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Abstract

Due to the aggressive scaling of technology sizes in modern computer processor fabrication,
modern processors have become less reliable andmore prone to exposing hardware errors to
software. In response, researchers have recently designed a number of application-specific
fault tolerance mechanisms that enable applications to either be naturally resilient to errors
or include additional detection and correction steps that can bring the overall execution of an
application back into an envelope for which an acceptable execution is eventually guaranteed.
A major challenge to building an application that leverages these mechanisms, however, is to
verify that the implementation satisfies the basic invariants that these mechanisms require -
given a model of how faults may manifest during the application's execution.

To this end I present Leto, a verification system that enables developers to verify their
applications with respect to a first-class execution model specification. Namely, Leto enables
software and platform developers to programmatically specify the execution semantics of the
underlying hardware system as well as verify assertions about the behavior of the application's
resulting execution.

A key aspect of verifying these implementations is that applications leveraging application-
specific fault tolerance mechanisms often require assertions that relate the behavior of the
implementation's execution in the presence of errors to a fault-free execution. To support
this, Leto specifically supports relational verification in that its assertion language enables a
developer to specify and verify assertions that relate the two semantics of the program.

In this thesis, I present the Leto programming language and its corresponding verification
system. I also demonstrate Leto on several applications that leverage application-specific
fault tolerance mechanisms.

Thesis Supervisor: Michael Carbin
Title: Assistant Professor of Electrical Engineering and Computer Science

3





Acknowledgements

First and foremost I would like to thank my advisor, Professor Michael Carbin, for his

guidance and patience in the completion of the research that went into this thesis. I look

forward to our continued collaboration as I begin my PhD research.

Thanks to the rest of the Programming Systems Group for their insightful research

discussions, and for tolerating way too many of my cryptocurrency comments.

Thanks to Professor Leslie Kolodziejski and Janet Fischer for being understanding and

supportive when I fell ill during the completion of this thesis.

Thanks my parents, Roya Sohaey and David Boston, as well as my sister, Haley Boston,

for their unconditional love and support. Thanks for recognizing and supporting my childhood

interest in computers, I wouldn't have made it this far without you.

Thanks to my many friends at MIT, including Thomas Bourgeat, Max Dunitz, Sara

Achour, Peter Ahrens, Jack Feser, Jarrett Revels, Nick Bandiera, and many others for making

grad school such an enjoyable place.

Thanks to the many volunteers at WMBR for providing me with an avenue to express

myself.

Lastly, I would like to thank the greater CSAIL community for reading and interacting

with my silly weekly GSB emails. Extra thanks to those who attended GSB and made the

event so much fun to host.

This research was supported in part by the United States Department of Energy (Grants

DE-SC0008923 and DE-SC0014204).

5





Contents

1 Introduction 11

1.1 Traditional Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Application-Specific Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Verifying Application-Specific Fault Tolerance . . . . . . . . . . . . . . . . . 15

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Example 21

2.1 Jacobi Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Verification Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Verification Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Language 33

3.1 Dynamic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 Execution Model Semantics . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.3 Language Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Logic 43

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Proof Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1 Left and Right Rules for Primitive Statements . . . . . . . . . . . . . 48

4.2.2 Left and Right Rules for Control Flow . . . . . . . . . . . . . . . . . 50

7



4.2.3 Lockstep Rules for Control Flow . . . . . . . . . . . . . . . . . . . . .

4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Verification Algorithm

5.1 Invariant Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Case Studies

6.1 Benchmarks and Properties . . . . . . . . .

6.2 Verification Effort . . . . . . . . . . . . . . .

6.3 Runtime Characteristics . . . . .. . . . . . .

6.4 Execution Models . . . . . . . . . . . . . . .

7 Self-correcting Connected Components

7.1 SC-CC Implementation . . . . . . . . . . . .

7.2 Specification . . . . . . . . . . . . . . . . . .

7.3 Verification Approach . . . . . . . . . . . . .

8 Self-stabilizing Conjugate Gradient Descent

8.1 Implementation . . . . . . . . . . . . . . . .

8.1.1 Reliable Correction Step . . . . . . .

8.1.2 Faulty Matrix Vector Product . . . .

8.2 Specification . . . . . . . . . . . . . . . . . .

8.3 Verification Approach . . . . . . . . . . . . .

8.3.1 Correction Step . . . . . . . . . . . .

8.3.2 Faulty Matrix Vector Product . . . .

9 Self-Stabilizing Steepest Descent Correction

9.1 SS-SD Correction Step Implementation . . .

9.2 Specification . . . . . . . . . . . . . . . . . .

9.3 Verification Approach . . . . . . . . . . . . .

Step

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .

10 Related Work

8

51

52

61

66

72

73

73

74

75

76

79

82

86

88

93

96

96

97

98

99

99

100

103

104

106

107

109

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .



11 Conclusion 113

A Full Semantics 123

B Full Self-stabilizing Conjugate Gradient Descent Implementation 127

9



10



Chapter 1

Introduction

Due to the aggressive scaling of technology sizes in modern computer processor fabrication,

modern processors have become more vulnerable to errors that result from natural variations

in processor manufacturing, natural variations in transistor reliability as processors physically

age over time, and natural variations in these processors' operating environments (e.g.,

temperature variation and cosmic/environmental radiation) [6].

Large distributed systems composed of these processors - such as emerging designs

for exascale supercomputers - are anticipated to encounter errors frequently enough that

traditional techniques for building high-reliability applications will be too resource intensive

(both in time, storage, and energy-consumption) to be practical. Applications will, instead,

need to be architected to execute through errors [1].

In pursuit of increased performance, increased scalability, and increased ubiquity for

computation, emerging computational models are pushing the boundaries of the reliable,

digital computation abstraction.

Scaling Traditional Processors. Due to the aggressive scaling of technology sizes in

modern computer processor fabrication, modern processors have become more vulnerable to

errors that result from natural variations in processor manufacturing, natural variations in

transistor reliability as processors physically age over time, and natural variations in these

processors' operating environments (e.g., temperature variation and cosmic/environmental

radiation) [1, 6, 23, 27, 37-39, 57, 69].
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Large-Scale Distributed Computations. Large distributed systems - such as emerging

designs for exascale supercomputers - are anticipated to encounter errors frequently enough

that traditional techniques for building high-reliability applications will be too resource

intensive (both in time, storage, and energy-consumption) to be practical [1, 59].

Applications will, instead, need to execute through errors. In addition, emerging com-

putations, such as stochastic gradient descent-based learning techniques, have evolved into

asynchronous, racy implementations in their quest for high-performance in environments

where the communication overhead of traditional, synchronous versions of these algorithms

would otherwise limit the scalability of these techniques [48].

Energy Harvesting Systems. Researchers have recently proposed small, batteryless

computing platforms that operate entirely on energy harvested from their environments (e.g.,

solar, RF, and kinetic) [18, 42]. A key challenge with these systems is that due to the lack

of a battery, these systems may spontaneously shutdown when they exhaust their available

energy. The execution model of these systems is therefore intermittent in that computing

resources may disappear at any time and, therefore, application developers need to manage

concerns such as unanticipated control flows that restart the application and corrupt the

application's state, as well as checkpointing and recovery to manage the consistency of data

across these control flows.

Cyber-Physical Systems. Systems that operate on the border of the digital world and

the physical world, such as autonomous agents, typically also receive inputs from physical

components or control physical outputs that may be subject to uncertainty in their results as

well as physical failures.

Researchers are investing significant energy in developing methodologies to build systems

that are safe and robust in the presence of uncertainty and failures.

Challenges. All of these systems encounter faults - anomalies in the underlying physical

device - that produce errors - unanticipated or incorrect values that are visible to the

application. Simple error models include bit flips in the output of arithmetic, logical, and

memory operations. A key challenge for building applications for these platforms is that
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reasoning about the reliability of these applications requires reasoning about the operation of

the underlying execution model and its impact on the application's behavior.

1.1 Traditional Fault Tolerance

Researchers have long sought methods to enable reliable computation on unreliable computing

substrates. For example, in the 1950s, vacuum-tube-based computing systems experienced

vacuum-tube failures as frequently as every 8 hours [66]. In response, the industrial and

academic community sought to resolve this issue by both:

o Designing more reliable computing substrates (modern CMOS transistors).

o Designing fault tolerance mechanisms.

Of these latter techniques, popular methods include

o Dual-Modular Redundancy (DMR). DMR enables error detection by duplicating

instructions and verifying that the results of the duplicated computation agree with

each other [49].

o n-Modular Redundancy. Like DMR, this technique executes instructions multiple

times. However, when n > 2 it also enables error correction in addition to error

detection by using the result agreed upon by a majority of the replicated instructions

[58].

o Algorithm-Based Fault Tolerance (ABFT). ABFT methods are modifications to

algorithms to allow them to detect and/or correct for errors encountered in computation.

This technique is application-specific and may provide lower-overhead detection and

correction than n-modular redudancy schemes [21, 55].

A major aspect of the design of such mechanisms is the trade-off between the overhead

(in performance, memory consumption, and energy-consumption) of these techniques, the

frequency and distribution of hardware faults, and the coverage of a specific error detection and

correction scheme. For example, standard methods for dual-modular redundancy duplicate
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the entire execution of a computation and check if the two executions of the computation agree

on their results. This technique introduces significant computational and energy overhead.

In contrast, algorithm-based fault tolerance techniques - such as those for linear algebra -

produce lightweight checksums that can be used to validate if the computation produced the

correct results. For some applications, these checksums are exact, enabling the exact error

detection capabilities of dual-modular redundancy but with lower overhead. However, for

other applications, these checksums either are not known to exist or, at best, compromise on

their error coverage.

1.2 Application-Specific Fault Tolerance

Modern large computing systems have begun to operate a point in the trade-off space between

performance/energy and error rates that traditional, application-oblivious fault tolerance

techniques are too resource intensive to deploy at scale for large numerical computations [1].

In response, researchers have begun to expand on historical results for algorithm-based

fault tolerance [21, 351, alternatively application-specific fault tolerance, to identify new

opportunities for low-overhead mechanisms that can steer an application's execution to

produce acceptable results: results that are within some tolerance of the result expected from

a fully reliable execution.

Such techniques include selective n-modular redundancy in which a developer either

manually - or with the support of a fault-injection tool - identifies instructions or regions of

code that do not need to be protected for the application to produce an acceptable result

- as determined by an empirical evaluation [14, 62, 64, 65]. Another class of techniques

are fault-tolerant algorithms that through the addition of algorithm-specific checking and

correction code are tolerant to faults [16, 20, 54, 551. A major barrier to implementing

either of these techniques is that their results either rely on empirical guarantees or - for

self-stabilizing algorithms - hinge on the assumption that the fault model of the underlying

computing substrate matches the modeling assumptions of the algorithmic formalization.
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1.3 Verifying Application-Specific Fault Tolerance

To address these challenges I present Leto, a verification system that supports reasoning

about unreliably executed programs. Leto enables a developer to build confidence in their

application-specific fault tolerance mechanism by:

" Enabling a developer to programmatically specify the behavior of the computing

substrate's fault model.

" Enabling a developer to verify relational assertions that relate the behavior of the

unreliably executed program to that of a reliable execution.

Namely, Leto enables a developer to specify the behavior of the underlying hardware system

as a program that Leto automatically weaves into the execution of the main program. In

addition, Leto enables a developer to specify relational assertions that, for example, constrain

the difference in results of the unreliable execution of the program from that of its reliable

execution.

First-Class Execution Models. Leto enables a developer to programmatically specify a

stateful execution model. For example, a common fault model that application developers

use is the single-event-upset model. In this model, at most one fault can occur during the

execution of the program. While simple, this model can capture real fault models in which

it is possible for errors to happen during execution, but with small probability. Figure 1-1

presents a specification in Leto of a single-event upset model that affects only addition and

multiplication operations.

Model State. An execution model may include state in the form of variables that the

model may use to implement its operations. In this case, the model includes the boolean

variable upset which - if set to true - indicates the model has produced a fault and will no

longer produce any faults during the execution of the program.

Operations. The execution model specification includes a specification of the behavior

of each operation that it exports to an application. An operation includes the name of
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1 const real E = ... ;
2 bool upset = false;
3
4 operator +(xl, x2)

5 modifies ()
6 ensures (result == xl+x2);
7 operator +(xl, x2)

8 when (!upset)

9 modifies (upset)

10 ensures (xl + x2 - E < result < x1 + x2 + E && upset);

11
12 operator *(xt, x2)

13 modifies ()
14 ensures (result == xl*x2);
15 operator *(xl, x2)

16 when (!upset)

17 modifies (upset)

18 ensures (xl * x2 - E < result < x1 * x2 + E && upset);

Figure 1-1: Single Event Upset Error Model

the operation, the arguments to the operation, as well as the operation's guards. A single

operation may have multiple specifications. For example, the model specification includes

two specifications for the addition operator, +. The first specification on Line 4 specifies

the reliable, standard implementation of addition. This specification specifies the operation

as a function operator +(x, x2) that takes as input the left and right operands of the

addition, x1 and x2, respectively. The specification declaratively specifies the semantics of

the operation with an ensures clause that specifies the relation between the distinguished

result of the operation, result, and the operation's inputs: ensures result == x1 + x2.

The second specification on Line 8 specifies a relaxed implementation that may expose

faults to the application. The specification specifies the operation similarly as a function

operator +(xl, x2). In contrast to the reliable version of the operation, this specification

includes a when clause that guards execution of this implementation. In this case, the when

upset specifies that this operation specification is only enabled if no fault has previously

occurred. This guard therefore enforces the SEU design of this model. If the guard is satisfied,

then the operation returns a result that satisfies

ensures x1 + x2 - E < result < x1 + x2 + E && upset.

16



This ensures clause bounds the result of the addition to be within E of the actual sum. In

addition, the operation sets upset to true indicating that the single fault for the model

has occurred. Because Leto's execution model specification language is general (with no

restrictions on model state or how it is manipulated by the operation specifications), developers

and platform-designers can specify rich execution models for a given platform. In Chapter 6

I provide additional execution model specifications.

Semantics. For every operation to be executed, the execution non-deterministically chooses

among the enabled implementations (given each implementation's guard condition) and uses

the chosen implementation's specification to update the state of the program.

This model includes a boolean valued state variable that records whether or not a fault

has occurred during the execution of the program. The model then exports two versions

of the addition and multiplication operator. Line 4 specifies the reliable implementation

of addition while Line 8 specifies an unreliable version. For each addition operation in a

program, Leto dynamically makes a non-deterministic choice between the set of operation

implementations that are currently enabled in the model. An operation is enabled if its guard

evaluates to true. Namely, an operation's guard is the optionally-specified boolean expression

that occurs after the when keyword. For these two versions of addition, the reliable version is

always enabled and the unreliable version is enabled only if !upset - indicating that a fault

has yet to occur in the program.

Relational Verification. Verification of an application that has been protected with an

application-specific fault tolerance mechanism typically requires reasoning about two types of

properties of the resulting application: safety properties and accuracy properties.

Safety Properties: safety properties are standard properties of the execution of the

application that must be true of a single execution of the application. Such properties

include, for example, memory safety and the assertion that the application returns

results that are within some range. For example, a computation that computes a

distance metric must - regardless of the accuracy of its results - return a value that is

non-negative. In Leto, a developer specifies safety properties with the standard assert
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statements as typically seen in verification systems.

* Accuracy Properties: accuracy properties are properties of the unreliable or relaxed

execution of the application that relate its behavior and results to that of a reliably

executed version. Accuracy properties are relational in that they relate values of

the state of the program between its two semantic interpretations. For example, the

assertion -epsilon < x<o> - x<r> < epsilon in Leto specifies that the difference in

value of x between the program's reliable execution (denoted by x<o>) and relaxed

execution (denoted by x<r>) is at most epsilon.

Leto provides and implements a Relational Hoare Logic [4, 5, 12, 60] as its core program

logic. Relational Hoare Logics are a variant of the standard Hoare Logic that natively refer

to the values of variables between two executions of the program. Leto's use of a relational

program logic serves two goals:

" It gives a semantics to accuracy properties.

" It enables tractable verification of safety properties.

For example, proving the memory safety of an application outright can be challenging for

many applications. However, application-specific fault tolerance mechanisms can typically be

designed and deployed such that it is possible to verify that for any given array access or

memory access, errors in the application do not interfere with the accessed address. Such

properties are typically easier to verify for a protected application than verifying the safety

of the memory access outright. Leto therefore enables developers to tractably verify a

strong relative safety guarantee: if the original application satisfies all of the specified safety

properties, then relaxed executions of the application with its deployed application-specific

fault tolerance mechanisms also satisfy these safety properties. By contraposition, if a relaxed

execution violates a safety property, then the original application also violates a safety

property.

1.4 Contributions

This thesis presents the following contributions:
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" Language for Execution Models: I present a declarative language for execution

model specifications that provides guarded non-deterministic selection of each opera-

tion's implementation.

" First Class Execution Modeling: I present language constructs that enable the

developer to specify assertions that reference the state of the execution model. These

constructs enable a developer to, for example, specify the precise behavior that is

required to verify high-level convergence properties for self-stabilizing applications.

" Programming Language and Semantics: I present a programming language and

semantics that enables a developer to verify the validity of both standard assertions

(safety properties) and relational assertions (accuracy properties).

" Verification Algorithm: Leto includes a verification algorithm that - given developer-

provided loop invariants - automatically verifies a program.

" Case Studies: I evaluate Leto on several self-correcting algorithms (Jacobi, Self-

stabilizing Conjugate Gradient, Self-stabilizing Steepest Descent, and Self-correcting

Connected Components) and demonstrate that is possible to verify the key invari-

ants required to prove that these algorithms' self-stability guarantees hold for their

implementations.

Leto's contributions enable developers to specify and verify the rich properties seen in

applications with application-specific fault tolerance mechanisms.
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Chapter 2

Example

Figure 2-1 presents an implementation of the Jacobi iterative method, alternatively Jacobi,

in Leto which I will verify against the execution model presented in Figure 1-1. The Jacobi

iterative method is an algorithm for solving a system of linear equations. Namely, given a

matrix of coefficients A and a vector b of intercepts, the algorithm computes the solution vector,

x, where A * x = b. The algorithm works iteratively by computing successive approximations

of x. For a system of two equations (where A is a 2x2 matrix and both b and x are of length

two), Jacobi uses the solution vector for the previous iteration, xk, to produce the solution

vector for the current iteration, xk+1, using the following approximation scheme:

kj+ 1 = (bo - Ao,1 X)/Ao,o

kf+ 1 = (bi - A1 ,o - )A0 ,

In words, for a given coordinate xi, Jacobi approximates xk+1, by substituting the values x ,

where i 4 j, into the linear equation for i, and solving for x +1

Modulo floating-point rounding error, Jacobi converges to the correct x as the number of

iterations goes to infinity.

