region except for the boundary point where they are equal.

The Mathias et al.79 vapor phase model is described textually as "a quadratic ex-

trapolation of the reciprocal of pressure with density." Zhao and Saha1 5 1 interpreted

this to mean a model of the form:

By Cv
pv = Av + p + CV (6.9)

where AV, Bv and Cv are constants obtained from equating P and Ppv with values

from the EOS model on the boundary of the allowed region and enforcing that 1/P =

0 when the density becomes sufficiently large. Further numerical details are given in

the following section. However, there is an alternative interpretation of the statement

from Mathias et al.,79 the use of which appears to better match the results of that

article, as follows:
1
- = AV + Bvpv + Cvpv7 , (6.10)

where AV, BV and Cv are constants obtained from the same boundary conditions as

just discussed. The extrapolation model proposed by Xu et al.148 is more complex:

1 - CVP Q 1 - CV P'V )(
AV + Bv p(P -- P)v) + (e - 1) _ pv - 2, (6.11)

I - CvPv (I - Cv PV

with the constants determined by the similar boundary conditions to that of the other

authors. In each case, once the boundary conditions are introduced, by design the

pressure predicted by these extrapolations will be a strictly convex function of density

that shares a value and tangent line with that predicted by the EOS model, which

will be a strictly concave function of density in a region containing the boundary

point (between -oc and the lowest density inflection point of the model). Analogous

to the earlier discussion, this implies that in this region, the pressure predicted by the

EOS model will always be less than or equal to that predicted by the extrapolating

functions, except at the boundary point where they are equal.
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These extrapolating functions are generally used in subroutines which simultane-

ously compute the density root of the original equation of state and evaluate whether

or not it is acceptable based on the discussed criteria. If not, the value obtained

from the appropriate extrapolation is returned instead. Zhao and Saha1 5 1 provide

a flowchart in their article for deciding which density value should be returned that

can be implemented as a reasonably complex structure of if/else statements. The

approach described in Xu et al.14 ' involves calculating the pressure value correspond-

ing to the boundary points and comparing this to the value of the pressure at which

the density has been requested. The Mathias et al.79 algorithm is slightly more com-

plex, though relies on a similar concept. At mechanically-subcritical conditions, their

approach involves using several Newton-type iteration schemes to iteratively bound

either a root of the equation of state or the boundary of the acceptable region. If the

boundary is located, then the extrapolation is used to calculate a density; otherwise,

the solution of the EOS is returned. At mechanically-supercritical conditions, the ex-

trapolated liquid density is found using an iterative secant method. In all cases, the

density value may then be used to evaluate the thermophysical properties as required

by the higher-level algorithm.

6.3 Nonsmooth Algorithms for Density Extrapo-

lation

A new nonsmooth strategy for implementing the extrapolations described in the pre-

vious section is now presented. Afterward, the minor modifications needed to allow

for the calculation of accurate generalized derivative elements of the extrapolations

will be discussed.
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6.3.1 Calculation of extrapolated density values and pseudo-

properties

First, the nonsmooth density evaluation functions for each phase will be developed.

Note that the key idea here is that the final forms of the density models will be PC'

functions that automatically return either the density from the EOS or a more accept-

able extrapolated value as determined by the temperature, pressure and composition

at which the density is queried. This will be accomplished using the mid function to

compare the value returned by the direct EOS evaluation, a boundary value and the

value returned by the extrapolation function.

Let pEOS(P T, XL) and pEOs (P, T, yv) be the liquid and vapor density solutions

obtained from solving the equation of state, respectively. As before, we denote by p

as the density value of phase j at which the partial derivative of pressure with respect

to density is equal to a limiting value, i.e.,

P'(p, T, z) = 0.1RGT, (6.12)

for given T and z as suggested by Mathias et al.79 This condition is chosen for the

present work due to its simplicity and generality, though it is certainly possible to

substitute the more complex conditions of e.g. Xu et al.148 in place of Equation (6.12).

However, the dependence of the vapor phase criterion on the result of the liquid phase

calculation in Equation (6.6) is undesirable when only vapor phase properties are

required.

Now, define the actual boundary functions for each phase as follows:

bound :(T,X(613
PL XL) '-+ mid (Pmc (XL), p'j(T, XL), Phi (XL)), (613)

bound : (T, yv) '-4 mid (pio(yv), p"(T, yv), Kprc(yv)), (614)

with r, < 1 as a user-chosen scalar, pmc is implicitly defined as before, that is, the

density at which:
OP I 2 p
0(pmcTmcz) = 2 (pmc,Tmc,z) 0, (6.15)
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and plo and Phi are lower and upper bounds, respectively, on the density value that

may be furnished by the equation of state, e.g. density values at which P -+ +oo

such that pio(yv) < pmc(yv) (typically also < 0) and phi(XL) > Pmc(XL). For some

equations of state (e.g. cubic), Pnc, plo and Phi can be determined analytically as

a function of the mixture parameters (and are therefore functions of composition

of the phase under consideration). For notational simplicity, the values returned

by the boundary functions for a given temperature and composition are denoted as

follows: p* pbound(T, XL) and p* = pyound(T, yv). The mid statement in Equa-

tion (6.13) will ensure that the extrapolation of density will always take place when

p Os(P, T, XL) < Pmc(XL), regardless of whether the derivative criterion is met. In this

way, this nonsmooth expression is able to assert the conditions on the liquid phase

density automatically without a separate check or algorithm. The mid statement

in Equation (6.14) serves a different purpose, which is to keep the value of density

sufficiently below pmc so that the vapor-phase extrapolation is always well-defined.

Mathias et al.79 also note that it is useful to keep the vapor density below pmc to

avoid the calculation of negative pressures at low temperatures. As such, the exact

value of K is flexible, though it is suggested that K E [0.7,0.95] for reasonable results.

r, has been assumed to be 0.9 throughout the examples in this work.

Let P* be the pressure value calculated from the EOS corresponding to p* or p*

as appropriate, and the corresponding partial derivative of pressure with respect to

density be denoted P*. The extrapolation function for liquid density follows from a

minor modification of Equation (6.7) (chosen over Equation (6.8) since it is a two

rather than three parameter model) and the boundary conditions proposed by Math-

ias et al.,79 which are that:

P* = AL + BLIn (p* - 0. 7 pmc), (6.16)

BL
P =(6.17)

P (P* - 0.7pmc)
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Solving these equations for AL and BL yields:

AL -- BLlIn (p* - 0. 7pmc), (6.18)

BL P* (p1 - 0. 7 pmc). (6-19)

The extrapolation function for liquid density is then given by:

pextrap : (P, T, xL) - mi ex (P -AL(T, XL) + 0.7Pm(XL), (6.20)L XL) ( ~~~BL (T, XL) ) m(LPiX)

The first term in the min statement of Equation (6.20) comes simply from rearranging

Equation (6.7) to be explicit in density, while the latter term truncates the rapidly

growing exponential function at a known upper bound. Since Equation (6.7) was

designed to approach 0 .7pmc asymptotically as P - -oo, no additional term is needed

to prevent large negative values at low pressures.

Finally, the function that calculates the liquid density that is to be used in physical

property calculations is as follows:

id : (P, T, XL) He mid (pEOS(P T, XL), Ppound (TI LPejtap(P, T, xL)). (6.21)

For notational simplicity and consistency, the value returned by this function for

a given temperature, pressure and composition is denoted by PL pLid(P, T, XL)-

The mid function is used here to exploit the knowledge of the relative ordering of

its arguments to return an acceptable density value. The density value returned by

the extrapolation function overestimates the EOS solution value except at the point

of tangency, p*. Below p*, the liquid density predicted by the EOS is unaccept-

ably low; therefore, the mid function correctly returns the extrapolated value since

pbound(T, XL) > pejrap(P, T, xL) > pEOS(P, T, XL). Above p*, the EOS solution is ac-

ceptable; therefore the mid function correctly chooses that value as the liquid density

since Pextrap(P, T, XL) > pEOS(P T, XL) > pbound(T, xL).

The extrapolation of vapor density is based on Equation (6.10). The model of

Zhao and Saha"' leads to non-monotonic behavior of the vapor density with respect
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to pressure, while the complex model of Xu et al. 148 is more expensive to use than

Equation (6.10) for no readily apparent additional benefit. As in the liquid case,

some modifications are required in the present approach. For the ease of applying the

boundary conditions, the model is best expressed in the form:

1- = AV + Bv(p - p*v) + Cv(P - p*) 2 . (6.22)P

The constants obtained from solving boundary conditions from Mathias et al.79 are

as follows, where the previously mentioned condition that 1/P = 0 at high density is

enforced at the midpoint between pmc and p*:

1
AV = 1, (6.23)

P*
Bv - P, (6.24)

(p*)21

Av + Bv ("PIC 2 P)
CV=- prnc-p

2  
. (6.25)

The absolute value in the Cv term is almost always redundant as the term will

generally be negative due to the relative magnitudes of AV and BV. However, it is

needed to make certain mathematical guarantees, as will be seen next. A density

can be calculated analytically from Equation (6.22) by application of the quadratic

formula:

Bk -4Cv(Av -1/P)
P = pV + .(6.26)

There are several considerations here. The first is ensuring that the square root term

is always well defined. B2 is clearly positive and Cv is always nonpositive, therefore

the discriminant is certain to be nonnegative if AV > 1/P. Unlike in the algorithms

of other authors where the vapor phase extrapolation would only performed when

P > P*, here the extrapolation must be evaluated regardless of the value of P for

eventual use in a mid operator. Therefore, it is possible in the algorithm developed

in this chapter for AV to be strictly less than 1/P. The (Av - 1/P) term in the
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square root is therefore be modified to max(O, Av - 1/P). Then, in the case that

P < P* and the first argument of the max function is active, Equation (6.26) simply

reduces to p = p* rather than leading to a complex result. Additionally, it must be

decided whether to use the solution that adds the square root term or the solution

that subtracts it. The final result should be a density greater than the boundary value

to preserve the expected trend of density increasing with increasing pressure. Since

P* > O.1RGT by definition, (-By) > 0 at all times. By some algebraic manipulation,

it can be shown that the square root term is always greater than or equal to -Bv,

so that the numerator is a nonpositive number if the square root is subtracted from

(-By). When divided by CV, this then yields a positive quantity. Therefore, the

solution that subtracts the square root in Equation (6.26) is always taken.

Further modifications are needed beyond those in the analytic solution of Equation

(6.26). As discussed, for P < P*, the right-hand side of Equation (6.26) becomes

constant at p* , while at P > P*, it is always greater than p* . It is desirable for

the low pressure behavior to be modified so that the extrapolated density value is

less than p* for P < P*. This is accomplished adding on an additional term of the

form min(0, P - P*)/P2, that is always less than or equal to zero (and also under-

approximates pEOS in this region, by design) for P < P Finally, an additional

term is needed to account for the mechanically supercritical region in which P',

exceeds the value of 0.1RGT. In this region, there is no need to extrapolate the

vapor density; however, the value given by Equation (6.26) with the aforementioned

modifications will lie above p* and almost certainly below the density returned by

the EOS. Therefore, it is actually desirable for the value of the extrapolation function

to rapidly yet continuously grow to a value greater than pEOS(P, T, yv) once these

conditions are met so that the EOS solution will be chosen by the mid operator

instead of the extrapolated density. The final form of the vapor extrapolation used
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in this work is then as follows:

extra : (PT~yvmill (0, P - p*(T, yv))
pexrap : (PT, y) mid 0, Phi (YV), Pbound (T yv) + (T,

V VP1y (T, yv )

-Bv(T, yv) - -\Bv(T, yv) 2 - 4Cv (T, yv)max(0, Av(T, yv) - 1/P)

2Cv(T, Yv)

+ max (0, T - Tmc(yv)) max (0, P*(T, yv) - P' (T, yv))

X (pEOSp _Pbound>< (p (PI T, Yv) - pud(TI Yv)))

(6.27)

The outermost mid function simply serves to keep the extrapolations bounded be-

tween 0 and Pbi, which are respectively lower and upper bounds on physical density

values, and the third term comprises all the elements discussed previously.

Analogous to the liquid phase, the functions that calculates the final vapor density

to be used in physical property calculations is as follows:

pmd:(,T v id (pEOSp Pbound Petap Prni: (P, T, yv) i-- mid (p 0 (P, T, yv), pVun(TI yv) I (~trPI T, yv)). (6.28)

As for the liquid, the value of this function at a given temperature, pressure and

composition is denoted by pv =pid(P, T, yv). As before, the mid function uses the

relative ordering of its arguments to return an acceptable density value. The density

value returned by the extrapolation function underestimates the EOS solution value

except at the point of tangency, p* except when T > Tmc and Pp > P2. Assuming

mechanically subcritical conditions, below p*, the vapor density predicted by the

EOS is acceptable; therefore the mid function correctly chooses that value as the

vapor density since p bund (TI yv) > pE25 (P T, Y) trap(P, T, yv). Above p*,

the EOS solution is unacceptable; therefore the mid function correctly returns the

extrapolated value since p EOS (Pa T Yv) > Petrap IT Yv) > pbound(T, yv). In the

region where T > Tmc and P* > P' , there is a narrow range in which the previous

ordering holds. However, the value of the extrapolation function quickly exceeds that

returned by the EOS model, allowing the EOS solution to be correctly chosen at
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sufficiently high temperatures.

Once an acceptable density value has been calculated for the liquid or vapor phase,

it may be used in the calculation of all physical properties, e.g. fugacity coefficients

and enthalpy/entropy departure functions. As in Mathias et al., the liquid fugacity

coefficients are scaled by ratio of pcalc to P, that is:

O L = ,calc (Pcal (6.29)
P

where pcalc is the pressure obtained by evaluating the EOS model at (pL, T, XL)- 7 9

These equations form the basis of Algorithms 6.1 and 6.2.

Algorithm 6.1: Evaluate liquid density and scaling pressure.

1 Solve the EOS model for pLos.
2 Calculate pmnc and Phi.
3 Solve Equation (6.4) for p 2 in the interval [pmc, Phi]-
4 if no solution is found then

* pc pmc.

6 else
7 | -p* mid(pmc, p2, Phi)

8 end if
9 Calculate P* and Pp* at p* from the EOS model.

10 BL <- P* (p* - 0. 7pmc).

11 AL <- P* - BIln(p* - 0. 7 pmc).

12 Pexrap +- min exp A + 0.7pmc, Phi)Lxra ( BL )
13 PL +- mid (pE05 , p*, pextrap)

14 Calculate pcalc from evaluating the EOS model at PL-
15 Return PL, pcalc

The solution methods used for the EOS model and pL or pv must be robust. For

cubic equations of state, for instance, it is recommended to use Cardano's analytic

method for cubic equations to solve the EOS, and a bisection method to search for

p0 or py in the prescribed interval. The following subsection discusses the behavior

of these quantities to show that the if statement in each of these algorithms does

not introduce any potential discontinuities.
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Algorithm 6.2: Evaluate vapor density.

1 Solve the EOS model for pEOS
2 Calculate pmc, plo and Phi.
3 Solve Equation (6.4) for p 2 in the interval [Plo, KPmcl.
4 if no solution is found then

5 | P* +- pm.
6 else
7 p* +- mid(p0, p , i pmc).
8 end if
9 Calculate P* and P* at p* from the EOS model.

10 AV - .
11 By -p*l(p*)2.

12 CV - -|Av + BV (pc - P*/ (j|p m c -p* ))2

13 Calculate pejtrap from Equation (6.27).
14 pV <- mid (pEOS P* ,Pextrap)

is Return pv.

Bifurcation analysis of pQ and pQ

Figure 6-2 shows several isotherms of the residual of Equation (6.4) generated by the

Peng-Robinson EOS for the equimolar ethane/n-heptane mixture previously shown

in Figure 6-1. Also indicated is the parametric variation in the turning point location

of the isotherms with temperature (dotted line), which here is the point where the

second partial derivative of pressure with respect to density is zero. The qualitative

behavior of these curves is typical of the general behavior of the cubic equations of

state for mixtures.

Of key importance here is the observation that the only situation in which there

is no root of the residual function of Equation (6.4) is when the temperature is

sufficiently high (or in an analogous situation, when the composition is sufficiently

lean). Moreover, decreasing the temperature to create a solution will always cause the

root(s) to appear very close to pmc (the -O.1RGT term moves the bifurcation point

very slightly below pmc) and then bifurcate outwards from that point. This means

that until the roots have spread far enough from this point to exceed pmc in the liquid

case or fall below rpmc in the vapor case, the mid functions in Equations (6.13) and

(6.14) will initially choose p* = pmc and p* =pmc, which is consistent with the
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Figure 6-2: Behavior of the residual function of Equation (6.4) for an equimolar
ethane/n-heptane mixture over a wide range of temperatures. The dotted line de-
marcates the location of the turning points of the curves as a function of temperature
between 0.1K and 2500 K.

values enforced by the if statements in Algorithms 6.1 and 6.2 when no solution

exists. Therefore, choosing pmc (or rpm,) as the default solution when Equation (6.4)

is not satisfied will lead to continuous behavior of p* and p* even when temperature

(or composition) varies enough to cause roots to appear or disappear. Additionally,

for the cubic equations of state, these roots can only exist between p = plo and p = Phi

(as shown in Figure 6-2) assuming that pio and Phi are properly chosen as points of

singularity for the equation of state (e.g. for PR: plo = Z- and Phi . ; for SRK:

P1o = - and Phi - This means that roots will not appear and bifurcate inwards

from beyond plo or Phi, so there will be no possibility of a discontinuity in the value

of p* (or p* ) with varying temperature and/or composition, i.e. it is impossible to

jump from the default value Pmc (or npmc) when there is no solution of Equation (6.4)

to a value beyond Phi (or plo) when a solution first appears.
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For other equations of state where values of plo and Phi cannot be calculated

exactly, it is possible that roots of Equation (6.4) may exist in regions beyond the

interval [Plo, Phil. However, it is important to note that, assuming reasonable choices

are made for these quantities, this will only happen in particularly extreme conditions

as temperature approaches either zero or +oc. In these rare cases, it may be necessary

to increase the range of the bisection search in the appropriate direction iteratively

(e.g. in the liquid case, the next search interval could be [Phi, kphi] for some scalar

k > 1) until a value is found that can be used in the evaluation of Equations (6.13)

or (6.14). Then, the mid functions in these equations will simply set p* = Phi or

p* = pio and so the continuity of these values is never compromised.

Example 6.1 illustrates the use of Algorithms 6.1 and 6.2 for evaluating the density

of the mixture from Figure 6-1.

Example 6.1. Consider a mixture of ethane and n-heptane, as in Mathias et al.,79 de-

scribed by the Peng-Robinson cubic EOS. Pure component and binary interaction pa-

rameters for the components were obtained from Aspen Plus v8.4.5 Expressions for the

values of pmc and Tmc may be obtained analytically from Equation (6.15) for the Peng-

Robinson equation of state. Doing so gives pmc = (32(4 + 3V/2) - 2 _ )
VV 2(4+3 v/2)

0.25308 0. 17014a Note that for mixtures described by this EOS,b I and similarly, Tmc Rb*

the parameter b is a function of composition and the parameter a is a function of tem-

perature and composition (details given in Appendix B). Accordingly, mechanically

supercritical temperatures are most easily detected by substituting the expression
0.17014a(T,z) in place of Tmc in Equation (6.27), rather than solving for the value of

Tmc a priori. As noted in the previous section, the lower bound on density values is

given by plo 1 and the upper bound on density values is given by Phi for

this equation of state. The P - p isotherm predicted by the Peng-Robinson equation

of state, as well as the vapor and liquid densities obtained by solving the cubic at

420 K and XL = YV = (0.5, 0.5) are shown with solid lines in Figure 6-3 for pressures

between 0.1 and 10 MPa. Note that below P = 1.88 MPa and above P = 2.67

MPa, the densities of the two phases are indistinguishable, as the cubic equation of

state only has one real root in these regions. In the liquid phase, a root of Equation
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(6.4) is found at p' = 4.66 kmol/m 3 by a bisection algorithm, and for this mixture,

PMC = 3.01 kmol/m3 and Phi = 11.89 kmol/m3 . Since pmc < p2 < Phi, the mid

statement in Line 8 of Algorithm 6.1 will set the boundary value as pQ. Note that

this value has no dependence on pressure, so it will be constant when constructing

isotherms at constant composition. The value of the extrapolation function may then

be calculated from Equation (6.20). For this temperature and composition, when
P < * 1.94 MPa, P bound(T, XL) > Pextrap(PT XL) > pE0 5 (P,TXL). Therefore,

LeLXa (PT XL). dThervapor-,
the mid function in Equation (6.21) will choose PL = ptap(P, T,

like density calculated from the equation of state is avoided. Similarly when P > P*,

pjtap, T, XL) > pL0 s(P, T, XL) > pLound(T, XL) and the mid function in Equation

(6.21) will correctly choose PL = pEOS(P, T, XL). In the event that P = P*, the value

of all three functions in the mid statement are equal and a density corresponding to

this common value is returned.

In the vapor phase, p? is found to be 1.59 kmol/m3 by a bisection algorithm, which

is set by the mid function as the boundary of the allowed region since it is less than

Pnc but greater than pi0 = -4.92 kmol/m3 . The value of the extrapolation is then

calculated using Equation (6.27) and the mid function again selects the appropriate

density values to avoid the nonphysical liquid-like roots given by the equation of state

at high pressures.

For additional illustration, the auxiliary functions are also shown as functions of

temperature for an equimolar mixture at 2.0 MPa (Figure 6-4) and as functions of

composition at 420 K and 2.0 MPa (Figure 6-5). Note the non-constant dependence

of the boundary values on temperature and composition.

Figure 6-6 (top row) shows the final P - p isotherms with and without the density

extrapolation algorithm at 420 K for the equimolar mixture. The same comparison

is shown along a supercritical isotherm with T = 500 K in the bottom row. Note

that the liquid and vapor density profiles coincide at high pressure, which prevents

a spurious enthalpy of vaporization from being calculated at such conditions. See

Figure 6-7 for examples of the pseudoproperties (enthalpy departures and fugacity

coefficients) calculated through the use of the density values returned by Algorithms
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equimolar ethane/n-heptane mixture as functions of pressure using the nonsmooth
method.

6.1 and 6.2. These results are qualitatively very similar to those presented by Mathias

et al., 79 Xu et al. 148 and Zhao and Saha,"' suggesting that the nonsmooth algorithms

are indeed calculating the same quantities as the previously published approaches.

6.3.2 Calculation of sensitivity information for extrapolated

density values

A significant advantage of the nonsmooth formulations for density calculation pro-

posed in the previous section is the ease with which sensitivity information about the

extrapolated values may be calculated. In particular, the functions pmid and pmid are

designed to be amenable to new automatic methods for calculating LD-derivatives to

yield computationally-relevant generalized derivative elements.

The calculations of sensitivities proceeds almost identically to the execution of

Algorithms 6.1 and 6.2. In addition to values of the P, T, and z at which the density

and its LD-derivatives are to be calculated, a directions matrix M E R (n+2)xk must

194

- - - - - - - - - - - - - - -



......

350 400
Temperature (K)

EOS
-PL

EOS
Pv

extrap
PL

extrap
Pv

500450

Figure 6-4: Illustration of the auxiliary functions needed for density extrapolation
at 2.0 MPa for an equimolar ethane/n-heptane mixture as functions of temperature
using the nonsmooth method.

0.2

..................-

0.80.4 0.6
Mole fraction of ethane

__ EOS
PL

EOS
Pv
- extrap
PL
extrap

Pv

1.0

Figure 6-5: Illustration of the auxiliary functions needed for density extrapolation at
420 K and 2.0 MPa as functions of composition using the nonsmooth method.

195

12

101

E

=:L

8

6

4

2

o L
300

12 -

10 -

0
E

Ln
C~
a)

8

6

4

2

0 K
0.0

..... .... .... ... -



10

.

U1

0-

10

8

6

4

2

0
C

10

8

6

4

2

0
C 1 2 3

Density (kmol/m 3)

a_

a)

a_

4 5

8

6

4

2

0

10

8

6

4

2

n

Vapor, 420 K

Liquid, 420 K

0 1 2 3
Density (kmol/m 3)

4 5

Figure 6-6: P - p behavior of an equimolar ethane/n-heptane mixture. Top left:
420 K without density extrapolation. Top right: 420 K with density extrapolation.
Bottom left: 500 K without density extrapolation. Bottom right: 500 K with density
extrapolation.

also be provided that corresponds to the directions in which LD-derivatives with

respect to P, T and z are needed. In general, this will be provided by the higher-level

algorithm that is calling the density evaluation subroutine.

