
Logical Leases: Scalable Hardware and Software Systems through

Time Traveling

by

Xiangyao Yu

B.S. in Electronic Engineering, Tsinghua University (2012)
S.M. in Electrical Engineering and Computer Science, Massachusetts Institute of

Technology (2015)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2018

Massachusetts Institute of Technology 2018. All rights reserved.

Signature redac
A u th o r ..........................................

Department of Electrical Engineering and Computer Science
September 29, 2017

Signature reda(
C ertified by ........................................

Srinivas Devadas
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by ...........

MASS 0 OSTNS INSTITUTE
0 TECHNOLOGY

MAR 2 6 2018

LIBRARIES

'Lesli6A>kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Department Committee on Graduate Students
cow
=0





Logical Leases: Scalable Hardware and Software Systems through Time Traveling

by

Xiangyao Yu

Submitted to the Department of Electrical Engineering and Computer Science
on September 29, 2017, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Parallelism is the key to performance in modern computer systems. However, parallel systems are
hard to design and to use. Challenges of parallelism exist across the whole system stack in both
hardware and software.

In this thesis, we improve the scalability and performance of shared-memory parallel systems in
both hardware and software. We propose a simple technique, called logical leases, to achieve this
goal. Logical leases allow a parallel system to dynamically reorder operations to minimize conflicts,
leading to high performance and scalability. The power of logical leases comes from its novel way
of combining physical and logical time. The new notion of time, called physiological time, is more
flexible and efficient than pure physical or logical time alone.

We implemented three systems based on logical leases.
Tardis leverages logical leases to implement a scalable cache coherence protocol for multi-

core shared-memory processors. Compared to the widely-adopted directory-based cache coherence
protocol, and its variants, Tardis avoids multicasting and broadcasting and only requires O(logN)
storage per cache block for an N-core system rather than 0(N) sharer information. Compared to
directory-based counterparts, Tardis has lower storage overheads, lower network traffic, higher per-
formance, and yet is simpler to reason about. We present the basic protocol, its extensions and
optimizations, and a formal proof of correctness of Tardis.

TicToc leverages logical leases to implement a high-performance concurrency control algorithm
for on-line transaction processing (OLTP) database management systems (DBMSs). Based on logi-
cal leases, TicToc provides a simple way of serializing transactions logically at runtime. TicToc has
no centralized bottleneck, and commits transactions that would be aborted by conventional concur-
rency control algorithms. TicToc outperforms its state-of-the-art counterparts by up to 92% while
reducing aborts by up to 3.3 x.

Sundial is a distributed concurrency control protocol, also based on logical leases. Sundial has
two salient features. First, it uses a logical-lease-based distributed concurrency control algorithm
to achieve high performance and low abort rate for distributed transactions. Second, it allows a
server to cache data from remote servers at runtime while maintaining strong correctness guarantees
(i.e., serializability). Sundial seamlessly integrates both features into a unified protocol which has
low complexity. Evaluation shows that the distributed concurrency control algorithm in Sundial
improves system performance by up to 57%, compared to the best baseline protocol we evaluate.
Caching further improves performance by up to 3 x when hotspot read-intensive tables exist.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

First and foremost, I thank my advisor Srinivas Devadas for his guidance and support throughout

my graduate studies. I am grateful for the freedom I had in Srini's group. Srini has always been

supportive and inspiring. Srini's great taste in research (i.e., there must be some coolness factor in

a project) influenced my own research standard.

I am also thankful to the rest of my committee members. I thank Andrew Pavlo for being a

great collaborator and a true friend. Andy led me to the field of databases and offered unceasing

help throughout the projects we collaborated on. I thank Daniel Sanchez for all his time with me

brainstorming and discussing ideas. I thank Daniel also for his patience and conscientiousness in

helping me prepare presentations and write papers and my thesis.

I give special thanks to Onur Mutlu, for leading to me the field of computer architecture when

I was still an undergraduate student. Onur's hardworking and diligence have been inspiring me

all these years. I also enjoyed the collaboration with Chris Hughes and Satish Nadathur from the

parallel computing lab at Intel. They showed me a different view of research from the industry side.

I would like to thank other faculty members of CSAIL whom I had opportunities to interact

with. I want to thank Michael Stonebraker, Samuel Madden, Charles Leiserson, Arvind, Frans

Kaashoek, and Nickolai Zeldovich for all your help and feedback on my research. I worked as a

teaching assistant with Chris Terman, Erik Demaine, and Nancy Lynch, from whom I learned how

to become more effective at teaching.

I thank all my fellow MIT students. Thanks to Ling Ren, Chris Fletcher, George Bezerra,

Quan Min Nguyen, Yu Xia, George Kurian, Rachael Harding, Albert Kwon for all the discussion

and research collaboration. I want to thank other friends I met at MIT for making the past few

years enjoyable. Thanks to Yuxuan Lin, Yu Zhang, Tianfan Xue, Changyang Linghu, Shuotao Xu,

Yunming Zhang, Sizuo Zhang, Guowei Zhang, and many others. Thanks to my loyal friend Yubei

Chen, for all that we experienced together over the years.

I am especially thankful to my wife, Lei Zhou, for her support and love during all my ups and

downs. The PhD journey would be grinding without her at my side. I also thank my parents, Wanli

Yu and Cuirong Wang, for their constant support and encouragement. They gave me the strength to

pursue my dreams.

5



6



Contents

1 Introduction 21

1.1 Scalable of Multi-Core Cache Coherence . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Scalable Concurrency Control for Databases . . . . . . . . . . . . . . . . . . . . . 23

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Background 27

2.1 Multicore Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Memory Consistency Models . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Cache Coherence Protocols . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 OLTP Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Concurrency Control Algorithms . . . . . . . . . . . . . . . . . . . . . . 32

I Multi-Core Cache Coherence 35

3 Tardis Cache Coherence 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Sequential Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Logical Leases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Tardis Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Tardis without Private Cache . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Tardis with Private Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Out-of-Order Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.4 Avoiding Livelock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.5 Tardis vs. Directory Coherence . . . . . . . . . . . . . . . . . . . . . . . 49

7



3.5 Optimizations and Extensions

3.5.1 Speculative Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Timestamp Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.3 Private W rite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.4 Extension: Exclusive and Owned States . . . . . . . . . . . . . . . . . . . 53

3.5.5 Extension: Remote Word Access . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.6 Other Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.2 M ain Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.7.3 Sensitivity Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 Additional Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.1 Timestamp based coherence . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8.2 Scalable directory coherence . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Tardis with Relaxed Consistency Models 69

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Tardis with TSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.1 Formal Definition of TSO . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Tardis-TSO Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 TSO Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.4 TSO Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.5 Other Relaxed Consistency Models . . . . . . . . . . . . . . . . . . . . . 76

4.3 Renewal Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 MESI on Tardis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Livelock Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.3 Lease Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8

. . . . 51



Consistency Models and M ESI . . . . . . . . . . . . . . . . . . . . . . . .

Livelock Detector and Lease Predictor . . . . . . . . . . . . . . . . . . . .

4.4.4 Sensitivity Study .

5 Formal Proof of Correctness for Tardis

5.1 Introduction . . . . . . . . . . . . . . . .

5.2 Tardis Coherence Protocol . . . . . . . .

5.2.1 System Description . . . . . . . .

5.2.2 System Components in Tardis . .

5.2.3 Protocol Specification . . . . . .

5.3 Proof of Correctness . . . . .. . . . . .

5.3.1 Sequential Consistency . . . . . .

5.3.2 Basic Lemma . . . . . . . . . . .

5.3.3 Timestamp Lemmas . . . . . . .

5.4 Deadlock and Livelock Freedom . . . . .

5.4.1 Deadlock Freedom . . . . . . . .

5.4.2 Livelock Freedom . . . . . . . .

5.5 Other Consistency Models . . . . . . . .

5.6 Main Memory . . . . . . . . . . . . . . .

5.7 Additional Related Work . . . . . . . . .

II Scalable Concurrency Control

6 Concurrency Control Scalability Study

6.1 Introduction . . . . . . . . . . . . . . . .

6.2 Concurrency Control Schemes . . . . . .

6.2.1 Two-Phase Locking . . . . . . . .

6.2.2 Timestamp Ordering . . . . . . .

6.3 Many-Core DBMS Test-Bed . . . . . . .

6.3.1 Simulator and Target Architecture

6.3.2 DBM S . . . . . . . . . . . . . .

6.3.3 W orkloads . . . . . . . . . . . .

6.3.4 Simulator vs. Real Hardware . . .

93

. . . . . . 93

. . . . . . 93

. . . . . . 94

. . . . . . 94

. . . . . . 97

. . . . . . 98

. . . . . . 98

. . . . . . 100

. . . . . . 101

. . . . . . 103

. . . . . . 103

. . . . . . 106

. . . . . . 111

. . . . . . 113

.. 1... 15

116

117

. . . 117

118

. . . 119

. . . 120

. . . 122

. . . 122

. . . 123

. . . 124

. . . 125

9

4.4.2

4.4.3

85

86

89



6.4 Design Choices & Optimizations .1

6.4.1 General Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 6

6.4.2 Scalable Two-Phase Locking . . .

6.4.3 Scalable Timestamp Ordering . .

6.5 Experimental Analysis . . . . . . . . . .

6.5.1 Read-Only Workload . . . . . . .

6.5.2 Write-Intensive Workload . . . .

6.5.3 Working Set Size . . . . . . . . .

6.5.4 Read/Write Mixture . . . . . . .

6.5.5 Database Partitioning . . . . . . .

6.5.6 TPC-C . . . . . . . . . . . . . .

6.6 Discussion. . . . . . . . . . . . . . . . .

6.6.1 DBMS Bottlenecks . . . . . . . .

6.6.2 Multicore vs. Multi-node Systems

6.7 Additional Related Work . . . . . . . . .

7 TicToc Concurrency Control

7.1 Introduction . . . . . . . . . . . . . .

7.2 The TicToc Algorithm . . . . . . . .

7.2.1 Lazy Timestamp Management

7.2.2 Protocol Specification

7.2.3 Example . . . . . . .

7.2.4 Discussion on Aborts .

7.2.5 Discussion . . . . . .

7.2.6 Implementation . . . .

7.2.7 Logging and Durability

7.3 Proof of Correctness . . . . .

7.3.1 Proof Idea . . . . . . .

7.3.2 Formal Proofs . . . . .

7.4 Optimizations . . . . . . . . .

7.4.1

7.4.2

No-Wait Locking in Validation

Preemptive Aborts . . . . . .

Phase

10

128

129

132

133

133

136

137

137

139

142

142

143

144

147

147

148

148

149

152

154

154

155

157

157

158

158

160

160

162

126



7.4.3 Timestamp History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.4.4 Lower Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.5.1 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.5.2 TPC-C Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.5.3 YCSB Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.5.4 TicToc Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5.5 Logical Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5.6 Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.5.7 TicToc on 1000 Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8 Sundial Distributed Concurrency Control 177

8.1 Introduction . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . 177

8.2 Sundial Concurrency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.2.1 Logical Leases in Sundial . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.2.2 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.2.3 Sundial Concurrency Control Protocol . . . . . . . . . . . . . . . . . . . . 182

8.2.4 Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.2.5 Blind W rites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.3 Sundial Data Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.3.1 Caching Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3.2 Cache Coherence with Logical Leases . . . . . . . . . . . . . . . . . . . . 191

8.3.3 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.4 Read-Only Table Optimizations . . . . . . . . . . . . . . . . . . . . . . . 192

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.4.1 Transaction Aborts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.4.2 Sundial vs. Dynamic Timestamp Allocation . . . . . . . . . . . . . . . . . 195

8.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.5.1 Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

8.5.2 Concurrency Control Algorithms . . . . . . . . . . . . . . . . . . . . . . 197

8.5.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.5.4 Caching with Read-Only Tables . . . . . . . . . . . . . . . . . . . . . . . 200

11



8.5.5 Caching Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5.6 Measuring Aborts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.5.7 Dynamic vs. Static Timestamp Assignment . . . . . . . . . . . . . . . . . 203

8.5.8 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.5.9 Cross-Datacenter Transactions . . . . . . . . . . . . . . . . . . . . . . . . 205

9 Conclusion and Future Work 207

12



List of Figures

2-1 Architecture of a Multi-Core Processor - Each core has a private LI instruction

cache (L II) and a private L I data cache. The last-level cache (LLC) and main

memory are shared across all the cores. . . . . . . . . . . . . . . . . . . . . . . . 27

3-1 An Example of Tardis - An example program running with Tardis (lease= 10).

