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Abstract

Researchers have recently proposed several systems that ease the process of developing
Bayesian probabilistic inference algorithms. These include systems for automatic
inference algorithm synthesis as well as stronger abstractions for manual algorithm
development. However, existing systems whose performance relies on the developer
manually constructing a part of the inference algorithm have limited support for
reasoning about the correctness of the resulting algorithm.

In this thesis, I present Shuffle, a programming language for developing manual
inference algorithms that enforces 1) the basic rules of probability theory and 2)
statistical dependencies of the algorithm's corresponding probabilistic model. We
have used Shuffle to develop inference algorithms for several standard probabilistic
models. Our results demonstrate that Shuffle enables a developer to deliver performant
implementations of these algorithms with the added benefit of Shuffle's correctness
guarantees.

Thesis Supervisor: Michael Carbin
Title: Assistant Professor of Electrical Engineering and Computer Science
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1 Introduction

Bayesian probabilistic inference is a process in which a developer specifies a generative

probabilistic model and computes a posterior distribution for a set of variables in

that model. Probabilistic models provide a flexible and well-studied formalism for

uncertainty.

Researchers have recently proposed several systems that ease the process of devel-

oping inference procedures, or programs that implement posterior distributions. While

inference procedures can be explicitly coded in general-purpose languages, automated

systems [22, 10, 9, 7] provide stronger guarantees that the inference procedure correctly

computes the posterior distribution for a given model. These systems take probabilistic

models as input, and automatically produce inference procedures. The system, rather

than the developer, ensures that the procedure is correct.

However, these systems can only generate a limited set of inference procedures.

As a result, several recent systems [16, 21] allow developers to combine automatically-

generated inference procedures with explicitly-coded components. In cases where a

developer can write some or all of the inference code, existing systems have limited

capability to help developers ensure that their inference procedures are correct. Poten-

tial sources of errors include both 1) standard programming errors and 2) high-level

inference errors in which the resulting inference code does not adhere to the rules of

probability theory.

In this thesis I present Shuffle, a programming language that provides developers

with tools to reason about whether their programs 1) respect the statistical depen-

dencies of their probabilistic model and 2) adhere to the basic rules of probability

theory. Shuffle enables developers to explicitly specify their probabilistic model, which

then serves as a specification from which Shuffle defines the semantics of terms in a

program. Given the semantics of a program's terms, Shuffle can then ascribe a type

for each term and verify that overall program is typesafe.
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1.1 Contributions

Language: Shuffle provides a set of operators that enable a developer to compose

terms to produce an inference procedure. Terms of Shuffle's inference language include:

" Densities. Densities are functions which, given an assignment of random

variables to values, return a real number representing the probability of that

assignment - or, in the case of continuous random variables, the probability of

an infinitesimal region around the assignment divided by the size of the region.

" Samplers. Samplers represent distributions by randomly choosing a new as-

signment of random variables to values. The chance that the sampler returns a

particular value is the probability of that assignment.

" Kernels. Kernels represent distributions by being samplers that are invariant

with respect to a distribution. This means that if the values of random variables

are drawn from the desired distribution, then feeding this assignment into the

kernel also results in an assignment that is drawn from the desired distribution.

" Estimators. Estimators represent distributions by producing a sample and a

weight. By repeatedly calling the estimator, a developer can use the resulting

list of weighted samples to estimate the expected value of any function under

the distribution.

I present a semantics for each of these operators in Section 4. Inference procedures sup-

ported by Shuffle include variable elimination [23], Gibbs sampling [81, and likelihood

weighting [6].

Type System: Shuffle's type system describes, for a given probabilistic model,

which distribution an inference procedure represents in that model. For example, if d,

is a density for the distribution Pr(AIB, C), where A,B, and C are sets of random

variables, and d2 is a density for the distribution Pr(BIC), then Shuffle's type system

determines that the density d, * d2 is a density for the distribution Pr(A, BIC). I
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present Shuffle's type system and prove it correct with respect to Shuffle's semantics

in Section 5.

Shuffle Environment: Shuffle takes as input a probabilistic model and an inference

procedure written in Shuffle's language. It generates an executable inference procedure,

as well as a set of statistical assumptions. The executable procedure is a Python

program. The statistical assumptions are extra preconditions that Shuffle cannot

verify internally. For example, the correctness of some inference algorithms relies on

statistical independence relations between random variables in the model. These must

be manually audited by the developer.

Summary. Altogether, Shuffle enables a developer to build a rich set of inference

procedures. Furthermore, Shuffle's type system ensures that the procedures are correct

with respect to a given probabilistic model, meaning they represent distributions in

the model the developer wishes to compute.

2 Example: Gaussian mixture model

To use Shuffle to create an inference program, a developer first specifies a probabilistic

model. Figure 1 presents a specification of a Gaussian Mixture Model (GMM), a

model for representing clustering relationships. In general, an n-component GMM

models a set of real-valued datapoints as a set of noisy observations, each coming

from one of n real-valued quantities termed mixture components. Each observation is

Gaussian distributed with the value of one of the n mixture components as its mean.

For simplicity of presentation, we fix the variance of each mixture component. In

addition, the value of each mixture component has a Gaussian prior with mean 0.

Specifying Random Variables. The GMM specified here has observations con-

tained in obs and mixture components in mu. We model collections of random variables

as functions from a domain to a target set For example, obs represents all of the

datapoints in the GMM, but obs [0] represents a single real-valued random variable
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1 model GMM

2 {

3 variable R[Samples] obs;
4 variable R[Mus] mu;

5 variable Mus[Samples] z;
6

7 def muPrior(j in Mus) : density(mu[j]) =

8 normal(mu[j],0,100);
9

10 def zPrior(i in Samples):

11 density(z[i]) =
12 uniform(Mus,z[i]);

13

14 def obsDensity(i in Samples, j in Mus)

15 density(obs[i] I
16 mu[j], z[i],

17 z[i] == j)
18 = normal(obs [i] ,mu[j] ,1)
19 }

Figure 1: A Gaussian mixture model with in Shuffle.

corresponding to a single element of the domain Samples. A domain is a named subset

of the natural numbers, and a target set is either a domain or the real numbers, with

the latter referred to by R.

A GMM models the uncertainty in the attribution of each observation to a mixture

component with an explicit set of random variables z (one for each observation).

If z [i] = 0, then obs [i] has been attributed to mixture component mu [0] - and

therefore its Gaussian has mu [0] as its mean. Alternatively, if z [i] = 1, then obs [i]

is an observation of mu [1] with mu [1] as its mean.

Specifying Distributions. Figure 1 also specifies the probability densities for the

random variables in the model via the def statement. A def statement specifies the

type and implementation of a named term in the environment. For example, the

definition of muPrior on Line 7 states that muPrior is a function - with a quantified

variable j that ranges over all values of Mus (denoted by j in Mus) - with the type

density (mu [j]). A type specification density (A I B, #) denotes that the term is a

conditional probability density for the set of random variables A given, optionally, the
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set of conditioned random variables B under the optional constraint #. This is inspired

by the notation Pr(AjB) used in conventional descriptions of conditional probability.

In the case of muPrior, this means that for all values of j, muPrior computes the

density of the random variable mu [jI. The implementation of muPrior computes the

density of each mixture component as with the model that each mixture component

is normally distributed with mean zero and variance 100. The function normal is a

Shuffle provided primitive for computing the density.

The definition of zPrior on Line 10 gives, as implied by its type the density

density (z [ii), a density for each mixture assignment, z [i], as uniformly distributed

over the domain Mus (i.e., z [i] takes on any value in the domain of Mus with equal

probability).

The definition of obsDensity on Line 14 gives the density of each observation,

obs [i]. Unlike muPrior and zPrior, obsDensity has a non-empty set of condition

variables as well as a constraint. Namely, the density of each obs [i], is conditioned

on the random variable z [i] (the observation's mixture component assignment) and

the random variable mu [j I when z [i] == j (the mean for the observation's assigned

mixture component). Constraints therefore enable a density function to express

parameterized conditioning (as a function of each quantified variable) as well as

dynamic conditioning (as a function of the observed value of other random variables

in the model). Shuffle's constraint language supports equalities and inequalities over

quantified parameters and observed random variables.

Inference. Shuffle enables a developer to soundly construct an inference program.

An inference program computes a conditional distribution from the model. For our

example GMM, the two distributions we are interested in are 1) the distribution of the

mixture component assignments given the observations (the basic clustering problem

of mapping to observations to clusters) - generally denoted by Pr(z I obs) and 2) the

distribution of the mixture component means - generally denoted by Pr(mu I obs).

Shuffle enables a developer to compute these distributions through both exact and

approximate inference techniques. Whereas exact inference computes densities for
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these distributions, approximate inference computes other representations of these

distributions using Shuffle's sampler, kernel, and estimator types.

2.1 Exact Inference

One way Shuffle enables a developer to compute Pr(z I obs) is by providing the

developer with a set of density operators that enable him or her to construct a function

of type density(z I obs) that exactly computes this function. Figure 2 presents a

Shuffle inference procedure that implements a density with the appropriate type. In

this procedure, the developer constructs, as an intermediates step, a function with

type density(z, obs) that computes the joint density of z and obs. It then divides

that density by a function with type density(obs) that computes the density of obs.

This implementation approach follows straightforwardly from Bayes' Rule in that for

all random variables A and B, P(A, B) = P(AIB) - P(B) (Bayes' Rule) implies that

P(AIB) = P(A, B) / P(B) (provided that P(B) > 0). I have deliberately unfolded

most of this computation to make the types of the intermediate density objects clear.

Independence. In the definition of zPriorI on Line 1, the developer leverages the

statistical independence relationships of the model to coerce the density within the

model to different types.

Density Multiplication. Shuffle also enables a developer to multiply densities.

An example of this in Figure 2 is on Line 7. In the recursive definition of zPriorH

on Line 5, the developer multiplies zPriorI with the previous iteration of zPriorH.