Fault Tolerance. Jacobi is naturally self-stabilizing. Namely, given an execution platform

in which faults can only affect the calculation of x (and do not, for example, corrupt A), then

Jacobi is in a valid state at the end of each iteration: if no additional faults occur during its
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1 matrix<real>
2 jacobi(int N, matrix<real> A(N, N), matrix<real> b(N),

3 matrix<real> x(N), int iters)

4 requires nzd(A) && 0 < N
5 requiresr eq(N) && eq(A) && eq(b) && eq(x) && eq(iters)

6 {

7 @label(out) for (; 0 <= iters; -- iters)

8 invariantr !model.upset -> eq(x) {
9 matrix<real> next-x(N)

10 specvar int upsetindex = 0;
11
12 @label(mid) for (int i = 0; i < N; ++i)

13 invariant 0 <= i < N

14 invariantr !out[model.upset] -> eq(x)

15 invariantr (!model.upset ->
16 (!out[model.upset] && eq(next_x)))

17 invariant _r

18 (!out[model.upset] && model.upset) ->
19 boundeddiff-at(nextx,upset_indexi)

20 invariantr 0 <= upset-index < N<r> {
21
22 real sum = 0;
23 for (int j = 0; j < N; ++j)
24 invariant 0 <= i < N && 0 <= j <= N

25 invariantr !out[model.upset] -> sig(sum) && eq(j)
26 invariantr mid[model.upset] -> model.upset {
27
28 if (i != j) {
29 real delta = A[i][j] *. x[j];

30 sum = sum +. delta;

31 }
32 }
33 real num = b[i] - sum;
34 next x[i] = num / A[i][i];

35
36 if (!mid[model.upset] && model.upset) {
37 upsetindex = i;

38 }
39 }
40
41 x= nextx;

42 assert (nzd(A));

43 assertr (eq(A) &&

44 (!out[model.upset] && model.upset) ->
45 boundeddiffat(next_x, upsetindex, N));

46 }
47
48 return x;

49 }

Figure 2-1: Jacobi iterative method
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1 const real E =

2 const real EPS =

3
4 property nzd(matrix<real> A)
5 forall(uint fi)((E / EPS) < A[fi][fi] 11 A[fi][fi] < -(E / EPS));
6
7 propertyr sig(real sum)

8 (!model.upset -> eq(sum)) &&

9 ((!mid[model.upset] && model.upset) ->
10 sum<r> - E < sum<o> < sum<r> + E) &&
11 ((mid[model.upset] && model.upset) -> eq(sum))
12
13 property-r boundeddiff _at(matrix<real> x, int index, int i)
14 -EPS < x<o>[index] - x<r>[index] < EPS &&
15 forall(fi)((fi < i<r> && (fi != index)) -> x<o>[fi] == x<r>[fi])

Figure 2-2: Constants and Properties for Jacobi Iterative Method.

execution, then Jacobi will converge to the correct solution.

To understand this property intuitively, if an iteration produces an incorrect solution

vector, then the subsequent execution of the computation is equivalent to having started the

computation from scratch with the produced vector as the initial starting point. Moreover,

the change in the number of iterations required to converge from the new starting point is

bounded logarithmically by the magnitude of the difference in the produced vector from the

correct vector.

Verifying Jacobi for a given execution platform therefore poses two challenges:

" Verifying that faults only affect the value of x.

" Identifying a bound on the number of added iterations in the presence of a fault.

Note that the latter determination not only serves as important information for understanding

if the implementation will meet the developer's convergence requirements, but it also serves

the practical purpose of setting the maximum number of iterations such that a faulty execution

will produce a result that is at least as good as a fully reliable execution.

2.1 Jacobi Implementation

The implementation presented in Figure 2-1 stores the matrix of coefficients in the matrix A,

the intercepts in the vector b, and the solution vector in x.
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The overall architecture of the implementation in Figure 2-1 is that the outer loop on

Line 7 computes and stores the solution vector for the current iteration into nextx. At

the end of each iteration, the implementation updates x by copying nextx into x. The

second loop on Line 12 iterates through each xi (stored at x[i]), sums the other terms

in the ith equation into the variable sum (Line 30), and then computes x[i] as the value

(b[i] - sum) /A [i] [i]. I present the definitions and meanings of the properties nzd, sig,

and boundeddif f at in Figure 2-2.

The two features of Leto that diverge from traditional programming languages are that

developers can specify that some operations in the program may execute with an alternative

semantics and - as consequence - write relational assertions that relate values between the

standard, original execution and the alternative relaxed execution of the program. Leto

exports customs operations by enabling developers to specify that an operation may execute

according to an execution model specification by appending a dot to the operation as in the

operation +. (Line 30). Leto exports relational assertions through assertr statements

(Line 44), as well as the ability to specify relational loop invariants with invariant_r

(Lines 7, 12, and 23) and relational function preconditions with requires_r (Line 2).

Execution Model Figure 1-1 presents an execution model specification for a Single Event

Upset (SEU) fault model. The model specification includes the model's state and the set of

specifications for each operation.

2.2 Specification.

The verified Jacobi implementation relies on Leto's specification capabilities to establish

self-stability and verify a convergence bound.

There are two major properties that a developer of Jacobi needs establish:

" Ensure that the resulting implementation is self-stable.

* Determine the worst-case number of iterations added to convergence.
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Self-Stability. To verify that this Jacobi implementation is self-stabilizing the developer

must verify the property A<o> == A<r>. The notation A<o> refers to the value of A in the

standard, original execution of the program whereas the notation A<r> refers to the value of

A<r> in the relaxed execution. This property therefore asserts that faults do not disturb the

matrix of coefficients. I specify this in the Jacobi implementation within the precondition

for the jacobi function using the predicate eq(A), which is shorthand for A<o> == A<r>.

The implementation also asserts that this property still holds on each iteration via the

assertr statement on Line 44 and Leto's verification algorithm infers (through a loop

invariant inference processes) that that this property holds for all loops within the body of

the function (Lines 7, 12, and 23)

Convergence Bound. Jacobi also enjoys a bound on the additional number of iterations

added to its execution given a fault. Specifically,

AC = S2E(log (EPS2

where Ac is the number of additional iterations in the relaxed execution and EPS is the

maximal impact of error on the x vector. To verify this bound, the developer must verify two

properties:

" The perturbation in the solution to due a fault in an iteration is bounded by EPS.

" That Vi. |Ai,i > n where E is the maximal error allowed in a single operation from

the execution model and EPS is a constant set by the programmer.

The first property bounds the impact of a single fault whereas the second property ensures

that errors in the solution vector do not cause the solution vector to experience unbounded

increases in the magnitude of its error in subsequent iterations.

I specify this first property with the assertr on Line 44 which asserts that if

!out[model.upset] && model.upset

then boundeddiff at (nextx, upset index, N). The notation model.upset is a first-
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class reference to the state of the execution model at that point in the program. The notation

!out [model. upset] is a first-class reference to the state of the execution model at the last

execution of the label out, which corresponds the body of the outer f or loop (Line 7). This

assert statement therefore states that if an upset has occurred during this execution of the

loop, then next x differs only at upset_index and that difference is bounded. The variable

upsetindex (defined on Line 10) is a specification variable that holds state that supports

the application's verification but is not reified in the state of the program. I use upsetindex

to specifically record the iteration on which the middle loop encounters a fault (if any). The

specification code - code used for verification but not execution - one Line 36 appropriately

updates upset_index's value.

I specify the second property with the assert onrLine 42. The predicate nzd computes

exactly the property that

Vi. IAa > E
EPS

2.3 Verification Approach

I next demonstrate how the developer works together with Leto to verify these assertions.

Leto provides an automated verification algorithm that performs relational forward symbolic

execution to discharge assertions in the program. Namely, Leto traverses the program,

building a logical characterization of the state of the program at each point and verifies that

the resulting logical formula ensures that a given assert or assertr statement is valid.

Leto's approach is relational in that it has the ability to track relationships between the

standard, original execution of the program - for which all operations have their standard

semantics - and the relaxed execution of the program - for which operations may use their

specification as given in the execution model. This approach also works in concert with the

developer's specification annotations; these include both function preconditions and loop

invariants. Leto also provides support for automatic loop invariant inference, which can lower

the annotation burden of the developer by automatically inferring additional loop invariants.

Verifying Jacobi with Leto proceeds as follows:

26



Constants and Properties. Figure 2-2 presents the constants and properties I use in my

Jacobi implementation:

" E. This constant represents the maximum error experienced by any given operation. It

must be less than or equal to E in the execution model (Figure 1-1).

" EPS. This constant represents the maximum impact an error may have on any element

in the x vector.

" nzd. This property takes a matrix A as an input and bounds the absolute value of every

element in its diagonal to be greater than E / EPS. This lower bound ensures that EPS

bounds the impact of errors on x.

" sig. This property takes an input real sum and ensures three invariants:

- Line 8. This conjunct states that sum<o> == sum<r> in the absence of errors.

- Line 9. This conjunct states that if there was an upset while computing

sum (!mid[model.upset] && model.upset), then sum<r> is within E of sum<o>

(sum<r> - E < sum<o> < sum<r> + E).

- Line 11. This conjunct states that if an upset occurred in a previous iteration

(mid[model.upset] && model.upset), then sum<o> == sum<r>.

* boundeddiff_at. This property takes input vector x, integer index, and integer

i. It asserts that the difference between both executions on x[index] by EPS. It also

asserts that x<o> == x<r> at all other indices.

Precondition The verification algorithm starts at the beginning of the jacobi function

by assuming that the developer-provided requires and requiresr properties are valid. In

this case, the developer states that the input parameters are equal across both executions

(Line 5) and that nzd(A).

Outer Loop. Verification next proceeds to the outer loop (Line 7). The outer loop has

a single developer-specified invariant: !model.upset -> eq(x). This invariant states that
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if no faults have yet to occur, then x is equivalent between both the original and relaxed

executions. This invariant follows because in the absence of a fault, j acobi is a deterministic

computation for which any two executions (the original and relaxed execution) that start

from the same state (given jacobi's precondition) compute the same result.

Middle Loop. Verification next proceeds to the middle loop on Line 12. This loop

uses a label to refer to the value of a model state at some control flow point in the pro-

gram. Namely, the middle loop restates the outer loop's invariant with the notation

!out [model.upset] -> eq(x), which states that if the value of model.upset at the la-

beled control flow point out is false, then x is equivalent. The next invariant refines the

outer loop invariant to account for the current state of the execution model. Namely, the

invariant !model.upset -> (!out [model.upset] && eq(nextx)) states that if no upset

has occurred, then no upset has occurred previously and in addition, next_x, the new value

of x is equivalent between the original and relaxed execution. This follows because the

execution model monotonically sets model.upset to true and therefore, having seen no

fault, the computations executes correctly and deterministically to produces nextx. The

next invariant is the crux of the verification approach in that it connects the behavior of

the computation without observing a fault to that after observing the fault. Namely, the

invariant

!out[model.upset] && model.upset -> boundeddiff_at(next _x, upsetindex, i)

states that if no fault has occurred previously, but a fault has occurred on this iteration, then

nextx differs in at most one position and the difference in that position is bounded. This

follows because of the single-event upset nature of the execution model and the fact that

errors in the result of an operation are appropriately bounded.

The invariant (0 <= upset-index < N<o>) serves to pass information about the bound

on upset-index to the outer loop. Using this invariant, Leto knows that the vector access

in boundeddiff at (Line 45) is in bounds.
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Inner Loop. All of the relaxation in my Jacobi implementation comes from this loop,

where it may corrupt the value of sum. The invariant (! out [model. upset] -> sig(sum))

verifies that if an error occurred on this inner loop iteration, then sum<r> is within E of

sum<o>. Otherwise, sum<r> == sum<o>. The bound in this invariant passes this error

information on to the outer loops so that they may reason about the impact of a corrupted

sum. The second invariant (mid [model. upset] -> model.upset) asserts that if an upset

had previously occurred, then the upset variable in the model is still true.

The invariant eq(j) ensures that the inner loop executes in lockstep. The other two

invariants (0 <= i < N and 0 <= j <= N) ensure that accesses to elements in A and x

(Line 29) are in bounds.

2.4 Verification Algorithm

For Jacobi, the algorithm performs the following steps:

Preprocessing. A preprocessing step converts the program to static single assignment

form. For each variable declaration x, Leto constructs two variables named x<o> and x<r>

representing the variables in the original and relaxed executions respectively. Specification

variables only exist in the relaxed context so the declaration of upset-index, for example,

will result in the construction of upsetindex and not upset index<r> as the <r> suffix is

superfluous.

Relaxed Binary Operators. When encountering an expression of the form el D. e2 , Leto

examines the execution model to identify the specified operators matching ( and emits the

constraint Ve(bi -+ b2 ) where b1 is the content of the when clause for e and b2 is the ensures

clause. This constraint captures the property that the result of the binary operation may be

computed by any of the relaxed operations where b1 is satisfied.

Loops. When reaching a loop, Leto first verifies that the loop invariant holds. After

validating the loop invariant, Leto determines which execution paths are possible. Namely,
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there are three possibilities for how two executions of the program may execute through the

loop:

" In lockstep with both executions either executing the body of the loop or terminating.

" Desynchronized with the original, reliable execution executing the body of the loop and

the relaxed execution terminating.

" Desynchronized, with the reliable execution terminating and the relaxed execution

executing the body of the loop. Leto determines which paths are possible by checking

the satisfiability of the loop condition under a context containing only the loop invariant

and then recursively verifies the possible executions.

After the body of the loop is checked, Leto verifies that the loop invariant holds. If so, the

loop invariant and (-b, A -,b,) are added to the constraint list that existed prior to entering

the loop.

In the case of Jacobi, all loops are checked in lockstep as the invariants for each constrain

the various iteration counters and bounds to be equal across both executions.

Additionally, Leto uses inference to infer invariants of the form eq(x) for all variables

x. It will also try to lift invariants from the immediate parent loop or function. I detail the

inference algorithm in Section 5.1.

Conditionals. Like while loops, if statements have multiple paths to consider:

" Both executions execute the true branch.

" Both executions execute the false branch.

" The original execution executes the true branch and the relaxed execution executes the

false branch.

" The original execution executes the false branch and the relaxed executes the true

branch.

As with while loops, Leto recursively verifies each (satisfiable) possibility.
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Assertions Jacobi contains an assertr on Line 44. When encountering a assert_r,

Leto first checks that the conjunction of the constraint list and the negation of the assert

condition is false. If this is not the case, Leto reports the assertion failure and exits. If the

assertion holds, it is added to the list of constraints.

Jacobi contains an assert on Line 42. In lockstep execution assert (b) is equivalent to

assert_r(b<o> -> b<r>). If original program is executing out of lockstep, then Leto adds

b<o> to its context. If the relaxed program is executing out of lockstep, then assert (b) is

equivalent to assert_r(b<r>).

assume (b) has the same semantics as assert (b) in Leto to verify that faults do not

interfere with the reasoning behind assumptions.
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Chapter 3

Language

Figure 3-1 presents Leto's programming language. Leto provides a general-purpose imperative

language that includes specification primitives (e.g., requires) in the spirit of ESC/Java [17

to support verifying applications.

Functions and Properties. A program ir consists of a sequence of function and property

declarations. A function declaration F specifies the function's return type, id, parameters,

preconditions and the code of the function, as a statement s. A property declaration P defines

a hygenic macro and my be either unary or relational. A unary property declaration (uses

keyword property) consists of an id, a list of parameters, and a unary boolean expression.

A relational property declaration (uses keyword propertyr) constists of an id, a list of

parameters, and a relational boolean expression.

Data Types. The language includes primitive data types (T) of (signed and unsigned)

integers, reals, and booleans as well as vectors/matrices of these types. A developer can use

the @region(r) annotation to state the variable is allocated in a named memory region, r,

for which reads as writes may have a custom semantics according to the execution model.

Expressions. Leto includes standard numerical operations, comparison, and logical expres-

sions, along with dotted notations (e.g., x +. y) that communicate that the operation may

have a custom semantics as specified in the execution model.
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c e constants, x E variables, r E memory regions

1 E labels, f E functions, p E properties

Pr E relational properties

r -+P I F 7r; 7r

F -+ T f (D*) (requires B,)* (requiresr Br)* { S }
P-+ property p ((T x)*) B

propertyr p ((T x)*) Br

S -+ D I x = E I S; S I if (B) { S } else { S }

(@label 1)* while (B) * { S } I return E

(Olabel l)* for (S ; B ; S) * { S } I skip

assume (B,) I assertr (Br) I assert (B,)

I - invariant B, I invariantr Br

D - (Gregion r)? r x I (@region r)? matrix<r> x c

T int I uint I real I bool

T -+ T matrix <T>

M -- model { D' 0+ 1

0 -+ operator Op (x,) C
Op - , | I ,. | --< 1 |

@region (r) read I @region (r) write

C -+ when (Br) I ensures (B,)

modif ies (x,)

-AI A.IV I V.~-

I<1< I<. I
G -+l+. - -. I x X.I+ +.

E c E e E I model.x I x x[E

E, Q E, D E, I Q[Er] I E
Q -+ x<o> | x<r> I x

B -+ true | false I E -< E I B o B

If (E*) I-B |.B
B, - V x, B ] x, B l p x* B

Br - true | false | E, - Er I Br o Br

SBr I ,. Br I V x Br | 3 x Br

Figure 3-1: Language Syntax
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Memory Operations. Leto supports reads from and writes to variables, including values

of both primitive and array/matrix type. Reads and writes to variables allocated in a

designated memory region will operate with the semantics as given in the program's execution

model.

Assertions and Assumptions. Leto also enables a developer to specify assertions and

assumptions on the state of the program. Leto's language includes both standard assert

statements and assume statements (with their traditional meaning). Each such statement

can use a quantified boolean expression, B,, that quantifies over the value of variable (e.g.,

the index of an array/matrix). A relational assertion statement, assert_r, uses a quantified

relational boolean expression, Br, that specifies a relationship between the original and

relaxed executions to verify.

Control flow. Leto's language includes standard control constructs, such as sequential

composition, if statements, while loops, and f or loops. A developer can specify a named

label for a while or f or loop via the @label(l) annotation. As in Jacobi, such labels enable

the developer to refer to the model state at a specific point in the execution of the program.

For while and f or statements, a developer can additionally specify loop invariants to support

verification via the syntax invariant (unary loop invariant) and invariant-r (relational

loop invariant). A loop invariant specifies a property that must be true on entry to the

loop, as well as at the end of each loop iteration. Loop invariants are a key to verifying

applications that contain loops because automatically inferring loop invariants is undecidable

in general. Therefore, a developer may need to specify additional loop invariants when Leto's

loop invariant inference procedure is insufficient.

Execution Model. An execution model AY consists of a set of state variables x* and

operation specifications (0*). Each operation specification (0) specifies:

o The target operator for the specification.

o A list of variables as parameters to the specification.

9 A set of clauses.
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A clause is either a when clause, which guards the execution of the specification with a

predicate P, an ensures clause, which establishes a relationship on the output of the

specification given the inputs to the specification and execution model's state variables, or

a modifies clause, that specifies which of the model's state variables changes as a result

of using the operation. Predicates consist of standard operations over standard expressions

with the addition of the distinguished result variable, which captures the result of the

specification's execution.

3.1 Dynamic Semantics

Figure 3-2 presents an abbreviated dynamic semantics of Leto's language. I present an

extended semantics in Appendix A. Leto's semantics models an abstract machine that

includes a frame, a heap, and an execution model state. Leto allocates memory for program

variables (both scalar and array) in the heap. A frame serves two roles:

" A frame maps a program variable to the address of the memory region allocated for

that variable in the heap.

" A frame maps a register to its current value in the program.

The model state stores the values for state variables within the execution model.

