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Abstract:

In this thesis, we propose strategies to solve the general ground state problem for arbitrary

effective cluster interactions and construct ground state preserving cluster expansions. A

full mathematical definition of our problem has been formalized to illustrate its generality

and clarify our discussion. We review previous methods in material science community:

Monte Carlo based method, configurational polytope method, and basic ray method.

Further, we investigate the connection of the ground state problem with deeper

mathematical results about computational complexity and NP-hard combinatorial

optimization (MAX-SAT). We have proposed a general scheme, upper bound and lower

bound calculation to approach this problem. Firstly, based on the traditional

configurational polytope method, we have proposed a method called cluster tree

optimization method, which eliminates the necessity of introducing an exponential number

of variables to counter frustration, and thus significantly improves tractability. Secondly,

based on convex optimization and finite optimization without periodicity, we have

introduced a beautiful MAX-MIN method to refine lower bound calculation. Finally, we
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present a systematic and mathematically sound method to obtain cluster expansion models

that are guaranteed to preserve the ground states of the reference data.
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Chapter 1 Introduction and Background

Section 1.1 Backgrounds

Lattice models have wide applicability in science [1-10], and have been used in a wide

range of applications, such as magnetism [11], alloy thermodynamics [12], fluid

dynamics [13], phase transitions in oxides [14], and thermal conductivity [15]. A lattice

model, also referred to as generalized Ising model [16] or cluster expansion (CE) [12], is

the discrete representation of materials properties, e.g., formation energies, in terms of

lattice sites and site interactions. In first-principles thermodynamics, lattice models take on

a particularly important role as they appear naturally through a coarse graining of the

partition function [17] of systems with substitutional degrees of freedom. As such, they are

invaluable tools for predicting the structure and phase diagrams of crystalline solids based

on a limited set of ab-initio calculations [18-22]. In particular, the ground states of a lattice

model determine the OK phase diagram of the system. However, the procedure to find and

prove the exact ground state of a lattice model, defined on an arbitrary lattice with any

interaction range and number of species remains an unsolved problem, with only a limited

number of special-case solutions known in the literature [23-29]. In general systems, an

approximation of the ground state is typically obtained from Monte Carlo simulations,

which by their stochastic nature can prove neither convergence nor optimality. Thus, in

light of the wide applicability of the generalized Ising model, an efficient approach to

finding and proving its true ground states would not only resolve long-standing

uncertainties in the field and give significant insight into the behavior of lattice models, but

would also facilitate their use in ab-initio thermodynamics.
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In the first part of the thesis, we present an efficient algorithm that, in many cases, is able to

find the global ground state of an arbitrary lattice model in any dimension and of any

complexity, and to prove the optimality of the solution. We first introduce the formal

structure of a general lattice model and the Hamiltonian used to the describe it. We

proceed to derive a solution to this optimization problem by converging a periodicity-

constrained upper bound and aperiodic lower bound on the total energy. For calculating

the upper bound, we derive the equivalence between the optimization of the Hamiltonian

under a fixed periodicity and MAX-SAT pseudo-Boolean optimization [30, 31] (PBO or

MAXSAT), allowing us to leverage existing highly optimized and mathematically rigorous

programing tools. To obtain the lower bound on the ground state energy, we demonstrate

the two methods we develop throughout my PhD program. In the first method [32], we

propose the cluster tree optimization algorithm. Compared to the previous state-of-the-art

polytope method [33, 34], this algorithm eliminates the necessity of introducing an

exponential number of variables to counter frustration, and thus significantly improves

tractability. For the second method [35], we derive a computationally efficient approach

based on a maximization of minimum-energy local configurations, which we called the

MAXMIN method. We demonstrate the accuracy, robustness and efficiency of the MAXMIN

approach using both an assortment of random Hamiltonians and an example of a realistic

Hamiltonian of an existing material. Finally, while we are unable to guarantee that the

global optimum can always be found and proven, we argue that our MAXMIN algorithm

significantly improves on the state-of-the-art in computational efficiency, and does not

sacrifice any guarantees of optimality with respect to established methodology.
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The second part of the thesis focuses on construction of the ground state preserving CE:

First-principles based cluster expansion models are the dominant approach in ab initio

thermodynamics of crystalline mixtures enabling the prediction of phase diagrams and

novel ground states [36]. However, despite recent advances, the construction of accurate

models still requires a careful and time-consuming manual parameter tuning process for

ground state preservation, since this property is not guaranteed by default. In this part of

the thesis, we present a systematic and mathematically sound method to obtain cluster

expansion models that are guaranteed to preserve the ground states of their reference data.

The method builds on the recently introduced compressive sensing [37, 38] paradigm for

cluster expansion and employs quadratic programming (QP) [39] to impose constraints on

the model parameters. The robustness of our methodology is illustrated for two lithium

transition-metal oxides with relevance for Li-ion battery cathodes, i.e., Li2xFe2(1-x02 and

Li2xTi2(1-x)02, for which the construction of cluster expansion models with compressive

sensing alone has proven to be challenging. We demonstrate that our method not only

guarantees ground state preservation on the set of reference structures used for the model

construction, but also show that out-of-sample ground state preservation up to relatively

large super cell size is achievable through a rapidly converging iterative refinement. This

method provides a general tool for building robust, compressed and constrained physical

models with predictive power.

Section 1.2 General statement of the ground state problem
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A lattice model is a set of fixed sites on which objects (spins, atoms of different types, atoms

and vacancies, etc.) are to be distributed. Its Hamiltonian consists of coupling terms

between pairs, triplets, and other groups of sites, which we refer to as "clusters". A formal

definition of effective cluster interactions can be found in [12]. Before discussing the

algorithmic details of our method, it is essential to establish a precise mathematical

definition of a general lattice model Hamiltonian and the task of determining its ground

states. The ground state problem can formally be stated as follows: Given a set of effective

cluster interactions (ECI's) J e Rc, where C is the set of interacting clusters and R is the

set of real numbers, what is the configuration s:D -> {0,1}, where D is the domain of

configuration space, such that the global Hamiltonian H is minimized:

H = lim 13 1 3 a H s(i+x,j+y,k+z,p,t) (1.1)
N--- (2N +1) (i,jk)e{-N,...,N}3 

aeC (x',,p,t)Ea

In the Hamiltonian of Eq. (1.1), each a e C is an individual interacting cluster of sites. In

turn, each site within a is defined by a tuple (x,y,z,p,t), wherein (x,y,z) is the index of the

primitive cell containing the interacting site, p denotes the index of the sub-site to

distinguish between multiple sub-lattices in that cell, and t is the species occupying the site.

To discretize the interactions, we introduce the "spin" variables sx,,,, where s,,,=:

indicates that the pth sub-site of the (x,y,z) primitive cell is occupied by species t, and

otherwise s,,,, =0. The energy can be represented in terms of spin products, where each

cluster a is associated with an ECI Ja denoting the energy associated with this particular

cluster. To obtain the energy of the entire system, each cluster needs to be translated over

all possible periodic images of the primitive cell, i.e., we have to consider all possible
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translations of the interacting cluster a, defined as a set of (x,y,z,p,t), by (ij,k) lattice

primitive cells translations, yielding the spin product 17 Si+xJ+Y~kzpI . Finally, the
(x,y,z,p,t)ea

prefactor ( )3 normalizes the energy to one lattice primitive cell, and the limit of N
(2N +)

approaching infinity emphasizes our objective of minimizing the average energy over the

entire infinitely large lattice. One remaining detail is that the Hamiltonian given in Eq. (1.1)

is constrained such that that each site in the lattice must be occupied. For the sake of

simplicity, lattice vacancies are included as explicit species in the Hamiltonian, so that all

spin variables associated with the same site sum up to one:

Is = I V(x, y,z, p) e F (1.2)

In Eq. (1.2), F is the set of all sites in the form of (x,y,z,p), and c(p) denotes the set of

species that can occupy sub-site p. The domain of configuration space D can be formally

defined as the set of all (x,y,z,p,t), with t e c(p).

To further illustrate the notation introduced above, Figure 1 depicts an example of a two-

dimensional lattice Hamiltonian for a square lattice with two sub-sites in each lattice

primitive cell, i.e., p -{0,1}. Each sub-site may be occupied by 3 types of species, so that

t e {0,1,2}, where t = 0 shall be the reference (for example, vacancy) species. Hence, the

energy of the system relative to the reference can be encoded into t e{1,2}. Furthermore,

the Hamiltonian shall be defined by only 2 different pairwise interaction types with the

associated clusters a = {(0,0,0,1,2),(1,2,0,0,1)} and ={(0,1,0,0,2),(0,0,0,1,2)}, and thus
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the set of all clusters is C = {a,#}. The first three of the five indices between "()" brackets

indicate the initial unit cell position, the forth index corresponds to the position in the unit

cell (sub-site index), and the last index gives the species. The third component of the cell

index (xyz) was retained for generality but set to 0 for this two-dimensional example. The

example configuration shown in Figure 1 depicts three specific interactions: The

interaction represented on the bottom left in in the figure is of type a with

(ij,k) = (0,0,0), corresponding to the spin product JS 0 0 1 2 S1 2 0 0 1 . The interaction in the

center of the figure also belongs to type a but with (ij,k) = (1,1,0), corresponding to the

spin product Jas-O+s,,I,2 S = Jas -s 2,3 0 01 . Lastly, the interaction on the right

represents an interacting # cluster, with (ij,k)=(3,0,0), yielding a spin product of

J 0S+3,1,0,0,2s0+3,0,0,1,2 = # 3,1,0,0,2S3,0,0,J,2-

.....- ... -.n------------ Specie type t = 1

J. : a = {(x, y, z, p. t)}=
{(0,0,0,1,2),(1,2 ,0,,1)) Specie type t = 2

(i, j k) =(1,1, 0)
(' -7------ + ------- - --- Site type p = 0

J,, : a={x y, z, p. t)}=
{(0, 0, 0,1,2), (1, 2 0. 0. 1)})ietpz2 : QO Sitetypep=i
(i, j,(k)j= (0,0,0)1

z( j 0 02 ) :(0 , ,0 ,12 ) ) ..

Figure 1: Illustration of a lattice Hamiltonian and examples of cluster interactions. The primitive unit of

the lattice is indicated by a thin dashed line, and sites are represented by circles. Two different site types
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are distinguished by black and red borders, respectively. The non-vacancy species that can occupy the

sites are indicated by two different hatchings.

Currently, the most common approach to find the ground state of a generalized Ising model

is simulated annealing [40] based on Metropolis Monte Carlo [41] in an ad hoc finite lattice

cell. This approach has two major drawbacks. First, it is inherently an optimization over a

finite set of sites, whereas the true objective function is defined over an infinite number of

sites. Second, the result obtained from a Monte Carlo calculation is simply a particular low-

energy configuration, a local minimum of energy, with no guarantee that it is the true

ground state. This limitation becomes especially problematic when the size of the ground

state structure increases, since the large number of degrees of freedom quickly renders it

infeasible to sample the low-energy configurations in the cell. Hence, due to its stochastic

nature and dependence on a particular lattice cell, simulated annealing can only identify

possible ground state candidates, but it can hardly guarantee that the global ground state

has been found.

An alternative approach that provides a provable ground state is the configurational

polytope method [33, 34] combined with vertex enumeration [42]. This method provides a

beautiful reformulation of the ground state problem as linear programming. Unfortunately,

this approach has not been applied to finding the ground states of complex realistic

Hamiltonians due to its computational inefficiency and the fact that the method yields a

polytope with an large number of "inconstructible" vertices, i.e solutions that do not

correspond to realizable lattice configurations, and there is no general, tractable algorithm
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to extract the true constructible polytope [43, 44]. Recently, the "basic ray" method has

been proposed, and used to obtain the ground states of several small systems [23-25].

However, a universal algorithm based on this method is not known [24], and the number of

systems solved by this approach is limited.

In the remainder of this chapter, we review the previous established methods in more

detail and illustrate our solutions to ground state problems in depth in latter chapters.

Section 1.3 Monte Carlo based method

Being one of the most important class of Monte Carlo based method, simulated annealing is

an optimization scheme based on a finite lattice system. However, this method alone

cannot resolve our problems. One of the reasons is that our objective is optimization on the

infinite lattice.

More importantly, simply based on simulated annealing, there is no way to guarantee that

the state computed is the exact ground state even for a fixed periodicity. Although there is

convergence proof that in infinite time the solution from simulated annealing converges to

the exact ground state [45], the actual iterations needed to guarantee (at least in the proof)

with high probability would be impractical [45]. More generally, if we consider finding

ground states fixing periodicity as a combinatorial optimization problem, simulated

annealing is one heuristic method [46], which is designed to obtain feasible low energy

solutions without proof of optimality.
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Besides simulated annealing, there are other heuristics methods available for minimization

over other variant of ising model, say, genetic algorithm, particle swarm algorithm [47, 48]

and quantum annealing [49]. But these researches are mostly oriented to solve the simpler

model: standard 2D Ising model with only external applied field and nearest neighbor

interaction with random distribution of bond strength. For this simpler model there are

some research on its exact minimization mostly based on branch and bound [50] and graph

cuts [51]. But these are neither very relevant nor applicable to our project.

To summarize, simulated annealing algorithm is not suitable for our project because of: its

limitation of finiteness and more importantly its incapability of knowing when exact

optimal is reached.

Section 1.4 Configurational polytope with vertex enumeration

Traditionally, the approach that could find and prove exact ground state is the

configurational polytope method by Kaburagi and Kanamori [33, 34] combined with vertex

enumeration [42]. However, the draw back for the traditional polytope method is that the

constructed polytope has enormous amount of "unconstructible" vertices [43, 44] and

there are no general tractable algorithm to obtain the true ground state polytope simply

based on this method.

The general method without going into mathematical details looks like:

1. Set up inequalities corresponding to the cluster to examined

2. Loop over all corresponding vertexes
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a. For each vertex, check whether there exists some structure satisfying this

correlation, i.e. check constructability of this vertex

3. Record all the constructible structures and vertexes

The polytope method does not go very far to solve every problem. Indeed, even for the 1D

problem exact solution is only available up to 5th nearest neighbor interaction [26, 52].

This is very surprising actually. (As a side note from this background, we have arrived at

algorithms capable of computing ground state up to 40th nearest neighbor interaction in

reasonable time.)

For square lattice, as far as we know, exact solutions are available only for interactions up

to 3rd nearest neighbor interactions [27]. For ternary system, exact solutions only up to 2nd

nearest neighbor are published [53]. For faced-centered rectangular lattice, although there

exist partial results of ground state results to 7th nearest neighbor interaction, the result is

based on a heavy assumption that J, >0 [54]. The result with weaker assumption that

J1 >0 is only available up to 4th nearest neighbor interaction [55].

There are indeed interesting progress on triangular lattice, a large part of the phase

diagram for interactions up to 3rd nearest neighbor has been tackled [28]. We have to

realize that the solution was not completed yet: the paper claims that some configurations

are constructed based on physical consideration, which is not a proof in our context [28].

Only until recently, triangular lattice with pair interaction up to 2nd nearest neighbor and a

triplet term is considered fully solved [24]. Some attempts has been made in trying to solve
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ground state with interaction up to the 7th nearest neighbor [56], but the result is just for

some limited regions of J space.

For honeycomb lattice, it is interesting to note that interaction up to 3rd nearest neighbor is

fully solved [57]. It is worthy to note that for some J , there are infinitely many

corresponding ground states. The reason is that, in the configuration polytope, the vertex

corresponding to the ground state has infinitely many ways to be constructed. From a pure

mathematical point of view, this shall not be too surprising, because in mathematical

language, it simply says that there are infinitely many ways to tile the plane using some

specific set of tiles [58].

In 3D cases, results on cubic lattice with up to 3rd nearest neighbor with 3-body terms has

been examined [59]. However, it also has the problem of unconstructible vertex which is

intrinsic in the polytope method. For bcc structure, interactions up to 4th nearest neighbor

is examined [60]. There are active researches devoted into fcc ground state calculations.

Up to 5th nearest neighbor interaction is considered in one of the works [43, 61], but we

shall still note its incompleteness. Later, ternary [44] fcc alloys with interactions up to 2nd

nearest neighbor are examined. However, severe problem of configurational polytope

combined with vertex enumeration is apparent: rapid explosion of number of vertexes as

number configurations increase [43] and huge number of unconstructible vertexes.

Previous paragraphs summarize the result of the most fundamental method,

configurational polytope combined with vertex enumeration. It is widely used to generate
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ground states in the last century. Due to rapid explosion of required computing time [43],

researches on exact the ground state problem do not proceed much further.

Section 1.5 Recent basic ray method

Until recently [24, 62-65], another author has proposed a method called "basic ray" method.

It has been used to solve some small systems [23-25]. The method boils down to:

1. Decompose global Hamiltonian into local Hamiltonian,

2. Introduce free parameters into local Hamiltonians,

3. Find specific free parameters such that there are as many local optimal

configurations (which can tile the whole plane) as possible (such parameter sets are

called basic rays),

4. Find the complete set of basic rays,

5. Argue that any Hamiltonian as positive combination of a set of basic rays such that

the "overlapping" local configurations could tile the whole plane attains the ground

state solution constructed by the "overlapping" local configurations.

The "basic ray" method, have been successfully applied in finding devil's step (infinitely

many ground states) in triangular lattice with interaction up to 3rd nearest neighbor [62].

