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Abstract

Interfaces, such as grain boundaries, solid-liquid interfaces and solid-solid heterophase
interfaces, are important features found in materials. Material properties such as
fracture toughness, corrosion susceptibility and high temperature creep are influenced
by grain boundary physics. The structure of grain boundaries affects their properties.
In this thesis, we have developed a predictive model for a particular grain boundary
structure-property relationship: the permeation of liquid gallium through aluminum
grain boundaries.

Liquid gallium is known to permeate through aluminum grain boundaries. The re-
duction in interface energy by the replacement of one Al-Al grain boundary interface
with two Al-Ga interfaces drives the permeation. The speed of permeation depends on
factors which affect the Al-Al grain boundary energy, such as grain boundary crystal-
lography, applied stress, and temperature. Literature suggests two major hypotheses
for the permeation mechanism: front propagation, and diffusion and coalescence.

We have used phase field methods to develop a predictive model for the permeation
of gallium through individual aluminum grain boundaries. The model uses location
dependent grain boundary energy (LDGBE) distributions for aluminum grain bound-
aries to predict permeation velocities. Importantly, by changing the model's param-
eters, its behavior can be adjusted smoothly from front propagation, to diffusion and
coalescence.

We have used experimental data collected by Hugo and Hoagland, along with

LDGBE maps computed by our collaborators, to infer the parameters of the phase
field model. The inference has been done in a Bayesian framework, which gives us
estimates of the model parameters with quantifiable uncertainty.

The inferred model parameters strongly support the front propagation hypoth-
esis. We discuss the implications of this inference and potential limitations of our
methodology.

Thesis Supervisor: Michael J. Demkowicz
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Chapter 1

Introduction

Materials of engineering importance, such as steel, aluminum and many ceramics, are

polycrystalline in nature [43]. Their bulk is composed of many individual crystals, or

grains, with grain boundaries at the interface between individual grains. These grain

boundaries are interconnected and form a grain boundary network. Grain bound-

aries are a planar interface between two crystalline grains. They can be described by

the misoriention of two grains, and the orientation of grain boundary plane. Collec-

tively, the grain misorientation and grain boundary plane orientation describe grain

boundary crystallography.

Grain boundary crystallography strongly affects grain boundary structure and

properties. For instance, the fracture toughness of molybdenum [38] and zinc [67]

grain boundaries have been shown to be strongly dependent on the misorientation of

the grain boundary. Further, the properties of bulk polycrystals depend on distribu-

tion of grain boundaries within the grain boundary network. These properties can

be controlled by controlling the grain boundary character distribution (GBCD). Lim

and Wantanabe have shown that the toughness of 3-D grain boundary networks can

be improved by increasing the relative frequency of fracture resitant grain boundaries,

and above a certain critical frequency, the network transitions from brittle to ductile

failure [41]. Further, Wantanabe et al. have shown that it is possible to engineer

the ductility of Fe-6.5%mass Si alloy by controlling the GBCD [66]. Other examples

of material properties controlled by grain boundary structure-property relationships

19



include creep [40] and hydrogen embrittlement [5].

In order to engineer polycrystalline materials, we need predictive models of grain

boundary structure-property relationships. In this thesis, we develop a predictive

model for a particular grain boundary structure-property relationship: the permeation

of liquid gallium through aluminum grain boundaries, with the aim to developing

techniques which are broadly applicable. This is a good model problem to study as:

1. Gallium permeation of aluminum has all the characteristics of a multi-scale

grain boundary physics problem. The permeation velocity through individual

grain boundaries is a function of the grain boundary crystallography and struc-

ture. The permeation rates of gallium through a bulk aluminum samples are

dependent of the distribution of grain boundaries within the sample.

2. It is a well studied problem, both experimentally [28, 29, 30, 57, 42, 63, 51, 52,

17] and through simulation [44, 45, 46]. Experimentally, gallium permeation of

aluminum has been studied at the individual grain boundary scale, as well as

the grain boundary network scale. As a result, there is existing published data

for the inference of model parameters.

In chapter 2, we have review the existing literature on gallium permeation of

aluminum. In chapter 3, we develop a phase field model approach to simulating the

gallium permeation of aluminum. We show that the Cahn-Hilliard equation can In

chapter 4

We have used phase field methods to simulate the permeation of gallium through

individual aluminum grain boundaries. Our model uses location dependent grain

boundary energy (LDGBE) distributions as an input, and predicts permeation ve-

locity. We have used the data set collected by Hugo and Hoagland [30], along with

LDGBE distributions calculated by our collaborators, to infer model parameter of

the phase field model in a Bayesian framework [60].

20



Chapter 2

Literature review

2.1 Grain boundary crystallography and structure

Grain boundaries are formed at the interface between two grains. They can be char-

acterized by the amount of misorientation between the two grains that form them, as

well as the orientation of the grain boundary plane. To characterize the crystallog-

raphy of an arbitrary grain boundary, a total of five degrees of freedom are needed

[31]. This can be visualized in the cartoon depicting the construction of a grain

boundary shown in figure 2-1. To construct the grain boundary, we start with two

identical grains, and rotate one of them with respect to the other. This arbitrary

three dimensional rotation gAB is defined by three degrees of freedom. These three

degrees of freedom can either be parameterized as three Euler angles, or as an axis of

rotation and an angle. The angle is referred to as the misorientation angle 0. Then,

both grains are cut along a common plane, and fused to form the grain boundary.

The common plane, defined by its normal unit vector i, has two degrees of freedom

associated with it.

Grain boundaries can have complex structure, which influences their properties.

Figure 2-2 shows the structure of a low angle twist boundary. The grain boundary

surface is composed of coherent patches, which are regions of good atomic fit, and

misfit dislocations. The coherent patches have low surface energy, whereas the misfit

dislocations have high surface energy. The nature and spacing of misfit dislocations

21



gAB
Grain A --------- +

Y<

Grain B

Figure 2-1: The construction of an arbitrary grain boundary. The first grain, shown
on the left, is rotated through an arbitrary rotation 9AB to obtain the second grain,
shown on the right. This arbitrary rotation in three dimensional space is characterized
by three parameters. Both grains are cut along a common plane A and fused together
to form the grain boundary. Image credit: Michael J. Demkowicz (Unpublished)
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Figure 2-2: The structure of a low angle twist boundary. The grain boundary is
being viewed normal to its plane. The superimposed atoms on the left 'snap' into a
low energy configuration shown on the right. The structure is composed of coherent
patches, which have good atomic fit, separated by misfit dislocations. In the case of
this boundary, the dislocations are of screw type. [31]

depends on the crystallography of the grain boundary. A study of the relationship

between grain boundary crystallography and grain boundary structure can be found

in [10]

2.2 Gallium permeation of aluminum

2.2.1 Computational studies

Computations studies of gallium permeation can complement experimental studies

by overcoming the two key limitations: The lack of atomic resolutions and difficulty

in controlling factors such as stress, grain boundary crystallography, strain rate etc.

Computational studies are performed using a family of techniques known as molecular

dynamics (MD) [1, 25]. In molecular dynamics, the positions and velocities of atoms

are solved for using newton's laws of motion. The forces on the individual atoms

are calculated using potential functions. Since both the positions and velocities of
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the atoms are available at all simulation time steps, quantities such as stress, strain,

temperature can be calculated. By imposing the right boundary conditions and initial

conditions, stresses, strains, temperatures etc can be imposed. MD studies have

been used to study the dependence of gallium permeation on factors such as stress,

temperature, grain size [44, 45] and strain rate [46].

Nam and Srolovitz studied the permeation of gallium through a symmetric tilt

grain boundary in aluminum [44]. The simulation cell had a volume of 40nm x 66nm x

2nm, which corresponded to - 350, 000 atoms. The simulations ran for - 70ns.

The simulations were performed at high temperature (600K) and high elastic strains

(0.65%, 1.3%), which corresponded to stresses of 250 Mpa and 500 Mpa in the bulk

respectively. These high elastic strains and temperatures were necessary to obtain

gallium permeation speeds that were large enough to be observed in the simulation

time of - 70ns.

The researchers noted an increase in permeation speed with an increase in the

applied stress. They also noted that the permeation speed was constant only for grain

boundaries with high applied stress, and reduced with increasing permeation distance

for grain boundaries with no applied stress. They investigated several mechanisms to

explain this observation, such as increased solubility of aluminum in gallium, increased

gallium diffusion in grain boundaries and gallium segregation to grain boundaries at

high stress. None of these factors were found to explain the increase in permeation

speed with stress. The researchers then investigated the distribution of stresses within

the grain boundary, and noticed the presence of dislocations which climbed at a

constant speed in the simulations with high applied stress. These dislocations were

not present for the simulations with no applied stress.

In another study, Nam and Srolovitz studied the effect of stress, grain boundary

crystallography, grain size and temperature on the permeation speed of gallium [45].

The researchers observed a dramatic increase in permeation speeds with increasing

grain size. Doubling the grain size from 33nm to 66nm doubled the permeation speed

for the same amount of applied stress. Increased grain size also reduced the critical

stress needed to observe time independent permeation speeds.
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The observations made by Nam and Srolovitz in these two studies are consistent

with the experimental results of Hugo and Hoagland [30]. Both the studies observed

permeation of gallium through aluminum at constant, time independent speeds. The

speeds observed by Hugo and Hoagland (- 1 - 10pm/s) were 5 orders of magnitude

slower than those observed by Nam and Srolovitz (- 0.1m/s). This difference can

be attributed to the much higher temperature and stresses that Nam and Srolovitz

performed their study at. Both studies support a dislocation climb model to ex-

plain permeation. Nam and Srolovitz observed that gallium permeated aluminum at

speeds which reduced with time for simulations with no applied stress. Although no

external stresses were applied by Hugo and Hoagland on their samples, small residual

stresses of the order of a few Mpa from sample processing could have been enough to

ensure time independent permeation speeds. This reduction in critical stress can be

attributed to the much larger grain sizes that Hugo and Hoagland observed (- 10Pm)

as compared to the grains simulated by Nam and Srolovitz (33nm and 66nm)

MD studies can give deep insight into the atomic mechanism behind gallium per-

meation. However, they are limited by computational considerations. The largest

length scales that can be simulated using MD are of the order of 10nm, which makes

the study of permeation through grain boundary networks infeasible. Additionally,

simulations have to be performed at high temperatures and stresses to enable observa-

tion of permeation in a reasonable simulation time. This makes it infeasible to study

permeation at room temperature, although insights gained from high temperature

and stress studies can be used to explain qualitative trends observed in experimental

studies at low temperatures and stresses.

2.2.2 Experimental studies

Gallium permeation of aluminum has been studied extensively using experimental

methods such as transmission electron microscopy [28, 29, 30], X-ray microtomog-

raphy [42] and microradiography [49, 51, 52, 50], and optical microscopy [63]. Gal-

lium permeation of aluminum is amenable to easy experimental study due to a num-

ber of factors. The permeation speeds are fast, allowing for experiments which are
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not long. Because gallium melts at 29.7 C, experiments can be performed at rela-

tively low temperatures, allowing for simple experimental setups. Experiments can be

broadly classified into macroscopic and microscopic experiments. Macroscopic exper-

iments observe permeation at the length scale of multiple grain boundaries to entire

grain boundary networks, while microscopic experiments can resolve the permeation

through individual grain boundaries. We will discuss a subset of the experimental

studies performed on the gallium-aluminum permeation system, and the insight they

have produced.

Hugo and Hoagland have studied the relationship between permeation speed of

gallium and the structure of aluminum grain boundaries using transmission elec-

tron microscopy (TEM) and atomistic simulations [28, 29, 30]. They studied the

permeation velocity of gallium through 40 grain boundaries, all of which had their

crystallography measured using TEM Kikuchi diffraction patterns. The researchers

correlated the grain boundary permeation speeds with four characteristics of the grain

boundaries; E value, misorientation angle 0, average grain boundary energy Ygbm, and

grain boundary excess volume VE. The E value and 0 were calculated from grain

boundary crystallography obtained from the Kikuchi diffraction patterns. To cal-

culate Ygbm and VE, atomic models of the grain boundaries were constructed using

molecular statics.

For each of the four characteristics studied, the researchers found similar corre-

lations. Low values of E, 0, 7gbm, and VE correlated with low permeation speeds or

no permeation at all. However, large values of the characteristics did not imply fast

permeation. This can be seen in figure 2-3, where many grain boundaries with large

value of VE were permeated slowly.

To explain this lack of correlation at large values of E, 0, 7gbm, and VE, the

researchers looked into the distribution of voids in the grain boundaries, instead of

just an aggregate excess volume. The distribution of voids in the grain boundary

surface was identified through the inter-atomic spacing in the atomic model of the

grain boundary. The grain boundary surfaces were segregated into voids and regions

with good 'fit'. One such distribution can be seen in figure 2-4. The researchers
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Figure 2-3: The relationship between permeation velocity and grain boundary excess
volume VE [30]. It can be seen that low values of VE results in slow permeation.
However, large values of yE do not always result in fast permeation.

found a qualitative correlation between the distribution of voids in grain boundaries

and permeation speed of gallium. They found that gallium permeated rapidly through

grain boundaries which had large voids and no ordered regions, and slowly through

grain boundaries with small voids which were not connected. This suggests that the

voids acted as a passage through which the gallium flowed. However, it was found

that 'fit-misfit' grain boundaries, or gain boundaries which had both regions of good

fit as well as voids, were also permeated slowly. This suggested that the rate limiting

step was the presence of regions of good fit. These regions acted as obstacles to the

flow of gallium. The researchers concluded that the gallium does not diffuse through

aluminum as individual atoms. Instead, the gallium front acts as a line defect, similar

to a climbing edge dislocation. The gallium front has a line tension, and can get pinned

at the obstacles formed by fit regions, despite the presence of void channels.