3.1.1 Preliminaries

Frames, Heaps, Model States, and Environments. A frame

o- E E = Var U Reg -+ IntN

is a finite map from variables and registers to N-bit integers. A heap

h E H = Loc -+ IntN

36



F-BINOP

m[xi -+ ni][x 2 + n21 - Pw
P0 , [x1, X21, P , Pe)

M'[xi - n ] [X2 - n2] [result - n3l = Pe dom(m) = dom(m')

(model. ( (ni, n2), m) 4, (n 3 , M')

BINOP

ni = a(ri) ni = -(r2 ) (m, e, (ni, n2)) 4p (n3 , M')

(r = r1 ( r2, (o-, h, 0, m)) 4 (r = n 3 , (o-, h, 0, m'))

READ
a = o-(x) n = h(a) q = 0(a) (m, read, (n, q)) 4,, (n', m')

(r = x, (o, h, 0, m)) 4 (r = n', (o-, h, 0, m'))

WRITE

nold = h(a) nnew = a(r)
a = -(x)

q =0 (a) (m, write, (nold, nnre, q)) 4p (rr, M')

(x = r, (a, h, 0, in)) 4 (skip, (o, h[a H*-+ n,], 0, m'))

ASSIGN

(r = n, (o-, h, 0, m)) 4 (skip, (o-[r + n], h, 0, m))

ASSERT-F
7r,(E) (r) =false

(assert r, e) + (fail, E)

IF-F
7ri (E) (r) = false

(4f r S1 52, E) 4 (s2, E)

ASSUME

ASSERT-T
iri(E)(r) true

(assert r, E) -"+ (skip, e)

IF-T
7ri(E)(r) = true

(if r si S2, E) 4+ (81, E)(assume r, E) 4 (assert r, E)

SEQ 1

(si, E) 4 s31 E')

(S1 ; S2, 0) (S1 ; S2, E')

SEQ2

(skip ; s2, E) 4 (S2, E)

WHILE-F

71(E)(r) = false

(while r s, E) -" (skip, E)

WHILE-T
ri(E)(r) =- true

(while r s, E) 4 (s ; while r s, E

Figure 3-2: Semantics of Execution Model and Instructions
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is a finite map from locations (n E Loc c IntN) to N-bit integer values. A region map

0 E E = Loc -* Region

is a finite map from locations to memory regions. A model state

m E M = Var -+ IntN

is a finite map from model state variables to N-bit integer values. An environment

EEE=ExHxM

is a tuple consisting of a frame, a heap, and a model state. An execution model specification

p C Op x list(Var) x P x P

is a relation consisting of tuples of an operation op E Op, a list of variables, and two unary

logical predicates.

Initialization. For clarity of presentation, I assume a compilation and execution model in

which memory locations for program variables are allocated and the corresponding mapping in

the frame are done prior to execution of the program (similar in form to c-style declarations).

3.1.2 Execution Model Semantics

Figure 3-2 provides an abbreviated presentation of the execution model relation

(model. op(args), m) 4, (n, m').-

The relation states that given the arguments, args to an operation op, evaluation of the

operation from the model state m yields a result n and a new model state m' under the

execution model specification p.

The [F-BINOP] rule specifies the meaning of this relation for binary operations. This relation
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states that the value of an operation e(ni, n2 ) given an execution model state m evaluates to

value n3 and a new model state m'. The rule relies on the relation p(op,vlist, P, Pe) which

specifies the list of argument names, vlist, the precondition P and the postcondition Pe for

the operation op in the developer-provided execution model. The precondition of an operation

is the conjunction of the when clauses in the operation's specification. The postcondition of

an operation is the conjunction of the ensures clauses in the operation's specification.

The semantics of the model relation non-deterministically selects an operation specification,

result value, and output model state subject to the constraint that:

" The current model state satisfies the precondition (after the inputs to the operation

have been appropriately assigned into the model state).

" The output model state satisfies the postcondition (after the inputs and result value

have been appropriated assigned into the model state).

" The domains of the input and output state are the same.

Because of the uniformity of the execution model specification, the semantics for other

operations in the program is similar with the sole distinction being the number of arguments

passed to the operation. For clarity of presentation, I elide those rules.

3.1.3 Language Semantics

Figure 3-2 presents the non-deterministic small-step transition relation (s, E) 4 (s', e') of

a Leto program. The relation states that execution of statement s from the environment

E takes one step yielding the statement s' and environment E' under the execution model

specification p. The semantics of the statements are largely similar to that of traditional

approaches except for the ability to the statements to encounter faults. Broadly, I categorize

Leto's instructions into four categories: register instructions, memory instructions, assertions,

and control flow.

Register Instructions. The rules [ASSIGN] and [BINOP] specify the semantics of two of

Leto's register manipulation instructions. [ASSIGN] defines the semantics of assigning an
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integer value to a register, r = n. This has the expected semantics updating the value of r

within the current frame with the value n. Of note is that register assignment executes fully

reliably without faults.

[BINOP] specifies the semantics of a register only binary operation, r = r1 G r2 . Note that

reads of the input registers execute fully reliably. The result of the operation is n3 , which

is the value of the operation given the semantics of that operation's execution model when

executed from the model state m on parameters ni and n2 . Executing the execution model

may change the values of the execution model's state variables. Therefore, the instruction

evaluates to an instruction that assigns n3 to the destination register and evaluates with a

environment that consists of the unmodified frame, the unmodified heap, and the modified

execution model state. Note that by virtue of the fact that both the frame and heap are

unmodified, faults in register instructions cannot modify the contents or organization of

memory. This modeling choice is consistent with standard fault modeling approaches.

Memory Instructions. The rules [READ] and [WRITE] specify the semantics of two of

Leto's memory manipulation instructions. [READ] defines the semantics of reading the value

of a program variable x from it's corresponding memory location: r = x. The rule fetches the

program variable's memory address from the frame, reads the value of the memory location

n = h(a) and the region the memory location belongs to q = 0(a) and then executes the

execution model with the program variable's current value in memory and the memory region

it resides in as a parameters. The execution model non-deterministically yields a result n'

that the rule uses to complete its implementing by issuing an assignment to the register.

[WRITE] defines the semantics of writing the value of a register to memory. The rule reads

the value of the memory location to record the old value of the memory location, reads the

value of the input register, fetches the region the memory location corresponds to, and then

executes the execution model with these values as parameters. The execution model yields a

new value n, that the rule then assigns to the value the program variable.

Assertions. The rules [ASSERT-T] and [ASSUME-T] specify the semantics of assert and

assume statements, respectively. These statements have standard semantics, yielding a skip
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and continuing the execution of the program if their conditions are satisfied. For either of

these statements, if their conditions evaluate to false, then execution yields f ail denoting

that execution has failed and become stuck in error.

Control Flow. The rules for control flow ([IF-T], [IF-F], [SEQi], [SEQ2], [WHILE-F], and

[WHILE-T]) have standard semantics. An important note is that the semantics of these

statements is such that the transfer of control from one instruction to another always executes

reliably and, therefore, faults do not introduce control flow errors into the program. This

modeling assumption is consistent with standard fault injection and reliability analysis

models [65].
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Chapter 4

Logic

I next present the program logic for verifying relaxed executions of a Leto program. The

program logic is a relational program logic in that it relates relaxed executions of the program

to its original, reliable execution. Before delving into the details of the logic, I first present

preliminary definitions, including an explanation of the underlying relational assertion logic.

4.1 Preliminaries

Assertion Logic Syntax. Figure 4-1 presents the syntax of my relational assertion logic.

Note that the presentation includes both standard expressions and predicates (E and P),

respectively, as well as relational expressions RE and predicates RP. Standard expressions

can reference integer values, registers, and program variables. Standard expressions also

include standard integer operations. Relational predicates build on top of standard predicates,

enabling the specification of comparisons between expressions as well as logical combinations

of properties.

Relational expressions extend standard expressions with the ability to refer to values

of program quantities in the standard execution of the program as well as in the relaxed

execution. For example, via the syntax r<o> and r<r>, the logic can distinguish between

the value of the registers r between both executions. An additional quantity in relational

expressions is the ability to refer to the execution model state. Specifically, the syntactic

construct model.x enables a developer to refer to the value of variables in the execution
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iop ::= - * I /
cmpop::= < > | =

lop::= A V I ...

E ::= n r I x E iop E

RE ::= n r<o> r<r> I x<o> I x<r>

I model.x RE iop RE

P ::= true f alse E cmpop E I P lop P I ,P

RP ::=true false RE cmpop RE I RP lop RP I -,RP

[EI E E B Z

[n(E) =n

[rl(e) = (E)(x)

[[XJ(6) = 7r2(E)(7rl(E)(X))

[E[ 1 iop E2 1 (E) = [[ElI(E) iop [E2(E)

IRE]

[nj (-j, E2)

[r<o>1(ei, 62)

[r<r>1 (E1, E2)
[x<O> (E, E2)

[x<r>1(ei, E2)
[RE1 iop RE2 (El, E2)

[model . x(Ei, E2)

EE x E --> Z

=n

=r gr(E1) (r)
= ir1(E2 )(r)

= 7r2(61)(7T1(E1)(X))

7r2 (E2) (7 (E2) ())

[RE1I(ei, E2 ) jop [RE 21(6 1 , E2 )

7r3(E2)(X)

[truejj

[E1 cmpop E2]I
[P1 lop P2 I1

,-P]
[RPJj

[truei

[RE1 cmpop RE2]

[RP1 lop RP2 ]
-RPl

E P(E)

= E [f alsel= 0

= { I [[E1](6) cmp [E2 1(E))

= IE E E [PIN lOp E E [P211}

= [truej \ [P1
E P(E x E)

=E x E [f alse = 0

= {(l, E2) I [RE1 (6 1 , E 2 ) cmp [RE2 (El, E2 )}

= {(51, E2) (6l, E2 ) E [RPI lop (E1, E2 ) C [RP 211}

=truej \ RPI

Figure 4-1: Relational Assertion Logic Syntax and Semantics
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model's state in the relaxed execution. Relational predicates (RP) build upon relational

expressions to enable comparison between relational expressions and logical combinations of

relational predicates.

Assertion Logic Semantics. Figure 4-1 presents the denotational semantics of my rela-

tional assertion logic. I model the semantics of a predicate as the set of environments that

satisfy the predicate. The semantic function [Pj gives the semantics to standard predicates. I

model the semantics of a relational predicate as the set of environment pairs - one environment

for the standard execution and one for the relaxed execution - that satisfy the predicate. The

semantic function [RPJ gives the semantics to relational predicates. Both semantic functions

build upon the semantics of standard and relational expressions, respectively. The semantic

function [Ej provides the semantics for standard expressions whereas J[RE] provides the

semantics for relational expressions. I model these semantics, respectively, as a function from

an environment to an N-bit integer and a function from an environment pair to an N-bit

integer.

Auxiliary Definitions. To support the formalization in the remainder of the paper I

define the following auxiliary notation:

injt(n) = n injt(true) true

intj(r) = r<t> injt(false) = false

inj(x) = x<t> injt(Ei cmpop El) injt(E1 ) cmpop inj,(E2)

injt(E1 iop EI) = injt(Ei) iop injt(E2) inj,(PI lop Pi) injt(PI) lop injt(P2 )

inj(-P) = -injt(P)

The function inj (-) where t c {o, r} implements an injection for standard unary predicates

into a relational domain. For t = o, the definition injects a predicate into the domain of the

reliable execution of the program whereas when t = r, the definition injects a predicate into

the domain of the relaxed execution.
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ASSIGN-L

F1 { RQ[n/inj(r)] r = n { RQ}

READ-L

BINOP-L

F1 { RQ[inj(r1 G r2)/inj(r)] } r = r, ( r 2 { RQ }

WRITE-L

Fi { RQ[inj.(x)/inj.(r)]

ASSERT-L

F { true } assert r { inj,,(r) }

}r = x { RQ} F j{ RQ[inj.(

ASSUME-L
ASS{true assert r { RQ }
F1 { true } assume r { RQ }

ASSIGN-R

Y Fr { RQ[n/inj,(r)] r = n { RQ}

r)/inj.(x)] } x = r { RQ }

RELATIONAL-ASSERT-L

F1 { true } assert r r { true }

BINOP-R
fresh(r')

RQ' = RQ[injr(r')/injr(r) A (V([x1,x 2 ],Pw, Pe) E p(E) - injr(Pw[r1/x1][r2/x 21) 2 inj,(Pe [r'/result))

pF {RQ' }r=riEr2 {RQ}

READ-R
fresh(r')

RQ' =RQ[inj,(r')/inj(r)] A (V([xmemP., Pe) E p(read) - inj.(Pw[x/xmem]) n injr(Pe [r'/result))

y K, { RQ' } r = x { RQ }

WRITE-R
fresh(r')

RQ' = RQ[injr(r')/inj.(x)] A (V([x 1, x 2 ], P, , Pe) E p(write) - inj,(Pw [x/xi 1[r/x2]) -+ inir.(Pe [r'/x1|))

I K { RQ' } x = r { RQ }

ASSERT-R 
ASSUME-R
P K, { injr(r) } assert r { injr(r) }

P K { inj,(r) } assert r { in,r(r) } p F, { inj.(r) } assume r { inj,(r) }

RELATIONAL-ASSERT-R

P F- { r } assertr r { r }

Figure 4-2: Left and Right Rules for Primitive Statements
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SEQ-L

Hi { RP } si{ RR} F-{ RR }s2 { RQ}

H1 { RP } si ; s2 { RQ }

WHILE-L
b = inj0 (r) = true

Hi { true } while r RP s { RP A -b }

IF-L
b = inj0 (r) = true H1 { RP A b } s { RQ }

F - { RP } if r s, S2 { RQ

H1 { RP A -,b} s { RQ }

SEQ-R

pLr{RP}si{RR} Hfr{RR}S2 {RQ}

pA H{ RP } si ;S2 { RQ }

WHILE-R
b=inj(r)= true y,[-{RPAb}s{RP}

L Hr { RP }while r RP s { RP A -,b}

IF-R
b = inj0 (r) = true P { RPAb } s { RQ } p Hr { RP A ,b} s { fQ }

I 
r { RP } if r si S2 { RQ }

Figure 4-3: Left and Right Rules for Structure and Control Flow

STAGE
H{t RP } si{ftft} {f RR }s2 {f RQ}

p f { fP } si s2 { RQ }

WEA
RP h

SEQ

pH{P}si{R}

A P }si

K
-ftP' pALH{ftP' }

AL H { ftP }

SPLIT

-H { RP } s ~ s { fQ }
p H { RP } s { RQ }

pA H{ f} 2 { Q}
;2 { Q}

s { RQ' } RQ'

s {f RQ }
= RQ

IF
b = r = true

p P { P A injo(b) A injr(b) }s Q {Q} p { P A injo(b) A inj,(b) } S2 si { Q}
A H P A inj(b) A -,injr(b) } si ~ s2 { Q } p P { P A ,injo(b) A ,inj,(b) } s2 { Q }

H { P } if r si s2 { Q }

WHILE
b = r = true H{f RA

H1 { R A injo(b) A ,inj,(b) } s {f R }

p H { fR } while r R s {

injo(b) A inj(b) } s {f R }

p fr { ftA ,injo(b) A injr(b) } s { R}

R A -injo (b) A ,injr(b) }

Figure 4-4: Lockstep Control Flow and Structural Rules
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4.2 Proof Rules

Figures 4-2, 4-3, and 4-4 provide an abbreviated presentation of the rules of my program

logic. I have partitioned the presentation into three parts:

" The left rules and right rules for primitive statements.

" The left rules for control flow.

" The lockstep rules.

4.2.1 Left and Right Rules for Primitive Statements

Figure 4-2 presents the left rules and right rules of Leto's relational Hoare logic. The left rules

with the notation 1-1 { RP } s { RQ } characterize the behavior of the reliable execution of

the statement s. The right rules with the notation p I, { RP } s { RQ } characterize the

behavior of the relaxed execution of s under an execution model specification p.

The denotation of the left rule notation Vi { RP } s { RQ } is that if (El, E2) k RP,

and (s, E1) 4 E', then (e', 62) k RQ. Namely, given a proof in the left rules, for a pair

of environments satisfying the precondition of the proof, then if a reliable execution of s

terminates, then the resulting environment pair satisfies the proof's postcondition.

The denotation of the right rule notation p P, { RP } s { RQ } is similar to that of the

left rule notation: if (61, E2) 1= RP, (s, E2) 4, E2, then (El, E') I RQ. Namely, given a proof in

the right rules, for a pair of environments satisfying the proof's precondition, then if execution

of s under the execution model specification p terminates, then the resulting environment

pair satisfies the proof's postcondition.

Register Assignment. The register assignment statement r = n in the lowered language

is reliable in both the reliable and relaxed executions. In the reliable execution, the rule

[ASSIGN-L] captures the semantics of the assignment statement via the standard backward

characterization of assignment as seen in standard Hoare logic [19]. The major distinction

between a standard presentation and the presentation here is that the substitution replaces

the injected form of the register r in the postcondition of the statement. The expression
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inj(r) denotes the value of r in the reliable version of the program. For the relaxed execution,

the rule [ASSIGN-R] captures the semantics by substituting for inj,(r), which denotes the

value of r in the relaxed execution.

Arithmetic Operation. The rules [BINOP-L] and [BINOP-R] give the semantics of

binary arithmetic operations on registers: r = r1 e r2 . For the reliable execution, [BINOP-L]

relies on the backwards characterization of assignment as seen in [ASSIGN-L] to substitute

the value r in the reliable execution of the program with the value of the arithmetic operation

inj(ri e r 2 ).

For the relaxed execution, [BINOP-R, augments the traditional backwards character-

ization to include the potentially unreliable execution of the binary operation. The rule

incorporates the unreliable execution into the semantics by substituting for the destination

register a new fresh register r'. The rule then constrains the value of r' such that, conditional

on the current state of the execution model, the register satisfies the postconditions that may

result from each enabled version of the operation.

Read. The rules [READ-L] and [READ-R] give the semantics of reads from memory.

The left rule [READ-L] mimics the behavior of [READ-L] with the primary differing being

that it substitutes the value of a register, r, for a local variable x. The right rule, [READ-R],

on the other hand more closely resembles [BINOP-R] in that it models the potentially

unreliable execution of the read from memory.

Write. The rules [WRITE-L] and [WRITE-R] give the semantics of writes to memory.

These rules are analogous to [READ-L] and [READ-R], except modified in their exact

implementation to captures writes to memory.

Assert. The rules [ASSERT-L] and [ASSERT-R give the semantics of assertion state-

ments. There is a major distinction between the role of assertion statements between the

reliable and relaxed execution of the program. Namely, while the logic requires the condition

of an assert statement is verified in the relaxed execution, the condition of an assert statement

in the reliable execution does not need to be verified; it is instead assumed. The major design
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point is that Leto enables a developer to use a variety of means (e.g., testing, verification, or

code review) to validate an assertion in the original program and transfer that reasoning to

the verification process for the relaxed execution. To achieve this design, the left rule for

assertions assumes the validity of the assertion whereas the right rule asserts.

Assume. The rules [ASSUME-L and [ASSUME-R give the semantics of assume state-

ments. The primary distinction for assume statements is that while assume statements have

their standard semantics in the reliable execution of the program (no proof obligation is

required), assume statements do in fact require a proof obligation in the relaxed semantics.

The semantics of an assume statement in the relaxed semantics is therefore the same as that

of an assert statement. The rationale behind this design is that as part of the verification

of the relaxed execution I must verify that faults do not interfere with the reasoning behind

an assumption.

Relational Assert The rules [REALATIONAL-ASSERT-L] and [RELATIONAL-

ASSERT-R give the semantics of relational assertion statements. These statements are

similar to my normal assert statements, but they take relational predicates as arguments

rather than standard predicates. The logic requires that the condition of a relational assertion

is verified in relaxed execution, but in reliable execution the logic treats these statements as

no-ops.

4.2.2 Left and Right Rules for Control Flow

Figure 4-3 presents the left and right rules for control flow statements. With the exception

of [WHILE-L], the rules adhere to the standard formalization as seen in traditional Hoare

logic. The only distinction between these rules and their standard implementation is that

they operate over relational predicates.