We mentioned that it provides a complete ground state solution to triangular lattice with

interaction up to 2nd nearest neighbor and a triplet term [24]. This method is also applied

to completely resolve the ground state problem of Shastry-Sutherland lattice involving

edge and diagonal interactions [23, 66]. Finally, it has been successfully applied to solve

completely the anisotropic triangular lattice with nearest neighbor interaction [64].
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Section 1.6 Tiling and Undecidability

It is less commonly known in the cluster expansion community the deep relationship

between the ground state problem and the undecidability of Wang tile problem [67-69]. To

rephrase the Wang tile problem: given a set of squares with colored edge, the problem is to

determine the possibility for this set of tiles to tile a plane, with the constraint that

neighboring coloring must match. Unfortunately, because the existence of aperiodic set of

tiles, this problem is shown to be undecidable [68, 69]. An aperiodic set of tiles is defined as

a set of tiles where only aperiodic tiling (and no periodic tiling) is admissible. Later, small

aperiodic set with only 13 and 14 elements are constructed [70, 71]. Although the initial

problem of Wang tile is based on colored edges, Wang tile of colored corner type is

considered and mutual conversion has been shown [72, 73]. Thus, the tiling problem for

the corner type of Wang tile is also undecidable. For completeness, we mention that a small

set of corner type of Wang tiles with 44 elements have been constructed [73].

For readers unfamiliar with the exact definition of undecidable, we would here review the

definition: a problem is undecidable if and only if there does not exist a Turing machine (or

equivalently a C program) such that for all instances of the problem, the program is

guaranteed to produce an correct yes/no answer in finite time. For more details, refer

to [74].
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The reader might wonder why would tiling problem has anything to do with the ground

state problem. We would like to explain the relationship for both configurational polytope

method and basic ray method.

In (2-a) step of configurational polytope method, to check whether a vertex corresponds to

a constructible structure is equivalent to the question of determining whether a set of tile

could tile the whole plane, i.e. tileable [75].

In the "basic ray" method, each basic ray is determined in a way that maximize the number

of optimal tiles and the optimal tile set need to be tileable [24]. Furthermore, to guarantee

that the set of basic rays is complete, we need to guarantee that every "overlapping" tile set

is tileable [24].

In this way, the ground state problem is intrinsically connected to the deep theoretical

computer science undecidable problem of Wang tile. And this in a way explains the

fundamental difficulty of the ground state problem, and the lack of complete solutions until

now.

We show below that the general ground state problem is undecidable by using the

aperiodic corner tile set in mathematics [73] and constructing J such that tiling from the

aperiodic set of tiles results in the lowest energy. Another author has constructed aperiodic

ground state using very long-range interactions [76].
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Proof of the undecidability of the ground state problem

Suppose there exists an algorithm that, given arbitrary ECI, is guaranteed to produce the

ground state configuration and ground state energy of a generalized Ising model/cluster

expansion. Now consider arbitrary set of corner Wang tiles. We define the ECI such that all

block energies corresponding to an element inside the set of Wang tiles to be -1 and all

block energies corresponding to an element outside the set to be 0. Now, input this set of

ECI into the presupposed algorithm. We could then get the ground state energy and ground

state configuration. If the ground state energy is larger than -1, we can conclude that the set

of tiles could not tile the plane. Otherwise, the ground state energy is -1, and we have the

ground state spin configuration. Using arguments analogous to [77], we could show that

there exists a tiling composed of only elements in the tile set and thus the tile set could tile

the plane. Thus, the algorithm to calculate ground state corresponding to the given ECI can

be modified to decide whether a given set of Wang tile can tile the plane, violating the

undecidability of the Wang tile problem. Thus, the ground state problem must be

undecidable. U

Although we conclude that the general ground state problem is undecidable, this does not

stop us from continuing to work on the ground state problem. This is because

undecidability simply means that for any program we constructed, there might be some

instances that are too hard to be solved exactly. But the instances used to prove

undecidability involves very peculiar interaction terms, in general material science practice,

we seldom come into those cases. Furthermore, a bounded approximation of ground state

is always attainable. If we ever come into some J such that the ground state is aperiodic
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and our program cannot decide it, this is a new discovery anyway, and we might possibly

apply advanced mathematical methods on tiling to decide it.
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Chapter 2 General solution scheme and upper bound

method

Section 2.1 General solution scheme

Our general scheme for finding an exact ground state of an Ising model is to calculate and

converge upper and lower bounds on the energy. We note that the energy of any periodic

configuration is an upper bound on the ground state energy [78]. Thus, by enumerating

periodicities and finding the exact ground state for each, we can successively tighten the upper

bound on the true ground state energy. If an exact periodic ground state structure exists, we are

guaranteed to obtain the tightest upper bound possible once we reach the true periodicity by

enumeration. However, there is no way of knowing when this condition has been reached, i.e.,

when the enumeration should stop. We therefore require an additional procedure to construct

successfully tighter, rigorous lower bounds on the ground state energy, so that periodicity

enumeration can be stopped when the upper and lower bounds match, indicating that the exact

ground state has been found. Our approach for the construction of the lower bound is less

intuitive and involves the optimization over a non-periodic domain. We discuss both upper and

lower bound procedure separately.

Note that cluster expansions are often applied in both canonical and grand-canonical contexts,

i.e., investigating the ground states that arise at both fixed composition and fixed chemical

potential [79, 80]. Our derivation focuses on the grand-canonical case, where the chemical

potential of each species is fixed by the "single-point" interaction terms. However, the grand-

canonical solution obtained this way can be readily used to obtain the canonical ground states
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using a convex hull approach [81]. By construction it removes compositions that do not have a

stable ground state. In thermodynamic language we minimize the Legendre transform of the

energy (grand potential) with respect to composition, rather than the energy itself, as is the

common procedure to find ground states as function of composition [79].

Section 2.2 Enumerating periodicity

We begin our optimization of the upper bound on the energy by enumerating all distinct

periodicities up to a chosen maximal unit cell size, which can be iteratively increased until

convergence of the upper bound and lower bound has been obtained. Note that all distinct

periodic orderings on a lattice can be represented by an all-integer supercell matrix in Hermite

normal form [82], whose determinant represents the size of the periodic super cell. Thus, we can

systematically enumerate all periodicities by generating supercells of the lattice primitive cell

from all integer Hermite normal form matrices with up to a given determinant. We then proceed

to solve the fixed-periodicity ground state problem within each generated supercell, achieving

successively tighter upper bounds on the infinite-lattice ground state energy.

Section 2.3 Obtaining the ground state at a fixed periodicity

The first element of our solution to the ground state problem is to efficiently find the ground

state given a fixed periodicity of the solution. While this problem is typically solved by

Metropolis Monte Carlo (MC) simulated annealing in a prescribed simulation cell, this approach

cannot prove that the periodic solution found is in fact optimal, even for a given periodicity.

To arrive at a methodology that yields a provably optimal solution, we convert the problem of

minimizing the Hamiltonian into a mathematical programming problem. The advantage of this
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approach is that mathematical programming algorithms not only yield good performance, but

also require a rigorous proof of solution correctness, i.e. optimality, before termination. Classic

examples of mathematical programming algorithms are the simplex method in linear

programming [83] and the branch and bound method for integer programming [84], where the

algorithm itself is also a schematic of the proof of optimality. As we will show in the following,

the ground state problem for a fixed periodicity can be transformed into a maximum satisfiability

problem [85], a well-researched class of optimization problems for which highly efficient solvers

exist [30, 31].

Using the notation introduced in the previous section, we note that calculating the periodic

ground state is equivalent to solving the finite optimization problem:

min I Sx,,, (2.1)
aeC (x,y,z,p,t)Ea

subject to:

xy, =1V(x, y,z, p) e F fin (2.2)
/ec(p)

where S is, as S in Eq. (1.2), the indicator variable of species t on site (x, y, z, p), with

the difference that S is now defined on a smaller domain determined by the periodicity, C is

the set of all interacting clusters within the fixed periodic system and Fe is the set of sites

within the fixed periodic unit cell. Such an optimization over discrete {0, 1} variables can be

equivalently posed as a logic problem by converting the minimization problem into the negative

of a maximization problem and replacing the discrete variables by Boolean equivalents.

Following this insight, the minimization of the finite Hamiltonian can thus be expressed in the
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form of a pseudo-boolean optimization (PBO) problem, allowing us to solve this optimization as

a weighted partial maximum satisfiability (MAX-SAT) [30, 31] problem. The essence of MAX-

SAT is to model the discrete optimization problem by maximizing the number of logical clauses

that can be satisfied in a Boolean formula of conjunctive normal form, weighted by a set of

arbitrary coefficients.

To illustrate this approach, we consider the example of a binary 1 D system with a positive point

term JO and a negative nearest-neighbor interaction JNN, on a 2-site unit cell. For this system,

the transformation is:

E = min(JO'O + JOs, + JNNS0O1
RO IRI

=-max (JO (1 -s 0)- JO + JO (1-s) JO - JNN (01)

-max (J(-0)-- J + JO (-s)- JO +(-JNN ) ((1- lO)')

- max(J(-, 0)- JO+ J0 (-I1)- JO +(-JIN +(-JNN) (1- - )-( NN))

=(2JO - JNN )- MAXSAT(JO(-&) A J(-1) A (-JNN )()A(-JNN )A()0 V

where the indicator variable ii is now also a Boolean variable in the MAX-SAT setting, and the

A , v and -, operators correspond to logical "and", "or" and "not" respectively. Note that,

although in a MAX-SAT problem the coefficient of each clause needs to be positive, it is still

possible to transform an arbitrary set of cluster interactions J, into a proper MAX-SAT input,

as in the example above.

The advantage of formulating the ground-state problem in this form is that MAX-SAT is one of

the most actively researched NP-hard problems [86], allowing us to leverage the extensive

literature written on the topic [87-90]. Note that any complete MAX-SAT solver encodes a proof
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of optimality [88] and includes a published proof of algorithm correctness (that it is guaranteed

to find the optimal solution) [30] and efficiency [89, 90]. Furthermore, the algorithms are run

through an annual MAX-SAT competition [87], which tests their correctness, robustness and

efficiency. Under such stringent criteria, by converting our problem into MAX-SAT, we can

safely guarantee provability, as well as further investigate the advanced proof schemes and fast

algorithms developed over the last twenty years of MAX-SAT research [30, 31, 88]. The

particular MAX-SAT solver we choose, based on the results of the MAX-SAT 2014 competition

benchmarking and our own testing, is CCLStoakmaxsat [31, 91].

Another notable advantage of MAX-SAT over MC for obtaining a solution of the ground-state

problem is that state-of-the-art MAX-SAT solvers generally include sophisticated methods to

escape from local minima [89, 90] to arrive at the global minimum faster and more robustly than

MC.

To verify the efficiency, robustness, and accuracy of the MAX-SAT solver compared to

conventional MC, we performed a series of tests of both algorithms. We constructed a set of

random 1 D and 2D pair-interaction Hamiltonians with interactions up to the 2 8th nearest

neighbor in 1 D and up to the 10th nearest neighbor in 2D. We then attempted to find the ground

state of each system within unit cells containing up to 50 sites by MAX-SAT and Monte Carlo.

Finally, we considered only those Hamiltonians which could be classified as "difficult", which

we define as having a ground state unit cell with more than 4 sites in 1 D, or more than 12 sites in

2D. Among these "difficult" Hamiltonians, while our MAX-SAT approach consistently

provides a provable ground state under the imposed periodicity constraints, we find that MC is
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unable to find the ground state energy comparable to the MAX-SAT result in 10% of cases. Thus,

the MAX-SAT approach by itself is an attractive method to obtain provably optimal,

periodically-constrained ground states up to some maximum unit cell size, separate from the

problem of proving the optimality of the solution over infinite space.
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Chapter 3 Lower bound method 1: Cluster tree

optimization algorithm

Section 3.1 General introduction of cluster tree optimization algorithm

In this chapter, we present a general approach to the ground state problem, which we refer

to as the "cluster tree optimization algorithm." We demonstrate that this algorithm is

guaranteed to construct and prove, within an arbitrarily small numerical factor, the exact

ground state for an arbitrary multicomponent set of ECIs on an arbitrary lattice system,

assuming that a periodic ground state exists. We derive the algorithm by systematically

constructing higher order polytopes without introducing exponentially many variables.

Finally, we show that even in the case that the true ground state is aperiodic, our approach

yields a series of converging spin configurations within an arbitrarily small margin of the

true optimum. Compared with the state-of-the-art configurational polytope method [33,

34], our method moves from correlation space to appearance-frequency space. This

conversion allows us to incrementally establish higher order configurational constraints,

which is not possible in the traditional method. This conversion, together with a detailed

implementation of the cluster tree algorithm, provides a systematic approach to deriving at

the exact ground state of any cluster expansion.

Finally, we note that cluster tree optimization represents a useful procedure to

approximate the generally undecidable Wang tile problem. Our method offers an effective

procedure to determine tilability by converting the original problem into a series of
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efficient linear programming steps, providing a measure of tilability in the form of energy

and a general direction to how the tiling could be constructed.

Section 3.2 Methodology formalism

We begin by formally introducing the cluster tree optimization algorithm. We first show

that for the purposes of cluster interactions, any lattice can be mapped to an orthorhombic

multicomponent lattice without any symmetry in its interactions. We then prove that the

total energy of this system can be written in terms of the energies of blocks of lattice sites.

We proceed to define the basic polytope method for solving the ground state of such a

system. Finally, we derive the "cluster tree optimization algorithm" and prove the

correctness and generality of the method.

First, note that a binary generalized Ising Model on an arbitrary lattice with an arbitrary

motif of n sites can always be represented by a generalized Ising model on an

orthorhombic lattice with 2n components without any symmetry.

Second, we introduce the notion of a "block". A block is a local configuration - for example,

(1,0,1,1) is a block in ID binary system where a lattice site can be occupied by two species

that we label "0" and "1". We define a "minimal block" as the smallest block that

encapsulates all the interactions in the system - for example, (0,0,0), (0,0,1), and (0,1,0)

would all be minimal blocks for a 1D system with interaction up to the next nearest

neighbor.

32



Third, we introduce the term "energy of a block" in order to use this change of basis for

rewriting the Hamiltonian in terms of the energies of blocks and appearance frequency

of blocks. As an example, consider the Ising Hamiltonian of a 1D lattice with nearest

neighbor, next nearest neighbor, and triplet interactions. This Hamiltonian can be

transformed into a sum over spin-configurations, multiplying of block energies by their

appearance frequencies:

H= I a+ JNY i+ NN i i+2 +iple a i+1 4+2
iEZ ieZ iEZ iEZ

N ai i+1 + NN 42 triplU i i+1 4 i+2)
icZ

= XE(a,, y )+1,,+ 2 = E2 a3)
i E-Z (a', 21 U3

where g are the point energies, JN are the nearest neighbor interactions, JNN are the next

nearest neighbor interactions, Jrle are the triplet interactions, a are spins, p(u1 ,u 2,u3 )

are the appearance frequencies for blocks (,,u2,4 3), and E(6,,42,43) are the block

energies. To further illustrate the definition of appearance frequency, consider the periodic

1D configuration "---001001001001001---". In this configuration, the appearance

frequencies would be p[0]= =,p[1]= , p[00]= .,p[O1]= p[1O]= , p[1 i]= 0, and so

on.

Similar arguments lead to results for 2D and 3D systems:
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.* * ,j+M 1,1

i+N,j+M 1+N, I
. + A+ 1+N,.. yI+N,I+M44 IN

1,+M j

I+N, I+M

where the sum is over all possible configurations of {u-}. For the sake of brevity, we

introduce a more compact notation:

LIj

i+ N,

i,j+M

,+N,j+M

4[+N]x[j:j+M]

r N]x[M]

NI N,M

which are adapted from mathematical

[i: i+ M] = {i,i+ 1,...,i+ M}. Thus, the Hamiltonian

convention that

can be rewritten as:

[n]={1,2,...,n} and

H= E ([i:i+N]x[j:j+ = I E (-[+N]X[I+M]) P([I+N]X[I+M])
(,,)ez 6[1+N]x[I+Af]

Based on these definitions, we can write down the basic polytope method for finding the

ground state of an Ising Hamiltonian with a given set of interaction parameters. Consider a

2D system written in terms of block energies as described above, where all interactions fall
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within a range m by n. By defining the appearance frequency p for each possible block,

our objective is to:

min H[{a}]= P[a[n]x[mE[a[x[m]]
"E"N'"](3.1)

However, constraints are needed on the p variables in order for the solution to be physical.

Thus, we introduce compatibility equations of order m by n as constraints for p.

Formally, compatibility equations of order m by n are defined as the following equations

- Eq. (3.2), Eq. (3.3), and Eq. (3.4):

P[a[n][ 2 :m] = I [ [nlx[2:m] [nx[IJ ] y I P [U ,x[ 1] U[n]x[2:m] (3.2)

Eq. (3.2) is a valid equality constraint on p based on the simple observation that whenever

[a] appears, its next neighbor must be either 0 or 1 (in the case of the binary system

described earlier), corresponding to block [ao] or block [ai] . Thus

p[u]= p[ao]+p[al], which is exactly the constraint given by Eq. (3.2).

Furthermore, Eq. (3.2) guarantees the constructability of p in the x direction, where p is

deemed to be constructible if it corresponds to a physical lattice configuration, which will

be proven later in this paper. A pictorial illustration of Eq. (3.2) is shown in Figure 2 a.
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a. w z

lO [n]x[2:m] J[n]x[1]

b.

o 0'[2:n]x[m] E a[1]xm]

C. 
7

ol 0[n+ijx[m+i] IM X, XI7I

Figure 2. a. Pictorial illustration of the ID block compatibility constraints defined in Eq. (3.2), where the

white block corresponds cy [x,,, and the hatched block corresponds to ,,, . b. Pictorial illustration

of the 2D compatibility constraint added in Eq. (3.3), where the white block corresponds [2 ,nx[m and the

hatched block corresponds to cIxtm. c. Pictorial illustration of the 2D perfect sum relationship, where

the white block corresponds to a given [n+i] by [m+i] block, and the hatched block corresponds to all

possible site configurations immediately adjacent to this block.