Analogous to Algorithms 6.1 and 6.2, the first step involves solving the EOS at the

given P, T and z. Next, the classical implicit function theorem is used to calculate

the derivatives of pos at the solution of the EOS in phase j with respect to P, T and

z. Consider an EOS in the form h(T, P, z, p) = 0 by rearrangement of the standard

pressure-explicit form with p E R. Let p = (T, P, z) E R+\ f0} x R+\{0} x (0, 1)nc,

so that the previous equation may be written as h(p, p) = 0. Let (0, #) be a solution

of this equation. Assuming h is differentiable at (P, #), as would be the case for all
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polynomial-based equations of state, and that ( p) -40, then:

Oh Op( , p) (p )=
ap (] p )5-WM

Oh
Op

(6.30)

by sensitivity analysis of the implicit function, and therefore:

Oh
5( P)M)ap

Oh
(6.31)

where M is the directions matrix provided by the higher-level algorithm. This equa-

tion may be easily solved for the LD-derivative p'(f; M) = (), 1 )M given ((, p)
and L(P, ^), both of which can be calculated either analytically or using automatic
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differentiation. This calculation may be added as an additional step after Line 2 of

Algorithms 6.1 and 6.2. In a computer implementation, the resulting LD-derivative

p'(P; M) is then associated in memory with the solution value , e.g. as an object

compatible with AD subroutines. The calculation of LD-derivatives is not performed

at local extrema of the EOS (where sensitivity analysis would fail since 2 (1,i3) = 0)

as the branches of the mid functions in Equations (6.21) and (6.28) corresponding to

the EOS solution will never be active at such points. Moreover, as a computational

cost-saving measure, the calculation of EOS sensitivities can be entirely avoided in

regions where they are certain not to be needed, i.e. for the liquid phase when P < P*

and for the vapor phase when both P > P* and the last term in Equation (6.27) is

inactive. Note that implementing these checks requires the EOS sensitivity calcula-

tion be performed later in Algorithms 6.1 and 6.2 once the other relevant quantities

have been calculated.

Next, the value of pmc and its derivatives must be found. If pnmc has a simple

explicit definition, as it does for cubic equations of state, then this expression can

be automatically differentiated in the required directions using the vector forward

mode of AD. If this is not the case, then its derivatives can be found through another

application of the classical implicit function sensitivity result to the solution of the

two equation system given by Equation (6.15) to furnish appropriate LD-derivatives

as in Equation (6.31). The LD-derivatives of po and Phi may also be obtained by

automatic differentiation of the composition-dependent EOS-specific expressions that

define these quantities, if available; otherwise, they may be calculated by appropriate

sensitivity analysis of the procedure used to determine these bounds (or set to zero if

the bounds are assumed to be constant with respect to composition). An analogous

procedure to that used for the other implicit sensitivities can then be used to evaluate

the sensitivities of p9 with respect to p from Equation (6.4), provided that a solution

exists. This calculation can be added before Line 8 of Algorithms 6.1 and 6.2. If

a solution does not exist, then this calculation is unnecessary for obtaining correct

LD-derivatives of the final density, as noted earlier.

The remainder of the algorithms are written as explicit computations of differ-

198



entiable and piecewise differentiable functions (plus the if statement that does not

impact the continuous nature of the algorithm, as discussed earlier), and as such, the

sensitivity analysis for Algorithms 6.1 and 6.2 may be readily performed by applica-

tion of modified vector-forward mode of AD for LD-derivative evaluation from Khan

and Barton.64 In an implementation of that method using operator overloading, the

evaluation of the smooth and nonsmooth expressions in Algorithms 6.1 and 6.2 is au-

tomatically replaced with combined value and LD-derivative evaluation, requiring no

additional changes to the algorithms beyond appropriate templating of the functions

to operate on AD objects in place of floating point numbers. The LD-derivatives of

the implicit functions found previously are propagated automatically as a result of

the sharp chain rule (Equation (2.14)). The calculus rule for the LD-derivatives of

the mid function may be found in Barton et al." or obtained from the identity in

Equation (2.9).

The LD-derivatives of the densities in the identity directions calculated by dif-

ferentiation of Algorithms 6.1 and 6.2 for the mixture in Example 1 at 420 K are

shown in Figure 6-8. These quantities are equivalent to classical partial derivatives

wherever the functions are differentiable. Note that when viewed solely as functions

of pressure, the functions pmid and pmid are in fact everywhere differentiable despite

their definition in terms of nonsmooth functions. However, as can be seen later in

Example 6.3, they are in general nonsmooth functions.

6.4 Examples

Three additional examples are now presented to highlight that the nonsmooth density

extrapolation strategy is applicable to more complex equations of state (Example 6.2),

more complex mixtures (Example 6.3) and flash calculations (Example 6.4).

Example 6.2. This example demonstrates that the method detailed in this chapter

is also applicable to more general virial-type equations of state. The same equimolar

ethane/n-heptane mixture is studied at 400 K using the BWRS EOS as given by

Starling. 11 Pure component and binary interaction parameters for the components
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Figure 6-8: Pressure variation of the LD-derivatives of density in the directions I4x4
with respect to the model parameters for an equimolar ethane/n-heptane mixture at
420 K.

were obtained from Aspen Plus v8.4. 5 The BWRS equation itself was solved using

the method described by Mills et al. 3 One of the steps in their solution algorithm

involves finding the highest density point at which P, (PL, T, XL) = 0 for the liquid

phase and the lowest density point at which Pp, (pv, T, yv) = 0 for the vapor phase.

These values are stored to use as the lower and upper endpoint, respectively, for the

bisection search for the values of pQ and p?. As the mechanical critical properties

cannot be determined analytically for the BWRS EOS, the values for pmc and Tmc

were taken as the mole fraction weighted average of the pure component critical

density and temperature, respectively. As an alternative, the highest and lowest

density inflection points of the P - p isotherm could be used as pmc values for the

liquid and vapor phases, respectively, though this is obviously more expensive and
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requires additional iterative calculations. As suggested in Mills et al.,83 the value of

Phi iS set to 32.0 kmol/m 3 and the value of pi0 is set to zero. The results of applying

Algorithms 6.1 and 6.2 to this mixture at these conditions with variable pressure are

shown in Figure 6-9. Note that even though the predicted isotherm from the BWRS

EOS is qualitatively different from that obtained by using the Peng-Robinson EOS

(c.f. Figure 6-1), this does not affect the application of these new density evaluation

algorithms.
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Figure 6-9: P - p behavior of an equimolar ethane/n-heptane mixture described by
the BWRS equation of state at 400 K. Left: without density extrapolation. Right:
with density extrapolation.

Example 6.3. Consider the natural gas mixture entering the liquefaction process

from the main example in Chapter 7. The molar composition of the mixture is

1.00% nitrogen, 91.60% methane, 4.93% ethane, 1.71% propane, 0.35% n-butane,

0.40% isobutane and 0.01% isopentane. The mixture is well-described by the Peng-
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Robinson cubic EOS. When density values are requested in the superheated and

subcooled regions of the phase-space, solving the EOS directly frequently leads to

calculating the same density value for both phases. This in turn causes the flash

algorithm to converge to the trivial solution frequently outside of a narrow region,

which impacts the performance of the flowsheet simulations. Algorithms 6.1 and 6.2

are therefore applied to generate more reasonable density values for each phase. The

construction of the extrapolating functions and the final results are shown in Figure

6-10 parametrized by pressure at 200 K (top row) and parametrized by temperature

at 5.0 MPa (middle row). Note that the density returned by the algorithm is a

continuous yet nondifferentiable function of temperature in this instance, as indicated

by the discontinuities in the bottom right plot of the temperature LD-derivatives.

Example 6.4. As a final example, the differences in the calculated phase densities

and the computational cost from using the nonsmooth extrapolation algorithm vs. no

extrapolation are shown in the context of flash calculations. Three different mixtures

are considered that will be relevant in the following chapter: the natural gas mixture

from Example 6.3, the 16-component mixture from Cavett's flowsheeting problem 22

and a refrigerant stream with molar composition: 5.82% nitrogen, 20.62% methane,

39.37% ethane and 34.19% n-butane. Table 6.1 shows selected results of PT-flashes

performed using the nonsmooth inside-out algorithm from Chapter 5 to an outer loop

tolerance of 10- and inner loop tolerance of 10-9 using Anderson acceleration. For

each mixture, the first pair of columns shows flash calculation results at mechanically

supercritical conditions, the middle pair shows results in the middle of the two-phase

region, and the last pair shows results at mechanically subcritical conditions. In each

case, the calculations are performed assuming the feed streams are flowing at 1.0

kmol/s at the temperature and pressure specified in the table using the Peng-Robinson

cubic EOS. The timing was performed on an Intel Xeon E5-1650 v2 workstation using

six cores at 3.50 GHz and 12 GB RAM running Ubuntu v14.04.

The results clearly indicate the differences in the predicted densities behave as

intended: the liquid phase density is always appreciably greater than that of the

liquid. In addition, it is seen that when density extrapolation is not used, the trivial
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solution of the flash equations (indicated by equal liquid and vapor phase densities)

is found by the solver in each of the six calculations with single-phase solutions. The

trivial solution is never found when the nonsmooth density extrapolation method is

active. Additionally, even in the cases where the result is a two-phase mixture, it is
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Table 6.1: Results of example PT-flash calculations for mixtures both without den-
sity extrapolation ("None" columns) and with density extrapolation ("Nonsmooth"
columns). The symbol a denotes the fraction of the feed stream that is vaporized. It-
erations data refers to the number of passes through the outer-loop of the nonsmooth
inside-out algorithm.

Natural Gas None Nonsmooth j None Nonsmooth None Nonsmooth

P (MPa) 5.5 5.5 5.5 5.5 5.5 5.5
T (K) 295.15 295.15 204.71 204.71 110.15 110.15
a 1.0 1.0 0.5 0.5 0.0 0.0
PL (kmol/m 3) 2.598 6.152 15.089 15.089 29.167 29.167
PV (kmol/m 3) 2.598 2.598 7.493 7.493 29.167 5.337
Iterations 6 5 9 9 5 3
Time (ms) 4.5 3.6 5.2 5.9 4.7 3.7

Cavett's Mixture None Nonsmooth None Nonsmooth None Nonsmooth

P (MPa) 0.439 0.439 0.439 0.439 6.0 6.0
T (K) 600.0 600.0 308.92 308.92 200.0 200.0
a 1.0 1.0 0.5 0.5 0.0 0.0
PL (kmol/m 3) 0.0894 1.422 6.632 6.632 10.692 10.692
pv (kmol/m3) 0.0894 0.0894 0.176 0.176 10.692 6.738
Iterations 3 5 4 4 14 8
Time (ms) 8.4 7.4 8.1 10.2 12.3 9.2

Refrigerant None Nonsmooth None Nonsmooth None Nonsmooth

P (MPa) 1.713 1.713 0.202 0.202 1.713 1.713
T (K) 370.0 370.0 206.25 206.25 110.15 110.15
a 1.0 1.0 0.5 0.5 0.0 0.0
PL (kmol/m3) 0.619 3.148 13.682 13.682 19.227 19.227
pv (kmol/m3) 0.619 0.619 0.121 0.121 19.227 3.254
Iterations 43 12 4 4 12 4
Time (ms) 13.0 5.3 3.7 4.3 6.1 4.0

seen that the use of the extrapolation method does not significantly affect the cost

per iteration of the flash calculation (as expected from the conclusions of Mathias and

Benson 78 ). In the cases where the calculations with and without density extrapolation

arrive at distinct results, using the nonsmooth extrapolations generally results in fewer

outer-loop iterations of the inside-out algorithm and therefore lower computational

cost, in addition to returning a physically correct answer.

Next, more challenging PQ-flash calculations are performed on the same mixtures.

In each case, an adiabatic flash is performed on a feed stream at the same pressure

and temperature as the corresponding stream in Table 6.1. This implies that, if the
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methods are working correctly, the same temperature, vapor fraction and densities

should be calculated as in the previous case at the given pressure. The results are

shown in Table 6.2. The differences between using and not using the extrapolation

methods are far more pronounced here, as four of the nine example calculations fail

to converge to a solution (even a trivial one) after 100 outer loop iterations when no

extrapolation technique is used. Of the remaining five calculations, two converge to

the trivial solution and one converges to an incorrect solution altogether without den-

sity extrapolation. Note that again, the overall computation time is not significantly

negatively affected (in fact, sometimes it is even improved) by the use of Algorithms

6.1 and 6.2. Moreover, the impact of these density extrapolation algorithms in cal-

culations such as these had an enabling impact on the simulations of a natural gas

liquefaction process performed in this work. Such simulations were unable to converge

without the nonsmooth density extrapolation methods, as both the outright failures

in PQ-flashes and the discontinuities introduced by converging to trivial solution

points in both PQ- and PT-flashes led to failures in the equation-solving algorithm in

almost all cases. However, with the density extrapolation algorithms implemented,

these simulations were extremely robust and efficient, as shown in Chapter 7.

6.5 Conclusions

New nonsmooth algorithms have been presented for the extrapolation of liquid and

vapor phase density when evaluation of an EOS alone yields unacceptable values. In

addition to the benefit of the algorithms being less convoluted to implement than

many other approaches, accurate generalized derivative information may be readily

obtained with minimal extra calculations. The method is not specific to cubic equa-

tions of state and may also used for more general and complex virial-type models. The

nonsmooth strategy carries very little additional computational cost beyond that of

simply evaluating density from the EOS itself and can successfully avoid convergence

to the trivial solution of the flash equations when embedded in a VLE solution algo-

rithm. This strategy has been successfully employed in large-scale complex flowsheet
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Table 6.2: Results of adiabatic PQ-flash calculations performed on the streams ini-
tially at the temperatures and pressures given in Table 1, both without density extrap-
olation ("None" columns) and with density extrapolation ("Nonsmooth" columns).
Iterations data refers to the number of passes through the outer-loop of the nonsmooth
inside-out algorithm and dashes "-" represent failed calculations.

Natural Gas None Nonsmooth None Nonsmooth None Nonsmooth

P (MPa) 5.5 5.5 5.5 5.5 5.5 5.5
T (K) - 295.15 206.29 204.71 110.15 110.15
a- 1.0 0.0 0.5 0.0 0.0
PL (kmol/m 3 ) - 6.152 11.304 15.089 29.167 29.167
pv (kmol/m3 ) - 2.598 11.304 7.493 29.167 5.337
Iterations - 8 20 11 6 3
Time (ms) - 7.7 24.6 24.5 70.3 4.9

Cavett's Mixture None Nonsmooth None Nonsmooth None Nonsmooth

P (MPa) 0.439 0.439 0.439 0.439 6 6
T (K) - 600 308.92 308.92 - 200
a- 1.0 0.5 0.5 - 0.0
PL (kmol/m 3 ) - 1.422 6.632 6.632 - 10.692
pv (kmol/m3) - 0.0894 0.176 0.176 - 6.738
Iterations - 5 7 6 - 8
Time (ms) - 50.2 22.3 18.6 - 43.9

Refrigerant None Nonsmooth None Nonsmooth None Nonsmooth

P (MPa) 1.713 1.713 0.202 0.202 1.713 1.713
T (K) - 370 206.25 206.25 110.15 110.15
a- 1.0 0.5 0.5 0.0 0.0
PL (kmol/m 3 ) - 3.148 13.682 13.682 19.227 19.227
pv (kmol/m 3) - 0.619 0.121 0.121 19.227 3.254
Iterations - 13 5 5 5 5
Time (ms) - 21.2 20.2 24.6 5.3 5.8

calculations, as seen in the following chapter.
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Chapter 7

Process flowsheeting with

nonsmooth models and generalized

derivatives

This chapter presents new methods for robustly simulating process flowsheets contain-

ing nondifferentiable models using exact sensitivity analysis methods for nonsmooth

functions. Among other benefits, this allows flowsheeting problems to be equipped

with the nonsmooth inside-out algorithms for non-ideal vapor-liquid equilibrium cal-

culations developed in Chapter 5. Furthermore, process models for inherently nons-

mooth unit operations may be seamlessly integrated into process flowsheets, so long

as computationally-relevant generalized derivative information is computed correctly

and communicated to the flowsheet convergence algorithm. These techniques may

be used in either sequential-modular simulations or simulations in which the most

challenging modules are solved using tailored external procedures while the remain-

ing flowsheet equations are solved simultaneously. This new nonsmooth flowsheeting

strategy is capable of solving process simulation problems involving nonsmooth mod-

els more reliably and efficiently than the algorithms implemented in existing software,

and, in some cases, allows for the solution of problems that are beyond the capabilities

of classical approaches. As examples of the latter, it will be shown that the nons-

mooth approach is particularly well-suited for highly accurate simulation of natural
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gas liquefaction processes, in which many nonsmooth modeling elements are present

in combination with non-ideal thermodynamic behavior and complex heat transfer

considerations.

7.1 Introduction

The use of analytical or exact derivative information in process simulation and opti-

mization problems is known to be beneficial for achieving reliability, rapid convergence

and high accuracy. In spite of this, methods for calculating exact derivatives are not

commonly implemented in process flowsheet calculations. Instead, when derivative

information is required, it is common that simple forward finite difference approxi-

mations are used. However, even when the perturbations for the difference approxi-

mations are chosen optimally, derivative evaluation will only be accurate to at most

two-thirds of the precision of a function evaluation in terms of significant digits, and

usually closer to half." This loss of precision is unacceptable for many applications as

it can lead to a loss of guaranteed convergence properties in equation-solving methods,

e.g. local quadratic convergence in Newton-type methods, or even failure.

The benefits of instead using exact derivatives in process systems engineering

applications have been noted by some authors for several decades. Chan and Prince2 4

presented early evidence that application of the chain rule to propagate derivatives

around flowsheets can be more efficient than perturbation-based differencing methods.

They noted particularly significant computational cost improvement for flowsheets

containing many copies of the same unit operation in local optimization studies.

Chen and Stadtherr2 6 also noted that the use of analytical derivatives was the most

suitable technique for furnishing sensitivity information in their early simultaneous-

modular simulator, though they noted that (at the time) the computational cost was

often prohibitive. Wolbert et al.14 6 demonstrated how the use of inexact derivatives

can lead to failure to compute correct Newton steps in process optimization problems.

They also described an implementation of analytical derivative evaluation using the

chain rule and implicit function sensitivity analysis in a sequential modular process
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simulator and gave examples of its efficacy.

However, in the absence of fully automatic techniques for exact numerical differen-

tiation, the use of analytical derivative evaluation was generally considered laborious,

error-prone and inefficient compared to implementations of simpler differencing ap-

proximations. However, the advent of AD provided researchers with a completely

automatic tool for the calculation of exact numerical derivatives. For the unfamiliar

reader, an excellent introduction to the subject of AD for classical derivative evalu-

ation may be found in the text by Griewank and Walther.4 2 Tolsma and Barton 12 3

compared multiple approaches for numerical derivative evaluation, including finite

difference approximations, symbolic differentiation and AD for problems involving

models commonly found in chemical processes. They concluded that AD (partic-

ularly the reverse mode implemented via code generation) is superior to all other

approaches considered in terms of accuracy and the computational cost of evaluating

Jacobian matrices. These same authors went on to develop DAEPACK, software that

is able to extract and subsequently compile the information needed to perform sen-

sitivity analysis from legacy models written in FORTRAN using AD. 1" Particularly

in the dynamic case, not having to treat legacy models as simple black boxes that

can only produce derivative information through perturbation of inputs has proved

to be a highly useful numerical tool. This methodology was further improved by

the work of Tolsma et al., 12 5 who describe how an equation-oriented modeling en-

vironment may be seamlessly extended to include external procedures, e.g. tailored

subroutines for specific models. The sensitivity analysis of the external subroutine

is performed automatically and communicated back to the primary equation-based

solver. This idea of separating challenging submodels from the upper-level solution

algorithm but still communicating back values and automatically-calculated exact

sensitivity information is used to great effect for nonsmooth models in the present

chapter.

This chapter presents a methodology for extending the benefits of exact numeri-

cal sensitivity analysis in flowsheets described by differentiable models to flowsheets

containing nonsmooth models and subroutines. In this approach, computationally-
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relevant generalized derivative elements can be calculated automatically and exactly

both for model equations written explicitly and for models whose outputs are defined

implicitly and solved by external tailored procedures. This allows for process models

such as flash drums, throttle valves, compressors and turbines to be solved with the

nonsmooth inside-out algorithms for flash calculations developed in Chapter 5. These

algorithms are designed to provide greater reliability for flash calculations than the

classical inside-out algorithms when the phase regimes at the results of these calcu-

lations are not known or fixed a priori. The use of the nonsmooth toolkit described

in Chapter 2 also allows for the inclusion of process models of inherently nonsmooth

unit operations, such as multistream heat exchangers, into flowsheets. The nons-

mooth flowsheeting strategy described in this chapter is primarily intended to service

modular flowsheeting problems in which there are multiple recycle streams in addition

to either design specifications or particular submodels for which it is advantageous to

converge their model equations simultaneously with the overall flowsheet. Of course,

it is not essential that a problem has either for the method to be used; however, the

most significant advantages of the nonsmooth strategy will be seen for problems with

these complicating factors.

7.2 The nonsmooth flowsheeting strategy

This section describes how the concepts from nonsmooth analysis reviewed in Chapter

2 find use in the context of process flowsheeting applications. A brief overview of the

various approaches to process simulation are first given, then it is shown how the

chain rule (Theorem 2.1) and implicit function theorem (Theorem 2.2) for L-smooth

functions may be used in a process simulation context. Finally, specifics for embedding

the nonsmooth inside-out algorithms for flash calculations into a simulation problem

are detailed.

210



7.2.1 Approaches to process simulation

In the most fundamental terms, a process simulation is the problem of solving the

(usually nonlinear) equation system f(p, z) = 0 m for z E Rm given the fixed param-

eter values p E R'P, where f : W c R n x Rm -+ Rm is classically assumed to be a

continuously-differentiable function on its domain. For the purposes of this chapter,

this assumption is relaxed and f should instead be taken to be an L-smooth function

on its domain. Simulation of process flowsheets purely by solving the equation sys-

tem generated by combining the equations describing all the unit operations is known

as the equation-oriented (EO) approach and generally results in large and challeng-

ing equation-solving problems. The common alternative method is the sequential-

modular (SM) approach. The SM approach breaks a chemical process model down

into interconnected, constituent modules that describe unit operations or stream ma-

nipulations. Each module contains an internal algorithm that takes parameters from

the user and information from the inlet streams to solve the associated unit opera-

tion model and (if requested) obtain input-output sensitivities. The final calculated

output stream variable values (and sensitivities) are then sent to the next module in

the flowsheet. In the common case of recycle structures, the model must be solved

iteratively after tearing streams to create an acyclic flowsheet. The thermodynamic

state of each tear stream is fully described by n, + 2 independently variable quan-

tities (e.g. component flowrate of each species, pressure and temperature), which

must be guessed and then iteratively reconciled with the calculated values returned

to the stream after a flowsheet pass. In the fully SM case, the flowsheeting problem

is therefore described by a model of the form:

Y(1) - g(1) (p, Y(- - , Y(nt)) Onc+2,

Y(nt) - g(nt)(p, Y(1), ... , Y(nt)) = Onc+2,

where y(i), i 1, .... nt, with each y(i) E Rnc+2 are the vectors of tear stream variables

and where g(i), i = 1, ... nt, g(j) : Rnp x Rnt(nc+2) - Rnc+2, are the tear stream func-
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tions, i.e. the functions defined by a pass through the acyclic flowsheet. Note that the

functions g(j) are rarely known in closed form, and, for the purposes of this chapter,

may be L-smooth functions on their domains. Additionally, the functions gi will of-

ten consist of a composition of the functions describing the various unit operations in

the process flowsheet, e.g. g(i) - ui(u 2 (u3 (...(u, (p, Y(1), ... , Y(nt) for the L-smooth

functions u3 , j = 1, ... , n,,, describing the unit operations in the calculation sequence.

