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Abstract

The conventional pathologic analysis of malignancies involves a qualitative charac-
terization and integration of several factors including tumor size, general degree of
differentiation, tumor heterogeneity, mitotic rate, and lymphovascular invasion. For
some cancers, biomarkers such as hormone receptor expression or receptor kinase
over-expression can provide additional prognostic and therapeutic guidance. Unfor-
tunately, all of these qualitative histologic approaches, while generally accepted for
directing patient care, often exhibit significant inter-observer variability resulting in
inconsistent inter- and intra-institutional predictions of tumor behavior (including
metastases and/or recurrence), resulting in incorrect diagnoses or treatment.

Because cellular morphology is an integrated reflection of genetic and epigenetic
expression, we hypothesize that a more accurate quantitative accounting and mea-
surement of histologic features can provide a more robust and reliable prediction of
tumor behavior. Computational imaging utilizes software to augment or replace the
role of traditional optical elements in imaging systems and has an ability to signif-
icantly increase the accuracy, robustness and cost-efficiency of digital pathology. In
this thesis, we develop and test three novel computational imaging algorithms in-
cluding, to the best of our knowledge, the first system for lensless computational
imaging through deep learning. We then test our hypothesis by applying augmented
image retrieval, analysis algorithms, and machine learning on a validated dataset of
breast cancer images where the clinical outcomes of the primary tumor are known.
In particular, we analyze algorithms related to identifying mitoses as a central proof
of concept.

Thesis Supervisor: George Barbastathis
Title: Professor of Mechanical Engineering, MIT

3



4



Acknowledgments

I dedicate this work to my loving wife, Diana, and my son, Liam.

This work would not have been possible without the help and support of a mul-

titude of people.

First and foremost, I would like to thank my research advisor, Professor George

Barbastathis for high incredible kindness, mentorship, and patience with me while I

meandered through graduate studies.

I would like to thank my committee members, Professor Richard Mitchell and

Professor Timothy Padera for taking an interest in my research and for serving on

my committee. I have greatly appreciated your clinical insights and advice.

I would like to thank Irina Gaziyeva for the amazing work she has done behind

the scenes to allow our group to focus more on research and less on paperwork.

I am grateful for all of my past and present labmates in the 3D optical systems

group: Yuan Luo for teaching me the basics of experimental laboratory optics. Laura

Waller for introducing me to OSA "optics fun day" and mentoring me early on. Yi Liu,

Nader Shaar, Nick Loomis, Jose A. Dominguez-Caballero, Se Baek Oh, Hyungryul

Choi, Hanhong Gao, Jonathan Petruccelli, Max Hsieh, and Jeong-gil Kim for helpful

office discussions (sometimes on labwork and many other times on totally unrelated

matters).

I would like to thank Zhengyun Zhang for his helpful comments and insights

at group meeting and Ayan Sinha for patiently explaining questions I had on deep

learning.

I would like to give an extra special thanks to Lei Tian and Shuai Li for their help

with research.

I am grateful to my former HST classmates: Adam Pan, Kelli Xu, Nikhil Vad-

havkar, Vyas Ramanan, and Andrew Warren for being amazing friends, even when I

am horrible at keeping in contact with people.

Outside of lab, I would like to thank Bill Herrington for optics teaching demo

discussions.

5



I am grateful for the Computational Science Graduate Fellowship which has spon-

sored my intellectual curiosity over the course of my studies.

Finally, I would like to thank the community at MIT. I have been a student at

MIT for over a third of my life and consider it my second home. Although I'm eager

to begin the next chapter of my life, I will always look back upon my tenure at MIT

with the fondest of memories.

6



Contents

1 Introduction 23

2 Clinical Motivations 25

2.1 Breast cancer and its clinical management . . . . . . . . . . . . . . . 25

2.1.1 R isk Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3 Classification and Treatment . . . . . . . . . . . . . . . . . . . 26

2.2 Whole-slide imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Background Theory 31

3.1 Classical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Brightfield and Phase Contrast Microscopy . . . . . . . . . . . 31

3.1.2 Numerical Aperture, Magnification, Space Bandwidth Product,

D epth of Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Computational Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Regularization and Sparsity Priors . . . . . . . . . . . . . . . . . . . 34

3.3.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Low-rank matrix recovery . . . . . . . . . . . . . . . . . . . . 36

3.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Regularized Phase Space Imaging Using Sparsity Priors 41

4.1 Phase-space in optics . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Phase-space tomography . . . . . . . . . . . . . . . . . . . . . . . . . 43

7



4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.2 Theory and Method . . . . . . . . . . . . . . . . . . . . . . .

4.3 Denoised Wigner distribution deconvolution via low-rank matrix com-

p letio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3.1

4.3.2

4.3.3

4.3.4

4.3.5

4.3.6

Introduction . . . . . . . . . . . . .

Wigner distribution deconvolution .

Noise considerations in WDD . . .

Noisy matrix completion . . . . . .

Comparison of techniques for WDD

Discussion/ Conclusion . . . . . . .

. . . . 48

49

. . . . 55

57

. . . . 60

. . . . 62

5 Lensless Computational Imaging via Deep Leaning

5.1 Computational Imaging Techniques . . . . . . . . . . . . . . . . .

5.1.1 In-line Digital Holography . . . . . . . . . . . . . . . . . .

5.1.2 Iterative Phase Retrieval: Gerchberg-Saxton Fienup Algoril

5.1.3 Transport of Intensity Imaging . . . . . . . . . . . . . . .

5.1.4 Deep Learning Transport of Intensity Imaging . . . . . . .

5.2 Lensless computational imaging through deep learning . . . . . .

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.2 Experim ent . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.3 Results and Network analysis . . . . . . . . . . . . . . . .

5.2.4 Conclusions and discussion . . . . . . . . . . . . . . . . . .

5.3 Future W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Computational Imaging for Mitosis Detection

6.1 Ptychography and Fourier Ptychography . . . . . . . . . . . . . .

6.1.1 Ptychography . . . . . . . . . . . . . . . . . . . . . . . . .

6.1.2 Fourier Ptychography . . . . . . . . . . . . . . . . . . . . .

6.1.3 Experimental Fourier Ptychography . . . . . . . . . . . . .

6.1.4 Fourier ptychographic imaging through turbid media . . .

6.2 MIToscope: Automated mitosis detection in a desktop microscope

thm

65

65

66

66

68

68

70

70

75

79

81

82

91

92

92

94

95

96

97

8

44

45

48



6.3 Deep learning mitosis detection from focal stack images . . . . . . . .

6.3.1 Dataset/Methods . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.2 T raining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.3 R esults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Concluding Thoughts

A Supplemental Material

A.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . .

A.2 DNN Training . . . . . . . . . . . . . . . . . . . . . . . . .

A.3 Axial perturbation, lateral perturbation and rotation at

training distances . . . . . . . . . . . . . . . . . . . . . . .

A.4 Linear phase modulation . . . . . . . . . . . . . . . . . . .

other two

9

99

99

101

102

109

111

111

113

115

118



10



List of Figures

3-1 4f system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3-2 Compressive Sensing Reconstruction based on knowledge that an un-

derlying signal is "sparse". (left) L2 minimization "grows a circle" until

it touches the plane of possible solutions, yielding an incorrect answer.

(middle) Lo minimization "searches along the axes" and would yield

the correct solution but is NP-hard. (right) L1 minimization "grows

a diamond" and reaches the same solution as the LO norm with over-

whelming probability in cases where the measurements are incoherent

with each other and the restricted isometry property is satisfied. . 35

3-3 Each neuron in an ANN multiplies its inputs by a pre-established

weights, then sums the weighted inputs together and passes the sum

through a nonlinear activation function. Common activation function

include the sigmoid function and rectified linear unit. . . . . . . . . . 38

3-4 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-5 CNN for classification. At the very last layer of the CNN, the values

represent an input's classification state likelihood. . . . . . . . . . . . 39

3-6 LeNet, ResNet, and DenseNet are common DNN architectures. ..... 40

4-1 A temporal spectrogram (musical score) provides more insight into

audio signal than a Fourier Transform of the entire signal can . . . . 42

4-2 Phase-space tomography, ptychography, and Fourier ptychography in

Phase-space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

11



4-3 Experimental setup for WDD. A shifted probe is imaged onto the ob-

ject plane and the resultant field p(x - si) - o(x) is propagated to a

Fourier plane where its intensity is measured. . . . . . . . . . . . . . 50

4-4 Effects of a probe with limited spatial extent and limited bandwidth

on object reconstruction in WDD. (Left) Actual Wigner distribution

of object. (Top Center) Wigner distribution of a finite-extent probe.

(Top Right) Wigner distribution of a band-limited probe. (Bottom

Center) Recovered Wigner distribution of object using finite-extent

probe. (Bottom Right) Recovered Wigner distribution of object using

band-lim ited probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4-5 Effects of a probe with limited spatial extent and limited bandwidth

on mutual intensity reconstruction in WDD. (1) Wigner distribution of

object: (a)actual (b)retrieved using probe with limited spatial extent,

(c)retrieved using probe with limited bandwidth. (2) sheared mutual

intensity of object, o*(xi)o(xi + x): (a)actual (b)retrieved if probe has

limited spatial extent, (c)retrieved if probe has limited bandwidth, (3)

sheared mutual intensity of object's Fourier Transform, O(u)O*(u-s'):

(a)actual (b)retrieved if probe has limited spatial extent, (c)retrieved

if probe has limited bandwidth . . . . . . . . . . . . . . . . . . . . . . 54

4-6 Flow chart of denoised WDD with LRMC using modified SVT. Appli-

cation of our algorithm to a simulated noisy l-D dataset with a band-

limited probe yields a denoised rank-1 mutual intensity reconstruction

similar to rightmost image (matrix is simultaneously completed and

denoised). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4-7 Original object's modulus (left) and phase (right) . . . . . . . . . . . 61

12



4-8 Results of WDD using: LRMR/LRMC, projection method from [67],

and PIE at different noise levels. From left-to-right, the columns repre-

sent: moduli (1-3) of reconstructed object using LRMR/LRMC, "pro-

jection method", ptychography, and phase (4-6) of reconstructed object

using LRMR/LRMC, "projection method", ptychography. The rows

represent the total photon counts available to the detector in a shot-

noise limited imaging system. . . . . . . . . . . . . . . . . . . . . . . 62

5-1 "Compressive holographic inversion of particle scattering." (top left)

In-line DH experimental setup. A 3D scattering potential of bubbles

in water was reconstructed (bottom) from a single 2D snapshot (top

right) using compressive holography. . . . . . . . . . . . . . . . . . . 67

5-2 Deep Learning Transport of Intensity Imaging . . . . . . . . . . . . . 69

5-3 Deep Learning Transport of Intensity Imaging . . . . . . . . . . . . . 70

5-4 Experimental arrangement. SF: spatial filter; CL: collimating lens; M:

mirror; POL: linear polarizer; BS: beam splitter; SLM: spatial light

m odulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5-5 DNN training. Rows (a) and (b) denote the networks trained on Faces-

LFW and ImageNet dataset, respectively. (i) randomly selected exam-

ple drawn from the database; (ii) calibrated phase image of the drawn

sample; (iii) diffraction pattern generated on the CMOS by the same

sample; (iv) DNN output before training (i.e. with randomly initial-

ized weights); (v) DNN output after training. . . . . . . . . . . . . . 77

5-6 Detailed schematic of our DNN architecture, indicating the number of

layers, nodes in each layer, etc. . . . . . . . . . . . . . . . . . . . . . 78

5-7 Quantitative analysis of our trained deep neural networks for three

object-to-sensor distances (a) zi, (b) z2 , and (c) z3 for the DNNs trained

on Faces-LFW (blue) and ImageNet (red) on seven datasets. (d) The

training and testing error curves for network trained on ImageNet at

distance z3 over 20 epochs. . . . . . . . . . . . . . . . . . . . . . . . . 83

13



5-8 Qualitative analysis of our trained deep neural networks for combina-

tions of object-to-sensor distances z and training datasets. (i) Ground

truth pixel value inputs to the SLM. (ii) Corresponding phase images

calibrated by SLM response curve. (iii) Raw intensity images cap-

tured by CMOS detector at distance z1. (iv) DNN reconstruction from

raw images when trained using Faces-LFW [102] dataset. (v) DNN

reconstruction when trained used ImageNet [120] dataset. Columns

(vi-viii) and (ix-xi) follow the same sequence as (iii-v) but in these sets

the CMOS is placed at a distance of z2 and z3 , respectively. Rows

(a-f) correspond to the dataset from which the test image is drawn:

(a) Faces-LFW, (b) ImageNet, (c) Characters, (d) MNIST Digits, (e)

Faces-ATT [86], or (f) CIFAR [108], respectively. . . . . . . . . . . . 84

5-9 Quantitative analysis of the sensitivity of the trained deep convolu-

tional neural network to the object-to-sensor distance. The network

was trained on (a) Faces-LFW database and (b) ImageNet and tested

on disjoint Faces-LFW and ImageNet sets, respectively. The nominal

depths of field for the three corresponding training distances zi, z2, z3 ,

respectively, are: (DOF)1 = 1.18 0.1mm, (DOF)2 = 3.82 0.2mm,

and (DOF) 3 = 7.97 i 0.3mm. . . . . . . . . . . . . . . . . . . . . . . 85

5-10 Quantitative analysis of the sensitivity of the trained deep convolu-

tional neural network to laterally shifted images on the SLM. The

network was trained on (a) Faces-LFW database, (b) ImageNet and

tested on disjoint Faces-LFW and ImageNet sets, respectively. .... 86

5-11 Quantitative analysis of the sensitivity of the trained deep convolu-

tional neural network to rotation of images on the SLM. The baseline

distance on which the network was trained is (a) zi, (b) z 2 and (c) z3 ,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5-12 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to the object-to-sensor distance. The baseline distance

on which the network was trained is zi. . . . . . . . . . . . . . . . . 88

14



5-13 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to lateral shifts of images on the SLM. The baseline

distance on which the network was trained is zi. . . . . . . . . . . . 88

5-14 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to rotation of images in steps of 90. The baseline dis-

tance on which the network was trained is z,. . . . . . . . . . . . . . 89

5-15 Failure cases on networks trained on Faces-LFW (row a) and ImageNet

(row b) datasets. (i) Ground truth input, (ii) calibrated phase input to

SLM, (iii) raw image on camera (iv) reconstruction by DNN trained on

images at distance z, between SLM and camera and tested on images

at distance 107.5 cm, (v) raw image on camera and (vi) reconstruction

by network trained on images at distance z3 between SLM and camera

and tested on images at distance 27.5 cm. . . . . . . . . . . . . . . . 89

5-16 (1) 16 x 16 inputs that maximally activate the last set of 16 convo-

lutional filters in layer 1 of our phase retrieval network trained on

ImageNet at distance of zi, a deblurring network, and an ImageNet

classification network. The deblurring network was trained on images

undergoing motion blur in a random angle within the range [0,180] de-

grees and a random blur length in the range [10,100] pixels. The image

is downsampled by a factor of 2 in this layer. (2) 32 x 32 inputs that

maximally activate the last set of 16 randomly chosen convolutional

filters in layer 3 of: our network, the same deblurring network, and the

ImageNet classification network. The raw image is downsampled by a

factor of 8 in this layer. . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6-1 In ptychography, an illuminating probe function is scanned over a sam-

ple and propagated to an output plane. . . . . . . . . . . . . . . . . . 92

15



6-2 Phase retrieval using the extended Ptychographic Iterative Engine. By

enforcing consistency in overlapping regions' measurements, both the

probe function and object function can be simultaneously retrieved

using the ePIE. (left) object estimate at early stage of ePIE algorithm,

(middle) object estimate at later stage of ePIE algorithm (right) final

object estimate from ePIE algorithm. . . . . . . . . . . . . . . . . . . 93

6-3 Fourier Ptychography Imaging Setup. . . . . . . . . . . . . . . . . . . 94

6-4 In Fourier Ptychographic Microscopy, many low resolution images (cap-

tured using different angles of illumination) are synthesized into a single

higher resolution im age . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6-5 Fourier Ptychographic Image Reconstruction. (left) object estimate at

early stage of algorithm progression, (middle) object estimate at later

stage of algorithm, (right) "ground truth" image . . . . . . . . . . . . 96

6-6 Fourier Ptychographic Image Reconstruction of onion root tip. (left)

raw low-resolution on-axis image fed into ePIE algorithm, (right) high-

resolution ePIE reconstruction . . . . . . . . . . . . . . . . . . . . . 97

6-7 Fourier ptychographic imaging through turbid media. . . . . . . . . . 98

6-8 Fourier ptychographic imaging through turbid media. Top-to-bottom

image pair progression shows the algorithm's current estimates for P1

(left) and P2 (right) over time . . . . . . . . . . . . . . . . . . . . . . 103

6-9 Example MIToscope setup. In the setup on the right, an LED ar-

ray was inserted into the standard brightfield setup to allow Fourier

ptychographic imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6-10 Onion cells in various states of cell cycle. . . . . . . . . . . . . . . . . 104

6-11 Automated onion cell mitosis detection. (top) full field of view/single

image (bottom) zoomed-in field of view . . . . . . . . . . . . . . . . . 104

6-12 2.5p over-focused, 2.5p underfocused, and in-focus images were used

to train our DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6-13 Noise added to images to simulate equal photon budget. . . . . . . . 105

16



6-14 First training set drawn from labeled image. (top-right) cropped im-

ages centered at mitoses pixels (bottom-right) randomly selected non-

m itoses pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6-15 The probability map generated by a DNN trained using set A has a

high false-positive rate. (left) ground truth image with mitoses labeled

in yellow. (right) mitosis probability map (darker = higher probability) 106

6-16 Training set B was generated using cropped images centered at mitoses

pixels (top right) and non-mitoses (bottom right) pixels selected from a

weighted probability distribution proportional to the probability map

generated by the DNN trained using training set A (left) . . . . . . . 106

6-17 (left) ground truth image with mitoses labeled in yellow. (right) Ex-

ample DNN output when trained using training set B. Green circles

denote correctly identified mitoses; the red circle indicates a missed

m itoses (false negative) . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6-18 M itosis detection results. . . . . . . . . . . . . . . . . . . . . . . . . . 107