The next constraint is analogous, but given in the y-direction:

P ["[ 2 :nx[m] P p [lIX[m] 1 [ [ 2:nlx[m] (3.3)
"luIximi ( [2:nlx[m] CF 11ximi C []xI "I
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This constraint stems from similar reasoning as (3.2) and guarantees constructability of p

in the y direction. A pictorial illustration is shown as in Figure 2 b.

The final constraint we must add is that the set of all p must correspond to a fully occupied

lattice:

P ['[ ] = 1 (3.4)

The basic polytope method is formally defined as the linear programming minimization

of Eq. (3.1) subject to Eq. (3.2), Eq. (3.3), and Eq. (3.4). Although we only show the

formalism for 2D, the basic polytope method in 3D is exactly analogous.

Since every feasible solution must satisfy the compatibility equations, the linear system

defined by these constraints provides a lower bound for the true ground state energy.

Furthermore, one important result of this construction is that in any 1D problem, this

lower bound is exact, meaning that any 1D problem can be fully solved by basic polytope

method:

Proof:

Consider the interaction up to nth nearest neighbor, after transforming the

Hamiltonian in terms of blocks:

H= 2 E(a,, --,u,)p(a,,- -,a,)

We could then construct a directed graph with all vertexes being of the form

(a,-.. -,,). Then, if (a2,... I,) = (a','.. ,'n-), meaning the two blocks are off-by-
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one translations of each other, we associate an edge connecting (o,,,r,) to

(o' -... ' I) with a flow of size p(1 ,- .., ,,' ).

Note that in this system, each compatibility constraint is of the form:

p(Or,,---,an)= p_:,,---,"7nS) = I p(sIC,,---. . lr)
S S

meaning that in the directed graph, for each vertex, the sum of all the out-going

flows from the vertex is equal to the sum of all in-coming flows into the vertex. By

using the basic polytope method, one arrives at a flow solution p. Using analysis

from linear programming and graph theory, specifically the network flow

analysis [92], we know that this p corresponds to a cycle in the directed graph and

thus p corresponds to a physical configuration. Thus, the ground state is given by

such a configuration. E

However in two dimensions and higher, the polytope method thus defined fails in that it

can give solutions that do not correspond to a real lattice configuration - we call these

solutions unconstructible. The primary reason for this failure is that up to now, the

constraints on the system guaranteed constructability in the x and y directions

independently, not accounting for the fact that the x- and y- constructible solutions must

also be compatible with each other. For example, the block configuration:

0 0 1 0 = 0 1 p 1 1 0
1 0 ) I 1 0 1 ( 0 0
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satisfies the compatibility equations, but does not correspond to a real configuration on a

lattice, making it an unconstructible solution. To be specific, 0 0 connects 0 1
(1 0 ) 0 1

to the left; 0 1 connects 1 0 to the left, butt 1 0 does not connect to any
(0 1 ) ( I I I I )

other block cluster with non-zero appearing frequency to the left.

To account for constructability, we need a higher order polytope with additional

constraints. Traditional approaches to this problem have relied on the enumeration of

lattice configurations, which requires an exponential number of variables and makes the

solution intractable. Instead, we introduce the cluster-tree optimization algorithm, which

iteratively adds variables as necessary to counter frustration, reducing the prefactor in

computational complexity to a more tractable level in practical cases and allows us to solve

for the true, constructible ground state efficiently.

Section 3.3 Definition of the cluster tree optimization algorithm

The first step in the algorithm is to obtain an initial solution from the basic polytope

method: minimize (3.1) subject to the basic constraints given in (3.2), (3.3), and (3.4). This

solution is a first, loose lower bound of ground state energy.

To refine this lower bound (if possible), we need to introduce variables for the appearance

frequency of larger blocks. We generate these variables using a "spawning operation". A

spawning operation on a variable, sayp[0o0], introduces a variable for the appearance
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frequency of a larger block, say p[0 100], such as to preserve the perfect sum relationship

p[010]=p[0100]+p[0101]. To fully integrate the new p[0100]variable, we add the

necessary physical constraints 0 p[0100]: p[100] and 0 sp[0101] p[101] following

the rules of the basic polytope method. Implicitly, this constraint

p[010] p[100]+p[101] cuts out all unconstructible solutions where p[010]#0 ,

p [100]= 0 and p [10 1] = 0. Finally, after solving the new linear programming system, if we

find that p[O100]>0 and correspondingly, p[100]>0 we introduce the perfect sum

relationship constraint p[0100]+ p[1 100] = p[100] into the linear programming system,

which is a stronger condition than simply p[0100]! p[100].

In 2D, the spawning operation follows the same concept but is more complex due to higher

dimensionality and numerous possible shapes of the spawning block. However, as before,

the spawning operation preserves the perfect sum relationship while introducing larger

blocks into the linear programming system. The convergence and correctness of this

approach will be proven in a later section.
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0 Minimal block
E Previously spawned sites

Newly spawned sites

Figure 3 An illustration of the spawning procedure in 2D for the cluster tree optimization algorithm that

generates blocks of increasing size while preserving the perfect-sum relationship and avoiding

unnecessary variables. The hatched blocks indicate variables added to the original n by m block, where

the red counter-hatched blocks specify the variables added in each specific spawning step.

Once again, consider a spin Hamiltonian in which all the interactions can be captured in a

block of size m by n. As described earlier, we use a series of spawning operations to arrive

at appearance frequencies of larger and larger blocks, giving us converging lower bounds

on the total system energy. The general procedure for spawning is illustrated in Figure 3,

where at each step, the red stars indicate the sites to be summed over. For example, the

first iteration step illustrated in Figure 3 corresponds to the constraint:
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Note that Figure 3 only demonstrates one direction of spawning, while in reality there are 3

other spawning directions as illustrated in Figure 2c. The other spawning directions can be

derived by exact analogy to the procedure described above.

An essential detail to any spawning operation is that before spawning a variable of the form

P 1[niX[M,] with i > 0, one needs to ensure that the perfect sum relationship holds for all

block sizes below [n+i]x[m+i]. Thus, for all p[ ] , we need to ensure that

P [afn+i]X[fnI+]{(ll)}] ' P [U[n+i]x[m+i]-{(n+ii)}] ' P [ni]x[n+ i]-{(i ,ri)} P [*n+dx[,ni]-{(ni,,]i)} have

been generated in the calculation, so that we can impose the constraints:

P [a En+i]x[,+] I P [afnli]x[,
2+,]-{(Il)}]

P [a ln+i]x[,+] P I[Y[n+i]x[n?+i]-{(im,)}]

P [ICYln+i]x[,+l] I P [ [[n+i]x[,n+{(n+i]) I

P [Yln+i]x[,+i] P []x[,i]-{(n+i,n+i)} I (3.5)

We refer this process as adding maximal constraints. Having introduced the maximal

constraints and solved the linear optimization again, if p[C[+]X[ ~j] > 0, we can finally

establish the constructability constraints:

P [a[n+i]x[,n+i] P [n+i]x[,i]-{(u)}
(I,)
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P [a n+]x[m+] I = IJ[9n+]x[m+]{(n+i,1)}]

[ ][rn+ ] xm+i P [Cn+]x[m+i}{1,n+i)I

P IY[n+i]x[M+,]] = P [Yn+i]x[m++]{(n+in+i) }
(3.6)

However, following the spawning procedure illustrated in Figure 3, it is possible that some

of p [o p[, + ,](l I p ni]x[ml+](fl ,I)] I , P p [n+i]X[n+i ]{(n+ir+i)} I

variables are not generated when p [or l ,]X[,+] needs to be spawned. Without loss of

generality, suppose the missing block is p [ n Ij. In this case, we need to trace

back in Figure 3 to find the closest block a-' that has already been generated, and impose

the constraint:

P ( l~]XMi]I!! 91

We define this process as back tracing. So long as p UT l ,]X[+] >0 in subsequent

computations, p[u']>0 holds and p[u'] can be back traced to eventually yield all the

missing blocks.

To summarize, if the algorithm is about to spawn p n+]X[m+i]] , one needs to first either

immediately add maximal constraints or back trace to ensure that p [aCFl ,]X[,+] preserves

the perfect sum relationship.
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With basic polytope method, spawning, and adding maximal constraints defined, the

pseudo code of the cluster tree optimization algorithm is as follows:

1. Use the basic polytope method to initiate a linear programming system to obtain the

appearing frequency of minimal blocks

2. Collect the set of blocks with the smallest size and a positive appearing frequency,

denote the set by S

3. If all elements of S is in the form a for some i > 0, then

a. If for all a e S, the maximal constraints for p [a] have been added,

spawning p[a] for all a e S to generate a new set of larger blocks.

b. Otherwise, try to add maximal constraints for p[a] for all a e S either

directly, or by back tracing.

4. Solve the linear programming system to obtain the refined lower bound and repeat

from step 2.

The optimization loop terminates when either the computed lower bound matches the

previously calculated upper bound, or when the spawning size i reaches some maximum

defined threshold N.

When the cluster tree optimization algorithm terminates, if the lower bound and upper

bound match, we can guarantee that the ground state solution has been found. Otherwise,

based on the fact that the perfect sum relationship holds for all blocks with size below
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[n+ N] x [m + N], we arrive at a converging lower bound as N increases. In practical cases,

we find that this convergence tends to be finite, meaning that the lower bound matches the

upper bound after some finite number of iterations, as spawning directly corresponds to

establishing larger and larger clusters in the traditional polytope method. However, this

general finite convergence property cannot be proved.

In this method, we have introduced variables corresponding to interactions of a much

higher order than those present in the original problem. Nonetheless, the performance of

this approach is vastly superior to direct enumeration as required by traditional methods.

The traditional polytope method in general requires 2" variables in the binary case, or k"

variables in k-nary case, to account for clusters of size n by n, while for this method such

exponentiation is not necessary. For example, we find that to solve a system with a

maximum cluster size of 10 by 10, our method requires approximately 50,000 variables,

compared to the completely intractable 2100 variables needed for direct enumeration.

As a final observation, there is one alternative termination condition for the optimization. If

the algorithm reaches step 3.a with thei defined in that step, meaning that maximal

constraints has been added for all a n+i]x[m+i] such that p[o >0, and if all such

or ln+i]x[m+i] admit the same periodicity, then we immediately know that the current lower

bound is the true ground state energy and p is constructible. The proof of this termination

condition is given in the supplementary information [32].
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Section 3.4 Examples and results

Having defined the cluster-tree optimization algorithm, we illustrate that our solver can

reproduce and prove the correctness of ground states known in the literature [28]. In the

following examples we look at a triangular lattice with interactions up to the third nearest

neighbor. The first step is to define bijection between a triangular and square lattice by

setting (1,0) -4 [1,0] and 2 2- [0,i], as shown in Figure 4.

0 Reference site * 2" Nearest neighbor
0 1st Nearest neighbor * 3rd Nearest neighbor

Figure 4 Mapping the interactions on a triangular lattice to an equivalent set on a square lattice, with loss

of symmetry in the interactions.

a.b.

0 Species A Unit cell
Species B I -.J

Figure 5 a. The known ground state structure of a pair-interaction Hamiltonian with

VJ = -4, V, =1, V2 =1, V3 =1, where V, V ,V2 , V3 corresponds to the point term, nearest neighbor, next
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nearest neighbor and 3rd nearest neighbor interaction terms. b. Known ground state of the frustrated

Hamiltonian with V = 2,V= 1,V 3 =1,V = -6, where V ,VV 2 ,V are defined in the same way.

Example 1: It is known that the structure in Figure 5a corresponds to the ground state of

with the interaction parameters V = -4 V =1 V =1 =1 , where VOVVV

correspond to the point term, nearest neighbor, next nearest neighbor and 3rd nearest

neighbor interaction terms on a triangular lattice. Using only the basic polytope method

and periodicity enumeration, we can already prove the ground state on an equivalent

square lattice. Clearly, in the most basic cases, the polytope method can immediately yield a

converged lower bound on the energy. The reason for this success is that this particular

Hamiltonian is not frustrated. In the next example, we consider a frustrated system to see

how the cluster-tree optimization algorithm efficiently counters frustration, giving a

superior result to the basic polytope method.

Example 2: It is known that the ground state corresponding to interaction parameters

V, = 2,V2 =1,V3 =1, 1O = -6, where V are defined as before, is the given in structure in Figure

5b[37]. From periodicity enumeration, the ground state energy is suggested to be -1.143,

yielding a structure symmetrically equivalent to the true ground state shown in Figure 4b.

However, the basic polytope method produces a lower bound of -1.153, which does not

match the energy obtained from site enumeration. The cluster tree algorithm in the other

hand yields a lower bound energy of -1.143 after 4 iterations, consistent with that provided

by this ground state structure.
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First iteration: From the basic polytope method equation, we calculate blocks with non-

zero appearing frequency to be:

000 000 000 100 1001

p 000 p 001 011 = p 000 =p 1001=
-l 001i 100 001 000

010 110 001 001 001

=P 010 =1 000 =p 010 =p 110 =p 001

[100 [000 010 000 110

100 010
p 001 =p 100

010 [001

[011
I 1

=p 1 0 0 =
13

-100 (3.7)

Second iteration: All the non-zero blocks are spawned in the horizontal direction after

adding maximal constraints to the system. For example:

000 0000 00011

p 000 = p 0000 + p 0000

-0111 _0110 _01101

p

000
000
110I 00001

p 0000

01101

0011
000
1101

0000

+p 0001 +p

[01101

00011
p 0000

01101

0001

0001

0110

000 0000

p 001 !p 10001 ....
[110 [0110

With these new constraints, Solving linear programming reproduces Eq. (3.7) and

generates Eq. (3.8).

0001 1000 10001

=p 0110 =p 0000 =p 10011=

[1000 0011 00011

0011 0010 0010

=p 0100 = p 1100 = P 0010

0100 _0001 _1100

1000 0100
p 0011 =p 1001

0100 _0010

0110

=p 1000 1
I10013
[1000]

Third iteration: We then spawn all those nonzero blocks that have not been previously

spawned, for example:
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[00001

+ 0001

01111

0001

+p 0001

[0111

00011

p 0001 =

01101

01001

=P p0100

[10001

00011

p 0010
[00101

1100

= 000(
0001

(3.8)

~
0000 0001

+ P 0000 + P 0000

0111 0111



00111

p~ 0100 =IYP
0100

- -J

ijkx

0011

0100

0100 1
1F 

0x 1
0011

p I IpO00i--
0100 [
Loioo] 010]

L0100 -
1

where x is could be simply thought as empty space to make its representation clearer. In

this step, linear programming results in Eq. (3.7), (3.8) and (3.9) where the x in equation 8

refers to an empty space. There are all together 52 such terms, where we only give a

representative sample:

11Ox x000 00011 0001

0001 0001 0001 0001

0001 0001 0110 0110

01101 [0110_ xOOO_ [10ox

100x x110 ~1000 1000

100 [00000 00000000 0000 0011 0011

00[ x x001 [0110 0110

0110 0110 1000 1000 1
1000 1000 1000 1000

1000] [10001 x011 _000x- 3.9)

Forth iteration: This step is crucial in countering the frustration effect. Again, every non-

zero block is spawned. The most important of these for countering frustration in the

system is:
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0110 0110 0110

1000 1000 1000

1000 1000 1000

[000x J [0000] [0001]

0110
000

10001 [1
1000 

000F0001
0110 

000~

1000] [000
1000

LOOOI L001

000

Note that neither p 000

000

000

nor p 000 is larger than 0 in the previous solution in Eq. (3.7),

001

but the spawned

0110
000

term p 100>0, meaning that that either one of p 000
1000

000
000x_ -

000
or p 000 must

001

be larger than 0.

Thus the next linear

p

000

000

001

programming

0110
000

000X
cacuaio ore _p 0 orp00-0o

>0.
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Solving the linear system again, a brand new solution is obtained and the frustration effect

has been countered:

000 000 100 010 010 001 101
p 010 =p 101 =p 010 =p 000 =p 001 =p 100 =p 000

001 000 000 101 100 010 010

0110

As predicted, p 1 0 and the lower bound is refined to be -1.143, which matches the
1000

[00Ox

periodic upper bound. Thus, we prove that structure given in Figure 5b is the true ground

state.

Although we have only demonstrated this algorithm using small 2D binary systems, we

have successfully applied cluster tree optimization to automatically solve systems with

basic block sizes up to 4 by 5. We have also successfully applied it to a 3D binary system

with a block size up to 2 by 3 by 3. Finally, we have successfully generalized this algorithm

to multicomponent cases, although demonstrating the details of these solutions is

exceedingly tedious. In terms of computational complexity, the bottleneck of this algorithm

is the initial enumerations of elements in the minimal block, where the minimal block is the

smallest block to capture all interactions. The complexity order is thus O(kIz) where k is

the numbers of components, and x, y, z is the minimal block size in the x, y, and z directions

necessary to capture all interactions. As discussed earlier, while the complexity is

exponential in the length scale of the interactions, the exponent is much smaller than that

required for the traditional polytope method, making our algorithm much more tractable
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for solving realistic systems. While our current computational limit is k'" <2, but this

limit is not fundamental, and we intend to address methods to void the necessity to

enumerate basic blocks in future work.

Section 3.5 Conclusion for cluster tree algorithm

We have presented a method for obtaining the ground state of a generalized Ising model by

the novel cluster tree optimization algorithm. We have proven the correctness of this

approach for finding periodic ground states, and shown that even when a periodic ground

state solution cannot be found, this algorithm provides a sequence of states with energy

converging to ground state energy.