However, due to the unique structure of the tear equations, derivative-free methods

for fixed-point iteration (e.g. successive substitution, Wegstein's method, Anderson

acceleration, etc.) are often the most efficient and widely-used algorithms for the SM

approach. However, if additional constraints or design specifications are made on the

process, these algorithms may be poorly suited. Additionally, it may often be advan-

tageous to converge some, but not all, of the process model equations simultaneously

with the tear equations as opposed to during the unit-by-unit calculation sequence

dictated by flowsheet connectivity. In these instances, (generalized) derivative-based

methods become desirable once again. Therefore, the general problem for which the

approach in this chapter is best suited may be written as follows:

Y(1) - 9(1)(P, Y(1), ... , Y(nt), () = Onc+2,

Y(nt) - 9(nt)(P, Y(1), ... , Y(nt), ) Onc+2,

h(p, y(j), --. - Y (nt), ) Ond ,

where k(i),i = 1,... nt, k() : R x Rnt(c+2) x Rl 7d -Rc+ 2, are the appropriately

modified L-smooth tear stream functions, the L-smooth function h : Rnp x Rnt(nc+2) X

Rnd I Rnd includes the design specifications and/or complicating equations and

( E R d are the unknown variables afforded by these equations that may include a

subset of the original model variables z.
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7.2.2 Propagation of sensitivity information

In general, there are two types of unit operation models that may be encountered in

a process flowsheet: explicit and implicit. In explicit models, the direct relationship

mapping the inputs to the outputs is known to the modeler. In implicit models, the

outputs of the model are determined by solving an equation system involving both

the inputs and outputs to the unit operation. In either case, both the values of the

model outputs and the exact sensitivities of the outputs with respect to to the inputs

must be calculated in the present approach.

For explicit models, the case is straightforward. Assume that both the model

inputs, p* E R'P (which for the sake of notational simplicity may generally include

outputs from previous models, tear variables and unit operating parameters), and a

directions matrix, M E Rnpxk, that represents the set of k direction vectors in which

LD-derivatives at p* are needed, are known. Given an explicitly known function

u : RP -- Rm describing the unit operation that is L-smooth at p*, the values of the

model outputs are given by u(p*) and the LD-derivatives at p* in the directions M by

u'(p*; M). The LD-derivatives may be evaluated using the modified vector-forward

mode of AD described previously.

For an implicit model, as before denote the accumulated known model inputs

by p* E R'P and the directions matrix by M E Rnpxk. Given the implicit unit

operation model uimpi(p,x) = 0, the model outputs are determined by solving this

equation system for the value of the implicit function at p*, x(p*). Note that this

may be performed by any suitable algorithm, often a procedure specifically tailored

for the unit operation model at hand. If uimpl and the solution (p*, x(p*)) satisfy

the hypotheses of Theorem 2.2, then the sensitivity analysis result implied by this

theorem can be applied and Algorithm 2.3 may be used to obtain the LD-derivatives

of the model outputs with respect to the model inputs in the M directions, x'(p*; M).

If uimpl instead satisfies the hypotheses of the PC' implicit function theorem at

(p* x(p*)) with a modest number of known essentially active selection functions,

then it may be desirable to use Algorithm 2.4 instead to calculate x'(p*; M).
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Connectivity in a. flowsheet is described by the composition of the individual unit

operation functions, so that the outputs of one module (e.g. u'(p*: M) in the explicit

case or x'(p*; M) in the implicit case) are among the inputs to subsequent units in

the sequence. Fortunately, the sharp chain rule for LD-derivatives (Equation (2.14))

provides the means of propagating exact sensitivity information through intermediate

calculations and compositions of functions. The sensitivity propagation is therefore

accomplished automatically through use of the vector-forward mode of AD for LD-

derivatives.

Figure 7-1 summarizes these calculations for explicit models, implicit models, and

the connectivity thereof. In general, these calculations may all occur in a lengthy

sequence of mixed implicit and explicit modules in a flowsheet; however, evaluating

the constituent unit operations as detailed here will ensure that correct LD-derivatives

are propagated through the flowsheet with respect to the initial directions matrix.

_P* R"p Unit (P*) Unit "2 (Ul(P*))_P
M c R nxt operation u'(p*;M) operation [u2 ou,]'(p*;M)

P - U(P) w F-+ u 2 (w) = U'2  (p*);U'(p*; M))

p* eR p Unit x(p*)
M Rnx operation *x(p*));(M,N)) = 0ku_ (Px) =0 Uii ((p*,~*)( N) =0

-P> N = x'(p*; M)

Figure 7-1: Framework for modular process calculations and sensitivity analysis with
unit operations described by (possibly) nondifferentiable models. Top: explicit mod-
els. Bottom: implicit models.

7.2.3 Sensitivity analysis for nonsmooth flash calculations

The problem of obtaining exact sensitivities from the results of the nonsmooth inside-

out algorithms from Chapter 5 is now considered. In a typical steady-state flash

operation, there is a feed stream with molar flowrate F with n, components at molar

composition ZF that separates into a liquid stream with molar flowrate L at molar

214



composition XL and a vapor stream with molar flowrate V at molar composition yv.

The distribution of each component i between the vapor and liquid phases can be

quantified by its equilibrium ratio ki. The fraction of the feed that is vaporized in the

flash operation is denoted a = j. When the temperature of the flash is unknown,

an energy balance must also be included in the model involving hv, hL and hF as

the molar enthalpies of the vapor, liquid and feed streams, respectively and Qflash
as an additional heat duty term. Assuming the feed conditions are known, for an n,

component system, there are 2n, + 3 equations in the classical flash model, but 2 n + 5

unknowns (XL, Yv, T, P, V, L, Qflash) in this model, so two quantities must be specified.

The most common pairs of fixed parameters are PQ and PT; however, this work also

makes use of the PV specification for bubble and dew point calculations and the set

PS, pressure-entropy, for compressor calculations, in which case the temperature is

implied through an equation involving entropies rather than enthalpies of the relevant

process streams.

When the flash equations are solved with the nonsmooth inside-out algorithms,

sensitivity analysis of the classical flash model yields correct derivatives only within

the two-phase region. Therefore, it is necessary to know a set of nonsmooth equa-

tions that these algorithms satisfy explicitly and that will provide correct sensitivity

information no matter the outlet phase behavior. There are several equivalent equa-

tion systems that may be used to generate the required sensitivity information. One

such equation system that includes a nonphysical variable # to represent relaxing the

equilibrium constraints is as follows (for a PQ-flash):

L - (1 - a)F = 0, (7.1)

ayy,i + (1 - )XL,i - ZP~i = 0 i 1, -. I nc, (7.2)

yvi - 3kixLi = 0, i = 1,... , ne, (7.3)
nc nc

Vi - XL,i 0, (7.4)
i=1 i=z1

ahv + (1 - oi)hL - hF - Qflash/F = 0, (7.5)

mid (a, 3 - 1, a - 1) = 0. (7.6)
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Note that the residual function of this equation system is a PC' function, as expected,

due to the presence of the mid function in Equation (7.6) that is nondifferentiable at

the bubble and dew point conditions of the mixture under consideration. There are

several ways in which the variable # can be eliminated to yield a system that is entirely

in terms of physical quantities. Perhaps the most obvious reformulation makes use

of the following identity from Part 1: 3 in addition to the fact that

the nonsmooth inside-out algorithms always return a solution satisfying Ze yv,=

Sn=1XL,i = 1 in order to eliminate Equation (7.4). However, the resulting equation

system will be either poorly-conditioned or singular at most solution points. Instead,

the formulation used in this work (and it is clear that there are other reasonable

alternatives) is as follows:

L - (1 - a)F = 0, (7.7)

ayv,i + (1 - a)XL,i - ZF,i 0, i 1, ... n, (7-8)

yv,i kjXL,j -kiXL,i yvj 0 1 1, ... ,c - 1, (7.9)
j=1 j=1

nc nc

=YVi - XLi =0 (7.10)

ahv + (1 - a)hL - hF - Qflash/F 0, (7.11)

mid (a, yvi - kiL,, a - 1 = 0. (7.12)

The residual function is again PC' due to the presence of the mid function. Note

that the scaled equilibrium constraints in Equation (7.9) are enforced for all but

one component to yield the correct number of equations. In the two-phase region,

the second argument of the mid function is active and enforces the final equilibrium

relationship not covered by Equation (7.9). Note that it is not essential which one of

the equilibrium constraints is eliminated, though the present authors have observed

the best conditioning of the equation system occurs when the equation corresponding

to the largest ki value is chosen.

Note that the equivalence of these formulations indicates that /3 . InJ:' 1 kiXL,ij
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the two-phase region, the solution of either of these equation systems coincides with

the solution of the classical flash equations (since Z kixL,i = 1, Z> XL,i 1

and >1 yv,= 1 in this regime), and is also identical to that obtained from solving

the nonsmooth system of Equations (4.8)-(4.10), (4.12) and (4.26). Conversely, the

nonsmooth inside-out algorithms will return different values for the mole fractions in

nonexistent phases and the equilibrium ratios outside of the two-phase region as com-

pared to those at the solution of Equations (4.8)-(4.10), (4.12) and (4.26); however,

this is a purely numerical difference since in either case the solution values correspond

to the same physical realization of the system. Additionally, both solutions show con-

tinuous dependence on the flash parameters, and therefore both are acceptable for

simulation purposes.

In the notation of the previous sections, denote the flash model variables by x

(T, a, L, XL, yv) and the flash model parameters by p = (P, Qflash, fF, hF), where

fF is the vector of component flowrates in the feed stream, i.e. the vector with

components fFi = zFiF. In the case of the flash equations, even though there are

three branches of the mid function, at any point Iess(x*, x(p*))I < 2. A check of the

value of a can immediately eliminate either one or two of the branches, and so it is

highly recommended that Algorithm 2.4 be used for the calculation of LD-derivatives

rather than Algorithm 2.3 for computational efficiency. The selection functions for

the application of the nonsmooth implicit function theorem are given by taking a

single branch of the mid function at a time, i.e. the two-phase selection function

is given by Equations (7.7)-(7.11) and En yvj - E kiXL,i = 0. Likewise, the

all-liquid selection function is given by Equations (7.7)- (7.11) and a 0 and the

all-vapor selection function is given by Equations (7.7)-(7.11) and a - 1 0.

The formulations for the other flash types are analogous. For the PT case,

Equation (7.11) is eliminated from the formulation with x - (a, L, XL, yv) and

p - (P, T, fF). In the PV case, the classical two-phase model may be used directly in

conjunction with the sensitivity analysis from the classical implicit function theorem

with x = (T, L, XL, yv) and p (P, V, fF). For the PS specification, Equation (7.11)

is replaced by asv + (1 - a)sL - SF ASflash/F, and the model variables and param-
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eters become x - (T, a, L, XL, YV) and p - (P, ASflash, fF, SF), where sv, SL and SF

are the molar entropies of the vapor, liquid and feed streams, respectively and ASffash

is the total entropy increase of the flash operation.

In the course of applying Algorithm 2.4 to the nonsmooth flash equations, the

authors have observed that due to the lack of error control associated with using direct

methods (i.e. Gauss elimination) for solving Equation (2.31) in Line 6, the computed

matrix N can erroneously fail to satisfy the condition g'(p*, x(p*); (M, N))= Omxk to

within tolerance in Line 7. These failures are due to the matrix 2Ei) (p*, x(p*)) having

a high condition number, usually when the values of ki for the various components

range over many orders of magnitude. One potential solution is to use iterative linear

solution methods; however, due to the frequency with which Equation (2.31) must be

solved in a complex simulation problem, this is not the most computationally efficient

method. Instead, the approach that has been used successfully in the examples of this

chapter is the method of iterative refinement." Following the solution of Equation

(2.31) in Line 6 of Algorithm 2.4, Algorithm 7.1 is employed to improve the accuracy

of the calculated sensitivity matrix. Note that in this procedure, Eto"' is the same as in

Algorithm 2.4. Once this algorithm terminates, the updated matrix N is then used

Algorithm 7.1: Iterative refinement

1 k +- 1, R +- [,senls

2 while (IIRiIi > jEsens and k < kmax) do
am2 tol ax1,

3 R+-- (p*, x(p*))M - 0 (p*, x(p*))N.

4 Solve 2%L (p*, x(p*))D = R for D.
5 N- N + D.
6 k- k +1.
7 end while
8 Return N.

as the sensitivity matrix in the remainder of Algorithm 2.4. Note that this procedure

is extremely inexpensive to perform because the LU factors of 2 (p*, x(p*)) are

obtained in the original solution step and may be reused in the iterative refinement

procedure. In the examples in this chapter, sufficient improvement in the accuracy

of the sensitivity matrix calculation was observed in fewer than five iterations of the
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procedure in all cases.

At the critical point and in the supercritical regime of the phase space, the trivial

solution to the flash equations (ZF = XL = YV) is physically correct and the Jacobian

of the model with respect to the unknown variables is guaranteed to be singular

because the value of a is nonunique. When the nonsmooth density extrapolation

algorithms from Chapter 6 are used in the flash calculations, the trivial solution

will be found correctly in supercritical regimes. When the trivial solution is found,

the sensitivity analysis will fail unless the nonuniqueness is removed. The strategy

for addressing this situation is as follows: an equation is added to the model to fix

the value of a according to some heuristic, then the sensitivity analysis proceeds

as before except that now the exact solution to the resulting overdetermined linear

system in Equation (2.31) is found using the method of least squares. A reasonable

and simple heuristic for the vapor fraction constraint is to enforce that a = 1. In rare

cases, this may lead to parametric discontinuities in the predicted vapor fraction;

however, developing a heuristic that always ensures a continuous transition is not

straightforward and is an area for future investigation.

7.3 Example problems

Two complex flowsheeting problems that rely on the nonsmooth inside-out algorithms

for flash calculations are now presented to highlight the key advantages of the new

flowsheeting strategy outlined in the previous sections. The examples are written in a

combination of C++ and the Julia programming language (vO.6.0), and executed on

an Intel Xeon E5-1650 v2 workstation using six cores at 3.50 GHz and 12 GB RAM

running Ubuntu v14.04. For both examples, nonideal thermophysical properties and

their sensitivities for vapor and liquid phases are furnished by the Peng-Robinson cu-

bic equation of state, augmented with the nonsmooth density extrapolation algorithm

described in Chapter 6. Pure component and binary interaction parameters for the

simulations take the values found in the Aspen Plus v8.4 databanks.5

Example 7.1. Figure 7-2 shows the flowsheet of the well-studied Cavett problem. 22
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The process consists of 4 PT-flash units (Flash 1-4 in the flowsheet) as well as two

adiabatic mixing operations that can be modeled as PQ-flash units. The feed mixture

to the process is a 16-component mixture of nitrogen, carbon dioxide, hydrogen sulfide

and C1-C11 hydrocarbons, as detailed in Table 7.1. At these conditions, the feed is a

two-phase mixture with ce = 0.536, as calculated by a PT-flash (not shown explicitly

in the flowsheet). The base case process data is given in Table 7.2. In the base case,

P1

Flash 1 4

R1

R2

S1

- Feed Z1- Flash 2

Mixer 1

-S2 - Z2 Flash 3 3

Mixer 2

-S3 Flash 4

P2 P2

Figure 7-2: Flowsheet for Cavett's flowsheeting problem. 22

Table 7.1: Feed stream data for Cavett's flowsheeting problem.

Component N2  CO2  H 2S Methane Ethane
Mole Fraction 0.0131 0.1816 0.0124 0.1096 0.0876

Component Propane n-Butane iso-Butane n-Pentane iso-Pentane
Mole Fraction 0.0838 0.0563 0.0221 0.0413 0.0289

Component n-Hexane n-Heptane n-Octane n-Nonane n-Decane
Mole Fraction 0.0645 0.0953 0.0675 0.0610 0.0304

Component n-Undecane Flowrate (kmol/s)
Mole Fraction 0.0444 3.445
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Table 7.2: Process data for the Cavett's flowsheeting problem.

Temperature (K) Pressure (Mpa)

Feed 322.04 0.4392
Flash 1 310.93 5.6171
Flash 2 322.04 1.9629
Flash 3 308.71 0.4392
Flash 4 302.59 0.1910

each flash unit operates in the two-phase regime. However, if the pressures and/or

temperatures of the flash units change, this may no longer be the case. For the

purposes of this example, design specifications on the product streams will be added

to the flowsheet simulation that parametrically move some of the flash units out of

vapor-liquid coexistence conditions.

The tear streams are chosen as streams Zi and Z2 (see Figure 7-2) and the sim-

ulation problem therefore consists of 2(n, + 2) = 36 variables and equations. The

n, + 2 tear variables for each tear stream were chosen as the component flowrate

of each of the n, components, pressure and enthalpy, in order to match the default

choices in Aspen Plus. The PT and PQ flash operations are all solved as implicit

modules using the appropriate nonsmooth inside-out algorithms from Chapter 5 to

an outer loop tolerance of 10-8 and inner loop tolerance of 10- using Anderson ac-

celeration. The sensitivity analysis for these blocks is performed using Algorithms 2.4

and 7.1 with ens := 10-8. Accordingly, these unit operations do not contribute any

additional variables or equations to the flowsheet simulation, so the total size of the

problem remains 36 equations and variables. The tear streams are converged using

Algorithm 2.2, first using LD-derivatives calculated in the 136x36 directions (to yield

B-subdifferential elements of the residual functions), and then again using forward

finite differences to estimate generalized derivative elements (Equation 2.19) instead

of the exact sensitivity calculations. Convergence is measured by the infinity norm

of the tear stream residual functions falling below 10-.

First, the base case process is simulated to verify that the nonsmooth machinery

still performs as intended and provides the same derivative information as expected
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from classical sensitivity analysis. The process is also simulated in Aspen Plus using

the built-in Newton convergence algorithm with the same tolerances on the flash

calculations and overall simulation as described above. In both cases, the initial

guess is given that specifies that both tear streams Z1 and Z2 are identical to the

feed stream. Note that even though the tear variables, tear equations and initial

guesses are the same, the error reported after the first flowsheet evaluation differs

slightly between the Aspen Plus simulation and the others, which appears to be due

to internal scaling of the variables and residuals within the software. Nevertheless, the

three simulations arrive at the same result to within the specified tolerance. Figure

7-3 (left) shows the convergence rate of the three simulation methods. Even in the

smooth case, the use of the nonsmooth strategy with exact sensitivity analysis results

in more rapid convergence than when using either finite differences or the Newton

method embedded in Aspen Plus that also relies on perturbation of the flowsheet to

provide derivative information.

A design specification is now added to the simulation to create a more complicated

problem that benefits more from the use of a (generalized) derivative-based method.

The specification is that the product P1 must leave Flash 1 with 10 degrees of super-

heat (10 K above the mixture dew point) by allowing the temperature of the vessel

to vary. This will result in a simulation in which the outlet from this flash operation

is only vapor and the recycle stream R1 has zero flow at the solution, and adds one

additional equation and variable to the flowsheeting problem, for a new total of 37.

This case is simulated by the three methods as before (all with the same initial guess

and tolerances) and the convergence rates to the solution are shown in Figure 7-3

(right). A solution is found with the temperature of the Flash 1 increased to 341.7

K. The nonsmooth inside-out algorithm for the PT-flash automatically calculates the

single-phase result and exact sensitivity information is furnished by Algorithm 2.4,

leading to more rapid (locally quadratic) convergence than in the other simulations.

For a final example, the previous design specification is removed and a new design

specification on the value of the mass density of the liquid leaving Flash 4 in product

stream P2 is enforced by varying the temperature of this flash drum. For illustration,
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Figure 7-3: Convergence rate for simulations of the base case Cavett flowsheet simu-
lation (left) and modified simulation with no liquid flow from Flash I (right).

the value of this specification is varied over a range that causes the flash unit to enter

the single-phase liquid regime. The initial guess for the temperature of Flash 4 in

each case was the base case value from Table S2. The results of this experiment are

shown in Figure 7-4. In the top plot, it is clear that the flash unit is indeed driven

into the liquid-only regime when high density is required, which drops the recycle flow

of R3 to zero. The middle and bottom plots show the differences in the number of

solver iterations and flowsheet evaluations needed to converge these problems between

the three strategies. There are several notable observations. Firstly, the nonsmooth

simulations require the least number of flowhseet evaluations (one per Newton iter-

ation) because the sensitivity analysis is performed simultaneously with the residual

evaluation by calculating LD-derivatives in the 137x37 directions via AD and operator

overloading. The simple forward finite-differencing scheme requires the most flow-
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sheet evaluations because each solver iteration requires 38 flowsheet evaluations (one

to obtain the residual value and 37 to obtain the approximate Jacobian). Aspen Plus,

however, appears to perform a limited number of flowsheet perturbations per solver

iteration to estimate partial Jacobians, likely due to built-in heuristics, and generally

requires more iterations but less flowsheet evaluations overall than naive finite dif-

ferencing. In Aspen Plus, the number of flowsheet evaluations needed also tends to

increase as the design specification requires Flash 4 to enter a single-phase operating

regime, before reaching a point where the simulation can no longer be solved from

the provided initial guess in more than 8600 flowsheet evaluations (as reported by the

software, corresponding to 500 Newton iterations). Note that providing an improved

initial guess that indicates a single-phase solution from Flash 4 will allow the Aspen

Plus simulations to converge. The use of Aspen's built-in implementation of Broy-

den's method in place of Newton's method also does not provide any benefit, as it is

also unable to converge any of the simulations with a single-phase solution from the

original initial guess.

However, it is not possible to conclude from this alone that the nonsmooth ap-

proach is actually more efficient, as the flowsheet evaluations are necessarily more

expensive when LD-derivatives are employed even though there are fewer of them

required. As Aspen Plus has a highly developed and optimized codebase that the

author's implementation cannot rival for a problem of this size (in addition to not

reporting computation times), the costs of both single flowsheet evaluations and en-

tire simulations were instead compared between naive implementations of both finite

differencing and LD-derivative evaluation through AD via operator overloading. The

results are given in Table 7.3 averaged over the 100 simulations shown in Figure 7-4.

Note that all simulations were successfully converged starting from the same initial

guess when using the nonsmooth inside-out algorithms for the flash calculations, both

when using exact LD-derivatives and finite difference approximations.

These results support the earlier claim that the complexity bound on the LD-

derivative evaluation can indeed be quite weak. The cost of the flowsheet evaluation

with exact sensitivity analysis is only around three times higher than a standard
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Figure 7-4: Results (top) and comparison between required number of solver itera-
tions (middle) and number of flowsheet evaluations (bottom) for different simulation
methods in the density design specification problem, as a function of the specified
density value. Note that the Aspen Plus calculations fail to converge for density
specifications above 696 kg/m3 from the provided initial guess.

flowsheet evaluation on average in this case. As the basic finite difference approach

requires 38 flowsheet evaluations on each iteration, this approach ends up being more

costly by a factor of 13.1 to perform all the necessary flowsheet evaluations on each

iteration, and on average 12.8 times slower per full iteration (including the Newton

step calculation and other setup and allocations). Added to the fact that the inexact

derivatives often require more iterations to converge, the finite-differencing approach
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Table 7.3: Comparison between naifve implementations of LD-derivatives and finite
differences for sensitivity analysis in the density design specification problems. Data
reported are overall averages.

LD-derivatives Finite differences

Number of iterations 4.10 4.41
Number of flowsheet evaluations 4.10 167.43
Time per flowsheet evaluation (s) 0.222 0.077
Total solution time (s) 1.068 14.689

ends up being around 13.8 times more expensive on average than the exact sensitivity

approach using LD-derivatives and the methods of the previous sections.

The cases presented in this example are illustrative of the significant advantages

that the nonsmooth toolkit can offer process simulation. For more complex flowsheets,

the high number of flowsheet evaluations required to furnish sensitivity information

using a finite differencing approach will become prohibitively expensive, in addition

to being less robust than the exact method using LD-derivatives.

The cases presented in this example are illustrative of the significant advantages

that the nonsmooth toolkit can offer process simulation. For more complex flowsheets,

the high number of flowsheet evaluations required to furnish sensitivity information

using a finite differencing approach will become prohibitively expensive, in addition

to being less robust than the exact method using LD-derivatives.