Density multiplication corresponds to Bayes' rule: P(A, B) = P(AIB) -P(B). The left

and right operands of the multiplication correspond to the first and second probabilitiy

distributions, respectively, on the right side of the equality. Shuffle's types closely

correspond with this notation, as, for example, zPriorH(i-1) and ziPriorI(i) have

types density(z{iO in Samples: iO <= i - 1}) and density(z[i] I z{iO in

Samples: AO < i}), respectively. Shuffle' type checker computes that the former

type is equivalent to density(z{iA in Samples: O < i}). Shuffle then computes
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def independent ziPriorI(i in Samples)

density(z[i] I z{iO in Samples: iA

zPrior(i);

def rec zPriorH(i

density(z{iO

ziPriorI(i) *

in Samples) :
in datAPoints: iO

zPriorH(i - 1);

def zPriorAll() : density(z) =

zPriorH(max(Samples));

def independent obsDensI (
density(obs[i] I mu[j]
obsDens(i,j);

def independent obsDensI2

density(

obs[i] I
obs{iO in Samples:
z, z[i] ==j

in Samples, j
z, z[i] == j)

(i in Samples, j in Mus) :

iO < i && z[iO] == j},

obsDensI(i,j);

def independent muDensIj in Mus) : density(mu[j]
= muPrior(j);

def rec obsProdH(i in Samples, j in Mus)
density(obs{iO in Samples: iO <= i && z[iO]

I mu[j], z) =

if (z[i] == j) {
obsDensI2(i,j) * obsProdH(i-1,j)

} else {
obsProdH(i-i,j)

def obsProd(j in Mus) :
density(mu[j], obs{iO in

obsProdH(max(Samples),j)

def obsProdMarg(j

density(obs{iO

int obsProd(j)

in Mus) :
in Samples
by mu[jI;

Samples: z[iO]

* muDensIj);

z[iO] == j}

== j} I z)

I z) =

12
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in Mus)

mu[j],

I z)
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def muPost (j in Mus) :
density(mu[j] I obs{iO in Samples: z[iO] == j}, z)
= obsProd(j) / obsProdMarg(j);

def independent obsLike(j in Mus)

density(obs{iO in Samples: z[iO] == j} I
obs{iO in Samples: z[iQ] < j},
z

obsProd(j) / muPost(j);

def rec obsLikeAllH(j in Mus)

density(obs{iO in Samples: z[iO] <= j} I z) =

obsLike(j) * obsLikeAllH(j - 1);

def obsLikelihood() : density(obs I z) =

obsLikeAllH(max(Mus));

def obszJoint() : density(obs,z) =

obsLikelihood * zPriorAll();

def obsMarg() : density(obs) =

int obszJoint() by z;

def export zPost() : density(z I obs) =

obszJoint / obsMarg() by z

Figure 2: Inference program for computing density (z I obs) for a GMM.
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the type of the product to be density(z[i], z{iO in Samples: A. < i}), and

checks that this is the same as the type annotation for zPriorH, density(z{iO in

Samples: iO <= i}).

Recursion. The definition of zPriorH on Line 5 illustrates Shuffle's handling of

recursive procedures. This definition takes the product of zPrior(i) over all values

of the variable i. The effect on the type is an inductive proof. Specifically, assuming

that invocations of zPriorH have the annotated type within the body of zPriorH,

Shuffle verifies that the body also has this type. Shuffle specifies default base cases

for all of its objects. In this case, Shuffle defines that zPriorH(i-1), where i is the

smallest value in the domain Samples, yields the value 1. This is because zPriorH's

type, density(ziO in Samples: AO <= i), is an empty set of variables when i falls

below the minimum value in Samples. The constant function returning 1 is always a

correct density for an empty set of random variables.

Integration. Shuffle also enables a developer to marginalize out variables in a density

via integration. Figure 2 contains to examples of integration on Lines 42 and 65.

In the definition for obsProdMarg on Line 43, the developer integrates obsProd(j)

with mu [jI. This has the effect of eliminating mu [j] from the type of obsProd(j).

Likewise, in the definition for obsMarg on Line 64. In this definition, the developer

integrates obszJoint () with z. This has the effect of eliminating z from the type of

obszJoint. This corresponds to the marginalization operation in probability, wherein

P(B) = f P(A, B). Shuffle eliminates through simplification integrals with known

analytic solutions. Otherwise, for integrals over finite sets, Shuffle computes integrals

using summation. In Figure 2, Shuffle eliminates the integral on Line 42 and treats

the one on Line 65 as a summation. This behavior is due to the fact that mu[j] is

continuous set, but z is finite.

Density Division. Shuffle also enables the developer to divide densities as demon-

strated in the definition for muPost on Line 43. This follows the reverse form of Bayes'

rule, wherein P(AjB) = P(A, B)/P(B). In this definition the developer constructs
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muPost using the operator /, which divides the values returned by the two input densi-

ties obsProd(j) and obsProdMarg(j). This has the opposite effect of multiplication,

shifting a variable - in this case obs{iO in Samples: z[iO] == j} - from being

part of the joint density to being conditioned on.

Summary. Shuffle enables developers to use arithmetic operations to compose prob-

ability densities with well-typed operations that correspond to the rules of probability.

2.2 Approximate Inference

In the exact inference algorithm for GMM, although Shuffle is able to generate an

efficient implementation of the integration in obsMarg (Line 64), the integration over

the discrete variable z in obszJoint has no simple solution and is tantamount to

summing over all possible values of the variable group z. The variable group z is of

the same size as the number of datapoints to the model and each variable may take

on a value from Mus. The complexity of this summation is therefore IMusIsamPlesI.

In general, for large models, this summation is intractable. An alternative to exact

inference is approximate inference. An approximate inference algorithm estimates the

posterior distribution instead of computing it exactly. This may be more efficient for

some models.

Figure 3 presents an alternative approximate inference implementation in Shuffle

for GMM that avoids executing the full summation. The result of this algorithm is an

estimator for the distribution P(z I obs), zEst (Line 112). An estimator produces a

list of weighted samples that can be used to approximately answer questions about

the distribution the estimator represents. As the number of samples increases, the

approximation becomes more accurate.

Figure 4 presents an example of how one would use an external program written

in Python to use an estimator generated by Shuffle to estimate the probability that

datapoint 0 and datapoint 1 are in different clusters. Specifically, repeatedly calling

zEst produces a stream of weighted samples from the distribution of P(z I obs) and

thus muApprox computes the expectation of the indicator function for z [0] ! = z [1].

15



def independent obsDensl (i
density(obs[i] I mu[j],
obsDens(i,j);

def obsDens2 (i in Samples,

density(obs[i] I mu[j],
obsDensl(i,j);

def independent obsDens3 (i
k in Samples) :

in Samples, j in Mus)

z, z[i] == j) =

j in Mus, k
z, z[i] ==

in Samples)
j && i != k)

in Samples, j in Mus,

density (
obs [i] I
obs{iO in Samples:

iO < i && (z[iO] == j && iO != k)

}, mu[j], z ;
z[i] ==j && i != k

obsDens2(i,j,k);

def independent muDensl(j in Mus)
= muPrior(j);

: density(mu[j] I z)

def rec obsProdHelper(i in Samples, j in Mus,
k in Samples) :
density(obs{iO in Samples:

iO <= i && z[iO] == j && O != k

} I mulji, z) =
if (z[i] == j && i != k) {

obsDens3(i,j,k) * obsProdHelper(i-1,j,k)

} else {
obsProdHelper(i-1,j,k)

def obsProd(j in Mus, k in Samples) :
density(mu[j], obs{iO in Samples:

z[iO] == j && iO != k

} I z) =
obsProdHelper(max(Samples),j,k) *

def muPost (j in Mus, k in Samples)

density(mu[j] I obs{iO in Samples:

z[iO] == j && iO != k

z, z[k] == j) =

obsProd(j,k) / int obsProd(j,k) by

muDensi(j);

mu[j];
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def independent obsPred

density (
obs[k] I obs{iO

iO != k
}, z, z[k] == j

def independent obsDensNei

density (
obs[k] I
obs{iO in Samples

z[iO] == j &&
}, mu[j], z, z[k]

) = obsDens(k,j);

def muJoint (k in Samples

density (
mu[j], obs[k] I
obs{iO in Samples

z[iO] == j &&
}, z, z[k] == j

) = obsDensNew(j,k) *

(k in Samples,

in Samples:

j in Mus) :

int muJoint(k,j) by mu[j];

def obsPredl(k in Samples)

density (
obs[k] z[k],
z{iO in Samples : iO != k},
obs{iO in Samples: iO != k}

obsPred(k, z[k]);

def independent zDensNew(i

density(z[i] I
z{iO in Samples: iO

obs{iO in Samples:

zPrior(i);

in Samples) :

io

def zJoint(k in Samples)

density (

z[k], obs[k] I
z{iO in Samples: iO !=

obs{iO in Samples: iO
) = obsPredl(k) * zDensNew

!= i})

k},
!= k}

(k);
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def ziPost(k in Sa

density(z[k] I
zJoint(k) / in

def ziSample(k in

sampler(z[k] I
z[k] := sample

def ziKernel(k in

kernel(z[k] I
lift ziSample(

mples) :
z{i0 in Samples:

t zJoint(k) by z[k

Samples) :
z{iO in Samples:

ziPost(k);

Samples) :
z{iO in Samples: i

k);

AO != k}, obs) =

1;

AO != k}, obs) =

89
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113

obs) =

def rec zKernelHelper(k in Samples) :
kernel(z{iO in Samples: AO <= k} I

z{iO in Samples: k < iO}, obs) =

zKernelHelper(k-1); ziKernel(k);

def zKernel() : kernel(z I obs) =

zKernelHelper(max(Samples));

def zSample() : sampler(z I obs) =

fix zKernel();

def export zEst() : estimator(z I obs) =

lifte zSample()

Figure 3: Approximate Inference for GMM

Figure 4: Python code for using the extracted code for zEst to estimate the probability
that observation 0 and 1 are in different clusters. Note that zeros (n) returns a list
of n zeros and zEst destructively updates the z variable
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def muApprox(obs, count)

sum = 0
total = 0

z = zeros(len(obs))

for i in range(num):

w = zEst(obs,z)

sum += (w if z[0] != z[1] else 0)

total += w
return sum / total



Shuffle enables developers to implement approximate inference algorithms, which

are often higher-performance than their exact counterparts, by exposing abstractions

for samplers, kernels, and estimators as primitives in the languages. In addition to

the density operators presented in the previous section, the inference procedure in

Figure 3 makes use of operators over these extra primitives.

Samplers. A sampler with type denoted by sampler(A I B) is a function that

assigns new values to the random variable A according to the distribution Pr(A B).

In Figure 3, the definition ziSample implements a sampler that produces a value for

z [i] given values for all differing z [k] and all of the observations. The developer

implements this by directly sampling from the density ziPost, which computes the

density for that distribution.

Kernels. A kernel with type denoted by kernel (A I B) is a sampler that is invariant

with respect to the distribution Pr(AIB). Thus, given a true sampler s for the

distribution Pr(AIB), composing s with a kernel of type kernel(A I B) is still a

sampler for Pr(AIB). Shuffle enables a developer to directly create a kernel from a

sampler using the lift statement as in the definition of ziKernel (Line 97).

A developer can combine kernels together using the ";" operator, which executes

each of its arguments in succession. For example, the definition of zKernel combines

the recursively defined zKernelHelper with ziKernel. By combining kernels for each

z[i] given the remainder of the z variables and all of the obs variables, zKernel

constructs a kernel z given obs - denoted by the type kernel(z I obs). Finally,

a developer can create a sampler from a kernel. In the definition of zSample the

developer uses the f ix operator to convert a kernel into a sampler for a distribution.