Our approach voids the necessity of exponentially-difficult enumeration to counter

frustration. Thus it enables us to probe the space of ground states by directly enumerating

the vertices in the true polytope, automatically eliminating unconstructible vertices. Yet,

we note that the initial exponential enumeration still limits the application of exact ground

state solutions to realistic systems. Regardless, the cluster tree algorithm here is still very

valuable as it establishes deep understanding in the ground state problem from the

polytope standpoint. We introduce the MAXMIN algorithm in the next chapter, which

applies successfully to complex and realistic systems.
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Chapter 4 Lower bound method 2: the MAXMIN method:

integrating convex optimization and MAXSAT

Section 4.1 Introduction to the MAXMIN method

In this chapter, we present an efficient algorithm that, in many cases, is able to find the

global ground state of an arbitrary lattice model in any dimension and of any complexity,

and to prove the optimality of the solution. For calculating the upper bound, as shown in

Chapter 2 , we derive an equivalence between the optimization of the Hamiltonian under a

fixed periodicity and MAX-SAT pseudo-Boolean optimization (PBO), allowing us to leverage

existing highly optimized and mathematically rigorous programing tools. To obtain the

lower bound on the ground state energy, we derive in this chapter a computationally

efficient approach based on a maximization of minimum-energy local configurations. We

demonstrate the accuracy, robustness and efficiency of our approach using both an

assortment of random Hamiltonians and an example of a realistic Hamiltonian of an

existing material. Finally, while we are unable to guarantee that the global optimum can

always be found and proven, we argue that our algorithm significantly improves on the

state-of-the-art in computational efficiency, and does not sacrifice any guarantees of

optimality with respect to established methodology.

Section 4.2 Method formulation
Section 4.2.1 Lower bound calculation

53



The second element of our algorithm is the optimization of a lower bound to the ground

state energy. The lower bound optimization provides both a proof of optimality of the

ground state energy independent of periodicity, and a termination condition for the

periodicity enumeration discussed in the previous section. We must reiterate that the

periodicity-constrained upper-bound solutions described previously are already

guaranteed to be optimal within the periodicity constraints provided, such that the lower

bound calculation only serves as a proof that the solution obtained by periodicity

enumeration is optimal over all other possible periodicities.

To start, we prove that minimization of the Hamiltonian on a finite group of sites, without

any periodic constraints, provides a lower bound for the ground state energy. To see why

this statement is true, consider the bounds on the Hamiltonian:

H (s)=lim 1 I j 17 Si+x 1+yk+P, (4.1)
(2N +1)'(i,j,k)E aE C (x,,,p,t)Ea

{-N,..., N}'

=lim E >min E j min ES (4.2)
N-- (2N+ 1) (,,jke , - k - SOE1O,1}

{ -N,..., N}'

where EikS is defined as Ii J H Si x,+yk+zpi and represents the energy of a block
aeC (xyzpt)ea

configuration in the lattice at location (ij,k) for a specific s. B is the block cluster

containing the relevant (x,y,z,p,t); formally B = U a. Then, s0 e {0 , 1}B is naturally defined
ae C

as a block configuration and E as the energy corresponding to block configuration so.
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The first part of equation (4.2) is a restatement of the total average energy as an average

over (ij,k) of block configuration energies Eik . As the LHS of equation (4.2) is an

average over (ij,k) of Ejks it must be greater than or equal to the minimum over

(i,j,k) of E1 1 k5 , the second part of equation (4.2). Hence, a minimization of EikS over

configuration space (the RHS), provides a lower bound:

H (s)> min E
so (0,1}) s

As an example, consider a simple binary ID lattice system with interactions up to the next

nearest neighbor (NNN). The energy of this system is bounded from below by the energy of

the lowest energy block configuration:

H=lim
N->- (2N+1) (,)e{

(JOs, + JIsisi,, + J 2ssi+ 2 )
-N,..N}3

>min (JOsO +J0sos +J2sos2)
0, S1,S 2

Thus, minimization over the block configurations (s0 , sI, s2) produces a valid lower bound,

min (JOsO +JIsOsI + J2 sOs 2 ) ,to the exact ground state energy.

Expressing the Hamiltonian in the above form assigns all weights of the point term

interaction JO to the 0th site of the block cluster, corresponding to a JOs0 term in the energy.

We could have just as well redistributed the point term energy over all sites in the block

cluster, transforming Joso into I( JsO + JOs1 + JOs2), and similarly JIsOs2 into I J (sOs2+ sis33 2
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s+ JOsi + JOs ) ]

H= Jim 1N 3
N-- (2N +1) + it (

('\+-N,..,N}
1S,+ 2  2 i i+2

2

>min!( JOsO + JOsI + JOs2 )+I J (ss2 +ss)+ J2sOs 2

In the case of the exact infinite system Hamiltonian, this transformation simply

corresponds to interchanging the order of the summation and thus imparts no difference to

the total energy. However, in the case of the lower bound, we have obtained a new

bounding condition, which is a key insight we will use to systematically obtain the tightest

possible lower bound on the ground state energy.

Section 4.2.2 Tightening the lower bound using translationally equivalent ECIs

Generally, the direct minimization of E, as described in the previous section gives a very

loose lower bound. In principle, a tighter lower bound could be generated systematically by

enlarging the block size IBI used for finite minimization without periodicity constraints,

thereby guaranteeing convergence to the exact ground state as we will show below.

Furthermore by enlarging the periodicity used for periodic minimization, the upper bound

energy is also guaranteed to converge to the exact ground state. To see why this statement

is true, consider a minimization over larger and larger block clusters and the resulting

block configuration so. We could then translate and duplicate the configuration so to

arrive at a periodic configuration S over the entire lattice. The energy of s, E,, will differ

from the configuration energy of so, E.., only at the block boundaries, and the difference
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will diminish as blocks become larger and larger. This diminishing property results from

the fact that the bulk energy scales as r D' and the boundary energy scales as r ID-, where

D is the dimension of the physical system and r is the size of the cubic block cluster.

rIDI-r U1 1
Es - E, therefore scales as - = - Therefore the difference between E. and E,

r r

approaches 0, while E. is an upper bound and E. is a lower bound of the exact ground

state energy, proving that the lower bound energy E,, converges to the exact ground state

energy. We also note that when we perform periodic minimization with the same

periodicity as S, we arrive at an upper bound energy smaller than or equal to Es, while

greater than the lower bound E5 , which proves that the upper bound also converges to

the exact ground state energy with increasing periodicity. Note that despite the looseness

of this provable bound, we observe that in practice our algorithm yields convergence

r'U-1 1
superior to D =-,as we elaborate in the discussion section.

r r

Although in the limit of infinite block size, the lower bound converges to the exact ground

state energy, this approach is not practical, since finite minimization is NP-hard with

respect to the block size. In the following, we present a much more efficient algorithm

preserving the convergence property.

Given the original set of cluster interactions JE RC, a tighter lower bound can be

obtained by introducing the set of equivalent J, E RC, which will be defined so as to leave
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the Hamiltonian of the infinite system (1.1) unchanged, but will modify the Hamiltonian on

a finite block. The J -cR are parameterized by A e R", which we define as a shift

parameter.

Note that although the JA will be defined to be equivalent to J in the sense that they leave

the global Hamiltonian unchanged, finite minimization without periodicity constraints does

not yield the same lower bound. Thus, we can maximize the lower bound energy over A to

obtain the tightest lower bound on the ground state energy:

max min E (4.5)
/ se{O,1}

One natural way to introduce equivalent JA is by redistributing an ECI over sites in the

block cluster: given a fixed block cluster B to minimize over, for each cluster a E C such

that Ja # 0, we construct a set Ca such that all elements P E Ca are equivalent to cluster

a with respect to translations of the infinite lattice, and /3 ; B. For each element #8 in Ca,

we assign weights AP such that 1 = 1, which relate the translationally equivalent ECIs
#C,,

Jx to the original ECIs, so that for all a e C and / E Ca, Il= lya

Returning to the 1D example of a NNN binary system given in Eq. (4.3), the conversion is:
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H= lim 2+ s + J,ss+ 1 + J2 ss )
N-+ (1N + 1))

.i I JO ( IS + 'As+ l - Al A2 ) s i2 (4.6)
N-~ (2N +1)( (A3-N..,} 3iS 3+ t+1i+2 2 S i+

nin IS ( ( AsO + As1 +(1- A- A2 ) s2 )+ J ( A3sss 1 +(1-)ss 2 )+J2 ss)

where the last expression provides a lower bound on the ground-state energy, dependent

on A. The rationale behind the A transform is analogous to that seen in Eq. (4.4): we

exploit the fact that we can evenly distribute cluster interactions across sites, leaving the

system unchanged, but obtaining a different lower bound on the ground state energy. Note

that we are not limited to partitioning point terms equally over all sites, i.e., we could

assign a contribution of the point term energy to site 0 with weight ,, to site 1 with k2 and

to site 2 with 1-, - A 2 . In this way, we can generally convert JOs0 to

Jo ( 1 s+ 2 s+(1- 1 -2)s2 ) , and JIsOs2 into J1(2Lss(1-A 3)s~s2), arriving at the

lower bound expression of Eq. (4.6).

From this algorithm, we arrive at min E which is a lower bound dependent on
se{0,1} w i

Thus,

max min E (4.7)A se{O,l}B

provides the maximal lower bound in the space defined by B and A.

Finally, we note that Eq. (4.7) is a convex optimization problem. If S is fixed, EA, is a

linear function with respect to A. Then f(A) = min E2 is the minimum of a set of linear
sEO,IB A
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functions evaluated at . Thus, f(A) is a concave function and max f(A) is a

maximization over a concave function, which is equivalent to a minimization over a convex

function, and thus is a convex optimization problem [93]. Due to its piece-wise linear

characteristic, this problem belongs to the class of non-smooth convex optimization

problems, where the objective function value is provided by MAX-SAT. In our

implementation we use the level method [94] as a subclass of the bundle method [95] to

efficiently solve this optimization.

Section 4.2.3 Demonstration using a 1 D example

To further illustrate our methodology, we present a simple 1D example to demonstrate the

key ideas of our algorithm. Consider the 1D system with nearest neighbor and point term

interactions (chemical potentials) shown in Figure 2a. The central idea of our algorithm is

that the Hamiltonian can be written as an average of block energies, shown in Figure 6b,

under the constraint that the blocks whose energies we consider must sum up to the global

Hamiltonian, as shown visually in Figure 6a, where the blocks must be able to tile to form

the extended structure. Since the choice of how energy is partitioned into blocks is not

unique, different ways can be used to describe the block energy, yielding the expression:

H=(Jos+ Jssi)= J(s,+s+)+ Jss) =(J(/ s+(1I- / )si)+ Jiss+) (14)

where brackets are used to represent averages and the terms inside the bracket are the so

called "block energies".
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a.
J1sos1

SOOSO
t t t t t t

JOSO

b. Jisos, JIsOs1  JisOs,

JOSO 0.5JOso 0.5JOso AJos0 (1- A)JOsO

Figure 6. a. I D schematic illustrating a. the energy of a global configuration, and b. several choices of

block energies, with the interaction weighted by an arbitrary X-shift. The red arrows represent the point

term (Jo) and nearest neighbor (J,) interactions, while the blue rectangles depict tiling compatibility

between adjacent blocks, ensuring that the collection of blocks sums up to the global configuration in a.

Since the global energy is the average of block energies, it must be greater than or equal to

the smallest possible block energy. Thus, given interaction parameters J, the smallest

possible block energy can be found through minimization over spins in the chosen blocks,

leading to a lower bound on the total energy:

H = - Jo(s,+s,)+Jis,s,+) !min I JJ(si +ss,)+ Jss+jJ
(2 ) si's+[ 2

for the case of evenly distributed point term interactions, or more generally,

H =JO (/ s, + (I- / )sil) + Jlsl~si ) min ( JO(/ s + (I - / )s/.,) + JIsI.s/, )(4.8)
%SiEM

for the case of a A shift. Finally, since Eq. (4.8) is valid for all possible choices of A, we can

obtain a maximally tight lower bound by maximizing this expression over all possible

choices of A :
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H max min (J(As, +(1 - A)ss)+ Jlsis ) (4.9)
A S,,S/+

In this simple example, it is clear that Eq. (4.9) presents a convex optimization problem. By

enumerating all possible choices of (si,s+1 ) for the 1D example of Figure 6:

(0,0),(0,1),(1,0),(1,1), Eq. (4.9) is

H ! max mino(-IJJ 0 J+ 1H~~ ~~ 2 a i0, 01 J., / J0, JO + J.

Each term in the curly bracket is a linear function of A and therefore their minimum is

concave. We illustrate this optimization in Figure 7 for the case where JO = -1 and J, =2.

At each A , 4 linear functions corresponding to 4 different block configuration are

considered; the minimum of them at each fixed A is one valid lower bound. The

maximization of the lower bound (maximization of a concave function = convex

optimization) results in lower bound being -0.5 with A = 0.5 and supporting hyper-planes

being (0,1) and (1,0). Since (0,1) and (1,0) are the block configurations with minimum

block energy and they can tile into a global configuration, we can guarantee that

-. -010101010..- configuration is the global ground state even without knowing any upper

bound. Furthermore, one easily verifies that .010101010... configuration indeed has

energy of -0.5. Thus, the upper and lower bounds match, proving the global optimality of

this solution.
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(0,0) - (0,1)
2 - (1,1) - (1,0)

Cd 1

0

0

-2

-3 -1 02
A parameter

Figure 7. Illustration of block energy in terms of A in the case of J0 = -1 and J, = 2. Each line

corresponds to one block configuration whose block energy is dependent on X.

In general, for realistic systems, there are exponentially many hyper-planes with respect to

the number of sites in block cluster. One distinct advantage of our method is that we use

the MAX-SAT solver to search over such exponential complexity, which as a result provides

the concave function and its sub-gradient, which can then be used by the convex

optimization solver. Naturally, due to the intrinsic complexity of ground state problem,

some NP-hard steps are unavoidable. However, with conversion of such computationally

complex steps into MAX-SAT, we are handling such complexity with state of the art

efficiency.

Section 4.3 Results and discussions

Section 4.3.1 Comparison to previous methods
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The algorithm introduced above provides a range of important advantages over existing

approaches towards ground state optimization in cluster expansions. The most common

approaches to this problem in the literature are based on Monte Carlo and are not adequate

for proving lattice-model ground states, as they only provide a loose upper bound on the

energy with no way to determine convergence. Our method both improves the upper

bound calculation (by significantly reducing the prefactor in this generally NP-hard

problem) and introduces an approach to derive a (typically sufficient) lower bound. The

basic-rays method [23-25], a previously reported approach to the ground-state problem,

does not provide a lower bound on energy. Furthermore, its ground state solution to a

particular set of ECI's (J ) requires that basic rays are established at all vertices that define

the configurational polytope facet containing J. No general approach to accomplish this

has been demonstrated to work for cluster expansion systems of complexities relevant to

physical systems. In contrast, our methodology is directly applicable to solving systems

with a defined J -vector of relatively complex Hamiltonians, or at least provides tight

bounds on the solution. To our knowledge, the only other method that can provide upper

and lower bounds on lattice-model ground states is the configurational polytope

method [33, 34] that establishes bounds on the solution by means of linear programming.

However, as far as we know there is no reported algorithmic system to generate the linear

programming constraints for complex cluster expansions. Additionally, even if these

constraints were known, the linear programming requires exponentially many variables or

constraints with respect to the size of the unit cell being considered, which renders it

intractable for complex Hamiltonians. Therefore, we believe that our method is unique in

its ability to tackle complex Hamiltonians in a mathematically rigorous way.
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Section 4.3.2 Connection to the configurational polytope method

Even though our method has been derived independently of the configurational polytope

method, there exists a strong connection between our lower bound calculation and one

form of the configurational polytope method. Namely, in relation to the most rigorous form

of the configurational polytope method, which involves an exponential number of variables

as it relies on strict equality constraints rather than inequalities, our approach provides a

route for efficient column generation (see ref. [96] for further details on column generation

techniques in linear programming). This improvement expands the applicability of the

method to complex, realistic Hamiltonians.

More precisely, if we start with Eq. (4.5) and reformulate its linear programming (LP)

problem and its dual, Eq. (4.5) is equivalent to

max z

s.t.: z EfJS AS, Vs e{ 0, 1B
aeC pECa iE

A J = Ja Va e C

By re-organizing the terms, we have:

max z
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s.t.: z - I 2 JS , O Vse{0,1} (4.10)
aEC JeCa iEo

A '%Ja=a Va e C
/3ECa

We could then apply linear programming to obtain its dual (grouping Aja as one variable

to allow for Ja=0). For each constraint, we construct corresponding dual variables, p.

and Pa (which physically represent the "appearance frequency" of spin configuration s

and cluster a, as derived later), yielding the dual problem:

min 1 paJa (4.11)

s.t.: PS =1 (4.12)
SE{0,1}B

- E P Is,H+pa=0 VaeC,#PeCa (4.13)
SEf0, 11B iE#

p >0 Vs ,1 (4.14)

We arrive at one formulation of the configurational polytope method in its general form,

with an exponential number of variables and constraints. We interpret p. as the probability

of finding spin configuration s when we look at some block B, i.e., the "appearance

frequency" in the configurational polytope method formulation. Therefore, the natural

interpretation of Eq. (4.12) is that some block configuration must appear within a given

block cluster, and the probability of observing all possible configurations sums to one.

Similarly, Eq. (4.14) can be interpreted to mean that the appearance probability of each
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block configuration

constrains the

Pa = I pfs, V
set 0, 11B iEf

is greater than 0. Finally, Eq. (4.13) is the central equality that

configurational polytope. It is equivalent to

a E C, 3 E Ca , where 1I s, =1 if the block configuration exactly
iE/

matches #, the translated interacting cluster, and J7 S, = 0 otherwise. Therefore Pa is the
ie#

appearance probability of an interacting cluster, constrained by Eq. (4.13) to be

translationally invariant. As a result, Eq. (4.11) can naturally be interpreted as a

minimization of the configurational energy, with the appearance frequency of each

interacting cluster Pa multiplied by its interaction constant Ja.