Pereiro Lopez et al. studied gallium permeation through aluminum polycrystals

using synchrotron radiation X-ray microradiography [51]. By exploiting the large

difference in X-ray attenuation coefficients of gallium and aluminum, the researchers
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were able to calculate the thickness of the gallium layer between the aluminum grains

as a function of time. The researchers observed a monotonic growth in the thickness

of the gallium layer, which could be divided into 3 phases. In the first phase, gallium

films penetrated certain grain boundaries and simultaneously grew in thickness, up

to a few hundred nanometers. In the second phase, the gallium film thickness along

percolation pathways increased rapidly. In the final phase, the gallium film saturated

at thicknesses up to a few microns. The researchers hypothesized that the sudden

increase in gallium thickness is due to cracking of the sample, followed by rapid flow

of gallium into the crack due to capillary action. The cracking is driven by internal

stresses due elastic incompatibility of the individual grains as well as external stresses

due to clamping. The weakening of grain boundaries due to gallium permeation allows

even small stresses to cause cracks.

To investigate the sensitivity of the gallium permeation process to stresses, the

researchers compared results from two different clamping methods. The samples

were either 'gently screwed together' between two metallic plates, or were fixed using

silver paint. The first method gave rise to higher stresses. The researchers observed a

larger probability of permeation in samples that were screwed together (11 out of 16

samples), as compared to samples fixed using paint (1 out of 6 samples). Although

the amount of applied stress was not quantified, it still demonstrated the sensitivity

of the permeation process to small applied stresses.

Tanaka et al. observed the permeation of gallium through thin aluminum sheets

using optical and atomic force microscopy [63]. The films were fabricated through

vacuum deposition on glass plates, and were between 100nm to 1000nm in thickness.

The size of individual grains was estimated to be on the order of the thickness of

the films. Some of the films had been annealed, and the grains in these films were

expected to be larger than those in the non-annealed samples. However, no direct

characterization of grain size was performed. Gallium was introduced to the aluminum

samples by placing a small drop of known weight in the center of sample held on a

heating element.

The researchers observed two distinct effects. They observed a spider web like
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network through which the gallium permeated the aluminum samples. This network

extended out radially from the location of the gallium drop. Atomic force microscopy

of the sample showed the surface of the sample was raised along this permeation

network. Additionally, they noted a radially expanding region of the aluminum sample

which had lost its metallic luster, again originating from the gallium drop. The speed

at which both these regions grew were characterized under controlled conditions of

film thickness, temperature and size of the gallium drop.

Although this study could not collect data at the scale of individual grain bound-

aries, the researchers were nevertheless able to observe some interesting aspects of

gallium permeation in a grain boundary network. The permeation process took place

in two phases. In the first phase, the web like permeation network and the dull region

grew at the same speed. The speeds were between 2.3pam/s and 9.1prm/s. In the sec-

ond phase, the web like network stopped growing, but the the dull region continued

to grow at a lower speed of .83pm/s. The speed of growth of the dull region in the

second phase was unaffected by experimental parameters such as temperature, film

thickness and quantity of gallium. The rate of growth of the web like network and the

dull region during the first phase increased with an increasing in both temperature

and film thickness. The annealed samples had slower speed of permeation in the first

phase as compared to the non-annealed samples. The size that the web like network

grew to before it stopped growing increased with an increase in size of the gallium

drop, suggesting that this size was limited by the amount of gallium available.

As we have seen, experiments can be performed at a variety of length scales on the

gallium aluminum system, ranging form 10- 6m to 10- 3m. Some of these experiments

have pointed towards particular mechanisms for gallium permeation, such as edge

dislocation climb [30] and cracking induced by internal and external stresses [51].

However, experimental studies have their limitations. The smallest length scales at

which in-situ permeation of gallium can be observed are of the order of 10- 6m, making

it difficult to study the atomic mechanisms behind gallium permeation. Although

the amount of stress in experimental samples can be qualitatively controlled using

different clamping mechanisms, quantification of the exact stress at individual grain
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boundaries can be difficult due to the presence of internal stresses from material

processing. This makes it difficult to study the relationship between permeation

speeds and grain boundary stress.
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Chapter 3

Phase field methods

Phase field methods are a class of computational methods which are used to simulate

multi-phase physics [55]. Phase field methods simplify the treatment of multi-phase

physics by representing the spatial distribution of the phases with an auxiliary scalar

field called the order parameter field O(x). The order parameter field 4(x) can have

values within a range, say [-1, 1], for all points x. The extreme values of O(x) rep-

resent regions of pure phase, and intermediate value represent the interface between

the two phases. The order parameter field simplifies the simulation of multi-phase

physics by eliminating the need to track moving boundaries between phases.

Phase field methods have been used extensively in the field of materials science.

They have been to simulation the solidification of pure metals [36, 35, 11], solidifica-

tion of alloys [65, 7, 8], and grain growth [21, 20, 37]. For a review of the use of phase

field models in materials science, see [16].

In section 3.1, we discuss the order parameter field and the energy functional, and

what parameters control their behavior. We derive two equations of evolution of the

order parameter field in section 3.2. In section 3.3, we show the simulation of spinodal

decomposition with the Cahn-Hilliard equation. This simulation shows us the salient

features of the phase interface described by the Cahn-Hilliard equation; the interface

thickness and the interface tension. In section 3.4, we see how the parameters of the

energy functional control the interface thickness and interface tension.
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3.1 Order parameter field and the energy functional

Figure 3-1 shows an example order parameter field. The scalar field (x), x E Q

shows the spatial arrangement of two phases, say A and B. The spatial domain can

be partitioned into three sets,

QA {xq(x) = 1}, (3.1)

LB = {X(X) = -1}, (3.2)

Q, = {xI - I < O(x) < 1}. (3.3)

QA and AB are regions which contain pure phases A and B respectively. These regions

are shown in figure 3-1 as the white and black regions respectively. Q, contains all

regions which are part of the interface between phase A and phase B. In figure 3-1,

these are all the regions which are of a shade of gray.

The order parameter field implicitly encodes topological information about the

distribution of the phases. For instance, in figure 3-1, we can multiple topological

features. There is an island of phase A, centered at (x, y) = (50, 50), surrounded by

phase B. Also, there is a curvilinear interface between phase B to the left and phase

A to the right. The order parameter field does not need any additional book keeping

to encode this information. This is especially beneficial, since topological changes

no longer need to be tracked. Events such as mergers, splits, precipitation etc are

handled implicitly by the order parameter field.

The behavior of the two phases represented by the order parameter field O(x) is

governed by an associated energy functional

E(b) j (g (q (x)) V (x).V4(x)) dx, > 0. (3.4)

The energy functional is composed of two components: A potential function g(O) and

a gradient penalty term cVq.V/2.

The potential function dictates the relative energetic favorability of the different

phases represented by q5(x). A double well potential, shown in figure 3-2 is a commonly
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Figure 3-1: An example of an order parameter field O(x). The order parameter varies
between -1 and 1 at all location.The order parameter field partitions the spatial
domain into regions of pure phase (O(x) = 1), and the interfaces between them
(-1I < O(x) < 1)).

used potential function. This potential function has two energy wells situated at

= 1, separated by an energy barrier. 4 * order polynomial are commonly used to

construct double well potentials. The potential shown in figure 3-2 is

04 02 1
g(o) = 4 2- + . (3.5)

4 2 4'

This potential function has two minima at q = 1 and a maximum at # = 0. As

a result, the potential function penalizes phase mixing, and favors phase separation.

The magnitude of the penalty for phase mixing can be controlled by the size of

the energy barrier between the two phases. A measure of the size of the barrier is

area between the potential function and the common tangent between the two wells,

calculated as

[g(o) - 1(0)] d# (3.6)

where l(0) is the common tangent, and #1 and 42 are the points of common tangency.

For the potential shown in equation 3.5, the value of a = 4/15.

The term eVq.Vo/2 penalizes sharp gradients in the order parameter field. Larger
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Figure 3-2: Double well potential function. The function g(o) is a 4th order polynomial
with minima at #= 1 and a maximum at 0 = 0.

values of c produce a larger gradient penalty, which in turn produces a smoother order

parameter field.

3.2 Equations of evolution of order parameter field

To derive the equations of evolution of the order parameter field, we first define a

chemical potential p, which is the variational derivative of the energy functional E

with respect to the order parameter field q, given by the relation

j(dX= (3.7)E(O+ 77() - E(O)
lim- q
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where 6E/b is the variational derivative, and ( is an arbitrary function.

calculate the functional derivative by calculating E(# + 7().

fn

We can

g(q + 7() + V(O + Iq).V( + 7()) dx

Og
00- + ;Ydx.VO.VO + CyVO.Vc(

+ EVO.V() dx

(3.8)

By using the divergence theorem on the term fn cV.V(dx, we get

[QJ( 190- V2o) dx + L .Rdsl. (3.9)

Here, &Q is the boundary of the computational domain Q, and h is the outward

normal vector. The surface integral & c((Vo -n)ds = 0 when either the Dirichlet or

the Neumann boundary conditions are applied to O(x, t). This is because applying

the Dirichlet boundary condition enforces

( = 0 Vx E O, (3.10)

and the Neumann boundary condition enforces

V4 - =0 Vx Ez GQ. (3.11)

We can thus calculate the limit

lim E() + () - E() j
77-40 Ii

By comparing equations 3.7 and 3.12, we get

6E Og
p = =

- Cv2o) dx.

- :V 2 #.

(3.12)

(3.13)
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3.2.1 Allen-Cahn equation for the non-conservative evolution

of the order parameter field

The Allen-Cahn equation simulates the non-conservative evolution of the order pa-

rameter field O(x, t) [2, 15, 3, 27]. The equation is given by

at
(3.14)

= M EV2o _

We can see that the energy functional E(O) decreases monotonically by calculating

O -- dx
at o6 at

-Mp2dx (3.15)

<0.

3.2.2 Cahn-Hilliard equation for the conservative evolution of

the order parameter field

The Cahn-Hilliard equation simulates the conservative evolution of q(x, t) [14, 27, 47,

18]. We first define a flux J

If 0 is conserved within then region Q, then

Using the divergence theorem, we get

fn 0+ V-O7t
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j dx + J - ds 0. (3.17)

J dx = 0. (3.18)



Since 4 is conserved, this equality has to be true for any arbitrary Q. Therefore,

-- + V J = 0.
t

(3.19)

Combining equations 3.13,3.16, and 3.19, we get the Cahn-Hilliard equation

(Og00
(3.20)

The energy functional E(O) reduces exponentially under the Cahn-Hilliard equa-

tion. The can be seen by calculating

dE Edo
dt X JOp dt

jI MAtdx

= n) d s- Ix MVt - Vpdx

< 0

The surface integral L pM(Vp -h)ds = 0 under the Dirichlet condition

[ = 0 Vx E 0, (3.22)

and the Neumann condition

Vft- =0O Vx E O, (3.23)

3.3 Spinodal decomposition: A canonical example of

the Cahn-Hilliard equation

Spinodal decomposition is the spontaneous separation of a thermodynamically unsta-

ble mixture of two or more immiscible substances [12, 13]. The initial mixing of the

two substances can be accomplished by a variety of methods. The substances can be
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mixed at elevated temperatures and then quenched, as in the case of metallic alloys

[58]. The substances can be dissolved in a common solvent, which is then evaporated,

which is a manufacturing technique for organic solar cells [69, 62].

In contrast with a mechanism such as nucleation and growth, there is no thermo-

dynamic barrier to separation in spinodal decomposition [39]. Thus, the dynamics

of spinodal decomposition are limited by diffusion. Spinodal decomposition can be

numerically simulated using the Cahn-Hilliard equation. We will use spinodal decom-

position as a model problem to study the effect the gradient penalty factor E, and the

potential barrier a, on the dynamics of the Cahn-Hilliard equation.

We used a spectral method to discretize the Cahn-Hilliard equation in space [64],

and Eyre's scheme in time [19]. Figure 3-3 shows four snapshots from a spinodal

decomposition simulation performed using the Cahn-Hilliard equation. Figure 3-3(a)

shows the order parameter field <O(x) at time t = 0. The order parameter field is

initialized with zero mean Gaussian random noise with a small variance (0 2 = 3e -4).

This small amount of noise is needed to initiate the spinodal decomposition. Periodic

boundary conditions are imposed to conserve the total order parameter value.

The spinodal decomposition process is composed of three stages: phase separation,

coarsening, and, in the case of finite computational domains, convergence.