The rule [WHILE-L] assumes that RP A -,b holds after the while loop and does not place

any constraints on the environment prior to the loop. In other words, I do not verify the

invariants on loops that run under left semantics.
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4.2.3 Lockstep Rules for Control Flow

Figure 4-4 presents the lockstep rules for control flow statements. The lockstep rules together

constitute the main top-level judgment of the logic: p i- { RP } s { RQ }. The denotation

of the judgment is that if (El, 62 ) k RP, (s, ei) 4 E', and (s, E2) 1, E2, then (s', E') I RQ. I

label this judgment the lockstep judgment because it reasons about relations between the

two semantics as they proceed in lockstep, a single statement at a time.

Stage. The rule [STAGE] gives a semantics to a pair of statements si and S 2 for which the

goal is to characterize the behavior when the reliable execution executes s, and the relaxed

execution executes s 2 . The specific composition I have chosen for this rule is to apply the left

rules for s, before applying the right rules to s2 . Namelythe rule first applies the left rule for

si, yielding a new predicate RR, before then applying the right rule for S2 to RR. The rule

[SPLIT] provides a rationale for this specific composition.

Split. The rule [SPLIT] gives a semantics to individual statements in the lockstep semantics.

The rule relies on the [STAGE] rule to apply the left rules for the statement before applying

the right rules. This design forces a specific composition of the rules in order to achieve more

tractable verification. For example, for a statement assert r, this rule will first apply the

left rule for assertions, which can be used to derive r<o> = true. Note that this derivation

occurs by assumption as the logic assumes the validity of assertions in the reliable execution.

Next, the rule requires the proof establish that r<r> = true. If, for example, the predicate

r<o> = r<r> is in the context, then this proof obligation is easily established.

Sequential Composition. The rule [SEQ] gives the standard semantics as found in the

standard Hoare Logic for sequential composition with the distinction that it operates on

relational predicates.

Weakening. The rule [WEAK] gives the standard semantics for weakening as found in the

standard Hoare logic with the distinction that it operates on relational predicates.

If. The rule [IF] gives the semantics of if statements. The rule considers four cases:
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" The register r evaluates to true in both the reliable and relaxed execution.

" r evaluates to true in the reliable semantics but false in the relaxed semantics.

" r evaluates to false in the reliable semantics but true in the relaxed semantics.

" r evaluates to false in both the reliable and relaxed semantics.

For the first and fourth cases, execution proceeds in lockstep fashion and therefore the rule

recurses, adding the determined validity of r in each of the semantics to the precondition for

each recursion. For these cases, the rule mimics that of a standard Hoare Logic.

For the second and third cases, the logic must capture the fact that the two executions

have diverged. The logic captures this by leveraging the staging rule to apply the left rules

for the branch on which the reliable execution has taken before considering the branch on

which the relaxed version has taken. Again, this forces a specific methodology for reasoning

about the programs in that the logic extracts the full availability of assertions that may exist

on the branch that the reliable execution takes before proceeding with the relaxed execution.

While. The rule [WHILE] gives the semantics of while statements. The rule is similar in

design to the rule for if statements in that it must also consider cases in which the control

flow of the two executions diverge. The rule first considers the case where the two executions

proceed in lockstep by both executing an iteration of the loop. The next two cases leverage

the left and right rules to consider the cases when:

" The relaxed execution halts, but the reliable execution executes an additional iteration.

" The reliable execution halts, but the relaxed execution executes an additional iteration,

respectively.

4.3 Properties

Leto's program logic ensures two basic properties of Leto programs: preservation and progress.

Lemma 4.1 (Left Preservation).

If H { RP } s { RQ } and (E1, E2) = RP and (s, Ei) 4 E', then (E', E2 ) k RQ.
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Leto's left preservation property states that given a proof in the left rules, for a pair

of environments satisfying the precondition of the proof, then if a reliable execution of s

terminates, then the resulting environment pair satisfies the proof's postcondition.

Proof. By induction on the lemma statement:

* ASSIGN-L. Stepping (s, Ei) produces an environment E' which differs from Ei only in

that r is mapped to n in a. As Ei k RQ[n/inj(r)], E' trivially satisfies RQ. Additionally,

as the precondition contains no substitutions on inj,(r), E2 trivially satisfies RQ.

" BINOP-L. Similar to ASSIGN-L.

" READ-L. Similar to ASSIGN-L.

" WRITE-L. Similar to ASSIGN-L.

" ASSERT-L. Stepping (s, E) by definition adds r to El to form E'. Therefore, (E', E2) k

inj0 (r).

* ASSUME-L. Similar to ASSERT-L.

* RELATIONAL-ASSERT-L. Relational assertions in left mode do nothing.

" SEQ-L. I start with inversion on F1 { RP } s { RQ }, which yields F- { RP } si { RR }

and I-i { RR } S2 { RQ }. Applying the induction hypothesis to -j { RP } si { RR }

yields (e', E2) b RR. Applying the induction hypothesis to F-1 { RR } S2 { RQ } yields

(ED E 2 ) k RQ.

* WHILE-L. Stepping (S, Ej) by definition adds RP to El to form E'. Therefore, (E', E2) k

RP.

* IF-L. First, I perform inversion on s. Then, I destruct b. In the case where b is true, I

apply the induction hypothesis to H1 { RP A b } s { RQ }. In the case where b is false,

I apply the induction hypothesis to R { P A -,b } s { RQ }.

53



Lemma 4.2 (Right Preservation).

If p Ft { RP } s { RQ } and (El, E2) 1= RP and (s, E2 ) 4p E', then (Ei, ') k RQ.

Leto's right preservation property states that given a proof in the right rules, for a pair

of environments satisfying the precondition of the proof, then if execution of s under the

execution model specification p terminates, then the resulting environment pair satisfies the

proof's postcondition.

Proof. By induction on the lemma statement:

" ASSIGN-R. Stepping (s, E2) produces an environment E' which differs from E2 only in that

r is mapped to n in -. As i k RQ[n/inj(r)], e' trivially satisfies RQ. Additionally,

as the precondition contains no substitutions on inj,(r), El trivially satisfies RQ.

* BINOP-R. Stepping (s, E2) produces an environment E2 which differs from E2 only in

that r is mapped to r' in o-. The restrictions placed on r' in RQ' codify the operator

substitution routine from F-BINOP in the operational semantics. Therefore, the runtime

always sets r in a way such that the resulting environment satisfies RQ. Additionally,

as the precondition contains no substitutions on inj,(r), Ei trivially satisfies RQ.

" READ-R. Similar to BINOP-R.

* WRITE-R. Similar to BINOP-R.

" ASSERT-R. Stepping (s, E2) does not modify E2. Therefore, 62 = E2. Since the precondi-

tion and postcondition are identical, (EI, E') k r.

" ASSUME-R. Similar to ASSERT-R.

" RELATIONAL-ASSERT-R. Similar to ASSERT-R.

* SEQ-R. I start with inversion on K, { fRP } s { RQ }, which yields F, { RP } si { RR }

and F, { RR } s 2 { RQ }. Applying the induction hypothesis to F, { RP } si { RR }

yields (61, '2) k RR. Applying the induction hypothesis to Fr { RR } S2 { RQ } yields

(E1, E2) RQ.
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* WHILE-R. First, I perform inversion on s. Then, I destruct b. In the case where b is

true, I apply the induction hypothesis to F, { RP A b } s { RP }. This proves that RP

holds after each loop iteration. Upon exiting the loop, -,b trivially holds. In the case

where b is false, the loop does not run and therefore (61, E') trivially satisfies RP A -,b.

* IF-R. First, I perform inversion on s. Then, I destruct b. In the case where b is true, I

apply the induction hypothesis to F, { RP A b } s { RQ }. In the case where b is false,

I apply the induction hypothesis to FR { RP A -,b } { RQ }.

Theorem 4.1 (Preservation).

If p F { RP } s { RQ } and (E1, 62) [- RP and (s, 6i) 4 E' and (S, E2) 4,, E', then (E'i,6') E

RQ

Leto's preservation property states that given a proof in the program logic of a program

s, for all pairs of environments (El, E2) that satisfy the proof's precondition, if the executions

of s under both the reliable semantics and the relaxed semantics terminate in a pair of

environments (E6, E'), then this pair of environments satisfies the proof's postcondition. Note

that this states the partial correctness of the logic and does not establish termination (and

therefore total correctness).

Proof. By induction on the theorem statement:

" STAGE. I first perform inversion on s. Then, I apply Lemma 4.1 to F1 { RP } si { RR }

and Lemma 4.2 to F, { RR } S2 { RQ }.

* SPLIT. I first perform inversion on s, followed by inversion on p F { IP } s s { RQ }.

Then, I apply Lemma 4.1 to F1 { RP } s { RR } and Lemma 4.2 to Fr { RR } s { RQ }.

" SEQ. I start with inversion on p F { P } s { Q }, which yields p F { P } si { R } and

p F { R } s2 { Q }. Applying the induction hypothesis to p F { P } s, { R } yields

(Ei', '2') k R. Applying the induction hypothesis to p F { R } S2 { Q } yields (E', E') k Q.

" WEAK. I start with inversion on p F { RP } s { RQ }. Applying the induction hypoth-

esis to p F { RP' } s { RQ' } yields (E', E') N RQ'. Since RQ' k RQ, (E', E') F RQ.
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" IF. I begin with inversion on s. Then, I destruct b. In the case where inj(b) A inj,(b),

I apply the induction hypothesis to [t F { P A injo(b) A inj,(b) } Is { Q }. In the case

where -,injo(b) A inj,(b), I apply the induction hypothesis to

p F { P A -,inj(b) A inj,(b) } 82 ~ 81 { Q }.

In the case where inj0 (b) A -,inj,(b), I apply the induction hypothesis to

[ F { P A inj,(b) A ,inj,(b) } si S2 { Q }-

In the case where -,injo(b) A -,inj,(b), I apply the induction hypothesis to

p I { P A -,injo(b) A -,inj,(b) } S2 { Q }-

* WHILE. First, I perform inversion on s. Then, I destruct b. In the case where injo(b) A

inj,(b), I apply the induction hypothesis to p F { R A injo(b) A injr(b) } s { R }. This

proves that R holds after each loop iteration. Upon exiting the loop, -iinj(b) A ,inj,(b)

trivially holds. The cases where -iirnjo(b) A inj,(b) and injo(b) A -,inj,(b) are similar to

the previous case. In the case where -,injO(b) A -,inj,(b), the loop does not run in either

execution and therefore (E', E2) trivially satisfies the postcondition.

El

Lemma 4.3 (Right Progress).

If p F, { RP } s { RQ } and (E1, E2) - RP and (s, E2) 4, E'2, then -,failed(e') where

failed((fail,e)) = true

Leto's right progress property states that given a proof in the right rules of a program s,

for all pairs of environments (El, 62) that satisfy the proof's precondition, then if the relaxed

execution of s under [ terminates, then it does not terminate in an error. The right progress

property establishes that a Leto's program of right rules satisfies all of its assert and assume

statements.

Proof. By induction on the theorem statement:



0 ASSIGN-R. Assignment cannot fail.

* BINOP-R. Binary operations cannot fail.

" READ-R. Reads cannot fail.

* WRITE-R. Writes cannot fail.

* ASSERT-R. Stepping (s, E2) produces the environment E' where 62 = E. Since

-,failed(E2 ), -,failed(E') trivially holds.

" ASSUME-R. Similar to ASSERT-R.

" RELATIONAL-ASSERT-R. Similar to ASSERT-R.

" SEQ-R. I start with inversion on F, { RP } s { RQ }, which yields Fr { RP } si { RR }

and Fr { RR } s2 { RQ }. Applying Lemma 4.2 to F, { RP } si { RR } yields (61, 2) 2

RR. Applying the induction hypothesis to F { RP. } si { RR } provides -,failed(E').

Applying the induction hypothesis to Fr { RR } S2 { RQ } yields -,failed(E'2).

* WHILE-R. First, I perform inversion on s. Then, I destruct b. In the case where b is

true, I apply the induction hypothesis to F, { fRP A b } s { RP }.

In the case where b is false, the loop does not run and therefore (E2 = E) trivially

satisfies -,failed(E2 .

Lastly, since (El, E2) RP, the invariant check before the loop cannot fail.

* IF-R. First, I perform inversion on s. Then, I destruct b. In the case where b is true, I

apply the induction hypothesis to F, { RP A b } s { RQ }. In the case where b is false,

I apply the induction hypothesis to Fr { fRP A ,b } s { RQ }.

l

Theorem 4.2 (Progress).

If u F { RP } s { RQ } and (El, 62) - RP and (s, ei) 4 E' and (5, E2) 4p E', then -failed(E')

where failed((f ail, E)) = true
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Leto's progress property states that given a proof in the program logic of a program s, for

all pairs of environments (E1, E2) that satisfy the proof's precondition, if the reliable execution

of s terminates successfully, then if the relaxed execution of s under A terminates, then it

does not terminate in an error. The progress property establishes that a Leto's program

satisfies all of its assert and assume statements - provided that all reliable executions of

the program also satisfy the program's assert and assume statements.

Proof. By induction on the theorem statement:

" STAGE. I first perform inversion on s. Then, I apply Lemma 4.1 to F, { RP } si { RR }

and Lemma 4.3 to F, { RR } S2 { RQ }.

" SPLIT. I first perform inversion on s, followed by inversion on A F- { RP } s ~ s { RQ }.

Then, I apply Lemma 4.1 to F, { RP } si { RR }. Finally, I apply Lemma 4.3 to

F, { RR } S2 { RQ }.

" SEQ. I start with inversion on p F { P } s { Q }, which yields y F { P } si { R } and

p F { R } S2 { Q }. Applying the induction hypothesis to p F { P } si { R } yields

-,failed(E'). Applying the induction hypothesis to p { f } 82 {. Q } yields -,failed(e').

" WEAK. I start with inversion on p F { RP } s { RQ }. Applying the induction hy-

pothesis to p F { RP' } s { RQ' } yields -,failed(E'). Since RP k RP' and RQ' b RQ,

-,failed(E') -+ -,failed(E').

" IF. I begin with inversion on s. Then, I destruct b. In the case where inj(b) A inj,(b),

I apply the induction hypothesis to p F { P A injo(b) A inj,(b) } sI { Q }. In the case

where -,injo(b) A inj,(b), I apply the induction hypothesis to

p F { P A 'njo(b) A fijr(b) } S2 Si { Q }

In the case where injo(b) A ,inj,.(b), I apply the induction hypothesis to

p F { P A injO(b) A ,injr(b) } Si ~ S2 { Q }



In the case where -,inj(b) A --,inj,(b), I apply the induction hypothesis to

p 1  { P A -,injo(b) A -,injr(b) 1 S2 { Q }

WHILE. First, I perform inversion on s. Then, I destruct b. In the case where

injo (b) A inj,(b), I apply the induction hypothesis to p F- { R A inj0 (b) A inj(b) } s { R }.

In the case where injo(b) A ,inj,(b), stepping F - { R A injo(b) A ,inj,(b) } s { R } yeilds

2 where E' = E2. Since -,failed(E2), -ifailed(E') holds as well.

In the -,injo (b)Ainj,(b) case, I apply Lemma 4.3 to p Fr { R A ,injo(b) A injr(b) } s { R }.

In the case where -,injo(b) A -,nj,(b), the loop doesn't run and therefore E2 = E, SO

-,failed(E2) trivially holds.

Lastly, since (C1, E2) k- R, the invariant check before the loop cannot fail.
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Chapter 5

Verification Algorithm

Figures 5-1, 5-2, and 5-3 present the core of Leto's verification algorithm. The algorithm

performs forward symbolic execution to discharge verification conditions generated by assert,

assert_t, invariant, and invariantr statements in the program. The algorithm directly

implements the Hoare-style relational program logic [12] I presented in Chapter 4.

However, unlike the program logic, I present this algorithm over expressions rather than

registers. To translate from the expression representation to the register representation, use

the following algorithm:

1. Enumerate all expressions e1 , ... ,

2. Immediately before the evaluation of ej, construct a register ri and store the result of

evaluating ej in ri.

3. Replace ej in the program with ri.

To translate from the register representation to the expression representation, use the following

algorithm:

1. Enumerate all registers r,. . . , r.

2. For each register ri, generate a variable vi in the reliable memory region.

3. For each register r, replace r, with vi.
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Preliminaries. I denote Leto's verification algorithm by the function XI, which takes as

input a statement s, a list of logical predicates, a, a model specification m, and a verification

mode c. The statement s is the statement to be verified, a is the symbolic context under

which the verification algorithm is invoked, m computes the symbolic representation for an

operation in the execution model.

The control value c E C = {lock, left, right} determines whether or not the algorithm

is performing verification in lockstep mode, left mode, or right mode, respectively. When

performing verification in lockstep, the algorithm models the original and relaxed execution

and executes each one an instruction at a time. In this mode, the algorithm is able to

demonstrate an easy correspondence between the two executions that therefore enables the

algorithm to, for example, transfer assumed properties of the original execution over to verify

the relaxed execution. For both left mode and right mode, the algorithm assumes the two

executions have diverged and, therefore, that there is no simple correspondence between the

two executions. In left mode, the algorithm symbolically evaluates the original execution of

the program, ignoring the verification conditions required for the relaxed execution. In right

mode, the algorithm symbolically evalutes the relaxed execution of the program and checks

the verification conditions that are required of the relaxed execution.

The function vexp(e, m, c) maps a standard unary expression e to a list of constraints

that represent the resulting value in either the original or relaxed execution. For example,

vexp maps a variable reference x to either the variable reference x<o> or x<r> if c equals

left or right, respectively. The function returns a list of constraints because the expression

may reference an operation suffixed with a period, denoting that the operation has a custom

semantics. The list of constraints characterizes the non-deterministic choice of the operation's

implementation. The function uses the model specification m to compute the symbolic

representation for these operations.

The function vbexp(b, m, c) maps a standard unary boolean expression b to a list of

constraints. Its operation is similar to that of vexp.

Assignment. For an assignment statement x=e, the algorithm maps the e to an appropriate

relational expression for both the original and relaxed execution by creating the constraint
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1: function q/ (s, o, m, c) 13: else if (c == right) then
2: match s do 14: Verify(a, or)
3: x = e: 15: end if
4: a,o - (x<o> = vexp(e, m, left)) 16: return a :: join(c, a,, ar)
5: 0r <- (x<r> = vexp(e, m, right)) 17: assertr (br):
6: return a :: join(c, ao, ar) 18: Verify(a, br)
7: assert b,: 19: return a :: br
8: assume b,: 20: sl;s2:
9: o <- vbexp(b, m, left) 21: return XP (s2 , 9 :: T (si, 9, m, c), m, c)

10: o-, 4- vbexp(b,, m, right) 22: end match
11: if (c == lock) then 23: end function
12: Verify(a :: a,, ar)

Figure 5-1: Verification Algorithm (sans Control Flow)

that x in the original (relaxed) execution has the value e. The algorithm then uses the join(.)

function to return a result. The join(-) function joins two constraints into a list depending on

the value of c. If c = lock - denoting the the algorithm is modelling the lockstep execution of

both the original and relaxed executions - then the join includes both constraints. If c = left

or c = right - denoting that the algorithm is modeling the original or relaxed execution,

respectively - then join includes only the first or second constraint, respectively.

Assume and Assert. The algorithm verifies both assert and assume using the same

logical approach. The algorithm first generates the verification conditions for both the

original and relaxed executions, namely that the statement's boolean expression b, is true

(o-, and -r, respectively). The algorithm next considers two cases. In lockstep mode, the

algorithm verifies that the current context - extended with the assumption that the assertion

or assumption is true in the original execution implies that the verification condition holds.