Eq. (4.13) is the central equation that derives constraints in the configurational polytope

method. For a 1D system with nearest neighbor and next nearest neighbor interaction,

where we take B to be a 3 site block cluster, these constraints are:

pi11]= p[11*]= p[11l]+p[110]= p[011]+ p[1Ii]= p[*11]

p[1*1]=p[11]+p[101]

pill= p[i **]= p[100]+ p[101]+ p[l 10]+ p[111]

= p[*1 *]= p[010]+ p[011]+ p[ 10]+ p[111]

= p[**1]= p[001]+ p[011]+ p[101]+ p[ I11]

These relations establish links between the appearance frequencies of small clusters pill,

p[11], p[1*1] and that of larger clusters r [000]~ r [111] [33]. In order to avoid an

exponential growth in the number of variables to be generated, which would render LP

optimization infeasible, the configurational polytope method introduces different types of
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constraints [33, 75], replacing equalities with inequalities. These alternate constraints

weaken the formulation relative to the underlying relationship given in Eq. (4.13), but are

necessary for all but the simplest systems [75]. Our approach to the problem of exponential

growth in the number of variables is equivalent to a column generation scheme [96], where

we use the MAX-SAT solver as our column generation oracle [96], enabling us to solve this

LP system without departing from its most rigorous constraints. Therefore, our approach

holds an advantage over the configurational polytope method in terms of accuracy.

Naturally, our lower-bound calculation may still yield inconstructible solutions, which

means that we cannot guarantee convergence between our periodically-optimal upper

bound solution and lower bound energy in the most general case. Nonetheless, the net

result is a solution at least as rigorous as that offered by the traditional polytope method,

with numerous advantages in computational efficiency, rigidity of constraints, and

feasibility in handling exponential complexity. Thus, we have demonstrated that our

formulation is at least as strong as the configurational polytope method if all intermediate

clusters used in deriving constraints in the configurational polytope method are introduced

into our MAX-MIN formulation.

An important detail regarding the computational complexity of the problem is that the

interacting cluster set C in the primal problem [Eq. (4.10)] and dual problem [Eq. (4.13)]

must be the same for the equivalence relationship to hold. As a result, if we include only the

nonzero interacting clusters C in the MAX-MIN formulation, it is equivalent to the

configurational polytope method in its general form incorporated with only nonzero

interacting clusters in Eq. (4.13). Even in this case, both the MAX-MIN formulation and the
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configurational polytope method have exponential complexity, since the primal problem

has an exponential number of constraints, each of which is associated with one

configuration s e {0 , 1}B. Similarly, the dual problem has exponentially many nonzero

variables p, for each s e {0 , 1}B. Therefore, exponential complexity persists in both primal

and dual problems. The advantage that the MAX-MIN formulation offers is that we can

tackle such exponential complexity with a state-of-the-art procedure, implemented as the

MAX-SAT solver. Nonetheless, we must emphasize that the duality transformation itself

does not change the computational complexity of the problem.

Section 4.3.3 Empirically observed finite convergence property

An important assertion in our derivation of the method is that, even though we can only

mathematically prove that the convergence rate of the lower bound (without a A -shift) is

I
-, where r is the length of cubic block cluster, the empirical performance for most
r

realistic or hypothetical systems is that they exhibit a finite convergence property when the

A, -shift is introduced, meaning that the upper and lower bounds can be matched exactly at

some computationally feasible block size. The formal statement of finite convergence is,

given an arbitrary cluster expansion, there exists some particular block size N such that the

ground state algorithm would terminate (i.e., the lower bound equals the upper bound)

when we consider the block size up to N. Unfortunately, in the most general sense, this

statement cannot be proven, as presence of aperiodic ground states means that the ground

state problem is generally undecidable, meaning that there is no algorithm that could
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always guarantee an exact solution [32]. Correspondingly, there exists no algorithm with

the finite convergence property for the ground state problem, as finite convergence implies

decidability.

Although finite convergence cannot be mathematically proven for our or any other

algorithm, it is possible to heuristically reason when we could expect good performance as

we empirically observe for our approach. A key feature of our method that enables such

performance is the A -shift and the corresponding tilability of block clusters. Without the A

-shift procedure (meaning that A is fixed to some constant), the convergence rate of the

1
lower bound with block size is indeed -. Optimization in A space yields an improvement

r

as it requires N = Dimr(A) supporting hyperplanes at the optimal vertex in A. -space. Each

supporting hyperplane corresponds to a block configuration, meaning that these

N _ Dim( ) block configurations have the same block configurational energy at the

optimal A. The lower bound obtained does not equal to the exact ground state energy only

if these N = Dim(A) block configurations do not tile infinite space. Generally, larger

N = Dim(A) makes it more likely that block configurations tile the space. Therefore we

expect that there is an additional H(Dim(A)) improvement on the convergence rate, where

H(e) is some non-decreasing function, yielding an overall convergence of rate of

approximately . While we cannot determine the mathematical form of H(-),
r -H(dim(X))

we speculate that H(e) is the main advantage of our method that provides finite

convergence in most cases, as it is based on the strong mathematical and physical intuition
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of tilability. Nonetheless, we must emphasize that this argument remains a speculation on

the convergence behavior, and we are unable to prove convergence beyond -. Thus, most
r

generally, we refer to our earlier proof that our method converges at least as quickly and is

at least as rigorous as the configurational polytope method, while offering definite

computational advantages by means of the MAX-SAT column-generation oracle.

Section 4.3.4 Computational performance

To test the performance of this approach on practically relevant systems, we measure the

runtime of our algorithm on binary 1D, 2D square, and 3D cubic lattices over random sets

of ECIs across a spectrum of interaction ranges. First, we restrict ourselves to only pair

interactions, calculating runtimes for up to 28 pair interactions on unit cells with up to 50

sites, where the energy of each interaction takes on a random value. In the 1D, 2D and 3D

cases, this limit corresponds to all interactions up to and including the 28th, 10th and 5th

nearest neighbors respectively. The results of these calculations on a single Intel E5-1650

3.20 GHz core are given in Figure 8. It is important to note that the code performance could

be significantly improved by parallelization - the upper bound implementation is perfectly

parallelizable up to at least hundreds of compute cores, and the lower-bound calculation

parallelizes favorably based on the method chosen for the non-smooth convex optimization.

The results reveal that the primary source of runtime complexity is the range and number

of interactions included in the Hamiltonian, with a secondary dependence on the

dimensionality of the problem. As could be expected, increasing the range of interactions
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results in an exponential increase in runtime due to the exponential increase in the size of

the spin configuration space. Fortunately, the increase in runtime with the number of

interactions at a given range is polynomial. The effect of dimensionality is more subtle:

dimensionality determines the number of distinct interactions at a given interaction range,

and the number of possible unit cells containing no more than a set number of sites. We

find that the former condition is important to the lower bound calculation runtime, while

the latter condition determines the variation in the upper bound runtime.

In all cases, our implementation gives a very promising single-core runtime on the order of

hours for realistic Hamiltonians, which typically include fewer than 100 interactions. The

runtime scales more favorably when all the interactions included in the Hamiltonian are

kept below some maximum range - for example, a Hamiltonian with 100 interactions

limited to the 8th nearest neighbor-range in 3D can be solved in 3 hours on a single core.

This performance is consistent with the trends presented in Figure 8. In a 3D cubic system,

there are 61 pair interactions at or below the 8th nearest neighbor range, which, based on

the trend in Figure 4 would indicate a runtime of approximately 104seconds, or 2.7 hours.

Thus, if we include three and four body terms in the Hamiltonian, the runtime is

comparable to that of a pair-interaction Hamiltonian with the same interaction range.

A curious detail of the runtime data presented in Figure 8 is that the computation time

required for the 1D problem is similar to that of the 3D problem, considering that the

number of periodicities is on the order of O(N) in 1D and O(N3) in 3D, where N is the

maximum unit cell size under consideration. One qualitative explanation of this behavior
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relies on the fact that in our implementation, we first compute the lower bound on energy,

and then attempt to converge the upper bound. Given a fixed number of pair interactions

M, the convex optimization in the lower bound calculations has Dim(A) = O(MJKI) for a

D dimensional system. Therefore, we may expect that the lower bound calculation is more

expensive in 1D than in 3D at a fixed number of interactions M. Furthermore, we find that

in 3D, we are often able to terminate the upper bound calculation quickly as it converges to

the lower bound at a relatively small periodicity, foregoing the general O(N3) MAX-SAT

calculations. One possible explanation of this behavior relates to the fact that we measure

problem complexity by the number of interactions rather than their range. Consequently,

in 3D the M interactions are more mutually exclusive in relation to 1D as they are confined

to a much shorter range, reducing the effective number of interactions relevant to the

solution.

103 .
3-E 1D

.-.. 2D
G-e 3D

102

10,

105 10 15 to 2 15

Number of pair interactions

Figure 8. Single-core computation time needed to find and prove the ground state of a ID, 2D, and 3D

pair-interaction Hamiltonian for unit cells up to 50 sites in size across an increasing range of pair-

interactions. In all cases, the solver finds the ground state for all unit cells up to 50 atoms in size, and
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calculates a tight lower bound on the true ground state energy without enlarging I B I. Each point

corresponds to the geometric average runtime of 100 such calculations with random interaction

coefficients, while the shading gives the spread between the 20th and 80th percentiles

Section 4.3.5 Application to a realistic Hamiltonian

Finally, we apply our method to obtain the exact ground state of a cluster expansion Hamiltonian

used to model sodium-vacancy orderings in the layered NaxNiO 2 compound as a function of

composition. The J interactions for this system are determined from density-functional theory

(DFT) calculations of 400 structures through standard approaches [12, 38]. In this cluster

expansion, there are 72 interacting clusters, including pair, triplet and quadruplet terms. We

emphasize that no previous method exists that could in practice prove the exact ground states for

a system with such interactions. In the configurational polytope method [33, 34], a linear

programming system with about 232 variables and 232 constraints would be required to capture

the frustration effect necessary to provide a tight lower bound. Such a linear programming

system cannot be solved in a practically relevant amount of time. In contrast, our method not

only finds the exact ground states, but also proves their optimality on a time scale of minutes to

hours.

As can be observed in Figure 9, our algorithm finds ground states at x=2/5, 1/2, and 3/5 that were

not within the set of DFT input structures initially used to derive the cluster expansion. As we are

able to prove that the solutions are optimal, we can guarantee that there are no other

configurations that are lower in energy. The inset shows the unusual ground state predicted at

x=1/2 which is unlikely to be proposed from intuition.
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Figure 9. Ground states found for a cluster expansion Hamiltonian of sodium-vacancy orderings in

layered NaNiO 2. The red triangles indicate the mathematically proven ground states of the lattice model,

whereas the gray squares are the originally proposed ground states from DFT calculations of 400 possible

Na-vacancy arrangements. The ground state configuration for x=1/2 is shown in the inset.

Section 4.4 Chapter conclusion

We have introduced a computationally efficient and mathematically rigorous MAX-MIN

procedure which is, in many cases, able to obtain the exact ground state of a generalized

Ising model and prove its optimality both within a constrained periodicity and with respect

to all possible periodicities. To the best of our knowledge, our approach is the only known

method of approaching the problem of proving exact ground states of generalized Ising

Hamiltonians with interactions of practically relevant complexity. In developing our

procedure, we have derived an efficient approach to find an upper bound on the energy by

transforming the finite optimization into a Boolean problem in the form of MAX-SAT, which

provides a provable periodically-constrained optimum for the Hamiltonian. We also
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derived a lower bound on the energy from convex optimization over translationally-

equivalent clusters. We then converged the upper and lower bounds on the energy to

attempt to prove the global optimality of the periodic ground state.

We find that our method is formally related to the most rigorous form of the traditional

configurational polytope method, but provides a practical approach for handing the

generally exponential number of variables and constraints. Thus, while we are unable to

guarantee a provable global ground state solution in all cases, we are able to (1) find and

prove a periodically-constrained ground state up to a pre-determined unit cell size, (2)

guarantee global optimality in certain cases, and (3) guarantee accuracy at least at the level

of the most rigorous configurational polytope method, while offering numerous advantages

in terms of computational efficiency. We demonstrate that in practice, our procedure

performs very well and has made it possible to determine the exact ground states of many

formerly intractable systems, e.g. the cluster expansions of battery systems.

In the next chapter, we will look into another ground state related topics: the construction

of cluster expansions that preserves ground state.
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Chapter 5 Construction of ground-state preserving cluster

expansion models

Section 5.1 Introduction

First-principles density functional theory (DFT) calculations have established themselves

as a routine and reliable tool in computational materials science research [97-100] and

have enabled important advancements in materials discovery [97, 98, 101]. Although

implementations with increasing numerical efficiency and growing computational power

have made it possible to simulate ever larger structures with DFT, the method's intrinsic

scaling with the number of electrons prevents applications that require large structures

(thousands of atoms) and intensive sampling (millions of configurations). Approximate

energy models fitted to DFT reference data, such as cluster expansion (CE) lattice

models [12, 102-104] or machine learning regression [105, 106], can overcome these

limitations by constructing computationally more efficient models with accuracies that are

close to DFT for a chosen structural and chemical space. One prototypical application for

approximate energy models is the prediction of ordered ground states based on an

underlying lattice topology [107, 108].

The key challenge in constructing CE models is to determine the expansion coefficients, the

effective cluster interactions (ECIs), in a robust fashion through a fit to reference

configurations [38, 97, 109]. Conventional ECI fitting procedures [38, 97, 109] focus on
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minimizing the overall difference between the CE fit and the input configurations with

respect to the expanded quantity, such as the energy. In many cases, that input quantity

may be determined by an accurate ab-intio method such as Density Functional Theory, One

essential requirement that each CE fit must meet for practical applications is ground state

preservation, i.e., a physically accurate CE model must reproduce the ground states of the

input if only the input configurations are considered. This requirement is important as the

ground states usually govern the material properties at relevant temperature [110], such

as finite temperature voltage profiles [110] and phase diagrams [110]. In this chapter, we

revisit the ECI fitting problem with a focus on constraints that guarantee ground-state

preservation. We propose a robust and efficient scheme to construct ground state

preserving CE models based on compressive sensing [37, 38] and quadratic

programming [111].

Section 5.2 Results and discussion
Section 5.2.1 Compressed sensing and cluster expansion

For a rigorous mathematical introduction to cluster expansions and their formal

relationship to the partition function of crystalline solids, we refer the readers to

references [12, 17, 104]. Here, we only illustrate the key features of cluster expansions that

are of relevance to the present work [38].

The general expression of a cluster expansion Hamiltonian is

78



sites pairs triplets

ECE X i i i,j i +I iC,kQik" (5.1)
i ij i,j,k ceC

where o is the spin representation of an atomic configuration in which each component aQ

(a spin variable) denotes the occupancy of site i. Following the Ising-model convention, O,

takes on values of 1 in a binary system, encoding the atomic species on site i. Each

product of spin variables, Ccri..., (spin product) corresponds to a cluster of lattice sites,

and the cluster-expansion energy ECE is a polynomial of the spin variables weighted by the

expansion coefficients J, the effective cluster interactions (ECIs). For brevity, we denote the

set of interacting clusters as C. For any cluster c e C, J, is the corresponding ECI and o

is the corresponding spin product. Note that typically multiple clusters of the same type

exist (e.g., the point term for each equivalent site or the cluster corresponding to the

nearest-neighbor pair interaction), and symmetry requires the coefficients of equivalent

clusters have to be identical [112]. The summation in Eq. (5.1) is therefore actually over

cluster types, and the individual spin products can be replaced by their average over all

equivalent clusters, the cluster correlations.

From Eq. (5.1) it is obvious that the CE energy is linearly dependent on the ECIs, J , when

the configuration a is fixed. We can thus write

ECE (a)= r,(1)J (5.2)
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where 1(a) is the row vector of cluster correlations (with multiplicity incorporated)

corresponding to configuration a. Given a set of input atomic configurations S and their

DFT energies EDFT,S Ithe problem of determining the ECIs can then be naively expressed as

minimization of the L2 norm

min| EDTS 2  (5.3)

where the rows of the feature matrix Hs are the cluster correlations of the configurations

in S. Note that the L 2 norm is the conventional Euclidean norm, and the general LP norm

Ijull, is defined as:

u| I = IUJu I/P (5.4)

Simply minimizing the L 2 norm in Eq. (5.3) essentially means that the ECIs are fitted such

that the average squared difference between the DFT energies and the CE-predicted

energies of all structures is minimized. However, such a direct minimization of the error

function leads to overfitting when the number of ECIs (the model parameters) exceeds or

becomes close to the number of reference configurations (the fitting parameters), i.e., when

the system of linear equations Eq. (5.3) is underdetermined. Overfitting means that the

ECIs accurately reproduce the energies of the reference structures (in-sample data) but

deliver poor generalization, i.e., the CE model does not reliably predict the energy of other

unseen structures (out-of-sample data). A standard method to avoid overfitting is

regularization [113], i.e., the simultaneous minimization of the sum of the error function

and the magnitude of the model parameters. Compressive sensing [37, 38] implements L,
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norm regularization, which has been shown to be a nearly optimal and robust way to

reconstruct signals from a small number of data points [114]. The compressive sensing

formulation of the cluster expansion problem is:

minjEDS -S _ Uj(5.5)

where p1 is a parameter controlling the sparseness of the fit. A higher value of P shifts the

weight towards minimizing the L, norm, when p is small the minimization of the L2 error

dominates. The LI norm of a vector is a measure of the vector's sparseness [114], thus

larger y values result in fewer ECIs not equal to zero and thereby reduce overfitting. An

optimal y value can be determined through minimizing the error of the CE model on

unseen data [38].