The key observation here is that the f ix operator computes the fixpoint (via iterative

self-application) of the kernel which, in the limit, is semantically equivalent to a

sampler.

Estimators. An estimator with type denoted by the notation estimator(A I B) is

a function that given a value of the random variable B produces a random sample of

19



A and a weight for that sample. In the definition of zEst, the developer directly lifts

a sampler to be an estimator with the resulting estimator producing samples directly

from the sampler with a weight of 1. Shuffle enables a developer to adjust the weight

of the sample to implement other approximate inference algorithms such as likelihood

weighting [6].

Summary. Together, Shuffle's abstractions for densities, samplers, kernels, and

estimators enable developers to compose inference procedures with strongly-typed

abstractions that 1) prevent developers from making common inference mistakes and

2) provide an audit trail for common modeling assumptions, such as independence. In

the remaining sections, I present the full Shuffle language along with its semantics,

type system, soundness proofs, and an evaluation of the performance of Shuffle on

several inference procedures, including Gibbs sampling and likelihood weighting.

3 The Language

Figures 5 and 6 present Shuffle's syntax for the declarative specification of the model

and the code that implements an inference procedure, respectively.

3.1 Model

A probabilistic model, M, defines the model's domain of values, the model's set of

random variables, and the probability densities that relate them. A domain declaration,

DDecl, specifies a domain 6 E A of values. A variable declaration, VDecl, specifies a

random variable v E V. A random variable is array-valued and a domain 6 specifies

the index space of the array.

Model Densities. A model probability density, Din, defines a probability distribution

through density operators. A model probability density is either a real number r, a

natural number n, a quantified variable q, a model random variable indexed by a

model density v [Din], an atomic density called with model-density arguments x(D* ),

a multiplication of two densities, Dm * Dm, a division of a density by another density,
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n E N, r E R, xEX, vE V, q E Q, 6E A

DDeclt VDecl+ DDef-

variable (6 | R) [6] v

def x ((q in 6)*): T = D,

+ |- |* /
== I ! = I <= |<

T - Tb(V,+ 9 +(, 0?

Tb -+ density I sampler I kernel

r | n q | v[Dm] x(D*)
if (p) { Dm } else { Dm }

I estimator

Dm, em Dm

V, | v |v{q : 0}

vn] | v[q]

A -< A|-,0 | 1 0 && $ q I1

n |q | q -n I V, | max(6)

m
|min (6)

Figure 5: The Syntax of Shuffle Models and Types
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P -+ def K1 x ((q in 6)*): T = (D | S K | E) ; P

I def export x ((q in 6)*): T = (D S I K I E)

Kd -+ (independent I rec)?

D -+ x(A*) D*D DI / D

int D by V if # then D else D

S--+ x (A*) I V, :=sample D

I S ; S if # then S else S I fix K

K -4 x(A*) lift S if #then K else K | K ; K

E-+ x(A*) elift S factor E by D

if # then E else E

Figure 6: The Syntax of Shuffle Inference Procedures

Dm / Di, an addition of two densities, Dm + Din, a subtraction of a density from

another density Dm - Din, or a conditional switch between densities.

Model Density Declarations. A model probability density declaration, DDef, de-

fines a mapping between a variable x E X and a model probability density. The

definition specifies a set of quantified variables q E Q that are bound within D,. The

definition also specifies a type, T, for the definition.

Types. The language of types T ,+ y +(, #V)) denotes that a object is either

a density, sampler, kernel, or estimator that computes the probability of a set of

random variables conditioned on another set of random variables, while subject to a

constraint on the conditioned random variables. The random variables within either

set may be either a singular random variable v, a single random variable from an

array of random variables, v[n] or v[q], or a constrained subset of the random variables

within an array, v{q: }.

A constraint, q, that appears in either a type or a random variable subset notation

is a boolean predicate (with conjunction, disjunction, and negation) of inequalities over

1) integers, 2) quantified variables from domains that are isomorphic to the integers,

22



and 3) a single random variable with a value from a domain that is isomorphic to the

integers.

3.2 Inference Procedure

Densities. An inference probability density, D, defines a probability distribution

through density operators. The operators for an inference density are different from

those of a model density. An inference procedure may integrate a density using

the syntax int D by V and invoke a density with name x with the syntax x(A*),

operations which are not available to model densities. However, an inference procedure

may not add or subtract densities, and may only use constants, quantified variables,

or random variables as arguments to invocations. These differences facilitate type

checking of inference procedures, whereas model densities are flexible enough to

support a range of probabilistic models.

Samplers. A sampler, S, defines a probability distribution through sampler opera-

tors. Sampler operators include invoking a defined sampler, updating a value with a

sample from a density, concatenating two such samplers together, and computing the

fixed point of a kernel.

Kernels. A kernel, K, defines a probability distribution in terms of kernel operators.

Kernel operators include lifting a sampler and composing two kernels together.

Estimators. An estimator, E, defines a probability distribution as a weighted

sampler. A Shuffle user can construct an estimator out of a sampler and use a density

to reweight the samples.

4 Semantics

I denote the semantics of a Shuffle term p, where p may be a density, sampler, estimator,

constraint, or variable access by [p]. The type of pj is a function of the type of the

term p. The following sections describe the behavior of [p for each kind of term p.
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4.1 Preliminaries

Errors. A Shuffle inference procedure may produce one of two error values instead

of a conventional value: 1) a procedure produces the error value -L if and only if it

requires access to an element of the environment that is not within the environments

domain and 2) a procedure produces the error value lo if and only if it contains a

division by 0. In the semantics below I use I = {L, 1o} to refer to the domain of

errors, and elide explicit failure propagation rules. However, in general, if an operator

requires the results of multiple operands and more than one operand yields an error

value, then the operation returns the join over all all operands as given by the lattice

of elements {v, , }10} with the reflexive total order v < 'L, v < 10, -L < 10 where

v denotes a standard value.

Environments. An environment, o E E = (V x N) + Q + X -+ (R+ + N) is a

finite map from random variables, quantified variables, and bound distributions. The

notation u(p) denotes the value to which p is mapped by o, which can either be 1) a

random variable access (v, n) where n is a natural number 2) a quantified variable

access q or 3) a named distribution access x.

I use the notation o-[pi '-+ P2] to mean o- with pi, which could be any of the

above, remapped to P2. I use the notation 7rq, 7 rrv, and 7rx to denote projections that

return environments with bindings only for quantified variables, random variables,

and bound distributions, respectively. I use the notation J- + o2 to refer to the

environment that contains the combined bindings from o1 and O 2 . If a value is bound

in both o-, and -2, it is bound to -L in -1 + -2. I also use o- to refer to an element of

Erv = (V x N) - (R+ + N), the subset of E that only maps random variables.

Variables. Our formalization relies on several disjoint variable spaces. A quantified

variable q E Q is drawn from the space Q; a named distribution x E X drawn from X,

the space of distribution names; a random variable v E V is drawn from V, the space

of variable names; and a domain 6 E A is drawn from A, the space of domain names.

Our semantics for Shuffle leverages three types of variables:
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1. Quantified Variables. The denotation of a quantified variable q is the value

the environment maps q to. If q is not in the environment, then the denotation

is an error.

2. Random Variables. The denotation of a random variable v [p], where p is

either a quantified variable q or a literal n, is the value that the environment

maps v [p] to. Shuffle's semantics assume that the environment always maps

every random variable to a value.

3. Distribution Variables. A named distribution variable x may be invoked with

a sequence of arguments ao, . . . , an. If x exists in the environment, then the

denotation of the invocation x(ao, ... ,an) is the denotation of the procedure x

refers to, with the parameters qO,... , q, rebound to the invocation arguments.

4. Domains. The denotation of a domain 6 E A is a range of natural numbers:

[6] = [ni, n2] C N.

Variable Sets. A variable set is a comma delimited list of random variables (V+

in Figure 5) that I denote by the symbols A, B, and C. I specify the semantics of

a variable set by the semantic function [A : E -+ 'P(V) where V = V x N. The

denotation of a variable set is therefore a set of pairs that each consist of a random

variable and the corresponding index within that variable. For each syntactic form, I

give variable sets the following denotation:

" Set Comprehensions. For variable sets of the form A = v{qo in 61: #}, let

[A (o-) = {(v, n) I[#](o-[qo - n])}.

" Indexed Variables. The single variable v [p], in the context of a variable

set is syntactic sugar for the set v{qo in 6: qO == p}, with the corresponding

denotation given by that for set comprehensions.

" Whole Variables. The variable set v is syntactic sugar for the set

v{qo in 6: true}, with the corresponding denotation given by that for set

comprehensions.
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[def x (qo in J0 , . .. ) : t = p, ; PAWo~ = DAW2 (o~-+ ((qo, - - ), or, pl)))

[def independent x (qo in 6o, ... ) : t = p, ; P2 =

[def x (qo in o, .. .) : t = p 1 ; p21

ef rec x (qo in o, . . .) : t = p ; p 2 ] = p 2  (U-[x + ((qo,.. ),a, p, rec))

[def export x (qo in o, ... ): t = p (-) = [p](-)

Figure 7: Semantics of Shuffle's structural constructs

Variable Set List. The comma operator A, B unions two disjoint variable sets.

Namely, the denotation of this operator is the function

[A, BI(-) = [A (a-) U [B f(o-) [A](-) f [B](-) = 0

.L, else

Source of Randomness. A source of randomness, denoted by "sr" is an infinite

sequence of uniform distributed values on the interval [0, 1] C R+. Let the notation

fsr f(sr) denote an integral over a set of finite prefixes of "sr". For a given source

of randomness "sr", I use the notation sr0 , sr1 = split(sr) to mean "sr" split into two

identical sources of randomness sr0 and sr' such that the integrals fsro f(sr0 ) and

fsrl f(sr') are equal for any positive measurable function f.

4.2 Structural Constructs

Figure 7 presents the semantics of Shuffle's definition and invocation operators.

Definitions. The denotation of an inference procedure definition

def x (qo in J0, ... ): t = pi ; P2 is the denotation of P2 with x bound to the pro-

cedure P1 with the parameters (qo,... ). The denotation erases the type t and the

domains (6o.... ).
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Recursive Definitions. The denotation of a recursive definition

def rec x (qo in 6, ... ): t = p, ; P2 is the same as that of an ordinary definition,

except that the program pi is tagged as a recursive procedure.

4.3 Densities

Figure 8 presents the denotation of a density. The denotation of a density d, denoted

by [d E E -+ (R+ + I), is a function from an environment to a positive real number

or an error value.