A-i The optical setup for calibrating the phase and intensity modulation of

SLM. SF: spatial filter; CL: collimating lens; MI, M2: mirror; L1,L2:

lens; POL: linear polarizer; BS: beam splitter; SLM: spatial light mod-

u lator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A-2 Experimentally calibrated intensity modulation curve with error bounds

in the grayscale range of [0,255] for the SLM . . . . . . . . . . . . . . 113

A-3 Experimentally calibrated phase modulation curve with error bounds

in the grayscale range of [0,255] for the SLM . . . . . . . . . . . . . . 113

A-4 Phase modulation curve along with three linear segments fitted to the

curve. ........ ................................... 114

A-5 Phase modulation curve along one linear segment fitted to the curve. 114

17



A-6 Different types of residual layers used in our DNN architecture are

shown in the bottom row which are composed of residual block struc-

tures described above. The strides for convolution filters in the residual

blocks are shown above the filter. . . . . . . . . . . . . . . . . . . . . 116

A-7 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to the object-to-sensor distance. The baseline distance

on which the network was trained is z2 . . . . . . . . . . . . . . . ..  117

A-8 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to the object-to-sensor distance. The baseline distance

on which the network was trained is z3 . . . . . . . . . . . . . . . . . 118

A-9 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to lateral shifts of images on the SLM. The baseline

distance on which the network was trained is z2 . . . . . . ..  . ..  119

A-10 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to lateral shifts of images on the SLM. The baseline

distance on which the network was trained is z3 . . . . . . . . . . . . 120

A-11 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to rotation on the SLM. The baseline distance on which

the network was trained is z 2 . . . . . . . . . . . . . . . . . . . . . . . 121

A-12 Qualitative analysis of the sensitivity of the trained deep convolutional

neural network to rotation on the SLM. The baseline distance on which

the network was trained is z3 . . . . . . . . . . . . . . . . . . . . . . . 122

A-13 Quantitative analysis of our trained deep neural networks on phase

modulated by a single linear segment for three object-to-sensor dis-

tances of (a) zi, (b) z 2, and (c) z3 for the DNNs trained on Faces-LFW

(blue) and ImageNet (red) on seven datasets. (d) The training and

testing error curves for network trained on ImageNet at distance zi. . 123

18



A-14 Qualitative analysis of our trained deep neural networks on phase mod-

ulated by a single linear segment for three object-to-sensor distances

(zi, z2 and z3 ) on different datasets. (i,ii) The images in the first

two columns are the ground truth inputs to the SLM, and the corre-

sponding phase image calibrated for the SLM; (iii-v) columns show the

raw intensity images captured by the CMOS placed at a distance of

z, which are also inputs to our DNN, the reconstruction by the DNN

when trained on Faces-LFW dataset, and the reconstruction by the

DNN when trained on ImageNet dataset, respectively. Similarly, for

columns (vi-viii) and (ix-xi) the CMOS is placed at a distance of z2

and z3, respectively. (a-f) correspond to datasets (a) Faces-LFW, (b)

ImageNet, (c) Characters, (d) MNIST Digits, (e) Faces-ATT, and (f)

CIFAR, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

19



20



List of Tables

4.1 Mean Squared Error of object reconstructions from datasets with dif-

ferent noise levels over 100 trials. . . . . . . . . . . . . . . . . . . . . 63

21



22



Chapter 1

Introduction

The conventional pathologic analysis of malignancies involves a qualitative charac-

terization and integration of several factors including tumor size, general degree of

differentiation, tumor heterogeneity, mitotic rate, and lymphovascular invasion. For

some cancers, biomarkers such as hormone receptor expression or receptor kinase

over-expression can provide additional prognostic and therapeutic guidance. Unfor-

tunately, all of these qualitative histologic approaches, while generally accepted for

directing patient care, often exhibit significant inter-observer variability resulting in

inconsistent inter- and intra-institutional predictions of tumor behavior (including

metastases and/or recurrence), resulting in incorrect diagnoses /treatment [1, 2].

Because cellular morphology is an integrated reflection of genetic and epigenetic

expression, we hypothesize that a more accurate quantitative accounting and mea-

surement of histologic features can provide a more robust and reliable prediction of

tumor behavior. We propose to specifically test this hypothesis by applying aug-

mented image retrieval, analysis algorithms, and machine learning on a validated

dataset of breast cancer images where the clinical outcomes of the primary tumor are

known. In particular, we will analyze algorithms related to identifying mitoses as a

central proof of concept.

This thesis explores algorithms and applications of "computational imaging" to

pathology, which can enable pathologists to image faster, cheaper, more robustly,

and also provide augmented information about the sample being imaged.
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Chapter Two provides a brief background on clinical motivations for the work in

this thesis and reviews the current state of imaging in pathology.

Chapter Three provides background theory on conventional microscopic imaging

and computational microscopy techniques. It also covers background theory on noisy

signal recovery, regularization, and deep learning.

Chapter Four describes phase-space analysis of light fields and presents two novel

applications of algorithms for low-rank matrix recovery to improve signal recovery

in two phase-space imaging techniques: phase-space tomography (PST) and Wigner

distribution deconvolution (WDD).

Chapter Five reviews three lensless imaging techniques and presents simulation

and experimental results of, to the best of our knowledge, the first system ever for

lensless computational imaging through deep learning.

Chapter Six reviews ptychography (and its Fourier dual), presents an experimental

setup for automated mitoses detection in a desktop microscope, and details an exper-

iment testing the hypothesis that deep learning from a focal stack of images (in-focus

image + "lateral flux" image) can provide increased mitosis detection accuracy.
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Chapter 2

Clinical Motivations

2.1 Breast cancer and its clinical management

Breast cancer is the most frequency malignancy in women in both the developed and

developing world. In the United States, the incidence of breast cancer is 118.7/100,000

women per year [3], and 1 in 8 U.S. females will develop breast cancer in her life-

time [4]. Although earlier detection through mammographic screening, increased

awareness, and advances in effective treatments have improved the outcome for many

women, breast cancer remains a significant burden on society with the disease claim-

ing over 40,000 U.S. lives annually [4]. Worldwide, breast cancer affects about 12%

of all women and in 2012, over 1.6 million new cases were diagnosed [5].

2.1.1 Risk Factors

Lifestyle risk factors for breast cancer include: smoking tobacco [6], poor diet [7],
use of hormonal birth control [8, 9], exposure to radiation, and shift work [10]. In a

small minority of breast cancer cases (5-10%), genetics (e.g., BRCA1/2 mutation) is

believed to be the primary cause [11].
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2.1.2 Screening

Breast cancer is commonly diagnosed through screening or a noticed symptom (e.g.,

pain or palpable mass in the breast). Mammography is a common screening method

for breast cancer and is recommended by the American Cancer Society [121 at age 45 or

sooner. Positive impacts of screening mammography include decreased breast cancer

mortality (15% for women in their 40s and 32% for women in their 60s). Negative

impacts include: radiation exposure, false-positive examinations, and anxiety. The

risk of a false-positive mammogrography over a 10-year period for women screened in

their 40s is 61%, and this false-positive risk decreases with age [121.

Collectively, physical examination, mammography, and microscopic evaluation are

used to diagnose breast cancer. When physical examination and mammography are

inconclusive, a sample in the lump may be acquired via fine needle aspiration (FNA)

and examined under brightfield microscopy to help establish a diagnosis. For instance,

clear fluid is suggestive that the lump is likely not cancerous, while microscopic ob-

servation of cancerous cells suggests a more serious diagnosis. In addition to FNA,

microscopy slides prepared from core biopsy or excisional biopsy samples may also be

examined under brightfield microscopy.

2.1.3 Classification and Treatment

Breast Cancers are commonly classified by:

" Stage

Breast cancer staging is commonly done using the TNM system, which stages

breast cancer based on tumor size (T), presence/ absence of axillary lymph node

metastases (N), and whether or not the tumor has metastasized (M). Larger size,

nodal spread and presence of metastases indicate a worse prognosis.

" Histopathology (histologic appearance)

The three most common histopathological breast cancer types are [131:

1. Invasive ductal carcinoma (55% of U.S. breast cancers)
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2. Ductal carcinoma in situ (13% of U.S. breast cancers), and

3. Invasive lobular carcinoma (5% of U.S. breast cancers)

e Receptor status

ER, PR, and HER2 receptor status are routinely assessed (primarily by immuno-

histochemistry), and targeted therapies exist for patients with e.g., HER2+

status (trastuzumab, an anti-HER2 antibody) or ER+ status (anti-estrogen

hormonal therapy). Example guidelines for treatment based on breast cancer

receptor status and grade are shown in the table below [14]:

1. [ER+/HER2+] "Luminal B/C" (15-20% of No-Special-Type/ductal carcinoma)
Grade 1 ------- > Possible hormone therapy
Grade 2 ------- > Hormone therapy; possible chemotherapy + anti-HER2 Ab (e.g., trastuzurmab)
Grade 3 ----- > Anti-HER2 Ab + hormone therapy + chemotherapy

2. [ER+/HER2-] "Luminal A" (40-55% of NST) + "Normal Breast-like" (6-10% of NST)
Grade 1 ------- > Possible hormone therapy
Grade 2 ------- > Hormone therapy + possible chemotherapy
Grade 3 ----- > Hormone therapy and chemotherapy

3. [ER-/HER2+] "HER2 positive", (7-12% of NST cancers)
Grade 1 ---- > Possible Anti-HER2 Ab (e.g., traatuzumab)
Grade 2 ---- > Anti-HER2 Ab + possible chemotherapy
Grade 3 ---- > Anti-HER2 Ab + chemotherapy

4. [ER-/HER2-] "Basal-like" (13-25% of NST cancers)
Grade 1 ----- > No further treatment (if no cancer in lymph nodes), possible chemotherapy
Grade 2 ---- > Possible chemotherapy
Grade 3 ---- > Chemotherapy

* Grade

When grading a cancer, pathologists qualitatively assess (under brightfield mi-

croscopy) how the overall tissue architecture looks (e.g., presence/ absence of

differentiation/gland formation) and how "ugly" individual cells look (e.g., pres-

ence of pleomorphisms). These qualitative assessments are accompanied by a

(semi-) quantitative measure of mitotic counts. Mitotic figures are counted

manually by pathologists by viewing several high-magnification fields of view

under brightfield microscopy. Quantificiation of the proliferative activity of tu-

mors is of interest to pathologists because the proliferation rate of a tumor has

been shown to strongly correlate with degree of tumor aggressiveness and to be

prognostic of clinical outcome [15, 16].
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Genetic testing of tumor tissue samples (e.g., OncotypeDX, Mammoprint, etc.) has

been successfully commercialized as a means to predict patient risk for relapse and to

help decide if chemotherapy is necessary, but clinical utility of these tests have been

limited by their high cost compared with routine IHC and their lack of availability

in many environments [15]. Additionally, their independent prognostic utility is still

unclear [17] as the majority of markers in commercially available molecular/genomic

tests are proliferation-driven.

Standard management of breast cancer involves surgical removal of affected ar-

eas of the breast (e.g., lumpectomy or mastectomy) and excision of lymph nodes to

check for metastasis. Depending on the cancer's classification (stage, histologic ap-

pearance, receptor status, grade), post-surgical adjuvant therapy (chemotherapy, hor-

monal therapy, targeted therapy, or radiation therapy) may be indicated. Addition-

ally, some breast cancer patients may receive neoadjuvant (pre-operative) chemother-

apy.

Optimal patient care involves both avoidance of overtreatment (e.g., the patient's

tumor would have been cured solely with surgical excision and hormonal therapy, but

a systemic chemotherapy was prescribed) as well as avoidance of undertreatment (e.g.,

the patient is not given adjuvant therapy and the cancer recurs or the patient is treated

with drugs that are ultimately ineffective). The kind of treatment a patient receives

matters as well (e.g., patients with HER2-positive tumors should receive targeted

anti-HER2 treatments and chemotherapy). Any information that helps clinicians

better determine what degree and type of treatment a patient should receive will

enable physician to better tailor treatments for individual breast cancer patients.

2.2 Whole-slide imaging

Brightfield microscopy is the current gold-standard for pathological examination of

tissue sections or smears. Automated whole-slide imaging (WSI) involves robotically

scanning and digitizing an entire histology slide under brightfield microscopy. After

image acquisition, image-stitching algorithms are applied to merge each field of view
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captured into a digitized "whole-slide." The first automated, high-resolution WSI

system was developed by Wetzel and Gilbertson in 1999 [18]. This system was built

upon a traditional light microscopy setup ("shift-and-stitch" whole slide imaging) and

had a primary magnification of 20x, a numerical aperture of 0.7, and a detector pixel

size of 6.6um [18]. In the past two decades, numerous companies have improved upon

this system, and many modern WSI scanners utilizing linescan camera synced via

time-delay integration (TDI) can image entire slides at 100x within a few minutes).

Significant advantages of WSI over conventional microscopy include: (1) acces-

sibility (images can be viewed anywhere at any time), (2) ease of sharing and re-

trieval of archival images, and (3) ability to utilize computer-aided diagnostic tools

[18, 19, 20, 21]. WSI has been successfully used for: educational purposes (e.g., in

digital slide teaching sets), quality assurance (e.g., archiving), and research. How-

ever, there is currently no whole slide imager that is FDA-approved for determining

primary clinical diagnosis [20, 21] (i.e., at this point in time, WSI may only be used

for second opinion consultations). Additionally, due to its high cost (a single WSI

imaging system can run over $500,000), it is likely that in the near future WSI will

remain constrained to advanced clinical settings. Nevertheless, the field of pathology

is trending towards digital integration, and WSI will undoubtedly play a significant

role in the future of clinical pathology [22].

While not an explicit focus of this thesis, it should be noted that algorithms

and techniques developed in this work may be used to augment current whole-slide

imaging processes or even completely reimagine whole slide imaging from a "lenless

computational imaging" perspective. Such computational whole-slide imaging ap-

proaches may help overcome limitations of traditional brightfield microscopy WSI

systems including: relatively slow imaging speed due to limited field-of-view (trading

off with spatial resolution), cost, and an ability to observe only amplitude information

of the imaged sample.
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Chapter 3

Background Theory

3.1 Classical Microscopy

3.1.1 Brightfield and Phase Contrast Microscopy

Brightfield imaging is the simplest form of optical microscopy. In a brightfield micro-

scope setup, a sample is illuminated by a light source and then imaged with magnifi-

cation onto a camera sensor. A standard brightfield microscope can be thought of as

a 4f system with object specimen placed at the input plane, a microscope objective

lens as L1, a second lens further down the optical train as L2, and no special filters

at the pupil plane.

input plane pupil plane

fi f2

output plane

f2

Figure 3-1: 4f system.

Thus, a thin specimen or object o(x, y) placed at the input (object) plane of a

brightfield microscope will be imaged onto the output plane where a time-averaged

intensity I(x', y') can be observed or recorded by a camera detector. Notably, this
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output image will contain no phase information from the input object (i.e., phase-

shifts induced by the specimen are invisible to the detector).

Many techniques have be used to recover this missing phase information. The most

famous of these techniques is phase contrast microscopy, invented by Frits Zernike

in the 1930s (for which he would later win a Nobel Prize) [23]. In phase contrast

microscopy, a pupil mask "bump" is placed at the Fourier plane of the optical system;

this mask mixes previously invisible/undetectable phase-information into observable

amplitude variations in the output image. These variations allow observation of phase

shifts induced by the sample but are not quantitative in nature.

3.1.2 Numerical Aperture, Magnification, Space Bandwidth

Product, Depth of Field

The Numerical Aperture (NA) of an imaging system is given as n sin 0, where n is

the index of refraction of the surrounding medium and 0 is the maximum angle of

light that the system can capture. This "maximum angle of light" captured by the

imaging system determines its lateral resolution (one needs higher angles of light in

order to reconstruct higher spatial frequencies of an object), and lateral resolving

power is often described in terms of a system's numerical aperture. Additionally, the

two-point resolution distance using the Rayleigh criterion is inversely proportional to

the NA of an imaging system (R ~ ).

Microscope magnification describes the apparent size-increase of an imaged object

compared with its actual size. Magnification is related to but not directly correlated

with NA/optical resolution (e.g., although the most common 20X magnification mi-

croscope objectives have an NA of 0.5, there are exist some 20X objectives with

NA=0.75 and many 40X objectives only have an NA=0.75).

The Field of View (FOV) of an imaging system describes the spatial extent of an

object that can be seen and is calculated for a microscope as:

FOV = Field number (typically -25mm)
Magnification
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FOV increases when magnification is decreased and vice versa. As mentioned

above, a lower objective magnification does not necessarily correspond to lower imag-

ing resolution and it is possible to have a system simultaneous (relatively) high FOV

and resolution.

"Space-Bandwidth Product" (SBP) describes the number of pixels required to

capture the full FOV at full resolution. For example, a 20X/0.75NA microscope

with a 25mm field number has a FOV of 1.25mm in diameter, a two-point resolution

limit of 0.61A ~ 432nm for blue light (~ 532nm). To Nyquist-sample this spatialNA "

frequency, the (demagnified camera) pixel dimension must be < 216nm. Thus, the

number of pixels required to capture the full diameter of the FOV at full resolution

is: 2""m ~5787, and the total number of pixels required to capture a circular field

of view would be: ~ 26 million.

3.2 Computational Imaging

Traditional brightfield imaging techniques have several limitations. The first is physics,

specifically the diffraction limit, which inherently limits the optical resolution of

brightfield microscopy, such that even with an infinitesimally small detector pixel

size, one cannot resolve any features smaller than the diffraction limit of the mi-

croscope objective. Second, although high NA objectives exist, these objectives are

typically expensive, limit the viewer to a very tiny field-of-view, and also have an

extremely small depth-of-field, requiring high-precision mechanical movements and

calibration in order to acquire quality images. Finally, as mentioned earlier, these

conventional imaging systems also cannot retrieve any information about the phase

of a light field.

In a conventional imaging setup, the objective of the system is simply to make

an exact replica (perhaps magnified) of the object onto the output/camera plane. In

contrast, in a computational imaging system, the goal isn't to try to make an exact

copy of the object at the sensor plane, but instead to pass as much information as

you can through the system given application constraints (e.g., imaging speed, system
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cost, robustness, and/or resolution requirements). In a computational imaging system

any component can be changed or removed; illumination can be coded, abiitrary filters

can be placed at the pupil plane, and there are even computational imaging setups

(including several discussed in this work) where all lenses in the "imaging" system are

removed altogether.