Cachelines in private caches and LLC are shown. The cacheline format is shown at

the top of the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3-2 An Example of a Directory-Based Coherence Protocol - Execution of the case

study program with a directory-based coherence protocol. FL, WB, INV and UP

stand for Flush, Writeback, Invalidate, and Update, respectively. . . . . . . . . . . 56

3-3 An Example of Tardis Protocol - Execution of the case study program with Tardis. 57

3-4 Performance of Tardis at 64 Cores - Both the throughput (bars) and the network

traffic (dots) are normalized to the baseline full-map directory-based protocol. . . . 60

3-5 Renew and Misspeculation Rate in Tardis - Fraction of renewals and misspecu-

lations out of all LI data cache misses. The processor has 64 cores. The Y-axis is in

log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1

3-6 Sensitivity of throughput to Li Data Cache Size - Performance of a full-map

directory-based protocol and Tardis (with and without the optimization of specula-

tive reads) on 64 cores, with different LI data cache sizes. All results are normalized

to the full-map directory-based protocol with 32 KB LI data caches. . . . . . . . . 63

3-7 Sensitivity of network traffic to LI Data Cache Size - Network traffic breakdown

of a full-map directory-based protocol and Tardis (with and without the optimization

of speculative reads) on 64 cores, with two different L I data cache sizes (32 KB and

512 KB). All results are normalized to the full-map directory-based protocol with

32 KB LI data caches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

13



3-8 Out-of-Order Core Experiments - Performance of Tardis on 64 out-of-order cores. 64

3-9 Tardis' Performance Sensitivity to Self Increment Period. . . . . . . . . . . . . 65

3-10 Scalability Study - Performance of Tardis on 16 and 256 cores. . . . . . . . . . . 65

3-11 Tardis' Performance Sensivity to the Timestamp Size. . . . . . . . . . . . . . . 66

3-12 Tardis' Performance Sensitivity to the Length of Leases. . . . . . . . . . . . . 67

4-1 Tardis-TSO Example - Execution of the program in Listing 4.1 in Tardis with

lease = 10. A private cacheline in M state means it is modified and dirty. Changed

states at each step are highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . 74

4-2 MESI and TSO - Average speedup (normalized to directory + MESI + TSO) and

renew rate over all benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-3 Renew Rate of SC, TSO and RC. . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-4 Speedup from Renew Reduction Optimizations - Performance improvement of

livelock detection and lease prediction optimizations. All results are normalized to

the full-map directory baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-5 Network Traffic Reduction from Renew Reduction Optimizations - Network

traffic breakdown of different cache coherence configurations. All results normal-

ized to the directory baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-6 Sensititvity of Tardis to the Its Self Increment Rate - Normalized speedup (bars)

and network traffic (+ signs) of Tardis as the lts self increment period changes. . . 89

4-7 Sensitivity of Tardis to the Size of the Address History Buffer - Throughput and

network traffic of CHOLESKY and SYMGS in Tardis as the AHB size changes. Results

normalized to the baseline Tardis without livelock detection. . . . . . . . . . . . . 90

4-8 Sensitivity of Tardis to the Threshold of Livelock Detection - Throughput and

network traffic of CHOLESKY and SYMGS in Tardis as the check threshold changes.

Results normalized to the baseline Tardis without livelock detection. . . . . . . . . 90

4-9 Performance Comparison at 256 Cores - Speedup and network traffic of different

cache coherence protocols at 256 cores. . . . . . . . . . . . . . . . . . . . . . . . 91

5-1 The Model of a Multi-Core Processor - Buffers are used for communication be-

tween a core and its local LI cache (mRq and mRp), and between an LI and the

shared L2 (c2pRq, c2pRp and p2c). . . . . . . . . . . . . . . . . . . . . . . . . . 94

5-2 A Visualization of Lemma 1 - Exactly one master block exists for an address. . . 100

14



6-1 Graphite Simulator Infrastructure - Application threads are mapped to simulated

core threads deployed on multiple host machines. . . . . . . . . . . . . . . . . . . 122

6-2 Target Architecture - Tiled chip multi-processor with 64 tiles and a 2D-mesh

network-on-chip. Each tile contains a processing core, LI and L2 caches, and a

network switch (SW ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6-3 Simulator vs. Real Hardware - Comparison of the concurrency control schemes

running in Graphite and a real multicore CPU using the YCSB workload with

medium contention (theta=0.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6-4 Lock Thrashing - Results for a write-intensive YCSB workload using the DL_ DETECT

scheme without deadlock detection. Each transaction acquires locks in their primary

key order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6-5 Waiting vs. Aborting - Results for DLDETECT with varying timeout threshold

running high contention YCSB (theta=0.8) at 64 cores. . . . . . . . . . . . . . . . 129

6-6 Timestamp Allocation Micro-benchmark - Throughput measurements for differ-

ent timestamp allocation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6-7 Timestamp Allocation - Throughput of the YCSB workload using TIMESTAMP

with different timestamp allocation methods. . . . . . . . . . . . . . . . . . . . . 132

6-8 Read-only Workload - Throughput and runtime breakdown of different concur-

rency control algorithms for a read-only YCSB workload. . . . . . . . . . . . . . 133

6-9 Write-Intensive Workload (Medium Contention) - Results for YCSB workload

with medium contention (theta=0.6). . . . . . . . . . . . . . . . . . . . . . . . . 134

6-10 Write-Intensive Workload (High Contention) - Results for YCSB workload with

high contention (theta=0.8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6-11 Write-Intensive Workload (Variable Contention) - Results for YCSB workload

with varying level of contention on 64 cores. . . . . . . . . . . . . . . . . . . . . 135

6-12 Working Set Size - The number of tuples accessed per core on 512 cores for trans-

actions with a varying number of queries (theta=0.6). . . . . . . . . . . . . . . . . 136

6-13 Read/Write Mixture - Results for YCSB with a varying percentage of read-only

transactions with high contention (theta=0.8). . . . . . . . . . . . . . . . . . . . . 137

6-14 Database Partitioning - Results for a read-only workload on a partitioned YCSB

database. The transactions access the database based on a uniform distribution

(theta=0 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

15



6-15 Multi-Partition Transactions - Sensitivity analysis of the H-STORE scheme for

YCSB workloads with multi-partition transactions. . . . . . . . . . . . . . . . . . 139

6-16 TPC-C (4 warehouses) - Results for the TPC-C workload running up to 256 cores. 139

6-17 TPC-C (1024 warehouses) - Results for the TPC-C workload running up to 1024

cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7-1 An Example of Two Transactions Executing in TicToc - The logic of the two

transactions are shown in Section 7.2.1. . . . . . . . . . . . . . . . . . . . . . . . 153

7-2 An Example of Lock Thrashing. . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7-3 An Example of the Timestamp History Optimization - The DBMS uses a tuple's

timestamp history to avoid aborting a transaction. . . . . . . . . . . . . . . . . . . 163

7-4 TPC-C (4 Warehouses) - Scalability of different concurrency control algorithms

on the TPC-C workload with 4 warehouses. . . . . . . . . . . . . . . . . . . . . . 166

7-5 TPC-C (Variable Warehouses) - Scalability of different concurrency control al-

gorithms on TPC-C as the number of warehouses change. The number of worker

threads in DBx 1000 is fixed at 80. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7-6 YCSB (Read-Only) - Results of a read-only YCSB workload for different concur-

rency control schem es. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7-7 YCSB (Medium Contention) - Results for a read-write YCSB workload with

medium contention. Note that DLDETECT is only measured up to 40 threads.

............................................. 169

7-8 YCSB (High Contention) - Results for a read-write YCSB workload with high

contention. Note that DLDETECT is only measured up to 40 threads. . . . . . . . 170

7-9 TicToc Optimizations (TPC-C) - Throughput measurements of TicToc using dif-

ferent optimizations from Section 7.4. The system runs with the TPCC workload

w ith 4 w arehouses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7-10 TicToc Optimizations (YCSB) - Throughput measurements of TicToc using dif-

ferent optimizations from Section 7.4. The system runs with the high-contention

Y CSB workload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7-11 Logical Time Analysis - Comparison of the growth rate of the timestamps in TIC-

TOC versus TS_ALLOC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

16



7-12 TicToc on 1000 Cores (YCSB) - Throughput measurements of TicToc compared to

classic concurrency control algorithms that are evaluated in Chapter 6. The system

runs with the different contention level on the YCSB workload. . . . . . . . . . . . 174

8-1 Logical Lease Example - Example schedule of two transactions (Ti and T2) ac-

cessing A, B, C, and D. TI and T2's operations are highlighted in yellow and green,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180

8-2 Read-Write Conflict Example - Example schedule of two transactions with a read-

write conflict in 2PL, OCC, and Sundial. . . . . . . . . . . . . . . . . . . . . . . 182

8-3 Distributed Transaction Lifecycle - A distributed transaction goes through the ex-

ecution phase and two-phase commit (2PC) which contains the prepare and commit

p h ases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8-4 Caching Architecture - The cache is a network side buffer organized in multiple

b ank s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8-5 Transaction Aborts - Three examples of when the DBMS will abort a transaction

under Sundial due to read-write conflicts. . . . . . . . . . . . . . . . . . . . . . . 194

8-6 Performance Comparison (YCSB) - Runtime measurements when running the

concurrency control algorithms for the YCSB workload. . . . . . . . . . . . . . . 199

8-7 Performance Comparison (TPC-C) - Runtime measurements when running the

concurrency control algorithms for the TPC-C workload. . . . . . . . . . . . . . . 199

8-8 Caching with Read-Only Tables - Performance of different TPC-C configurations

in Sundial with caching support. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8-9 Caching Policies - Sweeping the percentage of write queries in YCSB. . . . . . . 202

8-10 Measuring Aborts - The different types of aborts that occur in Sundial and MaaT

for the YCSB workload. For Sundial, we classify the aborts due to read-write con-

flicts into the three categories from Section 8.4.1. . . . . . . . . . . . . . . . . . . 203

8-11 Dynamic vs. Static Timestamp Assignment - Performance comparison between

Sundial and a baseline MVCC protocol that statically assigns timestamps to trans-

actions. ......... ........................................ 204

8-12 Scalability - Throughput of concurrency control algorithms for the YCSB work-

load on Am azon EC2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

17



8-13 Cross-Datacenter Transactions - Throughput and Traffic per Transaction when

nodes are placed in different data centers. . . . . . . . . . . . . . . . . . . . . . . 205

18



List of Tables

3.1 Timestamp Rules without Private Caches - The timestamp management in Tardis

without Private Caches. The timestamp of the current memory operation is ts. . . . 41

3.2 State Transition in a Private Cache - State Transition of Tardis in a private cache.

TM is the shared timestamp manager, D is requested cacheline, req and resp are the

request and response messages. Timestamp related rules are highlighted in red. . . 43

3.3 State Transition in the Timestamp Manager. . . . . . . . . . . . . . . . . . . . 44

3.4 Network Messages - The check marks indicate what components a message contains. 46

3.5 System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Tim estam p Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Storage Requirement - Storage requirement of different cache coherence proto-

cols (bits per LLC cacheline). Ackwise assumes 4 sharers at 16 or 64 cores and 8

sharers at 256 cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Memory Order Constraints for Different Consistency Models - L represents a

load, S represents a store, and F represents a fence. For release consistency, rel

represents a release and acq represents an acquire. . . . . . . . . . . . . . . . . . 76

4.2 System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Tardis Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 System components of Tardis - States of caches and buffers. . . . . . . . . . . . 95

5.2 State Transition Rules for L. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 State Transition Rules for L2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

19



5.4 Lattice for a Request - For a load request, Li.miss A (Li.state = I V (Li.state = S

A pts > L].rts)). For a store request, LJ.miss A (LJ.state < M). bufferName_exist

means a message exists in the buffer and bufferName-rdy means that the message

is the head of the buffer. bufferName_rdy implies bufferNameexist. . . . . . . . . 106

5.5 LoadHit Rule for TSO - The change for TSO is underlined. . . . . . . . . . . .111

5.6 System Components to Model a Main Memory. . . . . . . . . . . . . . . . . . . 114

5.7 State Transition Rules for Main Memory. . . . . . . . . . . . . . . . . . . . . . 114

6.1 The Concurrency Control Schemes under Evaluation. . . . . . . . . . . . . . 120

6.2 A Summary of Bottlenecks - A summary of the bottlenecks for each concurrency

control scheme evaluated in Section 6.5. . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 Isolation Levels (Medium Contention) - Performance measurements for the con-

currency control schemes running YCSB under different isolation levels with 40

threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2 Isolation Levels (High Contention) - Performance measurements for the con-

currency control schemes running YCSB under different isolation levels with 40

threads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

20



Chapter 1

Introduction

Clock frequency of single-core processors has plateaued in the mid 2000s due to the limitations of

technology scaling. Since then, parallelism has become the main way to improve performance. This

has led to proliferation of cores within a processor. Both hardware and software systems have to

leverage parallelism for high performance.

Parallel systems, however, are notoriously hard to design and to use. Three major challenges

exist: 1) Synchronization and coordination of parallel tasks limit performance. 2) Storage and

communication overheads limit scalability. 3) Parallel systems are complex to design and verify.

These challenges exist in multiple levels across the hardware and software stack of a parallel system.

In this thesis, we focus on shared-memory parallel systems, a type of parallel system widely

used in both hardware (e.g., multicore processors) and software (e.g., databases). Specifically, we

design and prototype three protocols to improve performance and scalability while maintaining low

complexity, in their corresponding problem domains.

1. Tardis is a new cache coherence protocol for multicore processors. Tardis only requires

O(logN) storage for an N-core processor, while achieving better performance and being sim-

pler to reason about than traditional directory-based cache coherence protocols.