Multiplication and Division. The * operator takes two densities and multiplies

them together pointwise. The / operator divides the first density by the second

pointwise.

Conditionals. The syntax if # then dt else df returns the value of the density dt

if the constraint # is true, and that of df if the constraint is false.

Integration. The syntax int d by V, computes the integral of a probability density,

d. It computes the integral of its density parameter over all possible values of the

random variables, V.

Invocation. The syntax x () invokes a density named x that exists in the environ-

ment. The call evaluates the density in an environment where the quantified variables

are rebound to their parameters h. For recursive procedures, if the first argument falls

outside the domain, the denotation of call is the default value 1. Shuffle's type system

enforces that the set of random variables in this case is empty (see Section 5.5), and

the constant function returning 1 is always a valid density for an empty variable set.

4.4 Samplers

Figure 9 presents the denotation of a sampler. The denotation of a sampler s, denoted

by the semantic function s E (E x SR) -+ (E + 1), is a function that takes an

environment and a source of randomness, and produces a new environment or an error
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di * d2 ](~) = di] (o) * d2  (9)

jif # then d, else d2](Or) = {d21u)
jd2](a) else

x (aO,. .. )J(-) = let (qo,.. .), , p = u(x)

~d1 / d2~(o') - ~dj.]j(a) ~d2~(u) $ 0

d2]d- I (o
di / d2 (1() =dj():

_LO else

int d by Vj () =

in Pj(r(O-p)[ -[ao](o-)] ... [qn -+ a A (U)] + Wrrv (U) + ITx(U))
1in

x E
else

[x (ao .... ) (a) = let (qo, ... ),up, p, rec = u(x) in

1 [ao (-) < min([6o )

[p](w7q(-p)[qO '-+ (ao (o-)] ... [q. -+ an]](O) + i7rv(U-) + 7rx(op)) [ao](o) > min([6oo) A x E a-

_La else

00

Figure 8: Denotational semantics of densities



value. The new environment will have one or more random variables assigned to new

values randomly chosen according to the sampler's distribution and the value of the

source of randomness.

Sampling. The syntax v [p] = sample d constructs a sampler from the density d.

The sampler updates o- so that the mapped value of (v, [p (-)) is overwritten with

the newly sampled value. I specify the denotation of the sample command via inverse

transform sampling.

Composition. A developer can compose two samplers si and S2 with the syntax

si ; s2 . This feeds the output state of si into s2.

Conditionals. The syntax if # then st else sf returns the value of the sampler st

if the constraint / is true, and that ofsf if the constraint is false.

Invocation. The syntax x () invokes a sampler named x that exists in the environ-

ment. The invocation evaluates the sampler in an environment where the quantified

variables are rebound to their parameters h. For recursive procedures, if the first

argument falls outside the domain, the denotation of call is the default value a. Shuf-

fle's type system enforces that the set of random variables in this case is empty (see

Section 5.5), and the identity function returning a- is always a valid sampler for an

empty variable set.

4.5 Kernels

Figure 10 presents the denotation of a kernel. The denotation of a kernel k, written

[k] c (E x SR) -* (E + I), is a function that takes an environment and a source of

randomness, and produces a new environment or an error value.

Lift. A developer can lift a sampler to a kernel. The resulting kernel has exactly the

same behavior as the original sampler, and is used to represent the same distribution.
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v [p] sample d](-, sr) = -[(v, p(o)) - arg min ( j [d](-[(,p(o) ([ x])) > sr]

S2 (O-, sr) = [s2 ]( Sli(U, sr1 ), sr0) [if q then si else s 2](o) = 2](o) else

.[p (7 (U-)[qo [ao(o-)] ... [qn -+[ a(o-)] + 7rrv(O-) + JT(Up)) x E U
x (ao,.. . )](a) = let (qo, ... ), up, p = o-(x) in j_, else

[x (ao,... )](-) = let (qo, ... ), u, p, rec = u(x) in

a K (o-) <mi(o)

P (7q(Op)qo - [ao](o-)] ... [qn - [anj(o-)] + lFrv (O) + rx (O-p)) [ao](o-) > min(6o]) A x E U

else

Figure 9: Denotational semantics of samplers.



lift s =

Vf.ff([f x k-( -,sr)) = s, f ([s; f ix s](-, sr))

Figure 10: Denotational semantics of kernels (Abbreviated)

Composition. A developer can compose two kernels with the syntax k, ; k2 . This

feeds the output state of k1 into k2 .

Conditionals. The syntax if # then kt else kf returns the value of the kernel kt

if the constraint 4 is true, and that ofkf if the constraint is false.

Fixed Point. For a given kernel for a distribution, a developer can produce a

sampler for the same kernel via the f ix operator. The denotational semantics of f ix

are declarative, as Figure 10 specifies that the operator must have the property that

the sampled distribution is invariant under composition with the kernel. Shuffle type

checks its code assuming an exact implementation of f ix, but generates code that

approximately implements it by running the kernel and passing its output back to

itself in an iterative process. As the number of iterations grows large, the approximate

distribution approaches the true distribution.

4.6 Estimators

Figure 11 presents the semantics of estimators. The denotation of an estimator e,

denoted by [e] E (E x SR) -+ ((R+ x E) + I), is a function that takes as input a

source of randomness and an environment, and produces either a pair consisting of a

new environment and a weight associated with that environment, or an error value.

Lift. A developer can lift a sampler to an estimator. The resulting estimator always

returns the value 1 as the weight of a sampler.

Factor. The factor e by d modifies the weight of the estimator e.
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= f ~1(or) H[ 1(a)
f actor e by d (-, sr) = let (w, -') = [e](o-, sr) in (w * [dI((a'), a') [if # then et else ef (a) = ef ](-) else

[ elif t s](-, sr) = (1, [s (-, sr))

.x~a- p](7q (Op) [qO* [ao (-)] ... [qn -+ [an(o-)] + 7rrv(Or) + 'r (Op)) X E r
x(ao,...>()= let (qo,.. .), or, p = c(x) in else

x(ao,... )](o)= let (qo,. .. ), ar, p,rec = u(x) in

(1,~K o)[](o-) < min ([60])

[pI(7rq(Up)[qo -+ [ao(o-)] ... [qn He [an](O-)] + 7rry (Or) + irx(u-)) [ao](a-) > min([6o]) A x C 0-

1, else

Figure 11: Denotational semantics for estimators



Conditionals. The syntax if # then et else ef returns the value of the estimator

et if the constraint # is true, and that ofef if the constraint is false.

Invocation. The syntax x(h) invokes an estimator named x that exists in the

environment. The call evaluates the estimator in an environment where the quantified

variables are rebound to their parameters h. For recursive procedures, if the first

argument falls outside the domain, the denotation of call is the default value (1, -).

Shuffle's type system enforces that the set of random variables in this case is empty

(see Section 5.5), and the function returning (1, a) is always a valid estimator for an

empty variable set.

5 Type System

In this section I present Shuffle's type system. A typing judgment is a logical

proposition of the form M, F, L I- p : - where M is a model, F is a type environment,

L is an assumption log, p is a Shuffle inference program, and T is a type from the

following grammar:

-r 6 1 (6, 6) 1 B I T I (q*, *, T) I (q* 16*, T, rec)

In this grammar, 6 is a domain, q is a quantified variable, B is the boolean type, and

T is a Shuffle type as specified in Figure 5.

For example, the type judgment M, F, L H d density(AIB,#) states that under

the model M, type environment F, and assumption log L, the Shuffle inference

procedure d is, when # is true, a density for the conditional distribution Pr(AIB).

5.1 Model

A Shuffle model M = (DDecls, VDecls, DDefs) is a set of (optional) domain declara-

tions, variable declarations, and density definitions.
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Define the joint density of all variables in the model, J, as follows.

Let

be a declaration from the model. Then, defining

p()(a[di f J]) [#T(-[qi 4 h]

iEIDDefsnE(6O,...) e else

I define the notation J(SIS2), where S, C V, S2 g V, where Si 052 = 0, as

J(S1|S2) = fV-(S 1 uS2)

fv-s 2 j

The term J(S1 IS2) is a function of the type Erv -+ R+.

Valid Models. A model M is considered valid if for every definition in M of the

form

assuming the predicate WFi(o-) is defined as follows:

WFj(-) = (q' E dom(-) A o-(q') E [60H ) A ... A (qn E dom(-) A o-(qn) E [6j)

1. For every variable (v, n) in the model's space, there exists a o and exactly one i

such that WFj(o-) A [# ](o-) A ((v, n) E [A I(a))

2. There exists a strict partial order -< such that

Vo-, WFj(o-) = (v 1, ni) E (), (v 2 , n2 ) E [B]I(-). (vi, ni) -< (v 2 , n 2 )

3. Vo-, WFj(o-) A #Ij(a-) -> fAj (p,)I( -) =1

4. Vi.Valid(AjjBj, #i)
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def xi (qO' in 60' ,...-) : Tbi ( Ai|IBi, ,#) = pi

def xi (q' in 6' , q' in o):tiAli#)=p



5. For all - such that WF(a) and #j (-), Aj (-) # 1, and [B( # I

5.2 Type Environment

A type environment, F, is an element of the language defined by the grammar

F -+ 0 IF:: [ ] : ]

3 -+ x |q | v

where x is a named distribution, q is a quantified variable, T is a type from the

language described above.

5.3 Assumption Log

An assumption log, L, records the set of model and inference program assumptions

made by the developer during the construction of their inference program. An

assumption log is of the form

L -+ 0 1 C::

a-+(# = A JL B I C) I ReachesAll(s).

An individual assumption is therefore either a statistical independence assertion

or a reachability assertion. The entries in an assumption log are logical propositions.

I denote the semantics of each entry by the semantic function [ : E -+ B, given by

[C:: a (o-) = [C(-) A [a (-)

# > A L B | CJ(u)=

# ( )()) ( (o)(o ) =

f([Aj~o-|[C~o-)(a)* J([IB]I(u-)I[C](u-))(o-))

ReachesAll(s)] (o-) =

Vv, n. (Esr, r. s(o-[(v, n) - r], sr)(v, n) r z=

Vr.3sr. s(o-, sr)(v, n) = r)
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Reachability. The predicate ReachesAll(s) states that a given sampler s reaches

every value in its output space with positive probability. In other words, for any

variable (v, n) E V, if s modifies v, n, then there must be some positive probability of

reaching every value of n in n's domain.