Computational imaging utilizes software to augment or replace the role of tra-

ditional optical elements in imaging systems. By designing imaging hardware and

software in concert, imaging systems can be made simpler/more robust and have

capabilities beyond that of traditional imaging systems. Examples of popular compu-

tational imaging setups include: digital holography (Chapter 4), transport of intensity

imaging (Chapter 4), and iterative phase retrieval techniques such as the Gerchberg-

Saxton Algorithm (Chapter 4), and Ptychography (Chapter 5):

3.3 Regularization and Sparsity Priors

Many computational imaging inverse problems are ill-posed. In order to solve these

problems, regularizers are often employed. With regularization, an ill-posed problem

can be cast as [24]:

argmin { Ax - bf| 2 + a4D(x)}

where the first term IIAx-b1 2 is a "fitness term" representing how well the estimate for

x matches the observed data y and the second term a~b(x) is a weighted regularizer.

a may be tuned to apply more or less regularization.

Two regularization techniques employed in this thesis include compressive sensing

and low-rank matrix recovery.

3.3.1 Compressive Sensing

Compressed Sensing (aka Compressive Sensing) is a method for solving underde-

termined linear systems given a strong prior of input "sparsity" in some domain

[24, 25, 26]. Specifically, given the linear system Ax = b where A is rank-deficient
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Figure 3-2: Compressive Sensing Reconstruction based on knowledge that an under-
lying signal is "sparse". (left) L2 minimization "grows a circle" until it touches the
plane of possible solutions, yielding an incorrect answer. (middle) Lo minimization
"searches along the axes" and would yield the correct solution but is NP-hard. (right)
L1 minimization "grows a diamond" and reaches the same solution as the LO norm
with overwhelming probability in cases where the measurements are incoherent with
each other and the restricted isometry property is satisfied.

(e.g., m < n), any solution (if one exists) will not unique but instead restricted to lie

on a line/plane/hyperplane representing the nullspace of A. The classical solution to

estimating a solution to this problem is to minimize the L2 norm of x (i.e., minimize

the "energy" of x). This is equivalent to growing a circle/sphere/hypersphere until it

touches the line/plane/hyperplane of possible solutions. The first point of contact is

the solution that minimizes the L2 norm (while matching the provided constraints).

In contrast, compressive sensing (CS) theory posits that instead of minimizing

the L2 norm, one should instead minimize the LO norm of the signal in order to find

the "sparsest" solution that matches the given constraints. In practice, since LO-norm

minimization is NP-hard, a convex relaxation is applied and CS algorithms minimize

Li-norms. [24, 25, 261. The CS "object sparsity" assumption is widely applicable

since almost all objects (anything that's not pure noise) can be represented "sparsely"

in some basis (e.g., wavelets). If the class of objects is known (e.g., you know the

images will all be of blood vasculature), then a specialized dictionary or mixed basis

can be trained and utilized for image reconstruction/denoising based on compressive

sensing priors. In this manner, one can seemingly break the Shannon-Nyquist limit to

resolution (because of the a priori knowledge that the object is sparse in a particular
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basis).

In practice, minimization of an object's total variation (TV) norm (L1 norm of the

object gradient) is commonly used in lieu of tailored bases as TV-norm minimization

provides suitable regularization under the assumption that a given object is "smooth".

3.3.2 Low-rank matrix recovery

Low-rank matrix recovery has similar roots to compressive sensing. In the "noisy

matrix completion problem," one tries to recover an underlying low-rank matrix M

from noisy and possibly incomplete measurements of its entries [271. M can by any

real or complex matrix with dimensions m x n and rank r < m, n. Additive or applied

noise can be modeled as perturbations to each matrix entry such that:

Mi = Mi + Zij (3.1)

where the matrix Z accounts for the added/applied noise and the matrix M is the

noisy "approximately low-rank" matrix that is (partially) observed or measured. Of

the complete matrix M, only a subset Q of its entries may actually be observed.

Noisy matrix completion algorithms seek to find a low-rank estimation X of the

original matrix M based on the observed indices Q of the noisy matrix M.

In the case where there is no noise (MI = M), the following optimization may be

used to recover the low-rank matrix exactly, provided that JQ| is large enough and

satisfies certain "incoherence" conditions [24, 27]:

minimize rank(X)
(3.2)

subject to PQ(X) = PQ(M)

where PQ(.) is the operator selecting which entries of the matrix we have measured

and is defined as:
Mi, if (i, j) E E

0, otherwise

Since the problem in (3.2) is NP-hard, a common approach is to apply a convex
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relaxation [24, 27, 72] which turns the problem into:

minimize J|X||,
Xij (3.4)

subject to PQ(X) = Pq(M)

where ||XI|, denotes the nuclear norm of X (i.e., the sum of all the singular values of

X).

Adding noise (which may be adversarial/worst-case), the problem in (4.11) be-

comes [27, 74, 75]:

minimize ||XJl
(3.5)

subject to ||PQ(X - M)|lF 6

which can be alternatively expressed in Lagrangian form as:

1
minimize PhUXH1* + -lPQ(X - M)WFl (3.6)

2

If certain properties are known about the noise, then we may change the con-

straints in the above equations to reflect our apriori information. For example, if the

noise is impulsive (e.g., dead pixels on a camera), then one may use the entrywise

L, norm in place of the Frobenius norm in the equations above (flPQ(X - Y)HF -

IIPQ(X - Y)1IL1). Likewise, if the noise is known to be low-rank, then we may use

the nuclear norm in place of the Frobenius norm.

3.4 Deep Learning

Artificial Neural Networks (ANNs) are a class of machine learning algorithms that

utilize artificial "neurons" connected to each other. In a typical ANN, each neuron

first multiplies inputs by pre-established weights, then sums these weighted inputs

(plus a bias term) and passes the sum through a non-linear "activation" function.

The output of the neuron is then passed along to downstream neurons. [28, 29]

Neural networks are "trained" by providing them with example inputs and their
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fReLU(Z) = max(O, z)
1

fsigmoid(Z) = _Z

Figure 3-3: Each neuron in an ANN multiplies its inputs by a pre-established weights,
then sums the weighted inputs together and passes the sum through a nonlinear
activation function. Common activation function include the sigmoid function and
rectified linear unit.

Input Layer Hidden Layer(s)

Cutput Layer

Figure 3-4: Artificial Neural Network

matching outputs. After "forward-propagating" an input thought an ANN, the dif-

ference between the ANNs estimated system output value and the true output value

are compared. The residual (error) between these values is computed and "back-

propagated" (not to be confused with optical back-propagation) through the ANN

[30]. For each layer of the ANN, the error value is analyzed and used to adjust neu-

ron weights. In this manner, successive examples (comprised on input-output pairs)

"train" a neural network to obtain the correct output for its given inputs.

Deep Neural Networks (DNNs) are ANNs with many many layers that learn hi-

erarchical representation of data. DNNs have been able to overcome previous issues

with multilayer ANNs such as significantly increased training times and vanishing

gradients by utilizing novel innovations in ANN connectivity such as: convolutions
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[111, 109, 125, 98] for regularization and pruning in image recognition and classifi-

cation tasks; nonlinearities, such as non-differentiable piecewise linear units [94] as

opposed to the older sigmoidal functions that were differentiable but also prone to

stagnation [96]; and algorithms, such as more efficient back propagation (backprop)

[119, 112].

Recently, DNNs have seen wide usage in diverse domains: playing complex games

on Atari 2600 [114] and Go [121]; object generation [92]; object detection [110]; and

image processing: colorization [89], deblurring [90, 130, 124], and in-painting [129].

In Chapter 4, we propose and demonstrate that deep neural networks may "learn" to

approximate solutions to inverse problems in computational imaging.

Most deep neural networks for image processing (regression, segmentation, or clas-

sification) are Convolutional Neural Networks (CNNs). In a CNN, inputs are passed

from nodes of each layer to next, with adjacent layers connected by convolution, pool-

ing, and non-linearity-generating operations. The convolution+downsampling steps

of CNNs enable compressed representations of images (which in turn enable deeper

networks and faster training) by combining spatially correlated features within im-

ages.

F ully f IN OU1lpuf

ii i P iug com ii ni Pwihng Gnmeci. Co.1 'e Prickion

I PUI 11"ge

Figure 3-5: CNN for classification. At the very last layer of the CNN, the values
represent an input's classification state likelihood.

A basic/common DNN architecture is "LeNet" [31] which utilizes several "convolution-

downsample-ReLU" blocks sequentially followed by a fully connected layer before final

output prediction. It was introduced by LeCun et al. in 1998 and was used primarily

for optical character recognition [31].

Recently developed architectures include: ResNets [98] and DenseNets [99], and

optimal/novel neural network architectures are an active field of study.
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Figure 3-6: LeNet, ResNet, and DenseNet are common DNN architectures.

In a convolutional neural network (CNN), inputs are passed from nodes of each

layer to the next, with adjacent layers connected by convolution, pooling, or non-

linearity-generating operations. Convolutional ResNets extend CNNs by adding short

term memory to each layer of the network. The intuition behind ResNets is that one

only wants to add a new layer if you can get something extra out of adding that layer.

ResNets ensure that the (N + 1)th layer learns something new about the network

by also providing the original input (i.e., without any transformation performed) to

the output of the (N + 1)th layer and performing calculations on the residual of the

two. This forces the new layer to learn something different from what the input has

already encoded/learned [98]. A single residual connection (representing the basic

building block of a ResNet) is shown in the middle of figure 3-6.

DenseNets extend ResNets but connecting multiple layers within "dense blocks"

to each other [99]. The image on the left of figure 3-6 illustrates a 5-layer dense block.

Each layer within this dense block is directly connected to every subsequent layer in

the block and is thus able to pass its feature maps directly to the remaining layers.

The benefit of this architecture is that it significantly reduces the vanishing gradient

problem faced by deep neural networks.
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Chapter 4

Regularized Phase Space Imaging

Using Sparsity Priors

We begin this chapter by reviewing phase-space representation of light fields and

describing how phase-space tomography, ptychography, and Fourier ptychography

can be represented in phase-space. Armed with this insight, we then propose and

implement two algorithms utilizing low-rank matrix recovery (LRMR) in order to im-

prove the robustness of two phase-space imaging techniques: phase-space tomography

(PST) and Wigner distribution deconvolution (WDD).

4.1 Phase-space in optics

The "phase-space" (or "Wigner Distribution") of a light field describes the localized

spatial frequencies (light ray directions) of light at any point in space. This spatial

spectrogram can be more readily understood through an analogy with a musical score,

which describes the localized temporal frequencies at any point in time (temporal

spectrogram). Windowing temporal frequencies locally provides users the benefit of

seeing local properties of the music (i.e., each note played) instead of only capturing

global frequencies provided by Fourier Transforming the entire signal. Optical phase-

space representations are "musical scores" for light distributions and provide valuable

localized information about what's happening to light at any point in space.
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time

Figure 4-1: A temporal spectrogram (musical score) provides more insight into audio
signal than a Fourier Transform of the entire signal can

Beyond providing localized insight into properties of light, phase-space represen-

tations of light are also extremely useful since [321: (a) propagation of light in phase-

space is a simple shear/rotation (with far-field propagation resulting in a 90 degree

rotation), (b) measurement of light in phase-space is a simple projection, and (c)

4D phase-space is related to the 4D mutual intensity of an object via a 2D Fourier

Transform. In the case of stationary quasi-monochromatic partially coherent light,

this mutual intensity function describes all two-point correlation pairs and provides

a complete characterization of the wave field.

Under the phase-space imaging framework, Phase-space tomography can be viewed

as capturing lines in phase-space in a tomographic fashion and ptychography and

Fourier ptychography can be seen as filling out phase-space with identical overlap-

ping windows.

size of camera

size of camera
(i.e. maximum spatial
frequency captured

by system) S width

spatial extent of probe

Phase space tomography ftychoagxaphy Fourier PjyrXogaphy

Figure 4-2: Phase-space tomography, ptychography, and Fourier ptychography in
Phase-space
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Phase-space tomography captures lines in phase-space via repeated rotations and

projection (which fill out a 90 degree rotated phase-space/ Ambiguity Function via

the Fourier Slice Theorem). A single measurement in ptychography gives you all the

frequency information about a localized area of the object (windowed by the probe).

Shifting the probe moves the area of observation in the tx direction in phase-space

(with overlap). Likewise, a single measurement in Fourier ptychography gives you all

the spatial information about a localized band in frequency space (windowed by the

aperture stop of the system), and shifting the illumination angle moves the object

frequencies passed through the imaging system AS in the ifx direction in phase-

space.

The extended Ptychograhic Iterative Enginer (ePIE) [133] used to reconstruct

ptychographic and Fourier ptychographic images enforces consistency in regions of

phase-space overlap sequentially in order to iteratively solve for phase. However, as an

iterative algorithm, it does not explicitly utilize the phase-space sampling geometry.

In contrast, Wigner Distribution Deconvolution directly inverts the "convolution with

window" operation in phase space.

4.2 Phase-space tomography

Phase space tomography estimates correlation functions entirely from snapshots in

the evolution of the wave function along a time or space variable. In contrast, tra-

ditional interferometric methods require measurement of multiple two-point correla-

tions. However, as in every tomographic formulation, undersampling poses a severe

limitation. Here, we propose a compressive reconstruction of the classical optical cor-

relation function (i.e. the mutual intensity function) using phase-space tomography

and low-rank matrix recovery (LRMR). The LRMR algorithm makes explicit use of

the physically justifiable assumption of a low-entropy source (or state).

The following subsections are adapted excepts from the published paper: "Ex-

perimental compressive phase space tomography" [33]. The author of this thesis

contributed to original idea and initial simulations but not the experiments in this
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paper.

4.2.1 Introduction

Correlation functions provide complete characterization of wave fields in several branches

of physics, e.g. the mutual intensity of stationary quasi-monochromatic partially co-

herent light [34], and the density matrix of conservative quantum systems (i.e., those

with a time-independent Hamiltonian) [351. Classical mutual intensity expresses the

joint statistics between two points on a wavefront, and it is traditionally measured

using interferometry: two sheared versions of a field are overlapped in a Young, Mach-

Zehnder, or rotational shear [36, 37] arrangement, and two-point ensemble statistics

are estimated as time averages by a slow detector under the assumption of ergodicity

[34, 38].

As an alternative to interferometry, phase space tomography (PST) is an elegant

method to measure correlation functions. In classical optics, PST involves measuring

the intensity under spatial propagation [39, 40, 41] or time evolution [42]. In quantum

mechanics, analogous techniques apply [43, 44, 45, 46]. However, the large dimen-

sionality of the unknown state makes tomography difficult. In order to recover the

correlation matrix corresponding to just n points in space, a standard implementation

would require at least n2 data points.

Compressive sensing [47, 48, 49] exploits sparsity priors to recover missing data

with high confidence from a few measurements derived from a linear operator. Here,

sparsity means that the unknown vector contains only a small number of nonzero

entries in some specified basis. Low-rank matrix recovery (LRMR) [50, 51] is a gener-

alization of compressive sensing from vectors to matrices: one attempts to reconstruct

a high-fidelity and low-rank description of the unknown matrix from noisy or incom-

plete measurements.

It is worth noting that LRMR came about in the context of compressive quan-

tum state tomography (QST) [52], which utilizes different physics to attain the same

end goal of reconstructing the quantum state. In PST, one performs tomographic

projection measurements, rotating the Wigner space between successive projections
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by evolving the wave function [39, 40]. This is directly analogous to the classical

optical experiment we are presenting here, where we perform intensity measurements

(i.e., tomographic projections in Wigner space) and utilize propagation along the

optical axis to rotate the Wigner space between projections. The difference lies in

the fact that in QST the state is recovered via successive applications of the Pauli

dimensionality-reducing operator, and there is no need to evolve the state. Never-

theless, both approaches lead to the same Hermitian LRMR problem, as long as the

assumption of a quasi-pure unknown state is satisfied.

In [53], it was shown that estimation of a low-rank matrix of dimension n and

rank r requires only O(rnlnn) to O(rnln2 n) data points. A similar LRMR method

was also used to recover the complex amplitude of an unknown object under known

illumination [54, 55, 561. Since the complex amplitude of the object is time-invariant,

a rank-one solution was assumed in these works.

The low-rank assumption for classical partially coherent light anticipates a source

composed of a small number of mutually incoherent effective sources, i.e. coherent

modes [57], to describe measurements. This is essentially equivalent to the low entropy

assumption [52], i.e. a nearly pure quantum state in the quantum analogue. This

assumption is valid for lasers, synchrotron and table-top X-ray sources [58], and

Kohler illumination in optical microscopes [34]. An additional requirement for LRMR

to succeed is that measurements are "incoherent" with respect to the eigenvectors of

the matrix, i.e. the measured energy is approximately evenly spread between modes

[53, 54]. Diffraction certainly mixes the coherent modes of the source rapidly, so we

expect LRMR to perform well for classical PST. The same expectation for QST has

already been established [521.