Example 7.2. Figure 7-5 shows the PRICO process configuration that will be studied

in the simulation studies in this chapter and the optimization studies in Chapter 8.

The MHEX unit operation is described by the PC' model given in Chapter 3 with

the additional considerations for streams that change phase given in Chapter 4. As

in the simulations from Chapter 4, the process streams are subdivided into the three

phase regimes mentioned previously (wherein some streams may never enter a given

phase regime, but this is handled automatically and does not need to be specified).

The total heat load of each of these substreams is then further divided into affine

segments each representing an equal portion of the total enthalpy change in the

corresponding phase. This results in the temperatures at the end points of these
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Figure 7-5: Flowsheet of the PRICO liquefaction process for natural gas.

segments being implicitly defined by energy balances and flash calculations.In this

example, unless noted otherwise, the subcooled liquid and superheated vapor regions

are discretized into five affine segments each, and the much more nonlinear two-phase

region is discretized into twenty affine segments. The rationale behind this choice will

be explored further later.

The PRICO process simulations in Example 4.3 were limited to using ideal thermo-

dynamic models; however, with the advent of the nonsmooth inside-out algorithms,

this restriction is lifted. These algorithms are both necessary and well-suited for

this flowsheeting problem when nonideal thermodyamics are involved, as the phase

regime of many of the streams at the solution will change based on the choices and

values of the simulation parameters. Compounding this challenge is the fact that if

the pressure and composition of the streams are variables in the problem (as they

are in these examples), bubble and dew points will shift from iteration to iteration,

adding additional uncertainty to the phase characterization of each stream on each

flowsheet evaluation. The unit operations other than the MHEX are also almost en-

tirely dependent on the nonsmooth inside-out algorithms. In each case, the outlet

phase behavior is not fixed a priori and is instead determined automatically by the

appropriate nonsmooth flash algorithm: The seawater cooler is modeled as a PT-flash

operation. The outlet state of the throttle valve is determined with a PQ-flash calcu-

lation with Qflash = 0. The compressor is assumed to be isentropic and so the outlet
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state is modeled with a PS-flash calculation.

Since the MHEX model is by far the most difficult unit operation to converge in

the flowsheet, it is not advisable to perform this simulation in an entirely modular

fashion. Therefore, the three equations describing the MHEX model, as well as the

energy balances linking the subcooled and superheated segments of each stream are

handled simultaneously by an equation-solving algorithm: This means the MHEX

model is represented by the solution of 27 equations: three from the base MHEX

model, four per physical stream (of which there are three) for the energy balances

needed to discretize the superheated vapor regime into five affine segments and four

per physical stream for the energy balances needed to discretize the subcooled liquid

regime into five affine segments.The two-phase regime of each physical stream is

modeled as a chain of PQ-flash calculations with each handling an equal portion

of the total enthalpy change in this regime. The solution and sensitivity analysis

of these flash calculations are performed modularly so that they do not contribute

any equations to the overall flowsheeting problem, unlike in Example 4.3 where such

calculations were visible to the top-level solver.

Owing to the unique structure of the flowsheet, the MR loop must be torn in

two locations, e.g. after the seawater cooler and after the throttle valve. However,

since the material flow in the refrigerant loop is unchanging, there is no need to

reconcile component flows in the tear streams. The remaining tear equations are

generally trivial and in most cases can be enforced automatically by direct assignment

in the code, i.e. the pressure and temperature of the high pressure refrigerant stream

entering the MHEX are set as the temperature and pressure at which the seawater

cooler operates. As a result, for many useful problem specifications, the flowsheet

follows a unidirectional calculation sequence. As an example of an exception to this,

if TOUT is a variable in the simulation, then an explicit tear equation is needed to

reconcile the temperatures on the cold side of the MHEX. A modeler may exploit

this knowledge to reduce the size of the overall problem; however, even if the problem

is approached naively as in a standard SM approach, flowsheet simulations may still

be converged with little additional effort due to the simplicity of satisfying the tear
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Table 7.4: Natural gas stream data for Example 7.2.

Property Natural gas
Flowrate (kmol/s) 1.00

Pressure (MPa) 5.500
Inlet temperature (K) 295.15

Outlet temperature (K) 110.15
Composition (mol %)

Nitrogen 1.00
Methane 91.60
Ethane 4.93
Propane 1.71
n-Butane 0.35

iso-Butane 0.40
iso-Pentane 0.01

equations, as shown in the examples. All flash calculations within the MHEX, in

addition to the other unit operation models in the flowsheet are treated as implicit

modules that are solved by an appropriate nonsmooth inside-out algorithm and have

their sensitivities evaluated as described in the previous section with the sensitivity

tolerance in Algorithms 2.4 and 7.1 set to 10 8 . In this way, the flash calculations are

hidden entirely from the flowsheet simulation algorithm and converged robustly with

tailored algorithms. The flash calculations themselves are converged to a tolerance

of 10- throughout the flowsheet in the sense of the outer loop tolerance (with inner

loop tolerance of 10-).

Table 7.4 gives the data for a representative natural gas stream in such a process,

which is assumed to be fixed throughout this example.

As indicated in Figure 7-5, the following notation is used for the variables related

to the MR stream:

" PLPR: pressure level of the low pressure refrigerant,

* PHPR: pressure level of the high pressure refrigerant,

" TLPURT: outlet temperature of the low pressure refrigerant,

" THpURT: outlet temperature of the high pressure refrigerant,
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" fM1R: vector of individual molar flowrates of each component in the refrigerant.

The flowrate of each component i is denoted fIR,i and is the product of the MR

stream flowrate (FMR) and the mole fraction of component i in the MR stream

(ZMR,i),

* T: vector with components corresponding to the temperatures needed to satisfy

the energy balances in the discretized superheated and subcooled regimes for

each process stream (note that these will always be unknowns in the model in

the present solution strategy).

The three sets of unknown MHEX variables considered for the purposes of this

example are:

* Set I: PLPR, O ATmin

* Set 1I: fM1RnC4, T ATmin and

" Set III: PLPR, LP PHPR-

Note that in Set II, variation in the individual component flowrate of n-butane will

affect both the total flowrate and the overall composition of the MR stream as FMR =

j= fMR,i and ZMR,i = fMR,i/FMR- Table 7.5 gives the values for the initial values

for the unknown MHEX variables and the values of the known parameters for each

of these simulations. The numerical values for the nominal base case are taken from

an example in Kamath et al.59

The problem is initialized only with the data given in Table 7.5. The initial guess

values for the remaining variables in the problem (the set of temperatures implicitly

defined by energy balances in the MHEX, T) are generated automatically by assum-

ing a linear relationship between temperature and enthalpy exists in the superheated

and subcooled regions. This means that the user is only responsible for providing

initial guesses for three variables and the calculations are highly insensitive to the

values chosen. Initial guesses for the flash calculations performed in the first iteration

are calculated as described in Chapter 5. For subsequent iterations, convergence is
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Table 7.5: Refrigerant stream and MHEX data for Example 7.2. Values in square
brackets are initial guesses rather than fixed parameters.

Property Set I Set 1I Set III
Flowrate (kmol/s) 2.928 [2.928] 2.928

PHPR (MPa) 1.713 1.713 [1-7131
PLPR (MPa) [0.202] 0.202 [0.202]

TNR (K) 298.15 298.15 298.15
THpT (K) 110.15 110.15 110.15
TLOpT (K) [298.15] [298.15] [298.15]

ZMR (mOl %):
Nitrogen 5.82 [5.82] 5.82
Methane 20.62 [20.62] 20.62
Ethane 39.37 [39.37] 39.37

n-Butane 34.19 [34.19] 34.19
UA (MW/K) 12 20 12

ATmin (K) [1.2] [1.2] 0.95

accelerated by exploiting the restart capabilities of the nonsmooth inside-out algo-

rithms. The results from a given flash calculation on one call are fed forward to the

same flash calculation on the next call as an initial guess. This leads to increasingly

rapid and efficient solution of the flash subproblems as the overall problem converges.

For each variable set, following the simulation with the nonsmooth strategy, a

validation of the result was performed in Aspen Plus. It is important to note that

this does not mean that Aspen Plus could have performed the simulation; on the

contrary, Aspen Plus fails to solve any of the following cases when using a combination

of design specifications and the MHeatX block (which will only solve the energy

balance around the MHEX for a single piece of unknown information) to create an

equivalent problem. Instead, the values of all pressures and compositions from the

solution of the nonsmooth simulation are given to Aspen Plus with the exception of

the outlet temperature of the low pressure refrigerant (which it will obtain through

energy balance), and the resulting temperature profile in the MHEX is compared

with the result of the nonsmooth simulation to assess the accuracy and physicality.

Aspen Plus will also calculate and validate the values of ATmin and UA for a given

set of composite curves, though it cannot accept this information as inputs to the

block. The MHeatX block also cannot be discretized in exactly the same way as the
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nonsmooth MHEX model, so instead the Aspen Plus model is divided into 25 zones

with the option enabled for adding extra points for phase change, stream entry and

stream exit to achieve a similar level of fidelity.

Some results and analysis for each of the variable sets is now given. In each case,

the simulation was converged to a tolerance of 10-6 in terms of the infinity norm

of the residual function using the hybrid semismooth/LP-Newton solution method

described in the earlier section.

Variable Set I: In this first case, the conductance value of the MHEX is fixed

while the pressure and outlet temperature of the LPR stream and the minimum ap-

proach temperature vary. This can be viewed as the problem of finding new process

conditions to make use of an existing heat exchanger of fixed size. A solution is found

with PLPR = 0.151 MPa, TTO = 270.99 K and ATmin = 1.165 K. The isentropic

compression power required is 18.02 MW. Performing the simulation with the tear

equations enforced implicitly as described previously takes 5.2 seconds including the

automated initialization procedure. When the tear equations are instead added ex-

plicitly to the flowsheet model, the same solution is reached after 6.4 seconds, which

shows that the inclusion of these trivial-to-solve equations does not have a significant

impact on performance. Figure 7-6(a) shows the resulting hot and cold composite

curves in the MHEX for this simulation and Figure 7-6(b) shows the profile of the

temperature difference between the hot and cold composite curves from both the

nonsmooth model and the Aspen Plus validation, showing excellent agreement. The

Aspen Plus validation also gives that ATmin = 1.174 K, UA = 11.96 MW/K and the

compression power requirement as 17.99 MW, all differences of less than 0.8% from

the nonsmooth model results.

It is important to know whether or not the discretized composite curves are in

fact accurate enough. To assess the true number of affine segments needed, a series

of additional simulations were performed with PLPR, TLOp and either UA or ATmin

as unknowns wherein the discretization of the highly non-linear two-phase region

was varied from 3 to 50 affine segments. The results for the predicted compression

power in each simulation are shown in Figure 7-7. This study suggests that with 20
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Figure 7-6: (a.) Hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process simulated in Case I. (b.) Approach temperature
profile for the MHEX in the PRICO process simulated in Case I from the nonsmooth
simulation (solid line) and the Aspen Plus validation (points).

segments, the power is likely to be accurate to within about 1% of the value given

by 50 segments, which is assumed to be essentially the true value. Interestingly, it

also shows that with fewer than -15 segments, the predicted compression power can

be highly incorrect, tending to be far too low. Note that the number of equations in

the process model does not change with increasingly fine discretization of the two-

phase region, both because the flash calculations are solved as implicit modules and

because Equation (3.13) for pinch point location remains a single equation regardless

of the number of streams integrated in the MHEX. Accordingly, despite the increased

number of flash calculations, the solution time for the simulations in Figure 7-7 only

increases by a factor of 7 (on average) between solving the problems with five segments

(average: 1.96 seconds) compared to the problems with fifty segments (average: 13.72

seconds).

Variable Set IL: In this case, the composition of the refrigerant mixture is allowed

to vary and the conductance of the exchanger is fixed at 20.0 MW/K. A solution is

found with fMR,nC4 = 0.846 kmol/s, TpUT = 292.87 K and ATmin = 0.365 K. The

isentropic compression power required is 15.96 MW. This value of the component
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Figure 7-7: Value of the isentropic compression power obtained by simulating the

PRICO process with increasing discretization of the two-phase region. Each set of

data points corresponds to a specification for either UA or ATmin in the simulation.

In each case, if the conductance was specified, ALTmin was solved for, and vice-versa,
with the other variables solved for as T'PUT and PLPR-

flowrate of n-butane changes the overall MR flowrate to 2.772 kmol/s with molar

composition: 6.15% nitrogen, 21.77% methane, 41.57% ethane and 30.51% n-butane.

When the simple tear equations are reconciled automatically as described earlier,

the simulation takes 7.9 seconds to converge including initialization. With the tear

equations modeled explicitly, the same solution is reached after 10.9 seconds (one

additional iteration is needed). Figure 7-8 shows (a.) the resulting composite curves

and (b.) the approach temperature profiles from both the model proposed in this

chapter and the Aspen Plus simulation. The Aspen Plus validation gives that ATmin =

0.481 K, UA = 19.32 MW/K and the compression power requirement as 15.95 MW,

showing excellent agreement in the compressor but slightly different results in the
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MHEX. However, increasing the number of zones in the Aspen block and the number

of two-phase segments in the nonsmooth simulation by 10 causes the results to match

to within 5% in ATmin value and <1% in conductance value, indicating that the

difference in discretization schemes is mostly responsible for the discrepancy.
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Figure 7-8: (a.) Hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process simulated in Case II. (b.) Approach temperature
profile for the MHEX in the PRICO process simulated in Case II from the nonsmooth
simulation (solid line) and the Aspen Plus validation (points).

Variable Set III: In this case, both pressure levels are allowed to vary while the

design criteria of the MHEX are fixed. A solution is found with PLPR = 0.150 MPa,

OUT = 255.62 K and PHPR = 2.251 MPa. The isentropic compression power required

is 18.79 MW. Note that at this solution, the LPR stream exits the MHEX in the two-

phase region with a vapor fraction of 0.988, indicating that the iterates successfully

traversed a phase boundary after starting from the initial guess of 298.15 K in the

superheated vapor regime. The simulation takes 9.1 seconds (including initialization)

when the simplicity of the tear equation is exploited as described earlier. With a

naive SM approach that models the tear equations explicitly, the same solution is

reached after 10.7 seconds. Figure 7-9 shows (a.) the resulting composite curves and

(b.) the approach temperature profiles from the model proposed in this chapter and

the Aspen Plus simulation. The Aspen Plus validation also gives that ATmin = 0.955
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K, UA = 11.95 MW/K and the compression power requirement as 18.77 MW, again

all only minor differences from the nonsmooth model results. It is also possible in

this case to add an extra design specification on the degrees of superheat of the LPR

stream leaving the MHEX in case the compressor is not well-equipped to handle any

liquid droplets. This is accomplished by including ATmin as an additional manipulated

variable to meet the specification. For instance, specifying that this stream should

exit at its dew point (0 degrees superheat) yields a solution with ATmij = 1.00 K,

PLPR = 0.151 MPa, TLJPR=[ 256.41 K and PHPR= 2.087 MPa.
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Figure 7-9: (a.) Hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process simulated in Case III. (b.) Approach temperature
profile for the MHEX in the PRICO process simulated in Case III from the nonsmooth
simulation (solid line) and the Aspen Plus validation (points).

Figure 7-10 shows the convergence rate of the simulations described above using

three different methods for calculating or approximating an element of the generalized

derivative. The first is the method detailed in this chapter using LD-derivatives in

the identity directions, which provides elements of the B-subdifferential and leads to

the hybrid nonsmooth Newton method converging quadratically in the neighborhood

of the solution. The second method is to calculate an approximate B-subdifferential

element by concatenating directional derivatives in each of the coordinate directions

(i.e. the right-hand side of Equation (2.18)). For Variable Sets I and III, this method
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takes similar steps to the exact method, though the convergence is not as rapid as

the solution is approached, indicating that the numerical method visits points of

nonsmoothness. For Variable Set II, this method fails to converge altogether. The

third method is forward finite differences, which fails to converge the simulations

involving Variable Set II or III, and converges slowly for Variable Set I. It is clear

from these results that exact generalized derivatives are in fact necessary to achieve

robust and rapid convergence of complex simulations involving nonsmooth models.
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Figure 7-10: Convergence rate of the previous simulations when sensitivity informa-
tion is computed using: LD-derivatives in the identity directions (left); concatenated
directional derivatives in each coordinate direction (middle); forward finite differences
(right).

7.4 Conclusions

A new paradigm for process flowsheet calculations using nonsmooth models and gen-

eralized derivatives has been presented. At the heart of this new approach are the
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nonsmooth inside-out algorithms from Chapter 5, which allow for reliable flash cal-

culations with complex thermodynamic models and, when augmented with accurate

sensitivity analysis procedures, provide useful generalized derivatives that may be

propagated to flowsheet convergence algorithms. It has been demonstrated that this

nonsmooth strategy generates quadratically convergent iterates in process flowsheet

calculations, outperforming other known methods for calculating sensitivity infor-

mation (or an approximation thereof), including those embedded in the Aspen Plus

software.
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Chapter 8

An optimization strategy for

liquefied natural gas production

processes

A new strategy for the optimization of natural gas liquefaction processes is presented,

in which flowsheets formulated using nondifferentiable process models are efficiently

and robustly optimized using an interior-point algorithm. The constraints in the

optimization formulation lead to solutions that ensure optimal usage of the area of

multistream heat exchangers in the processes in order to minimize irreversibilities.

The process optimization problems are solved reliably without the need for a com-

plex initialization procedure even when highly accurate descriptions of the process

stream cooling curves are requested. In addition to the well-studied PRICO lique-

faction process, two significantly more complex single mixed-refrigerant processes are

successfully optimized and results are reported for each process subject to constraints

imposed by several different operating scenarios.

8.1 Introduction

Numerous authors have proposed methodologies for the problem of optimizing nat-

ural gas liquefaction processes. Optimization strategies for liquefaction processes
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found in the literature typically fall into two broad categories. The first is the use

of an optimization algorithm that calls process simulation software (such as Aspen

HYSYS or Aspen Plus) for the flowsheet evaluation. A number of deterministic local

optimization and heuristic global optimization codes have been used in such stud-

ies, including: SQP, 131;113;9 interior-point algorithms," 2 Box's complex method, 50;6

genetic algorithms (GA), 29;54 artificial neural networks, 67 simulated annealing,'1 par-

69 13ticle swarm, mesh search73 and tabu search. 4 The other general approach is to use

an equation-oriented strategy in which the full process model is described explicitly

in a modeling language and then solved with an appropriate optimization algorithm.

This is often performed in the GAMS modeling environment, paired with either a

local solver5 9 or a global solver on a simplified model or a superstructure, 49;141:66;102

though the use of other software such as gPROMS for this application is also reported

in the literature. 56;57;95 Many additional examples of liquefaction process optimization

studies are documented and classified for ease of reference in an extensive literature

review by Austbo et al. 0

The flowsheet models used for function evaluations in the process simulator case

generally consist of traditional unit operation models solved in a sequential-modular

fashion. Sensitivity information is obtained by finite differencing through perturba-

tion of the flowsheet inputs. In the second case, the models and required solution

algorithms take more exotic forms, including complementarity-constrained nonlin-

ear programs, 59 mixed-integer nonlinear programs 49;141;102;66 and differential-algebraic

equation systems. 95 Such methodologies typically result in models with very high vari-

able and constraint counts that are challenging to initialize and solve robustly, even

for simple liquefaction processes. The complexity of these formulations largely results

from different methodologies for modeling the MHEXs in such processes. However,

the nonsmooth approach of the previous chapters provides a more convenient ap-

proach to describing the MHEX process model. One significant advantage of using

the nonsmooth model is the ability to specify fixed information about the MHEX area

or conductance value. As will be seen in the following section, the ability to incor-

porate this information into the optimization formulation is vital for finding process
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conditions that minimize irreversibilities and thereby the cost of operation. Some

authors have also reported using more detailed models for MHEX units that consider

the internal geometry and hydrodynamics" 3 in order to move beyond the early-stage

design based on UA values. However, this tends to increase the complexity of the

optimization significantly even for small-scale processes and solutions have only been

published for problems with a limited set of decision variables. Such detailed MHEX

models are however beyond the scope of the present work.

Many of the different modeling and optimization strategies mentioned previously

have been applied to the PRICO process and a wealth of different solutions for optimal

design and optimal operation problems have been reported. Table 8.1 gives several of

these proposed optimal operating conditions for minimizing the required compression

power in the process.

In each case study summarized in Table 8.1, the natural gas stream was supplied

at 5.5 MPa at 1.0 kmol/s and a minimum allowable temperature difference between

the hot and cold streams in the MHEX of 1.2 K was enforced. The target temperature

for the natural gas was set to 110.15 K in the articles by Lee et al.72 and Del Nogal et

al., 2 9 whereas it was taken as 118.15 K in the other four articles. The Peng-Robinson

EOS was used in the articles by Lee et al.72 and Del Nogal et al., 2 9 while the remaining

articles use the Soave-Redlich-Kwong EOS. The articles by Jensen and Skogestad,

Pattison et al.95 and Rao and Karimi1 2 each use a feed gas composition of 2.8%

nitrogen, 89.7% methane, 5.5% ethane, 1.8% propane and 0.1% n-butane, while the

other papers do not report the composition of the feed gas. The power requirements

reported are all based on an assumed isentropic efficiency of 80% for the compressor.

The UA value of the MHEX corresponding to the optimal solution is not reported in

any of these articles.

The purpose of showing Table 8.1 is not to claim that some authors have found

comparatively better or worse solutions than others. For one, the variability in the

process conditions mentioned previously precludes direct comparison between all these

studies. Beyond these obvious distinctions, it is still largely meaningless to attempt

to compare these solutions to one another, as seemingly benign details such as values
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Table 8.1: Locally optimal solutions for operating the PRICO
literature.

process found in the

Authors Lee et al.7 2  Del Nogal et Jensen &
al.29  Skogestad5 6

Solution strategy Mesh Search GA n/a
Flowsheeting/modeling WORK 128  STAR 1 28  gPROMS
environment

Power (MW) 26.60 24.53 17.40
High pressure (MPa) 4.00 4.387 1.912
Low pressure (MPa) 0.37 0.484 0.322
MR flowrate (kmol/s) 3.2 3.53 3.12
Composition (mol %)

Nitrogen 11.0 10.08 7.72
Methane 27.3 27.12 23.65
Ethane 35.6 37.21 39.49
Propane 5.20 0.27 0.00
n-butane 20.9 25.31 29.14

51 95 Rao &Authors Kamath et al.59  Pattison et al.95  Kariio 2

Solution strategy CONOPT31 DAE solver KNITRO' 9

Flowsheeting/modeling GAMS gPROMS Aspen HYSYSenvironment

Power (MW) 21.51 20.00 18.97
High pressure (MPa) 1.713 2.655 2.337
Low pressure (MPa) 0.202 0.338 0.301
MR flowrate (kmol/s) 2.93 2.89 3.00
Composition (mol %)

Nitrogen 5.82 8.81 7.85
Methane 20.62 32.29 24.87
Ethane 39.37 32.79 37.99
Propane 0.00 0.63 0.01
n-butane 34.19 25.48 29.27

of physical property parameters are generally unreported yet can significantly impact

feasibility and optimality. An example of this is shown in Vikse et al.,1 32 in which

it is noted that just the difference in the default ideal gas heat capacity calculation

method between Aspen Plus and Aspen HYSYS produces quantitatively different

results for liquefaction process simulations. These differences are further compounded
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by the lack of attention given to MHEX UA values in the literature studies. The

specification of ATmji does not uniquely describe a process design, especially in the

absence of UA information, and so it is unsurprising that many different optimal

values for the compression work could be found, i.e. smaller values corresponding

to larger heat exchangers and vice-versa. The guiding principle must therefore be

that an optimal set of decision variable values for a liquefaction process should only

be discussed in reference to a specific instance of the process, e.g. with respect to

feed gas composition, pressure and target temperature, heat exchanger area, heat-

sink temperatures, etc., and with thermophysical property methods and parameters

tuned to describe the working fluids as accurately as possible, ideally matching with

experimental or plant data if available. This level of specificity means that no single

optimization study of a liquefaction process can truly claim to find a universal best

solution for all realizations of the process. Accordingly, this goal of this chapter

is to develop an implementation of a flexible optimization method in which complex

liquefaction process models can be efficiently, accurately and robustly optimized, then

easily modified and re-optimized given either changes in process conditions or the

changing demands of the user.