Figure 3-3(b) shows the separation of the computational domain into regions of

pure phase, separated by diffuse interfaces. The separation of the phases is driven by

a reduction in the potential function contribution to the energy functional shown in

figure 3.5. This reduction in energy is offset by and increase in the gradient penalty.

The balance of reduction in potential function and increase in gradient energy sets

the thickness of the interfaces separating the pure phases.

This can be seen clearly in figure 3-4, where the time evolution of the energy

functional, as well as the contributions of the potential function and the gradient

penalty is shown. From the initial condition at t = 0 to the phase separation at

t = 0.003, there is a reduction in potential function energy, and an increase in the

gradient penalty. However, the total energy functional monotonically reduces.

After the phases separate into spinodal regions in figure 3-3(b), the order param-
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eter field coarsens in figure 3-3(c). This is energetically favorable, since it reduces

the interface length between the two pure phases, which reduces both the potential

function and gradient penalty contribution to the energy functional. This can be

seen in figure 3-4, where there is a reduction in both the potential function, and the

gradient penalty between t = 0.003 and t = 0.02.

Finally figure 3-3(d) shows the convergence of the order parameter field. At con-

vergence, a circular distribution of phase = 1 minimizes the interface length, thereby

minimizing the energy functional E(O).

Through this simulation, we can conclude that the phase interface has two defining

attributes. The first is the thickness 6. As we observed in figure 3-4, the phases

separate from a mixed state due to a reduction in potential energy. The phases

continue to separate, and the interface between them continues to sharpen, until

any further reduction in potential energy is offset by the increase in gradient penalty.

Hence the thickness 6 of the interfaces is controlled by a balance between the potential

energy and gradient penalty.

The second attribute is an interfacial tension r. The interface between the pure

phases behaves like a taut string. This is because of the fact that a decrease in the

length of the interface has a corresponding energy reduction. The energy reduction

comes from a reduction in both the potential energy, as well as the gradient penalty.

This can be seen in figure 3-4 from t = 0.003 to convergence, where the reduction in

total energy functional is caused by a reduction in both the potential energy and the

gradient penalty.

Hence we can see that the values of interface thickness 6 and the interface tension

T are dictated by the potential function and the gradient penalty, which are in turn

controlled by the parameters a and E. In the next section, we will calculate the

functional dependence 6 = 6(a, E) and T = T(a, E).
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Figure 3-3: Montage showing various stages of spinodal decomposition. (a) Initial
condition: the order parameter field is initialized with zero-mean Gaussian noise with
variance o2 = 3e -4. (b) Phase separation: the order parameter field phase separates
into regions of pure phase which are separated by diffuse interfaces. (c) Coarsening:
phase coarsen as this reduces the total interface length, which reduces the value of the
energy functional. (d) Convergence: the order parameter field converges to a form
which minimizes interface length.
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Figure 3-4: The solid line shows the time evolution of the energy functional E(O).
The dotted and dot-dash lines show the contribution of the potential function and

gradient penalty terms to the energy functional, respectively. Snapshots shown in

figure 3-3 correspond to time steps marked by vertical dashed lines. We can observe

that the energy functional E(O) decreases monotonically.
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3.4 Effect of Cahn Hilliard parameters on interface

thickness and tension

In order to calculate the dependence of interface tension 6 and interface tension T, it

is useful to look at the solution of the Cahn Hilliard equation in one dimension. For

a potential function of the type in equation 3.5, the solution is given by

(3.24)

where J is the thickness of the interface. This solution is shown with the solid line in

figure 3-5. We can approximate this solution with a piecewise linear approximation

-1 x < -J/2

(OW =x- -6/2 < x < J/2,

I x ;> J/2

(3.25)

as shown by the dashed line in figure 3-5. The value of energy functional associated

with the one dimensional solution is given by

E((j)) (g(o) + 'VO.Vo) dx

+ 6 o dx.
2d x)

(3.26)
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We can approximate the value of the energy functional as

f= (g( + (2 dx

=J/2 
C + 4 dx

+g() + dx -

+12/2 ( dx.

+70 (g ($2) dx.

Substituting the piecewise linear approximation O(x) from equation 3.25, we get

k = j-6/2 1) + 1 0)2 )dx

+J12 (g (2)
J"/2

2
(2) dx

(0)2 dx.

Since g( 1) = 0,we are left with

S=1/2 ( 9(2x~
2

(2)2 dx.

By using variable substitution, and the definition of a in equation 3.6, we get

L=
2(

Potential energy Gradient penalty

a6 2
= +

From equation 3.32, we can see the effect of 6 on the potential energy and the gradient

penalty. The potential energy increases with larger values of 6, while the gradient
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penalty reduces. This is consistent with the behavior seen in figure 3-3 and figure 3-4.

We can now argue that since the order parameter field is at equilibrium, the energy

functional is at a local minimum. Therefore,

dE _a 2e
- - -- -0 (3.33)d6 2 62 (.3

(3.34)

This relationship between E,a, and S can be seen in figure 3-6. We ran four Cahn-

Hilliard simulation on a 1 x 1 computational domain. All simulations were initialized

with the same boundary condition

-
_Ix < 0.25

O(X, y) 1 0.25 < x < 0.75, (3.35)

-1 x > 0.75

which allowed the use of periodic boundary conditions for numerical simplicity. The

four simulations were run with values of (c, a) = (0.01, 1), (0.001, 1), (0.01, 10), (0.001, 10),

shown in figure 3-6(a), (b), (c), and (d) respectively. We can observe that decreasing

c from 0.01 to 0.001 while keeping a the same reduces the thickness 6 by a factor of

~ VTU. Increasing the value of a from 1 to 10 while keeping the value of c constant

produces the same effect. However, from figure 3-6(b) and (c), we can see the interface

thickness remains unchanged when the ratio E/a is the same.

To calculate the approximate energy functional E, we use the value of 6 calculated

in equation 3.34 into equation 3.32, giving us

c 

= + 2E

2 a c (3.36)
5

2

Since the interface tension T is the energy penalty per unit length of the phase
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interface, we can conclude that

T ~ VEd a(3.37)

We can see the effect of r on the evolution of the order parameter field in figure

3-7. We have compared two spinodal decomposition simulations with identical initial

conditions, boundary conditions and phase interface thickness J, but different T 0.03

and 0.3. On the left, we can see that the simulation with T =0.3 has a higher value

of E(0) at all times, as compared to the simulation with T =0.03. On the right,

we have normalized the value of the energy functional with the value of the energy

functional at t = 0, in order to compare the speed of spinodal decomposition. We

can see that the simulation with T = 0.3 is ~ 10 times faster the simulation with

T =0.03.

These results can be explained by rewriting potential function as

15a 04 02 1)

g(#,a) = ( + -). (3.38)
4 (4 2 4

This allows to rewrite the Cahn-Hilliard equation in terms of J and T.

00 V.MV ag (0, c) _ Ev2o)

= V.MV a '90 1 - eV720
00 -09(11) 20(3.39)

= V. 7.MV ) V 2

4 V . og(a 1) )T V.MV 1) -2)
at 00

We can now see that increasing T while keeping J the same effectively rescales time.

This is consistent with the results shown in figure 3-7(b), where the order parameter

field with the larger interface tension T = 0.3 decomposes faster than the order

parameter field with interface tension T =0.03.

In chapter 5, we use a modified potential function and the Cahn-Hilliard equation

to simulate the permeation of gallium through aluminum grain boundaries. The

modified potential function incorporates the location dependent energy of aluminum
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Shape of phase interface
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Figure 3-5: One
solution is shown
dashed line.

dimensional solution of
by the solid line, and a

the Cahn Hilliard equation. The exact
piecewise approximation is shown with a

grain boundaries. By controlling the interface thickness 6 and the interface tension r,

as explored in this chapter, we will smoothly vary the behavior of the model from a

front propagation model to a diffusion and precipitation model. A front propagation

model has a large interface tension, which causes the front to be pinned by non-

connected obstacles in the grain boundary plane. On the other hand, a diffusion and

precipitation model has low interface tension and high interface thickness, allowing

gallium to diffuse through gaps between obstacles.

In the next chapter, we will calculate location dependent grain boundary energy

maps, which are used as inputs to the modified potential function.
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I= 0.01, a = 1
S = 0.147

= 0.01, a = 10
6 = 0.044

0

C = 0.001, a = 1
6 = 0.044

= 0.001, a = 10
6 = 0.014

1

Figure 3-6: The effect of E and a on the thickness of the interface between phases.
Reducing E from 0.01 in (a) and (c), to 0.001 in (b) and (d) reduces the thickness of
the interface. The same effect can be seen by increasing a from 1 in (a) and (b), to
10 in (c) and (d). However, when the ratio c/a stays constant, as in (b) and (c), the
interface thickness remains unchanged.
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Effect of T on decomposition dynamics

10 1

T = 0.03 0.9
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Figure 3-7: The effect of interface tension on spinodal decomposition dynamics. We
are comparing the dynamics of two spinodal decomposition simulation, with identical
initial conditions, boundary conditions, interface thickness, but with differing inter-
face tension. On the left, we can see that the simulation with T 0.03, has a lower
energy functional as compared to the simulation with T =0.3 at all times. On the
right, we can observe the faster dynamics of the simulation with T = 0.3 by comparing
the normalized energy functionals.
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Chapter 4

Calculation of location dependent

grain boundary energy

When an aluminum grain boundary is permeated by gallium, the aluminum grain

boundary, which is an aluminum-aluminum interface, is replaced by two gallium-

aluminum interfaces. This results in an interfacial energy change given by

A' = 2 7yGa,Al - 'YA1,A(X), (4.1)

where 'YGa,Al is the gallium-aluminum interfacial energy, and 'YAl,Al(x) is the location

dependent aluminum-aluminum interfacial energy. The permeation is energetically

favorable if there is a net reduction in energy. We can define a permeability map

(X) = -Al,Al(X) - 2 7Ga,Al- (4.2)

Permeation of gallium is energetically favorable when #(x) > 0.

This permeability map will be used as an input to the Cahn-Hilliard equation

in chapter 5. In order to calculate the permeability map, we need to calculate the

location dependent grain boundary energy YAl,A(x).

7Al,Al(x) is an intrinsic property of a grain boundary, and depends on the crystal-

lography of the grain boundary. The crystallography consists of the misorientation
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matrix gAB, describing the relative orientation of the two grains forming the grain

boundary, and the grain boundary plane normal vector n. In order to calculate

7yA,A(X), we have to first calculate the grain boundary crystallography. Also, in

general, YA1,AZ (x) is an anisotropic distribution of energy. Therefore the speed of per-

meation of gallium through an aluminum grain boundary, with an associated 7Al,Al (x)

distribution, is dependent on the direction of permeation in the grain boundary plane,

which needs to be determined.

In section 4.1, we use previously unpublished transmission electron microscopy

data provided to us by Dr. Richard Hugo1 to calculate both the grain boundary

crystallography, as well as the direction of permeation of gallium in the grain boundary

plane.

The grain boundary crystallography was used as an input to a atomistic simulation

to calculate the location dependent grain boundary energy -YA1,A1 (x). This work was

done by Dr. Sanket S. Navale 2 as part of his PhD at MIT. In section 4.2, we will

briefly discuss the construction of the atomistic model and extraction of the grain

boundary energy.

Atomistic simulations are limited in the number of atoms they can simulate due

to computational considerations. As a result, the location dependent grain boundary

energy maps computed using atomistic methods were limited to 200A x200A in size.

To overcome this limitation, we statistically extrapolated the grain boundary energy

maps using a Gaussian process approximation. We will discuss this extrapolation in

section 4.2.

In section 4.3, we calculate the permeability maps O(x) for different grain bound-

aries and different values of -YGa,Al-
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4.1 Calculation of grain boundary crystallography

using TEM data

Figure 4-1 show one set of TEM images collected by Hugo and Hoagland as part of

their experimental study of gallium permeation of aluminum [28, 29, 30]. The data

set contains two Kikuchi diffraction pattern captured from the two grains forming

the grain boundary, shown in figures 4-1(a) and (e). The data set also contains one

bright field image of the trace of the grain boundary, shown in figure 4-1(c).

The Kikuchi diffraction patterns contain all information needed to calculate the

orientation of the grains with respect to the lab frame of reference. Figures 4-1(b)

and (f) show the unit cells of the two grains in the lab frame of reference. The

calculation of orientation information from Kikuchi diffraction patterns was done

using the techniques described by Heilmann et al. [26]. By knowing the orientation

of the two grain with respect to the lab frame of reference, we can calculate the

rotation matrix gAB which with respect to each other.

At the time of capturing these images, Hugo and Hoagland aligned each grain

boundary sample such that the electron beam traveled parallel to the grain boundary

plane. This can be seen in figure 4-1(c), where the grain boundary plane is visible as a

single trace. Had the electron beam direction not been parallel to the grain boundary

plane, we would have observed two grain boundary traces, one for the top surface of

the sample, and one for the bottom surface of the sample. Due to this alignment, the

image of the grain boundary trace allows us to calculate the orientation of the grain

boundary plane normal n, as well as the permeation direction of gallium within the

grain boundary plane.