2. TicToc is a new concurrency control protocol for multicore databases. TicToc provides high

scalability, up to 92% better performance and 3.3x lower abort rate compared to the best

state-of-the-art counterpart we evaluated.

3. Sundial is a distributed concurrency control protocol for distributed databases. Sundial seam-

lessly integrates distributed concurrency control with caching in a unified protocol. Compared

21



to the best state-of-the-art protocols we evaluated, Sundial's distributed concurrency con-

trol improves performance by 57%; Sundial's caching improves performance by 300% when

hotspot read-intensive tables exist.

The key idea behind the three protocols is a new concept, called logical leases. They are logical

counters associated with data elements, allowing parallel read and write operations to be ordered

logically. Logical leases are simple to implement, yet give an parallel system flexibility to reorder

operations for avoiding conflicts. Logical leases are based on a new notion of time, physiological

time, which combines the power of physical and logical time, while removing their correspond-

ing drawbacks. Logical leases simplify the protocols in shared-memory systems, while improving

performance and scalability.

1.1 Scalable of Multi-Core Cache Coherence

A multicore processor implements a shared-memory model, where the memory system appears

as monolithic to the software's point of view. In practice, however, the memory system contains

multiple levels of caches to hide the long latency of main memory accesses. Caches private to

cores complicate the system design, since different cores may observe different values of the same

address depending on the contents in their private caches. To solve this problem, a cache coherence

protocol is implemented to provide the illusion of a monolithic memory, even in the presence of

private caches. A cache coherence protocol guarantees that no read returns a stale value; namely,

each read returns the value of the last write to the same address.

As the core count increases, however, cache coherence becomes a major scalability bottleneck.

Traditional cache coherence protocols require an invalidation mechanism to enforce memory con-

sistency. In particular, a write to a memory location must invalidate or update all the shared copies

of that memory location in other cores' private caches. There are two major classes of cache co-

herence protocols: snoopy and directory-based protocols. In a snoopy protocol, a write request

has to broadcast invalidations to all the cores, incurring significant network traffic overhead. In a

directory-based protocol, the list of sharers of each memory location has to be maintained, incurring

storage overhead and protocol complexity.

Tardis is a new cache coherence protocol to resolve the drawbacks of traditional protocols

(Chapter 3). The key idea behind Tardis is to replace the invalidation mechanism with logical

leases. Each shared copy in a private cache contains a logical lease. A shared copy self-invalidates

22



after the lease (logically) expires. A write request jumps ahead in logical time (i.e., time-travels)

to the end of the lease. Logical time is maintained in each processor and advances asynchronously,

therefore requiring no clock synchronization.

Tardis has three salient features. First, Tardis has small storage overheads that scale well to large

core counts. Second, Tardis has low network traffic as it does not broadcast or multicast messages.

Third, Tardis is easy to reason about as it explicitly exposes the memory order using logical time.

Our experimental evaluation shows that Tardis has similar or better performance compared to a

full-map sparse directory-based coherence protocol over a wide range of benchmarks on processors

with varying core counts.

On top of the basic Tardis protocol, we propose three new extensions and optimizations making

Tardis more practical (Chapter 4). First, we extend Tardis to support relaxed memory models like

total store order (TSO) and release consistency (RC) besides sequential consistency (SC). These

relaxed models are important since they are widely used in commercial processors due to their

better performance. Second, we propose a livelock detection mechanism to improve performance

when a core spins on memory locations for inter-core communication. Third, we propose a lease

prediction mechanism to dynamically determine the value of a logical lease to reduce the number

of lease expirations, further improving performance.

Finally, we formally prove the correctness of the basic Tardis protocol, namely, that it imple-

ments the target memory consistency model (Chapter 5). The proof also shows that the protocol is

deadlock- and livelock-free. Our proof technique is based on simple and intuitive system invariants.

In contrast to model checking [42, 79, 109] verification techniques, our proof applies to any number

of cores in the processor. More important, the invariants developed in the proof are more intuitive

to system designers and thus can better guide system implementation.

1.2 Scalable Concurrency Control for Databases

Concurrency control algorithms have a long history dating back to the 1970s [47, 16]. Traditional

concurrency control algorithms, however, were designed for disk-based databases with a small num-

ber of processor. As OLTP databases start to fit in main memory and core counts increase to hun-

dreds, traditional algorithms are not necessarily the best fit.

With commercial processors now supporting tens to hundreds of hardware threads, it is challeng-

ing for software applications to fully exploit this level of parallelism. Depending on the computation

23



structure, it is more difficult to exploit parallelism in some applications than others. Concurrency

control in database transaction processing is among the applications where parallelism is the most

difficult to exploit. Concurrency control guarantees that transactions (i.e., a sequence of reads and

writes to the shared database) are executed atomically with respect to each other. Concurrency

control requires complex coordination among transactions, and the coordination overhead increases

with the level of concurrency. This leads to both artificial and fundamental scalability bottlenecks

for traditional concurrency control algorithms.

We perform a study to understand how traditional concurrency control algorithms work on mod-

em and future multicore processors (Chapter 6). We implement seven classic algorithms and run

them on a simulated 1000-core processor. We found none of them is able to scale to this level of

parallelism. For each algorithm, we identify its fundamental scalability bottlenecks.

To resolve these bottlenecks, we design TicToc, a new concurrency control protocol that achieves

better scalability and performance than state-of-the-art counterparts (Chapter 7). The key idea in

TicToc is to assign a logical lease to each data element (i.e., a tuple) in the database, and to dynam-

ically determine the commit order of transactions based on the leases of tuples accessed by each

transaction. This data-driven timestamp assignment brings two major benefits. First, it removes

the timestamp allocation bottleneck, since leases are stored and managed in a distributed manner.

Second, it reduces the abort rate, since the commit order is dynamically calculated based on the

data access pattern of transactions. Implemented on an in-memory database on a 40-core proces-

sor, TicToc improves performance by up to 92% and reduces aborts by up to 3.3 x compared to

state-of-the-art counterparts.

Finally, we apply logical leases to distributed systems and design the Sundial distributed con-

currency control protocol (Chapter 8). Sundial is the first protocol that seamlessly integrates concur-

rency control with caching in a unified way. While distributed concurrency control and caching are

both complex, the power of logical leases makes them easy to combine. The distributed concurrency

control algorithm in Sundial improves performance of distributed transactions by up to 57%, com-

pared to the best state-of-the-art protocol we evaluated. Caching can further improve performance

by up to 3 x when hotspot read-intensive tables exist.

24



1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides relevant background and motiva-

tion. The thesis contains two major parts.

Part I of the thesis focuses on the Tardis cache coherence protocol. We describe the basic Tardis

protocol in Chapter 3, optimizations and extensions to Tardis in Chapter 4, and a formal proof of

correctness of Tardis in Chapter 5.

Part II of the thesis focuses on concurrency control in database transaction processing. We

present an evaluation of classical concurrency control algorithms on a simulated 1000-core proces-

sor in Chapter 6. We describe TicToc, our new concurrency control protocol for multicore pro-

cessors, in Chapter 7. We describe Sundial, our new distributed concurrency control protocol, in

Chapter 8. Finally, Chapter 9 concludes the thesis and discusses future work.

25



26



Chapter 2

Background

In this chapter, we present the background and some prior work related to this thesis. In Section 2.1,

we discuss cache coherence protocols in multicore processors. In Section 2.2, we discuss concur-

rency control algorithms in database transaction processing.

2.1 Multicore Processors

A multicore processor or chip multiprocessor (CMP) is a single processor with multiple processing

units (i.e., cores). Figure 2-1 shows a simplified architecture of a multicore processor. A core

executes a stream of instructions and interacts with the memory system through reads and writes.

The order in which the instructions are executed by a core is the program order of the core. The

memory system contains multiple levels of caches and a main memory. Caches closer to the cores

have lower latency and higher bandwidth but smaller capacity due to the higher cost. Although

Last Level Cache (LLC)

Main Memory

Figure 2-1: Architecture of a Multi-Core Processor - Each core has a private LI instruction cache
(LII) and a private LI data cache. The last-level cache (LLC) and main memory are shared across
all the cores.

27



the majority of a program's instructions and data cannot fit in caches due to their small capacity,

practical applications exhibit spatial and/or temporal locality such that considerable fraction of

memory accesses are served by a cache. Therefore, the design of the cache system is critical to the

overall system performance.

A cache can be either private or shared. A private cache can be accessed only by its corre-

sponding core. In a level 1 cache (LI), the instruction (LII) and data (LID) caches are typically

maintained as separate structures. The higher levels (e.g., L2, L3, etc.) in the cache hierarchy may

be private or shared by some cores, depending on the design. For our example in Figure 2-1, the

last level cache (LLC) is shared across all the cores. Finally, the main memory is located off-chip

and is shared by all cores.

For ease of programming, a multicore processor provides a shared-memory abstraction to soft-

ware to hide the complexity of the memory system. All cores share the same address space. Cores

communicate by writing and reading the same memory location.

The shared-memory programming model is intuitive to use compared to alternative approaches

where the software has to explicitly perform inter-core communication (e.g., MPI [64, 65]) or data

partitioning (e.g., PGAS [156, 134]). As a result, virtually all multicore processors implemented

the shared-memory model.

However, the simplicity in programmability comes at the cost of complexity in design. It is a

challenge to efficiently provide a shared-memory interface in hardware due to the complex structure

of a memory system. The memory model a multicore processor provides represents a trade-off be-

tween programmability and hardware efficiency. Specifically, the behavior of a multicore processor

is specified via a memory consistency model (cf. Section 2.1.1), which is implemented based on a

cache coherence protocol (cf. Section 2.1.2).

2.1.1 Memory Consistency Models

A memory consistency model specifies the rules of memory operations that the hardware must

follow. It defines what value a load request from a core should return. It is a contract between pro-

grammers and the processor. A spectrum of consistency models exist. Stronger consistency models

have more stringent constraints, making them easier to reason about for programmers, but perform

worse due to their inflexibility in reordering memory operations. In contrast, weaker or relaxed con-

sistency models are able to execute more memory operations concurrently, thereby obtaining better

performance. However, relaxed models have more complex rules, making it hard for programmers

28



to write correct code.

Sequential consistency (SC) is one of the strongest consistency models in multicore processors.

It defines the correctness of a parallel program with respect to a sequential program. The sequential

program is derived by interleaving the operations performed by different cores.

According to its definition, a parallel program is sequentially consistent if "the result of any

execution is the same as if the operations of all processors (cores) were executed in some sequential

order, and the operations of each individual processor (core) appear in this sequence in the order

specified by its program" [93]. Sequential consistency is relatively easy to reason about since it

relates a parallel program to an equivalent sequential program; and a sequential program is well

studied and easy to understand.

Most of our discussions in Part I of the thesis assume sequential consistency as the underlying

memory model. We will also discuss relaxed memory models in Chapter 4 and Chapter 5.

2.1.2 Cache Coherence Protocols

A cache coherence protocol is a crucial component in a multicore processor for implementing a

memory consistency model. Intuitively, coherence means that for any data block, if it is stored in

multiple private caches, then all the copies of the block must have the same value. Specifically,

a cache coherence protocol enforces the single-writer multiple-reader (SWMR) invariant, which

means that for any given memory location, at any given moment in time, there is either a single core

that may write it (and that may also read it) or some number of cores that may read it. Here, the

notion of time means the global memory order defined in the consistency model. It can be either

physical, logical, or some combination of both.

The definition above is not the only definition of cache coherence, and others exist in the litera-

ture [8, 54, 56, 71] that are equivalent to each other. From the perspective of a software application,

only the consistency model is important. Coherence is just a means to implement consistency.

However, coherence and consistency are usually considered separately in hardware to reduce de-

sign complexity and to improve modularity. As we will show later in the thesis (Chapter 3 and 4),

Tardis takes a holistic approach to handle consistency and coherence. It directly implements the

consistency model in hardware without requiring a traditional cache coherence protocol.

Many cache coherence protocols have been proposed in the literature. We discuss a few popular

classes of protocols in this section. For each class of cache coherence protocols, we also discuss

their scalability bottlenecks when implemented in a multicore system with hundreds to thousands

29



of cores.

Snoopy cache coherence protocols [58] were widely used in processors with small core counts.

The protocol enforces the SWMR invariant via an invalidation mechanism. Before a core performs

a write, it broadcasts the invalidation requests on the address to all the other cores through a shared

bus. Each core snoops on the bus, and upon seeing the request, invalidates or updates the requested

block in its private cache (if such a block exists). The write is performed after all the cached blocks

are invalidated or updated. At this point, the block with the requested address exists only in the

requesting core's private cache (i.e., single-writer); when no core is writing to a block, the block can

be shared in multiple private caches (i.e., multiple-reader).