8.2 Optimization Strategy

This section first describes the process optimization formulation for the natural gas

liquefaction processes studied in this chapter, then details the configuration of the

optimization algorithm used to solve the example problems of the following section.

8.2.1 Problem formulation

A recent article by Austbo and Gundersen 9 compared several different problem formu-

lations for liquefaction process optimization. Through studies of the PRICO process,

they determined that the optimal utilization of the area of the multistream heat ex-

changer in the process can only be obtained when the heat exchanger conductance is

constrained to be less than some preset value UAmx. Unlike in much of the litera-
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ture, the minimum temperature difference, ATmin (also called the minimum approach

temperature), is not constrained to being greater than a preset value. Constrain-

ing the heat exchanger conductance is tantamount to making the optimizer find the

optimal distribution of temperature differences throughout the entire exchanger in-

stead of just prescribing the pinch point. This is especially important in liquefaction

processes, where reducing temperature differences at subambient temperatures is key

to minimizing exergy losses, as thermodynamic irreversibilities increase with both

increasing temperature driving force and decreasing operating temperature. 7
;
9 The

UAmax constraint also forces the optimizer to consider the trade-off between the total

heat duty of the MHEX and the temperature driving forces, generally leading to lower

refrigerant flow rates and thereby lower power requirements than when constraints are

placed on the driving forces alone (e.g. by specifying ATmin) .9 Earlier work by Jensen

and Skogestad5 7 also asserts that the ATmin approach leads to suboptimal utilization

of multistream heat exchangers. In terms of objective function, minimizing the re-

quired compressor power (Wcomp) in the process is common and recommended as it is

equivalent to minimization of the irreversibilities in the process. The ideal optimiza-

tion formulation for liquefaction processes suggested by the literature is therefore as

follows:

min Wcomp(x)
X

s.t. h(x) = 0,

UA(x) < UAmax, (8.1)

ATsup (x) > ATsup,min,

xLB < X < XUB

where x E R" is the vector of decision variables with lower bounds xLB and upper

bounds xUB, h is function describing the process model and ATsup is the degree

of super-heating in the stream entering the compressor (i.e. the difference between

this stream's temperature and dew point), which is constrained to be greater than

some minimum value, ATsup,min. The value of ATup,min is 10 K in all examples

244



of this chapter. This constraint on the degree of superheating is a practical safety

consideration to prevent the formation of liquid droplets in the compressor.

In order to provide exact sensitivity information to the optimizer instead of poten-

tially highly inaccurate finite difference approximations, the optimization problems

herein do not rely on a commercial process simulation engine for flowsheet evalua-

tions. Instead, the models are built following the nonsmooth flowsheeting strategy

outlined in Chapter 7. Throughout this chapter, the LD-derivatives of the objective

and constraint functions with respect to the decision variables are always computed

with respect to the identity directions matrix in order to obtain B-subdifferential

elements of these functions. The simulation strategy for the PRICO process was

discussed in detail in Example 7.2, while the same modeling strategy was used to

simulate more complex SMR processes successfully in an article by Vikse et al.13 2

8.2.2 Optimization algorithm

The optimization problem in Equation (8.1) is* a nonconvex, nonsmooth and con-

strained nonlinear program. Consultation of the nonsmooth optimization literature

indicates that the algorithms ostensibly best suited for this class of problem are bun-

dle methods.6 2 However, attempts to use the solver MPBNGC v2.0,77 which is an

implementation of the proximal bundle method for constrained nonsmooth problems,

were unsuccessful. Given an initial feasible point, the algorithm was never able to

find an objective-improving feasible point, both when the constraints were included

explicitly and when they were included in an exact penalty term to produce an un-

constrained nonsmooth problem. It is conceivable that there exists some combination

of option values for which this solver would be able to make progress on the problems

presented in this chapter. However, a method for determining these values is not

clear, and the use of a different solution method was deemed a more viable strategy.

Instead, the primal-dual interior-point optimizer, IPOPT,13 3 proved to be an ex-

cellent choice for solving the optimization problem given in Equation (8.1) for the

examples in this chapter. This is perhaps surprising, given that a core assumption of

this interior-point method for nonlinear programs is that the objective and constraint
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functions are at least twice continuously differentiable. That IPOPT performs well

on the highly nonsmooth problems posed herein is both a testament to the robustness

of the software and its heuristics as well as to the ability of the nonsmooth modeling

framework to produce a compact representation of the process flowsheet while pro-

viding highly accurate sensitivity information. Nevertheless, the use of nonsmooth

process models is (potentially) problematic in the context of the dual feasibility cal-

culations in IPOPT. Dual feasibility in IPOPT is determined by the infinity-norm of

the (internally-scaled) residual of the following equation:

Vf(x) + Vc(x)A - ZL + Z = 0, (8.2)

where f : R' -+ R is the objective function, c : R' --+ R' are the equality constraints

(including the inequality constraints reformulated using slack variables), x E R' are

the decision variables (including slack variables as needed), A E R' are the Lagrange

multipliers for the equality constraints, ZL E Rn are the Lagrange multipliers for the

lower bound constraints and zU E Rn are the Lagrange multipliers for the upper

bound constraints.3 Clearly, the use of Equation (8.2) to assess the dual feasibility

of a nondifferentiable optimal point is flawed; the correct statement for this case is as

follows:

0 E (f (x))T + (&c(x)) T A - ZL + ZU, (8.3)

where (0f(x))T is the Clarke generalized gradient of f at x and &c(x) denotes the

Clarke Jacobian of c at x. If f and c are continuous differentiable at x, then Equa-

tion (8.3) reduces to Equation (8.2); however, at general nonsmooth points it is not

tractable to calculate the full Clarke generalized gradient/Jacobian and check if Equa-

tion (8.3) is satisfied, and thus all known algorithms for nonsmooth local optimization

rely on alternative termination criteria. For instance, MPBNGC uses the norm of a

vector that represents an aggregation of Clarke generalized gradients calculated in

recent iterations (along with information about the accuracy of the constraint lin-

earization for problems with nonlinear constraints) to determine when to terminate,

a condition that is not readily implemented in the context of another optimization

246



algorithm. Another nonsmooth local optimization algorithm, SolvOpt, 6'1 uses simple

relative error metrics for the argument and function value iterates as termination

criteria, which are only reasonable in conjunction with the specific step-size strategy

employed by the algorithm. As a result, there is not a clear way to include such

termination criteria for a nonsmooth problem in the existing IPOPT framework. By

Rademacher's Theorem, the set of points at which a locally-Lipschitz continuous

function is nondifferentiable is of Lebesgue measure zero; however, in finite precision

arithmetic, this set is indeed reachable, as shown by e.g. the studies in Barton et

al.1 3 As will be shown in the following examples, the behavior of IPOPT suggests

that the optimal solutions found in Examples 8.1 to 8.3 occur at differentiable points,

while the optimal solutions in Example 8.4 occur at points of nondifferentiability,

the latter case requiring modifications to the solver options in order to achieve con-

vergence. Unless otherwise specified, the options used in IPOPT in the remainder

of the chapter are as shown in Table 8.2. Any options not explicitly listed in Table

8.2 are left at their default values. The rationale for the choices made in Table 8.2

Table 8.2: Summary of the non-default IPOPT options specified for this work (unless
otherwise noted).

IPOPT option Value

constrviol-tol 10-6

tol 10-4

bound-push 10-9
bound-frac 10-9

mu-strategy adaptive
hessianrapproximation limited-memory

1 imited-memory-maxhi story number of decision variables
recalc-y-feas-tol 10

is as follows. The low constraint violation tolerance simply requires high accuracy

of the solution. With the constraint violation (primal) tolerance set to 10-6 and

the complementarity tolerance left at the default value of 1 x 10-11, the value of

"tol" is then equivalent to the dual feasibility tolerance (as "tol" is defined as the

maximum of the primal, dual and complementarity tolerances). As noted earlier,

for the examples herein that appear to converge to differentiable points, this value
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is as given in Table 8.2. In Example 8.4, this value is modified, as described later.

The options bound-push and boundfrac, which move the initial point away from

any active lower or upper bounds, are decreased substantially from their defaults.

This is helpful in this work as the solver is provided with an initial feasible point

in which some decision variables may be at their bounds, and it is undesirable for

these values to be perturbed substantially prior to commencing solver iterations. The

mu-strategy option, which governs the update behavior for the interior-point barrier

value, was changed from the default (monotone) to adaptive based on empirical ob-

servations of improved performance. The option hessian-approximation is chosen

so that the algorithm uses a limited-memory quasi-Newton update to approximate the

"second derivatives" of the nonsmooth system since there is no method for supplying

these directly for nonsmooth functions (nor are they even defined at nondifferentiable

points). As a means of mitigating the consequences of approximating these quanti-

ties, the option limited-memory-maxlhistory is increased from its default value of

6 to equal the number of decision variables in the problem, which determines the

number of recent iterations that are considered when updating Hessian approxima-

tions. Increasing this value has a regularizing effect on the computed approximate

Hessian, which can otherwise vary dramatically between iterations due to the nons-

moothness of the process models. This option value has been observed to work well

for the problems in this chapter; it should not be considered a general heuristic for

nonsmooth functions without substantially more investigation. It is likely that there

should be an upper bound for this value that is independent of the problem size for

larger problems, though it is not clear what value this bound should take. Finally,

the option recalc-y-f eas-tol tells the solver to recompute the constraint multipliers

explicitly whenever the constraint violation is less than the value chosen (so long as

the recalc-y option is enabled, which it is by default when the Hessian matrix is ap-

proximated). The IPOPT options reference notes that this can be helpful, although

the multiplier recalculation requires additional factorization of the linear KKT sys-

tem. However, since the function evaluations in this work are substantially more

expensive than the solution algorithm itself, the cost of this additional linear algebra
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is of little concern. In the context of the problems solved in this chapter, increasing

this option from the default value of 10-6 generally substantially improves the quality

of the subsequent steps taken by the algorithm whenever it moves to a point with

significant constraint violation. It is important to note that there are almost certainly

other IPOPT option sets that would produce equivalent or even better convergence

behavior for the optimization problems considered in this chapter. However, overall

good performance for the ensuing examples has been observed with only the minimal

tuning described above, despite the nonsmoothness of the process models considered.

8.3 Liquefaction process optimization studies

Three liquefaction processes of increasing complexity are now presented and opti-

mized with the strategy outlined in the previous section. The flowsheet models are

written in the Julia programming language (vO.6.0) interfaced with IPOPT v3.12.1-,

and the optimization is performed on an Intel Xeon E5-1650 v2 workstation using six

cores at 3.50 GHz and 12 GB RAM running Ubuntu v14.04. Nonideal thermophys-

ical properties are calculated using the Peng-Robinson cubic equation of state with

pure component and binary interaction parameter values as found in the Aspen Plus

v8.4 databanks.5 Ideal gas enthalpy and entropy values are also obtained using the

default methods in Aspen Plus, namely via the use of the Aly-Lee model' for the

ideal gas heat capacity, again with component parameters taken from the software's

database. All vapor-liquid equilibrium calculations in the flowsheets are performed

using nonsmooth inside-out algorithms from Chapter 5 augmented with nonsmooth

density extrapolation procedures from Chapter 6. This includes calculations both

within the MHEX units and in the other unit operations, i.e. compressors, throt-

tle valves, mixers, condensers and phase separators. The equations and variables in

these calculations are not visible to the optimization algorithm as they are performed

with external subroutines. As a result, none of these other unit operations contribute

to the size of the process model, and their outputs, e.g. work or temperatures af-

ter throttling/mixing, are calculated during the course of simulating these units in a
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modular fashion as functions of their inputs and the decision variables.

The results and input-output sensitivities of these submodels are communicated

to other models in the fiowsheet and the optimizer as described in the previous sec-

tion. All such calculations and associated sensitivity evaluations are converged to a

tolerance of 10'. The MHEXs in each flowsheet are modeled using the nonsmooth

method of Chapter 3 using the necessary provisions for handling internal phase change

in a MHEX are described in Chapter 4 As in the previous chapter, the cooling curves

of each stream in the nearly affine superheated and subcooled liquid regimes are dis-

cretized into five affine segments. In the far more nonlinear two-phase regime, the

substreams are discretized into 20 affine segments each unless otherwise noted. The

number of segments used to model the two-phase regime is denoted n 2p. As has been

shown in Chapter 7 and will be revisited in Example 8.1, this is sufficient for a faithful

representation of the true temperature-enthalpy relationship of the process streams.

- Initialization of the following examples is performed rapidly and automatically

with little input required from the user. The procedure involves first solving a simu-

lation problem given a set of decision variables within the problem bounds. The set

of unknown variables in the simulation problem generally consists of three variables

afforded by the base nonsmooth MHEX model plus the set of temperatures needed

to satisfy the energy balances in the superheated vapor and subcooled liquid regimes

for each process stream entering the heat exchanger. The simulation problem itself

has an automatic initialization procedure for choosing initial guesses for this set of

temperatures, as described previously, leaving the user to only choose three variables

and respective initial guesses. It is recommended that the UA value for MHEXs in

the simulation be consistent with the value chosen for UAmax for the optimization.

All other variables that will become decision variables in the optimization problem

are held constant. The initial flowsheet simulation is then performed as described in

previous work, e.g. Chapter 7 for the PRICO process and the article by Vikse et al.

for the more complex liquefaction processes. "

This simple and robust procedure stands in contrast to that of many of the

equation-based approaches outlined in the literature, which generally involve ardu-
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ous and time-consuming calculations to produce an initial point. Additionally, while

providing an initial feasible point to IPOPT tends to result in favorable convergence

behavior, it is by no means always necessary. It is entirely possible to converge the

problems in the following examples from infeasible starting points in most cases, al-

though the computation time spent in additional IPOPT iterations is substantially

higher than required to obtain a feasible initial guess from solving a simulation prob-

lem.

8.3.1 The PRICO process

The configuration of the PRICO process for this example is the same as shown in the

previous chapter in Figure 7-5. The same nomenclature for the unknown variables

in the process is also used here. For this model of the PRICO process, the decision

variable vector is as follows:

X (PLPR, PHPR, fMR, ATminT- LPR T

Given the nearly affine temperature-enthalpy behavior of these phase regimes, these

equations add little complexity to the model when deferred to the optimizer instead

of being converged on every iteration. Note that the outlet temperature of the high-

pressure refrigerant stream, TPOUT does not appear in the decision variable vector

as it is simply set equal to the target temperature of the natural gas stream in each

case. In total, this problem has 33 variables, 26 equality constraints and 2 inequality

constraints. The breakdown of these numbers is as follows: length(T) = (number of

streams entering MHEX) x [(number of segments in superheated region - 1) + (number

of segments in subcooled region - 1)] = 3 x [(5 - 1) + (5 - 1)] = 24. Each component

of T is associated with an equation, and, in addition to the energy balance and the

pinch operator in the nonsmooth MHEX model, this gives a total of 26 equality

constraints. The two inequality constraints are those given in Equation (8.1). The

refrigerant is allowed to consist of nitrogen, methane, ethane, propane and n-butane,

so length(fMR) = 5, which means length(x) = 33. The lower and upper bounds (xLB
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and xUB) for the decision variables are given in Table 8.3. As suggested by Austbo

and Gundersen,9 the lower bound on the component flowrate of ethane (which is

always present in the solution) is nonzero to prevent the optimizer finding a trivial

solution with zero refrigerant flowrate.

Table 8.3: Optimization variables and bounds for the PRICO process case studies.

Variable Lower bound Upper bound

PLPR (MPa) 0.1 0.5
PHPR (MPa) 1.0 5.0
fN2 (kmol/s) 0.0 1.0
fci (kmol/s) 0.0 2.0
fc2 (kmol/s) 0.1 3.0
fc3 (kmol/s) 0.0 1.0
fnC4 (kmol/s) 0.0 3.0
ATmin (K) 0.1 10.0
TLpURT (K) 200.0 400.0
Components of T (K) 80.0 400.0

Example 8.1. The first example involving the PRICO process will be to study the

effect that changing the UAmax value has on the optimal solution. A similar study

was performed by Austbo and Gundersen' using the SQP algorithm NLPQLP109

in conjunction with Aspen HYSYS, and similar trends in the optimal solutions are

expected to be seen using the methodology of this chapter. An attempt at a direct

comparison between the solutions given in Table 8.1 with the nonsmooth optimization

results is also performed. Table 8.4 gives the data for the natural gas feed stream in

the process for these first test cases.

In the first study, the process is optimized subject to different values of UAmax,

with all other process parameters held equal. The compressor is assumed to have

an isentropic efficiency of 80%. Numerical results for four such points are given in

Table 8.5 for selected UAmax values. In Table 8.5, the iteration count, CPU time and

improvement statistics are reported based on an initial point generated by solving

a simulation problem as described in Example 7.2 (Variable Set I), the only differ-

ence being the change in UAmax values. Optimal composite curves for each case are

shown in the top pane of Figures 8-1 to 8-4. In the bottom pane of each figure, the
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Table 8.4: Natural gas stream data for Example 8.1.

Property UA study Literature comparison
Flowrate (kmol/s) 1.00 1.00
Pressure (MPa) 5.50 5.50
Inlet temperature (K) 295.15 298.15
Outlet temperature (K) 110.15 118.15
Composition (mol %)
Nitrogen 1.00 2.80
Methane 91.60 89.70
Ethane 4.93 5.50
Propane 1.71 1.80
n-Butane 0.35 0.10
iso-Butane 0.40 0.00
iso-Pentane 0.01 0.00

temperature driving force profile is given for the initial feasible point (simulated with

n2p = 20) as well as for the solutions obtained by performing the optimization with

different values of n2p. Notice that while the optimal profiles in the n2 p= 20 and

n2p =50 cases are nearly identical, the profiles for the n 2 p = 5 cases are noticeably

different in each instance. Optimizing with the coarse discretization indicates differ-

ent pinch points in the optimal solution and the resulting temperature profiles clearly

miss much of the nonlinearity of the cooling curves. In each case, while the optimal

objective value in the n2 p = 5 case is consistently 2-5% lower than the optimal objec-

tive value in the other two cases (which themselves differ by at most 0.4% across all

cases), the n2p = 5 solutions are not even feasible in the constraints of the more finely

discretized models. This underscores the need for highly accurate descriptions of the

composite curves within the MHEX process model. Fortunately, in the flowsheeting

framework used here, the model size does not increase with n2 p, only the cost of the

function evaluation. This scaling is quite modest however, and comparing the CPU

time spent optimizing the n2p = 50 case to the time spent optimizing the n2 p= 5

case shows between an 8 and 11-fold increase across these cases.

The numerical trends in the results indeed conform with the observations of

Austbo and Gundersen.' The optimal compressor power requirement is a trade-off

between the pressure ratio and the refrigerant flowrate, and tends towards high ra-
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Table 8.5: Key process metrics for locally-optimal solutions obtained from instances
of the PRICO process with varying UAmax value (n2p= 20).

UAmax (MW/K) 5.0 12.0 20.0 25.0

Power (MW) 24.43 19.25 17.55 16.93
Pressure ratio 37.34 14.84 7.87 6.47

PLPR (MPa) 0.100 0.122 0.234 0.279
PHPR (MPa) 3.734 1.805 1.842 1.804
FMR (kmol/s) 1.83 2.05 2.55 2.75
ZMR (mOl %):

Nitrogen 6.33 5.70 7.93 8.32
Methane 29.59 22.90 23.75 24.02
Ethane 27.82 34.80 36.46 36.88
Propane 8.80 0.00 0.00 0.00
n-Butane 27.47 26.60 31.86 30.77

A.Tmin (K) 2.73 1.44 1.07 0.95

IPOPT iterations 32 39 32 44
CPU time (s) 126 137 125 171
Improvement from 25.8% 17.5% 13.1% 13.8%
initial feasible point

tios and low flowrates for low UAmax values. Note that these pressure ratios may be

unrealistic for single-stage compression and in reality would require multistage com-

pression with interstage cooling to be achieved. The optimal compressor train design

is not considered at present. The large pressure difference in the exchanger causes

the hot and cold streams to not pinch tightly, especially at low temperature lev-

els, increasing the exergy losses but not requiring large heat exchanger conductance.

Propane is also present in the optimal refrigerant mixture only for low UAmax. For

higher UAmax values, the optimal solution tends towards higher refrigerant flowrates

and lower pressure ratios, leading to designs with small temperature differences at low

temperatures and lower overall power consumption. While the constraint on UAmax

is always active at the optimal solution, the constraint on the degree of superheat is

notably not active in the optimal solution for any of these cases. This is consistent

with the observations of Jensen and Skogestad ' and Kamath et al.,59 who note that

a degree of superheating can sometimes be optimal for a simple refrigeration cycle

with internal heat exchange such as the PRICO process.
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Figure 8-1: Top: hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process with UA = 5.0 MW/K optimized with n2p= 20.
Bottom: approach temperature profile for the MHEX in the PRICO process at the
initial feasible point as well as the optimal solution computed with varying levels of
discretization.

In terms of performance of the optimization strategy, Austbo and Gundersen9

report that for the problem formulation used here, NLPQLP generally required be-

tween 1,200 and 1,900 flowsheet evaluations from Aspen HYSYS. In the present work,

the worst case in Table 8.5 requires 44 iterations of IPOPT, with each iteration usu-

ally requiring only a single flowsheet evaluation to obtain function values and exact

sensitivity information through operator overloading. In rare instances, a single iter-

ation would require between two and ten evaluations of the objective function value

(without sensitivity calculations) to satisfy the optimization algorithm's line search

criteria. Note also that the computing time reported in Table 8.5 (and elsewhere in

the chapter) includes the time needed to initialize and solve the simulation problem
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Figure 8-2: Top: hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process with UA = 12.0 MW/K optimized with n2 p = 20.
Bottom: approach temperature profile for the MHEX in the PRICO process at the
initial feasible point as well as the optimal solution computed with varying levels of
discretization.

used to generate the initial feasible point for the optimizer, meaning that the entire

optimization procedure can be completed in a short span of time and in an almost

completely automated fashion.

A curve showing the trends in optimal power requirement and minimum approach

temperature over a range of UAm, values between 5 MW/K and 50 MW/K was

constructed from the results of solving a number of additional optimization problems,

incrementing UAmax by 0.2 MW/K each time. These results are shown in Figure 8-5.

The nonsmoothness of the curve corresponding to optimal ATmin value suggests a

large qualitative change in the overall solution behavior around UAmx = 8.0 MW/K.

The clear monotonicity and lack of noise in the curves also suggests that suboptimal
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Figure 8-3: Top: hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process with UA = 20.0 MW/K optimized with n2p= 20.
Bottom: approach temperature profile for the MHEX in the PRICO process at the
initial feasible point as well as the optimal solution computed with varying levels of
discretization.

local solutions are likely not being found by the optimization procedure.

However, to test for better locally-optimal solutions, the four optimization prob-

lems represented in Table 8.5 were each solved from a set of distinct starting points

each corresponding to one of the six solutions given in Table 8.1. Owing to residual

differences in physical property methods and parameter values, it was not possible to

solve for a feasible point in four of the six cases given the limited degrees of freedom

available in the simulation environment. In those cases, the solution shown in Table

8.1 was passed directly to the optimizer with the remaining variables set to the mid-

point between their bounds. Nevertheless, in each case including those with infeasible

initial guesses, the solutions given in Table 8.5 were found (or indistinguishable solu-
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Figure 8-4: Top: hot composite curve (solid) and cold composite curve (dashed) for
the MHEX in the PRICO process with UA = 25.0 MW/K optimized with n 2 p= 20.
Bottom: approach temperature profile for the MHEX in the PRICO process at the
initial feasible point as well as the optimal solution computed with varying levels of
discretization.

tions within the given tolerances). In contrast, Austbo and Gundersen 9 report that

NLPQLP/Aspen HYSYS only returns their process' best-known solution 10-20% of

the time when the constraint on UAmax is included in their multistart experiments.