M, L I ReachesAll(s) = V-. [L]j(or) =4 [ReachesAll(s)]] (a)

5.4 Types

Model Relation. An environment a models, written a b F, M, M2 a Shuffle model

M, type environment F, and assumption log L. This relation is defined as

0- h F, M, L =

J(o-) > 0 A

Vv. M, F, L H- v :(6, 62) => (Vn E 611. o-((v, n)) E [[62) A

Vq. M, F, L Fq 6 =* (q c dom(o) A a-(q) e [6) A

(Vx E'F. M, , L F x ((qo, . . . , q,), (6 ,...), t) => a(x)

((go, . . .,q.), a-p, p) A u-p b IFp, M, L A M, IF, :: [qO : 60 : :: [q, : 6"], L k p : t) A

(Vx 317p. M, r, L x : ((qo, . .. , qn), (60, ... ,o) ,re c) =* o- (x)=

((qO, . qn), U-P, p, rec) A u-p k Fp, M4, L A

M , rp : [x : ((go, . . . , q,,), (60, . . . , qn), t, re c)] :: [qO : 60] :: ... :: [q, : 6n], L b= p : t)

and note that, for any model M, there is an environment and a type environment

which each contain mappings for all densities and random variables in in the model,

and these environments satisfy k.

Densities. A density is a function that, under any substitution of the relevant

quantified variables, computes appropriate distribution from the model. Specifically,
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Statement 1 (Density). If M, F, L h d : density (AIB, 0), then for any environ-

ment a such that a 1= F, M, 1L,

#[ (o-) =* [d (o-) = J([A (-)[Bj(a))(o-)

Samplers. A term with sampler type is a function with it is possible to compute

the expectation of any positive function f under the distribution P(A B). A sampler

must also preserve the model relation on its output.

Statement 2 (Sampler). If M, F, L k- s : sampler (AIB,#0), then for all o- such that

a 1= F, M, 2 and all f E Erv -> R+,

#](o-) => ff([sj(a, sr)) f (o-) * ([ - ()) (-)

and

# (o-) =* [s (a, sr) 1= F, A4, L

Kernels. A kernel k is a surjective function such that for any sampler s for a given

distribution and any positive function f, the expectation of f under s is the same

as that under the composition of s with k. A kernel must also preserve the model

relation on its output.

Statement 3 (Kernel). If M, F, L b= k : kernel (A B, q), then for all a such that

o h F, M, L, for any f E Erv -- R+, and s such that M, F, L 1= s : sampler (AIB,#),

1. # (a) = 3E > 0. fsr f(k(o-, sr)) > e fvR, f(o-) * J(IA](o-)IB]j(a))(a)

2. [](0-) -> fsrO,sr f(k(s(o-, sr0 ), sr')) f f(o-) * J(0[A](-)[B (-))(o)

3. [#](a) = [s](-, sr) h F, M, L

Estimators. An estimator is a function that produces a sample and corresponding

weight such that the expectation of a positive function f under the estimator is correct.

An estimator must also preserve the model relation on the sample portion of its output.
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Statement 4 (Estimator). if M, F, L k e : estimator (A |B,q5) then for all o such

that o- b F, M, L, and any f E ,r -+ R+,

, W) o( [e ](o-', sr)) * f(7r,1([e (-', sr)))

f fsr ro([e](a', sr))

JA/ f(-') * ([A (-') [B(-'))(-')

and

#(a-) -> ro ([e (a, sr)) = IF, M, L

Quantified Types. Shuffle exports inference procedures that are functions of quan-

tified variables. The function is function is correct if instantiations of the function

body are correct. This relationship is defined by the equality

M , r, L p :(gO, . . ., qn), (60,..., i n), t < -

M, F [qo 60] :: -- - :: [q, : 6n], L k p : t

Valid Types. The variable sets A and B and constraint # in a type tb (A I B, #) can

depend on the values of random variables. A type is valid, written Valid(AIB, #) if all

of these variables are contained in the set of conditioned random variables B. Using

the notation v n B to mean the variables (v, n) E B that have a given variable name

V E V, a type is valid if

1. There exists a sequence vO, v1, v2 , ... , vn on the random variable names vi E V

such that V- 1, U2 , (Vq. o 1 (q) = a2(q)) -> [vo n Bo(a1 ) = vo n B](O 2 ), and for

any n > 0,

VO1 , O2 , (Vq. o,(q)= C2(q)) A

Vn 2 < n. [vn2 n B -(a-) = [vn2 n B](O-2) A

(V(v, n3) E vn2  0 ~ (a1). 91(Vn2, n3) = Oa2(Vn2, n3) -

ivn 0 B] (O-) = [ n B (U 2 )
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2. For all O-1 , cr2 ,

(Vq. o-,(q) = -2B()) A[BI(a-) = [BI(0-2)A(V(v, n) C [BI(o-,), o-,(v, n) = U2(v, n)

- [A](or) = [AI(-2)

3. For all U 1 , r 2 ,

(Vq. u 2( ))^[B(o- [BIJ( 2)A(V(v, n) E [Bj(o-,), a-1(v, n) U2 (v, n)

and

4. For all -, [A](-) n [Bj(-) = 0

These enforce the following properties with respect to the type tb (AI B,):

1. Valid Conditions. For the set of conditioned variables B, there must be an

order -< on the set of variable names V such that v, -< v2 means that the subset

of variables in B with name v, can be computed without reference to the subset

with name v 2. Thus, for example, choosing B as

obs{i in Samples: z[i] == z[k] && i != k}, z{i in Samples: i !=

k}

would have the order z -< obs. By contrast, choosing B as any of the following

would be invalid

obs{i in S: z[i] == z[k]}, z{i in S:

z{i in S: z[i] == j}

a{i in D: b[i] == b[k]}, b{i in D: a[i]

i != k}

== a[k]}

2. Valid Variables. The random variable set A must be well defined given the

conditioned variables B. This means that any variable that the value of A

depends on must be contained in B.
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3. Valid Constraints. The constraint # must be well defined given the conditioned

variables B. This means that any variable that the value of q depends on must

be contained in B.

4. Disjointness. The variable sets A and B must be disjoint.

5.5 Type Rules

Substitution. I denote standard capture-avoiding substitution on the free quantified

variables of a type t by the notation t[p/q] where p is a term and q is a quantified

variable.

Variable Restriction. The notation A 4 # refers to a random variable set A can

be restricted to the subset of A such that the constraint # holds. The semantics of

this is defined with respect to a desugaring of A to a the following form:

A = vo{qo in 6o: 0}, . . V,- {q, in 6n: #n}

The definition of A 4 # is then

A = vofqo in 60: #0 && 0}, .. ., Vnfqn in 6n: #n && #}

Densities, Figure 12 shows the typing rules for probability densities. These follow

the rules of conditional probability, and give the developer the ability to multiply,

integrate, and divide densities in a typesafe manner. The DMUL rule requires a check

that the type is valid because it might be the case that, for instance, the set of random

variables A depends on the values of random variables in B, which would render the

type density(A,B|C, 0) invalid.

Samplers. Figure 13 shows the typing rules for samplers. These give the developer

the ability to sample from one or more random variables in the model and verify

the sampling operations are correct. The SBIND rule requires a check that the type
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DMUL

M, 1,,C I di : density(AIB,C,#0)
M, I, L F- d : density(BIC,0) M, Fk Valid(A, BIC,)

M, F, L -d, * d2 : density(A, BIC,#0)

DDIV

M, F,.C di : density(A,BIC,#0)
M, F, L F d2 : density (BIC,#) M, r Valid(AIB, C,)

M, ,1 2- di / d2 : density(AIB, C, 0)

DDIV2

M, F, L F di : density (A, BIC, 0) M, F, L F d2 : density (AIB, C, #)
M, F, L F d, / d2 : density(BIC,#)

DINT

M, F, L F d : density(A, BIC,#)

M, F, L int d by B : density(AIC,#0)

Figure 12: Type rules for probability densities

Figure 13: Type rules for samplers
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SLIFT

M, r, L d : density(v[p]IB,#)

M, F, L F- v [p] :=sample d : sampler (v[p]IB,#0)

SBIND

M, F, L s, : sampler (BIC, 0)
M, F, L F-s2 : sampler (A IB, C, #) M, F b Valid(A, BIC, )

M, F, L F s, ; S2 : sampler (A, BIC, #)



KLIFT

M, F,I2 s : sampler(AIB, 4) M,F, L v : 61,62 L ReachesAll(s)

M, F,2 Hlift s : kernel(A|B,#)

KCOMBINE

M, P,: k1 : kernel(AIB, C, )
M, F,,C E k2 : kernel(BIA,C,#) M, F Valid(A, BIC, )

M, ,12 H k, ; k2 : kernel(A,BIC,#1 && # 2 )

KFIX

M, F,L. H k : kernel(AIB,#0)

M, F,1 2 f ix k : sampler(AIB,5)

Figure 14: Type rules for kernels

is valid because it might be the case that, for instance, the set of random variables

A depends on the values of random variables in B, which would render the type

density (A, BIC, q) invalid.

Kernels. Figure 14 shows the typing rules for kernels. These give the developer

the ability to perform Markov-chain Monte Carlo sampling for subset of the random

variables by providing the guarantee that the kernel, if repeatedly applied to an

environment, converges to a sampler for the distribution described by the type. The

K2 rule requires a check that the type is valid because it might be the case that, for

instance, the set of random variables A depends on the values of random variables

in B, which would render the type kernel(A, BIC,#) invalid. The preconditions

of the KLIFT rule maintain that 1) Any kernel in Shuffle must sample over a finite

distribution and 2) The kernel must produce every value in its output space with

positive probability. This means that every kernel representable in Shuffle must admit

an approximate implementation of f ix 141.

Estimators. Figure 15 shows the typing rules for estimators. These give the

developer the ability to to conduct likelihood weighting. The EFACT rule requires a

check that the type is valid because it might be the case that, for instance, the set
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ELIFT

M, F,C I s : sampler (A|B,#0)

M, F, L I elift s : estimator(AIB,#)

EFACT

M, F, L k e : estimator(AIB,#)
M, F, L -d : density (CIA, B, #) M, F Valid(AIB, C, #)

M, F,L F factor e by d : estimator(AIB, C,#)

Figure 15: Type rules for estimators

of random variables C depends on the values of random variables in A, which would

render the type estimator(AIB, C,#) invalid.

5.6 Structural Rules

Conditionals. Figure 16 shows Shuffle's IF rule for handling conditionals. This rule

enables the developer to construct inference procedures whose behavior differs based

on whether a constraint is true or false. The system must check that the resulting type

is valid, because the constraint may introduce an illegal dependency in the random

variables or the constraint in the resulting type.

Definition and Invocation. Figure 16 shows Shuffle's rules for defining and in-

voking inference procedures. These give the developer the ability to encapsulate

components of the inference procedure while ensuring these components are correctly

defined and invoked. Shuffle checks type validity on invocations because for two

reasons: 1) A type written by the developer must be valid, and 2) the substitution in

the invocation rules (INV and INV-REC in Figure 16) may yield an invalid type if, for

example, it results in A depending on the value of a random variable that is not in B.