4.2.2 Theory and Method

The two-point correlation function of a stationary quasi-monochromatic partially spa-

tially coherent field is the mutual intensity function [341

J(x1, x 2 )= (g*(x1)g(x2)),
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where (.) denotes the expectation value over a statistical ensemble of realizations of

the field g(x). The measurable quantity of the classical field, i.e. the intensity, after

propagation by distance z is [34]:

I(xo; z) = did 2 J(Xi, x2)exp (- (x2 - x 2) exp i27r -X2

This can be expressed in operator form as:

I = Tr(PxJ)

where P denotes the free-space propagation operator that combines both the quadratic

phase and Fourier transform operations in Eq. (2), Tr(.) computes the trace, and

xO denotes the lateral coordinate at the observation plane. By changing variables

x = (XI + X 2)/2, X' =X1 - x 2 and Fourier transforming the mutual intensity with

respect to x, we obtain the Ambiguity Function (AF) [59, 60, 61]:

A(u', x') J + X, X - X-) exp(-i27ru'x)dx

Eq 2. can be written as [6-8,26,28]:

1(u'; z) = (A)(u', Azu')

where I is the Fourier transform of the vector of measured intensities with respect

to xO. Thus, radial slices of the AF may be obtained from Fourier transforming the

vectors of intensities measured at corresponding propagation distances, and from the

AF the mutual intensity can be recovered by an additional inverse Fourier transform,

subject to sufficient sampling. To formulate a linear model for compressive PST, the

measured intensity data is first arranged in Ambiguity space. The mutual intensity

is defined as the "sparse" unknown to solve for. To relate the unknowns (mutual

intensity) to the measurements (AF), the center-difference coordinate-transform is

first applied, expressed as a linear transformation T upon the mutual intensity J,
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followed by Fourier transform F, and adding measurement noise e as:

A=F-T-J+e

The mutual intensity propagation operator is unitary and Hermitian, since it pre-

serves energy. We use eigenvalue decomposition to determine the basis where the

measurement is sparse. The resulting basis, i.e. the set of eigenvectors, is also known

as coherent modes in optical coherence theory, whereas the whole process is known as

coherent mode decomposition [57]. The goal of the LRMR method is to minimize the

number of coherent modes to describe measurements. By doing LRMR, we impose

two physically meaningful priors: (1) existence of the coherent modes [57], and (2)

sparse representation of the partially coherent field in terms of coherent modes

Mathematically, if we define all the eigenvalues Ai and the estimated mutual in-

tensity as j, the method can be written as:

minimize rank(j)

subject to A =F-TJ (4.1)

Ai>0, and ZAi=1

Direct rank minimization is NP-hard; however, it can be accomplished by solving

instead a proxy problem: convex minimization of the "nuclear norm" (L1 norm) of

the matrix J [50, 27]. The corresponding problem is stated as:

minimize ||J1 *

subject to A=F-T-J (4.2)

Ai>0, and Ai=1

where the nuclear norm is the sum of the singular values o-, = JAil, |lJ = Ka i-.

This problem is convex and a number of numerical solvers can be applied to solve it.

In our implementation, we used the singular value thresholding (SVT) method [71].

The output estimate after each iteration of SVT typically has a sub-normalized total
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energy, i.e. E Ai < 1; we compensated for this by renormalizing at the end of each

iteration [52].

4.3 Denoised Wigner distribution deconvolution via

low-rank matrix completion

Wigner Distribution Deconvolution (WDD) is a decades-old method for recovering

phase from intensity measurements. Although the technique offers an elegant linear

solution to the quadratic phase retrieval problem, it has seen limited adoption due to

its high computational/memory requirements and the fact that the technique often

exhibits high noise sensitivity. Here, we propose a method for noise suppression in

WDD via low-rank noisy matrix completion. Our technique exploits the redundancy

of an object's phase space to denoise its WDD reconstruction. We show in model

calculations that our technique outperforms other WDD algorithms as well as mod-

ern iterative methods for phase retrieval such as ptychography. Our results suggest

that a class of phase retrieval techniques relying on regularized direct inversion of

ptychographic datasets (instead of iterative reconstruction techniques) can provide

accurate quantitative phase information in the presence of high levels of noise.

The following subsections were adapted from the published paper: "Denoised

Wigner distribution deconvolution via low-rank matrix completion" [85].

4.3.1 Introduction

Wigner Distribution Deconvolution was first proposed as a method for phase retrieval

in 1989 by Bates and Rodenburg [62]. The technique is particularly elegant in that it

solves the quadratic phase retrieval problem using only linear computations. More-

over, unlike other techniques for phase retrieval which rely on systems with coherent

illumination (or at least which are assumed to be approximately coherent), WDD can

be adapted for use in experimental setups utilizing partially coherent illumination [63].

Wigner Distribution Deconvolution has been demonstrated successfully previously
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in the optical regime [64], in the X-ray regime [65], and with electrons [66]. Although

these original experiments occurred over two decades ago, WDD has failed to gain

momentum as a technique in large part due to the following reasons: (1) the sheer

volume of data required for WDD is enormous (a 4-D set of data must be collected to

reconstruct a 2-D image), (2) the deconvolution step in WDD is often ill-conditioned,

resulting in local amplification of error in the deconvolution process, (3) the rise of

simpler iterative techniques for phase retrieval like ptychography.

Computational power has increased dramatically since the 1990's, reducing some

of the first restraint. Recently, the authors in [67] proposed a "projection strategy", an

optimized probe, and an iterative "Wigner replacement" procedure for noise suppres-

sion in WDD. In this paper, we propose and demonstrate a denoising strategy that

exploits the low-rank nature of recovered mutual intensity in WDD. We show that

our new technique outperforms traditional WDD, the WDD "projection+replacement

strategy" proposed in [67], as well as conventional iterative methods like ePIE (the

extended Ptychographical Iterative Engine) in the presence of significant levels of

noise.

4.3.2 Wigner distribution deconvolution

An example experimental arrangement for WDD is shown in Fig. 4-3. In order to

provide a more intuitive understanding of WDD, the illustrations and equations in

Sections 1-4 are done with a 1-dimensional object and probe (each of which have a

2-D Wigner space) under coherent illumination. The equations derived and used in

these sections are extendible to 2-dimensions (4-D Wigner space), and in section 5,

simulations are done in 2-D/4-D.

In WDD, an object o(x) is illuminated by a shifted probe p(x - si), and the

resultant field o(x)p(x - si) is measured in the Fourier plane as an intensity (time-

average). Collecting all of the intensities measured over all of the shifts s yields the
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probe
collimator bject detector

light sourcet- -------

diffuser Fourier Transform
relay ptics(via lens or propagation)

relay optics

Figure 4-3: Experimental setup for WDD. A shifted probe is imaged onto the object
plane and the resultant field p(x - si) - o(x) is propagated to a Fourier plane where
its intensity is measured.

2-D matrix (4-D if the objects 2-D):

2

Iout(u, s) = p(x - s) -o(X)ei 2xXUdx (4.3)

where x represents the coordinates at the object plane, u represents the coordi-

nates at the detector plane (spatial frequency), and s represents the lateral displace-

ment of the probe. Applying a 1-D Fourier Transform in s and a 1-D Inverse Fourier

Transform in u to I(u, s) yields [63]:

H(x, s') = p*(t) -p(t + x) -o*(xI) -o(xi + x) e- 22x(x1-t)s'dxidt (4.4)

If s is taken as a cyclical coordinate, then the output H(x, s') is sampled in s'

(Fourier Series) and the integral above becomes separable [67], yielding:

H(x, s') Jp*(t) -p(t + x)e j27ts' dt - o*(x)- o(x +x)e-j 2 rx1s'dx 1 (4.5)

Wprobe(XXS') Wobject(x,s')

Although the step from Eq. (4.4) to Eq. (4.5) assumes s is a cyclical coordinate,

the probe displacement is actually linear. However, as noted in [67], the dataset

generated from linear and cyclical scans are equivalent provided that Ax ;> Ax,obj +

Ax,pr, where Ax is the lateral extent of the reconstruction, and Ax,,obj, Ax,pr are the
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sizes of the support region of the object and probe, respectively. If the object or probe

are not strictly finite (e.g., if they tail off), then a window function may be employed

as shown in [64] to meet the above criterion.

The authors note here that although the original WDD derivation was derived

with continuous variables [63], in practice Fourier computations are done on a com-

puter where signals are discretized and a periodic extension is assumed/ applied. For

these signals (discretized by pixel size 6x, and periodically extended with periodicity

equal to the length of the recorded signal Ax), a Discrete Fourier Transform (DFT) or

Inverse Discrete Fourier Transform (IDFT) is applied to in lieu of the Fourier Trans-

form (FT) or Inverse Fourier Transform (IFT) into order to convert from a sampled

periodic signal in the spatial domain (with spacing 6x and periodicity Ax) to or back

from a sampled periodic signal in the frequency domain (with spacing 1 and period-

icity X). In this paper we use the terminology FT/IFT when discussing theory and

DFT/IDFT when discussing implementation.

In Eq. (4.5) above, the two terms in underbraces are the Wigner distributions of

the probe and object. Wigner distributions can be thought of as self-windowed spec-

trograms representing the object/probe's phase-space (local spatial frequency spec-

tra) [82]. Applying a ID Fourier Transform to an object's Wigner distribution yields

the sheared mutual intensity of that object (or of that object's Fourier Transform).

The mutual intensity of any two fields represents all of the two-point correlations

between every possible point-pair between the fields, and in the discretized coherent

case is simply the outer product (rank r = 1) between the object and its conjugate,

o*(Xi)o(x2).

From Eq. (4.5), one can obtain Wobject(X, s') by dividing H(x, s') by the Wigner

distribution of the probe. To avoid errors introduced due to division by zero, a

Tikhonov (Wiener) filter is commonly used to regularize the inversion. Thus, the

object's estimated Wigner distribution is calculated as:

)/= o , W,obe(X, --s')H(x, s') (4.6)
')c (XIprobe(X, -- ')12 - 6
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An optimal spectral filter would regularize the inversion in Eq. (4.6) based on

knowledge of the noise spectrum. However, since the recorded intensities are cor-

rupted by both Poisson and Gaussian noise, the optimal Wiener filter is object-

dependent and not easily determinable. Maximum-likelihood estimators have been

employed by others to deal with mixed Poisson and Gaussian noise in ptychographic

reconstruction [80, 81, 84], but in this paper we denoise our WDD reconstruction via

Noisy Low-Rank Matrix Completion performed at a later step. Thus, the filter above

assumes a flat noise spectrum, does not attempt to denoise, and is employed only to

regularize the inversion/deconvolution (i.e., to deal with its ill-conditionedness at low

VWprobe values).

To retrieve the object o(x) from its Wigner distribution Wobi (x, s'), we may either:

1. apply a 1-D IDFT in s' to Wbjb(x,s'), yielding: o*(xi)o(x1 + x), (the sheared

mutual intensity of the object), or

2. apply a 1-D DFT in x to WVbij(x,s'), yielding: Q(u)O*(u - s') (the sheared

mutual intensity of the object's frequency spectrum).

In the absence of noise and given complete coverage of the object's mutual inten-

sity, o(x) can be obtained directly from the sheared mutual intensity by unshearing

it and performing a singular value decomposition (SVD) or an eigendecompostion.

Exactly one singular value should exist, and the corresponding left singular vector

should yield o(x) (scaled by 1ai). Likewise, an SVD of the unsheared Q(u) Q*(u + s')

should yield O(x), which can be inverse Fourier transformed to give o(x).

It should be noted here that Wigner Distribution Deconvolution and applications

of PhaseLift [78, 831, both of which analyze ptychographic data in a higher dimension

for phase retrieval, differ in terms of fundamental approach: WDD arranges the data

in a way such that one can retrieve complex amplitude-phase via linear computations

while PhaseLift changes the quadratic equations (one for each measurement) into a

Second Order Cone Problem (SOCP) via a lifting procedure. As opposed to getting

the higher dimensionality via lifting of each underlying measurement equation, WDD

gets its higher dimensionality by putting all the measurements into a square matrix,
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I(u, s) with position along one coordinate and shift along the other. In the algorithm

presented in this paper, Low-Rank Matrix Recovery/Completion (LRMR/LRMC) is

used to de-noise and isn't a fundamental requirement of WDD theory (e.g., in the

case where the probe isn't band-limited, our approach would simply reduce to doing

an SVD); the WDD formulation is entirely linear. In contrast, using PhaseLift, even

if one had a perfect probe, she/he would still have to solve a SOCP.

In practice, probes are not perfect, and complete coverage of the object's mutual

intensity is not attainable due to the finite extent or finite bandwidth of the probe.

Fig. 4-4 illustrates the problem that arises in these situations by examining the

Wigner Distributions of the probe. In the central column of Fig. 4-4, the probe is

limited in lateral extent, limiting the reconstructable Wbj in the x direction. In the

column on the right, the probe is band-limited, limiting the reconstructable Wsbj in

the s' direction.

x x

X Wpr(X,S) Wpr(XS')

Wobj(x,s')

Wobj(x,s') Wobj(x,s')

Figure 4-4: Effects of a probe with limited spatial extent and limited bandwidth
on object reconstruction in WDD. (Left) Actual Wigner distribution of object. (Top
Center) Wigner distribution of a finite-extent probe. (Top Right) Wigner distribution
of a band-limited probe. (Bottom Center) Recovered Wigner distribution of object
using finite-extent probe. (Bottom Right) Recovered Wigner distribution of object
using band-limited probe.

From the diagrams in Fig. 4-4, we observe that if the spatial extent of the probe

is less than that of the object (central column), then:

e Technique 1 (1-D IDFT in s') gives an accurate mutual intensity over the points

that it covers but fails to cover all points.
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* Technique 2 (1-D DFT in x) fails to return an accurate mutual intensity.

- Fourier Transforming Wobi in x1 results in a blurring of O(u)O*(u - s')

along u. It may be possible to retrieve an accurate estimate of O(u) from the

unidirectionally-blurred mutual intensity matrix, and this is a topic of interest

for future work.

If the bandwidth of the probe is less than that of the object (right column), then:

" Technique 1 fails to return an accurate mutual intensity (result is unidirectionally-

blurred).

* Technique 2 gives an accurate mutual intensity over the points that it covers

but fails to cover all points.

Figure 4-5: Effects of a probe with limited spatial extent and limited bandwidth on
mutual intensity reconstruction in WDD. (1) Wigner distribution of object: (a)actual
(b)retrieved using probe with limited spatial extent, (c)retrieved using probe with lim-
ited bandwidth. (2) sheared mutual intensity of object, o*(x1)o(x1 + x): (a)actual
(b)retrieved if probe has limited spatial extent, (c)retrieved if probe has limited band-
width, (3) sheared mutual intensity of object's Fourier Transform, 0(u)O*(u - S):
(a)actual (b)retrieved if probe has limited spatial extent, (c)retrieved if probe has
limited bandwidth,

The mutual intensities obtained in the four cases above are illustrated in Fig.

4-5. In the cases where an accurate but incomplete mutual intensity is retrieved

(cases 2b and 3c in Fig. 4-5), several methods have been proposed to recover the
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amplitude and phase of the corresponding object. Bates and Rodenburg used a

"stepping out" method in their original work on WDD [63], and more recently Li,

Edo, and Rodenburg utilized a "projection strategy" [67]. In the absence of noise,

both the "stepping out" and "projection" methods can accurately reconstruct an object

from its partially measured mutual intensity. However, the "stepping out" method

cannot make use of all available data simultaneously and suffers from accumulation

of error [67]. The "projection method" has been shown to be more robust to noise

due to its utilization of more data points, but each projection "los[es] the ... highest

frequencies" [67]. Noise reduction is attained by averaging across multiple datapoints,

and the projections themselves does not attempt to separate noise from underlying

signal.

4.3.3 Noise considerations in WDD

Common sources of noise in optical imaging systems include: shot noise, dark current

noise, and Johnson noise. Shot noise (Poisson noise) is inherent in any imaging

system due to the collection of a finite number of photons per unit time. Shot noise

is correlated with the intensity of each pixel, and we apply it to our simulated data.

Johnson noise (Gaussian noise) occurs due to thermally-induced current fluctuations

in the load resistor. Johnson noise is independent of the original intensity at each

pixel, and we add it to our simulated data. Dark current bias and noise arised from

thermally-induced free electron production on the detector. Since dark current bias

can be addressed by dark-frame subtraction, we do not apply it in our simulated data.

Dark current noise is Poisson in nature and we apply it to our simulated data.

Combining Poisson and Gaussian noise sources into one noise term, noise propa-

gation in WDD can be seen as:

2-D DFT ./Vp(X,S') J(,,

I(u, s) +-A(u, s) 2 H(x, s') +.Af (x, s') /X)') 8+(x, s')+ (X,) (4.7)

At locations where )/Vprobe(U, s) has very low values, the inversion of Eq. (4.6) is

ill-conditioned. Any noise at these locations in H(u, s) are amplified, resulting in an
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inaccurate estimate of the object's Wigner distribution, Wobject(U, s).

An ideal probe would have a Wigner distribution with a perfectly flat magnitude.

Although one cannot create such a probe, a diffuser offers a close approximation

(yielding few local minima) [68, 69]. For simulations in this paper, a model diffuser

probe is used.

While diffuser probes can be used in experimental setups, it is difficult to accu-

rately measure such a probe beforehand. Projection-based ptychography solvers (e.g.,

the Ptychographical Iterative Engine/PIE algorithm [62]) address this problem by in-

cluding a probe recovery step in their iterative loop, solving for both the unknown

object and probe simultaneously. While we do not explore such a possibility here,

it is possible that alternating between probe and object recovery in our WDD algo-

rithm with an outer loop (in a manner akin to the ePIE algorithm) could allow for

simultaneous object and probe recovery. Also, it may be possible to employ a hybrid

approach, using an ePIE-like algorithm to first get an approximate probe estimate

followed by application of our algorithm for object recovery.

As discussed in Section 2, earlier methods of object retrieval from retrieved partial

mutual intensity in WDD are inherently noise-limited due to the fact that they do not

utilize all of the available data and that they do not make any effort to separate the

noise from the signal. The authors in [67] utilized "iterative replacement" (in conjunc-

tion with their "projection" technique) to help denoise the object's estimated Wigner

Distribution, but this method of denoising is suboptimal and in our simulations use

of iterative replacement did not significantly improve results. As mentioned earlier,

if the entirety of the mutual intensity matrix is available (albeit potentially noisy),

then one may retrieve o(x) via singular value decomposition. This method has the

benefit of being optimal in the presence of Gaussian noise.

Motivated by this observation, we propose matrix completion as a viable alterna-

tive to the "stepping out" and "projection" methods for retrieving o(x) or O(u) from

a noisy and incomplete o*(x1 )o(x 1 + x) or Q(u)O*(u - s'), respectively. In doing so,

we cast the issue of completing and denoising the mutual intensity matrix as a matrix

completion problem in the presence of noise. The underlying matrix (mutual inten-
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sity) is known to be low-rank (in the perfectly coherent case, rank r = 1), suggesting

that such a technique may work well, even in the presence of high levels of noise and

incomplete measurement of entries.