The advantage of a snoopy cache coherence protocol is its design simplicity and low latency

in cache-to-cache data transfer. Snoopy protocols, however, have the following two major disad-

vantages. First, the shared bus is a major scalability bottleneck. Previous works have proposed to

implement a virtual bits on top of scalable interconnection techniques [104, 13, 105, 136]. These

designs provide ordering guarantees among memory accesses without requiring a central ordering

point. Second, a more fundamental scalability bottleneck in snoopy protocols is broadcasting mem-

ory requests through out the whole system. Previous works have proposed snoopfiltering to reduce

broadcasting messages by throttling broadcasting at the source [27, 114] or in the network [12]. As

the core count continued increasing, however, the cost of broadcasting increased and limited system

scalability.

Directory-based cache coherence protocols [29, 137] also use the invalidation mechanism,

but are more scalable than snoopy protocols. Instead of broadcasting invalidations globally, invali-

dations are only delivered to private caches that have a copy of the requested block. Compared to

a snoopy cache coherence protocol, the amount of network traffic for invalidations is significantly

reduced, leading to better scalability. However, directory-based protocols maintain a directory struc-

ture to track which caches (i.e., the sharer list) have shared copies of each data block. The sharer list

incurs significant storage overhead as the system scales. For an N-core system, a full-map directory

requires N-bit storage for each data block. This translates to a prohibitive 200% storage overhead

at 1000 cores (i.e., 1000 bits for the sharer list vs. 512 bits for the data in each block).

Previous works have proposed optimizations to reduce the storage overhead of the directory

structure. Hierarchical directories [146, 101] store the sharer list hierarchically, where a higher

level directory encodes whether a block is shared in a group of private caches. Coarse sharing

vectors [66, 161] reduce the storage overhead by tracking multiple sharers using fewer bits; these

30



protocols incur unnecessary invalidations. SCD [ 127] tracks exact sharers using variable sharing

vector representations. All the designs described above require complex directory organization.

Tardis, in contrast, completely eliminates the directory structure, thereby avoiding the complexity

associated with it.

Lease-based cache coherence protocols [59, 99, 131] get rid of the invalidation mechanism

through using leases. Upon a private cache miss, both the data and a lease are returned and stored in

the private cache. The data in a private cache is read only if it has not expired, i.e., the current clock

time is earlier than the end of the block's lease. A read to an expired block is considered a cache

miss. In order to preserve the SWMR invariant, a block is written to only after the leases of all the

shared copies of that block have expired. Compared to invalidation-based protocols (i.e., snoopy

and directory), lease-base protocols have lower design complexity. Previous studies, however, show

that lease-based protocols have worse performance due to 1) excessive cache misses caused by lease

expiration, and 2) longer write latency due to waiting for leases to expire [99]. Furthermore, these

protocols require globally synchronized clocks in all private and shared caches, which is complex

to implement as the system scales.

Consistency model specific coherence protocols exploit the fact that processors or compilers

typically implement relaxed memory consistency models instead of the strong sequential consis-

tency. Traditional cache coherence protocols, however, are designed to work efficiently with all

consistency models. Therefore, traditional cache coherence protocols may be an overkill if the sys-

tem only needs relaxed consistency. When optimized for a relaxed consistency model, the coher-

ence protocol has less stringent constraints, leading to protocols with lower complexity and better

scalability. Prior art has explored coherence protocols designed for consistency models includ-

ing Total Store Order (TSO) [45], Release Consistency (RC) [15], and Data-Race-Free programs

(DRF) [33, 125]. The downside of these protocols is that they can only support a certain relaxed

consistency model, which limits their applicability.

2.2 OLTP Databases

Modern database management systems (DBMSs) have two major application domains: on-line

analytical processing (OLAP) and on-line transaction processing (OLTP). OLAP DBMSs are used

for extracting important information from a database through running complex queries over the

data. These databases are typically read-only or read-intensive. Due to the large quantity of data

31



being processed, OLAP queries are relatively straightforward to parallelize over multiple cores or

servers.

OLTP DBMSs, in contrast, support the part of an application that interacts with end-users. An

end-user interacts with the database by sending it requests to perform some function in the form of a

transaction. A transaction performs a sequence of one or more operations over the shared database

(e.g., reserve a seat on a flight, or transfer money between bank accounts). At a high level, it is

challenging to scale OLTP DBMS for two reasons: 1) a large number of transactions can run in the

database at the same time, and 2) different transactions may conflict with each other leading to high

coordination overhead.

An OLTP DBMS is expected to maintain four properties for each transaction that it executes:

(1) atomicity, (2) consistency, (3) isolation, and (4) durability. These unifying concepts are collec-

tively referred to with the ACID acronym [68]. Specifically, atomicity guarantees that a transaction

either succeeds or fails, leaving the database unchanged if it does fail. Consistency implies that

every transaction will bring the database from one valid state to another. Isolation specifies when

a transaction is allowed to see modifications made by other transactions. Durability requires that a

committed transaction must be recoverable if the DBMS crashes.

Concurrency control is a critical component in an OLTP DBMS. It essentially provides the atom-

icity and isolation guarantees to the system. Similar to memory consistency models, many different

isolation levels exist. Strong isolation levels are more intuitive to use, but provide lower perfor-

mance. In contrast, relaxed isolation levels allow more concurrency, thereby better performance;

but they introduce anomalies into the system which may cause concurrency bugs.

The strongest isolation level, serializability, requires that the effect of a group of transactions

on the database's state is equivalent to some sequential execution of all transactions. The definition

is similar to the definition of sequential consistency. Both definitions use an equivalent sequential

execution to define the correctness of a parallel execution. When transactions access overlapping

data elements, concurrency control requires sophisticated inter-transaction coordination in order to

enforce serializability. As the level of parallelism increases, concurrency control can become a

serious scalability bottleneck of a DBMS.

2.2.1 Concurrency Control Algorithms

In this section, we briefly describe some classic concurrency control algorithms. For each type of

algorithm, we describe how it works, and show the potential scalability bottlenecks in it. Three

32



classes of concurrency control algorithms will be discussed here [18, 86]: two-phase locking (2PL),

timestamp ordering (T0), and optimistic concurrency control (OCC).

Two-Phase Locking (2PL) [21, 47] protocols are pessimistic and allow a transaction to access

an object in the database only after acquiring a lock with the proper permission (read or write). Each

transaction contains two phases: locks are acquired during the growing phase and released during

the shrinking phase. Since deadlocks may occur due to cycles in the lock dependency graph, differ-

ent techniques can be used to prevent or detect-and-resolve them. A major scalability bottleneck in

2PL algorithms is the lock thrashing problem. Thrashing happens when transactions spend signifi-

cant amount of time waiting for locks, while the locks held by a transaction block other concurrent

transactions. The problem aggravates in highly contentious workload.

Timestamp ordering (T/0) concurrency control schemes [18] generate a serialization order of

transactions a priori and then the DBMS enforces this order. A transaction is assigned a unique,

monotonically increasing timestamp before it is executed; this timestamp is used by the DBMS

to resolve conflicts between transactions [18]. T/O schemes can use multi-versioning to further

improve concurrency. The resulting algorithm is called multi-version concurrency control (MVCC).

In MVCC, a write creates a new version of a tuple in the database instead of overwriting the previous

version. This allows a read operation that arrives late (the timestamp of the reading transaction is

smaller than the version of the latest data) to proceed instead of aborting.

A major scalability bottleneck in T/O schemes is the timestamp allocation process. The times-

tamps need to be unique and monotonically increasing. Two solutions are commonly used: 1) a

centralized and atomically incremented counter, and 2) globally synchronized clocks. The first so-

lution creates a central bottleneck (i.e., the counter) that limits the throughput of the system to a few

million transactions per second; the second solution is complex to implement and not supported in

all processors today.

Optimistic Concurrency Control (OCC) [86] schemes assume conflicts are infrequent. Trans-

actions are speculatively executed without holding locks. At the end of its execution, a transaction

verifies that it is serializable with respect to other transactions. If serializability is violated, the trans-

action aborts and may restart later. Since no locks are maintained during. execution, a transaction

does not block or wait for other transactions, eliminating the lock thrashing problem during execu-

tion. At low contention, OCC algorithms perform well. When contention is high, however, OCC

algorithms lead to more aborts; and each abort is relatively expensive because it is detected only at

the end of the execution, at which point the transaction has already consumed valuable resources

33



(e.g., CPU time, cache capacity, and memory bandwidth).

The concurrency control algorithms described above can be applied to both multicore processors

and distributed systems. The scalability bottlenecks described here also apply to both settings. In

Chapter 6, we discuss the scalability bottlenecks of these algorithms in more detail. Then, we

describe our solutions to improve the scalability of concurrency control in Chapter 7 and Chapter 8,

for the settings of multicore processors and distributed systems, respectively.

34



Part I

Multi-Core Cache Coherence

35



36



Chapter 3

Tardis Cache Coherence

3.1 Introduction

As discussed in Section 2. 1, a major scalability bottleneck of a multicore processor is the cache

coherence protocol. The directory cache coherence protocol is the de facto standard in processors

having a large number of cores. But the storage requirement of a full-map directory structure does

not scale with the number of cores; and optimized directory structures are complex and usually hurt

performance.

In this chapter we present Tardis, a logical-lease-based cache coherence protocol that is simpler

and more scalable than directory-based protocols, but has equivalent performance. Tardis eliminates

the invalidation mechanism entirely through the use of leases. Therefore, the storage for sharer in-

formation is not required. To resolve the downsides of traditional lease-based protocols, Tardis uses

logical instead of physical leases and determine the order among operations using a combination

of physical and logical time. Unlike previously proposed physical-lease-based cache coherence

protocols (cf. Section 2.1.2), Tardis uses logical leases, which eliminates the requirement of clock

synchronization, and allows operations to "jump forward in time" to avoid conflicts. This chapter

presents the following contributions.

1. We present the basic Tardis protocol, the first cache coherence protocol that uses logical time

as the fundamental building block. In Tardis, only timestamps (requiring E(1) storage) and

the ID of the owner core (requiring O(log N) storage) need to be stored for each memory loca-

tion for an O(logN) cost in total, where N is the number of cores. A full-map directory-based

cache coherence protocol, in contrast, requires O(N) bits to store the sharer information.

37



2. We propose optimizations and extensions to improve the performance of Tardis. These op-

timizations include speculative reads to hide latency of renewals, timestamp compression,

supporting Out-of-Order (OoO) processors, and supporting remote word accesses.

3. We evaluated Tardis in the Graphite multicore simulator. Our experiments show that Tardis

achieves similar performance to its directory-based counterparts over a wide range of bench-

marks. Due to its simplicity and excellent performance, we believe Tardis is a competi-

tive alternative to directory-based cache coherence protocols for massive-core and distributed

shared memory (DSM) systems.

The rest of the chapter is organized as follows. We provide a formal definition of sequential

consistency in Section 3.2. We then introduce the notion of logical leases in Section 3.3. We

describe the basic Tardis protocol in Section 3.4, and optimizations in Section 3.5. We present

a case study in Section 3.6, evaluate the performance of Tardis in Section 3.7, discuss additional

related work in Section 3.8.

3.2 Sequential Consistency

In Section 2.1.1, we already saw a definition of sequential consistency. In this section, we provide a

more formal definition. The rest of the chapter will occasionally refer to this definition.

Sequential consistency can be defined using the following two rules [149]. We use X and Y to

represent a memory operation (i.e., either a load or a store) performed by a core, L(a) and S(a) to

represent a load or a store to address a, respectively. We use <, and <,, to denote program order

and global memory order, respectively. The Max<,, operator selects from a set the most recent

operation in the global memory order.

Rule 1: X <P Y -> X <M Y

Rule 2: Value of L(a) = Value of Max<,,{S(a)IS(a) <,, L(a)}

Rule I says that if operation X precedes another operation Y in the program order in any core, X

must precede Y in the global memory order as well. This means that the program order is preserved

when interleaving parallel operations. Rule 2 says that a load to an address should return the value

of the most recent store to that address with respect to the global memory order. This guarantees that

the parallel program produces the same result as the sequential one defined by the global memory

order.

38



In virtually all multicore processors implemented in practice and proposed in the literature, the

global memory order is simply the physical time order. This makes it trivial to implement Rule 1 in

sequential consistency, since processors just execute instructions in the time order as they already

do.' For Rule 2, a traditional multicore system guarantees that all reads to an address return the

value of the last write to the address in physical time order. In other words, once a write operation is

performed, it must be seen instantaneously by all the cores. This requirement causes the complexity

and overhead in traditional cache coherence protocols (cf. Section 2.1.2). In the next section, we

describe the solution that Tardis adopts, which avoids these problems by introducing logical time

into the system.

3.3 Logical Leases

A shared memory system orders memory operations to the same memory location. According to

Rule 2 of sequential consistency (cf. Section 3.2), a read is ordered after a write if the read returns

the value created by the write. Meanwhile, a read is ordered before a write if the write overwrites

the value that the read returns. For systems that use physical time to determine the memory order,

after a write is successfully performed to an address, no core sees the previous value of the address

anymore.

Physical time is not the only means to determine an order among operations. Logical time can

achieve the same goal. While logical time has been widely used in distributed systems to order

events [92, 51, 106], it has not been widely applied to shared memory systems. In this section, we

propose logical leases as a simple mechanism to determine the order among reads and writes in a

shared memory system.