Recursion. Shuffle's type system imposes restrictions on recursive programs. The

INV-REC rule in Figure 16 enforces that procedures may only recurse on their first

argument, and must pass all other arguments through unchanged. The DEF-REC rule
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M, F, L F pf : tb(Af JBf ,$f)

M, F, L -F if qi then pt else pf : tb(At P #i, Af t ,#i I Bt 4 #i, Bf ,i && Ot) I I (,0i && Of))

DEF

DEF-REC

M, F ::

m, r :: [qo : 60] :: - :: [qn : 6n] , L F- P t1

M, r :: [x : ((qo, . . qn), (60, . . . , 6n), 4i)], L - P2 :(4~V, , t2)

M, F, L F- def x (qo in 6o,... ,q, in 6n): t = ; P2 : 1(qv,,t 2 )

[x : ((qo, . .( , q.), (d6o .. , ), ti, rec)] :: [qO : M] :: -:: [qa :A&], L p, : t
Va. qo (a) < mnin([o&l) -> [A (a-) = 0 M, r k= Valid (A IB, #

MA, IP :: [x : ((qo, . . . , q,,), (60, .... , 6n),i t1)], L - P2 : (4, , t2)

M, F, L F def rec x (qo ino,... ,q in 6n): ti = p, ; P2 t2)

DEF-IND

A4, F :: [qo : 6o] :: :: [q, : 6,] , L -j p, : ti
M4, IF :: [X : (qO,. ... , qn), (60, ... ,6n), ti], L - P2 : (d, , t2)

M, F, L F- def independent x (q in 6o,.. q in 6n) : ti= pi ; P2 : (4,6,t2 )

EXP

M, F:: [qo : 60:: :: [qn : 6n],L F p : t

M, F, L F def export x (qo in o, . .. , qn in 6n) : t = p :((go, . ), (6,.. .n), )

Fx : 4, , t(AB,O) M, F, L - :5

Valid(A [d/4]IB [h/4], # [&/4])
INV-REC

M, F, L F x : (gO, qi, . .. , qn), , t, re c n >

M, IF, L - x (qO - n, qi, . . . , qn) : t [qO - n/qo]

Figure 16: Type rules for if statements, definitions, and invocations.

IF

INV

MF, L

M, F, L - x (0) : tb (A IB, #) [h/4]

M, IF, L - pt : tb( At|Bt,,#t)



C

M, F, L - p : ti M I-ti - t2

IND

M, F, L - p : ti M, L H t -I t2

M, F,L '- p : t2 M, r, L -I p : t2

ENV-REC

M, F, L -p t

p' # p

M , F :[p' :t'], L p : t

ENV-VAR

M, F, L v : (61, 62)
M, F, H p : 61

M, F, L F v[p] : 62

CONSTRAINT

M, F, L pi : 6

M, F, L p 2 : 6

M, F,L I- p, < P2 : 1B

ENV

M, F :: [p : t], H p : t

ENV-LST

M, F, L H p : 6
M, FC H p: 6

M, F, L F p, p : 6,6

CONSTRAINT-NEG

M, F, f # : B3

M, F, L -# : B

ENV-NAT

,n E F ]J

M,F, L in : 6

ENV-EMPTY-LST

M, F, L H - : -

CONSTRAINT-AND

M, r> L #1 : B
M, F, L q 2 : B

M,> L - #1 && # 2 : B

CONSTRAINT-OR

M, F, H #1
M, F, H 02

M, F, L H 01 #2 : B

CIND

M, F, CH p : t

M, F, L -p: t

MODEL

def x (qo in o,, q, in J,) : t = p EM

M , r :: [qo : 60] :: ..- :: [q,, : 6,,], L - p : t

Figure 17: Type rules for coercions and the type environment.
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Li

M k 02 = A = C Mk 2 =B - D M 4 02 = #1
M - t6 (AIB,#01) -+ t (CID,0 2 )

L2
M,AL # ALC|B M 1=>(AnC=0)

M, L t(A|B,#0) -41 tb(A|B,C,#0)

Figure 18: Rules for coercion side predicates

enforces that a recursive procedure's base case always corresponds to the set of result

random variables A being empty. This justifies the default base cases in Shuffle's

semantics.

Additional Structural Rules. Figure 17 shows additional structural rules that

connect different pieces of Shuffle's type system together. These include 1) ENV-REC,

ENV, ENV-NAT, ENV-VAR, ENV-LST, and ENV-EMPTY-LST rules that instantiate

types from the environment and determine whether Shuffle terms belong to a named

domain 2) C, IND, and CIND rules which apply normal and independent coercions

(see Section 5.7 3) CONSTRAINT, CONSTRAINT-AND, CONSTRAINT-NEG, and

CONSTRAINT-OR rules which ensure constraints have the boolean type B, and 3)

the MODEL rule instantiating the types in the model M, which serve as axioms for

Shuffle's type system.

5.7 Coercions

Figure 18 shows Shuffle's rules for type coercions.

Normal Coercions Shuffle uses a normal coercion of the form ti -+ t 2 to assert

that a type judgment t, implies another type judgment t2 . These require additional

predicates that encode logical formulae. Shuffle employs the Z3 theorem prover [14]

to verify that these predicates are true. These predicates are:

o M 1- 4 =# A = B. This predicate states that whenever, # is true, the variable
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sets A and B must be equivalent. Shuffle checks this by constructing, for

each random variable v specified by the model M, the formulas 0vA and #vB
which specify the set of indices n such that (v, n) E [A (-) or (v, n) E

respectively. Shuffle then checks whether # => (#vA ( #vB)-

" M 0 #1  0 # 2 . This predicate states that the constraints #1 imply the constraints

02.

" M # (A n B) = 0. This predicate determines that the variable groups A

and B are disjoint.

The semantics of each predicate are defined as follows

M4 0 #t, A = B = Va. [# (a-) ([A (a-) = [B (o-))

M4 0 1 0 2 = VU-. 01 (U) 0[2 (0-)

M b (A n B) = 0 = V-. [#H (-) [A] (-) n [B](o-) =0

Independence Coercions Shuffle uses a normal coercion of the form t, -I t 2 to

assert that a type judgment t, implies another type judgment t2 . This requires the

assumption log L to entail independence amongst certain variables present in t, and

t 2.

5.8 Properties

Integration by Substitution. The following proof sketches make use of a property

of integrals known as the substitution rule. For measurable functions f and g,

g(x) > JQ/4S] f(x) = f(O(x)) * g(x)

where the notation <[S] means the set obtained by mapping the function 0 over S.
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Equivalence of Substitution and Environment Mapping. The following proof

sketches make use of a lemma. Let p be a Shuffle term that is either a variable set or

a constraint. We have the following equivalences, for any environment 0-:

p[alq]J(o-) = pj(o-[q - a (o-))

I will now show these properties are sufficient to prove that Shuffle's type system

guarantees that derivable types and programs are computable.

Theorem 1 (Type Validity). Assume that

1. M,IF,L- p : t(AB,3)

2. o- k M, F, L

Then, it must be true that

1. Neither A (-) nor B (o-) is ever 1,.

2. Valid(AIB, #)

Proof Sketch. The proof follows from induction on the structure of derivations for

types. Specific cases are outlined below.

DMUL. If B, C is not L0, then the denotations of B and C are disjoint, and,

combined with the inductive hypothesis that A's denotation is disjoint from B,C's ,

this means that the denotation of A , B is disjoint from that of C. Furthermore, A

must be disjoint from B so A , B is never L,. The type validity follows directly from

the assumptions.

DDIV and DDIV2. The disjointness of A and B, C (or B and C in the case of

DIV2) follows from the same reasoning as in DMUL, as does the argument that none

of the variable sets' denotation is 1,. Checking type validity is not necessary in

DDIV2 because DDIV2 adds no variables to the type.
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DINT. The conclusions follow straightforwardly from the properties of A, B. Check-

ing type validity is not necessary because DINT adds no variables to the type.

SLIFT. The conclusions follow straightforwardly because the parameters of the

type are the same.

SBIND. The conclusions follow from the same reasoning as that of DMUL.

KLIFT. The conclusions follow straightforwardly because the parameters of the

type are the same.

K2. If A, C and B, C are not I,, then A, B, and C must all be mutually disjoint,

which means that A, B is not 1, and A, B is disjoint from C. The final conclusion

follows from the assumptions.

KFIX. The conclusions follow straightforwardly because the parameters of the. type

are the same.

ELIFT. The estimator lift s is well-defined if s is well-defined. The remaining

conclusions follow straightforwardly because the parameters of the type are the same.

EFACT. According to the semantics of ",", if A and B are disjoint, and A, B is

well-defined and disjoint from C, then A is disjoint from B, C and B, C is well-defined.

The validity of the type follows from the assumptions.

IF. The disjointness follows from analyzing separately the cases where # is true

and where # is false. The variable At 4 # must be disjoint from the variable

Ae 4 ,#i, so the variable At 4 i, Ae 4 i is never -L. Because of the assumption that

M, IF, L - i : 1, [#i (o-) is not I . A similar argument holds for Bt 4 #i, Be 4O#.

The validity conclusion results from rule assumptions.
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DEF. It must be true that

o- h IF, M, L -> o-[x - (4, , p1)] 1--.M, r :: [X : (4, , ti)], L

Therefore, the conclusions are true for t2 by inductive assumption. A similar line of

reasoning holds for DEF-IND and DEF-REC.

INV. To prove the disjointness condition, apply the environment-substitution lemma.

The validity conclusion follows from the rule assumptions. The INV-REC rule follows

similar reasoning, except that the type validity is guaranteed by inductive assumption.

MODEL. See the model validity assumptions above.

C and CIND. The conclusions follow from the fact that the side predicate M, L H

t1 -+ t2 enforces that the variable sets in ti and t2 are the same, and the predicate

M, L H t1 -+1 t 2 enforces that all modifications to the variables preserve disjointness.

Theorem 2 (Progress). Assume that

1. M, F, L _ P : tb (A|B, 0)

2. - M, F, L

Then, it must be true that

1. jp](-) is uniquely defined and never 1, or 10

Proof Sketch. The proof follows from induction on the structure of derivations for

types. Most rules follow straightforwardly from applying the inductive assumptions

and the semantic definitions. Cases that do not follow this reasoning are detailed

below.

DDIV and DDIV2. For d, / d2 to be well defined (unique and not 1, or 10,

d2 must never be 0. This is guaranteed by well-formedness because it enforces that

j(-) > 0.
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DINT. For int d by B to be well-defined, B must never be J_,. This is enforced by

the type validity property above.

KFIX. Since the semantics of f ix k is defined declaratively, we must show that a

solution exists. Due to the first property of kernel soundness, we can apply a theorem

from [4] which states that the fixed point can be approximated to arbitrary precision

with an iterative algorithm. This means that a solution must exist and furthermore,

the solution is unique.