Next, for the sake of comparison and subject to the many caveats discussed earlier,

another instance of the PRICO process is optimized with specifications set as close to

those found in the articles summarized in Table 8.1 as possible. First, the optimization

is performed without the constraint on UAmax in Equation (8.1), instead replacing

it with the more commonly-used constraint that the approach temperature is at

least 1.2 K everywhere in the MHEX. In the absence of the UAmax constraint, the

tendency of the optimizer is to find MHEXs with very high conductance values.
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Figure 8-5: Optimal values for ATmin and compression power in the PRICO process
as the value of UAmax is parametrically varied in the optimization formulation of
Equation (8.1).

With n2p= 50 to ensure extremely high accuracy, the optimizer finds a solution with

UA = 30.30 MW/K with a power requirement of 14.90 MW, assuming 80% isentropic

efficiency. More details of the solution are given in Table 8.6. However, this MHEX

can be further improved by using the formulation from Equation (8.1) and fixing

UAmax = 30.30 MW/K. This new optimization finds a slightly improved solution

with a power requirement of 14.85 MW that has closer approach temperatures (i.e.

less than 1.2 K) in the cold end of the exchanger and larger ones at the warm end,

in addition to a lower overall cooling load. This is exactly as expected for a more

optimal utilization of the MHEX area. Numerical values for this solution are also

found in Table 8.6, and the approach temperature profiles are compared in the left

pane of Figure 8-6.

Noting that the optimal value of ATmin decreases monotonically with increasing
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UAnax value, a solution at which ATmin =1.20 K using the optimization formulation

in Equation (8.1) was determined by performing a number of optimizations paramet-

rically varying UAmax, as shown in the right pane of Figure 8-6. The value of UAmax

that yields a solution with ATmin =1.20 K is 16.85 MW/K, and the process power

requirement at this point is 16.16 MW. Therefore, given that it was obtained by the

UAmax formulation, this is the optimal configuration for the process with a ATmin

value of 1.2 K. The solution is detailed in Table 8.6. Note that this solution is a

feasible point in the formulation with the ATmin constraint; however, it is not locally

optimal in this formulation (the infinity-norm residual of Equation (8.2) at this point

is 6.57 x 10-1) since the objective value can be reduced by moving to significantly

higher conductance values in the absence of a constraint on UAmax.

Table 8.6: Results of using different optimization formulations to compare with
PRICO process results in the literature.

ATmin (K)
UA (MW/K)
Power (MW)

Pressure ratio

PLPR (MPa)
PHPR (MPa)

FMR (kmol/s)
ZMR (mOl %):

Nitrogen
Methane

Ethane
Propane

n-Butane

Initial solution
using ATmin

formulation with

ATmin := 1.20 K

1.20
30.30
14.90

5.06
0.316
1.601

2.82

Improved sol. using
UAmax formulation
with UAmax := 30.30
MW/K

0.83
30.30
14.85
5.28

0.302
1.594
2.74

7.01
23.51
38.62

0.00
30.85

6.32
23.65
38.63

0.00
31.39

UAmax formulation
such that ATmin=
1.20 K with UAmax

16.85 MW/K

1.20
16.85
16.16

8.34
0.209
1.740
2.27

5.55
23.11
37.67

0.00
33.67

To ensure that the solution in the last column of Table 8.6 is indeed a high-quality

solution and to give a sense of the overall robustness of the optimization procedure,

a multistart strategy was also employed in search for better solutions. One hundred

randomly chosen initial guesses (with components chosen from uniform distributions
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Figure 8-6: Left: approach temperature profiles for the initial and improved solutions
detailed in the first two columns of Table 8.6. Right: optimal values for ATmin and
compression power for the PRICO process (literature configuration) as the value of
UAmax is parametrically varied in the optimization formulation of Equation (8.1).

within each variable's bounds) were used to solve the optimization problem. Note that

it is extremely unlikely that initial points generated in this manner will be feasible

in the problem constraints. From the 100 initial guesses, 83 runs converged to the

solution in Table 8.6 (or an indistinguishable solution within the overall tolerance of
10-4), 1 run converged to a barely-suboptimal point (0.027% increase in objective

function value), 9 runs exceeded the maximum iteration limit of 200 and 7 runs

aborted due to numerical difficulties in the IPOPT feasibility restoration phase. For

the 83 runs in which the best known solution was found, a histogram of the number

of IPOPT iterations required to converge each instance is shown in Figure 8-7. This

demonstrates that the optimization strategy is very robust even for this challenging

problem formulation and in the absence of a feasible initial guess (c.f. the 10-20%

success rate reported in Austbo and Gundersen 9).

Figure 8-8 shows the composite curves and approach temperature profile for this
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Figure 8-7: IPOPT iteration count histogram for PRICO optimization using a mul-
tistart strategy.

best solution. The approach temperature profile predicted by Aspen Plus v8.45 is

overlaid onto the optimization result (obtained by providing the entire solution with

the exception of the value of TL~pT to the software) to validate that the solution is

indeed physical, assuming that these thermodynamic models and parameter values

(from Aspen Plus) provide a valid description of the real fluid behavior. The val-

idation simulation returns a power requirement of 16.15 MW, which is in excellent

agreement with the optimization result of 16.16 MW.

Example 8.2. In this second example involving the PRICO process, a case that has

been less explicitly studied in the literature is considered, which is that of variable

natural gas composition entering the process. The problem formulation and process

conditions are identical to that described in the UA study of Example 8.1, except

that now the value of UAmax for the MHEX is fixed at 15.0 MW/K and four different
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Figure 8-8: Optimal composite curves and approach temperature profile of a PRICO
process modeled using specifications frequently found in the literature.

Table 8.7: Rich and lean natural gas compositions considered in Example 8.2.

Composition (mol %) Lean gas Rich gas Very rich gas
Nitrogen 1.0 1.0 1.0
Methane 95.6 87.6 83.6
Ethane 3.1 6.5 8.5
Propane 0.2 3.9 4.9
n-Butane 0.1 1.0 2.0

natural gas streams are supplied to the process. One case assumes the natural gas

is the same as in the first column of Table 8.4, while the other three compositions

considered are given in Table 8.7, two of which have lower methane content than the

base case (richer natural gas) and one of which has higher methane content than the

base case (leaner natural gas). The natural gas streams are supplied at 5.5 MPa,

295.15 K and 1.0 kmol/s in each case with a target temperature of 110.15 K.

Each case is optimized using IPOPT with the options given in Table 8.2. Numer-

ical results for each feed stream are given in Table 8.8 and the temperature driving

force profiles in the MHEX for all four cases are compared in Figure 8-9. As in

the previous example, the iteration count, CPU time and improvement statistics are
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reported based on an initial point generated by solving a simulation problem as de-

scribed in Example 7.2 (Variable Set I) except with different natural gas feed streams

and a UA value of 15.0 MW/K.

Table 8.8: Key process metrics for locally-optimal solutions obtained from instances
of the PRICO process with varying natural gas composition (n2p = 20, UAmax= 15.0
MW/K).

NG methane mol% 83.6% 87.6% 91.6% 95.6%

Power (MW) 18.68 18.56 18.46 18.35
Pressure ratio 11.70 11.29 10.80 11.10
PLPR (MPa) 0.142 0.155 0.171 0.168
PHPR (MPa) 1.664 1.748 1.850 1.863
FMR (kmol/s) 2.22 2.24 2.27 2.22

ZMR (mOl %):
Nitrogen 6.02 6.48 6.97 6.90
Methane 22.98 22.99 23.30 23.69
Ethane 33.05 34.44 35.72 36.11
Propane 0.00 0.00 0.00 0.00
n-Butane 37.95 36.08 34.01 33.29

ATmin (K) 1.22 1.24 1.25 1.32

IPOPT iterations 29 89 33 29
CPU time (s) 107 359 140 133
Improvement from 14.8% 14.0% 13.3% 13.1%
initial feasible point

A very similar process in terms of the power requirement, pressure ratio, refrig-

erant flowrate and minimum approach temperature is found for each set of optimal

operating conditions in Table 8.8. However, the optimal refrigerant composition and

pressure levels do vary from case to case, as do the temperature driving force pro-

files in the region where the natural gas stream traverses the two-phase region. As a

result, the optimal conditions corresponding to any of these natural gas streams are

not optimal for any of the others and can even lead to infeasible operation as a result

of temperature crossovers. Table 8.9 shows the changes in process power requirement

as a result of operating the PRICO process with each solution shown in Table 8.8 for

each natural gas feed composition, pairwise. In the context of Table 8.8, "infeasible"

means that some target parameter of the process (e.g. the product LNG tempera-
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Figure 8-9: Optimal approach temperature profiles in the MHEX
with UA = 15.0 MW/K with varying natural gas composition.

of a PRICO process

ture) would have to be relaxed for the flowsheet to have a physical solution. These

data underscore the importance of being able to determine new optimal conditions

efficiently in the event of changes in feed gas composition to ensure process reliability.

8.3.2 Complex SMR processes

Two more advanced SMR liquefaction processes that were previously simulated suc-

cessfully using the nonsmooth flowsheeting strategy by Vikse et al.1 12 are now studied.

The first process (Figure 8-10) is a more advanced version of the PRICO process in

which the refrigerant mixture is phase-separated prior to entering the MHEX. The re-

sulting liquid phase MR stream containing the heavier hydrocarbons only participates

in heat exchange at the warmer end of the MHEX as a safeguard against freezing and

plugging of the exchanger tubes. The second process (Figure 8-13) is a natural gas
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Table 8.9: Change in power consumption for the PRICO process when each solution
from Table 8.9 (rows) is used to operate the process for each of the four natural gas
feed streams (columns).

Very rich gas Rich gas Base case Lean gas

Very rich gas - +0.19% +0.68% +1.08%
Rich gas +0.33% - +0.18% +0.49%

Base case Infeasible +0.37% - +0.18%
Lean gas Infeasible Infeasible +0.51%

298.15 Ko-CT OU
PHPR

fMR

Feed Gas

I

PLPR

TOUT

PLPR

TOUT

LNG

Figure 8-10: Flowsheet of an SMR process with phase separation of the refrigerant.

liquids extraction process with two MHEXs in which the heavier components of the

natural gas stream are removed by flash separation between the two heat exchang-

ers. This process also features phase separation of the refrigerant stream. As in the

previous examples, all compressors are assumed to have an isentropic efficiency of

80% and condensers are able to exchange heat with a large enough sink to cool hot

mixed-refrigerant streams to 298.15 K.

Example 8.3. The flowsheet of this more advanced SMR process with a phase sep-

arator is shown in Figure 8-10 with key decision variables and parameters indicated.

Most of these variables are the same as detailed in Example 8.1, with some additional
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variables included to model the additional exit temperatures of the refrigerant mix-

ture streams. In particular, TPU and To 1 refer to the hot and cold MR stream

leaving the warmer side of the MHEX, respectively, while TPN 2 and T OT2 denote the

hot and cold MR stream leaving the cold end of the MHEX, respectively. As before,

TO 2 is fixed to the target temperature of the LNG product stream, i.e. 110.15 K

in this instance of the process, as this is well-known to be optimal. TJPU is included

as an additional decision variable with a lower bound of 180 K and an upper bound

of 400 K. TP 2 is also included as a decision variable with lower and upper bounds

of 150 K and 400 K, respectively. All other variables are still constrained within the

ranges shown in Table 8.3. The flash vessel in the refrigerant stream operates adi-

abatically at the high-pressure level, while the stream mixer operates adiabatically

at the low-pressure level. Neither of these additional unit operations have decision

variables associated with them. Thus, the decision variable vector for this process

optimization problem is as follows:

x - (PLPR, PHPR, fMvR, ATmin, TpkTi, LO ?O1, T1OT2, T),

with T again representing the vector of unknown temperatures in the superheated and

subcooled region of each of the five process streams in the MHEX. With this variable

set, this process optimization problem has 51 variables, 42 equality constraints and 2

inequality constraints.

The process is now optimized subject to four different values of UAmax. As noted

by Vikse et al., 13
1 the use of different refrigerant mixture compositions (as a result

of the phase separation) to provide cooling at different temperature levels results in

less refrigerant needing to be circulated at the cold end of the heat exchanger where

irreversibilities are most significant. This means that less power is required to achieve

the same liquefaction as the basic PRICO process for the same heat exchanger con-

ductance, or equivalently that a significantly smaller heat exchanger can be installed

to achieve the same power requirement. For this example, the options set in IPOPT

are exactly the same as shown in Table 8.2. The numerical results for optimization of
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the process subject to UAmax = 6.0, 8.0, 10.0 and 12.0 MW/K are given in Table 8.10

and the approach temperature profiles for the MHEX in each case are shown in Figure

8-11. In Table 8.10, the iteration count, CPU time and improvement statistics are

reported based on an initial point generated by solving a simulation problem under

conditions given in Case II of Example 1 from Vikse et al.,'1 2 though with different

fixed values of the MHEX conductance. ,

Table 8.10: Key process metrics for locally-optimal solutions obtained from instances
of the advanced SMR process in Figure 8-10 with varying UAmax value (n2p = 20).

UAmax (MW/K)

Power (MW)
Pressure ratio

PLPR (MPa)
PHPR (MPa)
FMR (kmol/s)

ZMR (MOI %):
Nitrogen
Methane

Ethane
Propane
n-Butane

ATmin (K)

IPOPT iterations
CPU time (s)
Improvement from
initial feasible point

6.0

19.61
23.23
0.100
2.323

1.99

2.69
19.78
37.03

1.80
38.69
2.09

41
267

12.9%

8.0

18.66
17.92
0.121
2.167

2.07

3.38
19.19
38.21

0.84
38.38

1.72

46
281

7.8%

10.0

18.05
13.96
0.153
2.148
2.19

4.35
19.31
39.65

0.00
36.69

1.39

54
326

5.0%

12.0

17.59
10.75
0.199
2.136

2.37

5.46
19.78
40.50

0.00
34.26

1.21

41
214

3.8%

The overall trend in the results is very similar to what was observed in Example 8.1

for the PRICO process. As UAmax is increased, the refrigerant flowrate increases, the

pressure ratio decreases and propane disappears from the optimal refrigerant mixture.

Unlike the PRICO process, however, the superheating constraint is active in each of

the four cases, implying that the power requirement could be further decreased if a less

conservative value of ATsup,min were chosen. The overall power requirement for the

process is also substantially reduced compared to the demands of the basic PRICO

process. Indeed, similar process power requirements are observed for this process

and the basic PRICO process when the MHEX conductance value is approximately
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Figure 8-11: Optimal approach temperature profiles in the MHEX of an advanced

SMR process with varying UA value.

halved, indicating significant benefits to performing phase separation of the mixed

refrigerant for liquefaction trains that have stringent space or capital expenditure

limits.

As in Example 8.1, additional optimization problems were solved to give a better

sense of the parametric variation of the power requirement and ATmin over a range

of UAmax values even larger than that shown in Table 8.10. The results of these

optimization problems are shown in Figure 8-12. Once again, the clear trends and

monotonicity of these profiles suggest that high-quality local solutions are being found

reliably by this optimization strategy.

Example 8.4. The flowsheet of this complex liquefaction process with intermediate

NGL extraction and phase separation of the mixed refrigerant is shown in Figure

8-13 with the decision variables indicated. In this case, the outlet temperatures as-

269



2.5 -20

2.0- -19

e-4ATmin

1.5 -- e Power - 18

1.0 17

16
0.51-

5 10 15 20 25
UAmax(MW/K)

Figure 8-12: Optimal values for ATmin and compression power in the advanced SMR
process as the value of UAmax is parametrically varied in the optimization formulation
of Equation (8.1).

sociated with MHEX 1 (the precooling heat exchanger) are denoted by T 1ii and

T&pO[ and the outlet temperatures associated with MHEX 2 (the main cryogenic

heat exchanger) are denoted by Tpi 2 and TOUT 2. In total, three streams will exit at

temperature TPU 1 , both hot MR streams and the natural gas stream entering the

phase separator, though in this process, this variable value is not fixed a priori. As

before, T~pUR 2 is fixed to the target temperature of the LNG product, which in this

case is 120.15 K. Additionally, each heat exchanger will have a conductance, mini-

mum temperature difference and unknown temperature vector associated with it, as

indicated by appropriate subscripts. For this process, instead of individually specify-

ing UAmax for each MHEX, a UAmax value is chosen for the overall maximum heat

exchanger conductance (i.e. a value based on the total allowable capital investment

or physical space restrictions), and the optimizer will decide how to apportion the
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Figure 8-13: Flowsheet of an advanced SMR liquefaction process with intermediate

NGL extraction.

total amount between MHEX I and MHEX 2. Accordingly, the UAmax constraint in

Equation (8.1) is replaced by UA1(x) + UA2(x) < UAmax. In summary, the decision

variable vector is as follows for this NGL extraction process:

x =(PLPR, PHPR MNR, ATmin,1, ATmin,2, LPU ,pOUT LP-,U 2, T, IT2A

and so the optimization problem has 68 variables, 60 equality constraints and 2 in-

equality constraints in total. The bounds on the pressure levels, component flowrates

and outlet temperatures are either as shown in Table 8.3 or as described in Example

8.3, as appropriate. Both ATmin values are constrained to the interval [0.1, 10.0] and

the each component of T1 and T2 is constrained to the interval [80.0, 400.0]. Both

the flash vessel in the refrigerant stream and the NGL extraction vessel operate adia-

batically, at the high pressure level and at the natural gas feed pressure, respectively.

The stream mixer operates adiabatically at the low pressure level, as in the previous

example. As in the simulations performed by Vikse et al.,"' the feed natural gas

stream is richer and enters at lower pressure than in the previous examples to ensure

adequate separation of the NGL product. For this instance of the process, the natural
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gas initial composition is given by the "very rich gas" column of Table 8.7, and the

stream enters the process at 3.5 MPa with a flowrate of 1.0 kmol/s. For the purposes

of this example, assume that the low methane content of very rich feed stream makes

the final heating value of the product unacceptable. Therefore, the quality of this

stream is upgraded by splitting the feed into a NGL product consisting primarily

of heavier hydrocarbons and a lean LNG product. The three target methane molar

percentages for the LNG considered in this example are 87.6%, 91.6% and 95.6%,

and three optimization problems are solved subject to the addition of an inequality

constraint on these minimum methane content values for the LNG product. For this

process, the options in IPOPT are chosen as shown in Table 8.2 with the exception of

the overall tolerance, "tol", which is increased to a value of 0.1, which, as described

earlier, is equivalent to loosening the dual feasibility tolerance. This is done because

it was observed that in each of the three cases, the optimization algorithm would

quickly make significant improvement from the initial point to new primal feasible

points and then iterate around such points, unsuccessfully attempting to reduce the

dual infeasibility until the iteration limit was reached. As noted earlier however,

Equation (8.2) need not hold for nonsmooth points, and so this behavior suggests

that the solver is likely attempting to converge to an optimal but nonsmooth point.

Accordingly, the dual tolerance is reduced to a level where the algorithm terminates

at such points.

The numerical results for these studies with UAm. = 10.0 MW/K for the three

different levels of product upgrading are given in Table 8.11 and the approach tem-

perature profiles in the MHEXs in each case are shown in Figure 8-11. The reported

iteration counts and CPU times are reported based on an initial point generated by

solving a simulation problem analogous to those described in Example 3 of Vikse et

al. 132 In this example, the initial point generated in each case was not feasible in the

quality constraint; however this evidently did not impact the rapid convergence to

optimal solutions.

As higher purity natural gas is required, the temperature at which the NGL ex-

traction process occurs increases to remove more of the C2+ hydrocarbons, as ex-
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Table 8.11: Key process metrics for locally-optimal solutions obtained from instances
of the NGL extraction process in Figure 8-13 with UAmax = 10.0 MW/K (n2p= 20).

LNG methane mol % 87.6% 91.6% 95.6%

Power (MW) 17.04 15.56 13.69
Pressure ratio 9.14 10.25 14.41

PLPR (MPa) 0.161 0.158 0.101

PHPR (MPa) 1.474 1.624 1.460

THPUR (K) 196.29 218.71 239.54
LNG flowrate (kmol/s) 0.931 0.840 0.573
FMR (kmol/s) 2.52 2.17 1.56

ZMVR (MOI %):
Nitrogen 2.72 2.48 1.17
Methane 16.21 16.04 12.52
Ethane 39.18 41.76 41.83
Propane 4.78 0.00 0.00
n-Butane 37.10 39.72 44.48

MHEX 1 ATmin (K) 6.76 3.87 1.50
MHEX 2 ATmin (K) 1.68 1.49 0.962
MHEX 1 UA value (MW/K) 1.95 4.02 6.47
MHEX 2 UA value (MW/K) 8.05 5.98 3.53

IPOPT iterations 42 75 53
CPU time (s) 281 458 325
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pected. This also means that the LNG yield of the process decreases as the feed is

progressively upgraded, and so the size of the cold-end MHEX and the refrigerant

flowrate are reduced proportionally. Simultaneously, the pressure ratio in the process

increases as the cold-end MHEX increasingly resembles the low conductance exchang-

ers from previous examples, with the net effect of a decrease in the compressor power

requirement when producing higher quality LNG at a reduced flowrate.

8.4 Conclusions

An optimization strategy for complex natural gas liquefaction processes has been pre-

sented that uses the interior-point local optimization method of IPOPT paired with

a compact yet highly accurate description of process flowsheets given by nonsmooth

models. Despite the nonsmoothness, IPOPT proved to be a robust solver for these

problems, converging in fewer than fifty iterations for the majority of the examples

considered in this chapter. The nonsmooth process model for the MHEXs at the

core of each of the cases described in this work was readily amenable to the prob-

lem formulation given in Equation (8.1) that has been shown to produce the most

optimal process operating conditions in terms of reducing thermodynamic losses and

minimizing compressor power requirements. The processes considered in Examples

8.3 and 8.4 have never been optimized subject to such a formulation in the literature

and the solutions reported here indicate that optimal operation of these processes can

lead to significant cost savings over basic SMR processes such as PRICO.
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Figure 8-14: Top row: composite curves (left) and approach temperature profile
(right) for the NGL extraction process upgrading the feed gas to 87.6% methane.
Middle row: composite curves (left) and approach temperature profile (right) for the
NGL extraction process upgrading the feed gas to 91.6% methane. Bottom row: com-
posite curves (left) and approach temperature profile (right) for the NGL extraction
process upgrading the feed gas to 95.6% methane. UAmax = 10.0 MW/K and n2p
20 in all cases.
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Chapter 9

Conclusions and future research

directions

In this thesis, a new paradigm for simulating and optimizing natural gas liquefaction

processes has been developed using models and methods grounded in recent advances

in sensitivity analysis for nondifferentiable functions. In this final chapter, a summary

of the work completed in the thesis project is presented and avenues for possible future

work based on these contributions are proposed.

9.1 Project summary and conclusions

As the starting point of this project, simulation models that were amenable to rigor-

ous equation solving and optimization methods needed to be developed for key unit

operations in liquefaction processes. It was quickly observed that even in state-of-

the-art process simulators, the unit models for MHEXs were inflexible and unreliable,

frequently converging to nonphysical solutions due to temperature crossovers. There-

fore, a nonsmooth modeling strategy for MHEXs was developed. This nonsmooth

model represents a significant advance over other methods found in the literature

and commercial software that generally only solve the MHEX energy balance, do

not guarantee satisfaction the second law requirement of feasible heat transfer and

do not incorporate information about the physical unit, such as the available heat
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exchange area. In contrast, the new model consists of an energy balance in addi-

tion to two nonsmooth equations, one representing an extension of the classical pinch

analysis algorithm for heat integration, the other an explicit dependence on the heat

exchange area. Respectively, these new equations ensure that the model output is

both thermodynamically and physically feasible. Furthermore, these equations allow

for the specification of two additional parameters, such as the heat exchange area or

the minimum temperature difference, as inputs to the model. This flexibility means

that the model can be used not only in traditional rating calculations but also in

process design problems. The recent development of AD and equation-solving tech-

niques for nonsmooth functions means this model can be solved just as reliably and

efficiently as a differentiable process model. A number of case studies were performed

which demonstrated the effectiveness of the new approach, and this idea of using

nonsmooth equations as a natural means of modeling complex thermodynamic and

transport phenomena became a theme that was repeated to great effect throughout

the project.