A logical lease is bound to each memory location (e.g., a cacheline in a multicore processor) in

the shared memory. A logical lease comprises two integer timestamps, wts and rts, to indicate the

start and the end of the lease, respectively. Conceptually, the wts, or write timestamp, means that

the cacheline was written at logical time wts. The rts, or read timestamp, means that the cacheline

is valid until logical time rts. A read to a cacheline must happen at a timestamp (ts) between wts

and rts (wts < ts < rts); the read extends rts when necessary. A write to a cacheline must happen at

a timestamp (ts) greater than the current rts of the line (ts > rts + 1); the write also updates both wts

and rts to the timestamp of the write (ts) to reflect the new version.

1In an Out-of-Order processor, the instructions commit in-order.

39



Definition 1 gives the definition of physiological time.2 We show that with logical leases, all the

memory operations can be properly ordered according to this new notion of time. In the definition,

<,, is the global memory order, <,s is the timestamp order and <,, is the physical time order.

Definition 1 (Physiological Time).

X <,, Y := X <, Y or (X =t, Y and X <p, Y)

In Definition 1, an operation X precedes an operation Y in the global memory order if X has a

smaller timestamp, or X happens earlier in physical time if they both have the same logical times-

tamp.

Using this definition, all reads and writes to the same memory location are properly ordered.

Namely, the effect of these memory operations is the same as if they are sequentially executed in

the physiological time order. Specifically, if a read returns the value created by a write, the read

must have a timestamp no less than that of the write; if they have the same logical timestamp, the

read must happen after the write in physical time order. Therefore, the read is ordered after the write

in physiological time order. Similarly, if a write overwrites the value returned by a read, then the

write must have a greater timestamp than the that of the read, and therefore be ordered after the read

in physiological time order.

Logical leases provide a general technique to partially order reads and writes to a shared address

space. The technique can be applied to different shared memory systems. We discuss its application

to cache coherence protocols in the rest of this chapter, Chapter 4, and Chapter 5. We will talk about

how it is applied to transaction processing in Part II of the thesis.

3.4 Tardis Protocol

Traditional cache coherence protocols are treated separately from the consistency model. In con-

trast, Tardis directly implements the memory consistency model using logical leases, without re-

quiring a coherence protocol in a traditional sense. Each core maintains a program timestamp (pts)

to indicate the program order. pts is the timestamp of the last memory operation executed by the

core; it is the logical time that the core is at. In sequential consistency, pts monotonically increases

in the program order. Note that pts should not be confused with the processor (physical) clock. pts

2 The name physiological time comes from an easier pronunciation of physical-logical time.

40



is purely logical and advances asynchronously, requiring no clock synchronization.

3.4.1 Tardis without Private Cache

For illustrative purposes, we first show the Tardis protocol assuming no private caches and all data

fitting in the shared last level cache (LLC). Each cacheline has a unique copy in the LLC which

serves all the memory requests. The lease is attached to each cacheline. Although no coherence

protocol is required in such a system, the protocol in this section provides necessary background in

understanding the more general Tardis protocol in Section 3.4.2.

Table 3.1 shows the timestamp management policy in Tardis. The timestamp of a load request

(ts) is the maximum of the requesting core's pts and the accessed cacheline's wts. ts cannot be less

than pts because the timestamp of a memory operation must monotonically increase in the program

order (i.e., time should only move forward). ts cannot be less than wts because the data does not

exist before it is created. The rts of the cacheline is extended to ts if necessary. Finally, pts is

updated to the new ts.

Table 3.1: Timestamp Rules without Private Caches - The timestamp management in Tardis
without Private Caches. The timestamp of the current memory operation is ts.

Request Type Load Request Store Request

Timestamp ts = Max(pts, wts) ts = Max(pts, rts + 1)
Operation rts = Max(ts, rts) wts rts = ts

pts = ts pts ts

For a store request, the timestamp of the store (ts) is the maximum of the requesting core's

pts and the accessed cacheline's rts + 1. ts cannot be less than or equal to rts because the previous

version of the line was still valid at that logical time. After the write, both wts and rts of the cacheline

are updated to ts, reflecting the creation of a new version. Finally, pts is updated to ts.

Following Table 3.1, both rules in sequential consistency (cf. Section 3.2) can be enforced; and

the global memory order is the physiological time order. We make the assumption that a processor

performs instructions in the program order, namely, X <, Y =- X <pt Y. The proof below is an

informal sketch; a formal proof can be found in Chapter 5.

According to Table 3.1, pts monotonically increases in the program order. This means X <

Y - X ts Y. Using the in-order assumption above, we have X <, Y -- > X <ts Y and X <Pt

Y -> X <ts Y or (X =s Y and X <pt Y) -> X <m, Y. Therefore, Rule 1 is proven.

For Rule 2, the value of a load L(a) equals the value of the store S(a) that has a timestamp

41



equal to the wts of the cacheline returned by the load. Therefore S(a) <ts L(a) or (S(a) =ts

L(a) and S(a) <pt L(a)) which means S(a) <,, L(a). To prove Rule 2, we just need to show that

no other store S'(a) exists such that S(a) <m S'(a) <,m L(a). This is true because L(a) extends the

rts of the lease on cacheline a to the timestamp of L(a). This protects the cacheline from being

overwritten at any timestamp within the lease.

3.4.2 Tardis with Private Cache

With private caching, data can be replicated in private caches. For simplicity, we assume a 2-

level cache hierarchy with private L1 caches and a shared L2 cache. The timestamp manager is

the structure that replaces the directory in a directory-based coherence protocol. It collocates with

the LCC. The protocol discussed in Section 3.4.1 largely remains the same. However, two extra

mechanisms are needed.

Timestamp Leasing: Each shared cacheline in a private cache takes a logical lease. This allows

a core to read the cached data for a period of logical time, instead of going to the LLC for each

access. The cacheline can be read until the lease expires (i.e., pts > rts). After the lease expires,

however, a request must be sent to the timestamp manager to extend the lease.

Exclusive Ownership: Like in a directory protocol, a modified cacheline can be exclusively

owned by a private cache. In the timestamp manager, the owner of the cacheline is stored, which

requires logN bits. The data can be read or written by the owner core as long as it is still the

owner; and the timestamps may be updated with each access. If another core later accesses the

same cacheline, a write back (the owner continues to cache the line in shared state) or flush (the

owner invalidates the line) request is sent to the owner. The owner replies with the latest data and

timestamps after receiving such requests (i.e., write back or flush requests).

The timestamp manager only tracks the leases of a limited number of cachelines, namely, the

cachelines exist in on-chip caches. To maintain the timestamps of the large quantity of data in main

memory, a new pair of timestamps (mwts and mrts) are introduced. They indicate the largest wts

and rts, respectively, of the cachelines in the main memory. They effectively compress timestamps

of all data in main memory into a single pair of timestamps, which can be stored on chip.

The state transition and timestamp management of Tardis in private and shared caches are shown

in Table 3.2 and Table 3.3, respectively. Table 3.4 shows the network message types used in Tardis.

In the protocol, each cacheline (denoted as D) has a write timestamp (D.wts) and a read times-

tamp (D.rts). Initially, all timestamps (wts, rts, pts, mrts and mwts) in the system are zeroes and

42



Table 3.2: State Transition in a Private Cache - State Transition of Tardis in a private cache.
TM is the shared timestamp manager, D is requested cacheline, req and resp are the request and
response messages. Timestamp related rules are highlighted in red.

States Core Event Network Event
Load Store Eviction SHREP or RENEWREP or FLUSHREQ or
Load Store EX _ REP UPGRADE REP WB_REQ

Invalid Miss Miss Fill in data
req.wts = null req.wts = null SH REP
req.pts = pts req.type = EX_REQ D.wts = resp.wts
req.type = SH_REQ send req to TM D.rts = resp.rts
send req to TM state = Shared

Shared Hit Miss state = Invalid EX REP RENEW REP
pts < rts pts = Max(pts, D.wts) req.wts = D.wts No msg sent. D.wts = resp.wts D.rts = resp.rts
Shared Miss req.type = EXREQ D.rts = resp.rts UPGRADE REP
pts > rts req.wts = D.wts send req to TM state = Modified D.rts = resp.rts

req.pts = pts state = Modified
req.type = SH-REQ
send req to TM

Modified Hit Hit state = Invalid FLUSH REQ
pts = Max(pts, D.wts) pts = Max(pts, D.rts req.wts = D.wts resp.wts = D.wts
D.rts = Max(pts, D.rts) + 1) req.rts = D.rts resp.rts = D.rts

D.wts = pts req.iype = resp.rype = FLUSH_REP
D.rts =pts FLUSHREP send resp to TM

send req to TM state = Invalid
WBREQ
D.rts = Max(D.rts, req.rts)
resp.wts = D.wts
resp.rts = D.rts
resp.ype = WB_REP
send resp to TM
state = Shared

all caches are empty. Some network messages (denoted as req or resp) also have timestamps as-

sociated with them. The protocol shown here is a MSI protocol with three possible states for each

cacheline, Modified, Shared and Invalid. Support for other states (e.g., Exclusive and Owned) will

be discussed in Section 3.5.

State Transition in Private Cache (Table 3.2)

Load to Private Cache (column 1, 4, 5): A load to the private cache is considered as a hit if

the cacheline is in exclusive state or is in shared state and has not expired (pts < rts). Otherwise,

a SHREQ is sent to the timestamp manager to load the data or to extend the existing lease. The

request message has the current wts of the cacheline indicating the version of the cached data.

Store to Private Cache (column 2, 4, 5): A store to the private cache can only happen if the

cacheline is exclusively owned by the core, which is the same as a directory coherence protocol.

Otherwise, EXREQ is sent to the timestamp manager for exclusive ownership. For a hit, both the

rts and wts of the cacheline are both updated to Max(pts, rts + 1).

43



Eviction (column 3): Evicting shared cachelines does not require sending any network mes-

sage. The cacheline is simply dropped. This behavior is very different from directory-based proto-

cols where a message is sent to the directory to remove the core from the sharer list. Tardis does not

maintain sharer list since it is lease-based. To evict a cacheline in modified state, the data needs to

be returned to the LCC (through a FLUSHREP message).

Flush or Write Back (column 6): Exclusive cachelines in the private caches may receive

flush or write back requests from the timestamp manager if the cacheline is evicted from the LLC or

accessed by another core. A flush is handled similarly to an eviction where the data is returned and

the line invalidated. For a write back request, the data is returned but the line transitions to shared

state.

State Transition in Timestamp Manager (Table 3.3)

Table 3.3: State Transition in the Timestamp Manager.

States SHREQ EXREQ Eviction DRAMREP FLUSHREP or
__ 1 1j1 1 WB REP

Invalid Send request to DRAM Fill in data
D.wts = mwts
D.rts = mrts
state = Shared

Shared D.rts = Max(D.rts, req.pts + resp.rts = D.rts mwts = Max(mwts, D.wts)
lease, D.wts + lease) state = Modified mrts = Max(mrts, D.rts)
if req.wts == D.wts if req.wts = D.wts Store data back to DRAM
resp.rts = D.rts resp.type = UPGRADEREP if dirty
resp.type = RENEWREP send resp to requester state = Invalid
send resp to requester else
else M.wts = D.wts
resp.wts = D.wts resp.type = EX_REP
resp.rts = D.rts send resp to requester
resp.type = SHREP
send resp to requester

Modified req'.rts = req.pts + lease req'.type = FLUSH-REQ Fill in data
send req' to the owner send req' to the owner D.wts = resp.wts

D.rts = resp.rts
state = Shared

Shared request to the timestamp manager (column 1): If the cacheline is invalid in the

LLC, it must be loaded from DRAM. If it is exclusively owned by another core, then a write back

request (WBREQ) is sent to the owner. When the cacheline is in the Shared state, it is reserved for

a period of logical time by setting the rts to be the end of the timestamp lease, and the line can only

be read from wts to rts in the private cache.

If the wts of the request equals the wts of the cacheline in the timestamp manager, the data in

the private cache must be the same as the data in the LLC. So a RENEWREP is sent back to the

requesting core. The RENEWREP message does not contain data payload. Otherwise SHREP is

44



sent back with the data. RENEWREP incurs much less network traffic than a SHREP.

Exclusive request to the timestamp manager (column 2): An exclusive request can be caused

by a store or exclusive read from the core. Similar to a directory-based protocol, if the cacheline is

invalid, it should be loaded from DRAM; if the line is exclusively owned by another core, a flush

request is sent to the owner.

If the requested cacheline is in shared state, however, no invalidation messages are sent. The

timestamp manager can immediately give exclusive ownership to the requesting core which bumps

up its local pts to the cacheline's current rts + 1 when performing the write, i.e., jumps ahead in

time. Other cores still read their local copies of the cacheline if those local copies have not expired

according to the cores' pts. This does not violate sequential consistency since the read operations

in the sharing cores are ordered before the write operation in physiological time order, even though

the read may happen after the write in physical time order. If the cacheline expires in a sharing core,

the core will send a request to renew the line at which point the latest version of the data is returned.

If the wts of the request equals the wts of the cacheline in the timestamp manager, an UP-

GRADEREP is sent to the requester without the data payload.