DEF. It must be true that

a k F, M, L =- a[x - (4, S, pi)] [ M, F :: [x: t)], L

Therefore, the conclusions are true for P2 by inductive assumption. A similar line of

reasoning holds for DEF-IND and DEF-REC.

Furthermore, Shuffle's type system guarantees that the type for a program correctly

specifies the program's functional correctness:

Theorem 3 (Density Soundness).

if M, F, L d : density (AIB, 0) then M, F, L k d : density (AIB,#0), and

if M, F, L d : 4, S, density (AIB,#), then M, F, L k d : 4, , density (A IB,#)

Proof Sketch. The proof follows from induction on the derivations. Specific rules

are outlined below:

MODEL. From the definition of J, it must be true that

fV-(A l(a)U B () i(a) (o r

else
J([A (o-)J[Bj(o))=

fv- Bj(a) Hi 2 dj (o-) #i (or)

1 else
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There exists some i* such that di. = p and #$. = /. Furthermore, because A and

B are disjoint, [pj (-) does not depend on any variables outside of A and B, and

[A(,) p (a-) = 1, the above equation simplifies to

{dj (o-)

I
fV-([A,(,)UB(a) Li*

1[441 (0-)

else
)= *

1else

1 else

Given that the product in the numerator is independent of the values of variables in

A (a), this equation further simplifies to

J([A](-)[B (o-)) =

else

which means [#](-) = J([A (o-)I[B (a-)) = [p(o-) as required.

DMUL. The basic premise of the rule is based on the following property of 3

J(S1 |S2, S3 )J(S2 |S3 ) = fV-(s 1 US 2US3 )

fV-(S 2 uS3 ) 1 )

f--(S2US3)JJ)

fv-s3 J
fv-(s1 sUS2 US3

fv-S 3 '

= J(S1 , S 2 IS3 )

Applying the identity from DMUL in reverse, it must be true that

J(S1IS2, S3)3( S2 IS3) = ( , S2|S3) J J(S1 |S2, S3 )

which justifies the basic rule construct.

J(S1, S2 IS3)

J (S 2IS3 )
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DDIV2. From the identity in DMUL, it must be true that

J(SI, S2iS3)
J(S1 |S2 , S3 )J(S 2 |S3) =J(S1 , S 2 |S3) -> J(S 2 |S3 ) = ( 1 S 3

which justifies the basic rule construct.

DINT. This rule relies on the following simplification of J:

J(S1 , S2 |S3 ) _
JSi

fv-(s 1Us 2Us3 )

fV-S3 '7

_s1 fv-(s 1Us2 Us 3 )

fV-S 3 J
fV-(S 2 uS3 ) 17

fVSv 3 J

= J(S2 |S3 )

The second step above is justified by the fact that Si n S3 = 0, so the denominator is

a constant with respect to the outer integral.

Theorem 4 (Sampler Soundness).

if M, F, -s : sampler (A|B,#) thenrM, F, L b s : sampler (AIB,#), and

if M, F, -s : 4, 6, sampler (AIB,$) then M, F, L s : 4, , sampler (AIB, #)

Proof sketch. The proof follows from structural induction on the rules which may

produce samplers. Individual cases are outlined below.

SLIFT. In the discrete case, notice that the size of the set

{sr[v[p] := sample d](-[(v, [p(o)) -+ n])}

is exactly [d]((v, [p (-)) -+ n), and furthermore each such set is disjoint for different

values of a. Therefore, the integral over sr is a linear combination over these different

cases:

Jf([s(o-)) = [d](-[(v, p) -+ n]) * f(n)
n

According to the assumptions in the rule, this is equal to f A] (-)f * J(A (a) I[BJ (a)

as required.
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In the continuous case, the sample returned must be a real value r such that

sr =d [d(v, [p](a-) -+ x) = g (r) - f ([s (a, sr)) = f (g-'(sr))
C-[l-oo,r] sr sr

Substituting g for V) and f o g- 1 for f in the definition for the substitution rule, it

holds that

f (-) * [d (-) =J f(-) * J([A j(a) I[B (o-))((or)

where the above step is due to the soundness theorem for densities.

SBIND. First, apply the soundness assumption for s, to find the expectation of the

function s, o f. Then, use the assumption soundness assumption on s2. This yields

the equation

f(is2]( s1 (a, sr'), sri))
isr

1~r

Sj f() * I(A ((o-)I[B, C (o))(o-) *()
n t (a), Bj (h)

Using the identity from DMUL, this simplifies to

J[Aj(o),UBj(o,)

Theorem 5 (Kernel Soundness).

if M, F, L k kernel(A|B,#0) then M, F, L b k kernel (AIB,#), and

if M, F,1 -k: 4, , kernel (AIB,#0) then M, F,2 k : 4, 6, kernel (AIB,#0)

Proof sketch. The proof follows from structural induction on the rule derivations

for kernels. The specific cases are outlined below.

KLIFT. To prove the first property, choose E = 1 and inline the definition of the

sampler. The second condition is equivalent to the statement that if s is a sampler,

then f ix s = s. In other words, for any measurable function f over the output space,
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the equation

f (fix(-, sr)) =
J.Lsr, /

f(fix(s(o-, sr'), sr))

is satisfied for fix = s. To see this, inline the definition for a sampler, which reduces

the second property to the equation

JAJ(a)
f (a) * j(I[A]I(o-)I[B](-))(a)

= JAJ(a)

which must hold because fS, J(S S2 ) = 1.

K2. First, I will show that k1 is invariant for the distribution A, BIC. This means

that k, satisfies the second property for M,F,L I- k, : kernel(A,BIC, 0) to be

sound, even though k, does not satisfy the first property. This is true because, for a

sampler s such that

1sr f (s(o-, sr)) = f (o-) * J([A, B (o-)|[C (-))(-)
J[A, B1(a)

because of the property from DMUL, it must be true that

sr
f (s(-, sr)) =

Substituting in f * J(I[B(o-)IC (a)) for f in the soundness assumption for k1 , it

must hold that

f(ki(s(-, sro), sr')) =
d'io,srl

/- (o))()) * j ([A (o-)I[B , C (o))(o-)
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Using again the identity from DMUL, this means that

/ f(ki(s(-, sr), sr)) = f(o ) * (A , B (o-)I[CJ())()
srosrl J[A , Bj (a)

completing the proof of the invariance property of k1 . By a similar logic, k2 is also

invariant for the distribution A ,BIC. This means that k1 ; k2 is invariant for the

distribution A, BIC. This proves the second property of kernel soundness. For the

first property, note that the ReachesAll condition applies transitively to any kernel

that can be generated with the kernel rules.

Theorem 6 (Estimator Soundness).

if M, F, L Fe : estimator (AIB,#) then M, F, L k e estimator (AIB,#), and

if M, F, L e : 4, , estimator (AIB,#) then M, P, L e : 4, , estimator (AIB,#)

Proof sketch. The proof follows from structural induction on the rules which may

produce estimators. Individual cases are outlined below.

ELIFT. Since the first element of e is defined to be 1 in all cases the expression

_ [qo ([eJ (o , sr)) * f(7r, ([e(o-, sr)))
c r fsrF, ([ej(a, sr))

can be simplified to Lr f( s ([q-+a,sr)) = fr f([s ([q '-* a], sr)) which, according to the

correctness of the sampler, must equal the expression fA n f (o-)*J([A] (o-) I J[BI(o)) (-)

as required.

EFACT. Using the definitions from the semantics, the expression

J 7ro([e](o-, sr)) * f(7r, ( e](-, sr)))
Jsr fSr, r([e (o-, sr))

becomes

Ld]([s](o, sr))f([s(o-, sr)) f(o) *J(A (a)I [BCI())(a)

fr d ([s (o-, sr)) 9 (05
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where the last step requires inlining the soundness theorems for d and s, and on

properties of J established in the proof for DMUL.

Structural Rules

For clarity, I have omitted the cases for structural rules in the above theorems. The

cases are symmetric for each theorem.

IF. The soundness of conditionals follows from the fact that, if a is such that [11 (a)

is true,

A, IF, L = p : Tb (<D(#j, At, A,) |( (0, At, Bt) , (#)(0$, #t, #e))

+--> M4, F , L =p :b T(At|IBt ,# 0)

Otherwise, since a is such that [#ol (a) is false, it must be true that

M, F, L = p : T (4)D(#, At, Ae) kIb(#i, At, Bt) , I(D0, ot, #e)) <--

A, ]F,1 p : Tb(Ae|Be,#Oe)

DEF. According to the definitions of b it must hold that

-> a[x -+ (, 6, p1)] k Al, F :: [x : (4, 6, t1 )], L

which means inductive soundness assumption for P2 holds. The proof for the DEF-IND

and DEF-REC rules are similar.

INV. Due to the assumption that a k Al, F, L, it must hold that -(x) = (Q, 6, a,, p)

is defined and furthermore there exists a 17, such that Al, 1,, L I- p : t. The soundness

of the INV rule follows straightforwardly from applying the inductive assumption and

the substitution-environment lemma.

For INV-REC, there are two cases. If qo](o) < [6j], then [A1(a) = 0, then

because J(0IS) = 1, it must be true that 1, a, and(1, a) are the correct values for
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densities, samplers and kernels, and estimators, respectively. These are exactly the

values the semantics prescribes in this case. If [qo](u) ;> [I6ol, then similar reasoning

to INV holds.

C. Writing the types t, and t2 as T(A 1 B1 , #1) and T(A 2 B2 ,02), respectively, the

added assumptions mean that, for any o, [A1](a) = [A 2](O), [Bi](u) = [B 2 ](a), and

P1(9) =* 02](a). This means that the soundness of the judgment M, F, L H p : t,

implies the soundness of the judgment M, F, C H- p : t 2 -

CIND. Writing the types ti and t2 as Tb(AIB,#) and Tb(AIB, C,#0), respectively,

the added assumptions mean that, for any a, J([C, A (r)IB) = J([C](or)IB]()) *

J([A (o-)J|B ) which, applying the identity from the DMUL case, means

J([A (a)I[B, C(r)) = J([Aj (a) IB (a).

6 The Shuffle System

Shuffle as a system performs type checking, assumption log generation, and inference

program extraction. A developer therefore receives a concrete executable inference

procedure that has been type checked against the program's specified types as well as

an auditable list of assumptions about the probabilistic model that must be true for

the inference procedure to be correct.

6.1 Type Checking

The Shuffle system implements the type checking rules presented in Section 5. Shuffle

uses the Z3 theorem prover to check assertions over sets of quantified and random

variables. Shuffle models quantified variable values, random variable values, and

domain bounds as 64-bit bitvectors, and constraints using a combination of bitvector

comparisons and boolean operations. Shuffle checks equality and implication relations

between constraints using quantifier-free bitvector theories, and checks type validity

assertions through Z3's quantified bit-vector formulas.
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6.2 Inference Program Extraction.