4.1.1 Physics of formation of Kikuchi lines

Kikuchi diffraction patterns are created by the diffraction of inelastically scattered

electron by the lattice planes of the crystal sample [68]. Each set of lattice planes

produce a corresponding set of parallel lines on the viewing screen of the microscope.
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(b)

(d)

Figure 4-1: One set of TEM images, and the crystallography information obtained
from them. (a) and (e) Kikuchi diffraction patterns collected from grain boundary
number 27. Images collected by Hugo and Hoagland. (b) and (f) The orientations
information obtained from the Kikuchi diffraction patterns. The unit cell for the two
grains are plotted in the lab frame of reference. (c) Bright field image showing the
grain boundary trace. The electron beam is in the plane of the grain boundary, hence
only a single trace is visible. (d) The grain boundary, shown in gray, is formed at the
intersection of the two grains, shown in blue and red. The short side is aligned with
the electron beam. The long side is along the direction of permeation.
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(b)

(c)

Figure 4-2: Formation of kikuchi lines. (a) Kikuchi pattern captured by Hugo and
Hoagland, and used in this work. Note that multiple pairs of Kikuchi lines are visible
at the same time. (b) The incoming electron beam gets diffracted by crystal planes
along two cones. The angle of the cones is dictated by the Bragg condition. The
projection of the cones onto the viewing screen creates Kikuchi lines, marked by the
solid red lines. The dotted red line is the center line between the Kikuchi lines, which
is the projection of the grain boundary planes onto the viewing screen. (c) Simulated
Kikuchi pattern, showing four of the Kikuchi line pairs observed in part (b).
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Figure 4-2(a) shows a Kikuchi diffraction pattern, where a number of Kikuchi line

pairs are visible. The undiffracted electron beam is visible as the bright spot at the

center of the image.

Figure 4-2(c) shows four of the kikuchi line pairs visible in figure 4-2(a), as well

as the undiffracted electron beam in the center. Additionally, the center lines of each

Kikuchi line pair is shown by a dotted line. Note that these center lines are not visible

is experimental Kikuchi patterns, but can be inferred from them. Kikuchi line pairs

are characterized by the following parameters.

* A: The spacing between the kikuchi lines.

* D: The perpendicular distance of the center line from the point of incidence of

the electron beam.

* 7: The angle between the x-axis of the image, and the perpendicular from the

origin to the center line.

Figure 4-2(b) shows the formation of one pair of Kikuchi lines. The electron beam,

shown by the vertical red line, is scattered by a set of lattice planes, with the Miller

index (h, k, 1). The scattered electrons are diffracted along two cones, shown in red.

The included angle 7 between the surface of the cones and the lattice planes is given

by Bragg's condition

sin(a) = - (4.3)2d'

where A is the electron beam wavelength, and d is the distance between the lattice

planes. For a cubic lattice, planes with Miller indices (h, k, 1) are separated by,

d = (4.4)vh2 + k2 + 12

where a is lattice constant. a = 404.95pm for aluminum. The Kikuchi diffraction

patterns were collected with an electron beam energy = 200KeV, with an associated

DeBroglie wavelength A = 2.5pm. Since A << a, the small angle approximation is

valid:
A/h2 + k 2 + 1 2

2a= .(4.5)2a
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The two diffracted cones intersect the image plane separated by the microscope

length L, producing two parabolic lines. For sufficiently large value of L, the two

parabolas appear to be straight, parallel lines. The spacing of the lines is given by

A 2L tan(a) (4.6)

AL
- a h2 +k 2 +12. (4.7)

In figure 4-2(b), the Kikuchi lines are shown as solid red lines on the gray image plane.

For the lines to appear straight and parallel, the condition 6 k < L needs to be

satisfied. This condition was satisfied by all Kikuchi diffraction patterns collected by

Hugo and Hoagland. They collected their data with microscope lengths L = 600mm

and L = 800mm. The most widely separated lines are separated by 6 k~ 20mm.

Not all lattice planes produce Kikuchi lines. The presence, absence, and intensity

of Kikuchi lines are governed by the structure factor. For FCC lattices, such as

aluminum, the three Miller indices need to have the same parity to produce Kikuchi

lines. That is, either h, k, l need to be all odd, or all even. More details about the

structure factor can be found in [68].

4.1.2 Calculating the misorientation matrix using Kikuchi pat-

terns

From the construction of Kikuchi lines, we can see that the imaginary center line is

a projection of the lattice plane with Miller indices (h, k, 1) onto the image plane. To

calculate the orientation of the grain, we need to index at least three Kikuchi line

pairs. The values of A, D and -/ for the Kikuchi line pairs are calculated by tracing

the lines manually.

To index the Kikuchi line pairs, we first compared the line separations A.

A- = ,~7 , fc {1, 2,13}. (4.8)Aj h2 + k? + 12
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We used a brute force search to find Miller indices which satisfy equation 4.8 to within

a tolerance of 0.1. Since the sign and order of the Miller indices don't affect the ratio

of line spacings, we limited our search to

9 > h > k > l > 0 (h, k, l) have same parity. (4.9)

At the end of this search, we are left with sets of 3 Miller indices, which satisfy the

spacing of the Kikuchi lines.

Lattice planes with Miller indices (h, k, 1) have a normal vector hei + k 2 + li^,

where 6i,12, and 63 are the unit vectors in the crystal frame of reference. Thus, the

angle between the lattice planes (hl, k1, l) and (h2, k2, 12) is given by

hihj + kikj + lili

Vh11 + k1? + 11 Vh + ki + i

Since the Kikichi center lines are projections of the lattice planes on to the image

plane, the angle between Kikuchi lines is also given by equation 4.10. We compared

angles measured between the Kikuchi lines with all rearrangement and sign combina-

tions of the Miller indices found by matching the spacing constraint in equation 4.8.

For each triplet of valid Miller indices

[(hi, ki, 11), (h2, k2, 12), (h3, k3,713)],

we can in general find (3! x 23)3 = 110592 combinations. Each index h, k, and l can

take a positive sign, or a negative sign, giving 23 = 8 possibilities. Sets of signed

Miller indices (h, k, 1) have 3! = 8 rearrangements. Redundant combinations were

eliminated wherever found in the interest of computational time.

We used a brute force search to find a combination of Miller indices which satisfies

the angle constraint in equation 4.10 to within 0.1 radians. Solutions found to be

identical to within FCC crystal symmetry were eliminated. In case a unique solution

was not found at this point, we introduced more Kikuchi lines pairs to the constraints

to eliminate solutions.
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Next, we need to calculate the orientation of the electron beam in the crystal

frame of reference. To do this, we use the perpendicular distance D. Figure 4-3

shows the cross section of the electron microscope, in the plane formed by the beam

direction unit vector BD and the lattice plane normal unit vector

he'1 + ke2 + 16s
hk 2  3  (4.11)

Vh 2 + k + 12

The geometric relation between D, L, BD, and hkl is given by

D
BD.hkl =-|BDllhkll

VIL2 +22
D + D (4.12)

L2+ D2

If we have a triplet of Kikuchi lines indexed, we can solve for BD and L by solving

the system of equations

BD.hikli = - D (4.13)
BL2- + D2

BD.h2k22 = - D2(4.14)

D3BD.h3 k3 l3 = - (4.15)

BD.BD = 1 (4.16)

We used the method described by Heilmann et al. to solve this system of equations

[26]. The actual microscope length L used to capture the Kikuchi diffraction patterns

is known to us as part of the data set provided by Dr. Richard Hugo. We can use the

value of L calculated by solving equations 4.13 - 4.16 to further eliminate incorrect

Kikuchi line matchings.

I Upon calculating the beam direction unit vector BD, the rotation matrix between

the crystal frame of reference and the lab frame of reference can be calculated in two

steps. First, the crystal is rotated such that the beam direction lines up with the z-

axis of the lab frame of reference, and hkl lies in the xz-plane. This rotation matrix
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is given by

(BD x hkl) x BD

BD x hkl

BD

We can see that this matrix is the correct matrix by calculating RCP.BD

Rcp.BD =

(BD x hkl) x BD

BD x hkl ).BD

BD

((BD x hkl) x BD).BD

= j (BD x hkl).BD

BD.BD

S[00, I]T

and Rcp.hkl.

RCP.hkl =

(BD x hkl) x BD

BD x hkl

BD

((BD x hkl) x BD)

(BD x hkl).hkl

BD.hkl

((BD x hkl) x BD)

0

BD.hkl

.hkl

.hk)

(4.19)

.hk1

In the second step, the crystal frame of reference is rotated by angle ry around the
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z-axis. This rotation matrix is given by

cos(7) - sin(7) 0

RpL = sin(-) cos(y) 0 (4.20)

0 0 1

The rotation matrix relating the crystal frame of reference and lab frame of ref-

erence can be calculated as

R = RPLRCP (4.21)

By calculating the rotation matrices between both grains and the lab frame of

reference, we can calculate the misorientation gAB between grains A and B as

YAB = R RA (4.22)

4.1.3 Calculating grain boundary plane orientation and per-

meation direction

We used the bright field image of the grain boundary trace to calculate both the grain

boundary plane orientation h, and the permeation direction PD. We measured the

angle 0 between the grain boundary trace and the x-axis of the lab frame of reference

manually. Gallium permeates along the grain boundary trace. Therefore, in the lab

frame of reference, the permeation direction

PD = [cos(0), sin(0), 0]T. (4.23)

From the orientation of the sample in the electron microscope, we know that the

beam direction is in the grain boundary plane. In the lab frame of reference

BD = [0 0 I]T. (4.24)
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Figure 4-3: Cross section of the electron microscope in the plane formed by the beam
direction and one (h, k, 1) vector. The (h, k, 1) vector is normal to the lattice plane,
which is shown by a dashed line.
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The grain boundary plane normal h can be calculated by taking the cross product of

BD and PD.

n = BD x PD

= [0, 0, 1]T x [cos(O), sin(O), 0] T  (4.25)

= [- sin(O), cos(O), O]T

The vectors PD and n can be rotated to the reference frames of the two grains

using the rotation vectors RA and RB calculated previously.

We received 53 sets of raw TEM images from Dr. Richard Hugo, collected as part

of their 2000 study [30]. Each set contained two Kikuchi diffraction patterns, and

one bright field image of the grain boundary trace. Unfortunately, the information

connecting individual TEM data-sets to the crystallography and permeation speeds

reported in [30] had been lost. By recalculating the grain boundary crystallography

(gAB, n) and comparing with the values reported in [30], we were able to match 17

TEM data sets to their reported permeation speed values. The matched grain bound-

aries, their crystallography, gallium permeation direction, and permeation speeds are

tabulated in table 4.1. The grain boundary numbers reported in table 4.1, as well as

the remainder of this text, correspond to the data reported in [30].

Table 4.1: List of matched grain boundaries. The grain boundary numbers
correspond to the numbers in the data set reported by Hugo and Hoagland
[30]. The permeation direction is reported in the frame of reference of the
lower crystal

GB# Rotation axis Rotation upper/lower Permeation direc- Permeation

angle (0) plane normals tion speed

(pm/.s)

9 [0.7,0.7,0.11] 49 [0.76,0.58,0.3] [0.22,-0.97,0.028] 0.28

[0.22,0.022,-0.98]

10 [0.96,0.23,0.18] 44 [0.81,0.58,0.11] 1- [0.21,0.15,-0.97] 2.7

0.2,0.97,0.11]
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11 [0.74,0.66,0.1] 38 [0.72,0.68,0.11] [- [-0.0041,0.63,- 2.4

0.7,0.56,0.45] 0.78]

13 [0.87,0.46,0.14] 40 [0.71,0.63,0.33] [-0.085,0.13,0.99] 3.6

[0.34,-0.93,0.15]

16 [0.75,0.58,0.31] 41 [0.8,0.57,0.17] [-0.5,0.86,0.13] 12

[-0.17,-0.25,0.95]

17 [0.74,0.6,0.31] 43 [0.96,0.22,0.15] [-0.037,-0.97,0.22] 0.57

[0.56,-0.2,-0.8]

20 [0.93,0.37,0.096] 38 [0.99,0.14,0.034] [0.12,-0.091,-0.99] 2.4

[-0.44,0.89,-0.14]

21 [0.79,0.61,0.033] 7.1 [0.82,0.54,0.16] [- [0.5,0.26,-0.83] 0

0.55,0.83,-0.074]

22 [0.99,0.11,0.082] 42 [0.84,0.53,0.088] [0.59,-0.8,-0.13] 4.1

[0.33,0.38,-0.86

23 [0.99,0.14,0.069] 42 [0.93,0.38,0.036] [-0.08,0.96,-0.26] 0.16

[-0.17,0.25,0.95]

27 [0.94,0.28,0.2] 9.2 [0.83,0.45,0.33] [- [-0.17,0.37,-0.91] 0.01

0.37,0.83,0.41]

29 [0.78,0.52,0.36] 11 [0.96,0.28,0.0046] [-0.43,0.89,0.18] 0.66

[-0.056,-0.22,0.97]

31 [0.96,0.28,0.031] 11 [0.81,0.45,0.37] [- [-0.52,0.47,0.72] 0.07

0.23,-0.88,0.41]

32 [0.88,0.44,0.18] 8.7 [0.89,0.4,0.21] [0.28,-0.83,0.49] 0.18

[0.28,-0.42,-0.87]

34 [0.94,0.33,0.037] 23 [0.71,0.69,0.15] [-0.23,-0.83,0.51] 0.6

[0.49,-0.55,-0.68]

35 [0.99,0.12,0.043] 18 [0.92,0.3,0.27] [0.43,-0.31,-0.84] 0.49

[0.032,0.94,-0.34]
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37 [0.75,0.56,0.34] 6.8 [0.94,0.35,0.022] [-0.4,0.87,0.29] 0.001

[0.011,-0.31,0.95]

4.2 Calculation of location dependent grain bound-

ary energy maps

The crystallography information calculated in the previous section was used to con-

struct atomistic models of grain boundaries by our collaborator, Dr. Sanket S. Navale,

as part of his PhD thesis. Using these atomistic models, the location dependent grain

boundary energy (LDGBE) was calculated. Two LDGBE maps, for grain boundaries

35 and 13 are shown in figures 4-5(a) and (c). The atomistic simulations used to

calculate the LDGBE distributions are computationally intensive. This limits the

calculated grain boundary energy maps to a maximum feasible size of 200A x 200A.