In the LNG processing applications relevant to this project, streams in MHEXs

often undergo phase changes between their inlet and outlet. This represented a major

challenge for heat integration calculations (such as those embedded in the MHEX

model), since the assumption of constant heat-capacity streams is violated. To address

this, nonsmooth models were formulated to account for the existence or nonexistence

of phases in heat integration and physical property calculations. In contrast to many

other approaches found in the literature, this formulation does not involve the solution

of a difficult optimization problem since it avoids the use of either disjunctive or

complementarity constraints. A nonsmooth model for phase equilibrium calculations

was also developed. Such a model is necessary in simulation/optimization problems

where many flash calculations must be performed for streams where the phase regime

at the solution is not known a priori, which is often the case for complex LNG

production processes. It was proven that this flash formulation follows directly from

local minimization of the total molar Gibbs free energy of a mixture, and is therefore

thermodynamically sound. The use of this flash model and the enhancements to
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the base nonsmooth MHEX formulation allowed for the simulation and design of

liquefaction processes such as the PRICO process, assuming the validity of simple

thermodynamic models.

The nonsmooth method for flash calculations was effective for systems with sim-

ple thermodynamics (i.e. ideal gas EOS/Raoult's Law), but convergence difficul-

ties were observed when attempting to solve systems with more complex behavior.

Notably, accurate simulations of processes involving hydrocarbon mixtures, such as

natural gas, required the use of cubic equations of state, and initial efforts to use

the Peng-Robinson EOS in the existing PRICO process simulations were met with

very limited success. In most commercial process simulators, flash calculations are

handled using inside-out algorithms due to their robustness with respect to initializa-

tion and computational efficiency. However, these conventional inside-out algorithms

fail if specified flash conditions imply a single-phase result, because the solution is

constrained to obey equilibrium relationships which are only valid in the two-phase

region. Therefore, modified inside-out algorithms were developed that use a nested

nonsmooth equation system to relax equilibrium conditions when necessary, allowing

reliable convergence to single-phase results while still benefiting from the reliability

and efficiency of the original methods. These modified algorithms were found to be

very effective for solving phase equilibrium problems for highly non-ideal mixtures

in both single-phase and two-phase regimes, and even succeeded where commercial

simulation software fails in predicting unusual thermodynamic phenomena such as

retrograde condensation.

In most cases, the nonsmooth inside-out algorithms performed flawlessly; however,

in certain instances that arose when trying to simulate process streams in liquefac-

tion processes, flash calculations involving volatile mixtures at high pressures and/or

temperatures often either converged to nonphysical solutions or failed. It was ob-

served that the primary cause for this was the underlying thermodynamic model being

queried for liquid or vapor properties of a mixture at conditions where one or both of

the phases physically did not exist. To mitigate this, it was noted that ideas had been

suggested in the literature for evaluating and post-processing the density calculated

279



by the EOS to promote convergence of the flash calculations to physical solutions

through nonphysical extrapolations. Starting from these methods, new nonsmooth

algorithms were developed for evaluating appropriate density values for mixtures at

conditions where use of the EOS alone yielded unreasonable results. Unlike the other

proposals in the literature, this new approach required only a reasonably simple algo-

rithmic procedure and could be augmented with accurate sensitivity analysis through

the use of nonsmooth operators and automatic generalized derivative computation.

This strategy was initially tested for several commonly studied equations of state in

hydrocarbon systems and later used successfully in liquefaction process simulation

and optimization studies.

The key elements of the preceding work were then synthesized into a new frame-

work for robustly simulating process flowsheets containing nondifferentiable models

using exact sensitivity analysis for nonsmooth functions. Notably, this allowed for

the inclusion of the nonsmooth inside-out algorithms and the nonsmooth density

extrapolation techniques as external subroutines in flowsheeting problems, resulting

in extremely reliable embedded flash calculations. This new nonsmooth flowsheet-

ing strategy was capable of solving process simulation problems involving nonsmooth

models more reliably and efficiently than the algorithms implemented in existing soft-

ware such as Aspen Plus® or Aspen HYSYS@, and even allowed for the solution of

problems that were beyond the capabilities of classical approaches. The nonsmooth

flowsheet models generated by this strategy yielded extremely compact descriptions of

complex processes that could be solved efficiently using nonsmooth equation-solving

methods (even from poor initial guesses) to find solutions that were guaranteed to be

thermodynamically feasible and physically realizable. Highly accurate simulations of

the PRICO process using the Peng-Robinson EOS were then performed using these

methods.

Finally, a methodology for the optimization of natural gas liquefaction processes

was developed, in which the flowsheets formulated using the aforementioned nons-

mooth framework could be efficiently and robustly optimized using an interior-point

algorithm. The form of the MHEX models at the core of these flowhseets allowed for
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the inclusion of constraints in the optimization formulation that led to solutions ensur-

ing optimal MHEX conductance utilization in order to minimize process irreversibili-

ties. Liquefaction process optimization problems could be solved reliably without the

need for tedious initialization procedures even when highly accurate descriptions of

the process stream cooling curves were requested. As examples of the efficacy of this

strategy, the PRICO process, as well as two significantly more complex SMR lique-

faction processes, were successfully optimized in the context of industrially-relevant

operating scenarios.

The final product of these contributions is a collection of algorithms and models

that may be used to design, simulate and optimize liquefaction processes efficiently

and with extremely high accuracy and reliability. These models are highly compact in

terms of the number of equations and variables seen by the convergence or optimiza-

tion algorithm, less than 1% of the reported size of some of the discrete-continuous

models found in the literature. Accordingly, they require far less complex machin-

ery to solve, with particularly striking improvements in the region of convergence.

Simple initialization procedures are all that are required, even for complex process

optimization problems, and in many cases the initial guesses do not even need to be

feasible in all of the problem constraints for a solution to be found successfully. This

stands in contrast to the involved initialization procedures described in the literature

and often conveniently neglected from run time reports. The automatic calculation

of exact sensitivity information about the nonsmooth functions participating is in-

tegral to the robustness and efficiency of the algorithms developed in this thesis,

allowing nonsmooth problems that would otherwise have been unmanageable to be

solved essentially as readily as their smooth counterparts. In total, this work repre-

sents a significant advance in the state of the art for simulation and optimization of

processes such as liquefaction operations, and is promising evidence that a new gener-

ation of process simulation and optimization technology based around these advances

in nonsmooth modeling and sensitivity analysis would be of great value to the PSE

community and industry.

The algorithms for robust flash calculations and density extrapolation were also
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enormously successful in the context of this work. These algorithms are also not at

all specific to natural gas liquefaction processes; they are readily applied to general

VLE problems in any given process. As shown in Chapter 5 the algorithms handle

activity coefficient models just as robustly as cubic equations of state. These algo-

rithms are direct generalizations of the traditional two-phase algorithms and could

be implemented into existing or newly developed process simulation or optimization

software to great effect.

9.2 Opportunities for further research

As the successful optimization studies of Chapter 8 indicate, the methods developed

in this thesis have not yet been pushed to their limit in terms of the complexity of

the liquefaction processes that can be simulated and optimized. Therefore, the most

obvious extension of this work is to continue exploring this space, working with even

more complex liquefaction cycles featuring, for example, multiple mixed refrigerant

streams'and more MHEX units. More realistic treatment of the compressor trains

could also be included, explicitly modeling multistage compression with interstage

cooling to get a truer sense of the process efficiency. Optimization of processes such

as the Air Products@ Dual Mixed Refrigerant process would be of much industrial in-

terest and relevance. Beyond this, more complex models of the MHEX internals could

also be considered in future, replacing the specifications on UA with specifications on

quantities more relevant to detailed design.

The development of a reliable local optimization algorithm for noncovex, con-

strained nonsmooth functions that can effectively utilize exact generalized derivative

information would also be of substantial benefit to the present work and should be a

focus of future research efforts in the area. The necessity of relaxing the dual tolerance

of the optimizer in Example 8.4 suggests that the weakest link in the current strategy

is the reliance on an optimization algorithm intended for use with twice-differentiable

functions. However, as discussed, algorithms specifically designed for nonsmooth op-

timization are paradoxically far less robust when used in the studies shown herein.
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Available codes for nonsmooth local optimization algorithms are almost exclusively

based around the use of Clarke generalized gradient information, which until recently

have been challenging to compute for all but toy problems due to the lack of sharp

calculus rules for nondifferentiable functions. These algorithms that purport to work

for nonsmooth nonconvex functions then attempt to use aggregated Clarke gradient

information to converge to local minima with limited success. However, the ability to

calculate useful sensitivity information for general nonsmooth functions could replace

the current reliance on the Clarke gradient information and open new avenues for

exploration in the field of nonsmooth optimization. As alluded to in Chapter 8 how-

ever, there are likely to be certain challenges for practical implementations of such

algorithms, such as determining termination criteria that can be tractably verified.

Preliminary attempts to apply deterministic global optimization techniques to

liquefaction process optimization have been met with limited success (see Appendix

C). A positive observation is that the compactness of the MHEX model compared

to other heat integration-based formulations makes it a natural choice for algorithms

that scale exponentially with the problem size. However, the inclusion of realistic

thermodynamic models appears problematic. The bounding and relaxation methods

needed to underapproximate the objective and constraint functions in a branch-and-

bound algorithm struggle or fail to generate useful information for even individual

flash calculations, and the flowsheet models of Chapter 8 require hundreds of nonideal

phase equilibrium calculations, which themselves rely on additional subroutines for

density calculation and possible extrapolation. While the methods of Scott et al."'

and Stuber et al."' theoretically prescribe methods for calculating and propagating

relaxations for implicit functions, these methods have never been applied to problems

with the level of complexity of those under consideration herein. It therefore seems

that improved numerical strategies for generating bounding and relaxation informa-

tion for implicit functions, especially in instances with deeply nested submodels, need

to be proposed and tested. The need for robust local optimization techniques to gener-

ate strong upper bounding information for deterministic global optimization methods

also necessitates the further development of efficient nonsmooth optimization codes,
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as described previously.

In terms of further developing the robust models for the single-stage flash problem

described in Chapters 5 and 6, a clear extension is the derivation of algorithms for

distillation column models using the nonsmooth inside-out approach. Such models

would allow for convergence to solutions with either dry or flooded trays as a result of

(suboptimal) column operating conditions. The articles by e.g. Boston and Sullivan"7

and Russell 106 describe inside-out strategies for multistage separations that could

serve as the starting point for this investigation. It would also be interesting to see if

the new approach to density extrapolation can be applied either directly or with minor

modifications to more exotic equations of state such as the statistical associating fluid

theory (SAFT) model and its variants or the Helmholtz-explicit models that are often

used when extremely accurate predictions of fluid properties are required.

The nonsmooth reformulation of the vapor-liquid equilibrium problem could also

be modified to solve more challenging multiphase equilibrium problems. Initial efforts

have already extended the model to the liquid-liquid equilibrium (LLE) case, 94 but

the other common case of vapor-liquid-liquid equilibrium (VLLE) problems has not

yet been explored. An approach to VLLE problems might build upon existing work

by nesting a nonsmooth LLE formulation into the liquid argument of the nonsmooth

VLE formulation developed in this work, if appropriate ordering of the two liquid

phases and the vapor phase can be established. Additionally, issues with convergence

to both the trivial solution and nontrivial but suboptimal (unstable) solutions is well

known to be a major challenge in LLE and VLLE calculations, so it is plausible that

a variant on the density extrapolation procedure could be developed for this problem.

However, reliably differentiating acceptable properties for the two liquid phases could

prove to be a challenge in implementing this approach.
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Appendix A

Notation

This appendix provides a reference for the most commonly-used abbreviations and

variable names in this thesis. Unless otherwise stated, variables and abbreviations

should be assumed to have the meanings listed here. Note that some roman letters,

particularly A - G, are also sometimes used to represent parameters in correlation

or surrogate models, e.g. in Chapters 5, 6 and Appendix B, and should be read in

context.

A.1 Abbreviations

AD = automatic differentiation

BWRS Benedict-Webb-Rubin-Starling

CPU central processing unit

DIPPR Design Institute for Physical Properties

DMR dual mixed refrigerant

EO equation-oriented

EOS equation of state

HPR high pressure refrigerant

IPOPT = interior-point optimizer

LNG liquefied natural gas

LD lexicographic directional
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LP linear program

LPR low pressure refrigerant

KKT Karush-Kuhn-Tucker

MHEX = multistream heat exchanger

MINLP = mixed-integer nonlinear program

MPCC = mathematical program with complementarity constraints

MR mixed refrigerant

NG = natural gas

NGL natural gas liquids

NRTL = nonrandom two-liquid

PQ pressure-heat duty (flash calculation)

PR Peng-Robinson

PRICO Poly-Refrigerated Integrated Cycle Operations (process)

PS pressure-entropy (flash calculation)

PSE = process systems engineering

PT = pressure-temperature (flash calculation)

SM = sequential-modular

SMR single mixed refrigerant

SQP sequential-quadratic programming

SRK = Soave-Redlich-Kwong

VLE = vapor-liquid equilibrium

A.2 Variables

a, b = cubic EOS constants

A = heat transfer area (M 2 )

AP = classical pinch location function (W)

C = index set of cold streams
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C, = heat capacity (J.mol-'K- 1)

C 1  class of continuously-differentiable functions

D = differential operator

DL lexicographic differential operator

e cartesian basis vector

EBP extended pinch location function (W)

F total feed molar flowrate (mol-s 1 )

Fc, = heat capacity flow rate of hot stream (W-K- 1 )

fc, = heat capacity flow rate of cold stream (W-K 1 )

f component feed molar flowrate (mol-s 1 )

G total Gibbs free energy (J)

G = partial molar Gibbs free energy (J-mol- 1 )

G = element of generalized derivative

H = index set of hot streams

h = specific enthalpy (J.mol- 1 )

Ah = specific enthalpy departure (J.molV)

Ifss(x) set of essentially active indices of PC' function f at x

I = identity matrix

k = equilibrium coefficient

kb = reference equilibrium coefficient

K index set of nondifferentiable points in composite curves

L = liquid phase molar flowrate (mol-s 1 )

= component liquid phase molar flowrate (mol-s- 1 )

m number of residuals kept in memory during Anderson acceleration

M directions matrix for lexicographic differentiation

nc = number of components

P = absolute pressure (Pa)

Psat = vapor pressure (Pa)

P = index set of pinch candidates

p = parameters in a model
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PCI

Q
R

RG

s

S

T

t

AT

ATmin

U

UA

U

V

V

x

XL

Yv

ZF

Y

z

Greek symbols

a

#

class of piecewise-differentiable functions

= heat flowrate (W)

= inner loop iteration variable

gas constant (J - mol- 1 -K-1)

specific entropy (J.mol- 1K- 1)

total entropy (J.K- 1)

temperature (for a hot stream if used along with next entry) (K)

= temperature of cold stream (K)

log-mean temperature difference (K)

= minimum approach temperature between hot and cold streams (K)

overall heat transfer coefficient (W.m 2 - K- 1 )

heat exchanger conductance (W.K- 1)

volatility parameters vector

component vapor phase molar flowrate (mol-s 1 )

= total vapor phase molar flowrate (mol-s 1 )

= unknown variables in a model

= liquid phase mole fraction vector

vapor phase mole fraction vector

feed stream mole fraction vector

= indicator variable in disjunctive formulation

= compressibility factor

= vapor fraction

= variable used to relax equilibrium constraints

= variable in LP objective of the LP-Newton method

= Bouligand subdifferential

= Clarke Jacobian

= Lexicographic subdifferential

= difference

= small parameter, usually termination tolerance
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}

p

V

CO

Subscripts

2 p

BP

c

DP

F

i, j

(i)

(1 : i)

L

mc

mix

sub

sup

V

Superscripts

EOS

extrap,

hi (or U,UB)

id

IN/OUT

in/out

(k)

= molar volume (m 3 .mol')

- inner loop error function in flash algorithms

= molar density (mol-m- 3 )

= outer loop iteration variable vector in flash algorithms

= fugacity coefficient

= Pitzer acentric factor

= outer loop error function in flash algorithms

= two-phase regime

= bubble point

= critical property

= dew point

= feed property

= stream or component indices

= ith column of a matrix

= first i columns of a matrix

= liquid phase property

- mechanical critical property

= mixture property

= subcooled liquid regime

= superheated vapor regime

= vapor phase property

= EOS model

- extrapolation model

= upper bound

= ideal property

= inlet/outlet of physical process stream

= inlet/outlet of heat integration stream

= iteration counter
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lo (or L,LB) = lower bound

p = pinch candidate

ref = reference state

0 = initial (constant) value

' = distinct from unprimed value

= calculated value

* = solution value
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Appendix B

Thermophysical property models

This Appendix gives further details regarding the forms of the major equations of

state used in Chapters 4-8 of this thesis. Numerical values for all parameters used in

this work are available from the databanks of Aspen Plus v8.4.5

B.1 Ideal model

The ideal property model used in the examples in this work, which is heavily based

on the IDEAL property method from Aspen Plus v8.4,j is detailed here. The ideal

gas EOS is simply given by:

P = pRGT. (B.1)

The ideal gas heat capacity of a pure component i is given by the Aly-Lee model,

also called DIPPR Equation 107:1

Cid. = C1,i + c2,i C3,i/T 2 + ( C5 ,i /T 2
P'z sinh(C,i/T)) 4 cosh(C5 ,i/T) (B.2)

where C1,i, ... , C5,i are species dependent constants. The ideal gas enthalpy of pure

component i is then found by calculating:

Ji = CidT, (B.3)
fTre7f
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which may be expressed in closed form as:

, C1  - Tr*f) + C2,2C3,4 (coth(C3,i/T) - coth(C3,i/Tref) (B.4)

- C 4,iC5 ,i (tanh(C5 ,j/T) - tanh(C,i/Tef))

where Tref is a reference temperature that is assumed to be 298.15 K throughout this

thesis. The ideal liquid enthalpy of component i is given by:

h i = h -- A hvap,2, (B.-5)

with the heat of vaporization calculated with the nonsmooth reformulation of DIPPR

Equation 106 given in Chapter 4 as Equation (4.25). Ideal mixing rules are used to

calculate the enthalpy of multicomponent streams:

n.

i= X idh , (B.6)
i=1
n.

id= yyid (B.7)
i=1

The ideal entropy of a (liquid/vapor) mixture is given by:

n. nc
S ITre T f - RG Zi n(i), (B.8)

i=1 i=1

where components of z are placeholders for components of either XL or yv depending

on the desired phase, RG is the universal gas constant, pref is a reference pressure

assumed to be 0.101325 MPa in this thesis and the integral term may be expressed
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in closed form as follows:

TTref

dT = C1, ln(T/T"e) + C2 ,i coth(C3,/T) - In (sinh(C3,j/T))

+ In (sinh(C3,i/Tref))

In (cosh(C5 ,j/T))

- coth(C3 Tre)

- C4 ,i (45tanh(C,i/T) -

Cl
T- tanh(C,i/T re) + In (cosh(C5,/Tr"f))).

(B.9)

Equilibrium coefficients for each component i are calculated assuming Raoult's Law

holds, so that:

psa
t (T)

k p (B.10)

where P"' is the vapor pressure of component i and is given by the extended Antoine

Equation:

psat = exp (D1 ,j + D2,J/T + D3,iln(T) + D4,jTD5,i) , (B.11)

where D1 ,i,. . . , D5 ,j are species dependent constants. Bubble points and dew points

are found be solving the following equations for TBP and TDP, respectively :

n.

PBP = .TXL,iPisat BP),

1
PDP n, yv,i

i=1 PFat(TDP)

(B.12)

(B.13)

Isentropic expansion and compression of a single-component ideal gas is governed by

the equation:

Tout  pout

Tin pin)
(B.14)

where y -C /(C d - RG) is the heat capacity ratio. Pumps for single-component

ideal liquids are also assumed to be isentropic and operate on an incompressible fluid

so that:

hid(To"t) = id(Ti") + pout - pin

PL
(B.15)
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where PL is the liquid's density. Isentropic pressure-changing operations involving

ideal gases mixtures may be modeled by equating the inlet and outlet entropy values

obtained from Equation (B.8) and solving for the outlet temperature.

B.2 Peng-Robinson EOS

The Peng-Robinson cubic EOS written in pressure-explicit form and in terms of den-

sity is as follows:

~PRGT ap2

P = pG p2(B. 16)1 - bp I + 2bp - b2p 2  (

where a and b are mixture parameters that are calculated from the pure component

parameters through mixing rules. Note that, in the following, z should be replaced

by XL when calculating liquid phase properties and by yv when calculating vapor

phase properties. In standard practice (and this thesis), a quadratic mixing rule is

used for a and a linear mixing rule is used for b, that is:

nc nc

a zi zj Va-ja (1 - ki,j), (B. 17)
i=1 j=1

n.

b zibi, (B. 18)
i=1

where kij is the binary interaction parameter between species i and species j, and,

for each component i = 1, . . . , nc:

ai = 0.45724 '' , (B.19)

ai 1.0 + (0.37464 + 1.54226wi - 0.26992w) ( - 1 (B.20)

bi = 0.07780 RGTc,i (B.21)
Pc,i

where wi is the Pitzer acentric factor of component i. Note that these definitions

show that a is a function of temperature and composition and that b is a function of

composition. The partial derivative of pressure with respect to density for this EOS
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is given by:
RGT _ 2ap(bp + 1)

(bp -1) 2 (b 2 p2 - 2bp -1) 2 (B.22)

Assuming now that the EOS has been solved for the density value of a chosen

phase (see Chapter 6), the enthalpy departure function for that phase in terms of

the compressibility factor Z = P/(pRGT) and parameters A - (aP)/(R2T2) and

B - (bP)/(RGT) is as follows:

Ah = RGT(Z - 1) -
2 v2b

(B.23)

and the entropy departure function is:

aa Z + (I + v/2)B
As = RG ln(Z - B) + aT In

2 vb Z + (1 - V)B

The fugacity coefficient of mixture component i is given by:

n# = A 2 E n zjVW-ja(1 - ki,j)I 2B (2Z1 a

b -

-)

(B.24)

(B.25)

and corresponding equilibrium coefficients are given by:

#L (TI P, x)ki(TP, xL,yv - (B.26)
#1Y (T, P, y)

B.3 Other equations of state

Several other equations of state are used briefly in examples throughout Chapters 5

and 6.
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Redlich-Kwong and Soave-Redlich-Kwong

The Redlich-Kwong cubic EOS expressed in terms of density is given by:

P = pRGT _ ap2  (B.27)
I - bp VyT(1 + bp)'

where mixture parameters a and b are calculated from the mixing rules in Equations

(B.17) and (B.18) with

R2 T5 /2

ai = 0.42748 G ci
P.,ic i

bi = 0.08664 RGic i

PC'i

Note that there is no temperature dependence in the species a values for this EOS.

Soave's modification of this EOS is given by:

P pRGT _ ap2  (B.28)
1 - bp (1 + bp)'

where mixture parameters a and b are calculated from the mixing rules in Equations

(B.17) and (B.18) with

ai = 0.42748 ' ,

i = [1.0 + (0.48508 + 1.55171wi - 0.15613w?) (i -

bi = 0.08664 RGc,i
PC'i

where a temperature dependence is again embedded in the EOS parameters, as in the

Peng-Robinson EOS. Departure functions and fugacity coefficients may be obtained

from these equations of state once they have been solved for density (or compressibil-

ity) to yield equations similar to that for the Peng-Robinson EOS.
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Benedict-Webb-Rubin- Starling

The BWRS virial EOS written in pressure-explicit form and in terms of density is as

follows:

P =pRGT + (BRGT - A - + - _) p 2 + (bRGT - a - ) p'

+ a (a + A) p' + 4 +p 2) exp( _,p 2),

(B.29)

where the 11 mixture-dependent parameters are obtained from the pure-component

parameters by the following identities:

nc
B = zB,

i=1

nc nc

A=Z~z
i=1 j=1

nc nc

C =, E

i=1 j=1

nc nc

D = E Z
i=1 j=1

n. nc

E=>,CEz
i=1 j=1

nc

zjV'A Aj(1 - ki,j),

z j/CiCj (1 - ki,j)3

z y/DiDj(1 - ki,)4,

iz y/Ei Ej(1 - ki,j)',

nc 3

b= (tz b 1/3

nc 3

a= ( z ia /3

i=1

nc 3

C = z c 1/3

Ttc3

d = zid 1/3
i=)

nc 3

a = Zia 1/3

2
1/2

The pure component parameter values and binary interaction parameter values (ki,j)

may all be obtained from a database such as Aspen Plus.5 The partial derivative of

pressure with respect to density for this EOS is given by:

P =RGT+2(BRGT-A- -TL+ D--p)p+3(bRGT-a-T)p 2

6a (a + A) p5 + (3(1 + _Yp 2 ) - 2_Y2 P4 ) exp(__YP 2).
(B.30)
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Activity coefficient models

In Chapter 5, some nonideal liquid phases are modeled with either the NRTL or the

Wilson activity coefficient model. The NRTL model defines activity coefficients as

follows:

j1 XLj7jiGji

-1cxL,kGki

flc

j=l

XL,jGjj

n XLkGk i -

Z.=" 1 XLmTmjiGmj

nc lXL,kGk '

Bii-
T = Aij + + Cij ln(T) + DjjT,

Gi =exp(-T2 (Ei j + Fj (T - T ref)))

and A F . 2.. ,i are asymmetrical binary interaction parameters.