4.3.4 Noisy matrix completion

In the "noisy matrix completion problem," one tries to recover an underlying low-

rank matrix M from noisy and incomplete measurements of its entries. M can by

any real or complex matrix with dimensions m x n and rank r < m, n. In our WDD

formulation, M is the unsheared mutual intensity matrix, o(x1 )*o(x 2 ) or O(Ui)*O(U2),

but in general the matrix M need not be symmetric. Such a matrix has a (non-unique)

singular value decomposition:

M = UEVT

Additive or applied noise can be modeled as perturbations to each matrix entry

such that:

Mg = Mij + Z4j (4.8)

where the matrix Z accounts for the added/applied noise and the matrix M is the

noisy "approximately low-rank" matrix that is (partially) observed/ measured. Of the

complete matrix M, only a subset Q of its entries are actually observed. The objective

of noisy matrix completion is to find a low-rank estimation X of the original matrix

M based on the observed indices Q of the noisy matrix M.

In the case where there is no noise (M = M), the following optimization may be

used to recover the low-rank matrix exactly, provided that JQ| is large enough and

satisfies certain "incoherence" conditions [77]:

minimize rank(X)
Xij (4.9)

subject to PQ(X) = PQ(M)

where PQ(.) is the operator selecting which entries of the matrix we have measured
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and is defined as:

MP(M); = Mij, if (i,j) E E (4.10)
0, otherwise

Since the problem in (4.9) is NP-hard, a common approach is to apply a convex

relaxation [77, 27, 72] which turns the problem into:

minimize ||XJl
Xij (4.11)

subject to PQ(X) = PQ(M)

where ||X|,, denotes the nuclear norm of X (i.e., the sum of all the singular values of

X).

Adding noise (which may be adversarial/worst-case), the problem in (4.11) be-

comes [27, 74, 75]:

minimize ||X||,
Xij (4.12)

subject to 11PQ(X - II)JF < 6

which can be alternatively expressed in Lagrangian form as:

minimize P1 |X||4 + -||PQ(X - MI)F (

If an upperbound on the rank of X is known, then one may solve the related

rank-r matrix approximation problem [73, 76]:

minimize ||PQ(X - MI)JFXij (4.14)

subject to rank(X) < r

If certain properties are known about the noise, then we may change the con-

straints in the above equations to reflect our apriori information. For example, if the

noise is impulsive (e.g., dead pixels on a camera), then one may use the entrywise

L, norm in place of the Frobenius norm in the equations above (1 PQ(X - Y)|F -+

lVPQ(X - Y)1L1). Likewise, if the noise is known to be low-rank, then we may use
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the nuclear norm in place of the Frobenius norm.

Notably, if all entries are known, then (4.14) reduces to classical PCA, which

solves:
minimize ||X - NI||F (4.15)

subject to rank(X) < r

The authors in [27] and [72] have proven performance guarantees for matrix com-

pletion with noisy observations. Provided that the singular vectors of M are suffi-

ciently spread out over the matrix ("strong incoherence property" [27]) and that the

cardinality of the sampled set is at least the number of degrees of freedom times a

few logarithmic factors, then the nuclear norm minimization is exact in the noiseless

case and bounded in the noisy case - i.e., the root mean square error between the

estimated (completed and denoised) X matrix and our actual matrix M is bounded

and scales with the Frobenius norm of the error.

In this paper, we adapt a modified version of the Singular Value Thresholding

(SVT) algorithm [27] for noisy matrix completion (to solve Eq. (4.14) above). Our

adaptation alternates between: (1) replacing the "measured indices" (PQ) of the cur-

rent best-estimate of the object's mutual intensity with the values of the measured

object mutual intensity at those indices, (2) eigendecomposing the updated estimate

for object estimated mutual intensity and keeping just the first eigenvector /value to

obtain an estimate of the object, and (3) generating a new estimated object mutual

intensity from the new object estimate. Solving the noisy matrix completion problem

in this manner simultaneously completes and denoises the noisy (and incomplete)

mutual intensity matrix X by enforcing a rank-1 constraint on the output of each

iteration in the LRMC/LRMR loop. A flowchart of the algorithm is shown in Fig.

4-6.

Although the formulations of LRMC above do not place a positive semidefinite

constraint on the matrix X, our algorithm returns an X that is by construction

positive-semidefinite since it is generated from the outer product of a single eigenvec-

tor.
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Figure 4-6: Flow chart of denoised WDD with LRMC using modified SVT. Appli-
cation of our algorithm to a simulated noisy 1-D dataset with a band-limited probe
yields a denoised rank-1 mutual intensity reconstruction similar to rightmost image

(matrix is simultaneously completed and denoised).

4.3.5 Comparison of techniques for WDD

In this section, we apply our algorithm, the "projection method" algorithm from [67j,

the PIE (alternating projections) to a test object with variable amplitude and phase

at varying noise levels. In our simulations, the calculation window is 63 pixels wide,

with each pixel being square and 2.02pm wide in real space and 787m 1 wide in

reciprocal space. The probe and object were roughly equivalent in size and each fill

up around half of the calculation window (31 pixels). The probe was modeled as

a diffuser imaged onto the object plane through a system with a low NA in order

to better illustrate the "matrix completion" aspect of our algorithm (in addition to

its denoising capability). Since the probe is band-limited and not strictly finite, we

employ a windowing function as in [64].

The object used in our simulation is shown below in Fig. 4-7. For ease of visualiza-

tion of phase error, we set a colormap range of 0 - r for display/comparison of phase
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values, but we limited the range of our object's actual phase to between 7r/4 and 37r/4

(such that estimated phase values slightly above or below the maximum/minimum

phase values of the object won't cause wrapping visualization issues). The object's

modulus ranges from 0 - 1.

1 3

0.8

0.6 .2

0.2

0 10

Figure 4-7: Original object's modulus (left) and phase (right)

A simulated diffraction dataset was generated using our probe and object, and

we applied Poisson-distributed noise with total counts of 109, 108, 107, 106, and 10' to

that dataset. Reconstruction of o(x) from these noisy datasets was performed using

WDD with LRMC, WDD with the "projection method" + "replacement iterations",

and ptychographic reconstruction via alternating projections.

The results of our simulations are shown in Fig. 4-8. Computations were per-

formed on a 3.5 GHz 6-Core Intel Xeon processor (2013 Mac pro). Ptychographic re-

construction using the PIE took 7 seconds, reconstruction via the "projection method"

from [67] took 55 seconds, and reconstruction via our LRMC algorithm took 162

seconds. For larger-sized problems, our algorithm may be parallelized to increase

computation speed.

We performed our simulation 100 times with different simulated datasets (different

diffuser + applied noise each iteration) and the average Mean-Squared-Error of each

technique (and standard deviation over the trials) is shown in Table 4.1. At low

photon counts (high noise), LRMC significantly outperforms both the "projection

method" and PIE in our simulations. At high photon counts all three methods are

competitive. However, as discussed in section 2, the projection method cannot recover

the complete frequency spectrum of the object when the probe is band-limited.
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Figure 4-8: Results of WDD using: LRMR/LRMC, projection method from [67], and
PIE at different noise levels. From left-to-right, the columns represent: moduli (1-
3) of reconstructed object using LRMR/LRMC, "projection method", ptychography,
and phase (4-6) of reconstructed object using LRMR/LRMC, "projection method",
ptychography. The rows represent the total photon counts available to the detector
in a shot-noise limited imaging system.

4.3.6 Discussion/Conclusion

In this paper, we have presented a method for noise suppression in WDD which

exploits the redundancy of an object's phase space/mutual intensity to denoise (and

complete if necessary) the WDD reconstruction. We show in model calculations that

our technique outperforms other WDD algorithms as well as conventional iterative

methods for phase retrieval such as ptychography.

Several iterative ptychographic reconstruction algorithms have been developed in

recent years to take noise statistics into account [81, 84]. We have not compared

our algorithm against these Maximum-Likelihood-based methods but note here that

incorporation of noise-model priors is not mutually exclusive to our algorithm's uti-
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Table 4.1: Mean Squared Error of object reconstructions from datasets with different
noise levels over 100 trials.

Photon Count LRMC "Projection Method" PIE
109 0.55 0.05 1.26 0.09 0.23 0.04
108 1.3 0.2 1.8 0.1 0.8 0.1
107 1.5 0.2 2.6 0.7 2.2 0.2
106 3.7 0.5 4.4 1.3 5.4 0.2
105 5.0 1.2 6.6 2.2 11.4 0.5

lization of the known low-rank nature of the output mutual intensity for noise sup-

pression. Thus, a hybrid algorithm could be developed which utilizes both low-rank

and noise-model priors to retrieve the complex object in the presence of high levels

of noise (this is a interest of future work).

Although we assume spatially coherent illumination in our simulations above,

there is no hard constraint on this requirement. Our algorithm can be modified to

work in settings of partial coherence by accounting for the partial coherence in the

deconvolution step as per [63], and by changing the noisy matrix completion technique

in Fig. 4-6's dotted box to keep the highest k singular value instead of just one (if a

maximum rank of the mutual intensity is known) or changing the matrix completion

technique altogether (e.g., to singular value thresholding [27] if a maximum rank of

the mutual intensity matrix is not known).

Additionally, although we present low-rank matrix completion as a technique

for denoising Wigner Distribution Deconvolution in a conventional ptychography-

like setup, our algorithm is extendible to a Fourier ptychography-like setup (this

is the subject of current work). The Fourier ptychography and ptychography data

matrices are transposes of one another, and by transposing each step of WDD to

its Fourier dual, one can obtain an estimate of the object's mutual intensity after

which LRMR/LRMC could be used to denoise that estimate and recover the object's

amplitude and phase.

In its original form, WDD is intrinsically limited in resolution by the probe step

size si (usually significantly larger than detector pixel size), making the technique

inferior to ptychography (and Fourier ptychography) in terms of resultant space-

63



bandwidth product. However, it is possible that further modifications to the algo-

rithm (e.g., using interpolated estimates for measurements in between actual mea-

surements taken at large step size to form I(u, s) and denoising error generated from

this step later) may enable WDD to perform competitively against ptychography not

just for phase retrieval but also in terms of the space-bandwidth product of the re-

constructed image. Furthermore, simply having a noise-robust low-resolution initial

estimate of an object's amplitude and phase may signficantly benefit the convergence

rate and accuracy of some ptychographic reconstruction algorithms such as Wirtinger

Flow179].

Accurate results in Ptychography and Fourier Ptychography are often dependent

on low-noise /high-photon count setups, and these setups often require high-bit depth

sensors in well-controlled (e.g., cooled) settings. However, in order for ptychographic

imaging to gain traction outside of research settings (e.g., one of our goals is to bring

ptychographic imaging into use for clinical pathology), reconstruction techniques must

work with lower-end sensors and in situations with high noise. Denoised WDD may

provide a step towards this objective as our results suggest that a class of phase re-

trieval techniques relying on regularized direct inversion of ptychographic datasets

via WDD (instead of iterative reconstruction techniques) can provide accurate quan-

titative phase information in the presence of high levels of noise.
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Chapter 5

Lensless Computational Imaging via

Deep Leaning

This chapter is comprised of three sections. The first section reviews three lensless

imaging techniques: in-line digital holography, Gerchberg-Saxton-Fienup (GSF) iter-

ative phase retrieval, and transport of intensity equation (TIE) imaging. At the end

of this first section, the author presents a novel method for phase retrieval via deep

learning given defocused image inputs (as in TIE imaging). The second section of

this chapter expands upon this initial idea and experimentally validates end-to-end

lensless computational imaging through deep learning. Contents of this section were

adapted from the published paper, "Lensless computational imaging through deep

learning [122]," for which the author of this thesis contributed the initial code, ex-

perimental setup and deep learning model. The final section of this chapter touches

briefly upon extensions of the work presented here.

5.1 Computational Imaging Techniques

Computational imaging utilizes software to augment or replace the role of traditional

optical elements in imaging systems. By designing imaging hardware and software

in concert, imaging systems can be made simpler/more robust and have capabilities

beyond that of traditional imaging systems. Examples of popular computational
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imaging setups include: digital holography, iterative phase retrieval techniques such as

the Gerchberg-Saxton Algorithm, and transport of intensity equation (TIE) imaging.

5.1.1 In-line Digital Holography

In-line digital holography seeks to recover a complex index distribution of three-

dimensional(3D) objects from measured wavefront information. The in-line digital

holography setup is simple - a scattering object (or set of objects) is illuminated with

a spatially coherent, monochromatic plane wave, and a Gabor (in-line) hologram is

formed by the interference pattern of the original wave, E,, with the wavefront gen-

erated by the illuminated objects with scattering potential r(X', y', z'). Since cameras

can only record intensity at optical frequencies, a 2-D detector array records the

irradiance incident on the camera:

I(x, y) = JEr + Es1 2 = |Er12 + 1E.(x, y)12 + E,*E(x, y) + EE*(x, y)

Inversion from this single 2D intensity measurements to the originating 3D scattering

potential is an underdetermined problem, but techniques have developed to recon-

struct an estimate of the underlying 3D scattering potential based on focus metrics

[145, 146] and sparsity constraints [147, 146]. Figure 5-1 reconstruction results of

shows one such algorithm that the author has implemented to image bubbles in a fish

tank.

5.1.2 Iterative Phase Retrieval: Gerchberg-Saxton Fienup Al-

gorithm

The Gerchberg-Saxton (GS) algorithm is an iterative algorithm for phase retrieval

which alternates between two (or more) planes related by a propagating function (e.g.,

a Fourier Transform or Fresnel Propagation), with only intensity observable /known
at these plane (i.e., phase is unknown).

The GS algorithms begins with a random initial guess for the phase at a chosen
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Figure 5-1: "Compressive holographic inversion of particle scattering." (top left)
In-line DH experimental setup. A 3D scattering potential of bubbles in water was
reconstructed (bottom) from a single 2D snapshot (top right) using compressive holog-
raphy.

plane (let's call it the "input plane" although it could physically be the "output plane").

This plane's complex field estimate (amplitude +j phase) is then forward-propagated

to obtain an estimate of the true field at the output plane. This estimated output

plane intensity is then compared to the true or desired output intensity. If the error

is large (such that the system has not reached an acceptable solution yet), then the

estimated output plane amplitude is replaced with the true amplitude of the output

plane while its phase is kept the same. This new estimated complex output field is

then back-propagated to obtain an estimate of the true field at the input plane. The

newly estimated input plane intensity is then compared to the true or desired input

intensity. If the error is large, then the newly estimated input plane amplitude is

replaced with the true amplitude of the input plane while its phase is kept the same.

This new input plane estimate is forward-propagated and the entire process above

repeats in a "ping-pong"-like fashion until convergence.

The GS method of "alternating projections" has the significant drawback of often
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converging very slowly to poor local minima, but results can be significantly improved

by applying other input constraints such as positivity, finite-support, or smoothness.

Additionally, a hybrid input-output algorithm as proposed by Fienup [148, 149] has

been shown to signifcantly speed up GSF algorithm convergence.

5.1.3 Transport of Intensity Imaging

Transport of Intensity Equation (TIE) imaging addresses the phase retrieval problem

by taking multiple intensity measurements at multiple planes in space. The general

idea behind TIE imaging is that although a single intensity measurement cannot

provide phase information, if one knows the intensity distribution of light as it prop-

agates over a volume, then he or she can directly recover the phase of light based on

principles of energy transport.

The TIE is given as [123]:

27r 0I

where I is the intensity measured in a plane perpendicular to the axis of propagation,

z, and the I subscripts indicate the operator acting in a plane perpendicular to the

optical axis. A is the spectrally-weighted mean wavelength of illumination [123], and

# is the phase. At its root, the TIE describes a conservational principle: the perpen-

dicular gradient of the phase of coherent light represent the flux of light in/outwards

in the x and y directions. The divergence of that quantity denotes the "source or

sink" nature which arises due to the intensity change from z-plane to z-plane.

5.1.4 Deep Learning Transport of Intensity Imaging

Here, we propose and demonstrate in simulation an algorithm using deep learning for

phase retrieval using a focal stack of images similar to those that would be obtained

for TIE imaging. At the time of its creation, this demonstration was, to the best of

our knowledge, the first demonstration of deep learning's ability to solve the phase

retrieval problem.
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To generate our training set for learning TIE-based phase retrieval, we used

100,000 images from the ImageNet [120] database. These images were then split

into two equal sets of 50,000 - one to use as training set object amplitudes and the

other to use as training set object phases. Images from these two sets were then ran-

domly paired to generate 50,000 mixed amplitude-phase images. A test set of 10,000

amplitude-phase images were generated in a similar fashion.

Ampliud

Defocused Image
Fresnel

Propagate

Phase

Figure 5-2: Deep Learning Transport of Intensity Imaging

These mixed amplitude-phase images were Fresnel propagated to generate defo-

cused "recorded" image intensities (Figure 5-2), and these defocused images, along

with the in-focus intensity images and a "dIdz" first-order derivative estimate (ob-

tained by differencing the defocused and in-focus images) were fed as inputs into a

simple convolutional neural network (five convolution + ReLU blocks) to estimate

object phase at the in-focus plane. Results on the test set after training 20 epochs

(SGD, lr = 0.02, batchsize-=16) are shown in Figure 5-3. Training for this demo was

performed using MatConvNet (later experiments use TensorFlow).

The results, although far from perfect, demonstrate that deep neural networks

have the ability to reconstruct phase from a set of in-focus and defocused images.

This demonstration forms the basis /groundwork for efforts in the following section.
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Figure 5-3: Deep Learning T ransport of Intensity Imaging

5.2 Lensless computational imaging through deep learn-

ing

Deep learning has been proven to yield reliably generalizable solutions to numerous

classification and decision tasks. Here, we demonstrate for the first time to our

knowledge that deep neural networks (DNNs) can be trained to solve end-to-end

inverse problems in computational imaging. We experimentally built and tested a

lensless imaging system where a DNN was trained to recover phase objects given

their propagated intensity diffraction patterns

5.2.1 Introduction

Neural network training can be thought of as generic function approximation: given

a training set (i.e., examples of matched input and output data obtained from a

hitherto-unknown model), a neural network attempts to generate a computational

architecture that accurately maps all inputs in a test set (distinct from the training

set) to their corresponding outputs. The basic idea dates back to the 1950's [113];

recently, Deep Neural Networks (DNNs), called so because they are structured as
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multi-layered with a large number of layers, have found extensive use. To generalize

well, DNNs exploit several innovations in connectivity, for example convolutions [111,

109, 125, 98] for regularization and pruning in image recognition and classification

tasks; nonlinearities, such as non-differentiable piecewise linear units [94] as opposed

to the older sigmoidal functions that were differentiable but also prone to stagnation

[96]; and algorithms, such as more efficient back propagation (backprop) [119, 112].