We need a way to extrapolate the LDGBE distributions to larger dimensions to use

in our phase field model for the permeation of gallium.

We can see that the LDGBE maps shown in figures 4-5(a) and (c) have a quasi-

periodic structure: they have a periodic structure, with random variations superim-

posed. These random variations are a feature of the LDGBE distributions, and any

extrapolation method we use needs to capture and generate this random variation.

We have used Gaussian process to model the LDGBE distributions calculated

by the atomistic simulations. We have used these Gaussian process models to then

extrapolate the distributions to larger dimensions, which we will use in the prediction

of permeation velocities in chapter 5.

65



4.2.1 Gaussian process regression

A Gaussian process f(x) is a stochastic process completely defined by a mean function

m(x) and a covariance function k(x, x') [56].

m(x) = E[f(x)] (4.26)

k(x, x') = E[(f(x) - m(x))(f (x') - m(x'))] (4.27)

f (x) ~ 9P(mT(x), k(x, x')) (4.28)

The Gaussian process f(x) is a stationary process if the covariance function k(x, x')

is dependent only on (x - x

k(x, x') = cov(x - x'), (4.29)

and the mean function m(x) is a constant. Since the covariance function k(x, x') is

only dependent on the offset (x - x'), the Gaussian process f(x) is unaffected by

translations. The squared exponential covariance function, shown in figure 4-4(a), is

a popular covariance function used in Gaussian process regression. It is given by the

relation

kse(x, x') a exp ( ix - x (4.30)

Any finite samples drawn from f(x) at sample points X., are jointly Gaussian.

The samples are distributed as

f (X*) ~ A(m(X*), K(X,, X*)) (4.31)

where K(X*, X,) is the covariance matrix.

K (X*, X*) = [(xi, xj), xi, xj EX* (4.32)

Figure 4-4(b) shows three samples drawn from f(x) ~gP(0, k,,(x, x')), with

0- = 1 and = 1. f(x) is sampled on a dense grid X, [-10, -9.9,.-. ,9.9, 10]. We
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can observe that the samples are smooth, and that they vary over a characteristic

length scale of ~ 1. f(x) is largely contained by the bounds -2 < f(x) < 2. The

length scale of variation and bounds can be changed by changing the value of o- and

1.

If at sample points Xd, we have data points fd, we can draw conditional samples

from f(x).

f(X*)IXd, fd~ gr(m(X*)JXd, fd, K(X,, X*)IXd, fd.) (4.33)

m(X*)IXd, fd =K(X*,Xd)K(Xd, Xd)~-fd (4.34)

K(X,, X*)Xd, fd= K(X,, X*) - K(X,, Xd)K(Xd, Xd)~ 1 K(Xd, X*) (4.35)

In figure 4-4(c), we have sampled f(x) on the same dense grid X, but condi-

tioned on three data points shown in red circles. The drawn samples have the same

smoothness and length scale of variation as the samples in figure 4-4(b), with the

difference being that they all pass through the three data points. Conceptually, these

samples could be generated by generating a large number of unconditioned samples,

and rejecting all samples which do not pass through the data points (Xd, fd).

In general, a Gaussian process f(x) defines a probability distribution over a space

of functions [56]. The properties of the functions are controlled by the covariance

function k(x, x'). We use this idea to extrapolate the LDGBE distributions (Xa,ai(x)

We model the LDGBE distributions as realizations of a Gaussian process

7ai,ai(x) ~ gP(m(x), k(x, x')) (4.36)

We calculate the mean function m(x) and covariance function k(x, x') empirically us-

ing the results of the atomistic simulations in section ??. We then use the simulations

as seeds for a recursive extrapolation of the energy maps.
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Figure 4-4: (a) Squared exponential covariance function with o- = 1 and 1 = 1.
(b) Samples drawn from f(x). The samples are smooth and have a length scale of
variation of ~ 1. (c) Samples drawn from f(x) conditioned on the three data points
marked by red circles.
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4.2.2 Calculation of empirical mean and covariance function

The empirical mean and covariance functions are calculated using the LDGBE dis-

tributions calculated in section ??. The empirical mean function is simply defined as

the arithmetic mean of the energy distribution -yal,a (x).

m(x) E [ya,ai (x)] (4.37)

1N
M Z ay,al (Xi), (4.38)

i=1

where {xj} are the grid points over which -yal,a (x) has been computed.

The empirical covariance function was calculated as the auto-covariance of (7a1,ai (x) -

m). Let T[.] be the Fourier transform, and -. be the inverse Fourier transform.

The auto-covariance of (Yai,ai(x) - m) was calculated as

k(x - x') = F-1 [11F [71a,ai(.) - M] 1121 (x - x'). (4.39)

In practice, the FFT and inverse FFT functions built into MATLAB were used to cal-

culate k(x - x').

Figures 4-5(a) and (c) show the LDGBE distributions for grain boundaries 35 and

13. The energy distributions have a size of 200A x 200A, with a grid spacing of IA. The

corresponding auto-covariance functions are shown in figures 4-5(b) and (d). We can

see that the auto-covariance functions capture the quasi-periodic nature of the energy

distributions. The covariance is highest for offset (x - x') = 0, and falls as the offset

value increases. Points with offsets values which lie on the periodic grid of the grain

boundary structure are more strongly correlated with each other than points which do

not. The auto-covariance has a maximum offset value of (x - x') = ( 100A, 100A)

4.2.3 Generation of new energy landscape patches

We use a recursive algorithm to extrapolate the LDGBE maps calculated in section

??. We start by calculating the empirical mean energy m, and the auto-covariance
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Figure 4-5: (a) LDGBE distribution -Yal,al(x) for grain boundary 35. (b) Empirically
calculated covariance function k(x - x') for grain boundary 35. (c) LDGBE distribu-
tion 1a,al(x) for grain boundary 13. (d) Empirically calculated covariance function
for k(x - x') grain boundary 13. We can see that the quasi-periodic nature of the
LDGBE distributions is captured in the covariance functions
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k(x - x'). Then, the energy distribution Nl,ai(x) is used as a seed to calculate new

patches of the LDGBE distribution. The new patches are generated as samples from

the Gaussian process approximation.

Figure 4-6 shows three steps of the recursive algorithm. Here, we are extrapolating

an energy distribution of dimension 200A x200A to a final dimension 400A x200.

We start with the seed energy distribution Yal,ai(x) being placed in the center of the

larger domain. Points in the larger domain which lie on the seed are considered to be

'defined', and the points which are outside this seed area are considered 'undefined'.

The 'undefined' points are shown with a solid blue patches. To generate a new segment

of the energy map, we search for an 'undefined' point which has the largest number of

'defined' neighbors in a neighborhood with a maximum distance of ( i00A, 100A).

The neighborhood is marked with the red-dashed square.

The values of grain boundary energy at 'undefined' points within the selected

neighborhood are generated as a sample from the Gaussian process approximation

Nli,al (X) ~ 9'P (m, k (x, x')), (4.40)

conditioned on the 'defined' data points within the neighborhood. The newly gen-

erated points are added to the list of 'defined' points, and the algorithm repeats till

there are no more 'undefined' points.

Figures 4-6(b) and (c) show the second and third step of the extrapolation al-

gorithm. We can see that the 'undefined' points from the previous steps are now

'defined'.

Figure 4-7 shows three extrapolated grain boundary energy maps which were

generated using this algorithm. The central seed region, which was calculated using

atomistic simulations, is outlined by a solid black line. We can visually see that the

generated energy maps have the same quasi-periodic structure as the seeds.
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Grain boundary 35 extrapolation
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Figure 4-6: Three steps in the recursive extrapolation of the LDGBE distribution
of grain boundary 35. (a) The initial step: The seed distribution is located in the
center. The red-dashed square marks the extrapolation neighborhood. (b) LDGBE
distribution after generation of first patch. The extrapolation neighborhood moves
to the next location. (c) The energy distribution after two steps of extrapolation.
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Figure 4-7: Extrapolated LDGBE distributions for (a) grain boundaries 9 ,(b) grain
boundary 13, and (c) grain boundary 35. The sections of the distributions as calcu-
lated by atomistic simulations, and used as a seed for the extrapolation, are marked
by black squares. The extrapolated sections of the LDGBE distributions have the
same quasi-periodic structure as the seed.
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4.3 Calculation of permeability map

The permeation of gallium through aluminum grain boundaries is driven by the re-

duction in interfacial energy when one aluminum-aluminum interface is replaced by

two gallium-aluminum interfaces. We defined a permeability map #(x) as

#3(x) = YA,Al (X) - 2 yGa,AL, (4.41)

where -YAl,Al(x) is the location dependent grain boundary energy, and 7Ga,AI is the

interfacial energy of gallium-aluminum interfaces. In section 4.2, we have constructed

and extrapolated the LDGBE maps -1A,Al(x).

Figures 4-8 and 4-9 show some of the permeation maps calculated as part of this

study. The regions where 3(x) > 0, which serve as pathways for gallium permeation,

are marked in red, with darked shades of red corresponding to larger positive values of

,3(x). Regions where 3(x) < 0 serve as obstacles to the permeation of gallium. These

areas are marked in blue, where darker shades of blue correspond to more negative

values of #(x).
Figure 4-8 shows the effect of the gallium-aluminum interfacial energy 7Ga,Al on

the permeability map O(x) for grain boundary 9. We can see that increasing the

value of -YGa,Al increases both the size, and the intensity of the obstacles. We can see

that for YGa,Al = 0.15J/m2 , the obstacles are disconnected. When 7Ga,Al increases to

0.2J/m 2 , the obstacles grow, and form continuous bands.

Figure 4-9 shows the permeability maps for grain boundaries 9, 13, and 35 at

7Ga,Al - 0.225J/m 2 . These grain boundaries were permeated at speeds 0.28pm/s,

3.6pm/s, and 0.49pm/s, respectively. The grain boundaries have very different size,

distribution, and intensity of obstacles. We can also see a qualitative relation between

the distribution and size of obstacles, and the observed permeation velocities.

In chapter 5, we have developed a predictive phase field model, which simulates

the permeation of gallium through aluminum for given permeability maps /(x). In

chapter 6, we will use the data collected by Hugo and Hoagland in [30] to infer

the gallium-aluminum interfacial energy 7Ga,Al, as well as the tension and thickness
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parameters of the phase field model.
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Figure 4-8: Effect of -Ga,Al on permeability map P(x, y) of grain boundary 9. (a)
7YGa,A1 = 0.15J/m2 , (b) 7YGa,Al = 0.175J/m 2 , and (c) -YGa,Al = 0.2J/m 2 . Permeable
regions of the grain boundary are shown in red, and the obstacles are shown in blue.
The obstacles grow in size with -YGa,Al-
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Grain boundary 9 wetting map
7Ga,Al = 0.225 J/m2
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Grain boundary 13 wetting map
2Ga,Al 0.225 J/m2

200 0.51
(b)

0

0 -0.21
0 x(A) 400

Grain boundary 35 wetting map
7Ga,Al = 0.225 J/m2

200 . 0.51
%04 Iv

VA (c)

0 - - -0.2 1
0 x(A) 400

Figure 4-9: Permeability maps for (a) grain boundary 9, (b) grain boundary 13,
and (c) grain boundary 35. The permeability maps were calculated for 'Yea,AI -
0.225J/m 2 . The three grain boundaries have different size, distribution, and intensi-
ties of obstacles.
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Chapter 5

Using phase field methods to simulate

Ga permeation of Al

In chapter 3, we introduced and developed the phase field method. We showed that

the Cahn-Hilliard equation can be used to model multi-phase physics, using spinodal

decomposition as an example. Further, we showed that the parameters E and a control

the thickness 6 and tension r of the interface between the two phases being simulated.

In chapter 4 we calculated the location dependent grain boundary energy maps

7Al,Al(x) for 17 grain boundaries whose velocities were reported in [30]. Wetting maps

#(x), given by

O(x) = YAl,Al(X) - 2 7Ga,Al (5.1)

drive the permeation of gallium through aluminum grain boundaries.