Shuffle extracts a Python program for a given type-checked Shuffle program. Shuffle's

program extraction is by and large a straightforward, syntax-directed recursive proce-

dure that produces a Python program that implements the denotational semantics

presented in Figure 8, Figure 9, Figure 10, Figure 11, and Figure 7. Shuffle's extraction

procedure differs operationally from the denotational semantics in that it 1) simplifies

integral expressions 2) fails to compile integral expressions it cannot simplify and 3)

uses a representation for probabilities that ensures numerical stability.

For example, under the GMM presented in Figure 1, Shuffle translates the inference

procedure

1 def export f(i in Samples, j in Mus):.

2 obsDens(i,j) * muPrior(j)

to the Python code

1 import samplelib

2 def f(obsSamples, mu, z, i, j):

3 return samplelib.normald(obs[i],mu[j],1)

4 + samplelib.normald(mu[j],0,100)

Simplification Shuffle first simplifies the inference procedure by removing any type

coercions and inlining any def statements. Shuffle translates recursive definitions

to loops. After eliminating def statements, Shuffle simplifies integrals with known

closed-form solutions. Shuffle can currently simplify conjugate and posterior-predictive

distributions for Gaussian and Dirichlet distributions.

Code Generation. Shuffle translates the simplified procedure to Python code. Any

operations involving probabilities become logarithmic space-operation for numerical

stability, meaning multiplication becomes addition and division becomes subtraction.

If the code contains any unsimplified integrals over real-valued random variables,

Shuffle produces an error at this stage.
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7 Evaluation

In this section I evaluate the performance of extracted Shuffle inference procedures for

several models.

7.1 Methodology

Shuffle sits within a landscape of probabilistic programming tools and approaches

that range from fully automated systems, to systems that encourage handcoded

implementations via a built-in library of primitives and - in the extreme - direct

implementations in a standard programming language or implementations that leverage

deep learning. Of these approaches, I evaluate Shuffle's performance in comparison to

equivalent implementations in Venture.

Venture serves as an appropriate baseline whose design encourages developers to

handcode implementations that directly implement density arithmetic and sampling

operation with the support of coarse-grained sampling primitives that Venture provides.

For example, Venture enables a programmer to use a coarse-grained primitive that

performs a Gibbs update to a set of variables. Further, Venture is implemented

in Python, which therefore equalizes the underlying execution platform of the two

approaches.

Research Questions: Our comparison with Venture seeks to answer the following

research questions:

" Flexibility: Is Shuffle flexible? Specifically, can Shuffle support a set of approx-

imate inference algorithms for a set of standard models?

" Performance: Do Shuffle's abstractions increase or decrease performance when

compared to implementations of the same algorithms within the Venture?
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Benchmarks. I evaluate Shuffle and Venture on the following benchmarks:

1. GMM. A Gaussian mixture model similar to the one in Figure 1. This model

contains 10000 datapoints and 10 cluster centers. Inference in this model uses

an approximate sampler similar to the one in Figure 3.

2. SLAM. A scaled-up version of the Simultaneous Localization And Mapping

problem [5]. This model has 500 map states, 1000 time steps, and an observation

space of size 100. The inference procedure is a Rao-Blackwellized particle filter [5]

with 100 particles.

3. LDA. A Latent Dirichlet Allocation model 121 with approximately 466k words,

50 topics, 3430 documents and an alphabet size of 6.9k. Words are assumed

to be distributed evenly across the documents. Inference is performed using a

collapsed Gibbs sampler [11].

For these benchmarks I consider inference algorithms that employ collapsing.

Collapsing is the task of using density arithmetic to remove a random variable

from consideration during the inference algorithm. As an example, the approximate

inference algorithm for a GMM in Figure 3 collapses out the mu variable by means

of analytic solutions to integrals over Gaussian probability densities. This GMM

inference algorithm approach is known as collapsed Gibbs sampling [151. In each of

the benchmarks, our use of collapsing makes sampling more efficient.

Dataset. Each benchmark uses synthetically generated observed data from the prior

distribution of the statistical model. Because the comparison is between computational

efficiencies of identical algorithms, I do not anticipate that changes in the data values

alone will have a large impact on performance. The size of the datasets are similar in

scale to real-world examples of GMM [31, SLAM [121, and LDA [191 models.

Measurement Methodology. Each test measures wall clock time (in seconds) for

Shuffle and Venture. The GMM and LDA tests measure the average time for one
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Benchmark
LOC

Shuffle Venture

Runtime Performance (s)

Shuffle Venture Speedup

Type Checking

Indep. Reach.

GMM 130 91 1.87 * 6.34 * 33.9x 7 1
10- 10-2

SLAM 94 126 1579.6 2066.1 1.3x 5 0
LDA 190 25/50 3.2 * 1.63* 50.lx 13 1

10-1 101

Table 1: Shuffle vs. Venture on the benchmarks. The "Indep." column refers to
the number of independence assumptions a benchmark generates, and the "Reach."
column refers to the number of reachability assumptions.

Gibbs update to a single random variable. The SLAM test measures the average time

to perform inference on 100 particles.

7.2 Results

Table 1 presents the results of the experiments.

Flexibility: Each benchmark, includes a lines of code (LOC) count in Table 1

for both Shuffle and Venture implementations. The GMM and SLAM benchmarks

require extensions to Venture to implement custom stochastic procedures. The LDA

benchmark use Venture's builtin procedure; I was able to implement LDA in Venture

with 25 LOC, while the builtin procedure in Venture is 50 LOC. In benchmarks

requiring custom Venture stochastic procedures, the programming effort is comparable

for both systems. For LDA, Venture benefits from the ability to reuse stochastic

procedures while Shuffle does not support such reuse.

Performance: Shuffle performs better than Venture on all three of the benchmarks,

but this advantage is considerably reduced for SLAM because Venture can take

advantage of the fact that some sampling operations in this model are deterministic.
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7.3 Discussion

Shuffle is faster than Venture because Shuffle statically reasons about dependencies

whereas Venture reasons about dependencies dynamically. Like Shuffle, Venture

maintains, at runtime, values for each of the random variables in the model. To

implement a kernel, Venture randomly resamples a subset of the variables in the state.

For example, for the kernel lif t z [i] := sample ziPost (i), Venture resamples the

random variable z [i] according to the likelihood density - which would be described

in Shuffle by the type density(obs I z) - under each potential new value of z[i].

To avoid re-evaluating the entire likelihood for each value, Venture incrementalizes

the value of the likelihood over the the update to z [i]. Venture builds a dynamic

dependence graph to identify sub-expressions in the likelihood that must be updated

to reflect the new value. In contrast, Shuffle statically verifies that the code for the

sub-procedure ziPost computes the new sample for z [i] correctly.

8 Related Work

Shuffle builds on [1] by providing a novel semantics and programming language for

typesafe probabilistic programming.

Automated Inference. Church [91 and WebPPL [10] enable a user to specify

Turing-complete stochastic programs as models, but restrict inference algorithms to

all-purpose algorithms such as Metropolis-Hastings [17, 13]. JAGS [22] provides a

notation for expressing graphical models and automatically performs sampling for a

fixed set of distributions. JAGS therefore provides automated support for a subset of

Shuffle's rules. For example, JAGS can automatically generate a collapsed sampler for

GMM. However, it can do so only if the model is specified with a monolithic GMM

primitive. This stands in contrast to Shuffle, which, via its compositional nature,

enables a user to prove the correctness of collapsed sampling for a wide class of models.

Manual Unverified Inference. Other systems, such as Venture [161 and PyMC [21]

enable a user to augment the system's inference procedure with arbitrary code.
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However, when the user augments the inference algorithm with arbitrary code, there

is no guarantee that the resulting inference algorithm is correct. In contrast, the code

that a user generates with Shuffle is in accordance with the Shuffle's proof rules and

therefore enjoys Shuffle's correctness guarantees. Park et al. developed a language that

includes samplers and other objects as first-class primitives [20]. The type of a term

in their language communicates the base type of the object (e.g., a sampler). While,

Shuffle shares its base operations with their language, Shuffle's novel contribution is

to extend the types to describe the conditional distribution that the object represents.

Compiled Inference. AugurV2 [3] provides a language of coarse-grained operators

to build inference procedures out of, like Shuffle. AugurV2 supports a richer set of

kernels than Shuffle, but does not support estimators. AugurV2 also provides more

support for parallelism and alternative compilation targets. However, AugurV2 does

not provide correctness guarantees as strong as Shuffle's. In particular, AugurV2's

kernels are not guaranteed to converge iteratively to the target distribution. AugurV2

also does not have density operations to support collapsed Gibbs samplers. Thus

AugurV2 does not support any of the benchmarks from Section 7, although it does

support other inference procedures for the GMM and LDA models.

Program Transformation. Hakaru [18] enables developers to perform probabilis-

tic inference by applying transformations to a program that specifies the underlying

probabilistic model. The resulting transformed program implements an executable

inference procedure for the query of interest. Shuffle's approach is complementary in

that it advocates ground-up composition of inference algorithms from base primitives.

In addition, Shuffle's type system can serve as a strong, well-typed interface for com-

posing inference procedures generated by both strategies with the resulting guarantee

that the overall inference procedure is correct.

The PSI solver [71 transforms probabilistic models into densities representing

inference procedures. PSI can find densities for a larger class of models than Shuffle,

but doesn not support samplers, kernels, or estimators.
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9 Conclusion

In this thesis I presented Shuffle, a system for typesafe programming with probability

distributions. Shuffle's language of distributions is rich enough to support several

complicated inference algorithms. The terms in this language are densities, samplers,

kernels, and estimators, and I have developed operators over these terms as well as

type rules that associate each term with part of a probabilistic model. I have proven

Shuffle's type system is sound with respect to the semantics I have provided.

Shuffle supports extracting inference algorithms to Python, and the performance of

extracted code compares favorably with probabilistic programming systems using the

same base language. Shuffle also has the ability to simplify some integral expressions.

Shuffle generates proof obligations that are necessary for an inference algorithm's

correctness. These encapsulate parts of the verification process that are external to

Shuffle itself.

The aim of Shuffle is to explore the relationship between program verification

and probabilistic inference. Probabilistic models provide good specifications for

situations where there is uncertainty, such as with inference algorithms. However,

inference algorithms have resisted compositional analysis and verification due to their

randomized and uncertain nature. Shuffle provides developers with the ability to

develop inference algorithms with confidence that they are correct, and hopefully,

similar techniques could result in a suite of programming tools for developers to handle

uncertainty effectively.
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