The Wilson model defines activity coefficients as follows:

nc

1:GijxL,jIn-yj = 1 - In

In Gij = Aij

nc

- E
j= 1

+ +Cij ln(T) +

GjiXL,j

k= 1 Gjx L~k'

E= --

DjjT + Ei,DT2

where Aj , ... , Ei are asymmetrical binary interaction parameters (distinct from the

parameters in the NRTL model). In both cases, the excess enthalpy of mixing can be

calculated using the identity:

n. /
hE G 2 XL,i 7 ,-RGT h OT

and equilibrium coefficients for component i are given by:

ki(T, PxL, yV) =
-y (T, XL)i (T)

#< (T, P, y)P
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Appendix C

Prospects for global optimization

This Appendix assumes that the reader is familiar with the fundamentals and nomen-

clature of the branch-and-bound algorithm for global optimization, as well as methods

for bounding the range of factorable functions, including interval analysis, McCormick

relaxations and the more recently-developed differentiable McCormick relaxations. 66

In this first section, it is shown through example how the nonsmooth MHEX model

can be used effectively in a branch-and-bound algorithm in which convex underesti-

mators are calculated using the differentiable multivariate relaxations developed by

Khan et al.6 6 As noted previously in this thesis, global optimization problems involv-

ing MHEXs are often formulated as an MINLP due to the pinch constraints, which

results in the addition of a large number of constraints and binary variables to the

problem. Direct use of a nonsmooth formulation avoids this undesirable increase in

complexity.

C.1 Global optimization of the multistream heat

exchanger model

Consider the optimization of the offshore process concept for LNG production featur-

ing compression and expansion of process streams from Example 3.5. The flowrates,

temperature levels and pressure levels of the natural gas streams and carbon dioxide
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streams in the process are once again considered fixed based on the preliminary design

work described in Wechsung et al.' 41 As in Example 3.5, in place of using physical

property calculations and phase detection mechanisms in the simulation, several of

the physical process streams are instead split into substreams of constant heat capac-

ity to approximate the real temperature-enthalpy relationships of their cooling curves.

Table C. 1 details the values of the fixed process parameters, as well as the unknown

stream variables, which are the decision variables in the optimization problem.

Stream

H1 (NG-2-NG-4)
H2 (NG-2-NG-4)
H3 (NG-2-NG-4)
H4 (N 2-8-N 2-9)
Cl (C02-2-CO2 -3)
C2 (C02-2-CO2 -3)
C3 (N 2-2-N2-4)
C4 (N 2-2-N2-4)
C5 (N 2-2-N 2-4)
C6 (N 2-5-N2-7)
C7 (N 2-10-N 2-12)

Table C.1: Data and
production process.

1.00
1.00
1.00

FN2
2.46
2.46

FN2

FN2

FN2

FN2

FN2

3.46
5.14
3.51
1.15
2.11
2.48
2.48
1.80
1.18
1.07
1.04

319.80
265.15
197.35

221.12
252.55
103.45
171.05
218.75

tC6
tC7

Tout, Tout [K]

265.15
197.35
104.75

T ut

252.55
293.15
171.05
218.75

totC6t
tout

unknowns for the global optimization of the offshore LNG

In Wechsung et al., 141 this simultaneous flowsheet simulation and heat integration

problem was modeled as an MINLP using the formulation from Yee and Grossmann. 46

This previous work also did not distinguish between the two physical heat exchangers

in the flowsheet, and instead considered all streams as being part of a single heat

integration problem. For consistency of results, this approach is taken here as well.

However, the problem is instead modeled using the framework recently developed in

Chapter 3, which can be extended to allow for the presence of utilities as follows:

Q H + S (Ti - Tout) = Qc + E fcp, (tout - ti"),
iEH jEC

min{ EBPE - EBPH} = -Q,
pEP

(C.1)

(C.2)
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10.0
PH4

6.0
6.0

10.0
10.0
10.0
PC6
0.1

F, f [kg/s] Cp [kJ/kg] T i", ti" [K]



where QH is the heating utility required by the process and QC is the cooling utility

required by the process.

As in the article by Wechsung et al., " the process is optimized subject to progres-

sively more stringent sets of constraints that limit the amounts of external utilities

and power which the process is allowed to consume. One hot and one cold utility are

assumed to be available at 383.15 and 93.15 K, respectively. The objective function

in all cases is to minimize the required nitrogen flowrate. The same four cases are

studied here:

" Case I: minimize FN2,

" Case II: minimize FN2 such that Wnet 0,

" Case III: minimize FN2 such that QC = 0 and Wnet < 0,

" Case IV: minimize FN2 such that Qc = QH = 0 and Wet < 0,

where Wnet is the net power required by the process. In all cases, bounds on temper-

ature variables are given by the utility temperatures. In addition, some constraints

on the nitrogen stream were also determined by the preliminary design, as follows:

the flowrate of nitrogen is allowed to vary between 0.0 and 2.0 kg/s, the pressure of

stream C6 is bounded between 0.3 and 1.0 MPa, and the pressure of stream H4 is

constrained between 1.0 and 3.5 MPa.

All cases were first resolved in GAMS v24.5 using BARON v15.9 10" with CPLEX

and SNOPT as the LP and NLP solvers, respectively, on an Intel Xeon E5-1650 v2

workstation using six cores at 3.50 GHz and 12 GB RAM under Linux v14.04. Since

BARON cannot directly model multivariate max and min functions, the MINLP

formulation was used. The model consists of 1244 constraints, 363 binary variables

and 173 continuous variables for Case IV, as an example (in this formulation, the

number of binary variables is equal to 3ni , where n, is the number of streams, which

here is 11). The relative termination tolerance in GAMS was set to 10-. The

absolute termination tolerance in GAMS, as well as all feasibility tolerances and

SNOPT or CPLEX tolerances, were left at their default values. An optimal solution
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with objective value within the optimality tolerance of that reported in Wechsung et

al." in all cases. The first three rows of Table C.2 summarize the computational

results for each of the four cases. It is clear when comparing the present solution times

to those reported in Wechsung et al. "' that BARON's performance has improved

significantly on this problem in newer versions.

The four cases were then solved using a basic branch-and-bound code implemented

in C++ using the differentiable McCormick relaxations developed in Khan et al 6 to

construct continuously differentiable convex relaxations. Note that differentiability

must be defined in the sense of Whitney1
1

2 on closed sets (since the relaxations are

necessarily constructed on boxes). The Whitney-C1 relaxations were minimized using

SNOPT v7.23 7 to provide lower bounds on the optimal solution. Using the nonsmooth

modeling approach, Case IV requires 9 constraints and 10 continuous variables, a sig-

nificant reduction compared to the MINLP model. Upper bounds on the solution

value were obtained by first finding an approximate solution to the nonsmooth prob-

lem with SNOPT in derivative-free mode, and then passing the SNOPT solution to

the bundle solver MPBNGC v2.0. 77 The bundle solver was allowed to take a max-

imum of five iterations to attempt to improve the upper bound before termination.

This upper bounding strategy worked well in practice, as the global solution for each

of the four cases was found very early in the branch tree. Optimality and feasibility

tolerances were set identical to those from GAMS for fair comparison. Branching

was performed such that the current box was bisected along the largest current width

relative to the original box dimensions, and nodes were selected according to the

lowest lower bound heuristic. An optimal solution with objective value within the

optimality tolerance of that reported in Wechsung et al."' was found for all cases.

The second three rows of Table C.2 summarize the computational results for each of

these numerical tests.

Noting that BARON was solving the problems more efficiently than the in-house

software largely because of the use of range reduction techniques, these features of

BARON were turned off completely. With this restriction, BARON was not able to

solve any problem except Case I in fewer than 100 hours. For a better comparison, the

302



Solution method Statistic Case I Case II Case III Case IV

BARON v15.9 Time (s) 0.52 2.04 15.68 31.91

(all features) Iterations 2 6 102 1099
Max nodes 2 3 22 74

. Time (s) 0.0039 3511.05 831.90 363.96
Whitney-C relaxations Iterations 1 339,207 146,665 59,597
(no range reduction) Max nodes 1 33,343 13,126 6,442

BARON v15.9 Time (s) 0.38 783.42 6169.10 5989.74

(DBBT only) Iterations 1 45,477 536,407 452,878
Max nodes 1 2,551 23,287 15,499

Whitney-C' relaxations Time (s) 0.0040 141.22 35.67 56.61
Whitny Iterations 1 15,851 3,715 7,647

Max nodes 1 3,561 431 771

Whitney-C' relaxations Time (s) 0.0040 93.99 27.52 35.91
Whit relaxan.ctns) Iterations 1 11,229 1,621 2,095

Max nodes 1 2,702 317 488

Table C.2: Computational results for the global optimization case study.

cases were solved again, this time allowing BARON to only use dual multiplier-based

bounds tightening (DBBT, or option MDo = 1 in BARON) as described by Ryoo and

Sahinidis 0 7 for range reduction (all preprocessing was also left active). DBBT was

also implemented and used in the in-house C++ code using multiplier values calculated

by SNOPT in the lower bounding procedure. The results from these experiments are

shown in Table C.2. Finally, the branch-and-bound code was also augmented with

objective function value cuts in addition to DBBT. The cases were resolved in this

framework and the results are also shown in Table C.2. The CPU cost of each iteration

averaged between Cases II, III and IV for each method is shown in Table C.3.

Even without employing range reduction, use of the differentiable relaxations pro-

vides tight lower bounds for the nonsmooth model and reasonable solution times for

each of the four cases, especially if compared with the original results from Wechsung

et al.14 ' or even the current version of BARON running only the standard branch-

and-bound algorithm. Case II is somewhat of an exception, as the nonsmooth model
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Solution method Average time
per iteration (ms)

BARON v15.9 (all features) 202.42
Whitney-C1 relaxations (no range reduction) 6.39
BARON v15.9 (DBBT only) 13.99
Whitney-C relaxations (DBBT only) 8.63
Whitney-C1 relaxations (DBBT & obj. fun. cuts) 14.16

Table C.3: Average time per branch-and-bound iteration for the methods tested in
the global optimization case study.

appears to be more significantly affected by the degeneracy of the optimal solution

than the MINLP method. With just DBBT enabled as a range reduction technique,

the performance of the differentiable relaxations improves significantly and outper-

forms BARON running with only DBBT in all four cases. When the in-house code

uses both DBBT and objective function value cuts, the solution statistics are very

comparable to those of BARON with all features enabled on the most constrained

case (IV) studied in this example. Additionally, as Table C.3 shows, the average CPU

cost per node in full-featured BARON is significantly higher than for any version of

the in-house code. For more complicated heat integration problems (involving many

streams or including real thermodynamic models), this cost could become prohibitive,

owing to both the large model size and the dependence on costly range reductions

techniques such as probing.

Overall, these results indicate that the nonsmooth MHEX model can be used suc-

cessfully for flowsheet optimization in a deterministic branch-and-bound algorithm

when equipped with the multivariate differentiable McCormick relaxations. Achiev-

ing comparable performance to a state-of-the-art solver using only basic range re-

duction techniques in an otherwise standard branch-and-bound algorithm indicates

that this is a viable strategy for future research efforts. However, realistic flowsheet

optimization requires that actual thermodynamic models be included in the process

models, which, as will be shown in the following section, currently appears to be a

significant challenge.
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C.2 Global optimization with flash calculations and

thermodynamic models

While the MHEX model itself performed well in global optimization studies in the

absence of embedded thermodynamic models, this is not sufficient for realistic lique-

faction process optimization. As shown in Chapters 4 through 8, adding ideal and

nonideal thermophysical property models to a simulation or optimization problem

significantly increases its complexity, with much of the increase in difficulty associ-

ated with the need to perform numerous nested flash calculations in the flowsheet.

Application of deterministic global optimization methods requires that bounding and

relaxation information be available for the flowsheet model, and so interval and Mc-

Cormick analysis techniques must be applied to calculate this information about the

parametric behavior of the solutions of these nested flash models. Unfortunately,

this currently appears to be an obstacle for practical global optimization of realistic

liquefaction processes, as detailed next.

As discussed in Chapter 5, the (nonsmooth) inside-out methods have a nested

loop structure in which the inner loop is converged using a (nonsmooth) Newton type

method and the outer loop is converged using a fixed-point iteration such as Anderson

Acceleration. Table C.4 shows the analogous procedures that must be applied to these

subproblems to calculate either interval bounds or convex relaxations on the results

of these algorithms as functions of the problem parameters. Note that in each case,

the parametric variant of the given method is indeed needed, as the decision variables

in the optimization problem will generally either be or directly affect the parameters

in the flash models. The reference ascribed to each of the interval and McCormick

based techniques in Table C.4 describes the given method in detail.

Much of the previous work concerned with bounding or relaxing implicit functions

has made the assumption that all functions involved are differentiable. Fortunately

for the case of the nonsmooth flash models, this need not be true, and moreover,

incorporating the PC' mid function requires only minor modifications to the estab-

lished procedures. An interval extension of the mid operator is straightforward. For
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Table C.4: Solution, bounding and relaxation methods for the inside-out algorithms.

Evaluation
Inner loop convergence

method

Outer loop convergence

method

Real values Semismooth Newton Anderson Acceleration

Parametric interval Parametric interval
Newton12 0  successive substitution1 2 0

McCormick Mean-value form Direct relaxation of

relaxations relaxations'21 fixed-point mapping121

intervals X - [xL xU], y - [yL yU] and Z - [zL zu,

mid(X, Y, Z) - [mid(xL IL ZL) mid(xu, yU, zU)],

by noting that the inequalities

XL <x<xU YL <Y<YU ZL <Z U

imply that

mid(xL yL zL) < mid(x, y, z) < mid(xu, yU, zU).

The identity given in Equation (2.9) also holds without overestimation when all real-

valued arguments are replaced with intervals. However, as the mid function is in

general a nonconvex function of its three arguments, its convex and concave en-

velopes are nontrivial to derive. The McCormick extension of the mid function is

therefore handled using Equation (2.9) with the multivariate relaxations of Tsoukalas

and Mitsos1 26 used for the bivariate max and min functions. While this likely results

in looser relaxations than the best possible, as will be seen in the following, the failure

to generate useful interval bounds is a greater problem at present that precludes the

ability to calculate tight relaxations.

The parametric interval Newton method requires an interval extension of the Jaco-

bian of the equation system in the case of differentiable equations. In the nonsmooth
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case, the interval extension of the classical Jacobian can be replaced by an interval

extension of the Clarke Jacobian. 88:27 For problems in which the only source of non-

smoothness is a single PC' function, this object is fortunately simple to calculate.

For example, the following procedure can be used for the mid function in the flash

equations. First, determine if the values 0 and/or 1 are included in the interval range

for the vapor fraction, a, in order to determine which selection functions are active.

Then, using AD with an interval subtype, calculate the interval extension of the Ja-

cobian for each essentially active selection function. Finally, take the convex hull of

these intervals to yield an interval extension of the Clarke Jacobian that can be used

in the method. Similarly, the mean-value theorem for locally Lipschitz functions in-

volving the Clarke Jacobian2 7 is used in place of the classical mean-value theorem in

order to apply the method of Stuber et al.' 2 1 to calculate relaxations of nonsmooth

implicit functions. Application of these methods to some simple cases highlights the

present limitations of these techniques.

Example C.1. Consider a PT-flash calculation involving a five-component vapor-

phase mixture of 10 mol% nitrogen, 10 mol% methane, 20 mol% ethane, 30 mol%

propane and 30 mol% n-butane initially at 298.15 K, 0.4 MPa and flowing at 1.0

kmol/s. The flash temperature is 291.5 K and the parameter range for the pressure

is given by the interval [0.4 0.8] MPa. The ideal model described in Appendix B

is used for the thermophysical property method. In order to be able to test the

performance of intervals and McCormick objects in the inside-out procedure, the

algorithm is given an intentionally somewhat poor initial guess box for u (the vector

of volatility parameters, which in the PT-flash case is the vector of the logarithms of

the species' equilibrium coefficients) in place of performing the initialization in Lines

1-6 of Algorithm 5.4. This is done here by computing the equilibrium coefficients

for each species using Raoult's Law in interval arithmetic and then widening each

of these intervals by a factor of two around their respective midpoints. The initial

interval for R in the inner loop (which is equivalent to the vapor fraction, a in the

PT-case) is taken as [0.0 1.0] in Line 7 of the algorithm.

Starting from this initialization, the interval bounds converge (in the Hausdorff
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metric) in three iterations of the parametric interval successive substitution method,

and yield a conservative final interval [0.31483 1.00000] for the vapor fraction. The

techniques of Stuber et al. "' are then used to generate relaxations initialized with

the results of the interval calculations. Figure C-1 shows the value as well as the

convex and concave relaxations of the implicit function a -- x(p), defined by the

solution of the PT-flash model, over the whole pressure interval from 0.4 to 0.8 MPa

(relaxations denoted x" (p) and x" (p)). The procedure was then repeated for the

nested pressure intervals 0.4 to 0.6 MPa (relaxations denoted x" (p) and x' (p)) and

0.6 to 0.8 MPa (relaxations denoted xc (p) and xe (p)), and the resulting tighter

relaxations calculated on these smaller intervals are also shown in Figure C-1.

1.1
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'4-
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C-1: Convex and concave relaxations of the vapor fraction implicitly defined
solution of a PT-flash calculated on nested parameter intervals.

For this simple problem, the methods work quite well, producing valid and rela-

tively tight convex and concave relaxations of the nonsmooth implicit function. How-

ever, if the problem is modified to include a parameter range for the flash temperature,
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then the width of this interval has a significant impact on the success of the bounding

and relaxation techniques. It has been observed that for this problem, increasing the

width of this temperature interval beyond around 5 K (centered on 291.5 K) produces

both very weak interval bounds on a and relaxations that are essentially constant at

the lower and upper bound. Increasing the width of the temperature interval beyond

around 10 K yields useless bounding and relaxation information wien the methods

terminate (i.e. a G [0.0 1.0]). As the temperature intervals in the optimization prob-

lems of Chapter 8 have widths of several hundred degrees, this performance is clearly

not acceptable, as each of these intervals would have to be partitioned many times to

yield useful relaxations for the PT-flash problems embedded in the flowsheet. If there

is also uncertainty in the feed composition, e.g. in a liquefaction process optimiza-

tion with the refrigerant component flowrates included as decision variables, then the

problem becomes even more challenging for the interval methods.

The problem is now attempted with the Peng-Robinson EOS as the thermody-

namic model (with no density extrapolation). The interval methods fail to improve

upon the initial bounds for nontrivial parameter intervals. Even just a narrow pa-

rameter interval for the flash pressure results in nontrivial intervals for the vapor and

liquid phase compositions, which in turn leads to the intervals for the composition-

dependent EOS parameters having substantial width. The presence of a nontrivial

parameter interval for the flash temperature further exacerbates this issue. Calcu-

lation of bounds for the density of each phase via the parametric interval Newton

method then generally fails to provide useful bounding information. The resulting

overly-conservative width of the density interval leads to issues in the fugacity co-

efficient evaluation in Equation (B.25), as the interval arguments in the logarithmic

terms will then almost always contain negative values. Replacing the argument of

these logarithmic terms with an argument of the form max(e, -) for some small E al-

lows the calculation to proceed, but is also problematic as the choice of e will then

almost always have a direct impact on the outcome of the calculation and lead to

significant overestimation in the fugacity coefficient calculation. This results in ex-

tremely conservative bounds on the equilibrium coefficients and so the bounds on the
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vector u subsequently fail to be improved by interval iteration.

Example C.2. Now consider PQ-flash calculations on the same mixture from the

previous example. With the flash temperature as an unknown, an interval is calcu-

lated or provided for this quantity as an initial guess and then updated in the inner

loop of the algorithm. However, as noted before, even the ideal physical property

calculations are a source of difficulty with all but extremely narrow intervals for the

flash temperature, and here it is highly unlikely that this will ever be the case in

practice. The issues discussed with regards to nonideal thermodynamics also mean

such calculations are even more sensitive to the width of the flash temperature in-

terval than in the ideal case. As an example of a calculation with the ideal property

method, assume that the pressure parameter interval is given by [0.48 0.52] MPa,

and then consider performing an adiabatic PQ-flash on the mixture (with all other

flash parameters given by real numbers). The initialization procedure in Algorithm

5.1 is used (with surrogate model coefficients C though F fixed to 0 due to the use

of the ideal model) except that initial intervals are provided for T and a instead of

performing the calculations in Lines 1 and 2. Providing initial intervals a E [0.8 1.0]

and T C [285.0 290.0] leads to the outer loop interval iteration converging in 4 iter-

ations and returning a E [0.8510 0.9949] with no improvement in the temperature

interval, both of which significantly overestimate the true range (a E [0.8855 0.8937],

T E [287.127 287.265]) even for this extremely narrow pressure interval and tight ini-

tial guess. Increasing the width of the parameter interval(s) or decreasing the quality

of the guess tends to result in bounds that do not improve from the initial intervals.

This problem is now attempted in BARON v15.9 to test the performance of a

global optimization algorithm on such a calculation. As BARON cannot directly han-

dle nonsmoothness, the classical flash model is used and only problems with two-phase

solutions are considered. Equations (4.8)-(4.12) are given as the problem constraints,

and the ideal model from Appendix B is used to describe equilibrium and physical

properties. Note that the max statement in the heat of vaporization model (Equation

(4.25)) must be replaced, e.g. with the smoothing approximation in Equation (3.10)

with # := 10-. When a constant objective function is provided, the problem is solved
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immediately in preprocessing. However, if one of the flash parameters is included as

a decision variable, this no longer the case. Consider the problem of minimizing the

flash heat duty at constant pressure after adding the constraint that a > 0.5 to the

model, i.e. to determine how much the mixture can be cooled while still producing at

least as much vapor as liquid). Full-featured BARON v15.9 fails to solve this prob-

lem to the desired tolerance in 108 branch-and-reduce iterations, terminating with a

relative gap between the lower and upper bounds of 0.25%. If, instead, the problem

is to maximize the pressure of the adiabatic flash subject to these constraints, then

BARON is able to converge to a global solution after performing 5,545 iterations

taking 14.1 seconds.

Since simulating the PRICO process flowsheet with a reasonably fine discretiza-

tion of the process stream cooling curves requires the solution of over 100 such flash

calculations, each described by a cubic EOS, it is clear that the level of performance

observed in these examples will not suffice. Some potential opportunities for improve-

ment exist before considering more major changes to the methods. For instance, care-

ful examination and possible rewriting of the mathematical expressions used in the

flash calculations algorithms could help to reduce overestimation due to the interval

dependency effect. There may also be more optimal preconditioning matrices that

can be calculated for use in these methods than the midpoint-inverse preconditioner

that was used in these examples. Additionally, a possibly useful modification to the

basic interval calculation technique is to use the algorithm of Hua et al. 3 to provide

interval extensions of mole fraction weighted quantities instead of simply calculat-

ing the natural interval extension of the sum of the products. Those authors note

that this approach is helpful for bounding the range of the composition-dependent

EOS coefficients. However, their work does not consider the parameter-dependent

case, in which intervals for the flash pressure and temperature/heat duty can con-

tribute significantly to overestimation of these coefficients in a manner that cannot

be mitigated by this technique. However, it seems most likely that more substantial

improvements involving the numerical methods themselves are needed for challenging

practical problems.
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