In this chapter, we will use the Cahn-Hilliard equation to simulate the permeation

of gallium through aluminum grain boundaries. In section 5.1, we show the details

of how we modified and solved the Cahn-Hilliard to simulate gallium permeation of

aluminum grain boundaries. In section 5.2, we will show how we extracted permeation

velocities from the results of the Cahn-Hilliard simulations. Finally, in section 5.3,

we will discuss the effect of front thickness 6 and front tension T on the permeation

speeds of gallium through different grain boundaries.
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5.1 Cahn-Hilliard model

We use an order parameter field O(x) to encode the state of permeation of the grain

boundary being simulated. An example order parameter field is shown in figure 5-1.

Regions of the grain boundary which have been permeated by gallium, shown in gray,

have O(x) = -1. Regions which are unpermeated by gallium, shown in red, have

O(x) = 1. The interfaces between these two regions, shown in white, have the order

parameter value -1 < O(x) < 1.

The behavior of the order parameter field O(x) is controlled by the energy func-

tional

E(q(x)) [g(), x) + IVI12 dx, (5.2)

where Q is the grain boundary region being simulated. The wetting map O(x) is

incorporated into the simulation using a location dependent potential function g(o, x).

The evolution of the order parameter field O(x) is dictated by the Cahn-Hilliard

equation, given by

00= V -M(4, M)17 -g(,X _Cv2o (5.3)

The use of the Cahn-Hilliard equation ensures that the order parameter field O(x)

remains conserved. The details of both the location dependent potential function,

and the solution of the Cahn-Hilliard equation are presented below.

5.1.1 Modified potential function

The location dependent potential function g(O, x) is a forth order polynomial with

location dependent coefficients.

g(O, x) = A(x)o4 + B(x)q3 + C(x) 3 + D(x)b (5.4)
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Order parameter field
200A .

oA -i
0A 400A

x

Figure 5-1: The order parameter field #(x, y), representing the state of permeation
of grain boundary 9. Regions of the grain boundary which have been permeated by
gallium are shown in gray. Regions which are not permeated are shown in red. The
permeated and unpermeated regions are separated by interfaces shown in white.

to calculate the coefficients A(x), B(x), C(x), and D(x), a non-linear curve-fitting

problem is solved, with the following constraints.

g(1, x) - g(-1, x) = /(x) (5.5)

[g(#, x) - l(0)] d#- = a (5.6)

09g(1, X) (5.7)
,9 = 9A1 

57

0g(-1,x) =
aq Ga (5.8)

Equation 5.5 controls the relative energetic favorability of the permeated phase (# =

--1) and the unpermeated phase (# = 1). The permeated phase is energetically favor-

able as compared to the unpermeated phase in regions where O(x) > O.Conversely,

the permeated phase is energetically less favorable than the unpermeated phase in

regions where O(x) < 0.

Equation 5.6 sets the energy barrier between the permeated and unpermeated

phases. In this equation, #1 and 02 are the points of common tangency of the potential
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Figure 5-2: Modified potential function for different values of P and a. (a) The
potential functions for P = -0.1 J/m2 are plotted with a = 0.16 J/m2 and a = 2.4e -
3 J/m 2 . (b) The potential functions for # = 0.1 J/m 2 are plotted with a = 0.16 J/m 2

and a = 2.4e - 3 J/m2 . Potential functions with small values of a can be single
welled.

g(0, x), and l(q) is the common tangent.

Figure 5-2(a) and (b) show the potential functions for 3 -0.1 J/m 2 , and # =

0.1 J/m 2 respectively. For each value of /, the potential functions are calculated

with a = 0.16 J/m2 and a = 2.4e - 3 J/m2 . For negative values of #, the gallium

phase = -1 is less energetically favorable than the aluminum phase 1 = 1, as

can be seen from figure 5-2(a). The converse can be seen in figure 5-2(b). We can

see that the potential functions g(, x) are double welled for a = 0.16 J/m2 , that is,

they have two local minima, separated by a local maximum. For a = 2.4e - 3 J/m2 ,

the potential functions has a single minimum. However, the potential function still

contains a common tangent, and a corresponding energy barrier. This is possible due

to the prescribed gradient of the potential at # = 1 and # = -1, in equations 5.7 and

5.8. We have used values gA1 = 0.64 J/m 2 and g'sa = -0.64 J/m 2 to calculate the

location dependent potential functions.
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5.1.2 Solving the Cahn-Hilliard equation

We have used the C++ library MOOSE to solve the Cahn-Hilliard equation. MOOSE, which

stands for Multiphysics Object-Oriented Simulation Environment, is a "... finite-

element, multiphysics framework primarily developed by Idaho National Laboratory"

[23, 61, 24]. MOOSE has been used as the simulation environment for diverse set

of computional studies, such as the simulation of nuclear fuel rods [4, 22, 48], soil

mechanics [54, 53, 9], and phase field models [34, 6, 59].

The Cahn-Hilliard equation is solved by splitting it into two coupled second order

equations.

V - (M(0, M)Vp) (5.9)
at

-= (, - CV 2o (5.10)

Both these equations were discretized on an adaptive spatial grid. We imposed the

Dirichet boundary condition at the left edge (x = OA). The Dirichlet boundary

condition is given by the equations

S = 1 (5.11)

0. (5.12)

This boundary condition acts as a source of gallium. We imposed the Neumann

boundary condition On the remaining boundaries, (y = OX), (y = 200k), and (x

4001). The Neumann boundary condition is is given by the equations

V0 ii = 0 (5.13)

V -h = 0. (5.14)

We used a non-uniform phase dependent mobility

M(,5M) = 5M . + 4.5 tanh -0. ). (5.15)
0.1

83



Non-uniform phase-dependent mobility

10M

-1 0 1

Figure 5-3: The non-uniform phase-dependent mobility used in this study. The mo-
bility smoothly varies from 10M to a baseline mobility of M as the phase changes
from gallium to aluminum. This models the higher mobility of the liquid gallium
compared to solid aluminum

Here, M is a baseline mobility for the system. Using the mobility function in equation

5.15 sets the mobility of the aluminum phase to M, and that of the gallium phase to

1GM, with a smooth variation in between. Doing so allows us to model the higher

mobility of the liquid gallium phase compared to the solid aluminum phase. Changing

the baseline mobility M is equivalent to rescaling time. Solving

(& g(q$,x) 2\0 = V. M(O, M)V ' -X) V2 (5.16)
at 8

is equivalent to solving

=- [M(, 1)v 'g - 2) (5.17)Lt* =O- (1

where t = M x t. Therefore, once a simulation has been conducted at a given value

of M, solutions for other values of M can be obtained by appropriately rescaling

time.
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Figures 5-5 and 5-7 show the simulation of gallium permeation through grain

boundaries 9 and 35. The wetting maps #(x), used for the simulations are shown in

figures 6-12 and 5-6 respectively. Grain boundary 9 has large regions where /(x) < 0.

These regions act like obstacles to permeation. We can see that the gallium permeates

only through the regions where #(x) > 0, and forms islands of unpermeated aluminum

in regions where 3(x) < 0. The permeated and unpermeated regions of the aluminum

grain boundary are separated by interfaces of thickness

6 = (5.18)

and tension

-r =Veo (5.19)

For details on the calculation of the relation between thickness 6 and tension r, on

the Cahn-Hilliard equation parameters c and a, see section 3.4.

The simulation shown in 5-5 was performed with a low interface tension TF

5e - 12 J/m. The interface between the permeated regions and the unpermeated

islands have an associated energy penalty ~ r x L, where L is the total length of

the interface region. As a result of the low value of r, the additional energy penalty

due to the formation of interface regions is small, and the gallium is able to permeate

through the grain boundary, while leaving behind unpermeated islands.

Grain boundary 35 has smaller obstacles compared to grain boundary 9. We can

see that the gallium permeates the grain boundary with a well defined front, and

leaves behind no islands of unpermeated aluminum, unlike grain boundary 9. This

simulation was run with a large interface tension r = le - 10 J/m. As a result, the

energy penalty r x L is larger than the energy penalty of wetting the non-permeable

regions /(x) < 0. This allows the gallium to permeate without leaving behind un-

permeated islands.

These two simulations show two qualitatively different gallium permeation mech-

anisms. The behavior seen in figure 5-5 can be described as diffusion and coalescence.

The behavior seen in figure 5-7 can be defined as front propagation.
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Grain boundary 9 wetting map

200 N -YGa,Al = 0.2 J/m 2

0 -0.210 (k) 400

Figure 5-4: The grain boundary wetting map O(x) used in figure 5-5.

5.2 Extraction of permeation velocity

We use the results of the Cahn-Hilliard equation to calculate the permeation velocity

of gallium. To do so, we first spatially average the order parameter field at each time

step. This gives us a time varying, average order parameter value O(t)

0(t) j #(x, t) (5.20)

We run the Cahn-Hilliard simulation till convergence. In practice, we have found

that running the simulation till t = 109 s is sufficient to achieve convergence for all

grain boundaries. We use the converged value q(oo) to determine if a grain boundary

has been permeated or not. A grain boundary which has been completely permeated

by gallium would have 44oo) -1. However, as can be seen in figure 5-5, some grain

boundaries have islands of unpermeated aluminum, which makes q(oo) > -1. To

accommodate such cases, a grain boundary is determined to be permeated if

F(oo) < 0.3 (5.21)

For grain boundaries which were determined to be permeated, the time varying

location of gallium in the aluminum grain boundary was calculated using a linear
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Permeation of gallium through grain boundary 9

t = 3.62e +05s

t = 9.9e + 05s t = 2.51e + 06s

t =4.17e +06s t = 1.34e + 07s

Figure 5-5: Permeation of gallium through grain boundary 9 for T = 5e -12 J/m. The
wetting map for this simulation is shown in figure 6-12. We can see that the gallium
permeates the grain boundary without wetting the obstacles in the grain boundary.
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Grain boundary 35 wetting map

YGa,Al = 0.225 J/m2
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Figure 5-6: The grain boundary wetting map O(x) used in figure 5-7.

relation between 0(t) and the gallium location XGa (t).

XGa(t) - x 400$
1 - 0(oo)

(5.22)

This relation linearly maps q 1 to XGa = OA, and 0 =(oo) to XGa = 400A.

Figure 5-8 shows an example average order parameter 0(t), and the computed

gallium location XGa(t)- From the figure, we can see that the gallium permeates

the aluminum grain boundary with a decreasing velocity. This is because the gallium

permeation is limited by the diffusive transport of gallium from the Dirichlet boundary

condition at x = OA.

We calculated the permeation velocity by fitting a straight line to the XGa(t) curve

for XGa satisfying

150A < XGa < 250A. (5.23)

By using XGa values in this range, we are able to avoid any boundary effects caused

by the boundary conditions at x = OA and x = 400A.
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Permeation of gallium through grain boundary 35

t = 3.16e + 05s

t = 7.31e + 05s t = 1.33e + 06s

t = 1.82e + 06s t = 3.01e + 06s

Figure 5-7: Permeation of gallium through grain boundary 35 for r = le - 10 J/m.
The wetting map for this simulation is shown in figure 5-6. The gallium permeated
this grain boundary as a single front, without leaving behind any unpermeated islands.
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Extraction of velocity
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0.8 0(t) Xaa(t) Limits - -- Fitted line
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Figure 5-8: The calculation of velocity from the average order parameter q(t). The
black solid line shows q(t). The position XGa (t) is calculated by linearly mapping M(t)
to locations along the simulation domain. The velocity is calculated by performing a
linear fit on XGa(t) for values of XGa(t) between the limits 15OAand 250.

5.3 Effect of YGa,Al, r, and 6 on permeation velocity

We now have a complete model for the gallium permeation of aluminum. The velocity

of permeation VGa is calculated using a Cahn-Hilliard model.

VGa = F(O(x), 6,r, M) (5.24)

The Cahn-Hilliard model F(.) has four inputs: a location dependent wetting map

#(x), interface thickness 6, interface tension r, and a baseline mobility M. The

interface thickness 6 and interface tension r are controlled by the parameters f and

a. The location dependent wetting map ,3(x) is calculated as

0(x) = YA,Al(X) - -YGa,Al - (5.25)

The gallium-aluminum interface energy YGa,Al is a third unknown parameter, along

with 6 and r. The location dependent grain boundary energy -YAI,A(x) was calculated
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in chapter 4. It is a function of grain boundary crystallography (gAB, h)-

7 AI,Al(X) = G(g AB, ^) (5.26)

Here, G(.) is an atomistic simulation used to calculate -YA,Al(x).

Figures 5-9 and 5-10 show the effect of 7Ga,Ai, tension r, and thickness 6, on the

permeation velocity VGa in grain boundaries 16 and 32 respectively. In figures 5-9(b),

(d), and (f), we can see that grain boundary 16 has no obstacles, which are regions

where 3(x) < 0, for any value Yca,Al. On the other hand grain boundary 32 has

obstacles in its wetting map, which can be seen in figures 5-10(b), (d), and (f). These

obstacles grow in size with increasing values of -YGa,A1.