Evictions (column 3): Evicting a cacheline in modified state is the same as in directory pro-

tocols, i.e., a flush request is sent to the owner. The cacheline is removed from the cache only after

the flush response comes back. To evict a shared cacheline, however, no invalidation messages are

sent. Sharing cores can still read their local copies until they expire. Again, correctness is not vio-

lated since the memory operations are ordered using both logical and physical time instead of pure

physical time.

Main memory (column 3, 4): Tardis only stores timestamps on chip but not in DRAM.

The memory timestamps (mwts and mrts) are used to maintain coherence for DRAM data. They

indicate the maximal write and read timestamps of all the cachelines stored in main memory but not

cached. For each cacheline evicted from the LLC, mwts and mrts are updated to Max(wts, mwts)

and Max(rtsmrts), respectively. When a cacheline is loaded from main memory, its wts and rts

are assigned to be mwts and mrts, respectively. This guarantees that previous accesses to the same

memory location are ordered before the accesses to the newly loaded cacheline. This takes care of

the case when a cacheline is evicted from the LLC but is still cached in some core's private cache.

Note that multiple mwts and mrts can be used for different partitions of data. In this thesis, we

assign a pair mwts and mrts for each LLC cache bank.

Flush or write back response (column 5): Finally, the flush response and write back response

45



Table 3.4: Network Messages - The check marks indicate what components a message contains.

Message Type ]J pts ] rts wts ] data
SHREQ V
EXREQ V

FLUSH REQ
WBREQ V
SHREP V V V
EXREP V V

UPGRADE-REP _

RENEWREP V _

FLUSHREP V V V
WBREP V V V

DRAM-ST REQ V
DRAMLDREQ
DRAM-LD-REP I____ _ V

are handled in the same way as in directory-based protocols. Note that when a cacheline is exclu-

sively owned by a core, only the owner has the latest rts and wts; the rts and wts in the timestamp

manager are invalid and the same hardware bits can be used to store the ID of the owner core.

An Example Program

We use an example to show how Tardis works with a parallel program. Figure 3-1 shows how the

simple program in Listing 3.1 runs with the Tardis protocol. In the example, we assume a lease of

10 and that both instructions from Core 0 are executed before the instructions in Core 1.

Listing 3.1: Example Program

initially A = B = 0

[Core 0] [Core 1]

A = 1 B = 1

print B print A

(0) Initial State

Cor 0. pts=O Core 1, pts=O

A OO
B00

Cacheline Format: wts rits data Time
(1) A = 1@ Core 0 (2) load B 0 core 0 (3) B = 1 core 1 (4) load A @ core 1

A 111 AA111 AA 1221 |(A 1221

B 0 011 B B
Core , pt pt Core p CsSo , ors O% C, pts1pi rei Core 1, p Cs=1 Core 0, pts=1 SCore 1, pts=12------ ------ ------- ------ ----------------- ------- -- --- ---------

Aownerco A owner=co A o A 1 2 2 1
B 000 B 0110 Bowner=c1 Bowner=c1

Figure 3-1: An Example of Tardis - An example program running with Tardis (lease= 10).
Cachelines in private caches and LLC are shown. The cacheline format is shown at the top of the
figure.

Step 1: The store to A misses in Core O's private cache and an EXREQ is sent to the timestamp

46



manager. The store operation happens at pts = Max(pts,A.rts + I) = I and the A.rts and A.wts in

the private cache both become 1. The timestamp manager marks A as exclusively owned by Core 0.

Step 2 : The load of B misses in Core O's private cache. After Step 1, Core O's pts becomes 1.

So the end of the lease should be Max(rts, wts + lease, pts + lease) = 11.

Step 3 : The store to B misses in Core 1's private cache. At the timestamp manager, the

exclusive ownership of B is immediately given to Core 1 at pts = rts + I = 12. Note that two

different versions of B exist in the private caches of core 0 and core 1 (marked in red circles). In

core 0, B = 0 but is valid when 0 < timestamp < 11; in Core 1, B = 1 and is only valid when

timestamp > 12. This does not violate sequential consistency since the loads of B at core 0 will

be ordered logically before the loads of B at core 1, even if they happen in the opposite order with

respect to the physical time.

Step 4 : Finally the load of A misses in Core I's private cache. The timestamp manager sends a

WB_REQ to the owner (Core 0) which updates its own timestamps and writes back the data. Both

cores will have the same data with the same range of valid timestamps on cacheline A.

With Tardis on sequential consistency, it is impossible for the example program above to output

0 for both print commands, even if the cores are out-of-order. The reason will be discussed in

Section 3.4.3.

3.4.3 Out-of-Order Execution

So far we have assumed in-order cores, i.e., a second instruction is executed only after the first

instruction commits and updates the pts. For out-of-order cores, a memory instruction can start

execution before previous instructions finish and thus the current pts is not known. However, with

sequential consistency, all instructions must commit in the program order. Tardis therefore enforces

timestamp order at the commit time.

Timestamp Checking

In the re-order buffer (ROB) of an out-of-order core, instructions commit in order. We slightly

change the meaning of pts to mean the timestamp of the last committed instruction. For sequential

consistency, pts still increases monotonically. Before committing an instruction, the timestamps

are checked. Specifically, the following cases may happen for shared and exclusive cachelines,

respectively.

47



An exclusive cacheline can be accessed by both load and store requests. And the accessing in-

struction can always commit with pts - Max(pts, wts) for a load operation and pts -= Max(pts, rts +

1) for a store operation.

A shared cacheline can be accessed by load requests. And there are two possible cases.

1. pts < rts. The instruction commits. pts &# Max(wts.,pts).

2. pts > rts. The instruction aborts and is restarted with the latest pts. Re-execution will trigger

a renew request.

There are two possible outcomes of a restarted load. If the cacheline is successfully renewed, the

contents of the cacheline do not change. Otherwise, the load returns a different version of data and

all the depending instructions in the ROB need to abort and be restarted. This hurts performance

and wastes energy. However, the same flushing operation is also required for an OoO core on a

baseline directory protocol under the same scenario [55]. A cacheline can be loaded by a core but

invalidated due to another core's store before the load instruction commits. In this case, the load

needs to be restarted and the ROB flushed. Therefore, the renewal failure in Tardis serves as similar

functionality to an invalidation in directory protocols.

Out-of-Order Example

If the example program in Section 3.4.2 runs on an out-of-order core, both loads may be scheduled

before the corresponding stores. In this section, we show how this scenario can be detected by

the timestamp checking at commit time and therefore the two prints never both output 0. For

the program to output A = B = 0, both loads are executed before the corresponding stores in the

timestamp order.

L(A) <,s S(A), L(B) <,s S(B)

For the instruction sequence to pass the timestamp checking, we have

S(A) ts L(B), S(B) ts L(A)

Putting them together leads to the following contradiction.

L(A) <ts S(A) <ts L(B) <ts S(B) <ts L(A)

48



This means that at least at one core, the timestamp checking will fail. The load at that core is

restarted with the updated pts. The restarted load will not be able to renew the lease but will return

the latest value (i.e., 1). So at least at one core, the output value is 1.

3.4.4 Avoiding Livelock

Although Tardis strictly follows sequential consistency, the protocol discussed so far may generate

livelocks due to deferred update propagation. In directory coherence, a write is quickly observed by

all the cores through the invalidation mechanism. In Tardis, however, a core may still read the old

cached data even if another core has updated it, as long as the cacheline has not expired in logical

time. It is the responsibility of the core caching the data to detect staleness. Therefore, there is a

delay in physical time between the data update at the writing and reading core's caches. In the worst

case when deferment becomes indefinite, livelock occurs. For example, if a core spins on a variable

which is set by another core, the pts of the spinning core does not increase and thus the old data

never expires. As a result, the core may spin forever without observing the updated data.

Tardis uses a simple solution to handle this livelock problem. To guarantee forward progress,

we only need to make sure that an update is eventually observed by following loads, that is, the

update becomes globally visible within some finite physical time. This is achieved by occasionally

incrementing the pts in each core so that the old data in the private cache eventually expires and

the latest update becomes visible. The self increment can be periodic or based on more intelligent

heuristics. We restrict ourselves to periodic increments in this chapter, and explore optimizations in

Chapter 4.

3.4.5 Tardis vs. Directory Coherence

In this section, we qualitatively compare Tardis to the directory coherence protocol in terms of

network messages, scalability and complexity.

Protocol Messages

In Table 3.2 and Table 3.3, the advantages and disadvantages of Tardis compared to directory pro-

tocols are shaded in light green and light red, respectively. Both schemes have similar behavior and

performance in the other state transitions (the white cells).

49



Invalidation: In a directory protocol, when the directory receives an exclusive request to a

Shared cacheline, the directory sends invalidations to all the cores sharing the cacheline and waits

for acknowledgements. This usually incurs significant latency which may hurt performance. In

Tardis, however, no invalidation happens (cf. Section 3.4.2) and the exclusive ownership can be

immediately returned without waiting. The timestamps guarantee that sequential consistency is

maintained. The elimination of invalidations makes Tardis much simpler to implement and reason

about.

Eviction: In a directory protocol, when a shared cacheline is evicted from the private cache,

a message is sent to the directory where the sharer information is maintained. Similarly, when a

shared cacheline is evicted from the LLC, all the copies in the private caches should be invalidated.

In Tardis, correctness does not require maintaining sharer information and thus no such invalidations

are required. When a cacheline is evicted from the LLC, the copies in the private caches can still

exist and be accessed.

Data Renewal: In directory coherence, a load hit only requires the cacheline to exist in the

private cache. In Tardis, however, a cacheline in the private cache may have expired and cannot be

accessed. In this case, a renew request is sent to the timestamp manager which incurs extra latency

and network traffic. In Section 3.5. 1, we present techniques to reduce the overhead of data renewal.

Scalability

A key advantage of Tardis over directory coherence protocols is scalability. Tardis only requires the

storage of timestamps for each cacheline and the owner ID for each LLC cacheline (0(logN), where

N is the number of cores). In practice, the same hardware bits can be used for both timestamps and

owner ID in the LLC; because when the owner ID needs to be stored, the cacheline is exclusively

owned and the timestamp manager does not maintain the timestamps.

On the contrary, a full-map directory-based coherence protocol maintains the list of cores shar-

ing a cacheline which requires O(N) storage overhead. Previous works proposed techniques to

improve the scalability of directory protocols by introducing broadcast or other complexity (cf.

Section 3.8.2).

Simplicity

Another advantage of Tardis is its conceptual simplicity. Tardis is directly derived from the defini-

tion of sequential consistency and the timestamps explicitly express the global memory order. This

50



makes it easier to reason the correctness of the protocol. Concretely, given that Tardis does not have

to multicast/broadcast invalidations and collect acknowledgements, the number of transient states

in Tardis is smaller than that of a directory-based protocol.

3.5 Optimizations and Extensions

We introduce several optimizations in the Tardis protocol in this section. All of them are enabled

during our evaluation. A few extensions are also discussed.

3.5.1 Speculative Execution

As discussed in Section 3.4.5, the main disadvantage of Tardis compared to a directory-based co-

herence protocol is the renew request. In a pathological case, the pts of a core may rapidly increase

since some cachelines are frequently read-write shared by different cores. Meanwhile, the read-only

cachelines will frequently expire and a large number of renew requests are generated incurring both

latency and network traffic. Observe, however, that most renew requests will successfully extend

the lease and the renew response does not transfer the data. This indicates that the renewal traffic is

not significant. More important, this means that the data in the expired cacheline is actually valid

and we could have used the value without stalling the pipeline of the core. Based on this observa-

tion, we propose to use speculation to hide renew latency. When a core reads a cacheline which has

expired in the private cache, instead of stalling and waiting for the renew response, the core reads

the current value and continues executing speculatively. If the renewal fails and the latest cacheline

is returned, the core rolls back by discarding the speculative computation that depends on the load.

The rollback process is similar to a branch misprediction which has already been implemented in

most processors.

For processors that can hide the renew latency by allowing multiple outstanding misses, suc-

cessful renewals (which is the common case) do not hurt performance. Speculation failure does

incur performance overhead since we have to rollback and rerun the instructions. However, if the

same instruction sequence is executed in a directory protocol, the expired cacheline is not in the pri-

vate cache in the first place; the update from another core has already invalidated this cacheline and

a cache miss happens. As a result, in both Tardis and directory coherence, the value of the load is

returned at the same time incurring the same latency and network traffic. Tardis still has some extra

overhead as it needs to discard the speculated computation, but this overhead is relatively small.

51



Speculation successfully hides renew latency in most cases. The renew messages, however,

may still increase the on-chip network traffic. This is especially problematic if the private caches

have a large number of shared cachelines that all expire when the pts jumps ahead due to a write

or self increment. This is a fundamental disadvantage of Tardis compared to directory coherence

protocols. According to our evaluations in Section 3.7, however, Tardis has good performance and

acceptable network traffic on real benchmarks even with this disadvantage. In Chapter 4, we will

discuss relaxed memory consistency models and dynamic leases which are solutions to mitigate the

renewal overhead.