In turn, these have been applied in diverse domains: playing complex games on Atari

2600 [114] and Go [121]; object generation [92]; object detection [110]; and image

processing: colorization [89], deblurring [90, 130, 124], and in-painting [129]. In this

paper, we propose that deep neural networks may "learn" to approximate solutions

to inverse problems in computational imaging.

A general computational imaging system consists of a physical part and a compu-

tational part. In the physical part, light propagates through one or more objects of

interest as well as optical elements such as lenses, prisms, etc. finally producing a raw

intensity image on a digital camera. The raw intensity image is then computationally

processed to yield object attributes, e.g. a spatial map of light attenuation and/or

phase delay through the object-what we traditionally call "image" and "quantitative

phase image," respectively. The computational part of the system is then said to have

produced a solution to the inverse problem.

The specific computational imaging scenario chosen for this section is quantitative

phase retrieval. Let O(x, y; z = 0) = exp [i(x, y)] represent the optical field purely

phase-modulated by the unknown object #(x, y) as function of the lateral Cartesian

coordinates x, y at the origin z = 0 of the optical axis. The measurement after

propagation by distance z is the raw intensity image I(x, y) = |(x, y; Z) 1 -- H(x, y),

where H denotes the forward operator relating the phase O(x, y) at the origin to the

raw intensity image I(x, y) at distance z. The problem of phase retrieval, then, is to

formulate an inverse transform Hi"v, generally nonlinear, such that

<;(xy) = HinvI(x, y) (5.1)
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represents an acceptable estimate of the phase object. The Gerchberg-Saxton-Fienup

(GSF) class of algorithms [95, 93] is a well-known and highly successful approach

where instead of an explicit Hin", the inverse (x, y) is estimated iteratively from a

single raw intensity image. Two other notable approaches are: digital holography

(DH) [97], where an additional reference beam exp[ikx] is assumed to be present

so that instead an interferometric measurement Iholo = exp[ikx + (, y; Z) 2I

available; and transport of intensity (TIE) 1126, 123], utilizing an "axial stack" of

one or more additional raw intensity images Ii(x, y) = 0/(x, y; z + jzi) 2 , 12 (x, y) =

10(X, y; z + 5z2 ) 2 ,..., where Jz1 , z2 , ... are axial displacements. On-axis DH (k = 0)

requires the object to be spatially sparse so that the incoming light remains mostly un-

scattered because it must serve as reference beam for the digital hologram; whereas

off-axis DH (k / 0) requires the object to be low-bandwidth so that the space-

bandwidth product limitation of the camera measuring Iholo isn't violated. On the

other hand, TIE requires sparse object gradients to avoid singularities as result of

propagation.

Another approach to obtain Hin" is by solving an optimization problem of the

form

q(x, y) = argmino 11Hq - I 2 + a(4). (5.2)

Here, H is the same forward operator, I is the measurement (including noise), D is the

regularizer expressing prior information about the object, and a is the regularization

parameter that controls the relative strength of the two terms in the optimization

functional. This computational approach, central to many inverse problems [87], is

traced back to Tikhonov [127] and Wiener [128]. For (5.2) to work well, in addition

to the obvious concerns of convexity and convergence speed, H and 1 need to be

precisely known or at least discoverable. For 4J, expressions promoting sparsity have

been often proven to be effective [77, 88, 91]; on the other hand, the damage due

to incomplete or erroneous knowledge in H, for example due to insufficient accuracy

in the approximations or due to experimental errors such as misalignments, is more

difficult to control [104].
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The hypothesis that we set out to test in this paper is whether a DNN can be

trained to act as the inverse operator Hi" in (5.1). In addition to the well-established

adaptability of DNNs as effective approximators to general-purpose nonlinear oper-

ators, our approach is attractive for several reasons: the DNN, once trained, should

recover every possible object within a hopefully large enough class, unlike GSF where

Hin" is obtained separately and iteratively for each new object presented. Alterna-

tively, since during DNN training iteration takes place over several objects simultane-

ously, the learning approach is expected to be a more robust generalization of GSF.

Moreover, the DNN approach is not subject to any of the sparsity requirements of

either DH or TIE. Indeed, our experiment, described in detail in Section 5.2.2, was

explicitly designed to violate the DH and TIE assumptions. Lastly, compared to

optimization-based approaches, the DNN input-output relationship (which is in gen-

eral too complicated to be written in explicit form) replaces the form (5.2). The user

is therefore not required to specify the forward operator H and the priors (D or decide

about the magnitude of the regularization parameter a; instead, to the degree that

our results show successful inversion, they suggest that the DNN learns H, 4D, and a

implicitly through training. The downside of the DNN approach is that a sufficiently

large database of known pairs of phase objects and their corresponding raw intensity

images must be available for training and testing; we will return to this issue shortly.

Neural networks have been used in a variety of imaging and image restoration

tasks. For example, Hopfield's associative memory network [100] was capable of

retrieving entire faces from partially obscured inputs, and was implemented in an

all-optical architecture [103]. Recently, Horisaki et al. [101] used support-vector ma-

chines, an older form of bi-layer neural network with nonlinear discriminant functions,

also to recover face images through a scattering medium; the specific scatterer was

learnt by the neural network in lieu of the more common approach of having the scat-

terer characterized through a transmission matrix [115, 116]. Modern deep networks

and training schemes have been used to model (learn) the scatterer's forward operator

using an architecture designed to emulate the layered structure of the scatterer itself

[107]. More recently, DNNs have also been used for classification of cells from raw
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intensity images captured in a holographic arrangement [106]; and improvement in

image quality by first forming images with traditional means and then using a DNN

trained from object-image pairs to sharpen the visual image quality. DNN-enabled

image restoration has been carried in a variety of forward operators: tomography

[105], digital holography [118] and standard microscopy [117]. Our approach is, in-

stead, truly end-to-end: the DNN implements the Hi" operator from (5.1) in its

entirety; the first such end to end attempt, to our knowledge, is an earlier, more

primitive effort by our own group with binary phase objects [122]. Moreover, because

the phase objects in both our earlier and current efforts are generated by a precisely

calibrated spatial light modulator, we are able to quantitatively evaluate the fidelity

of our DNN-generated estimates O(x, y) to the true objects #(x, y).

Neural network approaches often come under criticism because the quality of

training depends on the quality of the examples given to the network during the

training phase. For instance, if the inputs used to train a network are not diverse

enough, then the DNN will learn priors of the input images instead of generalized

rules for phase retrieval from intensity. This was the case in [101], where an SVM

trained using images of faces could adequately reconstruct faces, but when given the

task of reconstructing images of natural objects such as a pair of scissors, the trained

SVM still returned an output that resembled a human face.

For our specific problem, an ideal training set would encompass all possible phase

objects. Unfortunately, phase objects, generally speaking, constitute a rather large

class and it would be unrealistic to attempt to train a network sampling from across

all possible objects from this large class. Instead, we synthesize phase objects in

the form of natural images derived from the ImageNet [120] database because it is

readily available and widely used in the study of various machine learning problems.

For comparison, we also trained a separate network using a narrower class of (facial)

images from the Faces-LFW [102] database.

As expected, our network did well when presented with unknown phase objects in

the form of faces or natural images that it had been trained to. Notably, the network

also performed well when presented with objects outside of its training class - the

74



DNN trained using images of faces was able to reconstruct images of natural objects,

and the DNN trained using images of natural objects was able to reconstruct images

of faces. Additionally, both DNNs were able to reconstruct completely distinct images

including: handwritten digits, characters from different languages (Arabic, Mandarin,

English), and images from a disjoint natural image dataset. Both trained networks

yielded accurate results even when the object-to-sensor distance(s) in the training

set slightly differed from that of the testing set, suggesting that the networks are

not merely pattern-matching but instead have actually learned a generalizable model

approximating the inverse operator Hi".

The details of our experiment, including the physical system and the computa-

tional training and testing results, are described in Section 5.2.2. The neural network

itself is analyzed in Section 5.2.3, and concluding thoughts are in Section 5.2.4.

5.2.2 Experiment

Our experimental arrangement is as shown in Figure 5-4. Light from a He-Ne laser

source (Thorlabs, HNL210L, 632.8nm) first transmits through a spatial filter, which

consists of a microscope objective (Newport, M-60X, 0.85NA) and a pinhole aperture

(D = 5pm), to remove spatial noise. After being collimated by the lens (f = 150mm),

the light is reflected by a mirror and then passes through a linear polarizer, followed

by a beam splitter. A spatial light modulator (Holoeye, LC-R 720, reflective) is placed

normally incident to the transmitted light and acts as a pixel-wise phase object. The

SLM pixel size is 20 x 20gm 2 and number of pixels is 1280 x 768, out of which the

central 512 x 512 portion only is used in the experiments. The SLM-modulated light is

then reflected by the beam splitter and passes through a linear polarization analyzer,

before being collected by a CMOS camera (Basler, A504k) placed at a distance z.

The CMOS camera pixel size is 12 x 12pm2 and number of pixels is 1280 x 1024,

which is cropped to a 1024 x 1024 square used for processing. The total used linear

camera size of ~. 12.3mm is slightly larger than the active SLM size of ~ 10.2mm to

accommodate expansion of the propagating beam due to diffraction. Images recorded

by the CMOS camera are then processed on an Intel i7 CPU, with neural network
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computations performed on a GTX1080 graphics card (NVIDIA).

SLM

BS

Analyzer CMOS
POL

Laser SF CL

Figure 5-4: Experimental arrangement. SF: spatial filter; CL: collimating lens; M:
mirror; POL: linear polarizer; BS: beam splitter; SLM: spatial light modulator.

According to its user manual, the LC-R 720 SLM can realize (approximate) pure-

phase modulation if we modulate the light polarization properly. Specifically, for He-

Ne laser light, if we set the incident beam to be linearly polarized at 450 with respect

to the vertical direction and also set the linear polarization analyzer to be oriented

at 340' with respect to the vertical direction, then the amplitude modulation of the

SLM will become almost independent of the assigned (8-bit gray-level) input. In this

arrangement, the phase modulation of the SLM follows a monotonic, almost-linear

relationship with the assigned pixel value (with maximum phase depth: - 17r). We

experimentally evaluated the correspondence between 8-bit grayscale input images

projected onto the SLM and phase values in the range [0, -r] (see supplement). In

this paper, we approximate our SLM as a pure-phase object and computationally

recover the phase using a neural network.

The CMOS detector was placed after a free-space propagation distance z. Dis-

tinct DNNs were trained from recorded diffraction patterns at three distances zi =

37.5cm 2mm (NA=0.0164+9 x 10-4, Fresnel number F=159 1), z2 = 67.5cmt2mm

(NA=0.0091 1 x 10-4, Fresnel number F88.3 0.3) and z3 = 97.5cm 2mm

(NA=0.0063 1 x 10-4, Fresnel number F=61.2 0.1). Our experiment consisted

of two phases: training and testing. During the training phase, we modulated the
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phase SLM according to samples randomly selected from the Faces-LFW or ImageNet

database. We resized and padded selected images before displaying them on our SLM.

Two examples of inputs, as they are sent to the SLM, and their corresponding raw

intensity images (diffraction patterns) as captured on the CMOS are shown in Figure

5-5. Our training set consisted of 10,000 such faces/images - diffraction pattern pairs.

The raw intensity images from all these training examples were used to train the

weights in our DNN. We used a Zaber A-LST1000D stage with repeatability 2.5pm

to translate the camera in order to analyze the robustness of the learnt network to

axial perturbations. The positional accuracy of +2mm reported earlier on the train-

ing distances z1, z2 , z3 is derived from our error in manually establishing the absolute

distance between SLM and camera; whereas the stage repeatability determines the

error in camera displacement relative to these initial training positions, respectively,

for each axial robustness test in Section 5.2.3.

I II I IV V

a

26 225 0 -i 0 120 0 -n

Figure 5-5: DNN training. Rows (a) and (b) denote the networks trained on Faces-
LFW and ImageNet dataset, respectively. (i) randomly selected example drawn from
the database; (ii) calibrated phase image of the drawn sample; (iii) diffraction pattern
generated on the CMOS by the same sample; (iv) DNN output before training (i.e.
with randomly initialized weights); (v) DNN output after training.

Our DNN uses a convolutional residual neural network (ResNet) architecture. In a

convolutional neural network (CNN), inputs are passed from nodes of each layer to the

next, with adjacent layers connected by convolution. Convolutional ResNets extend

CNNs by adding short term memory to each layer of the network. The intuition
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behind ResNets is that one should only add a new layer if one stands to gain by

adding that layer. ResNets ensure that the (N + 1)th layer learns something new

about the network by also providing the original input to the output of the (N + 1)th

layer and performing calculations on the residual of the two. This forces the new

layer to learn something different from what the input has already encoded/learned

[98].

Skip Connections
Down-Residual Block (DRB) L1 Error

* Up-Residual Block (URB)
0 Dilated Residual Block (DiRB)

Residual Block (RB)

DRB- RB-1 RB-2 RBRB- DRB-3 DRB-4 URB-1 URB-2 URB-3 RB-4 URB-5 URB-6 RB-1 RB-2

Wx'x192

323x6x16x128 16xl x38432 228

64x64x64 ix163x192

128x128x48 -128x28x144

256x56x32 .256X 6x96

1024X1024X1 512X512X16 -- 512X5 X4 512 12X16
512X512X1

Figure 5-6: Detailed schematic of our DNN architecture, indicating the number of
layers, nodes in each layer, etc.

A diagram of our specific DNN architecture is shown in Fig. 5-6. The input

layer is the image captured by the CMOS camera. It is then successively decimated

by 7 residual blocks of convolution + downsampling followed by 6 residual blocks

of deconvolution + upsampling, and finally 2 standard residual blocks. Some of the

residual blocks comprise dilated convolutions so as to increase the receptive field of

the convolution filters, and hence, aggregate diffraction effects over multiple scales

[131]. We use skip connections to pass high frequency information learnt in the initial

layers down the network towards the output reconstruction, and have two standard

residual blocks at the end of the network to finetune the reconstruction. At the

very last layer of our DNN, the values represent an estimate of our phase object.

The connection weights are trained using backpropagation (not to be confused with

optical backpropagation) on the L1 distance between the network output and the
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nominal appearance of the training samples represented as:

1
min wh Y -G ||I (5.3)

wh

Here, w, h are the width and the height of the output, Y is the output of the last

layer, and G is the ground truth phase value, limited in the range [0, -7r]. Additional

details about the training of the DNN are provided in the Supplement, Section 2.

We collected data from six separate experiment runs using training inputs from

Faces-LFW or ImageNet and object-to-sensor distances of zi, z 2 , or z3 . These data

were used to train six separate DNNs for evaluation.

Fig. 5-5(iv) shows a sample DNN's output at the beginning of its training phase

(i.e. with randomly initialized weights), and Fig. 5-5(v) shows the network output

after training, for the same example object-raw image pairs. Training each network

took ~ 20 hours using Tensorflow on our GPU. We provide analysis of the trained

DNN in Section 5.2.3.

Our testing phase consisted of: (1) sampling disjoint examples from the same

database (either Faces-LFW or ImageNet) and other databases such as MNIST, CI-

FAR, Faces-ATT etc., (2) using these test examples to modulate the SLM and produce

raw intensity images on the camera, (3) passing these intensity images as inputs to

our trained DNN, and (4) comparing the output to ground truth.

5.2.3 Results and Network analysis

The standard method of characterizing neural network training is by plotting the

progression of training and test error across training epochs (iterations in the back-

propagation algorithm over all examples). These curves are shown in Figure 5-7 for

our network trained using the ImageNet database and tested using images from: (a)

Faces-LFW (b) a disjoint ImageNet set, (c) images from an English/ Chinese /Arabic

characters database, (d) the MNIST handwritten digit database, (e) Faces-ATT [86],

(f) CIFAR [108], (g) a constant-value "Null" image. Our ImageNet learning curves

in Figure 5-7(d) show convergence to low value after -10 epochs, indicating that our

79



network has not overfit to our training dataset. We plot bar graphs for the mean

absolute error (MAE) over test examples in the 7 different datasets for each of the

3 object-to-sensor distances in Figure 5-7. Lower MAE was reported for test images

with large patches of constant value (characters, digits, Null) as their sparse diffrac-

tion patterns were easier for our DNN to invert. Notably, both our bar graphs and

learning curves show low test error for the non-trained images, suggesting that our

network generalizes well across different domains.

This is an important point and worth emphasizing: despite the fact that our net-

work was trained exclusively on images from the ImageNet database - i.e., images

of planes, trains, cars, frogs, artichokes, etc., it is still able to accurately reconstruct

images of completely different classes (e.g., faces, handwritten digits, and characters

from different languages). This strongly suggests that our network has learned a

model of the underlying physics of the imaging system or at the very least a gener-

alizable mapping of low-level textures between our output diffraction patterns and

input images.

A more pronounced qualitative example demonstrating this is shown in the columns

(iv) (vii) and (x) of Figure 5-8. Here, we trained our network using images exclusively

from the Faces-LFW database. Despite this limited training set, the learned network

was able to accurately reconstruct images from the ImageNet, handwritten digits,

and characters datasets. This is in contrast to results shown in [101], where an SVM

trained on images of faces was able to accurately reconstruct images of faces but not

other classes of objects.

We tested the robustness of our network to rotation and lateral displacement in

the presented test phase objects, as well as axial displacement of the CMOS camera

for each DNN relative to the DNN's trained axial locations zi, z 2, z3 , respectively.

Quantitative results of these perturbations are shown in Figures 5-9, 5-10, 5-11, and

qualitative results for the networks trained at distance z, are shown in Figures A-7,

5-13 and 5-14. Qualitative results for the other two distances are in the supplement.

The results show that our trained network is robust to moderate perturbations in

sensor displacement and is somewhat shift and rotation invariant. As expected, the
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reconstruction fails when the displacement is significantly greater (Figure A-9).