In figures 5-9(a), (c), and (e), we can see that the dependence of permeation

velocity VGa on the thickness J and tension r is qualitatively similar for all value of

7Ga,Al. The maximum permeation velocity is seen at low 6 and moderate r, and the

minimum values are seen at high 6 and low T. The maximum permeation drops from

VGa 1.87pm/s to VGa 1.50 pm/s, when -YGa,Al is increased from 0.15 J/m 2 to

0.1875 J/m 2 . This is due to a reduction in the wetting potential #(x).

The relation between -YGa,Al, 6, and r is more complicated for grain boundary 32.

We can see from figures 5-10(a), (c), and (e), that the relation between thickness 6

and tension T, and the permeation velocity VGa is qualitatively different for different

values of -YGaAl. These qualitative differences arise from the change in size of obstacles

in the wetting map #(x) as a function of -iGa,Al, and the interaction of these obstacles

with the permeating gallium.

For -Y/Ga,Al = 0. 15 J/m2 , the highest permeation velocity occurs at (6, r) = (26.4A, 1.94e-

10 J/m). The permeation velocity is non-zero for all values of (6, T). Upon increasing

the value of 72Ga,Al to 0.175 J/m2 , we see that the permeation velocity drops to zero

for simulations with low thickness 6, and high tension T. This is because in simula-

tions with high tension r, gallium gets pinned by the larger obstacles, and is not able

to permeate the aluminum. The simulations with non-zero permeation velocities are

those with low values of tension T, where the gallium is able to permeate between
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the obstacles, and for high values of thickness 6, where the gallium 'averages' over

the obstacles in the wetting map. At 7Ga,Al = 0.1875 J/m2 , on simulation with low

thickness 6 and tension r are able to permeate the grain boundaries.

Thus we can see that the parameter 7Ga,A1, 6, and T affect the permeation speed

VGa differently for grain boundaries with obstacles, such as grain boundary 32, and

grain boundaries without obstacles, such as grain boundary 16. The permeation

speeds are a more sensitive to the thickness 6 and tension T in grain boundaries with

large obstacles. In the next chapter, we will infer these parameters using the gallium

permeation data experimentally observed by Hugo and Hoagland [29, 28, 30].
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Figure 5-9: Wetting maps and permeation speeds for grain boundary 16. (a), (c),
and (e) show the effect of -YGa,A, 6, and T on the permeation speed VGa for grain
boundary 16. (b), (d), and (f) show the wetting maps 3(x) for the three values of
'Ga,Al. We can see that there are no obstacles present in the wetting maps. As a
result, the relation between VGa, and 6 and T is qualitatively similar for all values of
"YGa,Al-
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Figure 5-10: Wetting maps and permeation speeds for grain boundary 16. (a), (c),
and (e) show the effect Of -YGa,Al, 6, and T on the permeation speed VGa for grain
boundary 32. (b), (d), and (f) show the wetting maps O(x) for the three values of
'YGa,Al- The relationship between VGa, and 6 and T is qualitatively distinct for the
different values of YGa,AI. This is due to the presence of obstacles in the wetting maps.
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Chapter 6

Inference of model parameters

We have developed a model for the gallium permeation of aluminum grain boundaries.

The predicted velocity of permeation VG for a given grain boundary is calculated

using a Cahn-Hilliard model F(.).

V -= F(0#(x), 6, r, M) (6.1)

The Cahn-Hilliard model takes in four inputs: a location dependent wetting map

O(x), interface thickness 6, interface tension T, and a baseline mobility M. The

location dependent wetting map O(x) is calculated as

O(X) = 7Al,Al(X) - -YGa,Al- (6-2)

The gallium-aluminum interface energy -YGa,Al is a third unknown parameter, along

with 6 and r. The location dependent grain boundary energy 7A1,A(x) is a function

of grain boundary crystallography, and is calculated using an atomistic model.

7Al,Al(X) = G(gAB,) )- (6-3)

In this chapter, we will use Bayesian inference to infer the unknown parameters 7Ga,Al,

6, T, and M using experimental data collected by Hugo and Hoagland [30].

Bayesian inference is a statistical framework for inferring parameters 0 of a model
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M(.) using experimental data D. In Bayesian inference, unknown parameters are

modeled as random variables [60]. The probability density function (PDF) of 0, p(0)

encodes our state of belief in the value of 0. Estimates of 0, and the uncertainty in

those estimates can be calculated from the PDF.

To infer parameters 0 using experimental data D, we calculate the conditional

PDF, p(0jD). This conditional distribution, called the posterior, encodes our state of

belief in the value of 0, after observing data D. We can use Bayes' rule 1 to calculate

the posterior as
Likelihood Prior

Posterior e A
P(ED|0) p(O)

pAO|D) = (D (6.4)p(0(D)

Evidence

The calculate the posterior, we need three distributions: The prior p(O), the like-

lihood p(D10), and the evidence p(D). The evidence is simply a normalizing term

p(D ) j p(D|0)p()d, (6.5)

which ensures that the posterior is a proper PDF, that is,

j p( |D )d0 = 1 (6.6)

The prior p(0) encodes any belief we have about the parameter, before the ob-

servation of data D. This prior belief can arise from a number of source, such as

constraints that 0 must obey, expert opinion, and even pre-existing data. For in-

stance, if 0 is a temperature measured in Kelvin, then 0 has to be a non-negative

number. This can be enforced by setting

p(-) e = 0 (6.7)

The likelihood p(D|O) encodes the likelihood of observing data D at parameter

value 0. The model M(.) relates parameters 0 with observed data D through the

'Hence Bayesian inference
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relation
Observation Prediction Uncertainty

S = (0) . (6.8)

71 is a random variable that accounts for sources of uncertainty in the model M(.).

These sources of uncertainty include noise in the experimental observations, unmod-

eled dynamics in the predictive model, and inherent stochasticity in the system being

modeled. 2, is distributed according to

'q ~ Pq(.) (6.9)

Using the model M(.) and the uncertainty model q, we can calculate the likelihood

p(D|6) as

p(DO) = p'(D - M(9)). (6.10)

In this study, the model parameters 0 are the gallium-aluminum interface energy

'Ga,Al, thickness 6, tension T, and baseline mobility M.

0 = (7Ga,AZ, J, T, M) (6.11)

The data D is the set of observed permeation velocities V, and the associated

location dependent grain boundary energy -A1,A (x).

E) {(7A,Al(x), VS)i} (6.12)

i = [9, 10, 11,13, 16, 17,20, 21, 22, 23,27, 29, 31, 32, 34, 35,37] (6.13)

Here, i are the row numbers for the data used, as published by Hugo and Hoagland

[30]. The permeation speeds V& were directly reported, while the 'YAI,Al(x) distribu-

tions were calculated from the crystallography data. In the remainder of this chapter,

we will discuss the details of the Bayesian inference process used.
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6.1 Likelihood

We have used a log-normal [33] noise model to construct our likelihood. In our

model, the permeation velocity VG predicted by the Cahn-Hilliard model, and the

permeation velocity V& observed experimentally by Hugo and Hoagland [30] are

related to each other by the equation

log(VG/V) = ', (6.14)

where q is normally distributed.

N(uo.2 ) (6.15)

This noise model can be rewritten as an additive Gaussian noise model on the loga-

rithms of observed and predicted velocities.

1og(VS) = log(VS) + q (6.16)

From this noise model, we can calculate the likelihood as

D1 ep (og(VOa) - log(VS)) 2
p(DJO) =exp -. (6.17)V2022o- 2 J

The likelihood is shown in figures 6-1(a) and (b). We have used a log-normal noise

model with p = 0 and o.2 = 2.25.

We picked this noise model for the following reasons:

1. Hugo and Hoagland observed permeation velocities which vary over four orders

of magnitude. The lowest non-zero velocity observed is 0.001 [um/s for grain

boundary 37, and the highest velocity is 12.7pm/s for grain boundary 16. Us-

ing the logarithm of velocity for our noise model allows us to have sufficient

resolution for all velocity values.

2. The log-normal distribution is a heavy-tail distribution, as can be seen in figure
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Figure 6-1: Log-normal likelihood function. (a) The log-normal likelihood is a additive
Gaussian noise on the logarithm of the velocities. (b) The log-normal distribution is
a heavy-tail distribution.

6-1(b). This property of the log-normal distribution makes the inference robust

to the presence of outliers in the data.

6.2 Prior

The prior P(-Ga,Al, 6, T) was constructed as the product of three independent priors.

P(YGa,A,, 6 T,M) - P(7Ga,A)P( 6)P(T)P(M) (6.18)

Figures 6-2, 6-4, and 6-3 show the prior distributions for -YGa,Al, 6, and T respectively.

We can easily argue that -,GaAl is a positive number. We know that the loca-

tion dependent grain boundary energy -A1,A1(x) > 0 for all grain boundaries, at all

locations x. This is because the grain boundary is a planar defect in a crystal, and

has a positive associated energy. Hence, if the gallium-aluminum interface energy

7Ga,Al <= 0, then the wetting potential 3(x) > 0 for all grain boundaries, at all

locations x. This would imply that there are no obstacles to gallium permeation in
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any grain boundary, since obstacles to permeation exist in regions where #(x) < 0.

Hence, all grain boundaries would necessarily be permeated, albeit at different speeds.

However, we know that this is not the case. Grain boundary 21 observed by Hugo

and Hoagland was not permeated by gallium. Therefore, -YGa,Al > 0.

Using a similar argument, we can find an upper bound. -YGa,Al is necessarily less

than half the maximum value of -YA1,Al(x) across all grain boundaries.

1
7Ga,Al < I max(-YAl,Al(X)i), (6.19)2

where i is the index of grain boundaries. This upper bound was found to be 0.537 J/m2.

If 7Gc,Ai > 0.537 J/m2, ,3(x) will be a negative number for all grain boundaries, which

would imply that no grain boundaries can be permeated by gallium. Again, we know

from literature that this is not true.

These two arguments give us broad constraints on the range of values 7Ga,Al can

take. We have used a uniform prior on the value of 7Ga,A, constrained between

0.15 J/m 2 and 0.2J/m 2.

7Ga,Al U(0.15 J/m 2, 0.2 J/m2 ) (6.20)

P(7Ga,Al) 20, 0.15 J/m 2 < 7Ga,Al < 0.2 J/m 2  (6.21)
0, Otherwise

We have used dimensional arguments to estimate the approximate value of the

tension T.

O(T) ~ 0(#)O(d), (6.22)

where O(P) is the approximate wetting potential of obstacles and paths, and 0(d) is

approximate length scale of the obstacles and paths in the wetting map #(x). Sub-

stituting 0(#3) ~ 0.1J/m2 and 0(d) ~ 10 into equation 6.22, we can approximate

that order of magnitude O(T) ~ le - 10J/m.

We used a log-uniform prior distribution for the tension T. This is a uniform

100



Uniform prior for -YGaA

20.00

15.00

10.00

5.00

0.00
0.14 0.16 0.18 0.2 0.22

'YGo.Al (J/rn2 )

Figure 6-2: Prior distribution for the gallium-aluminum interface energy 'YGa,Al.

distribution on the logarithm of T.

log(T) ~ bf(a, b) (6.23)

Tia < log(T) < b
p(log(T)) = ,a (6.24)

0, Otherwise

Here, a and b are the upper and lower limits of log(r). This distribution is a good prior

distribution for variables that can vary over a large range of values. It allows us to

constrain the values of r considered, while assigning equal probability to each decade

in the range specified. We have constrained T in the range [3.7e - 11, 2.7e - 10] J/m.

The probability density function for T for these constraints is given by the expression

S0.5/, 3.7e - 11 J/m <r <2.7e - 10J/m (6.25)
0, Otherwise.

The probability density functions for log(T) and T are shown in figures 6-3(a) and (b)
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respectively. We can see that the log-uniform prior assigns higher probability density

to lower values of T.

We assigned a log-uniform prior distributions to the thickness 6, which is con-

strained in the range [13.3, 29.91A. The probability density functions for log(S) and 6

are shown in figures 6-4(a) and (b) respectively.

(1.25/6, 13.3A < 6 < 29.9A (6.26)
0, Otherwise

We used an improper log-uniform prior distribution for the baseline mobility M.

Like the prior distributions for 6 and r, this is a uniform distribution on the logarithm

of the baseline mobility M. However, unlike 6 and T, there are no constraints to the

range of values that M can take. As a result, we know the PDF of M only up to a

proportionality constant.

p(log(M)) oc 1 (6.27)

p(M) cc 1/M (6.28)

We chose to use an improper distribution for M for two reasons:

" We do not have any information to make a-priori estimates of M. Therefore,

we would like to have a prior distribution which is as broad as possible.

" It is very inexpensive to explore a large range of values of M. Changing M

linearly rescales time. In this study, we have performed all simulations at M =

1A /eVs = 6.242e - 22m4 /Js. Velocities at other values of M were calculated

by rescaling time in the velocity calculation.

6.3 Posterior

To calculate the posterior, we ran simulations over a 5 x 7 x 7 grid in the ('YGa,Al, 6, T)

space. 'YGa,Al was sampled at 5 uniformly distributed points in the range [0.15 J/m2 , 0.2 J/m 2].
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Figure 6-5: Improper log-uniform distribution for the baseline mobility M. The
probability distribution is known only to a multiplicative constant. The probability
distribution assigns the same probability to each decade in M.