Section 5.2.2 Constrained cluster expansion models

For practical applications it is often desirable that a CE model preserves some invariants on

the input data. For example, predicting the qualitative features of a phase diagram may

require that the energetic order of all structures is exactly preserved while quantitative

errors in the structural energies might be tolerable [2]. This is because the set of ground

states and the ranking of excited states close in energy determines the topology of a phase

diagram more than the actual energies themselves [36]. As the energy difference between

competing structures is typically small, minimization of the average error in reproducing

the DFT energy does not by itself enforce the structural energy order one wants to

preserve. As a result even very small energy errors in the CE can qualitatively change a
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phase diagram when it leads to new ground states [36]. We have found practically that

trying to preserve the structural ordering and ground states by increasing the relative

weights of these input data rapidly leads to overfitting in the CE. In the following, we will

develop a methodology that allows including constraints in the ECI optimization problem

in a systematic, unbiased fashion and without overfitting.

In recent years, mathematical programming has been a rapidly growing field that enables

the highly efficient, systematic and rigorous solution of problems in different standard

forms [115]. One rapidly growing area is quadratic programming (QP) [39], for which

robust solvers exist [111], and a variety of different approaches have been researched and

implemented, such as the interior point method, the active set method and the augmented

Lagrangian method [39]. In essence, quadratic programming is a mathematical

optimization technique for problems of the following specific form:

min -xTQx+cTx
x 2

si. Ax < b (5.6)

Cx= d

where Q is a positive semidefinite matrix, A and C are real matrices, and b, C and d are

real vectors. Note that a matrix is positive semidefinite if and only if for all real vectors X,

XTQX > 0. The semidefinite property is essential so that the optimization problem is

convex. Also note that when Q =0 Eq. (5.6) reduces to a standard linear programming

problem which was introduced to CE optimization in reference [2].
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Our key strategy for CE fitting is to cast the compressive sensing problem Eq. (5.5) into a

quadratic programming problem Eq. (5.6) [116] and to add constraints that guarantee

ground-state preservation. Explicitly, Eq. (5.5) can be rewritten as:

minl EDFFS- HJ12 + PI J1l

S mnIEDFrS 2 C+ y
ceC

<=z minlIEDFTS _SJI [+gZ (5.7)
J~z ceC

s.t. z J Vce C

zC >-J VC e C

min JTS THSJ - 2EDFT,S S c+ EDFT,ST EDFT,S
ceC

S.t. zC >J VC E C (5.8)

zC -J VC E C

In the conversion step in Eq. (5.7) auxiliary variables ze, corresponding to constraints on J,

have been introduced to remove the L, norm of Eq. (5.5). The equivalence in Eq. (5.7)

holds because every zc can be independently minimized while it is constrained to be larger

than J,.. Note that the QP formulation in Eq. (5.6) does not allow absolute value

operations, so that two separate linear constraints are required in Eq. (5.7), z, > Jc and

z_ > -J, even though they are in combination essentially expressing the absolute value

constraint ze |Jcj. The conversion step in Eq. (5.8) is a direct expansion of the L 2 norm

into vector multiplication. Note that HSTHS is always positive semidefinite for every vector
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x, since x TnSTSX = (sx)T Isx 0 . Hence, we have arrived at a formulation of the

compressive sensing ECI problem Eq. (5.5) in terms of a QP problem.

The second key step of our methodology is to include suitable constraints for ground state

preservation in the QP formulation. Ground states, i.e., those configurations that are

thermodynamically stable at zero temperature (0 K), can be identified by constructing the

lower convex hull of the formation energies [117]. When the energy of a configuration is

above the ground-state hull it is thermodynamically unstable with respect to

decomposition into neighboring ground states.

Note that there are 2 different scenarios that lead to inconsistent ground states from an ECI

fit: The first type of ground state inconsistency occurs when the energy of some non-

ground-state configuration is underestimated so much that it erroneously becomes a

ground state of the CE model. This problem is illustrated in Figure 10 (labeled with Pi),

where the energy of configuration s, is predicted to be below its decomposition line in the

input data, i.e., below the convex combination of configurations h2 and h 3 (shown as the

line connecting the points). To constrain the QP system such that no inconsistency of type 1

occurs, we add the first constraint:
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Figure 10 Schematic of the two types of ground-state inconsistencies that may arise during the fit of a

cluster expansion (CE) model to DFT reference data. (P1) illustrates the situation in which one particular

configuration, sI, that is unstable based on the DFT input data becomes a stable ground state of the CE

model, as its CE energy is below the convex combination of its decomposition line defined by the ground

state configurations h2 and h3. (P2) illustrates the converse situation in which the CE energy of one

ground state configuration, h2, is greater than the convex combination of the neighboring ground states,

hI and h3, which causes h2 to be unstable in the CE model.

(Cl) for each configuration that is not on the ground state hull (i.e., a configuration that

would thermodynamically decompose into ground states), we require that its CE
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configuration energy is greater than its CE decomposition line. To express this condition

formally, we denote the i-th ground state configuration (i.e., the i-th configuration on the

lower convex hull) by a0 j with i E H. With this notation, the decomposition of an unstable

configuration as into the stable ground states can be expressed as

Dec,(aj = {(xI(US)iuh where xi(u-) is the fraction of ahj in the decomposition

products. The constraint to remove ground state inconsistencies of type 1 becomes

H(a,)J 2 x (a )n(or,)J+e for all unstable configurations a, (5.9)
ie=H

where e is some small number used as numerical tolerance.

Introducing constraint (Cl) in Eq. (5.9) to the QP problem in Eq. (5.8) guarantees that all

ground states of the CE model are also ground states of the DFT input data. However, the

converse is not necessarily true, i.e., a DFT ground state configuration might not be a

ground state of the CE model. This scenario is shown in Figure 10 (P 2), where

configuration h 2 has a greater CE energy than its convex hull decomposition line defined

by h, and h 3 . To remove this second type of ground state inconsistency, we introduce a

second constraint:

(C2) for each ground state configuration ah (i.e., for each configuration ah on the lower

convex hull), we require that its energy is smaller than the energy of a modified hull that

results from removing u,1 from the set of input ground states. Formally, given a ground

state configuration U,, on the input hull, we consider its decomposition into a modified
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ground state hull as DecH\h (6h ) : (Xi,H\h (Uh ) 9Uh,j )iEH\h} where H \ h is the index set of all

input hull configurations not including Uh, and xi,H\h (4h) is the fraction of decomposition

product a . The constraint to remove ground-state inconsistencies of type 2 thus becomes

f(uh)J < Xi,H\h (h )H(h )J - E for all ground state configurations Uh (5.10)
iEH\h

Constraint (C2) in Eq. (5.10) guarantees that all ground state configurations in the (DFT)

input data are also ground states of the CE model. Consequently, by combining (Cl) and

(C2), a configuration is a ground state of the resulting CE model if and only if it is a ground

state of the input data. The full quadratic programming formulation for ground-state

preserving CE fitting is

nin JT HS THJ-2EDFr, ST S j + z +E DF,S TE DFr,S

S1. zC > J VC E C

zC ! -Je VceC (5.11)

' (07 )J Ix, (hj )H(UhJ+e for all unstable configurations as

H(Gh)J I X H\h (6h, 5) x(6h )J-e for all ground state configurations ah
iEH\h

Section 5.2.3 Cation ordering in the rocksalt-type lithium transition metal oxide systems
LixFe(l.x)O and LixTi (1x)O

We demonstrate the effectiveness of the QP approach to cation ordering in two oxide

systems. Rocksalt-type lithium transition metal oxides, LiMO 2 (M = one or more transition

metal species), are the most important class of cathode materials for lithium-ion batteries

in consumer electronics [118]. During the last decade, materials with lithium excess
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compositions, Li(jx)M( 1.x)0 2, have attracted much interest owing to their high lithium

storage capacities [119, 120]. One criterion for the suitability of Li(1+x)M(1.x)O2 as cathode

material is whether the material is a sufficiently good conductor for Li ions, which critically

depends on the cation (Li, M) ordering in the structure [121, 122]. While conventional

oxide-based cathode materials form in ordered crystal structures (such as layered

LiCoO2 [123]), several cation-disordered lithium-excess materials with high practical

capacities have recently been discovered [122, 124]. Some of these new compositions

contain Ti [125] and Fe [124] which makes them attractive for technological applications

because of the metals' high abundance and nontoxicity. However, LiTiO 2 [126, 127] and

LiFeO 2 [128, 129] are the only LiMO 2 with single transition metal species that form in

cation-disordered structures in solid-state synthesis, and consequently their

configurational phase diagrams are challenging to investigate experimentally.

In the following we employ the ground-state preserving QP methodology developed above

to investigate the phase diagrams of LixFe(l.,)O and LixTi(1 .x)O [126-129] to obtain a better

understanding of the relevant atomic configurations. The input consists of 863 and 602

reference configurations for LixFe(lx)O and LixTi(1.x)O respectively. DFT calculations for

LixFe(1-x)O configurations were performed within the Hubbard-U corrected Generalized

Gradient Approximation (GGA+U), using the PBE exchange-correlation functional [130,

131]. The U values are taken from the work of Jain et al [132]. DFT calculations for LixTi(l-

x)O configurations did not employ a Hubbard-U correction. For both systems, an initial set

of configurations at x = 0.5 with supercell sizes up to 8 sites was generated using the

enumerating algorithms by Hart at al. [133], and the reference sets were subsequently
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refined by including ground state configurations of preliminary cluster expansions

determined using a recently published ground-state search algorithm for lattice

models [35]. The corresponding ground state input hulls are shown in Figure 11 as black

dots and lines. We note that both systems, LixFe(l.x)O and LixTi(l-x)O, cannot easily be fitted

using the conventional (unconstrained) compressive sensing technique, as the approach

gives rise to a number of spurious ground states as shown in Figure 11 (with optimal P

parameter as will be discussed below). Specifically, some LixFe(1.x)O configurations with

x=1/3, 5/8 and 9/16 and LixTi(1ix)O configurations with x=1/8, 1/6, 1/4, 5/9, 3/5, 5/8 are

erroneously predicted to be ground states (i.e., inconsistencies of type 1 as defined above).

These over-stabilized configurations are marked with arrows in Figure 11. In addition, the

actual LixTi(1.x)O ground state configurations with x=1/10, 1/5, 8/15 become unstable in

the compressive sensing CE model (inconsistencies of type 2). These examples

demonstrate that ground state preservation is not an automatic feature inherent to the

compressive sensing approach, and the problem needs to be addressed before predictive

simulations of materials systems are possible.
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Figure II Input hull as obtained from density-functional theory (black lines and circles), cluster-

expansion hull fitted using the conventional (unconstrained) compressive sensing method (red lines and

squares), and ground-state preserving cluster-expansion hull fitted with the quadratic programming

method of the present work (green lines and diamonds) for (a) LixFe(1-x)O and (b) LixTi(I-x)O. The

input ground state configurations for (a) LixFe(1 -x)O correspond to FeO, LiFeO2 and Li2FeO3 and for (b)

LixTi(1-x)O correspond to TiO, Lil Ti9010, Li2Ti8Ol0, Li3Ti609, Li4Ti5O9,Li2TiO3, LiTiO2,

Li8Ti7Ol5 and Li2TiO3. Arrows are used to mark the over-stabilized unstable configurations. The

sparseness parameter, [t, was chosen to be 0.144 for both systems.

As seen in Figure 11, the QP fitting scheme achieves ground-state preservation for both

materials and yields CE hulls that are spanned by the same configurations as the input DFT

hulls. However, it is worth noting that the sparseness parameter, yt, of Eq. (5.11) needs to

be carefully selected to arrive at this result. In the following section we will show that P

should be chosen such that the cross validation error is minimized. The discussion of the

cross validation error is essential in that it provides a standard measure of predictive

power of our fitting scheme which sets the method apart from other approaches for ground

state preservation, such as the adjustment of configuration weights, which will also be

shown below.

Section 5.2.4 Cross validation of the choice of the sparseness parameter

Cross validation is the standard way to decide the optimal sparseness of a numerical model,

which is generally referred to as bias-variance trade-off in statistical inference [134]. To

determine the sparseness parameter y by means of cross validation we randomly split the
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DFT data, D, into N = 10 equal parts. For each part Di, we define its complement Di as

all the DFT data points except those belonging to D, (formally, D= D - Di). Next, the QP

scheme of Eq. (5.11) is applied to the complement set Di to obtain a CE fit without the

information in part D,, so that an out-of-sample validation can be performed by calculating

the root mean square error (RMSE) of the unseen data Di. We denote the resulting out-of-

sample RMSE as e . The cross validation (cv) score cv, given a sparseness parameter P is

then defined as the root mean square of the out-of-sample RMSE over all N data parts, i.e.,

formally cv = = e /N. Using this definition, the optimal y1 resulting in the model
i=1 .. N

with greatest predictive power can be determined by plotting cv, against P and selecting

the value of p that minimizes the cv score.

The cross validation score cvu of the LixFe(lx)0 system as function of P is shown in Figure

12(a) for various different numbers of input clusters. Note that the number of input

clusters to draw from is determined by a maximum interaction order (e.g., triplets) and a

radial cutoff. Across all 5 curves, the cv score initially decreases and then increases with

increasing p. We consider the concept of bias variance tradeoff [134] to understand this

behavior: The input DFT energies may conceptually be understood as the sum of an ideal

cluster expansion and a certain degree of noise E, i.e., EDr = 1(a)J+C. Here, the noise

could originate from numerical errors in the DFT energies. For small values of p1, the CE fit

uses all available degrees of freedom (i.e., all ECIs) to incorporate the noise E into the CE

model, resulting in severe overfitting. As the value of g increases, the number of non-zero
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ECIs decreases and the effect of noise, i.e., the variance in fitting, becomes less severe.

However, when p becomes too large, the bias that ECIs should tend to 0 becomes

dominating over the data itself, resulting in severe underfitting and thus increasing cv

scores. As a consequence, the cv score has a pronounced minimum allowing to determine

the optimal I corresponding to the best tradeoff between the variance and bias during

fitting.
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Figure 12 (a) Cross validation (cv) score CVm plotted as function of the sparseness parameter ' for the

example of the LixFe(1 -x)O system for various numbers of input clusters. The optimal ' minimizes the

92

54 input clusters
269 input clusters

(a)

-4

(b)

200 400 600 800 1,0001,2001,400
number of input clusters

0
. .



cv score. (b)(c) Optimal cv score for different numbers of input clusters as determined using the QP

methodology and the conventional weight adjustment scheme for (b) LixFe(I -x)O and (c) LixTi(l -x)O.

As seen in Figure 12(a), for small values of y where log(p)<-2 the cv score increases

dramatically with the number of input clusters indicating overfitting as the result of

insufficient regularization. As the sparseness parameter increases above log(y) > -2, the

cv score becomes less sensitive with respect to the number of input clusters, indicating that

the regularization is effective and that most non-essential ECIs are fitted to zero regardless

of the number of input clusters. The optimal cv scores are found for -1 log(p)5 0 and

are plotted in Figure 12(b) for different numbers of input clusters (labeled "QP

methodology"). As seen in the figure, the optimal cv score decreases from 0.0345 eV/f.u.

(formula unit) for 54 input clusters to 0.0261 eV/f.u. for 625 input clusters. The cv score

stabilizes at 625 input clusters and barely changes for 1184 input clusters (0.0260 eV/f.u.).

Hence, we conclude that 625 input clusters and a sparseness parameter Y = 0.144 result in

a CE model with optimal predictive power for the LixFe(1.x,)O system. The corresponding

analysis for the LixTi( 1.x0 system is shown in Figure 12(c), and the optimal parameters,

= 0.144 and 411 input clusters, yield a cv score of 0.0331 eV/f.u.

Section 5.2.5 In-sample ground state preservation and comparison with conventional
weight adjustment

Per construction, the QP form Eq. (5.11) guarantees that the CE fit preserves the ground

states of the reference data set. Conventionally, such in-sample gound state preservation is
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often achieved by assigning weights to the reference configurations to manually bias the fit.

In the following, we compare the performance of the QP methodology with the

conventional weight adjustment technique to further assess the utility of our approach.

Before we detail the weight adjustment method, we briefly consider how configuration

weights can be included in the QP approach in practice. For this purpose, we define a

diagonal weight matrix W whose diagonal entries wi, correspond to the weight of the ith

input configuration. With this definition, W can be incorporated into Eq. (5.5) to achieve

multiplying weights to the in-sample fitting error:

min W(EDTS -fJ)JJ IJII . (5.12)

Note that large wi result in a strong bias of the fitting error for the ith input configuration

to be 0. The concrete weight adjustment procedure that we employed in this work is as

follows:

(1) Initialize all weights to be 1.

(2) Perform QP to construct a CE model.

(3) Check if the CE model preserves in-sample ground states. If it does, the ground state

preserving fit is completed. If it does not, we define the set T of all DFT and CE ground

state configurations

T ={i e S: S, is DFT Ground state or CE Ground State} (5.13)
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Further, we define the maximum CE hull as errull max ECEJ ED~ j and introduCe a

weight-increment set T' { i e T:IECEi EDi I> Ierrhul. For each configuration i e T', wj

is increased VIi 1.19 times. The procedure is continued with step (2).

This weight adjustment scheme guarantees that in-sample ground states are preserved,

since it iteratively converges the CE hull to the DFT hull and corrects spurious ground state

configurations.