To get a sense of what the network has learned, we examined its maximally-

activated patterns (MAPs), i.e., what types of inputs would maximize network filter

response (gradient descent on the input with average filter response as loss function

[132]). Our results are shown in Figure 5-16 together with the results of analogous

analysis of a deblurring network of similar architecture as well as an ImageNet clas-

sification DNN. Compared with MAPs of ImageNet and a deblurring network, the

MAPs of our phase-retrieval network show two primary differences: First, compared

to ImageNet, we observe much finer textures; this is because ImageNet is meant to

do classification, a task that requires high-level features to emerge out of learning;

whereas our phase network is performing a form of regression. Secondly, compared

with the deblurring network, we observe somewhat finer textures, especially at the

shallower layers (although in both cases low-level textures are present). Our inter-

pretation is that both phase retrieval and deblurring require local operations but

of different nature: deblurring converts intensity gradients into sharp edges, whereas

phase retrieval converts diffraction rings into phase gradients. The difference between

the two cases is not easily discernible by simple visual inspection of the MAPs. The

point is that phase retrieval and deblurring share this common locality feature while

acting differently for the sake of their respective functions; and both are radically

different than classification networks, such as ImageNet.

5.2.4 Conclusions and discussion

The architecture presented here was deliberately well controlled, with an SLM creat-

ing the phase object inputs to the neural network for both training and testing. This

allowed us to quantitatively and precisely analyze the behavior of the learning process.

Application-specific training, e.g. replacing the SLM with physical phase objects for

more practical applications, we judged beyond the scope of the present work. Other

obvious and useful extensions would be to include optics, e.g. a microscope objective

for microscopic imaging in the same mode; and to attempt to reconstruct complex

objects, i.e. imparting both attenuation and phase delay to the incident light. The
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significant anticipated benefit in the latter case is that it would be unnecessary to

characterize the optics for the formulation of the forward operator-the neural net-

work should "learn" this automatically as well. We intend to undertake such studies

in future work.

5.3 Future Work

Several natural extensions exist for the work presented in this chapter, many of which

are the subject of current study. One such extension is the application of our imaging

system for microscopic imaging [144, 142]. In such a setup, one may train the neural

network to learn generalized phase retrieval (i.e., over a broad class of objects) using

an SLM placed in a microscope setup. Once trained, the deep learning microscope

may be used without the SLM to image microscopic objects of interest. Alternatively,

one may also train the network using domain specific images (e.g., of a particular type

of cell or biological tissue) [143] if it is known that the final imaging platform will

only be used to image a particular class of objects.

Another extension of the work presented in this chapter is utilization of our imag-

ing system and deep learning pipeline to image through turbid media [141]. From

a neural network input-output perspective, the problems are very similar: the de-

sired network output is a ground truth "system input" 2D image/signal, and network

inputs are filtered versions of this signal (e.g., by Fresnel propagation or passage

through scattering media). This input-output relationship also has similarities to

DNNs used for image deblurring or denoising. However, DNNs used for imaging (vs.

image processing) have inputs that cannot be perfectly registered with outputs (due

to imperfect experimental setups), and for the case of imaging through turbid media,

significantly larger receptive fields are necessary in order to access information from

light scattered at high angles. Deep learning phase retrieval from focal stack images

or phase-space representations may help address this problem and is also an area of

active interest.
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Figure 5-8: Qualitative analysis of our trained deep neural networks for combinations
of object-to-sensor distances z and training datasets. (i) Ground truth pixel value
inputs to the SLM. (ii) Corresponding phase images calibrated by SLM response
curve. (iii) Raw intensity images captured by CMOS detector at distance zi. (iv)
DNN reconstruction from raw images when trained using Faces-LFW [102] dataset.
(v) DNN reconstruction when trained used ImageNet [120] dataset. Columns (vi-viii)
and (ix-xi) follow the same sequence as (iii-v) but in these sets the CMOS is placed
at a distance of z2 and z3, respectively. Rows (a-f) correspond to the dataset from
which the test image is drawn: (a) Faces-LFW, (b) ImageNet, (c) Characters, (d)
MNIST Digits, (e) Faces-ATT [86], or (f) CIFAR [108], respectively.
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Figure 5-9: Quantitative analysis of the sensitivity of the trained deep convolu-
tional neural network to the object-to-sensor distance. The network was trained
on (a) Faces-LFW database and (b) ImageNet and tested on disjoint Faces-LFW
and ImageNet sets, respectively. The nominal depths of field for the three corre-
sponding training distances zi, z2 , z3, respectively, are: (DOF), = 1.18 t 0.1mm,
(DOF)2 = 3.82 0.2mm, and (DOF) 3 = 7.97 0.3mm.
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Figure 5-10: Quantitative analysis of the sensitivity of the trained deep convolutional
neural network to laterally shifted images on the SLM. The network was trained
on (a) Faces-LFW database,. (b) ImageNet and tested on disjoint Faces-LFW and
ImageNet sets, respectively.
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Figure 5-11: Quantitative analysis of the sensitivity of the trained deep convolutional
neural network to rotation of images on the SLM. The baseline distance on which the
network was trained is (a) zi, (b) z2 and (c) z3, respectively.
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Figure 5-12: Qualitative analysis of the sensitivity of the trained deep convolutional
neural network to the object-to-sensor distance. The baseline distance on which the
network was trained is zi.
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Figure 5-13: Qualitative analysis of the sensitivity of the trained deep convolutional
neural network to lateral shifts of images on the SLM. The baseline distance on which
the network was trained is zi.
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Figure 5-14: Qualitative analysis of the sensitivity of the trained deep convolutional
neural network to rotation of images in steps of 90. The baseline distance on which
the network was trained is zi.
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Figure 5-15: Failure cases on networks trained on Faces-LFW (row a) and ImageNet

(row b) datasets. (i) Ground truth input, (ii) calibrated phase input to SLM, (iii)
raw image on camera (iv) reconstruction by DNN trained on images at distance zi
between SLM and camera and tested on images at distance 107.5 cm, (v) raw image on
camera and (vi) reconstruction by network trained on images at distance z3 between
SLM and camera and tested on images at distance 27.5 cm.
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Figure 5-16: (1) 16 x 16 inputs that maximally activate the last set of 16 convolutional
filters in layer 1 of our phase retrieval network trained on ImageNet at distance of zj, a
deblurring network, and an ImageNet classification network. The deblurring network
was trained on images undergoing motion blur in a random angle within the range
[0,180] degrees and a random blur length in the range [10,100] pixels. The image is
downsampled by a factor of 2 in this layer. (2) 32 x 32 inputs that maximally activate
the last set of 16 randomly chosen convolutional filters in layer 3 of: our network, the
same deblurring network, and the ImageNet classification network. The raw image is
downsampled by a factor of 8 in this layer.
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Chapter 6

Computational Imaging for Mitosis

Detection

The first section of this chapter reviews the theory of ptychography and its Fourier

dual, Fourier ptychography. An experimental demonstration of Fourier ptychogra-

phy for stained onion root tip imaging is shown, and a simulation demonstrating

the potential of ptychography for imaging through turbid media is introduced and

discussed.

The second section of this chapter documents a system we built for automated

mitosis detection in a desktop brightfield microscope. The setup was first done in

a brightfield arrangement and LED array illumination was later added to perform

Fourier ptychographic imaging.

The third section details an experiment testing the hypothesis that deep learning

mitosis detection from a focal stack of images (instead of a single in-focus image) can

provide increased detection accuracy.

The fourth and final section presents the author's thoughts and ideas for future

work in this domain.
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6.1 Ptychography and Fourier Ptychography

6.1.1 Ptychography

Ptychography is a an imaging technique where an illuminating probe function (e.g.,

a physical aperture) is scanned over a sample and then propagated to an output

plane where a time-averaged intensity is recorded [62, 63]. The term "ptychographiy"

derives from the greek root 7rrVXT for "fold" and relates to the overlapping nature

of the shifting probe function used in image acquisition (images are overlapped or

"folded" over each other).

An example ptychographic imaging setup is shown in figure 6-1.

x U
probe

collimator object detector

light source - - - - - --

diffuser Fourier Transform
(via Iem or propaaton)

relay optics

Figure 6-1: In ptychography, an illuminating probe function is scanned over a sample
and propagated to an output plane.

Ptychographic images acquired from this setup can be written as:

Iut (u, so) = Jp(x - so) - o(x)e- 2 xudX

where p is the probe function, o is the object function and so represents a lateral shift

of the probe function as it is scanned across the object.

Several algorithms exist for phase retrieval from a ptychographic dataset. One

such algorithm, Wigner Distribution Deconvolution, is discussed in Chapter 3 of

this thesis. Another, more popular, algorithm for ptychographic phase retrieval is

the "extended Ptychographic Iterative Engine" (ePIE) [133, 134]. The ePIE uses

alternating projections to converge to a solution consistent with all acquired images.

A random initial phase is assigned to the initial object estimate and the ePIE proceeds

as follows:
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1. Current estimates for object o(x) and probe p(x) are forward-propagated, e.g.,

as .F{o(x) -p(x - si)}), to estimate an output field Gout(U)

2. The amplitude of this estimated Gout(u) is replaced with the experimentally

observed amplitude

3. This new Gout(u) is Inverse Fourier Transformed to obtain an estimate for o(x)-

p(x)

4. Gradient descent is applied twice to simultaneously update the object and probe

estimate.

5. Steps 1-4 are repeated until convergence

An illustration of the ePIE in action is shown in Figure 6-2

1W

s0 00 10 0 20

I "y"

2bo

100j

S 00 15o 2'o 25

Figure 6-2: Phase retrieval using the extended Ptychographic Iterative Engine. By
enforcing consistency in overlapping regions' measurements, both the probe function
and object function can be simultaneously retrieved using the ePIE. (left) object
estimate at early stage of ePIE algorithm, (middle) object estimate at later stage of
ePIE algorithm (right) final object estimate from ePIE algorithm.
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6.1.2 Fourier Ptychography

Fourier ptychography is the Fourier dual of ptychography; instead of shifting the

object (or probe) in real-space and taking measurements in frequency space, shifts

are performed in frequency space (by changing angle of illumination) and intensity

measurements are recorded in the real-space domain [70]. An example Fourier pty-

chographic imaging setup is shown in figure 6-5.

object plane pupil plane Image plane

Figure 6-3: Fourier Ptychography Imaging Setup.

Mathematically, the images acquired from a Fourier Ptychographic imaging setup

can be expressed as [70]:

1~ 2

Iout(X, sU) = P(u) -O(u sU)e- 2 xudX

where O(u) is the frequency spectrum of the object, shifted by su, the spatial fre-

quency of the incident illumination, and P(u) represents the imaging system's pupil

function.

Similar to ptychography, the iterative fourier ptychographic phase retrieval al-

gorithm utilizes alternating projections. The reconstruction procedure is as follows

[135]:

1. Plug in current estimates for object's frequency spectrum O(u) & system pupil

function P(u) through the propagating function to obtain an estimate for the

output field gout(x)

2. Replace the amplitude of this estimated gout(x) amplitude w/ experimentally

observed amplitude
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3. Inverse Fourier Transform gout to obtain estimate for O(u) -P(u) ("FT. of object

.* ATF")

4. Use gradient descent twice to simultaneously update object frequency spectrum

and ATF/pupil function estimates.

5. Repeat above steps until convergence

An illustration of the iterative reconstruction from Fourier ptychographic images is

shown in Figures 6-5 and 6-4.

ItA

Figure 6-4: In Fourier Ptychographic Microscopy, many low resolution images (cap-
tured using different angles of illumination) are synthesized into a single higher reso-
lution image

6.1.3 Experimental Fourier Ptychography

An experimental Fourier Ptychographic imaging system was used to image onion

root tip slides. The system had magnification M = 10.27 and utilized an LED array

with 4mm spacing placed 79mm above the sample to sequentially illuminate the

sample with ~ 630nm light. Sixty-nine low-resolution images were captured and used

to reconstruct a higher resolution image using the extended ptychographic iterative

engine (ePIE) algorithm. Calculations were performed on a Mac Pro, and for a set of

1024x1024 images, the ePIE algorithm converged within 30 seconds. Reconstruction

results are shown in Figure 6-6.

95



50 100 150 20 250

uJ 10 i dh) 20 405 10J ~1 2JJ 25 0 10 5 250

Figure 6-5: Fourier Ptychographic Image Reconstruction. (left) object estimate at
early stage of algorithm progression, (middle) object estimate at later stage of algo-
rithm, (right) "ground truth" image

Notably, although significant resolution improvement is observed between the on-

axis low-resolution image and computationally reconstructed high-resolution image,

neither image looks that great compared to the brightfield microscopy images ob-

tained in Section 2 of this chapter. This is in large part due to the resolution of

incoherent imaging systems being intrinsically double that of an identical coherent

imaging system and in part due to coherence artifacts such as interference rings.

6.1.4 Fourier ptychographic imaging through turbid media

We simulated the experimental setup shown in Figure 6-7 to assess the ability of an

ePIE-like iterative algorithm for imaging through turbid media. In our simulation, a

high-scattering plane (P2) is placed some distance behind an object plane of interest

(P1). Using a multi-slice iterative reconstruction algorithm similar to that demon-

strated in [136] and [1371, we were able to recover both the high-scatter plane and the
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Figure 6-6: Fourier Ptychographic Image Reconstruction of onion root tip. (left) raw
low-resolution on-axis image fed into ePIE algorithm, (right) high-resolution ePIE
reconstruction

input plane. Results are shown in Figure 6-8. We then swapped P1 and P2 and found

that the algorithm could still reconstruct both the object and scattering planes. No-

tably, this algorithm took significantly longer to converge vs standard ptychography

for a single slice (hours vs minutes), suggesting that it may be much more sensitive

to experimental error or misalignment.

6.2 MIToscope: Automated mitosis detection in a

desktop microscope

We built and tested a system for automated mitosis detection in a desktop microscope.

The platform used for this experiment was a low-cost (<$300) OMAX microscope and

camera available from Amazon.

Since the author was unable to procure labeled pathology slides of cells undergoing

mitoses, he used slides of onion root tip mitoses and self-labeled the dataset. Onion

cells in any stage of mitosis (prophase, metaphase, anaphase, or telophase) were

labeled as "positive" and remaining (unlabeled) parts of the image were considered
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object plane

P1 = object plane P2= high-scatter plane output intensity P2 image back-
(low-res image of P2) propagated to P1

Figure 6-7: Fourier ptychographic imaging through turbid media.

"~negative."

In practice, the resolution gain from doing Fourier Ptychography (Fig 6-6) did

not exceed the 2x gain obtained via incoherent imaging. Additionally, due to a lack
of coherence artifacts, images obtained via brightfield imaging were of higher quality

than the images obtained via Fourier Ptychography, and for the remainder of this

section we use images acquired from a brightfield setup at low (10x) magnification.

The 10x objective used had an NA of 0.45, corresponding to a resolution of about

0.6 microns. A pathologist cannot count mitoses at this magnification, but optically,
the information is there (provided that the camera sensor has an appropriate space-

bandwidth product and pixel size). Thus, we used this setup to demonstrate the
ability of our end-to-end imaging platform+mitosis detection algorithm for counting

mitoses at low magnification across a wide field-of-view.

A DNN was trained as per the methodology in the following section of this chapter

("Deep learning mitosis detection from focal stack images"), and an example output
of the trained classifier for a test/holdout image is shown in Figure 6-11. The trained

DNN (at the operating point of the ROC) had a sensitivity ("true positive rate") of
0.913, precision ("positive predictive value") of 0.944, and an F1 score of 0.928 (220

TP, 21 FP, 13 FN). Notably, the classifier actually identified 17 mitoses that had been
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missed during the labeling process. These were not counted as false positives for the

above analyses, and it is likely that if the network were retrained with these examples

correctly labeled, the network could achieve significantly improved results.

In our benchtop setup, images were acquired at 10x magnification in less than a

second, and running inference over a single image took about 30 seconds per image.

The inference step is highly parallelizable and could be sped up with more GPUs to

process an entire image is less than a second. Based on the demonstration reported

here (for onion cell mitoses), we envision a similar benchtop microscope system for

pathologists where mitoses (or any other hallmarks of disease severity) can be located

and counted "automagically" from low-magnification (high field of view) images at the

push of a button. The benchtop nature of the setup allows pathologists to rapidly

switch between high and low magnification to double-check the algorithm's results,

and the added benefit of being able to "see the bigger picture" of mitoses (i.e., at wide

field of view) may facilitate and improved understanding of a patient's disease.

6.3 Deep learning mitosis detection from focal stack

images

In this section, we test the hypothesis that using a focal stack of images instead of

a single in-focus image as input can significantly improve the accuracy of these deep

learning algorithms. If our hypothesis is true, it would suggest that given a limited

photon budget (image acquisition time), it would be better to spend time acquiring

a focal stack vs longer exposure times, even at the cost of increased noise/reduced

SNR.

6.3.1 Dataset/Methods

Finding a labeled focal-stack dataset proved difficult since most whole-slide imaging

systems discard out-of-focus images and few freely available online databases con-

tain focal stack information. The one dataset we were able to find (and access) was

99



from the MITOS 2012 competition for multispectral imaging evaluation [138]. The in-

tended purpose of the multispectral focal stack dataset was to evaluate whether or not

multispectral images could improve machine learning results, and most contestants

simply discarded all out-of-focus images in their analyses.

Here, we revisit the MITOS 2012 multispectral image dataset, which contains fifty

40X magnified Fields of View (FOV) from five different slides (10 per slide). Each

40X FOV is 512pm-by-512pum with pixel spacing of roughly 200nm. Image focal

stacks were captured with z-plane separation of 500nm. In total, the multispectral

dataset contained 170 gray-scale images (10 spectral bands, with a 17 layer z-stack

for each spectral band). For our experiments, we picked just three color bands close

to "R" ,"G," and "B" (as would be captured by standard digital camera) to simulate

what an image under a standard (non-hyperspectral) imaging system would look like.

These bands were: band 3 ("B"; 430nm-490nm), band 6 ("G"; 525-570nm), and band

0 ("R"; 665-710nm). Additionally, due to computational constraints, we selected just

three images from the focal stack to use for DNN training/ evaluation: an in-focus

image, an image overfocused by 2.5pm and an image underfocused by 2.5pum.

To choose these three focal stack images, we first scanned through all of the

images in the focal stack and estimated an in-focus plane/image using a sharpness

metric (similar to classical in-line digital holography 1145]). Then, we selected this

in-focus image/plane and two images/planes that were 2.5pm above or below that

focal plane to use in our dataset(s). Since the numerial aperture of the whole slide

scanner used for this dataset was close to 1.0 (assuming that optical resolution of the

WSI system was correctly matched with its pixel resolution of 200nm), the selected

out-of-focus images were well outside the depth of field of the imaging system.