6 was sampled at 7 logarithmically distributed points in the range [13.3A, 29.9A].

Similarly, r was sampled at 7 logarithmically distributed points in the range [3.7e -

11 J/m, 2.7e - 10 J/m]. By sampling 6 and T with logarithmically distributed points,

we assign eqal prior probability to each simulation. At each (iGa,A, 6, T), permeation

of gallium was simulated through all 17 grain boundaries using the Cahn-Hilliard

code, and the permeation speeds were calculated. All computations were carried out

with a baseline mobility M = 1A'/eVs = 6.242e - 22m4/Js.

We found that the velocities predicted by the Cahn-Hilliard code varied from

0pum/s to 3.28e - 8pm/s. In comparison, Hugo and Hoagland observed permeation

velocities which varied from Oym/s to 12.7pm/s. This suggests that the value of the

baseline mobility M is larger than 6.242e - 22m/Js. Therefore, we calculated the

posterior on a four dimensional grid, consisting of the original 5 x 7 x 7 grid in the

(7Ga,Al, 6, -) space, plus an additional dimension for M. We used a dense, logarith-

mically distributed grid for M in the range [6.242 x 10-16 - 6.242 x 10-13] m4/Js.
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The posterior marginal of p(M |D) is calculated as

p(MID) JJJ P(Ga,Al , 6, T, M ID)dyGa,Ald6dT (6.29)

C( P(D|-Ga,Al 6, T, M)P(YG.,Al, 6, r, M)d7Ga,Ald6dr (6-30)

0C N P(D|17Ga,Al , E, T, M )P(M P (-Ga,A1 Od7Ga,A1 ]p(6)d6] p(T jdT. (6.31)

Because we have used logarithmically distributed grids for 6, r, and M, the prior

probability mass p(O)dO for each point in the four dimensional grid is the same.

Hence, the integral in 6.31 reduces to a summation. The posterior marginal is shown

in figure 6-6. We can see that the posterior PDF of M peaks at ~ 2.3 x 10 1 4m4 /Js.

To obtain the posterior marginal of (7Ga,Al, 6, T), we marginalized out M from the

four dimensional posterior calculation.

P(7Ga,Al, 6, TID) = P(7Ga,Al, 6, T,MD)dM (6.32)

Figures 6-7 - 6-11 show the three dimensional posterior marginal p(vGa,Al, 6, r ID).

Each figure shows the posterior marginal conditioned at a one of the five values of

'7Ga,Al sampled. We can see that there is a peak in the posterior distribution at

'YGa,Al = 0.175 J/m2, 6 = 22.8A, T = 1.4e - 10J/m. In figures 6-13, we have shown

the permeation of gallium through grain boundary 32 at these values of 'YGa,AL, 6, and

T. Figure 6-12 shows the corresponding wetting map 3(x).

We can see from these figures that the mechanism for the permeation of gallium

through aluminum grain boundaries is front propagation. The gallium front moves

through the aluminum grain boundary like a taut string, without leaving behind any

islands of unpermeated aluminum. The front is able to wet all the obstacles in the

wetting map #(x) because the obstacles are small and disconnected. The lowest value

of 3(x) = -0.32 J/m2 , as compared to the largest value, O(x) = 0.59 J/m2 . Hence, it

is energetically favorable for the gallium to wet the obstacles and the paths, instead

of just the paths.
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Grain boundary 32 wetting map

2YGa,Al = O.175 J/m2
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Figure 6-12: The grain boundary wetting map O(x) used in figure 5-5.

6.4 Posterior predictive

We can use the Cahn-Hilliard model, and the results of the inference from the pre-

vious section to predict permeation velocities for the 17 grain boundaries used in

the inference. For a given grain boundary, with an LDGBE map YA1,Al(x), we can

calculate the expected value of permeation speed as

E[VGaID] jVGa(0, -YA1,Al(x))p(01 dO. (6.33)

Here, 0 are the parameters (YGa,AI, 6, T, M), VGa( 9 , -yAl,Al(X)) is the permeation ve-

locity calculated by the Cahn-Hilliard code, and p(9ID) is the posterior distribution

calculated in the previous section. This integral is approximated as

E[VGaID] 0 ~ VGa(9*, -YAI,Al())p(DIO*). (6.34)
0*

Here, 0* is the set of all points on the four dimensional grid over which the posterior

is calculated. Because of the spacing of the grid points in this grid, each point has

the same prior probability p(9)dO*. This allows us to replace the term p(9ID)dO in

equation 6.33 with p(D9*) in equation 6.34.
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Permeation of gallium through grain boundary 32

t = 0 t = 0.131

t = 0.181 t = 0.269

t = 0.366 t = 0.428

Figure 6-13: Permeation of gallium through grain boundary 32. The wetting map for
this simulation is shown in figure 6-12. This simulation was performed at 'YGa,Al =
0.175 J/m 2, 6 = 22.8A,r = 1.4e - 10 J/m, which corresponds to the point in the
parameter space with maximum posterior density. The mechanism of permeation is
front propagation.
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We can also make uncertainty estimates for these predictions. There are two

sources of uncertainty in the predictions. The first is from the noise model discussed

in section 6.1. This noise model adds a log-normal noise to the estimated values,

with mean y = 0 and o.2 = 2.25. The second source of uncertainty arises from the

uncertainty in the parameters 0. We have used a log-normal uncertainty to model

this source as well, for all the justifications presented in section 6.1. To estimate the

variance o2, we first calculated the expected value of logarithm of the velocity

E[log(Va)|D] j log(VGa )p(0ID)do (6.35)

Z log(VGa) (0*, 7Y,A (x))P(D10*). (6.36)
0*

Next, we calculate the expected value of the square of the logarithm of the velocities

E[log(VGa) 2 D] logVGa2

S log(VGa) 2 (0*, YA1,Al ())p(PI1*). (6.38)
0*

From these two value, we can calculate the variance of the logarithm of velocity as

Var[log(VGa) 2  = E[log(Va) 2 D] - E[log(VGa) D] 2  (6.39)

Figure 6-14 shows these predicted values, and the uncertainty in these predictions

along with the velocity values observed by Hugo and Hoagland. We can make the

following observations from this figure

* The estimates, while not perfect, largely capture the trend in the velocities. Our

model predicts low permeation velocities for grain boundaries with low observed

permeation velocities.

* Our model under-predicts permeation velocities for grain boundaries which were

observed to be permeated at high speeds. This can be seen as a 'saturation' in

the estimated velocity values for large observed velocities.
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Figure 6-14: Comparison of the velocities predicted by our model and those observed
by Hugo and Hoagland. We can see that the predicted velocities capture the trend
in the observed velocities, but not perfectly. The uncertainty in the estimates from
uncertainty in parameters 0 can vary widely from grain boundaries to grain boundary.

* The magnitude of uncertainty in velocities from uncertainty in the parameters 0

can vary widely. Some grain boundaries have large uncertainty in estimates from

this source as compared to others. This suggests that some grain boundaries

are more sensitive to the parameter yGa,AI, 6, and T.
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Chapter 7

Discussion

The objective of this thesis was to develop a model for the gallium permeation of

aluminum grain boundaries. This model was required to be able to simulate both

front propagation, and diffusion and coalescence, the two potential mechanisms for

gallium permeation of aluminum. We aimed to infer parameters of this model with

existing experimental data collected by Hugo and Hoagland [30], and to infer the

mechanism of permeation through these parameters.

Gallium permeation of aluminum has been studied both experimentally and nu-

merically. In chapter 2, we reviewed the existing literature on gallium permeation of

aluminum grain boundaries. Previous studies have shown that gallium permeation of

aluminum is a complex phenomenon that is affected by factors such as grain boundary

crystallography, grain boundary stress, and temperature.

In chapter 3, we introduced phase field methods as a simulation technique for this

problem. We framed the gallium permeation of aluminum as a multi-phase physics

problem. We showed how phase field methods simplify the simulation of gallium

permeation of aluminum by using an order parameter field to represent the state of

permeation of a grain boundary. Through the example of spinodal decomposition,

we showed the effects of parameters of the phase field methods. We showed that we

can control the thickness J and tension T of the interfaces between different phases

by controlling parameters E and a.

In chapter 4, we used previously unpublished data provided to us by Dr. Richard
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Hugo to calculate grain boundary crystallography and permeation directions for the

grain boundaries reported in [30]. The unpublished data consisted of Kikuchi diffrac-

tion patterns and bright field images of the grain boundaries studied. Using this

data, we were able to calculate both crystallography, and permeation direction. We

were able to match calculated crystallography value with those reported in [30] for

17 grain boundaries. This crystallography and permeation direction information was

provided to our collaborator, Dr. Sanket S. Navale, who used atomistic simulations

to calculate corresponding location dependent grain boundary energy maps -YA1,Al(x).

We used Gaussian random fields to model and extrapolate the LDGBE maps beyond

the size limits imposed by the atomistic simulations. These LDGBE maps, along with

the gallium-aluminum planar interface energy 7Ga,Al were used to calculate wetting

maps 3(x)

In chapter 5, we used the Cahn-Hilliard equation with a modified potential func-

tion to simulate the gallium permeation of aluminum grain boundaries. We showed

that this model could simulate both front propagation, and diffusion and coalescence

permeation mechanisms through the change of parameters e and a. These parameters

had the effect of the changing the thickness 6 and tension r of the linear interfaces

between permeated and unpermeated regions of the grain boundary.

In chapter 6, we used Bayesian inference to infer the model parameters yGa,AI, 6, T,

and M. We encoded our prior belief in the parameters using prior distributions. We

constructed a likelihood to encode the discrepancy between velocity values predicted

by our model and those observed experimentally. The posterior distribution encodes

our belief in the parameters, conditioned on the observed data.

We found a peak in our posterior distribution at -YGa,Al = 0.175 J/m2, J = 22.8A,

r = 1.4e - 10 J/m. These values compare well with existing data in literature. Hugo

and Hoagland estimated the gallium-aluminum -YGa,Al to be greater than 0.26 J/m2

[30]. We have inferred a value of YGa,Al = 0.175 J/m 2 , which while being in the

same order of magnitude, is less than the lower bound estimate made by Hugo and

Hoagland. However, to estimate 7Ga,Al, Hugo and Hoagland simply considered the

grain boundary with the highest average energy which as not permeated, and set
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"YGa,Al to be half that average energy. This estimate therefore does not account for

the ability of isolated obstacles to pin the gallium front. We have developed a model

that can simulate this front being pinned by isolated obstacles, so it is understandable

that we inferred a lower 'YGa,Al value.

There are no existing estimates for front thickness J and front tension r for us

to compare our inferred values with. We can compare the inferred front tension

T = 1.4e - 10 J/m with the energy of dislocations in Aluminum. The strain energy

per unit length of a dislocation scales as [32]

G||b |2 "R
E = log -R (7.1)

47r r

|Ib|l = h2 + k 2 + 1 2  (7.2)2

Here, G is the shear modulus, b is the burger vector of the dislocation, a is the lattice

constant, R is the size of the crystal, and r is the diameter of the dislocation. Using

G = 27 Gpa for aluminum, a = 4.046A, and h, k, 1 ~ 0(1), R = 1mm, and r = 20A,

we get

E ~ 1.6e - 9 J/m (7.3)

Our inferred value of r = 1.4e - 10 J/m is smaller than the dislocation energy values

for aluminum. This can be expected, since the gallium is a liquid at the temperatures

at which these experiments are performed, and hence we would expect the gallium

front to have a lower strain energy than dislocations in solid aluminum.

The inferred value of r = 1.4e - 10 J/m strongly suggests that gallium permeates

through aluminum with a front propagation mechanism. In this mechanism, the

gallium front can be pinned by isolated obstacles in the aluminum grain boundary.

We used our model, and the inferred model parameters to predict permeation

velocities. We compared these velocities with those observed by Hugo and Hoagland.

Our predicted permeation velocities follow the same trend as the observed permeation

velocities. However, our predictions are not perfect. This can be explained by a

number of factors.

115



* We are not modeling all the parameters that affect gallium permeation of alu-

minum. Our model only takes into account the location dependent grain bound-

ary energy in determining the permeation velocities. It does model factors such

as grain boundary stress and grain boundary temperature in calculating the

permeation velocities. These factors have been shown to affect the permeation

velocities in our literature review in chapter 2. Our velocity predictions 'satu-

rate', that is, we are under-predicting permeation velocities for grain boundaries

which were permeated rapidly. It is possible that these grain boundaries were

under tensile stress during experiments.

* In our model, we implicitly assume that gallium-aluminum interfaces are homo-

geneous, and that all gallium-aluminum interfaces have the same energy 7Ga,Al.

This assumption makes our inference problem tractable. Assigning different

values of -Ga,Al to different grain boundaries, or 7Ga,Al values that vary with

spatial location would have made this a very high dimensional inference prob-

lem. However, it is possible that a -IGa,Al that varies between grain boundaries

can account for the discrepancy between predicted and observed permeation

speeds.
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