The function Verify(o-i, -2 ) verifies that al implies o 2 (Leto specifically uses an SMT solver to

do so) and halts the execution of the algorithm if the implication does not hold or the solver

is unable to demonstrate that it holds. In right mode, the the algorithm directly verifies

that the current context implies the verification condition. The insight is that unlike in

lockstep mode, the algorithm must verify the relaxed execution independently of the original

execution and, therefore, the algorithm cannot leverage the assumption that the assertion or

assumption is valid in the original execution. In the last step, the algorithm returns the join

of the two verification conditions.
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1: function Q(if (b) {si} else {s 2},0o,m,c) =
2: o-o <- vbexp(b, m, left), o-, - vbexp(b, m, right)
3: if (c == lock) then
4: al +- T(s 1 , o- o :: or, lock)
5: 0-2 +- '(s2, U :: ,o :: ,'r, lock)
6:
7: 0-3 +- '(si, o- :: -O r, left)
8: 0-4 +- T (s 2 , U 3 :: (3 : 1:ar, right)
9:

10: 0'5*- I(S2, :: ,-o :: Orr, left)
11: 96 +- (si, o :: (75:: -'Uo :: Or, right)

12:

13: return (0-1 :: 072 :: 074 :: O6)
14: else if (c == left) then

15: return I(si, o- :: o-o, left)::Q (s 2 , Or :: -,o, left)
16: else if (c == right) then

17: return T(si, 0- :: 0-r, right)::T(S2 , Or :: -0r, right)
18: end if

19: end function

Figure 5-2: If statement verification algorithm

Relational Assert. The algorithm verifies relational assertions under the current context.

If verification fails, then the verification procedure halts. If verification succeeds, then the

algorithm appends the assertion to the context and returns the result.

If. Figure 5-2 presents the algorithm's implementation for if statement verification. The

algorithm has a different implementation for each of the verification modes:

Lockstep. In lockstep mode, the algorithm verifies and generates a symbolic represen-

tation for four different scenarios:

- The original execution and relaxed execution both take the true branch of the

statement, represented by o-.

- The original execution and relaxed execution both take the false branch of the

statement, -2.

- The original execution takes the true branch and the relaxed execution takes the

false branch, (74.
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1: function 4(while (b) (b,) (br) {Sb}, a, m,C) =
2: oo +- vbexp(b, m, left), o, +- vbexp(b, m, right)
3: if (c == lock) then
4: po <- vbexp(bV, m, left), pr <- vbexp(bv, m, right)
5: Verify(o :: po,p: br)
6: oc - o :: po :: pr ::br
7: Verify(IQ (sb, Uc : o :: 0r, m, lock), br :: Po :: Pr)
8: Verify(T (sb, Uc :: Ur, m, right), b, :: pr)
9: return (Uc :: - 0o :: l-rur)

10: else if (c == left) then
11: return a :: (vbexp(b,, m, left) :: ,ao)
12: else if (c == right) then
13: p <- vbexp(b,, m, right)
14: Verify(o-, p :: br)
15: Verify(T (sb, U :: p :: b, :: r, m, right), p :: b,)
16: return (U :: p:: br :: -1ur)
17: end if
18: end function

Figure 5-3: While statement verification algorithm

- The original execution takes the false branch and the relaxed execution takes the

true branch, 96 .

" Left. In left mode, the algorithm need only generate a symbolic representation for the

original execution. The algorithm achieves this by conjoining the results of recursive

calls to T on s, and S2 given the current context.

* Right. In right mode, the algorithm need only generate a symbolic representation and

discharge the verification conditions for the relaxed execution. Similar to that of left

mode, algorithm achieves this by conjoining the results of recursive calls to T on si

and S2-

While. Figure 5-3 presents the algorithm for verifying while loops. The algorithm has a

different implementation for each of the verification modes:

e Lockstep. In lockstep mode, the algorithm considers two cases:

- Both the original and relaxed execution take a step forward together in lockstep

(Line 7).
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- The original execution has finished executing the loop and the relaxed execution

continues its execution of the loop (Line 8).

The implementation first verifies the loop invariants hold given the context (Line 5),

then verifies that after symbolically executing each of the two execution cases that the

loop invariants hold afterwards.

" Left. In left mode, the algorithm returns the symbolic representation of the original

execution of the loop. Because the algorithm assumes that the original program has

been verified to be correct, the resulting symbolic representation is simply the loop

invariant.

" Right. In right mode, the algorithm returns the symbolic representation of the relaxed

execution of the loop. Unlike the original execution, this case requires verifying that

the loop invariant holds at the beginning of the loop (Line 13) and that it holds after

each iteration (Line 15).

5.1 Invariant Inference

Figures 5-4 and 5-5 present Leto's loop invariant inference algorithm. Leto uses Houdini-style

loop invariant inference [17] to reduce the annotation burden on the programmer.

Preliminaries I denote a modified version of Leto's verification algorithm by the function

', which is identical to T except that it ignores calls to the Verify function.

The value r E R = {sat, unsat, unknown} represents the response from the SMT solver

Leto uses. sat indicates that a satisfying assignment exists for all variables in the predicate.

unsat indicates that no satisfying assignment exists for all variables in the predicate. unknown

indicates that the SMT solver cannot determine whether a satisfying assignment exists.

The function Check is identical to the Verify function except that:

" Check(o1 , 0-2 ) does not halt execution if or does not imply 0-2 .

" Check returns a tuple consisting of:
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function INF(while (b) (b,) (br) {Sb}, U, m, C, bpv, bpr) =

o-o +- vbexp(b, m, left), o-, +- vbexp(b, m, right)
if (c == lock) then

p0 +- vbexp(bV, m, left), pr <- vbexp(bv, m, right)

(ri, bfv1, bjr i) <- Check(c :: po, pr :: br)
Oc +- o :: Po :: Pr :: b, :: vbexp(bye, m, left) :: vbexp(bpr, m, right)

(r2, bfv2, bfr2) <- Check(x'(sb, 0c :: U, :: Or, m, lock), br :: po :: pr)
(r37, bfv3, bfr3) - Check('(sb, 0-c :: -ro :: -r, m, right), br :: Pr)
if (r, == unknown V r2 == unknown V r 3 == unknown) then

return WEAKINF(while (b) (true) (true) {sb}, 0, m, C, Po :: Pr br, bpv, bpr)
else if (ri == sat V r2 == sat V r3 == sat) then

bfv + bfv1 U bfv2 U bfv3
bfr + bfri U bfr2 U bfr 3
return INF(while (b) (bv \ bjf) (br \ bfr) {Sb}, , m, C, bpv, bpr)

else

1:
2:
3:
4:
5:
6:

7:

8:
9:

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

m, right), p :: br)

, m, c, p :: br, bpv, bpr)

, m, c, bpv, bpr)
else

return (bv, br)
end if

end if
end function

Figure 5-4: Strong Inference Algorithm
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return (bv, br)
end if

else if (c == right) then
p <- vbexp(bv, m, right), ppv +- vbexp(bpv, m, right)

(ri, bfv i, bfr i) <- Check(o-, p :: br)
(r2 , bfv2, bfr2) <- Check(Q'(sb, 0 :: p :: br :: Ur :: pp,
if (rl == unknown V r2 == unknown) then

return WEAKINF(while (b) (true) (true) {sb}, C
else if (r, == sat V r2 == sat) then

b ÷- bfv1 U bfv2U

bfr + bfrl U bfr2 U
return INF(while (b) (bv \ bjv) (br \ bfr) {Sb}, U



1: function WEAKINF(while (b) (b,) (br) Sb}, 0), m, C, bcv, bcr7 bpv, bpr) =
2: match be, do
3: bh :: b'Cv:
4: if (c == lock) then

5: p, +- vbexp(bv,, m, left) :: vbexp(bh, m, left)
6: Pr +- vbexp(bv, m, right) :: vbexp(bh, m, right)
7: (ri, bv1, bfbr 1) +- Check(o :: Po, Pr)
8: U- <- - :: p, :: Pr :: vbexp(bpv, m, left) :: vbexp(bpr, m, right)
9: (r2, bfv2, bfr2) +-Check(4'(Sb, Oc ::Uo :: 0r, m, lock), po :: pr)

10: (r3, bf v3, bfr3) +- Check(P'(sb, c ::-, :: Ur, m, right), pr)
11: if (r1 == unsat A r 2 == unsat A r 3 == unsat) then
12: return WEAKINF(while (b) (bh :: bv) (br) 1sb}, U, m, c, b'c; bcr, p bpr)
13: else return WEAKINF(while (b) (bv) (br) 1sb}, U, m7 C, ' bcr bpr)
14: end if
15: else if (c == right) then

16: p +- vbexp(bv, m, right) :: vbexp(bh, m, right), Ppv +- vbexp(bpv, m, right)
17: (ri, bv1, br1) <- Check(-, p)

18: (r 2 , bfv 2 , bfr2) +- Check(x'(Sb, U :: p :: Ur :: ppv, m, right), p)
19: if (r, == unsat A r2 == unsat) then

20: return WEAKINF(while (b) (bh :: bv) (br) {sb}, or, m, C, b'v, bcr , bpv bpr)
21: else return WEAKINF(while (b) (bv) (b,) 1sb}, o,, m, c, b'cv, bcr, bp, bpr)
22: end if
23: end if
24: []:
25: match bcr do

26: []: return (bv, br)

27: bh :: b'r:
28: if (c == lock) then
29: pa +- vbexp(bV,m, left), Pr <- vbexp(bv, m, right)
30: (rl, bfv 1, bfr1) <- Check(- ::po, br :: bh :: pr)
31: O-c +- o Po :: Pr :: br :: bh :: vbexp(bpv, m, left) :: vbexp(bpr, m, right)
32: (r2, bfv2, bfr2) + Check('f(Sb,Uo :: Uo :: Ur, m, lock), po :: pr :: br :: bh)
33: (T3, bfv3, bf r3) +- Check(A'(sb,Uo :: -U, :: Or, m, right), pr :: br :: bh)
34: if (r, == unsat A r2 == unsat A r 3 == unsat) then
35: return WEAKINF(while (b) (bv) (br :: bh) {sb}, o-, m, c, bc, bcr, bpv, bpr)
36: else return WEAKINF(while (b) (b,) (br) Sb}, a, m, c, bcv, bcr , bp, bpr)
37: end if
38: else if (c == right) then
39: P +- vbexp(bv, m, right), pv <- vbexp(bpvm, right)

40: (rl,bfvl,bfri) +- Check(o,,p:: br :: bh)
41: (r2 , bfv 2 , bfr2) < Check('(Sb, - :: p :: br :: bh :: o :: ppv, m, right), p :: br :: bh)
42: if (r, == unsat A r 2 == unsat) then
43: return WEAKINF(while (b) (bv) (br :: bh) {Sb}, a, m, C, bcv, bcr, bPv, bpr)
44: else return WEAKINF(while (b) (bv) (br) sb, U, m, c, bcv, bcr, bpv, bpr)
45: end if
46: end if
47: end match

48: end match

49: end function

Figure 5-5: Weak Inference Algorithm
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- An SMT result r E R.

- A set of false conjuncts from the loop invariant b,.

- A set of false conjuncts from the relational loop invariant br.

Strong Inference. Figure 5-4 presents the strong inference algorithm. Before checking a

loop, Leto assembles the candidate invariants

b PV

br pr A ( A x = xo)
\Evas

where p, is the invariant for the immediate parent loop or function, Pr is the relational

invariant for the immediate parent loop or function, and vars is the set of program variables

currently in scope.

Leto replaces the programmer provided invariants in the loop with b, and br and invokes

the INF function. It also provides the INF function with the programmer provided invariant

as b, and the programmer provided relational invariant as br. Leto uses these invariants as

assumptions during the inference process. The algorithm has a different behavior for each of

the verification modes:

9 Lockstep. The beginning of the lockstep algorithm (Lines 4 through 8) is similar to

the lockstep case for while loop verification, but I've replaced all invocations of Verify

with invocations of Check and all applications of T with applications of T'.

The algorithm proceeds in three possible ways based on the results of the Check function:

- If any of the three Check results is unknown, then Leto falls back on its weak

inference algorithm (Line 10).

- If any of the three Check results is sat, the INF function recurses with false

conjuncts removed from b, and b, (Lines 12 through 14).

- If all three of the Check results are unsat, then the algorithm has converged on a

set of invariants and returns (bv, b,) (Line 16).

69



" Left. In left mode Leto does no invariant inference due to the fact that Leto does not

verify loop invariants in left mode.

" Right. The beginning of the right algorithm (Lines 19 through 21) is similar to the

right case for while loop verification, but I've replaced all invocations of Verify with

invocations of Check and all applications of T with applications of T'.

The algorithm proceeds in three possible ways based on the results of the Check function:

- If any of the two Check results is unknown, then Leto falls back on its weak

inference algorithm (Line 23).

- If any of the two Check results is sat, the INF function recurses with false conjuncts

removed from b, and b, (Lines 25 through 27).

- If both of the Check results are unsat, then the algorithm has converged on a set

a invariants and returns (bV, b,) (Line 29).

Weak Inference. Figure 5-5 presents the weak inference algorithm. Leto falls back on

this algorithm when any call to the SMT solver returns unknown. While the strong inference

algorithm iteratively prunes a set of candidate invariants, the weak inference algorithm builds

up a set of invariants one at a time from a set of candidates. This is inherently weaker than

the strong inference algorithm as it cannot always infer invariants that depend on other

invariants. The WEAKINF function takes these candidates as parameters (bc, for standard

invariants and bc, for relational invariants) in addition to the loop to perform inference over

and the programmer provided invariants for that loop.

The weak inference algorithm operates in three stages:

9 Standard invariant inference (Lines 4 through 23). Leto adds the head of the

standard candidate invariant list (bh) to the loop invariant then proceeds differently

depending on the verification mode:

- Lockstep. The beginning of the lockstep algorithm (Lines 5 through 10) is similar

to the lockstep case for while loop verification, but I've replaced all invocations of
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Verify with invocations of Check and all applications of T with applications of 4"

and added the head of the candidate invariant list at each step.

The algorithm proceeds in two possible ways based on the results of the Check

function:

* If all three of the Check results are unsat, then the algorithm recurses with bh

appended to b, and the tail of b, as the candidate invariant list (Line 12).

* If any of the three Check results are not unsat, then the algorithm discards

the candidate invariant and recurses (Line 13).

- Left. In left mode Leto does no invariant inference due to the fact that Leto does

not verify loop invariants in left mode.

- Right. The beginning of the right algorithm (Lines 16 through 18) is similar to

the right case for while loop verification, but I've replaced all invocations of Verify

with invocations of Check and all applications of AD with applications of ' and

added the head of the candidate invariant list at each step.

The algorithm proceeds in two possible ways based on the results of the Check

function:

* If both of the Check results are unsat, then the algorithm recurses with bh

appended to b, and the tail of b, as the candidate invariant list (Line 20).

* If any of the two Check results are not unsat, then the algorithm discards the

candidate invariant and recurses (Line 21).

* Relational invariant inference (Lines 28 through 46). After exhausting the

standard candidate invariant list, Leto iterates through the relational candidate invariant

list. This process is identical to the previous stage but uses bc, in place of b,,.

* Base case (Line 26). When no candidate invariants remain, WEAKINF returns the

pair of invariants (br, br).
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5.2 Implementation

Leto generates constraints to be solved by Microsoft's Z3 SMT solver. My system makes

use of Z3's real, int, and bool types as well as uninterpreted functions for matrices. As

such, my system does not necessarily generate a set of constraints for which Z3 is complete.

The practical impact of this design is that it is possible for Z3 to be unable to verify valid

constraints. Leto provides support for mapping matrices of statically known size to Z3's

nlsat solver, which is complete. However, even without this technique, I have been able to

successfully verify critical fault tolerance properties for several applications as presented in

the following chapters.
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Chapter 6

Case Studies

I present four benchmarks that I implemented and verified using Leto and include the results

in Figure 6-1. For each benchmark I present the number of lines of code (not including

comments or empty lines), the number of annotations I added manually, the number of

invariants Leto inferred, the time it took each benchmark to run, the maximum memory

usage during verification, and the number of constraints generated.

6.1 Benchmarks and Properties

Jacobi Iterative Method. I verify the Jacobi benchmark as presented in Chapter 2 under

the single event upset (SEU) error model I presented in Figure 1-1. Specifically, I verify that

the impact of errors on the intermediate solution vector is bounded.

Self-Correcting Connected-Components (SC-CC). SC-CC is an iterative algorithm

for computing the connected subgraphs in a graph where each iteration consists of a faulty

Benchmark LOC Manual Invariants Time (s) Memory Usage Constraints
Annotations Inferred (kbytes) Generated

Jacobi 57 25 29 9.79 32048 4948
SS-CG 163 26 32 11.51 36696 7554
SS-SD 59 12 0 0.62 25552 418
SC-CC 92 33 43 573.18 95500 10258

Figure 6-1: Benchmark Verification Effort and Runtime Characteristics
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initial computation step followed by a correction step [551. I verify that after each iteration

all program state variables are equal across both executions. That is, I verify that all errors

are detected and corrected. I verify this property under an error model that allows for faulty

writes in the storage vector for the next iteration so long as the errors are large enough to

trigger the detector, in contrast the SEU model (Figure 1-1) which places an upper bound on

error magnitude. I allow an unbounded number of these errors. I present this error model in

Figure 6-2. Additionally, I present a more detailed analysis of SC-CC in Chapter 7.

Self-Stabilizing Conjugate Gradient Descent (SS-CG). SS-CG is an iterative linear

system of equations solver that employs a periodic, reliable correction step to repair state

variables [54]. I verify under the SEU error model from Figure 1-1 that errors are sufficiently

small such that the algorithm does not diverge, and that the correction step can be performed

reliably using instruction-level duplication, or dual modular redundancy (DMR). I present a

more detailed analysis of SS-CG in Chapter 8.

Self-Stabilizing Steepest Descent (SS-SD). SS-SD is another iterative linear system

of equations solver that employs a periodic, reliable correction step [54]. I verify only the

correction step, and show that DMR can be used to perform the reliable step under the SEU

error model presented in Figure 1-1. I present a more detailed analysis of SS-SD in Chapter 9.

6.2 Verification Effort

Columns 3 and 4 of Figure 6-1 detail the annotation overhead Leto imposes on the programmer.

For each benchmark, I present the number of manual annotations, and the number of invariants

Leto was able to infer. Manual annotations include loop invariants, assertions, and function

requirements. I consider each conjunct a separate annotation when counting inferred invariants

and manual annotations.

I significantly reduce the number of invariants I must provide using inference in all but

one benchmark. In half of the cases I infer more invariants than I provide. The uninferred

invariants fall into two categories:
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1 const int min _error = ... ;
2 @region(unreliable) write(xl, x2) ensures (xl == x2);
3 @region(unreliable) write(xl, x2) ensures (x2 + minerror < x1);

Figure 6-2: Large Errors Execution Model

" Unsupported Invariants. Invariants that are not of the form eq(x) or are not

present in a parent loop or function can not be inferred as Leto does not add them to

the set of candidate loop invariants. Expanding the set of candidate loop invariants

requires additional heuristics that generate probable loop invariants from a template.

" Dependant Invariants. When Leto falls back on weak inference, which is not

uncommon due to the fact that many candidate invariants require incomplete Z3 solvers

to solve, invariants that depend on the presence of other inferred invariants become

order dependant. That is, inference becomes sensitive to the order in which candidate

invariants are tested. Leto does not expose a way to reorder these candidate invariants

and as such the default ordering (which largely depends on the C++ string hash

function) sometimes results in Leto rejecting valid candidates.