A comparison of the optimal cv scores obtained for different numbers of input clusters

using both methods is shown in Figure 12(b,c). The cv score is, once again, used as a

standard measure for the predictive power of the fits. In case of the LixFe(1.)O system, the

predictive power of the QP fit is consistently better than the fit obtained using the weight

adjustment technique, and the improvement of the cv score is generally found to be around

2 meV/f.u. or 10%. For the LixTi(1 x)O system, the cv score of the QP CE fit also improves

about 3 meV/f.u. or 10% of the CE fit from weight adjustment, except for 625 input clusters

for which both methods give equivalent results. However, considering all numbers of input

clusters, the overall best cv score for the QP method is 1.5 meV/f.u. or 5% better. While

absolute energy errors on the order of a few meV/f.u. are close to the inherent error of

density-functional theory, similar errors in the relative energies of different configurations

may add up and thereby give rise to qualitatively different phase diagrams.

95



Generally, we observed that the weight adjustment method biases some configurations by

more than a factor of one thousand (wi' > 103), resulting in overfitting of those particular

configurations, whereas the QP scheme shows no evidence of such a partial over-fitting.

In summary, we conclude that the QP methodology of this work has significant advantages

over conventional weight adjustment for the preservation of in-sample ground states.

However, as will be demonstrated in the following section, the superiority of the QP

approach becomes truly evident when out-of-sample configurations are considered.

Section 5.2.6 Out-of-sample ground state preservation

Suppose that we are certain that the set of reference configurations available for the

construction of the CE model comprises all physical ground states of the system. This

situation could occur after an extensive exploration of the configurational space or when

the DFT data agrees exceptionally well with experiment. With such confidence in the

reference data set, we would like to guarantee that the fitted CE model not only reproduces

the ground states of the reference data, but also does not possess any additional ground

states that are not already present in the reference data. We call this property out-of-

sample ground state preservation. In the following, we describe an iterative procedure for

constructing CE models that guarantee out-of-sample ground state preservation up to a

given number of periodic sites. We will further show that this procedure is generally a

useful strategy to construct CE models even when, initially, it is not known whether ground

states outside of the reference set exist.
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The QP formulation established in Eq. (5.11) provides ground state preservation within the

set of input data. However, out of sample ground state preservation is not guaranteed. In

principle, if the true configuration polytope [33], P, is known for a set of possible ECIs, i.e.,

a e P can be added and solved within a QP, one could add the following constraint:

l (a)J > x (a)H (a)J V O E P (5.14)
,EH

to Eq. (5.11) and the corresponding optimization problem will result in a globally ground

state preserved CE fit. In practice, however, solving the configurational polytope for an

arbitrary CE is an undecidable problem [32]. Although this does not necessarily mean that

finding a ground state preserving fit is globally undecidable as well, this fact hints at the

intrinsic difficulty of the out-of-sample ground state preservation problem.

Instead of determining a priori constraints that guarantee out-of-sample preservation, we

first examine a CE fit with in-sample ground state preservation obtained from the QP

methodology with optimal parameters (sparseness, number of input clusters) and

determine all ground states of the CE model up to a defined system size using the

methodology of reference [35]. The ground state hull defined by the input configurations is

denoted as the in-sample hull whereas we refer to the hull that is based on all identified

ground states as the out-of-sample hull. A comparison of the in-sample and out-of-sample

hulls for LixFe(lx)O and LixTi(px)O for supercell sizes with up to 16 sites is shown in Figure
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13. For LixFe(lx)O, one extra ground state at x=5/8 is identified that is predicted to be 6

meV below the in-sample hull. Even though the distance between the in-sample and out-of-

sample hulls is small (6 meV), this CE would produce a qualitatively wrong phase diagram

due to the spurious ground state at x=5/8. For LixTi(l.x)O, the discrepancy between the in-

sample CE hull and the out-of-sample CE hull is even more severe, as shown in Figure

13(b).
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Figure 13 Comparison of the convex hulls based only on the reference input data (in-sample CE hull) and

based on all ground state configurations of the cluster expansion model (out-of-sample CE hull) for (a)

LixFe(l-x)O and (b) LixTi(1-x)O. The LixTi(1-x)O out-of-sample hull is below the in sample hull with a

maximal distance of 6 meV. An arrow is added to emphasize the out of sample ground state at x=0.625

for LixFe( I-x)O.

In the following we would like to arrive at a scheme to construct a CE that does not lead to

additional ground states, i.e., out-of-sample ground state preservation. Such scheme is
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useful in efficient determination of new ground state configurations and self-consistent CE.

Instead of determining the true configurational polytope of Eq. (5.14), we arrive at a CE

model with out-of-sample ground state preservation iteratively by determining the global

ground states of preliminary CE models (as above) to identify those configuration U E P for

which Eq. (5.14) is not satisfied. Afterwards, without additional DFT calculations, the

constraint corresponding to these configurations o- are added to the QP form as in Eq.

(5.14). By iteratively calculating the ground state hulls and adding further constraints,

global ground state preservation up to a large super cell size can be achieved. The

procedure is illustrated in Figure 14(a).

(a) Input DFT (b) Input DFT
configuration configuration
and eneg 

and eneg

Pefor w CE Perform out of sample
in-sample GS ground state preserving 
Constraints CE fitting

Perform ground state Perform DFT calculations on proposed
calculations on the ground stateconfigurations generated during

CE to find new out of sample GS preserving fit (if there is
out-of-sample GS any)

Add CE ground state into
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CE ground state? Ys constrain them to be above < DIFT ground state? Ys the fitting system
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preserving CE has been has been generated
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Figure 14 (a) Flow chart of the iterative procedure for constructing out-of-sample ground state preserving

cluster expansion models. (b) Flow chart of a combined DFT-CE configurational sampling resulting in

the construction of ground state consistent cluster expansion models.
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To demonstrate the convergence of this iterative refinement, we applied the procedure to

the two model systems for super-cell size of up to 16 sites. The weight adjustment

procedure described above is used for comparison. Small initial weights, 10-4, and energies

of about 1 meV above the hull are assigned to the predicted new ground states. The results

are shown in Figure 15(a) for LixFe(l-x)O and Figure 15(b) for LixTi(1 .x)O. For reference, the

figure also shows the results of an iterative refinement using the weight adjustment

method. The maximum distance between the in-sample hull and the out-of-sample hull is

plotted in the upper panel as a measure of the difference between the two hulls as the

iteration progresses. The corresponding cv score is plotted in the lower panel as a measure

of the predictive power of the CE fit.

As seen in Figure 15, for both systems, LixFe(1.x)O and LixTi( 1.x)O, the maximum distance

(defined as the difference of energy under the same x) between the out-of-sample and in-

sample hulls decreases monotonously to 0 with the QP methodology. The iterative weight

adjustment also converges for LixFe(1.x)O, though the distance between the hulls fluctuates

and does not decay monotonously. For LixTi(1.x)O the weight adjustment method does not

converge. More importantly, the cv scores of the QP fits are nearly constant throughout the

iterations, whereas the cv score continuously increases for the weight adjustment

algorithms. This means that, using the QP methodology, out-of-sample ground state

preservation can be achieved without sacrificing the predictive power of the CE fit. On the

other hand, the weight adjustment technique that is often used for CE construction is not

guaranteed to converge and rends to achieve gound-state preservation at the cost of
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predictive power (increasing cv score). We therefore conclude that the QP methodology

developed in the present work allows for the systematic construction of CE models with in-

sample and out-of-sample ground state preservation.

The results above are based on an exact ground state search for system sizes of up to 16

sites, however, for the purpose of phase diagram calculations via Monte Carlo simulations

much larger supercell sizes may be required. To construct CE models that are in practice

ground state preserving even for sufficiently large system sizes, the exact ground state

search may be replaced by simulated annealing simulations, which allow to determine

plausible ground states for larger super cell size (but cannot provide prove that all ground

states have been identified, see reference [35] for a more detailed discussion). We repeated

the iterative procedure of Figure 14(a) for LixTi(1-x)O for supercell sizes with up to

512 sites using simulated annealing, and the results are depicted in Figure 15(c).
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Figure 15 Results of the iterative construction of cluster expansion models with out-of-sample ground

state preservation for (a)LixFe(1x)O, (b)LixTi(lx)O based on the exact ground states up to a super cell size

of 16 sites and (c) LixTi(1 -x)O based on the simulated annealing with a super cell size of 8x8x8 (512 sites).

The upper panels show the maximal distance between the in-sample and out-of-sample hulls, and the

lower panels show the corresponding cross-validation scores. For comparison, the corresponding results

using iterative adjustment of configuration weights is shown as red lines and squares.

As shown in Figure 15(a) for smaller cell sizes, using the QP methodology, the distance

between the in-sample and out-of-sample CE hulls decreases monotonously to 0 within 7

iterations, and the cv score remains nearly constant. As before, for the iterative weight

adjustment algorithm does not achieve complete convergence even after 18 iterations and

gives rise to a dramatic increase of the cv score. This final example demonstrates again that

the QP methodology is a robust scheme to obtain ground state preserving CE fits even for

large system sizes that are suitable for realistic Monte Carlo simulations.

Finally, we point out that the iterative procedure for out-of-sample ground state

preservation is not only useful, when the ground states of the system are known a priori.

Instead, the procedure may also serve as a means for the sampling of the configurational

space to generate additional reference data. For this purpose, the configurations that were

identified as "spurious" ground states may be evaluated with the reference method (i.e.,

DFT) to confirm whether any unknown ground state has been discovered. By construction,

this approach also provides a good stopping criterion for the cluster expansion fit when no

additional ground states have been identified. This procedure is illustrated in Figure 14(b).
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If DFT calculations for all prospective new ground states are carried out and none of them

turns out to be an actual ground state, the out-of-sample ground state preserving fit has the

correct assumption and the resulting CE fit is a valid fit with consistently low cv errors. No

further iteration is necessary, and the CE fit is finalized. On the other hand, if additional

DFT ground states are found within the proposed set, then the out of sample ground state

preserving fit would have to be re-started.

Section 5.3 Chapter conclusion

To summarize, in this chapter, we presented a robust and efficient procedure to obtain

ground state preserving cluster expansion models. The method is formulated in terms of

quadratic programming and compressive sensing and is mathematically rigorous. We

demonstrated the robustness of the approach by application to the phase diagrams of

LixFe(1-x)O and LixTi(-x)O that are challenging to describe with conventional cluster

expansion techniques. We further showed that out-of-sample ground state preservation

can be achieved up to large supercell sizes. These properties make the presented quadratic

programming approach an attractive tool for the fit of general constraint lattice models and

point the way towards the fully automated construction of cluster expansion models for

materials simulations.
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Chapter 6 Concluding remark

Lattice models, also known as generalized Ising models or cluster expansions, are widely

used in many areas of science and are routinely applied to alloy thermodynamics, solid-

solid phase transitions, magnetic and thermal properties of solids, and fluid mechanics,

among others. However, the problem of finding the true global ground state of a lattice

model, which is essential for all of the aforementioned applications, has remained

unresolved, with only a limited number of results for highly simplified systems known.

In the first part of the thesis, we present, an approach to find the exact ground states of

complex lattice models and to prove their global optimality. We believe this work to be a

breakthrough in condensed matter theory, as exact solutions of practical lattice models are

exceedingly rare. By approaching the ground state problem with modern mathematics and

computer science techniques, namely maximum satisfiability (MAX-SAT) and convex

optimization, we arrive at an universal algorithm to determine the exact global ground

state of a lattice model, defined on an arbitrary lattice with an arbitrary number of

components and interactions, that performs very efficiently on systems of physically

relevant complexity.

Our algorithm is, to our knowledge, the first general and scalable method for finding

provable global energy minima of lattice Hamiltonians. Furthermore, we demonstrate that

our approach is practically useful for finding the ground states of realistic Hamiltonians,

such as those used for representing lattice orderings in battery systems. Considering that

currently such Hamiltonians are solved using simulated annealing and genetic algorithms
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that are often unable to find the true global energy minimum, and never able to prove the

optimality of their result, our work opens the door to resolving long-standing uncertainties

in lattice models of physical phenomena.

Cluster expansions enable the study of metallic alloys and other solid solutions with many

configurational degrees of freedom, but despite recent developments, the construction of

reliable lattice models remains a manual and time-consuming process. A major limitation

of existing methods for the construction of lattice models is that they do not guarantee the

preservation of the certain important properties, for example the ground states, giving rise

to large errors in computed phase diagrams. Thus, manual adjustment of the model

parameters, for example through ad-hoc weighting of select configurations, is usually

required.

In the second part of the thesis, we introduce an entirely new paradigm for the

construction of lattice models that could automatically preserve such important properties.

To accomplish this, we mathematically reformulate the compressive-sensing cluster-

expansion (CE) method in terms of a quadratic programming (QP) problem. This allows us

to introduce constraints on the lattice model, such as ground-state preservation, in a

straightforward fashion. We demonstrate for the example of lithium transition-metal

oxides that the QP-CE approach converges rapidly to ground-state-preserving CE models

and consistently improves the model accuracy compared to conventional manual weight

adjustment. This work constitutes significant progress towards the fully-automated

construction of lattice models with predictive accuracy.

105



Reference

1. Li, X., et al., Direct visualization of the Jahn-Teller effect coupled to Na ordering in Na5/8MnO2.
Nat Mater, 2014. 13(6): p. 586-92.

2. Garbulsky, G.D. and G. Ceder, Linear-programming method for obtaining effective cluster
interactions in alloys from total-energy calculations: Application to the fcc Pd-V system. Phys Rev
B Condens Matter, 1995. 51(1): p. 67-72.

3. Struck, J., et al., Engineering Ising-XY spin-models in a triangular lattice using tunable artificial
gauge fields. Nature Physics, 2013. 9(11): p. 738-743.

4. Aidun, C.K. and J.R. Clausen, Lattice-Boltzmann methodfor complexflows. Annual review of fluid
mechanics, 2010. 42: p. 439-472.

5. Mueller, T. and G. Ceder, Effective interactions between the N-H bond orientations in lithium
imide and a proposed ground-state structure. Physical Review B, 2006. 74(13): p. 134104.

6. Kremer, K. and K. Binder, Monte Carlo simulation of lattice models for macromolecules.
Computer Physics Reports, 1988. 7(6): p. 259-310.

7. Seko, A., et al., Prediction of ground-state structures and order-disorder phase transitions in Il-Ill
spinel oxides: A combined cluster-expansion method and first-principles study. Physical Review B,
2006. 73(18): p. 184117.

8. Rothman, D.H. and S. Zaleski, Lattice-gas cellular automata: simple models of complex
hydrodynamics. Vol. 5. 2004: Cambridge University Press.

9. van de Wa\te, A., A complete representation of structure-property relationships in crystals. Nat
Mater, 2008. 7(6): p. 455-8.

10. Van der Ven, A. and G. Ceder, Vacancies in ordered and disordered binary alloys treated with the
cluster expansion. Physical Review B, 2005. 71(5): p. 054102.

11. Casola, F., et al., Direct observation of impurity-induced magnetism in a spin-(1/2)
antiferromagnetic Heisenberg two-leg spin ladder. Phys Rev Lett, 2010. 105(6): p. 067203.

12. Sanchez, J.M., F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent
systems. Physica A: Statistical Mechanics and its Applications, 1984. 128(1): p. 334-350.

13. Frisch, U., B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation.
Phys Rev Lett, 1986. 56(14): p. 1505-1508.

14. Li, W., J.N. Reimers, and J.R. Dahn, Crystal structure of Li x Ni 2-x 0 2 and a lattice-gas modelfor
the order-disorder transition. Physical Review B, 1992. 46(6): p. 3236.

15. Chan, M.K.Y., et al., Cluster expansion and optimization of thermal conductivity in SiGe
nanowires. Physical Review B, 2010. 81(17): p. 174303.

16. Ising, E., Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik, 1925. 31(1): p. 253-
258.

17. Ceder, G., A derivation of the Ising modelfor the computation of phase diagrams. Computational
Materials Science, 1993. 1(2): p. 144-150.

18. Hinuma, Y., Y.S. Meng, and G. Ceder, Temperature-concentration phase diagram of P 2-Na x CoO
2 from first-principles calculations. Physical Review B, 2008. 77(22): p. 224111.

19. Ozolins, V., C. Wolverton, and A. Zunger, Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: First-
principles study of temperature-composition phase diagrams and structures. Physical Review B,
1998. 57(11): p. 6427.

20. Asta, M. and V. Ozolini, Structural, vibrational, and thermodynamic properties of Al-Sc alloys and
intermetallic compounds. Physical Review B, 2001. 64(9): p. 094104.

21. Burton, B.P. and A. van de Walle, First principles phase diagram calculations for the octahedral-
interstitial system. Calphad, 2012. 37(0): p. 151-157.

106



22. Zhou, F., T. Maxisch, and G. Ceder, Configurational electronic entropy and the phase diagram of
mixed-valence oxides: The case of Lix FePO 4. Physical review letters, 2006. 97(15): p. 155704.

23. Dublenych, Y.I., Ground states of the Ising model on the Shastry-Sutherland lattice and the origin
of the fractional magnetization plateaus in rare-earth-metal tetraborides. Phys Rev Lett, 2012.
109(16): p. 167202.

24. Dublenych, Y.1., Ground states of the lattice-gas model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with three-particle interaction: full-dimensional
ground states. Phys Rev E Stat Nonlin Soft Matter Phys, 2011. 84(1 Pt 1): p. 011106.

25. Dublenych, Y.1., Ground states of the lattice-gas model on the triangular lattice with nearest- and
next-nearest-neighbor pairwise interactions and with three-particle interaction: ground states at
boundaries offull-dimensional regions. Phys Rev E Stat Nonlin Soft Matter Phys, 2011. 84(6 Pt 1):
p. 061102.

26. Teubner, M., Ground states of classical one-dimensional lattice models. Physica A: Statistical
Mechanics and its Applications, 1990. 169(3): p. 407-420.

27. Kanamori, J. and M. Kaburagi, Exact Ground States of the Lattice Gas and the Ising Model on the
Square Lattice. Journal of the Physical Society of Japan, 1983. 52(12): p. 4184-4191.