3.5.2 Timestamp Compression

In Tardis, all the timestamps increase monotonically and may roll over. One simple solution is to

use 64-bit timestamps which never roll over in practice. This requires 128 extra bits to be stored

per cacheline, which is a significant overhead. Observe, however, that the high-order bits in a

timestamp change infrequently and are usually the same across most of the timestamps. We exploit

this observation and propose to compress this redundant information using a base-delta compression

scheme.

In each cache, a base timestamp (bts) stores the common high-order bits of wts and rts. In each

cacheline, only the delta timestamps (delta_ts) are stored (deltawts = wts - bts and deltarts = rts

- bts). The actual timestamp is the sum of the bts and the corresponding deltats. The bts is 64

bits to prevent rollover. The storage requirement for bts is small since only one bts is required per

cache. The per cacheline deltats is much shorter with lower storage overhead.

When any delta ts in the cache rolls over, we will rebase where the local bts is increased and

all the deltats in the cache are decreased by the same amount, e.g., half of the maximum deltats.

For simplicity, we assume that the cache does not serve any request during the rebase operation.

Note that increasing the bts in a cache may end up with some deltats being negative. In this

case, we just set the deltats to 0. This effectively increases the wts and rts in the cacheline. How-

ever, it does not violate the consistency model. Consider a shared LLC cacheline or an exclusive

private cacheline - the wts and rts can be safely increased. Increasing the wts corresponds to writing

the same data to the line at a later logical time, and increasing the rts corresponds to a hypothetical

read at a later logical time. Neither operation violates the rules of sequential consistency. Simi-

larly, for a shared cacheline in the private cache, wts can be safely increased as long as it is smaller

than rts. However, rts cannot be increased without coordinating with the timestamp manager. So

52



if delta-rts goes negative in a shared line in a private cache, we simply invalidate the line from the

cache. The last possible case is an exclusive cacheline in the LLC. No special operation is required

since the timestamp manager has neither the timestamps nor the data in this case.

The key advantage of this base-delta compression scheme is that all computation is local to each

cache without coordination between different caches. This makes the scheme very scalable.

The scheme discussed here does not compress the timestamps over the network and we assume

that the network messages still use 64-bit timestamps. It is possible to reduce this overhead by

extending the base-delta scheme over the network but this requires global coordination amongst

multiple caches. We did not implement this extension in order to keep the basic protocol simple and

straightforward.

3.5.3 Private Write

According to Table 3.2, writing to a cacheline in exclusive state updates both wts and pts to

Max(pts, rts + 1). In this case, if the core keeps writing to the same address, pts keeps increas-

ing causing other cachelines to expire. If the updated cacheline is completely private to the up-

dating thread, however, there is actually no need to increase the timestamps in order to achieve

sequential consistency. Since the global memory order in Tardis is the physiological time order (cf.

Section 3.3), we can use physical time to order these operations implicitly without increasing the

logical time.

Specifically, when a core writes to a cacheline, the modified bit will be set. For future writes to

the same cacheline, if the bit is set, then the pts, wts and rts are just set to Max(pts, rts). This means

the write may have the same timestamp as previous writes or reads to the same cacheline. But since

they are performed by the same core, the write must happen after the read in physical time order,

and therefore in physiological time order as well. This means that pts will not increase if the line

is repeatedly written to. The optimization will significantly reduce the rate at which timestamps

increase if most of the accesses from a core are to thread private data.

3.5.4 Extension: Exclusive and Owned States

The Tardis protocol presented so far assumes three states for each cacheline: Modified, Shared and

Invalid (MSI). In practice, invalidation-based protocols are usually optimized by adding Exclusive

and/or Owned states. The resulting protocols are MESI, MOSI and MOESI. In this section, we

show how E and 0 states are implemented in Tardis.

53



Similar to the M state, the E state allows the cacheline to be exclusively cached and be modified

without contacting the timestamp manager. Different from the M state, however, the E state can be

acquired upon a shared request if the requesting core seems to be the only sharer of the line. This

can improve performance for the case where a write follows a read to the same private data. Without

the E state, the write needs to upgrade the cacheline's state from S to M by sending an extra message

to the timestamp manager. The message is not required if the E state is supported.

In the timestamp manager, cachelines in M and E states are handled in the same way. One

difference that makes it a little tricky to implement the E state in Tardis is to tell if the requesting

core is the only sharer. This is tricky since Tardis does not maintain the sharer list as in a directory-

based protocol. To solve this problem, Tardis adds an extra bit for each cacheline indicating whether

any core has accessed it since it was put into the LLC (i.e., loaded from main memory, or written

back by a previous owner). And if the bit is unset, the requesting core gets the line in exclusive

state, else in shared state. Note that with this scheme, an exclusive response means the line is likely

to have only one sharer, but it does not guarantee it. However, even if other cores are sharing the

line, it can still be returned to the requester in exclusive state without affecting correctness. This

is because the same cacheline can be shared and exclusively owned by different cores at the same

physical time, as long as the lines have non-overlapping logical leases.

The 0 state allows a cacheline to be dirty but shared in the private caches. Upon receiving

the WBREQ request, instead of writing the data back to the LLC or DRAM, the core can change

the cacheline to 0 state and directly forward the data to the requesting core. In Tardis, the 0 state

can also be supported by keeping track of the owner at the timestamp manager. SHREQs to the

timestamp manager are forwarded to the owner which does cache-to-cache data transfers. Similar to

the basic Tardis protocol, when the owner is evicted from the private cache, the cacheline is written

back to the LLC or the DRAM and its state in the timestamp manager is changed to Shared or

Invalid.

3.5.5 Extension: Remote Word Access

Traditionally, a core loads a cacheline into the private cache before accessing the data. But it can

access data remotely without caching it. Remote word access has been studied in the context of

locality-aware directory coherence [88]. Remote atomic operation has been implemented on Tilera

processors [38, 73]. Allowing data accesses or computations to happen remotely can reduce the

coherence messages and thus improve performance [157].

54



However, it is not easy to maintain the performance gain of these remote operations with direc-

tory coherence under TSO or sequential consistency. For a remote load operation (which might be

part of a remote atomic operation), it is not very easy to determine its global memory order since it

is hard to know the physical time when the load operation actually happens. As a result, integration

of remote access with directory coherence is possible but fairly involved [87].

Consider the example program in Listing 3.1 assuming all memory requests are remote accesses.

If all requests are issued simultaneously, then both loads may be executed before both stores and the

program outputs 0 for both prints. It is not easy to detect this violation in a directory protocol since

we do not know when each memory operation happens. As a result, either the remote accesses are

sequentially issued or additional mechanisms need to be added [87].

In Tardis, however, memory operations are ordered through timestamps. It is very easy to deter-

mine the memory order for remote accesses since it is determined by the timestamp of the operation.

In Tardis, multiple remote accesses can be issued in parallel and the order can be checked after they

return. If any load violates the memory order, it can be reissued with the updated timestamp infor-

mation (similar to timestamp checking in an out-of-order core).

3.5.6 Other Extensions

Atomic operations in Tardis can be implemented the same way as in directory protocols. Tardis can

be extended to relaxed consistency models such as Total Store Order (TSO) which is implemented

in Intel x86 processors [129]. A more thorough discussion of relaxed memory models is presented

in Chapter 4.

3.6 Case Study

In this section, we use an example parallel program as a case study to compare Tardis with an

full-map MSI directory protocol.

3.6.1 Example

Listing 3.2 shows the parallel program we use for the case study. In this program, the two cores

issue loads and stores to addresses A and B. The nop in Core 1 means that the core spends that

cycle without accessing the memory subsystem. The program we use here is a contrived example

to highlight the difference between Tardis and a directory coherence protocol.

55



Listing 3.2: The case study parallel program

[Core 0] [Core 1]

L(B) nop

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

Figure 3-2 and Fig. 3-3 show the execution of the program on a directory-based and the Tardis

coherence protocols, respectively. A cacheline is either in shared (S) or modified (M) state. For

Tardis, a static lease of 10 is used. Initially, all private caches are empty and all timestamps are 0.

We will explain step by step how Tardis executes the program and highlight the differences between

the two protocols.