I infer no invariants for SS-SD as the inference process very quickly runs out of memory

on my machine and therefore I must disable inference on all loops in that benchmark. I

believe this issue could be resolved by monitoring the memory usage of the Z3 subprocess,

killing the process if it consumes too much, and falling back on my weak inference algorithm.

6.3 Runtime Characteristics

Columns 5 through 7 of Figure 6-1 present the runtime performance characters of the Leto

C++ implementation. For each benchmark I present the time it took to run in seconds, the

maximum memory usage in kilobytes, and the number of constraints generated for use with

Z3. I ran my experiments on an Intel i5-5200U CPU clocked at 2.20GHz with 8 GB of RAM.
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1 bool stuck = false;
2 bool unstuck = false;
3
4 operator*(xl, x2) when (!stuck)

5 ensures (result == x1 * x2);

6 operator*(xl, x2) when (!unstuck)

7 modifies (stuck) ensures (stuck);
8 operator*(xi, x2) when (stuck && !unstuck)
9 modifies (stuck, unstuck)

10 ensures (result == x1 * x2)

11 ensures unstuck && !stuck;

Figure 6-3: Multicycle Error Execution Model

6.4 Execution Models

Leto supports first class, developer provided execution models with arbitrary semantics.

However, I have focused exclusively on a single model until this point. Therefore, as an

illustration of the expressitivty of Leto's execution model language, I present two additional

execution models: one with large errors (Figure 6-2) and one with multicycle fault semantics

(Figure 6-3).

Large Errors. I present the large errors execution model in Figure 6-2. Both operator

specifications cover variables stored in the unreliable memory region. Line 2 specifies a

reliable write operator while Line 3 specifies a faulty write operator. The faulty write operator

allows for errors so long as they are larger than minerror. Developers may use this model

as an approximation for rowhammer attack errors. I explore this possibility in Chapter 7.

Multicycle Errors. A multicycle error is an error state in which multiple consecutive

instructions experience errors. Huang and Wen [22] have demonstrated that these errors

make up a significant percentage of all soft errors. In Figure 6-3 I demonstrate a single

multicycle error and track the state of this error through the use of model variables stuck

and unstuck.

Line 4 describes a reliable multiplication implementation that the model may use when

stuck. This property holds both before, and after a multicycle error.

Line 6 encodes an operator that the model may use during, or to start a multicycle error.
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The model may substitue this operator so long as a multicycle error has not occurred and

resolved before the current instruction (!unstuck). In other words, the model may use it

only to start a multicycle error for the first time or to continue an ongoing mutlicycle error.

The operator sets stuck and puts no restriction on result, therefore allowing unbounded

errors.

The model may use the operator on Line 8 only to mark the end of an ongoing multicycle

error (stuck && !unstuck). It sets unstuck, ! stuck, and returns a reliably computed

product of x1 and x2. After substituting this operator the model may only use the first

operator (Line 4) as it is the only one that does not require ! unstuck.

Together, these operators ensure that at some point the system may be stuck experiencing

faults on all instructions, but at a later point it may unstick after which all execution is

reliable. A full multicycle error specification would define the other operator types similarly,

using the same two model variables.

77



78



Chapter 7

Self-correcting Connected

Components

Figure 7-2 presents an implementation of self-correcting connected components (SC-CC) [55],

an iterative algorithm that computes the connected components of an input graph. A

connected component is a subgraph in which every pair of vertices in the subgraph is

connected through some path, but no vertex is connected to another vertex that is not also

in the subgraph.

The standard connected components algorithm begins by constructing a vector CC0

and initializing this vector such that Vv. CC0 [v] = v. Then, on iteration i for each node v

the algorithm looks up the value of each of v's neighbors in CC'- and sets CC'[v] to the

minimum of its neighbors and CCi-[v]. In other words,

CC'[v] = min CC'l[j] (7.1)
jEA(V)

where .A(v) is the union of v and the neighbors of node v. The algorithm iterates this process

until no elements in CC are updated at which point it has converged.

Self-correcting connected components adds an additional step of checking CC' after each

iteration to verify that it is valid and has not been corrupted by memory errors. If an error

is detected at CC [v], the computation for node v is repeated with reliably backed storage.

In my implementation I allow errors when writing CC' so long as the errors are sufficiently
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const real maxN = .. ;

propertyr vecbound(matrix<uint> V, uint i)

forall(uint j)((O <= j < i<o>) -> (V<o>[j] <= j));

property-r large-errorr(matrix<uint> V, uint i)

forall(uint j)((O <= fi < i<r>) ->
(V<r>[j] == V<o>[j] 11 j < V<r>[j]));

propertyr outerspec(uint to, uint N,

matrix<uint> CC,
forall(uint fi)((O <= fi < to) ->

(forall(uint fj)((O <= fj < N &&
nextCC[fi] <= CC[fj]) &&

next_CC[fi] <= CC[fi] &&
(exists(uint ej)(nextCC[fi] ==

adj[fi][ej] == 1) 11
nextCC[fi] == CC[fi])));

matrix<uint> nextCC,

matrix<uint> adj)

adj[fi][fj] == 1) ->

CC[ej] && 0 <= ej < N &&

propertyr innerspec(uint to, uint v, uint N, matrix<uint> next_CC,
matrix<uint> CC, matrix<uint> adj)

forall(uint fi)((0 <= fi < to && adj[v][fi] == 1) ->
nextCC[v] <= CC[fi]) &&

nextCC[v] <= CC[v] &&
(exists(uint ei)(nextCC[v] == CC[ei] && 0 <= ei < N &&

adj[v][ei] == 1) 11

next_CC[v] == CC[v]);

Figure 7-1: Constant and Properties for Self-Correcting Connected Components
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matrix<uint> cc(uint N, matrix<uint> adj(N, N))
requires N < max.N
requires-r eq(adj) {

matrix<uint> CC(N);
@region(unreliable) matrix<uint> nextCC(N);

for (uint v = 0; v < N; ++v) invariantr vecbound(CC, v) {CC[v] = v;}
uint Ns = N;

Onoinf while (O < N-s)
invariant N < max_N
invariantr vec-bound(CC, N)
invariant-r eq(N) && eq(adj) && eq(N-s) && eq(CC) {

nextCC = CC;
N_s = 0;

for (uint v = 0; v < N; ++v)
invariantr vec-bound(next _CC, N)
invariantr large-error-r(nextCC, N)
invariant-r forall(uint fi)((v<o> <= fi < N<o>) -> nextCC<o>[fi] == CC<o>[fi])
invariantr outerspec(v<o>, N<o>, nextCC<o>, CC<o>, adj<o>) {

for (uint j = 0; j < N; ++j)
invariant v < N && N < max_N
invariantr forall(uint fi)((v<o> < fi < N<o>) -> nextCC<o>[fi]
invariantr inner-specQj<o>, v<o>, nextCC<o>, CC<o>, adj<o>)
invariant eq(j) {

if (CC[j] < nextCC[v] && nextCC[v] <= v && adj[v[j] == 1) {
nextCC[v] = CC[j];

}
}

== CC<o>[fi])

matrix<uint> correctednextCC(N);
for (uint v = 0; v < N; ++v)

invariant-r outerspec(v<r>, N<r>,
correctednextCC<r>, CC<r>, adj<r>)

invariant-r eq(v) && eq(Ns)
invariant-r forall(uint fi)C(O <= fi < v<r>) ->

(correctednextCC<r>[fi] == correctednextCC<o>[fi])))
invariant-r vec-bound(nextCC, N)
invariantr large-error-r(nextCC, N)
invariantr outerspec(N<o>, N<o>, nextCC<o>, CC<o>, adj<o>) {

correctednextCC[v] = nextCC[v];
if (v < corrected nextCC[v]) {
correctednextCC[v] = CC[v];
for (uint j = 0; j < N; ++j)

invariant v < N && v < nextCC[v]
invariantr innerspec(j<r> , v<r>, corrected_next-CC<r> CC<r>, adj<r>) {

if (CC[j] < corrected nextCC[v] && adj[v][j] == 1) {
corrected-next-CC[v] = CC[j];

}
}

if (correctednextCC[v] < CC[v]) {++Ns;}

}
CC = correctednextCC;

}
return CC;

Figure 7-2: Self-Correcting Connected Components
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large. Therefore, I consider CC' to be valid if Vv. 0 < CC'[v] < jVI and in all other cases I

correct the invalid positions. When this property holds, I can be sure that after each iteration

CC<o> == CC<r>, even though intermediate values may differ during faulty execution.

The original SC-CC algorithm described by Sao et al. contains an additional data structure

P* and permits a larger class of errors than my implementation does. However, this flexibility

comes at a cost: the original algorithm is not guaranteed to converge. As such, I modified

the algorithm to prove strong convergence properties not offered by the original.

Self Correction. SC-CC is self correcting. This means that given some valid state, SC-CC

can correct errors encountered during each iteration. In this case, if an error occurs at

iteration i, CC' can be corrected using data from CCi-1. Therefore, CC for the previous

iteration must always be stored correctly. This is weaker than self-stabilizing algorithms

which may correct themselves from any state and do not rely on certain state elements

remaining uncorrupted.

7.1 SC-CC Implementation

The overall structure of the SC-CC implementation is as follows:

" Initialization. The cc function takes a description of a graph in the form of an

adjacency matrix (adj). It then declares and initializes CC, which holds the result of

the previous iteration. It also declares next_CC, which holds the result of the current

iteration, in the unreliable memory region.

" Outer while loop (Line 10) The outer while loop computes the next iteration of CC.

It converges when the algorithm makes no changes to CC over the course of a single

iteration.

" Faulty step (Line 18) The faulty step computes Equation 7.1 element-wise over

nextCC. The inner loop allows errors during writes to nextCC, which will be corrected

in the correction step.
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* Correction step (Line 36) The correction step computes correctednextCC by

detecting errors in nextCC. If no error has occurred at index v, the implementation

reliably copies nextCC [v] to correctednextCC [v]. Otherwise, the implementa-

tion reliably computes correctednextCC[vi using Equation 7.1. After computing

correctednextCC, the implementation sets CC equal to correctednextCC and

begins the next iteration.

Constants and Properties. My SC-CC implementation uses the following constants and

properties, found in Figure 7-1:

" maxN (Line 1). This constant bounds the maximum number of nodes an input graph

may contain.

" vecbound (Line 3). This property takes a vector V and an index i and stipulates

that V j < i<o>. V<o>[j] < j.

" largeerror-r (Line 6). This property takes a vector V and an index i and asserts

that V j < i<r>. V<r> [j] = V<o> [j] V j < V<r> [j].

" outer spec (Line 10). This property takes an index to, a size N, a vector nextCC,

a vector CC, and an adjacency matrix adj. It ensures that every element of nextCC

from index 0 to index to (exclusive) satisfies Equation 7.1.

" inner spec (Line 20). This property takes an index to, an index v, a size N, a vector

nextCC, a vector CC, and an adjacency matrix adj. It ensures that nextCC [vi

satisfies Equation 7.1 up to the neighbor at index to. That is,

nextCC[v] = min CC[j]
jE.N(v, to)

where .A(v, to) is the union of v and the neighbors of node v up to (but not including)

nodes with the id to.

Error Model. I evaluate SC-CC under the large errors fault model presented in Figure 6-2.

This model provides two implementations for the write operator in the memory region
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unreliable. The first implementation is fully reliable while the second allows for errors so

long as they are larger than the programmer specified constant minerror.

I use this fault model that allows only faulty writes because it captures all possible

rowhammer attacks over high order bits in the elements of nextCC. A rowhammer attack

allows an attacker to selectively flip bits in DRAM by issuing frequent reads on DRAM

rows surrounding the row under attack [26]. This drains capacitors in the attacked row and

therefore permanently flips bits in that row. As empty capacitors may indicate a 0 or 1

depending on location on the chip, this attack does not always flip bits from 1 to 0. Although

researchers have devised protections to address rowhammer attacks [25, 26], the JDEC Solid

State Technology Association did not include these protections in the DDR4 standard [2]

and Mark Lanteigne has demonstrated rowhammer attacks on some DDR4 memory [29].

Given that some regions of memory may be more vulnerable to rowhammer attacks than

others [261, I place nextCC in an unreliable region prone to attacks (Line 5) and all other

variables in reliable memory.

Although the semantics of Leto over this fault model allow errors only at the site of

memory writes, I demonstrate that this captures all possible rowhammer attacks over high

order bits in next_CC by breaking my implementation into regions in which rowhammer

errors may occur and demonstrating that errors in those regions are equivalent to errors the

fault model may inject in conjunction with the set of invariants I have provided.

" Lines 4-10. This region consists of everything up to the outer while loop. This region

does not modify nextCC in any way and the outer while loop puts no constraints on

nextCC. Therefore, Leto permits unbounded errors to nextCC in this region.

" Lines 15-18. This region consists of the initialization code between the top of the

outer while loop and the middle faulty for loop. Leto captures rowhammer errors in

this region through the constraints generated from the full vector copy on Line 15.

That is, rowhammer errors encountered in high order bits after the vector copy exhibit

behavior captured by the constraints generated during the vector copy as these errors

are at least as large as minerror and are permanent.

" Lines 24-30. This region includes everything in the middle faulty loop. I break
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rowhammer errors encountered in this region into three categories based on whether

they modify elements before, during, or after they are updated:

- Before update. Errors that occur before the conditional on Line 29 are preserved

as these errors will cause the conjuct nextCC [v] <= v to evaluate to false. This

case is identical to the case where an error during the copy on Line 15 causes an

error at this element.

- During update. Errors that occur after checking the condition but before

updating nextCC on Line 30 are instantly clobbered by the update and can

therefore be ignored.

- After update. Errors that occur after the faulty update are equivalent to errors

incurred during the faulty write step on Line 30.

" Line 35. Rowhammer errors that occur after exiting the faulty outer loop but before

entering the outer correction loop are consistent with the large errorr (nextCC, N)

invariants on Lines 20 and 43 and Leto therefore considers the vectors that would result

from these errors as valid.

" Lines 46-58. This region includes the outer correction loop. Errors in nextCC can

occur before, or after the copy on Line 45. If a rowhammer error occurs in an element

before that element is copied into correctednext CC, it will be detected by the if

statement on the following line, thus triggering the correction step. If the error to that

element occurs after it has already been copied it has no impact as the implementation

does not reference that element again until the next outer while iteration at which point

it is overwritten. Additionally, the largeerror_r (nextCC, N) invariant includes

the class of errors experienced through high order bit rowhammer bit flips, so there are

no unforeseen consequences spanning multiple loop iterations.

* Line 58 and Line 60 These two lines do not depend on nextCC so any rowhammer

errors the implementation experiences here have no impact on the program. Additionally,

the implementation overwrites any errors on nextCC in the next loop iteration. Finally,
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the outer while loop places no restrictions on nextCC so Leto finds any errors over

the vector to be valid.

7.2 Specification

I use Leto's specification abilities to verify the error detection, self-correction, and convergence

properties of SC-CC.

Perfect Error Detection. To verify that this SC-CC implementation detects all errors,

the developer must verify that N < max_N, where N is the number of nodes in the input

graph and maxN is a programmer specified value bounding the maximum graph size a calling

function may provide. The developer must also ensure that maxN is less than the magnitude

of the largest error they expect to encounter. This property ensures that any error will be

larger than N, which in turn ensures that all errors are detected as errors result in invalid

values that are easily detected. I specify this property as a unary prerequisite to calling the

cc function on Line 2. I also specify this property as unary invariants that must hold before

and after each loop iteration on Lines 11 and 25. Although not explicitly stated, Leto infers

this invariant for the loop on Line 18.

Error detection also requires that impact of errors on nextCC<r> is large enough to be

detected. Specifically, it is necessary that

Vi. nextCC<r>[i] > i V nextCC<r> == nextCC<o>.

This property ensures that for every element e of nextCC<r> at index i, e is in one of two

states:

* Detectable Error. When e > i, e violates the property that every element of CC

does not increase from its initialization value. This error is trivially detected by the

check in the conditional on Line 46 of the correction step.

" Equality. When e = next_ CC<o>[i], e is correctly computed.
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Note that e can not be in a state where it contains an undetectable error. Loop invariants on

Lines 20 and 43 (large errorr(nextCC, N)) ensure this property.

The final property I require to ensure that my implementation has perfect error detection

is that adj <o> == adj <r>. This property asserts that the graphs both executions operate

over are equivalent, and unable to experience errors. I enforce this property by specifying it

as a requirement to call the cc function on Line 3. On all loops I either explicitly specify

eq(adj), or Leto infers it.

Self-Correction. To verify that my SC-CC implementation is self correcting, I first verify

that every element of nextCC<o> satisfies Equation 7.1. I capture this with the outer_ spec

property application on Line 22 and the innerspec property application on Line 27. Both

of these properties capture the semantics of the min operator. After exiting inner faulty

loop (j == N), innerspec(j<o>, v<o>, nextCC<o>, CC<o>, adj<o>) is equivalent to

Equation 7.1 at index v. Similarly, after exiting the outer loop (v == N), the application

outer spec(v<o>, N<o>, nextCC<o>, CC<o>, adj<o>) is equivalent to Equation 7.1 at

all indices, or

Vv. CC [v] = min CC-l[j].
jeg(v)

The same two properties (outerspec and inner_spec) are applied in the same fashion

with correctednextCC<r> in place of nextCC<o> (Lines 37 and 50 respectively) to

specify that correctednextCC<r> also satisfies Equation 7.1 at all indices.

I pass the specification of nextCC<o> into the correction loop on Line 44 where Leto

combines it with the specification of correctednextCC<r> to prove that

Vi < v<r>. correctednext_CC<r> [i] == correctednext_CC<o> [i],

stated on Line 40.

Finally, with the assignment CC = correctednextCC Leto can verify the outer loop

invariant eq(CC) (Line 13) thus proving that my implementation is self correcting.
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Convergence Equality. Given that my SC-CC implementation is self correcting and

detects all errors, it is trivial to see that both executions converge in the same number of

iterations. That is, the outer while loop (Line 10) must run in lockstep. To demonstrate this

fact to Leto I use the eq(N-s) invariant on Lines 13 and 39.

N_s itself is updated in two places:

" Line 16. I set Ns to 0 at the top of the outer loop. As Ns is stored in reliable

memory, it is clear that Ns<o> == Ns<r>.

" Line 56. I increment Ns at this location if corrected nextCC [v] < CC [v]. From

the surrounding loop invariants Leto knows that

correctednextcc<o>[v<o>] == correctednextCC<r>[v<r>]

and

CC<o>[v<o>] == CC<r>[v<r>]

so the if statement must execute in lockstep. Therefore, if Ns was equal across both

executions before the if statement, then it is equal afterwards as the increment to N_s

is performed reliably.

Leto realizes that N-s is equal across both executions after both assignments and therefore

eq(Ns) must hold in both loop invariants. This forces the outer while loop into a lockstep

execution and proves that convergence time is equal under relaxed and reliable execution

semantics.

7.3 Verification Approach

I next demonstrate how the developer works with Leto to verify that the implementation

meets these specifications.

Precondition. The verification algorithm begins with the preconditions on cc. The

precondition stipulates that N be less than maxN and that the graph be equal across both
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executions (eq(adj)). Leto adds these preconditions as assumptions to its context.

Initialization On Line 7 I initialize the CC vector such that Vv. CC[v] = v. The loop

invariant verifies that all elements with index v in CC are between 0 and v. This property is

critical in the detection of errors and must hold for CC after each iteration of the connected

components algorithm.

Outer Loop The loop on Line 10 runs the iterative portion of the algorithm. The loop

enforces the critical invariants vecbound(CC, N), which ensures that Vv. CC [v] < v, and

eq(CC). It also contains the invariant eq(Ns), which ensures that the loop runs in lockstep.