Since we wanted to be "photon-budget" fair when comparing our focal stack images

against single in-focus RGB images, we synthetically added noise with varying levels

of variance to our images in order to simulate various levels of exposure (e.g., for 1/3

the exposure time, noise variance was increased by 3x). From the originally provided

8-bit RGB images, noise with variance of 1,3,9,and 27 was added. For subsequent

analyses RGB images were compared against focal stack images with 3x the noise
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variance (e.g., var=--3 vs var=9)

The generated noisy images were then fed into a DNN as 3-channel (RGB) or

6-channel (RGB+dI/dZ) inputs for training. "Lateral flux" (dl/dZ) inputs were ob-

tained by differencing and normalizing the over and underfocused RGB images.

6.3.2 Training

We used a two-pass "boosting-inspired" DNN approach proposed by Ciresan et al [139]
to train our classifier. This approach has also been successfully utilized by others [140]

for tumor segmentation.

First, an initial training set ("training set A") is generated using cropped images

centered at all mitoses pixels and an equal number of randomly selected nonmitoses

pixels.

Then, a simple DNN was trained using training set A and used to run inference

over the original labeled image (to generate a "mitosis-likelihood" probability map).

Because the negative examples from Training Set A were more likely to contain images

of areas that were not cell nuclei at all, this first-pass DNN had a very high false-

positive rate.

Next, a second training set ("training set B") was generated using cropped images

centered at all mitoses pixels and an larger number of nonmitoses pixels selected from

a weighted probability distribution proportional to the probability map generated by

the DNN trained using training set A. In this manner, training set B was comprised of

more "difficult non-mitoses" examples than Training Set A, and the DNN could focus

its efforts on learning to distinguish between true mitoses and difficult non-mitoses

instances (instead of trivial examples of non-mitoses instances).

After training set B was generated, a new DNN was trained using set B and used to

run inference over the training, test, and holdout images. An example output of this

algorithm is shown in Figure 6-17. Before testing our entire pipeline on the multispec-

tral dataset, we ran images from the non-multispectral MITOS2012 dataset through

our pipeline to make sure the network architecture used was suitable (LeNet-like) for

mitoses detection from in-focus color images. Using the Aperio (non-multispectral)
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images from the MITOS2012 dataset to train our DNN, we obtained an F-score of

~ 0.767, which is consistent/competitive with results from literature [139].

6.3.3 Results

We passed our multispectral datasets through the pipeline above and stopped compu-

tation just before running final inference across the entire images (due to time/resource

constraints) for initial comparison. In order to validate our results, we ran both 4-

fold cross-validation and Monte-Carlo cross-validation. Our results are shown in Fig.

6-18.

Unfortunately, our results suggest that multifocal imaging, at least in the im-

plementation presented here, does not significantly improve mitosis classification ac-

curacy. Although on average, the focal-stack-trained DNN outperformed the RGB-

trained DNN, the result was not significant and there were even some spits where the

RGB-trained DNN outperformed the focal-stack-trained DNN. It is likely that the

spatially coherence of the illumination in the multispectral imaging system was too

low for the out-of-plane images to contain any scattering/phase information from the

sample, and a repeat of this experiment in a coherent or partially coherent illumina-

tion setup is as suggested subject of future study.

Another takeaway from our experiment was that the trained DNNs were very

robust to noise; (no correlation between noise level and classification accuracy). This

was not too surprising since DNNs are known to be robust to noise and jitter is often

added as a means to augment training data.
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Figure 6-8: Fourier ptychographic imaging through turbid media. Top-to-bottom
image pair progression
(right) over time.

shows the algorithm's current estimates for P1 (left) and P2

Figure 6-9: Example MIToscope setup. In the setup on the right, an LED array was
inserted into the standard brightfield setup to allow Fourier ptychographic imaging.
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Figure 6-10: Onion cells in various states of cell cycle.
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Figure 6-11: Automated onion cell mitosis detection. (top) full field of view/single
image (bottom) zoomed-in field of view
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105



MW\,

a

9

a

7

Figure 6-15: The probability map generated by a DNN trained using set A has a high
false-positive rate. (left) ground truth image with mitoses labeled in yellow. (right)
mitosis probability map (darker = higher probability)
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Figure 6-16: Training set B was generated using cropped images centered at mitoses
pixels (top right) and non-mitoses (bottom right) pixels selected from a weighted
probability distribution proportional to the probability map generated by the DNN
trained using training set A (left)
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Figure 6-17: (left) ground truth image with mitoses labeled in yellow. (right) Ex-
ample DNN output when trained using training set B. Green circles denote correctly
identified mitoses; the red circle indicates a missed mitoses (false negative)

Test-set results: Accuracy
Noise Variance 1 3 9 27

RGBstack 0.916 0.912 0.915 0.913
RGB 0.898 0,907 0.912 0.899

Monte Carlo cross-validation (16 randomized training/test splits)
[binary cross-entropy loss]

1 2. 3 4 5 6 7 8 9 10 I1 12 13 14 15 16.
RGB_stack
var=9 0.229 0.280 0.270 0.256 0.262 0.231 0.228 0.259 0.231 0.218 0.279 0.241 0.278 0.239 0.255 0.226

Avg
RGB var3 0.260 0.274 0.277 0.240 0.263 0.252 0.264 0.280 0.249 0.249 0.254 0.257 0.252 0.263 0.257 0.254 Diff StDev

0.031 -0.006 0.007 -0.016 0.001 0.021 0.036 0.021 0.018 0.031 -0.025 0.016 -0.026 0.024 0.002 0.028 0.010 0.009

Figure 6-18: Mitosis detection results.
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Chapter 7

Concluding Thoughts

This thesis is part of a larger body of efforts to apply computational imaging to pathol-

ogy. This new way of thinking about imaging for pathology will enable pathologists

to image faster, cheaper, and more robustly. Images reconstructed via computational

imaging are not limited by the physics of traditional imaging systems, and compu-

tational imaging platforms can image beyond the diffraction limit at a much higher

space-bandwidth product than brightfield microscopy. Moreover, these images con-

tain a much richer set of information (e.g., quantitative phase or phase-space) which

can be used to synthesize extended depth-of-field images in thick samples or provide

extra information to machine learning algorithms to help improve model accuracy.

Machine learning is eating the world, and pathology is no exception. State-of-

the-art deep learning algorithms can already outperform pathologists at several tasks

including tumor segmentation and mitosis detection. In the future, AI will play an

increasingly greater role in personalized medicine, predicting treatment response and

guiding therapeutic decisions.

What role does computational imaging play in this future? As the field trends

towards Al-assisted diagnoses via digitized whole-slide images, computational imaging

can help fill the need for high throughput imaging systems which can image whole

slides quickly, robustly, and cheaply. Additionally, it is helpful to keep the end-goal

of such imaging systems in mind when designing computational imaging platforms

for high-throughput whole-slide imaging (WSI). In particular, the WSI system need
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not be optimized purely for "quality of image reconstruction," but instead can also

be optimized for clinical result or utility.

We are excited by the immense potential of of computational imaging to transform

the field of pathology. Ongoing efforts stemming from the work done in this thesis

include: a deep learning system for imaging through turbid media (e.g., skin or

blood) [141], applications of the system developed in Chapter 4 for imaging biological

specimens [142, 144], and a high-speed whole-slide imaging platform.

Beyond pathology, another field touched upon in (but not an explicit focus of)

this thesis is the application of machine learning to computational imaging itself.

For decades, advances in computational imaging have stemmed from clever human-

developed algorithms taking advantage of underlying physical models of light propa-

gation or a priori assumptions about the object(s) being imaged. Machine learning

is eating the world, and computational imaging is no exception. We demonstrate in

Chapter 4 of this thesis that a deep learning algorithm can outperform many of these

hand-crafted models or algorithms. Deep learning has the potential to transform

the entire field of computational imaging, and teaching machine learning algorithms

how to "learn physics" is a nascent field of study that we predict will have enormous

implications for the future of imaging.
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Appendix A

Supplemental Material

This appendix provides supplementary information to "Lensless computational imag-

ing through deep learning"

A.1 Calibration

We calibrated the HoloEye SLM using the Michelson interferometer experimental

arrangement shown in Figure A-1 with M2 as the reference mirror. Lenses L1, L2

form a telescope that images the SLM onto the CMOS camera. We carried out two

calibration experiments, one with all pixels in the SLM driven by the same value

(uniform) and one with the left-hand half pixels driven by a constant value zero and

the right-hand half driven by a different value (half-half.)

Let 0 denote the relative phase between the light reflected by the uniform SLM

when its pixels are all driven with gray scale value of V = 0, relative to M2; and let

q(V) denote the phase when the SLM pixels are uniformly driven from V = 1 to 255.

Let VI denote the amplitude reflected by M2, and let a(V) VO denote the residual

amplitude modulation by the SLM, also as function of pixel values V. In the uniform

illumination case, the intensity recorded by the CMOS should be of the form

I()= 1 + a2 (V) + 2a(V) cos #(V) (A.1)
10

ill



We used the half-half version of the experiment, blocking the mirror M2 so that

the beam on the CMOS is coming from the SLM only, to determine a(V), and then

determine #(V). We also arbitrarily assigned #(0) = 0 radians. The two curves are

shown, respectively, in Figures A-2 and A-3. The maximum intensity modulation

ratio measured was ~ 1.3 for our configuration of polarizer and analyzer. In contrast,

per manual specification, the SLM's maximum intensity modulation ratio is ~ 12000

for other polarizer/analyzer configurations. Since our intensity modulation is small,

we neglected it while designing our neural network architecture.

Figure A-4 shows the variation of phase modulation with 8-bit gray scale values

and three piecewise linear segments fitted to the phase modulation curve to obtain

phase values varying linearly with gray scale values. The mean square error (MSE)

of the fit is 0.18. In Figure A-5 we fit a single linear segment to the phase modulation

curve with MSE of 0.19. All experiments in the main manuscript were done by

training neural network with phase values obtained by fitting 3 segments to the curve.

We report the results of phase retrieval by training networks on phase obtained by

fitting a single linear segment in Section 3 of this supplement.

SLM L1 L2

BS

M2U -
Analyzer CMOs

POL

M 1

Laser SF CL

Figure A-1: The optical setup for calibrating the phase and intensity modulation of
SLM. SF: spatial filter; CL: collimating lens; M1, M2: mirror; L1,L2: lens; POL:
linear polarizer; BS: beam splitter; SLM: spatial light modulator.
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Figure A-2: Experimentally calibrated intensity modulation curve with error bounds
in the grayscale range of [0,255] for the SLM.
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Figure A-3: Experimentally calibrated phase modulation curve with error bounds in
the grayscale range of 0,255] for the SLM.

A.2 DNN Training

As described in the main manuscript, we used residual blocks to construct our DNN

architecture. Here we describe additional details of our architecture. Figure A-6 shows
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Figure A-4: Phase modulation curve along with three linear segments fitted to the
curve.
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Figure A-5: Phase modulation curve along one linear segment fitted to the curve.

the different kind of residual layers (bottom row) composed of residual blocks (top

row). All residual blocks are composed of 2 sets of batch normalization, nonlinearity

(ReLU) and a convolutional layer stacked one above the other. All convolutional
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filters are of size 3 x 3 and are either simple convolutions, convolutions with stride,

convolution transpose or dilated convolutional filters depending on the type of the

residual layer. The strides for convolution and convolution transpose filters, which

downsample or upsample the input respectively, are set to (2, 2) along the two spatial

dimensions. Skip connections are either (a) direct connections that sum the input

and output for blocks that do not change the size of the input, (b) 1 x 1 convolution

filters with stride (2, 2) for residual downsampling blocks, or (c) 2 x 2 convolution

transpose filters with upsampling rate (2, 2) for residual up-sampling blocks. We used

weight decay of 1E-4 in all convolutional filters initialized with random numbers from

a Gaussian distribution, and a dilation rate of 2 in all dilated convolutional filters. All

residual layers are composed of two residual blocks. In our experiments, we observed

that residual layers composed of 3 residual blocks (instead of 2) resulted in slightly

lower mean absolute error (MAE) but much longer training times.

We set a small dropout rate of 0.02 between all layers to prevent overfitting.

We used the ADAM optimizer in Tensorflow to minimize the MAE over the 10000

training samples with batch size 3. The batch size was constrained by the memory

available on the GPU. We start the training with a learning rate of 0.001 and drop

it by a factor of 2 after every 5 epochs. Additionally, we clip the gradients at value

1 to stabilize the training. We trained the neural network for 20 epochs shuffling the

training samples at every epoch.

A.3 Axial perturbation, lateral perturbation and ro-

tation at other two training distances

Figures 9, 10 and 11 in the main manuscript qualitatively showed the results of the

DNNs (Faces-LFW and ImageNet) trained at distance zi = 37.5cm + 2mm to axial,

lateral and rotational shifts, respectively. Here we show the qualitative results of

the sensitivity of the DNNs (Faces-LFW and ImageNet) trained at distances z2

67.5cm t 2mm and z 3 = 97.5cm t 2mm to axial, lateral and rotational shifts.
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Figure A-6: Different types of residual layers used in our DNN architecture are shown
in the bottom row which are composed of residual block structures described above.
The strides for convolution filters in the residual blocks are shown above the filter.

Figures A-7, A-8 show the effect of changing the object-to-sensor distance relative

to the distance the neural network was trained on, i.e., z2 and z3, respectively. 0

mm indicates the baseline training distance, and the sensor was displaced by 1mm,

5mm, 20 mm, and 100 mm both in the positive (further from the object) and negative

(closer to the object) directions from the baseline distance. We see that the networks

trained on Faces-LFW and ImageNet databases are both able to faithfully reconstruct

the phase object even at large deviations from the training distance.

Figures A-9, A-10 show the effect of laterally shifting images on the SLM relative
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ImageNet
SLM input True phase Raw image Reconstruction

0 mm

Faces-LFW
SLM input True phase Raw image Reconstruction

Axial shift Axial shift

- . + 5 mm-

- + 20 mm-

+ 100 MM-

SLM input: True phase/Reconstruction:
26 225 0 -1(,r)

Figure A-7: Qualitative analysis of the sensitivity of
neural network to the object-to-sensor distance. The
network was trained is z 2 .

to the baseline placement of the images on the SLM on which the neural network

was trained at distances z2 and z3, respectively. 0 pixel indicates the baseline image

placement used during training the networks, and the image was laterally shifted by

12,60,120 and 270 pixels in the left and right directions. We see that the networks

trained on Faces-LFW and ImageNet databases are both able to faithfully reconstruct

the phase object at various lateral displacements.

Figures A-11, A-12 show the effect of rotating images on the SLM relative to the

upright placement of the images on the SLM on which the neural network was trained

at distances z2 and z3, respectively. 0 degrees indicates the baseline image placement

used during training the networks, and the image was rotated by 90, 180 and 270

degrees. We see that the networks trained on Faces-LFW and ImageNet databases

are both able to reconstruct the phase object at varying degrees of rotation.
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Figure A-8: Qualitative analysis of the sensitivity of
neural network to the object-to-sensor distance. The
network was trained is z3 .
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A.4 Linear phase modulation

In the main manuscript and the previous section of the supplementary material, we

showed the results of the DNNs which were trained on phase values in the range

[0, -7r]. The correspondence between the 8-bit grayscale intensity image projected

onto the SLM and the phase values were obtained experimentally as described in

the first section, and by least square fitting of 3 piecewise linear segments in the

range [26,225] so as to span [0, -7r] phase modulation (Fig. A-4). We also trained

networks on phase values obtained by least square fitting of a single segment in the

range [30, 224] so as to span [0, -7r] phase modulation (Fig. A-5). This segment

naturally results in a poorer fit to the phase modulation in terms of mean square

error. Fig. A-13 shows the bar graphs for mean absolute error (MAE) of our trained

DNNs at 3 object-to-sensor distances (z1, z2 and z3), as well as the training and test
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Figure A-9: Qualitative analysis of the sensitivity of
neural network to lateral shifts of images on the SLM.
the network was trained is z2.

the trained deep convolutional
The baseline distance on which

error curves for the network trained on ImageNet database at distance zi. Fig. A-14

shows qualitative results of our trained DNNs at 3 distances on 7 different datasets,

as described in the main manuscript. We see that the mean absolute error (MAE) is

comparable to the MAE errors reported in the main manuscript for phase modulation

using least square fitting of 3 segments. This suggests that the neural network is fairly

robust to the kind of fit we employ for phase modulation.
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Faces-LFW
SLM input True phase Raw image Reconstruction

ImageNet
SLM input True phase Raw image Reconstruction

0 pixel

Lateral shift

- + 12 px -+

+ 60 px -+

+ 120 px -+

+ 270 px -

SLM input: True phase/Reconstruction: l Raw Image:
26 225 0 -1(7r) 0 120

Figure A-10: Qualitative analysis of the sensitivity of the trained deep convolutional
neural network to lateral shifts of images on the SLM. The baseline distance on which
the network was trained is z3 .
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Figure A-11: Qualitative analysis of the sensitivity of
neural network to rotation on the SLM. The baseline
was trained is z2.
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Figure A-12: Qualitative analysis of the
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Figure A-13: Quantitative analysis of our trained deep neural networks on phase
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Figure A-14: Qualitative analysis of our trained deep neural networks on phase mod-
ulated by a single linear segment for three object-to-sensor distances (zi, z 2 and z3 )
on different datasets. (i,ii) The images in the first two columns are the ground truth
inputs to the SLM, and the corresponding phase image calibrated for the SLM; (iii-v)
columns show the raw intensity images captured by the CMOS placed at a distance of
z, which are also inputs to our DNN, the reconstruction by the DNN when trained on
Faces-LFW dataset, and the reconstruction by the DNN when trained on ImageNet
dataset, respectively. Similarly, for columns (vi-viii) and (ix-xi) the CMOS is placed
at a distance of z 2 and z3, respectively. (a-f) correspond to datasets (a) Faces-LFW,
(b) ImageNet, (c) Characters, (d) MNIST Digits, (e) Faces-ATT, and (f) CIFAR,
respectively.
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