28. Kaburagi, M. and J. Kanamori, Ground State Structure of Triangular Lattice Gas Model with up to
3rd Neighbor Interactions. Journal of the Physical Society of Japan, 1978. 44(3): p. 718-727.

29. Finel, A. and F. Ducastelle, On the phase diagram of the FCC Ising model with antiferromagnetic
first-neighbour interactions. EPL (Europhysics Letters), 1986. 1(3): p. 135.

30. Ans6tegui, C., M.L. Bonet, and J. Levy, Solving (weighted) partial MaxSAT through satisfiability
testing, in Theory and Applications of Satisfiability Testing-SAT2009. 2009, Springer. p. 427-440.

31. Luo, C., et al., CCLS: An efficient local search algorithm for weighted maximum satisfiability. IEEE
Transactions on Computers, 2014.

32. Huang, W., et al., Constructing and proving the ground state of a generalized Ising model by the
cluster tree optimization algorithm. arXiv preprint arXiv:1606.07429, 2016.

33. Ducastelle, F., Order and Phase Stability in Alloys. 1991: North-Holland.
34. Kaburagi, M. and J. Kanamori, A method of determining the ground state of the extended-range

classical lattice gas model. Progress of Theoretical Physics, 1975. 54(1): p. 30-44.
35. Huang, W., et al., Finding and proving the exact ground state of a generalized Ising model by

convex optimization and MAX-SAT. Physical Review B, 2016. 94(13): p. 134424.
36. Kohan, A., et al., Computation of alloy phase diagrams at low temperatures. Computational

materials science, 1998. 9(3-4): p. 389-396.
37. Candes, E.J. and M.B. Wakin, An introduction to compressive sampling. IEEE signal processing

magazine, 2008. 25(2): p. 21-30.
38. Nelson, L.J., et al., Compressive sensing as a paradigm for building physics models. Physical

Review B, 2013. 87(3): p. 035125.
39. Gill, P.E. and E. Wong, Methods for convex and general quadratic programming. Mathematical

Programming Computation, 2014. 7(1): p. 71-112.
40. Aarts, E. and J. Korst, Simulated annealing and Boltzmann machines: a stochastic approach to

combinatorial optimization and neural computing. 1988.
41. Metropolis, N., et al., Equation of State Calculations by Fast Computing Machines. The Journal of

Chemical Physics, 1953. 21(6): p. 1087-1092.
42. Fontaine, D.D., Cluster approach to order-disorder transformations in alloys. Solid state physics,

1994. 47: p. 33-176.
43. Garbulsky, G.D., P.D. Tepesch, and G. Ceder. Ground state analysis on the fcc lattice with four

pair interactions. in MRS Proceedings. 1992. Cambridge Univ Press.

107



44. Ceder, G., et al., Ground states of a ternary fcc lattice model with nearest-and next-nearest-
neighbor interactions. Physical Review B, 1994. 49(1): p. 1.

45. Granville, V., M. Kriv nek, and J.P. Rasson, Simulated annealing: A proof of convergence. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 1994. 16(6): p. 652-656.

46. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, Optimization by simmulated annealing. science,
1983. 220(4598): p. 671-680.

47. Bautu, A. and E. Bautu, Searching ground states of Ising spin glasses with particle swarms.
Romanian Journal of Physics, 2007. 52(3/4): p. 337.

48. Butu, A. and E. Biutu, Searching Ground States of Ising Spin Glasses with Genetic Algorithms
and Binary Particle Swarm Optimization, in Nature Inspired Cooperative Strategies for
Optimization (NICSO 2007). 2008, Springer. p. 85-94.

49. McGeoch, C.C. and C. Wang. Experimental evaluation of an adiabiatic quantum system for
combinatorial optimization. in Proceedings of the ACM International Conference on Computing
Frontiers. 2013. ACM.

50. Hartmann, A.K., Ground States of Two-Dimensional Ising Spin Glasses: Fast Algorithms, Recent
Developments and a Ferromagnet-Spin Glass Mixture. Journal of Statistical Physics, 2011. 144(3):
p. 519-540.

51. Rieger, H., Frustrated systems: Ground state properties via combinatorial optimization, in
Advances in Computer Simulation. 1998, Springer. p. 122-158.

52. Bundaru, M., N. Angelescu, and G. Nenciu, On the ground state of Ising chains with finite range
interactions. Physics Letters A, 1973. 43(1): p. 5-6.

53. Takasaki, K., T. Tonegawa, and M. Kaburagi, Exact Ground States of the Lattice Gas Model with
Two Kinds of Particles and the Finite-Field Three-State Potts Model on the Square Lattice. Journal
of the Physical Society of Japan, 1988. 57(2): p. 570-579.

54. Kaburagi, M. and J. Kanamori, Theoretical Analysis of Adsorbate Structures on Metal Surface-
Sodium Atoms on Tungsten (110) Plane-. Journal of the Physical Society of Japan, 1977. 43(5): p.
1686-1693.

55. Kaburagi, M., Ground State Structures of the Face Centered Rectangular Lattice Gas Model with
up to 4th Neighbor Interactions. Journal of the Physical Society of Japan, 1978. 44(2): p. 394-401.

56. Kanamori, J., Lattice Gas Model Analysis of the (111) Surface Structures of Si, Ge and Related
Systems. //. On the DAS Model. Journal of the Physical Society of Japan, 1986. 55(8): p. 2723-
2734.

57. Kanamori, J., Infinite Series of Ground States of the Ising Model on the Honeycomb Lattice.
Journal of the Physical Society of Japan, 1984. 53(1): p. 250-260.

58. Grunbaum, B. and G.C. Shephard, Tilings and Patterns. 2013: Dover Publications, Incorporated.
59. Lipkin, M.D., Ground states of a frustrated Ising model with one-, two- and three-body

interactions. Physica A: Statistical Mechanics and its Applications, 1988. 150(1): p. 18-39.
60. Kanamori, J. and Y. Kakehashi, Conditions for the existence of ordered structure in binary alloy

systems. Le Journal de Physique Colloques, 1977. 38(C7): p. C7-274-C7-279.
61. Cowley, J.M., Modulated Structures 1979: Kailus Kona, Hawaii. 1979: American Institute of

Physics.
62. Dublenych, Y.I., Ground states of lattice-gas models on the triangular and honeycomb lattices:

devil's step and quasicrystals. Phys Rev E Stat Nonlin Soft Matter Phys, 2009. 80(1 Pt 1): p.
011123.

63. Dublenych, Y.l., Ground states of an Ising model on an extended Shastry-Sutherland lattice and
the 1/2-magnetization plateau in some rare-earth-metal tetraborides. Phys Rev E Stat Nonlin
Soft Matter Phys, 2013. 88(2): p. 022111.

108



64. Dublenych, Y.I., Ground states of the Ising model on an anisotropic triangular lattice: stripes and
zigzags. J Phys Condens Matter, 2013. 25(40): p. 406003.

65. Dublenych, Y.l., Structures on lattices: some useful relations. Phys Rev E Stat Nonlin Soft Matter
Phys, 2011. 83(2 Pt 1): p. 022101.

66. Dublenych, Y.I., Ground-state structures in Ising magnets on the Shastry-Sutherland lattice with
long-range interactions and fractional magnetization plateaus in TmB4. arXiv preprint
arXiv:1403.0874, 2014.

67. Wang, H., Proving theorems by pattern recognition-li. Bell system technical journal, 1961. 40(1):
p. 1-41.

68. Robinson, R.M., Undecidability and nonperiodicity for tilings of the plane. Inventiones
mathematicae, 1971. 12(3): p. 177-209.

69. Berger, R., The undecidability of the domino problem. 1966: American Mathematical Soc.
70. Culik, 11, An aperiodic set of 13 Wang tiles. Discrete Mathematics, 1996. 160(1): p. 245-251.
71. Kari, J., A small aperiodic set of Wang tiles. Discrete Mathematics, 1996. 160(1): p. 259-264.
72. Lagae, A. and P. Dutre, An alternative for Wang tiles: colored edges versus colored corners. ACM

Transactions on Graphics (TOG), 2006. 25(4): p. 1442-1459.
73. Lagae, A., J. Kari, and P. Dutre, Aperiodic sets of square tiles with colored corners. Report CW,

2006.460.
74. Sipser, M., Introduction to the Theory of Computation. 2005: Cengage Learning.
75. Walle, A.v.d., The effect of lattice vibrations on substitutional alloy thermodynamics. 2000.
76. Dublenych, Y.l., Continuum of ground states and aperiodic structures in a lattice gas on the

triangular lattice with finite-range interactions. Physical Review B, 2012. 86(1): p. 014201.
77. Wang, H., Notes on a class of tiling problems. Fundamenta Mathematicae, 1975. 82(4): p. 295-

305.
78. Graf, P.A., et al., Direct enumeration of alloy configurations for electronic structural properties.

Applied Physics Letters, 2005. 87(24): p. 243111.
79. Kohan, A.F., et al., Computation of alloy phase diagrams at low temperatures. Computational

materials science, 1998. 9(3): p. 389-396.
80. Zhang, Y., et al., Prediction of new stable compounds and promising thermoelectrics in the Cu-

Sb-Se system. Chemistry of Materials, 2014. 26(11): p. 3427-3435.
81. Van der Ven, A., et al., First-principles investigation of phase stability in Li x CoO 2. Physical

Review B, 1998. 58(6): p. 2975.
82. Hart, G.L.W. and R.W. Forcade, Algorithm for generating derivative structures. Physical Review B,

2008. 77(22): p. 224115.
83. Luenberger, D.G., Introduction to linear and nonlinear programming. Vol. 28. 1973: Addison-

Wesley Reading, MA.
84. Garfinkel, R.S. and G.L. Nemhauser, Integer programming. Vol. 4. 1972: Wiley New York.
85. Boros, E. and P.L. Hammer, Pseudo-boolean optimization. Discrete applied mathematics, 2002.

123(1): p. 155-225.
86. Gomes, C.P., et al., Satisfiability solvers. Handbook of Knowledge Representation, 2008. 3: p. 89-

134.
87. Argelich, J., et al., Max-SAT Evaluation 2010.
88. Ans6Tegui, C., M.L. Bonet, and J. Levy, Sat-based maxsat algorithms. Artificial Intelligence, 2013.

196: p. 77-105.
89. Hoos, H.H. and T. StUtzle, Stochastic local search: Foundations & applications. 2004: Elsevier.
90. Stutzle, T., H. Hoos, and A. Roli, A review of the literature on local search algorithms for MAX-

SAT. Rapport technique AIDA-01-02, Intellectics Group, Darmstadt University of Technology,
Germany, 2001.

109



91. Kuegel, A. Improved Exact Solver for the Weighted MAX-SAT Problem. in Pos@ sat. 2010.
92. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin, Networkflows. 1988, DTIC Document.
93. Boyd, S.P. and L. Vandenberghe, Convex Optimization. 2004: Cambridge University Press.
94. Kiwiel, K.C., The efficiency of subgradient projection methods for convex optimization, part I:

General level methods. SIAM Journal on Control and Optimization, 1996. 34(2): p. 660-676.
95. Kiwiel, K.C., Proximity control in bundle methods for convex nondifferentiable minimization.

Mathematical Programming, 1990. 46(1-3): p. 105-122.
96. Bertsimas, D. and J.N. Tsitsiklis, Introduction to linear optimization. Vol. 6. 1997: Athena

Scientific Belmont, MA.
97. Fischer, C.C., et al., Predicting crystal structure by merging data mining with quantum mechanics.

Nat Mater, 2006. 5(8): p. 641-6.
98. Yang, K., et al., A search model for topological insulators with high-throughput robustness

descriptors. Nat Mater, 2012. 11(7): p. 614-9.
99. Rong, Z., et al., Materials Design Rules for Multivalent Ion Mobility in Intercalation Structures.

Chemistry of Materials, 2015. 27(17): p. 6016-6021.
100. Liu, M., et al., Spinel compounds as multivalent battery cathodes: a systematic evaluation based

on ab initio calculations. Energy & Environmental Science, 2015. 8(3): p. 964-974.
101. Jain, A., Y. Shin, and K.A. Persson, Computational predictions of energy materials using density

functional theory. Nature Reviews Materials, 2016. 1: p. 15004.
102. van de Walle, A. and G. Ceder, Automating first-principles phase diagram calculations. Journal of

Phase Equilibria, 2002. 23(4): p. 348-359.
103. De Fontaine, D., Configurational thermodynamics of solid solutions. Solid state physics, 1979. 34:

p. 73-274.
104. De Fontaine, D., Cluster approach to order-disorder transformations in alloys. Solid state physics,

1994. 47: p. 33-176.
105. Artrith, N. and A. U rban, An implementation of artificial neural-network potentials for atomistic

materials simulations: Performance for TiO 2. Computational Materials Science, 2016. 114: p.
135-150.

106. Artrith, N., B. Hiller, and J. Behler, Neural network potentials for metals and oxides-First
applications to copper clusters at zinc oxide. physica status solidi (b), 2013. 250(6): p. 1191-1203.

107. Nahas, S., et al., First-principles cluster expansion study of functionalization of black
phosphorene viafluorination and oxidation. Physical Review B, 2016. 93(16): p. 165413.

108. Predith, A., et al., Ab initio prediction of ordered ground-state structures in ZrO 2-Y 2 0 3.
Physical Review B, 2008. 77(14): p. 144104.

109. Herder, L.M., J.M. Bray, and W.F. Schneider, Comparison of cluster expansion fitting algorithms
for interactions at surfaces. Surface Science, 2015. 640: p. 104-111.

110. Ceder, G. and A. Van der Ven, Phase diagrams of lithium transition metal oxides: investigations
from first principles. Electrochimica Acta, 1999. 45(1): p. 131-150.

111. Andersen, E.D., C. Roos, and T. Terlaky, On implementing a primal-dual interior-point method for
conic quadratic optimization. Mathematical Programming, 2003. 95(2): p. 249-277.

112. Ceder, G., Alloy theory and its applications to long-period superstructure ordering in metallic
alloys and high-temperature superconductors. 1991, California Univ., Berkeley, CA (United
States).

113. Hawkins, D.M., The problem of overfitting. J Chem Inf Comput Sci, 2004. 44(1): p. 1-12.
114. Candes, E.J., J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction

from highly incomplete frequency information. IEEE Transactions on information theory, 2006.
52(2): p. 489-509.

110



115. Winston, W.L., M. Venkataramanan, and J.B. Goldberg, Introduction to mathematical
programming. Vol. 1. 2003: Thomson/Brooks/Cole Duxbury; Pacific Grove, CA.

116. Kim, S.-J., et al. An efficient method for compressed sensing. in 2007 IEEE International
Conference on Image Processing. 2007. IEEE.

117. Urban, A., D.-H. Seo, and G. Ceder, Computational understanding of Li-ion batteries. npj
Computational Materials, 2016. 2: p. 16002.

118. Goodenough, J.B. and K.S. Park, The Li-ion rechargeable battery: a perspective. J Am Chem Soc,
2013. 135(4): p. 1167-76.

119. Hong, J., et al., Review-Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries.
Journal of The Electrochemical Society, 2015. 162(14): p. A2447-A2467.

120. Rozier, P. and J.M. Tarascon, Review-Li-Rich Layered Oxide Cathodes for Next-Generation Li-lon
Batteries: Chances and Challenges. Journal of The Electrochemical Society, 2015. 162(14): p.
A2490-A2499.

121. Urban, A., J. Lee, and G. Ceder, The Configurational Space of Rocksalt - Type Oxides for High -
Capacity Lithium Battery Electrodes. Advanced Energy Materials, 2014. 4(13).

122. Lee, J., et al., Unlocking the potential of cation-disordered oxides for rechargeable lithium
batteries. Science, 2014. 343(6170): p. 519-22.

123. Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy
density. Materials Research Bulletin, 1980. 15(6): p. 783-789.

124. Glazier, S.L., et al., Characterization of Disordered Li (1+ x) Ti2 x Fe (1-3 x) 02 as Positive
Electrode Materials in Li-lon Batteries Using Percolation Theory. Chemistry of Materials, 2015.
27(22): p. 7751-7756.

125. Lee, J., et al., A new class of high capacity cation-disordered oxides for rechargeable lithium
batteries: Li-Ni-Ti-Mo oxides. Energy & Environmental Science, 2015. 8(11): p. 3255-3265.

126. Bongers, P., Structure and Magnetic Properties of Several Complex Oxides of the Transition
Elements. University of Leiden thesis, 1957.

127. Lecerf, A. Sur Quelques Proprietes Chimiques Des Oxydes TiO Et Ti2O3-Preparation Et Etudes De
Nouveaux Composes Ternaires Oxygenes Du Titane Trivalent. in ANNALES DE CHIMIE FRANCE.
1962.

128. Hoffmann, A., Crystal Chemistry of Lithium Ferrite. Naturwissenschaften, 1938. 26(26): p. 431.
129. Posnjak, E. and T.F. Barth, A New Type of Crystal Fine-Structure: Lithium Ferrite (Li 2 0- Fe 2 0 3).

Physical Review, 1931. 38(12): p. 2234.
130. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple.

Physical review letters, 1996. 77(18): p. 3865.
131. Anisimov, V.V., J. Zaanen, and O.K. Andersen, Band theory and Mott insulators: Hubbard U

instead of Stoner I. Phys Rev B Condens Matter, 1991. 44(3): p. 943-954.
132. Jain, A., et al., A high-throughput infrastructure for density functional theory calculations.

Computational Materials Science, 2011. 50(8): p. 2295-2310.
133. Hart, G.L. and R.W. Forcade, Algorithm for generating derivative structures. Physical Review B,

2008. 77(22): p. 224115.
134. Bishop, C.M., Pattern recognition. Machine Learning, 2006. 128.

111