Lastly, it enforces the invariants eq(N) and eq(adj) which ensure that the input graph is

identical across both executions.

The loop also sports the Onoinf annotation, which disables inference over this loop. I

disable inference on this loop because the inference algorithm's time complexity is exponential

in the depth of nested loops.

Faulty Middle Loop. Verification then proceeds to the faulty middle loop on Line 18.

This loop contains the following invariants:

" vec__bound(next_CC, N) . This invariant enforces that elements of nextCC<o> are

bounded by their respective indices. This fact is important to pass on to the correction

step as it implies that the original execution never runs the inner correction loop.

" large error_r (nextCC, N). This invariant enforces that errors to nextCC<r>

are large enough to be detected. It enables the implementation to detect and correct

all errors during the correction step.

" forall(uint fi)((v<o> <= fi < N<o>) -> nextCC<o>[fi] == CC<o>[fi]).

This invariant states that elements in nextCC that the implementation hasn't yet

updated are still equal to CC. This is necessary as it communicates to Leto that if an

element is not updated on this iteration, then it is already the minimum of its neighbors.

89



* outerspec(v<o>, N<o>, nextCC<o>, CC<o>, adj<o>). This invariant specifies

the contents of next_CC<o>. I use it to pass information about next_CC<o> on to the

correction step.

Faulty Inner Loop. Verification then continues to the loop on Line 24, where it encounters

the following invariants:

. v < N. This invariant bounds v so that Leto knows that the vector accesses within this

loop are in bounds.

" N < maxN. This invariant bounds the maximum size of the graph so that Leto knows

that errors are larger than the maximum graph size and are therefore detectable.

" forall(uint fi)((v<o> < fi < N<o>) -> next_CC<o>[fi] == CC<o>[fi]).

This invariant serves to pass on that although the implementation may have altered

next_CC<o> [v<o>], the other elements that Leto previously knew were equal to CC<o>

in the middle faulty loop are still equal to CC<o>.

" innerspec Qj<o>, v<o>, next_CC<o>, CC<o>, adj<o>). This invariant specifies

the contents of next_CC<o> [v<o>]. It serves only to pass this information on to the

outer loop so Leto may verify the outerspec invariant in that loop.

" eq(j). This invariant states that j<o> == j<r>. It informs Leto that this loop must

run in lockstep. Leto can not infer this property because it falls back to weak inference

on this loop, eq(j) is a candidate invariant before eq(N), and eq(j) does not hold if

N<r> != N<o>.

Correction Middle Loop. Verification next proceeds to the loop on Line 36. This loop

contains the following invariants:

* outerspec(v<r>, N<r>, corrected_next_CC<r>, CC<r>, adj<r>). This invari-

ant specifies the contents of corrected_next_CC<o>. Leto combines it with the other

outerspec invariant to verify corrected_next_CC<o> == corrected_nextCC<r>

after exiting the loop.
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" eq(v). This invariant states that v<o> == v<r>. It informs Leto that this loop must

run in lockstep. Leto can not infer this property because it falls back to weak inference,

is a candidate invariant before eq(N), and does not hold if N<r> = N<o>.

" eq(Ns). This invariant states that N s<o> == N_s<r>. Although it is a candidate

for inference, Leto falls back on weak inference for this loop. As it depends on proving

eq(correctednextCC), which itself is a complicated invariant depending on many

other invariants, weak inference is not capable of inferring this invariant. Leto uses this

invariant to relay the information that N-s is equal across both executions to the outer

loop.

" forall(uint fi)(((O <= fi < v<r>) ->

(correctednextCC<r>[fi] == correctednextCC<o>[fi]))). This invari-

ant states that elements in correctednextCC that the implementation has updated

are equal across both executions. This allows Leto to prove eq(CC) at the end of the

outer while loop.

" vec_bound (next _CC, N). This invariant enforces that elements of nextCC<o> are

bounded by their respective indices. This implies that the original execution never

runs the inner correction loop. Therefore, Leto prunes any paths in which the original

execution runs through the inner loop.

" large-error_r(nextCC, N). This invariant enforces that errors to nextCC<r>

are large enough to be detected. It enables the implementation to detect and correct

all errors during the course of this loop.

" outer spec(N<o>, N<o>, nextCC<o>, CC<o>, adj<o>). This invariant passes in

the specification for nextCC<o> from the faulty loop. Leto combines it with specifica-

tions over correctednextCC<r> to prove that correctednextCC<o>[v<o>] is

equivalent to correctednextCC<r> [v<r>] at the end of the current loop iteration.

Correction Inner Loop. Verification then continues to the loop on Line 48 which contains

three developer specified invariants:
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* v < N. This invariant bounds v so that Leto knows that the vector accesses within this

loop are in bounds.

* v < nextCC[v]. This invariant ensures that this loop only runs in instances where

nextCC [v] has experienced an error. The conditional that contains this loop implies

this invariant.

9 innerspec(j<r> , v<r>, correctednextCC<r> CC<r>, adj<r>). This invari-

ant specifies the contents of correctednextCC<r>[v<r>]. It serves only to pass

this information on to the outer loop so that Leto may verify the outer_spec in that

loop.
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Chapter 8

Self-stabilizing Conjugate Gradient

Descent

I verify an implementation of self-stabilizing conjugate gradient (SS-CG) [54 and present

relevant snippets required for verification below. Conjugate gradient descent is another

method for solving linear systems of equations. However, unlike Jacobi, the standard

conjugate gradient method is sensitive to errors that may corrupt internal state variables

and, therefore, is not naturally self-stabilizing. SS-CG employs a periodic correction step to

recalculate appropriate values for internal state variables from the current estimated solution

vector x and the input matrix A.

The standard conjugate gradient descent algorithm computes the next iteration's variables

as follows:

qi Api (8.1)
T

rir i
i (8.2)

pi q

xi+i -Xi + api (8.3)

ri+= ri - aqi (8.4)
T

/3 ri+1ri+1 (8.5)

pi+1 ri+1 + pi (8.6)
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property-r dmr-eq(matrix<real> x1, matrix<real> x2, matrix<real> sx)
xl<r> == sx && x2<r> == sx;

propertyr dmr_imp(matrix<real> x1, matrix<real> x2, matrix<real> sx)

(xl<r> == x2<r>) -> (xl<r> == sx);

matrix<real> r2(N), q2(N);
specvar matrix<real> specr(N), spec-q(N);
r = r2 = specr = q = q2 = specq = zeros;

bool not-_run = true;

@noinf while (notrun 11 r != r2 11 q != q2)
invariantr !model.upset -> (dmr-eq(r, r2,

dmr-eq(q, q2,

invariant _ r dmr_imp(r, r2, spec-r)

invariantr dmr_imp(q, q2, spec-q) {

spec-r) &&
spec-q))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

}

assertr (!outerwhile [model.upset]
assertr (!outerwhile [model.upset]

-> (r<r> == spec-r));

-> (q<r> == spec-q));

Figure 8-1: SS-CG Correction Step
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notrun = false;

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

real tmp = A[i][j] *.x[j];

real tmp2 = A[i][j] *. x[j];
specvar real spectmp = A[i][j] * x[j];
r[i] = r[i] +. tmp;

r2[i] = r2[i] +. tmp2;

spec_r[i] = spec_r[i] + spectmp;

tmp A[i][j] *. p[j];
tmp2 = A[i][j] *. p[j];
spec-tmp = A[i][j] * p[j];
q[i] = q[i] +. tmp;

q2[i] = q2[i] +. tmp2;

spec-q[i] = spec_q[i] + spec-tmp;

}
}



1 const real M =

2
3 propertyr sqrlt(matrix<real> v, int i)
4 ((v<r>[i<r>] - v<o>[i<o>]) * (v<r>[i<r>] - v<o>[i<o>])) < M;
5
6 for (int i = 0; i < N; ++i)
7 invariant 0 <= i <= N {
8
9 q[i] = 0;

10 Olabel(innererr)
11 for (int j = 0; j < N; ++j)
12 invariant 0 <= j <= N && 0 <= i < N
13 invariantr (!model.upset && eq(p)) -> q<r>[i<r>] == q<o>[i<o>] {
14 real tmp = A[i][j] *. p[j];
15 q[i] = q[i] +. tmp;
16
17 assertr((!innererr[model.upset] && eq(p)) -> sqr-lt(q, i));
18 }
19 }

Figure 8-2: SS-CG Faulty Matrix Vector Product

SS-CG adds a periodic correction step to repair state variables that may have been

corrupted by errors. Unlike the previous steps, the repair step must be computed reliably.

This repair step computes:

r= Axi (8.7)

q Ap, (8.8)

r b - r (8.9)
T

Te = (8.10)
A q

xi+ , =i + Cepi (8.11)

ri ri - aq (8.12)

T

= _Ti+1 j (8.13)
pi q

Pi+i r+1 + /3pi (8.14)

I verify two properties of SS-CG that are necessary for self-stability under the SEU model

I present in Figure 1-1:

95



* Reliable Correction Step. I verify that it is possible to correct errors even when the

matrix vector products in Equations 8.7 and 8.8 may experience faults. To accomplish

this, I use dual modular redundancy (DMR) to duplicate arithmetic instructions and

repeat the correction step until the result of both sets of instructions agree with each

other.

" Correctable Errors. I verify that errors in the matrix vector product from Equa-

tion 8.1 are sufficiently small. Specifically, SS-CG requires that if an element of q is

corrupted by E, then

E 2 < max (A i[]2

I present the code snippet for the reliable correction step in Figure 8-1 and the snippet

for correctable errors in Figure 8-2. I have included the full implementation in Appendix B.

8.1 Implementation

8.1.1 Reliable Correction Step

The SS-CG correction step I present in Figure 8-1 operates over the following pre-existing

variables:

" A. A is a matrix of coefficients.

" x. x is a solution vector.

" r. r holds the residual of the current iteration.

" p and q. p and q are vectors of loop carried state.

The overall structure of the SS-CG correction step is as follows:

o Initialization (Line 7). Initialization declares the following variables:

- r2 and q2. The algorithm computes r2 according to Equation 8.7 and q2 according

to Equation 8.8. It then uses r2 and q2 to verify that it has correctly computed r

and q respectively.
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- specr and specq. specr and specq are specification variables that also

compute Equation 8.7 and Equation 8.8 respectively. Unlike r, r2, q, and q2, the

implementation computes these specification variables reliably.

- Outer while loop (Line 12). The outer while loop repeats the correction step

until r == r2 and q == q2.

- Middle for loop (Line 19). The middle for loop computes Equation 8.7 element-

wise for r, r2, and spec r and Equation 8.8 element-wise for q, q2, and specq.

- Inner for loop (Line 20). The inner for loop computes the matrix vector

products:

r=A * x

q=A * p

It computes r2 and spec_r similarly to r, and q2 and specq similarly to q.

The algorithm permits errors in the computation of r, r2, q, and q2, but not in

specr or specq.

Properties. My SS-CG correction step implementation uses the following properties, found

in Figure 8-1:

" dnr_eq (Line 1). This property asserts that x1 and x2 are both equal to the

specification variable sx.

" dmr_imp (Line 4). This property asserts that if x1 and x2 are equal, then x1 is equal

to the specification variable sx.

8.1.2 Faulty Matrix Vector Product

The SS-CG faulty matrix vector product I present in Figure 8-2 operates over the following

pre-existing variables:

9 A. A is a matrix of coefficients.
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. p and q. p and q are vectors of loop carried state.

The structure of the SS-CG faulty matrix vector product is as follows:

" Outer for loop (Line 6). The outer for loop computes Equation 8.1 element-wise

over q.

" Inner for loop (Line 11). The inner for loop computes the unreliable matrix vector

product q = A * p.

Constants and Properties The SS-CG faulty matrix vector product uses the following

constants properties, found in Figure 8-2:

* M (Line 1). M represents the maximum square error permissible in a single element of

q. The developer must set it according to the formula

M < min max(a[i][j])2 2
aEA (i,j)

where A is the set of A input matrices the developer expects to run our implementation

over.

" sqr_lt (Line 3). sqr_lt takes a vector v, and index i, and ensures that the square

error of v [i] is strictly less than M. In other words, it mandates that

(v<r>[i<r>] - v<o> ] )2 < M.

8.2 Specification

I use Leto's specification abilities to verify the error correction and small errors properties of

SS-CG.

Error Correction Using DMR, the correction step corrects r and q even in the presence

of errors. I enforce this property through the assertions on Lines 38 and 39 of Figure 8-1. As
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the algorithm computes specr and specq correctly, I know that if r<r> == spec_r and

q<r> == specq, then the system has computed r<r> and q<r> correctly.

The dmr_imp and dmreq property applications in the outer while loop invariants

(Lines 13 through 16) pass the information Leto needs to verify this assertion out of the loop.

Leto infers these invariants for the inner loops, thus allowing the outer loop to verify that

the invariant holds after the modifications the inner loop performs.

Correctable Errors Under SEU, SS-CG requires that if an element of q is corrupted by

e, then

E2 < max(A[i][j])2 . (8.15)
(ij)

I enforce this property through the assertion on Line 17 of Figure 8-2. The invariant on

Line 13 enforces the complementary invariant that if no error occurred, then q<r> [i<r>] is

equal to q<o> [i<o>]. eq(p) guards both of these constraints because we verify this section

in isolation without specifying the global properties of p. However, if no upset occurred prior

to the start of this section then eq(p) trivially holds before and throughout as this snippet

does not modify p.

8.3 Verification Approach

Next, I demonstrate how the developer works with Leto to verify that the implementation

meets these specifications.

8.3.1 Correction Step

Outer Loop. Verification begins with the loop on Line 12 of Figure 8-1. This loop contains

the following invariants:

9 !model.upset -> (dmr eq(r, r2, spec r) && dmr_eq(q, q2, specq)).

This invariant enforces that in the absence of errors during a loop iteration, r<r> is

equal to specr and q<r> is equal to specq. That is, if no errors occur then r and q
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are correct. This fact is important to pass on so that Leto may verify the assertions on

Lines 38 and 39.

" dmr_imp(r, r2, specr). This invariant states that if the duplicated r variables

are equal to each other, then r is also equal to spec r. Combining this with the loop

condition, Leto knows that r<r> == spec-r after exiting the loop.

" dmr_imp(q, q2, spec_q). This invariant states that if the duplicated q variables

are equal to each other, then q is also equal to specq. Combining this with the loop

condition, Leto knows that q<r> == specq after exiting the loop.

Assertions. Verification concludes with the assertions on Lines 38 and 39:

* !outerwhile [model.upset] - > (r<r> == specr). This assertion verifies that

if no upset occurred prior to entering the loop containing the outer while loop, then

the correction step computed r correctly.

S! outerwhile [model.upset] - > (q<r> == spec_q). This assertion verifies that

if no upset occurred prior to entering the loop containing the outer while loop, then

the correction step computed q correctly.

8.3.2 Faulty Matrix Vector Product

Outer Loop Verification begins with the loop on Line 6 of Figure 8-2. This loop contains

the invariant 0 <= i <= N, which bounds i to ensure Leto that the loop code contains no

out of bounds array accesses.

Inner Loop. Verification then proceeds to the inner loop on Line 11. This loop contains

the following invariants:

* 0 <= j <= N && 0 <= i < N. This invariant bounds i and j to ensure Leto that the

loop code does not contain any out of bounds array accesses.

* (!model.upset && eq(p)) -> q<r>[i<r>] == q<o>[i<o>]. This invariant ensures

that if no upset occurred and p<o> == p<r>, then q[ii is equal across both executions.
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Assertion. Verification concludes with the assertion on Line 17. This assertion verifies that

if no error had occurred prior to the top of the inner loop, and p<o> == p<r>, then the square

difference between q<o> and q<r> is less than M. This ensures that errors are sufficiently

small to be correctable. That is, it ensures that the error in q satisfies Equation 8.15.
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Chapter 9

Self-Stabilizing Steepest Descent

Correction Step

Figure 9-2 presents an implementation of the correction step from self-stabilizing steepest

descent (SS-SD) [54]. SS-SD is an iterative algorithm that computes the solution to a linear

system of equations. It takes as input a matrix of coefficients A, a vector b of intercepts, and

returns an approximate solution vector x such that A * x ~ b. On each iteration, steepest

descent uses ri, xi, and A to compute r i+ and xj+1 as follows:

qi = Ari

T

ai =r2 r
T

Ti qj

(9.1)

(9.2)

(9.3)

(9.4)

xi+1 Xi + Ozri

rj+i ri - ovjqj

SS-SD adds a periodic correction step to repair the residual r of any errors it may have

incurred. This repair step computes

ri = b - Ax. (9.5)
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1 propertyr trans() outer[model.upset] -> model.upset;
2
3 property-r upset(matrix<real> r, matrix<real> r2, matrix<real> specr,
4 matrix<real> Ax, matrix<real> Ax2,
5 matrix<real> specAx)
6 ((!outer[model.upset] && model.upset) ->

7 ((r<r> == spec-r && Ax<r> == spec_Ax) 11
8 (r2<r> == spec-r && Ax2<r> == spec_Ax))) &&
9 ((model.upset i outer[model.upset]) ->

10 (r<r> == spec-r && r2<r> == spec-r &&
11 Ax<r> == specAx && Ax2<r> == specAx));

12
13 property-r outer(matrix<real> r, matrix<real> spec-r)
14 (!model.upset I| outer[model.upset]) -> r<r> == spec-r)

Figure 9-1: SS-SD Properties

Unlike Equation 9.2 through Equation 9.4, SS-SD requires that Equation 9.5 is performed

reliably. Therefore, I verify that it is possible to correct errors under the SEU execution model

from Figure 1-1 even when the error correction step may experience errors. To accomplish

this, I use dual modular redundancy (DMR) to duplicate arithmetic instructions and repeat

the correction step until the result of both sets of instructions agree with each other.

9.1 SS-SD Correction Step Implementation

The overall structure of the SS-SD correction step is as follows:

" Initialization. The correctsd function takes a matrix of coefficients A, a vector of

intercepts b, and a solution vector x. It then declares:

- r. r holds the residual that will be returned.

- r2. The function computes r2 according to Equation 9.5. The algorithm uses r2

to verify that it has correctly computed r.

- specr. spec-r is a specification variable that also computes Equation 9.5.

Unlike r and r2, the implementation computes spec r correctly.

" Outer while loop (Line 11). The outer while loop repeats the correction step until

r == r2.
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matrix<real> correctsd(int N, matrix<real> A(N, N),

matrix<real> b(N), matrix<real> x(N)) {
matrix<real> zeros(N);

Onoinf for (int i = 0; i < N; ++i)

matrix<real> r(N), r2(N);

specvar matrix<real> specr(N);

specr = r;

bool run = false;

Onoinf Qlabel(outer) while (run ==

invariant _r outer(r, specr)
invariant _r r<r> == r2<r> ->
invariantr trans() {

run = true;

{ zeros[i] = 0; }

false II r != r2)

r<r> == spec_r

matrix<real> Ax(N), Ax2(N);

specvar matrix<real> specAx(N);

Ax = Ax2 = spec_Ax = r = r2 = specr = zeros;

Qnoinf for (int i = 0; i < N; ++i)

invariant _ r outer(r, spec_r)
invariant-r upset(r, r2, specr, Ax, Ax2, specAx)

invariantr trans() {

@noinf for (int j = 0; j < N; ++j)
invariant-r upset(r, r2, specr, Ax, Ax2, specAx)

invariantr trans() {

real tmp = A[i][j] *. x[j];

real tmp2 = A[i][j] *. x[j];
specvar real spectmp = A[i][j] * x[j];

Ax[i] = Ax[i] +. tmp;
Ax2[i] Ax2[i] +. tmp2;

specAx[i] = specAx[i] +
}

tmp;

r[i] = b[i]

r2[i] = b[i]

spec r[i] =

- Ax[i];

- Ax2[i];

b [i] - specAx [i]

assertr (r<r> == specr);

return r;

}

Figure 9-2: SS-SD Correction Step
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" Middle for loop (Line 21). The middle for loop computes Equation 9.5 element-wise

for r, r2, and specr.

" Inner for loop (Line 26). The inner for loop computes the matrix vector product

Ax = A * x. It computes Ax2 and specAx similarly. The algorithm permits errors in

the computation of Ax and Ax2, but not in specAx.

Properties. My SS-SD correction step implementation uses the following properties, found

in Figure 9-1:

" trans (Line 1). This property asserts if there was an upset before the top of the outer

loop, then the upset flag in the model is set.

" upset (Line 3). This property consists of two conjuncts:

- The first conjunct states that if there was no upset before the top of outer loop,

but there has been an upset since then, then at least one of the duplicated

computations is correct. That is, r<r> == spec_r && Ax<r> == specAx or

r2<r> == spec r && Ax2<r> == specAx.

- The second conjunct states that if no upset has occurred, or an upset occurred

prior to the top of the outer while loop, then both sets of duplicated instructions

are correct.

" outer (Line 13). This property states that if there has been no upset, or there was

an upset prior to the top of the outer loop, then r is correct.

9.2 Specification

I use Leto's specification abilities to verify the error correction property of SS-SD's correction

step.

Error Correction. Using DMR, the correction step corrects r even in the presence of

errors. I enforce this property through the assertion on Line 45. As the algorithm computes

specr correctly, I know that if r<r> == spec_ r, then r<r> is the correct residual.
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The outer constraint on the outer while loop (Line 12) passes the information needed to

verify this assertion out of the loop. In turn, this invariant relies on the outer and upset

invariants in the middle loop (Lines 22 and 23), which'themselves rely on the upset invariant

in the inner loop (Line 27).

9.3 Verification Approach

Next, I demonstrate how the developer works with Leto to verify that the implementation

meets these specifications.

Outer Loop. Verification begins with the loop on Line 11. This loop contains the following

invariants:

" outer(r, spec). This invariant enforces that in the absence of errors during a loop

iteration, r<r> == specr. This fact is important to pass on so that Leto may verify

the assertion on Line 45.

" r<r> == r2<r> -> r<r> == spec r. This invariant states that if the duplicated r

variables are equal to each other, then r is also equal to spec_r. Therefore, Leto knows

that r<r> == specr after exiting the loop.

" trans (). This invariant passes the semantics of the fault model down into the middle

loop so Leto knows that if an error already occurred in an earlier outer loop iteration,

then another cannot occur in any inner loops.

Middle Loop. Verification then proceeds to the middle loop on Line 21. This loop contains

the following invariants:

* outer(r, spec). This invariant enforces that in the absence of errors during an outer

loop iteration, r<r> == spec_r. This fact is important to pass on so that Leto may

verify the identical invariant in the outer loop.

* upset (r, r2, spec_r, Ax, Ax2, spec_Ax). This invariant enforces that in the

event of an error during this outer loop iteration, the algorithm computes at least one
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of set of instructions (r and Ax or r2 and Ax2) correctly. Otherwise, the algorithm

computes both sets correctly. It is an invariant in the middle loop because it must hold

at the top of the inner loop.

* trans(). As before, this invariant passes the semantics of the fault model down into

the inner loop so Leto knows that if an error already occurred in an earlier outer loop

iteration, then another cannot occur in the inner loop.

Inner Loop. Verification then proceeds to the inner loop on Line 26. This loop contains

the following invariants:

" upset(r, r2, specr, Ax, Ax2, specAx). This invariant enforces that in the

event of an error during this outer loop iteration, the algorithm computes at least one

of set of instructions (r and Ax or r2 and Ax2) correctly. Otherwise, the algorithm

computes both sets correctly. This invariant captures information about the impacts of

errors on variables modified in the inner loop and passes this information back to the

middle loop so that it may verify the outer(r, spec_r) invariant.

" trans(). As before, this invariant passes in the semantics of the fault model so Leto

knows that if an error already occurred in an earlier outer loop iteration, then another

cannot occur in this loop.

Assertion. Verification concludes with the assertion on Line 45. This assertion verifies

that r<r> == spec_r, which enforces that r<r> is the correct residual and it satisfies

Equation 9.5.
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Chapter 10

Related Work

In addition to the work cited in the introduction on application-specific fault tolerance mech-

anisms and empirical techniques for reasoning about such mechanisms, Leto's contributions

relate to the following work:

Reasoning about Approximate/Unreliable Computation. Researchers have devel-

oped a number of programming systems that enable developers to reason about approximate

computations: computations for which the underlying execution substrate (e.g., the pro-

gramming system and/or hardware system) augment the behavior of the application to

produce approximate results. Typical goals of these systems are to trade accuracy of the

overall computation for increased performance, reduced energy-consumption, or increased

system availability. A major challenge with these systems is reasoning about the behavior of

the resulting application. Researchers have developed a number of programming systems

that enable different forms of reasoning. For example, EnerJ [52] and FlexJava [43] enable

developers to demonstrate non-interference between approximate computations and critical

parts of the computation that should not be modified. Rely [13], Chisel [36], and Decaf [7],

enable developers to reason about the reliability of their applications: the probability that

they produce the correct result.

The relaxed programming model [12] enables developers to prove both safety and accuracy

programs for explicitly relaxed computations. The work I present in this theisis builds upon

the relaxed programming model by using an asymmetric relational Hoare Logic to verify a
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relaxed semantics of a program. However, I have additionally augmented Leto's language

with first-class fault models that enable developers to specify complicated fault models that

potentially span multiple operations in the program. In an additional contrast to the relaxed

programming system, Leto also provides automation for many aspects of the proof where as

the the relaxed programming system required manual, Coq-based proofs.

Meola and Walker propose a sub-structural logic for reasoning about fault tolerant

programs [34]. The logic of their development enables the proof system to count the number

of faults that have occurred and therefore reason about properties that may hold, for example,

for a single-event upset model but not for a double-event upset model. Leto, provides a more

expressive logic that supports reasoning about more complicated properties of the state of

the fault model.

Relational Hoare Logic. Researchers have proposed a number of relational Hoare Logics

and verification systems to support verifying relational properties of programs [4, 5, 12, 28, 60].

Typical properties of interest are 2-safety properties [61], such as equivalence checking (e.g.,

translation validation), determinism checking, and - in the case of relaxed programs - safety

and accuracy properties. The verification algorithms produced by Sousa and Dillig [60] and

Lahiri et al. [28] demonstrate that it's possible to automatically compose proofs for relational

verification. Leto's verification system differs from that of CHL in that:

" The semantics of the two program executions are asymmetric.

" Leto attempts to verify with a specific program composition strategy that matches

the types of proofs that are seen in practice for approximate and unreliably executed

programs.

Namely, although the semantics of the two executions of the program differ, their structure

is typically identical. Further, a major design point in Leto is that the verification of assert

and assume statements in the relaxed execution can rely on assumed properties of the reliable

execution. Leto therefore collects these properties from the reliable execution before verifying

the relaxed execution.
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Programming Models for Self-Stabilization. Researchers have proposed programming

systems for verifying self-stability. For example, Self-Stabilizing Java provides developers

with a type system and analysis that enables a developer to prove that any corruptible

state of the program exists the system in a finite amount of time. Such algorithms are

self-stabilizing in that they are guaranteed to return to valid state in bounded time. Leto's

rich logic (versus the information-flow type system of Self-Stabilizing Java) enables developers

to specify the richer invariants that need to be true of emerging algorithms for self-stability.

For example, instead of verifying that corrupted state leaves the system within bounded time,

Leto enables a developer verify that the corruption of the program's state is small enough

that the algorithm's correction steps will work as designed.

Fault Rate Analysis I have driven the design and implementation of Leto by the an-

ticipated fault rates, abstract fault models, and resilience tools exported by the computer

architecture community. Namely, soft fault rates have led major organizations - such as

Intel [27, 37-39], Google [69], NASA [23], DOE [59], and DARPA [1] - to express concern

over such faults. Leto is the first system - to my knowledge - to enable automated verification

for these faults.

The assumption of instruction-level arithmetic errors is the most common model for

building:

* Application-specific fault analyses and mechanisms [10, 20, 21, 40, 50, 51, 54-56].

" Software-level fault tolerance analyses and mechanisms [30, 49, 53, 68, 70].

" Micro-architectural resilience analyses and mechanisms [3, 32, 331.

" Circuit-level resilience analyses/mechanisms [8, 9, 24, 31, 44, 45, 63].

Mitra et al. have found that combinational logic faults account for 11% of all soft

errors [37]. In addition, soft error rates, including combinational faults, are expected to

increase as chips continue grow in the number of transistors [37, 57]. These trends have

inspired a variety of different contributions, including modeling the propagation of transient

faults [15, 41], analyzing the rate of combinational soft faults [11, 47, 67, 71], analyzing the

impact of combinational soft faults [46], and correcting combinational logic faults [38].

111



112



Chapter 11

Conclusion

Emerging computational platforms are increasingly vulnerable to errors. Future computations

designed to execute on these platforms must therefore be designed to be fault tolerant

and naturally resilient to error. I present a verification system, Leto, that facilitates the

verification of application-specific fault tolerance mechanisms under programmer-specified

execution models. As these proofs frequently relate a faulty execution to a fault-free one, Leto

provides assertions that enable the developer to specify and verify expressions that relate

the semantics of both executions. First-class execution models permit developers to convey

information about the class of faults they expect their computational platforms to experience.

By giving developers tools to verify relational invariants under first-class execution models, I

enable developers to verify the self-stability of their programs.
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Appendix A

Full Semantics

In this appendix I present the full dynamic semantics of the Leto language. I have elided the

rules presented in Figure 3-2 as they remain unchanged. A preprocessing pass performs the

following actions:

" It places all variables without a label into a reliable memory region.

" It flattens multidimensional vectors into single dimensional vectors.

" It inlines function calls.

The alloc function I use in DECLARE and DECLARE-MATRIX takes a mapping from

variables to addresses o- and an integer n and returns the first addresses in a contiguous block

of n unmapped addresses in o-.

Figures A-1 and A-2 expand on the operational semantics present in Figure 3-2.
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READ-MATRIX
a = -(x) n, = h(o(r2 )) n = h(a + n,) q = 0(a) (in, read, (n, q)) 4, (n', m')

hr = X Ir2j, (a, h, 0, m)) 4 (r, n', (a, h, 0, mn'))

WRITE-MATRIX
a = o-(x) n, = h(o(r2))

nold = h(a + no) nne, = a(ri) q = 0(a) (m, write, (nold, nnew, q)) 4, (n,, in')

(x[r2] = ri, (o-, h, 0, in)) 4+ (skip, (a, h[(a + no) -4 nr], 0, M'))

RELATIONAL-ASSERT

(assert-r r,E) 4 (skip, e)

DECLARE
a = alloc(a, 1)

(oregion(q) -r x, (o-, h, 0, mn)) 4+ (skip, (o[x - a], h[a - 01, 0[a - q], mn))

DECLARE-MATRIX
a = alloc(A, n) h' = h[a 0. ... [(a + n - 1) T 0]

(oregion(q) matrix<-r> x(n), (o-, h, 0, m)) 4 (skip, (o-[x - a], h', 0[a - q], m))

FORA LL-T

Vn.(b, (o-[x - a],
a = alloc-(a, 1)

h[a v-4 n], 0[a -> reliable], m)) 4. (true, (-[x " a], h[a " n], 0[a H-+ reliable], m))

(f orall(-r x) (b), (o-, h, 0, m)) 4. (true, (o-, h, 0, m))

FORALL-F
a = alloc(o-, 1)

]n.(b, (o-[x - a], h[a - n], 0[a - reliable], in)) 4, (false, (o[x H-4 a], h[a '-> n], 0[a -4 reliable], m))

(f orall(T x)(b), (a-, h, 0, m)) 41, (false, (o, h, 0, m))

EXISTS-T
a = alloc(o-, 1)

3n.(b, (a[x - a], h[a H-> n], 0[a F-> reliable], m)) 4. (true, (a[x h-> a], h[a -> n], 0[a - reliable], m))

(exists(r x)(b), (a, h, 0, m)) 4, (true, (a, h, 0, m))

EXISTS-F
a = alloc(a, 1)

Vn.(b, (o-[x > a], h[a H-> n], 0[a -> reliable], in)) 4j, (false, (-[x -> a], h[a p-> n], 0[a > reliable], m))

(exists(r x)(b), (a, h, 0, m)) 4, (false, (a, h, 0, m))

Figure A-1: Extension to Dynamic Language Semantics
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M-DECLARE
M-ASSIGN

(e, (h, o)) 4(n, (h, o))

(X =e, (h, o)) -4 (skip, (h[x F-* n], o))

M-DECLARE-OP

(operator D x* when pw modif ies x* ensures pe, (h, o)) -÷ (skip, (h, o:: (e, x*, pw, pe)))

F-READ

o = p(re ad, [x], P, Pe)
o G q m[x1 - ni] = P, m'[x1 4 n1 ] [result 4 n2] k= Pe dom(m) = dom(m')

(model.read(n1, q), m) Y (n2, m')

F-WRITE
o = A(write, [X1, X2], Pw, Pe) o E q

m[xi -4 nold][x2 - ne] - Pw m'[xi - n3U[x2 4 fnew] -- Pe dom(m) = dom(m')

(model.write(n old, nnew,q), m) 4, (n3 , M')

Figure A-2: Extension to Dynamic Execution Model Semantics
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(IF X, (h, o)) --- (skip, (h[x - 0], o))
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Appendix B

Full Self-stabilizing Conjugate

Gradient Descent Implementation

I present my full implementation for self-stabilizing conjugate gradient descent below.

1 const real SQRMINMAXAIJ = 2;

2

3 propertyr sqr-lt(matrix<real> v, int i)

4 ((q<r>[i<r>] - q<o>[i<o>]) * (q<r>[i<r>] - q<o>[i<o>])) <

5 SQRMINMAX_AIJ;

6

7 propertyr dmr-eq(matrix<real> x1,

8 matrix<real> x2,

9 matrix<real> spec_x)

10 xl<r> == spec-x && x2<r> == spec-x;

propertyr dmrimp(matrix<real> x1,

matrix<real> x2,

matrix<real> specx)

(xl<r> == x2<r>) -> (xl<r> == spec-x);

requires 0 < N

rrequires eq(N) && eq(M) && eq(F) && eq(A)

matrix<real> ss_cg(int N,

int M,
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21 int F,

22 matrix<real> A(N, N),

23 matrix<real> b(N),

24 matrix<real> x(N)) {

25

26 matrix<real> r(N), p(N), q(N), next_x(N), next_r(N), next_p(N)

27 real alpha, beta, tmp, tmp2, num, denom;

28 int manmod;

29

30 matrix<real> zeros(N);

31 Qnoinf for (int i = 0; i < N; ++i) { zeros[i] = 0 };

32

33 int it = 0;

34

35 Qnoinf for (int i = 0; i < N; ++i) {

36 tmp = 0;

37 Onoinf for (int j = 0 ; j < N; ++j) {

38 tmp = tmp + A[i][j] * x[i];

39 }

40 r[i] = b[i] - tmp;

41 }

42 p = r;

43

44 Onoinf Olabel(outerwhile)

45 while (it < M)

46 invariant 0 < N

47 invariantr eq(A) && eq(it) && eq(M) &&

48 eq(N) && eq(man-mod) && eq(F) {

49 if (manmod == F) {

50 matrix<real> r2(N), q2(N);

51 specvar matrix<real> spec-r(N), specq(N);

52

53 r = r2 = specr = q = q2 = specq zeros;

54 bool notrun = true;

55 @noinf while (notrun 11 r != r2 II q != q2)

56 invariantr !model.upset -> (dmr-eq(r, r2, spec r)&&

128



invariantr dmrimp(r, r2,

invariantr dmr_imp(q, q2,

not-run = false;

dmreq(q, q2, spec-q))

specr)

specq) {

for (int i =0; i < N; ++i) {

for (int j = 0; j < N; ++j) (1 == 1) (1 == 1) {

tmp = A[i][j] *. x[j];

tmp2 = A[i][j] *. x[jI;

specvar real spectmp = A[i][j] *x[j];

r[i] = r[i] +. tmp;

r2[i] = r2[i] +. tmp2;

spec_r[i] = spec_r[i] + spectmp;

tmp = A[i][j] *. p[j];

tmp2 = A[i][j] *. p[j];

spec-tmp = A[i][j] * p[j];

q[i] = q[i] +. tmp;

q2[i] = q2[i] +. tmp2;

spec-q[i] = spec_q[i] + spectmp;

}

}

}

assertr(!outerwhile[model.upset]

assertr(!outerwhile[model.upset]

-> r<r>

-> q<r>

@noinf for (int i = 0; i < N; ++i) { r[i]

num = 0;

denom = 0;

Gnoinf for (int i = 0; i < N; ++i) {

tmp = r[i] * p[i];

num = num + tmp;

denom = p[i] * q[i];

}

== specr);

== specq);

= b[i] - r[i]; }
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93 alpha = num / denom;

94

95 @noinf for (i 0; i < N; ++i) {

96 tmp = alpha *p[i];

97 next_x[i] = x[i] + tmp;

98 tmp = alpha * q[i];

99 next_r[i] = r[i] - tmp;

100 }

101

102 num = 0;

103 denom = 0;

104 @noinf for (int i = 0; i < N; ++i) {

105 tmp = -nextr[i];

106 tmp = tmp * q[i];

107 num = num + tmp;

108

109 tmp = p[i] * q[i];

110 denom = denom + tmp;

111 }

112 beta = num / denom;

113

114 Dnoinf for (i 0; i < N; ++i) {

115 tmp = beta * p[i];

116 nextp[i] = next-r[i] + tmp;

117 }

118 } else {

119 for (int i 0; i < N; ++i)

120 invariant 0 <= i <= N {

121 q[i] = 0;

122 Olabel(innererr)

123 for (int j = 0; j < N; ++j)

124 invariant 0 <= j <= N && 0 <= i < N

125 invariant-r (model.upset == false && eq(p)) -

126 q<r>[i<r>] == q<o>[i<o>] {

127 tmp = A[i][j] *. p[j];

128 q[i] = q[i] +. tmp;
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133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

Qnoinf for (i

tmp = alpha

nextx[i] =

tmp = alpha

next-r[i] =

= 0; i < N; ++i) {

* p[i];

x[i] + tmp;

* q[i];

r[i] - tmp;

}

num = 0;

denom = 0;

@noinf for (int i = 0; i < N; ++i) {

num = next-r[i] * next r[i];

denom = r[i] * r[i];

}

beta = num / denom;

@noinf for (i = 0; i <

tmp = beta * p[i];

next-p[i] = next r[i]

}

}

N; ++i) {

+ tmp;
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assertr((!innererr[model.upset] && eq(p)) -> sqrlt(q, i));

}

}

num = 0;

denom = 0;

Qnoinf for (int i = 0; i < N; ++i) {

tmp = r[i] * r[i];

num = num + tmp;

denom = p[i] * q[i];

}

alpha = num / denom;
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167

168

169

170

171

172

173

174

175

176

177

p = next_p;

x = next_x;

r = next_r;

++manmod;

if (manmod == M) {

manmod = 0;

}

}

return x;

}
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