Initial State Cycle 1 Cycle 2 Cycle 3

Core 0 Core 1
BI s 1 0 B s

~~~~---- ---- ______F~) l
A n aO A snaO As n/aOA
B BsnaO Bs 00 Bs 00

state sharer/owner
CycleS Cydc 6 ye 7 Cyce 8

A M 1A A M|1A s
B M 2: 2 B B s 2

A M on/a AMOD/a RA nA " A 01
BMIn/a BMIna BM1n/a Bs 12

Cycle 10 Cycle H1 Cycle 12 Cycle 13
Al s 1|A s A| s ~ A s : A s ~A M 3

B s 2 BFs 2B s 2 B s 2 B S 2 :B M 4
IN -AVA) R -sp n/

As oi RAsoii As 0 | A |1I/
Bsj Bso1 Bs1 BM~/

Cycle 4

:A

A M 10 In],

B s |na 0

Cycle 9

As 1 A S I

B s 2 JB s 2

B s 0.1 2

Figure 3-2: An Example of a Directory-Based Coherence Protocol - Execution of the case
study program with a directory-based coherence protocol. FL, WB, INV and UP stand for Flush,
Writeback, Invalidate, and Update, respectively.

Cycle 1 and 2: Core 0 sends a shared request to address B in cycle 1, and receives the response

in cycle 2. The cacheline is reserved till timestamp 10. Core 1 sends an exclusive request to address

B at cycle 2. In these two cycles, both the directory protocol and Tardis have the same network

messages sent and received.

Cycle 3: In Tardis, the exclusive request from core 1 sees that address B is shared till timestamp

10. The exclusive ownership is instantly returned and the store is performed at timestamp 11. In

56



Initial State Cycle 1 Cycle 2 Cycle 3 Cycle 4

Core 0 Core 1sB BB

:pts= i- pis=0 pts o,,pt o :ps=O~ Bt= 50100 Pr~i PtB M 1112 ,S010 ,=1lii

AsOQO Asooo Asooo Asooo AMowr
B Bs0B 0  B BIMTwn BMOwJer.I

state wts rts data
Cycle 5 Cyce Cycle 7 Cycle 8

As t21t jA s 1 211 As t211|ASi21 1 AM22|223A Si 21
B s jJ10 B M 111 2 B s_ J ot3 B M 1111 2 B s oo| B M 11 11 2 B S 0 10o 0 B M 1111 4

(rA S|1 |211 I A I 211 AMower|

B =B M owner=i BMown= B M

Figure 3-3: An Example of Tardis Protocol - Execution of the case study program with Tardis.

the directory protocol, however, an invalidation must be sent to Core 0 to invalidate address B. As a

result, the exclusive response is delayed to cycle 5. At this cycle, core 0 sends an exclusive request

to address A.

Cycle 4: In both Tardis and the directory protocol, address A's exclusive ownership can be

instantly returned to core 0 since no core is sharing it. The pts of core 0 becomes 1 after performing

the store. Core 1 performs a shared request to address A which needs to get the latest data from core

0 through write back. So the shared response returns in cycle 7. The same L(A) instruction in the

directory protocol incurs the same latency and network traffic from cycle 6 to 9.

Cycle 5 and 6: In cycle 5, the L(A) instruction in core 0 hits in the private cache and thus

no request is sent. Also in core 0, the write back request increases address A's rts to 21 since the

requester's (core 1) pts is 11 and the lease is 10. In cycle 6, the L(B) instruction in core 0 hits in the

private cache since the pts is 1 and the cached address B is valid till timestamp 10. In the directory

protocol, the same L(B) instruction is also issued at cycle 6. However, it misses in the private cache

since the cacheline was already invalidated by core 1 at cycle 4. So a write back request to core 1

needs to be sent and the shared response returns at cycle 9.

Cycle 7 and 8: At cycle 7, core 0 sends an exclusive request to address A and core 1 gets the

shared response to address A. At cycle 8, the exclusive ownership of address A is instantly returned

to core 0 and the store happens at timestamp 22 (because address A has been reserved for reading

until timestamp 21). In the directory protocol, the same S(A) instruction happens at cycle 10 and

the shared copy in core 1 must be invalidated before exclusive ownership is given. Therefore, the

exclusive response is returned at cycle 13. Also in cycle 8 in Tardis, core 1 stores to address B. The

store hits in the private cache. In the directory protocol, the same store instruction happens at cycle

57



10. Since core 0 has a shared copy of address B, an invalidation must be sent and the exclusive

response is returned at cycle 13.

3.6.2 Discussion

In this case study, the cycle saving of Tardis mainly comes from the removal of invalidations. While

a directory protocol requires that only one version of an address exist at any point in time across

all caches, Tardis allows multiple versions to coexist as long as they are accessed at different times-

tamps.

The pts in each core shows how Tardis orders the memory operations. At cycle 3, core 1's

pts jumps to 11. Later at cycle 4, core O's pts jumps to 1. Although the operation from core 0

happens later than the operation from core 1 in physical time, it is the opposite in global memory

and physiological time order. Later at cycle 8, core O's pts jumps to 22 and becomes bigger than

core 1's pts.

In Tardis, a load may still return a old version of a memory location after the memory location

is updated by a different core, as long as sequential consistency is not violated. As a result, Tardis

may produce a different instruction interleaving than a directory-based protocol. Listings 3.3 and

3.4 show the instruction interleaving of the directory-based protocol and Tardis, respectively, on our

example program.

Listing 3.3: Instruction interleaving in the Listing 3.4: Instruction interleaving in Tardis

directory-based protocol

[Core 0] [Core 1] [Core 0] [Core 11

L(B) W/L(B) W

AL) B=2 A1 B=2

L(A) L(A) L(A) R L(A)

L(B) WAR B = 4 L(B) B = 4

A = 3 A = 3

In the directory protocol, the second L(B) instruction from core 0 is ordered between the two

stores to address B from core 1 in the global memory order. In Tardis, however, the same L(B)

instruction is ordered before both stores. Such reordering is possible because Tardis enforces se-

quential consistency in physiological time order, which can be different from the physical time

order.

58



3.7 Evaluation

We now evaluate the performance of Tardis in the context of multicore processors.

3.7.1 Methodology

We use the Graphite [110] multicore simulator for our experiments. The default hardware parame-

ters are listed in Table 3.5. The full-map directory-based protocol with MSI is used as the baseline

in this section. 3 This baseline keeps the full sharer information for each cacheline and thus incurs

non-scalable storage overhead. To model a more scalable protocol, we use the Ackwise [89] pro-

tocol which keeps a limited number of sharers and broadcasts invalidations to all cores when the

number of sharers exceeds the limit.

Table 3.5: System Configuration.

System Configuration

Number of Cores N = 64 @ 1 GHz
Core Model In-order, Single-issue

Memory Subsystem
Cacheline Size 64 bytes
L I I Cache 16 KB, 4-way
Ll D Cache 32 KB, 4-way
Shared L2 Cache per Core 256 KB, 8-way
DRAM Bandwidth 8 MCs, 10 GB/s per MC
DRAM Latency 100 ns

2-D Mesh with XY Routing
Hop Latency 2 cycles (I-router, 1-link)
Flit Width J 128 bits

Tardis Parameters
Lease 10
Self Increment Period 100 cache accesses
Delta Timestamp Size 20 bits
Li Rebase Overhead 128 ns
L2 Rebase Overhead 1024 ns

In our simulation mode, Graphite includes functional correctness checks, where the simulation

fails, e.g., if wrong values are read. All the benchmarks we evaluated in this section completed,

which corresponds to a level of validation of Tardis and its Graphite implementation. A formal

verification of Tardis will be presented in Chapter 5.

Splash-2 [153] benchmarks are used for performance evaluation. For most experiments, we

report both the throughput (in bars) and network traffic (in red dots).

3 Other states, e.g., 0 (Owner) and E (Exclusive) can be added to an MSI protocol to improve performance; such states
can be added to Tardis as well to improve performance as described in Section 3.5.4.

59



Tardis Configurations

Table 3.5 also shows the default Tardis configuration. For a load request, a static lease of 10 is

taken. The pts at each core self increments by one if it has not changed for 100 cache accesses (self

increment period). The Base-delta compression scheme is applied with 20-bit delta timestamps and

64-bit base timestamps. When the timestamp rolls over, the rebase overhead is 128 ns in L1 and

1024 ns in an LLC slice.

The lease and self increment period are both static in the evaluation here. Both parameters can

be changed dynamically for better performance based on the data access pattern. Exploration of

such techniques will be discussed in Chapter 4.

3.7.2 Main Results

Throughput

Figure 3-4 shows the throughput of Ackwise and Tardis on 64 in-order cores, normalized to baseline

MSI. For Tardis, we also show the performance with speculation turned off. For most benchmarks,

Tardis achieves similar performance compared to the directory baselines. On average, the perfor-

mance of Tardis is within 0.5% of the baseline MSI and Ackwise.

m Ackwise TARDIS wlo speculation TARDIS

E l CL 3j 4

Fge 3TBb

iur spe-4aio Pstre f, h rgerformance of Tardis at6bersoohthmeruhut(as) 7%ndrs thntor

directory-based baseline. In this case, the core stalls while waiting for the renewal, in contrast to

the default Tardis where the core reads the value speculatively and continues execution. Since most

renewals are successful, speculation hides a significant amount of latency and makes a big difference

in performance.

60



Network Traffic

The red dots in Figure 3-4 show the network traffic of Ackwise and Tardis normalized to the

baseline-directory protocol. On average, Tardis with and without speculation incurs 19.4% and

21.2% more network traffic. Most of this traffic comes from renewals. Figure 3-5 shows the per-

centage of renew requests and misspeculations out of all LLC accesses. Note that the y-axis is in

log scale.

In benchmarks with lots of synchronizations (e.g., CHOLESKY, VOLREND), cachelines in the pri-

vate cache frequently expire generating a large number of renewals. In VOLREND, for example,

65.8% of LLC requests are renew requests which is 2x of normal LLC requests. As discussed

in Section 3.4.5, a successful renewal only requires a single flit message, which is cheaper than a

normal LLC access. So the relative network traffic overhead is small (36.9% in VOLREND compared

to the directory-based baseline).

An outlier is WATER-SP, where Tardis increases the network traffic by 3 x. This benchmark has

very low LI miss rate and thus very low network utilization to begin with. But Tardis increments the

pts of each core periodically, which incurs a significant amount of renew requests due to cacheline

expiration. But the absolute amount of traffic is still very small even though Tardis incurs 3 x more

traffic.

In many other benchmarks (e.g., BARNES, WATER-NSQ, etc.), Tardis has less network traffic than

baseline MSI. The traffic reduction comes from the elimination of invalidation and cache eviction

traffic.

From Figure 3-5, we see that the misspeculation rate for Tardis is very low; less than 1% re-

newals failed on average. A speculative load is considered a miss if the renew fails and a new

version of data is returned. Having a low misspeculation rate indicates that the vast majority of

renewals are successful.

100 Renew Rate M Misspeculation Rate

10-

10
10 4

5V

Figure 3-5: Renew and Misspeculation Rate in Tardis -- Fraction of renewals and misspeculations
out of all Li data cache misses. The processor has 64 cores. The Y-axis is in log scale.

61



Table 3.6: Timestamp Statistics

Benchmarks Ts. Incr. Rate Self Incr. Perc.

(cycle / timestamp)

FMM 322 22.5%
BARNES 155 33.7%

CHOLESKY 146 35.6%
VOLREND 121 23.6%
OCEAN-C 81 7.0%

OCEAN-NC 85 5.6%
FFT 699 88.5%

RADIX 639 59.3%
LU-C 422 1.4%

LU-NC 61 0.1%
WATER-NSQ 73 12.8%
WATER-SP 363 29.1%

AVG 263 26.6%

Timestamp Discussion

Table 3.6 shows how fast the pts in a core increases, in terms of the average number of cycles to

increase the pts by 1. Table 3.6 also shows the percentage of pts increasing caused by self increment

(cf. Section 3.4.4).

Over all the benchmarks, pts is incremented by I every 263 cycles, at each core. For a delta

timestamp size of 20 bits, the timestamp rolls over every 0.28 seconds. In comparison, the rebase

overhead (128 ns in LI and 1 ps in L2) becomes negligible. This result also indicates that times-

tamps in Tardis increase very slowly. This is because they can only be increased by accessing shared

read/write cachelines or self increment.

On average, 26.6% of timestamp increasing is caused by self increment and the percentage can

be as high as 88.5% (FFT). This has negative impact on performance and network traffic since unnec-

essarily increasing timestamps causes increased expiration and renewals. Better livelock avoidance

algorithms can resolve this issue, as will be discussed in Chapter 4.

3.7.3 Sensitivity Study

Li Data Cache Size

We first study how sensitive Tardis is with respect to the private cache size.

Figure 3-6 shows the performance of different cache coherence protocols as we sweep the Ll

data cache size from 32 KB to 512 KB, for a subset of Splash-2 benchmarks. We observe that both

Tardis and the full-map directory-based protocol achieve better performance as the Li data cache

62



size increases. Without the speculative read optimization (cf. Section 3.5.1), the performance of

Tardis is worse than the directory-based protocol; the performance gap widens as the LI cache size

increases. This is because Tardis incurs more cache misses than the directory-based protocol due

to lease expirations; and the number of expiration-induced misses increases with the private cache

size. This is because a larger private cache contains more cold cachelines, which are more likely

to contain stale leases. Without the optimization of speculative reads, these extra misses degrade

Tardis' performance. With the optimization, however, the performance of Tardis matches that of the

directory-based protocol.

1.5 a-. Dir .- L Tardis o a Tardis No Spec
S1.4--

1.3
. 32KB 128KB 512KB

1.

0.91
BARNES VOLREND OCEAN-C OCEAN-NC FFT RADIX LU-C LU-NC WATER-NSQ WATER-SP

Figure 3-6: Sensitivity of throughput to Li Data Cache Size - Performance of a full-map
directory-based protocol and Tardis (with and without the optimization of speculative reads) on 64
cores, with different LI data cache sizes. All results are normalized to the full-map directory-based
protocol with 32 KB LI data caches.

Figure 3-7 shows the network traffic breakdown for the same sets of experiments. For each

benchmark, we report traffic breakdown for both directory-based and Tardis (with and without

speculation) protocols for two difference Ll data cache sizes (i.e., 32 KB and 512 KB). For all

the benchmarks we evaluated, having a larger Li data cache reduces the overall network traffic.

For Tardis, we observe that the amount of renewal traffic increases as the LI data cache gets larger,

especially for BARNES, VOLREND and WATER-NSQ. As explained above, this is because that a larger

private cache leads to more cacheline expirations and thereby more renewals.

S1. DRAM Traffic Other Traffic Renew Traffi

j~1.21

Q) 0 Tard

D.4 irt Sl.ii lii II l.
BARNES VOLREND OCEAN-C OCEAN-NC FFT RADIX LU-C LU-NC WATER-NSQ WATER-SP

Figure 3-7: Sensitivity of network traffic to Li Data Cache Size - Network traffic breakdown
of a full-map directory-based protocol and Tardis (with and without the optimization of speculative
reads) on 64 cores, with two different Li data cache sizes (32 KB and 512 KB). All results are
normalized to the full-map directory-based protocol with 32 KB LI data caches.

63



In-order vs. Out-of-Order Core

Figure 3-8 shows the performance of Tardis on out-of-order cores. Compared to in-order cores

(cf. Figure 3-4), the performance impact of speculation is much smaller. When a renew request

is outstanding, an out-of-order core is able to execute independent instructions even if it does not

speculate. As a result, the renewal's latency can be hidden. On average, Tardis with and without

speculation is 0.2% and 1.2% within the performance of the directory-based protocol, respectively.

Ackwise TARDIS w/o Speculation E11M TARDIS

1 0
EL

Figure 3-8: Out-of-Order Core Experiments - Performance of Tardis on 64 out-of-order cores.

The normalized traffic of Tardis on out-of-order cores is not much different from in-order cores.

This is because both core models follow sequential consistency and the timestamps assigned to the

memory operations are virtually identical. As a result, the same amount of renewals is generated.

Self Increment Period

As discussed in Section 3.4.4, we periodically increment the pts at each core to avoid livelock.

The self increment period specifies the number of data cache accesses before self incrementing the

pts by one. If the period is too small, the pts increases too fast causing more expirations; more

renewals will be generated which increases network traffic and hurts performance. A fast growing

pts leads to more frequent lease expirations, which also hurts performance. If the period is too large,

however, an update at a core may not be observed by another core quickly enough, which degrades

performance.

Figure 3-9 shows the performance of Tardis with different self increment period. The perfor-

mance of most benchmarks is not sensitive to this parameter. In FMM and CHOLESKY, performance

goes down when the period is 1000. This is because these two benchmarks heavily use spinning

(busy waiting) to synchronize between threads. If the period is too large, each core spends a long

time spinning on the stale value in the private cache and cannot make forward progress.

Having a larger self increment period always reduces the total network traffic because of fewer

renewals. Given the same performance, a larger period should be preferred due to network traffic

64



1 -period=10 period=100 period=1000i 5

E0

00

ovy0'~
0  00

Figure 3-9: Tardis' Performance Sensitivity to Self Increment Period.

reduction.

traffic.

Our default self increment period is 100 which has reasonable performance and network

Scalability

Figure 3-10 shows the performance of Tardis on 16 and 256 cores respectively.

1 1 o Ackwise Tardis period=100

1 08
0. T0

FI I l [
i O ('yOd

'3

I [ [iV2

(a) 16 Cores

Ackwise Tardis periad=10 Tardis period=100

0.

Z 0.98'

0. 7L

(b) 256 Cores

Figure 3-10: Scalability Study -Performance of Tardis

5

(0

20z

on 16 and 256 cores.

At 16 cores, the same configurations are used as at 64 cores. On average, the throughput is

within 0.2% of baseline MSI and the network traffic is 22.4% more than the baseline MSI.

At 256 cores, two Tardis configurations are shown with self increment period 10 and 100. For

most benchmarks, both Tardis configurations achieve similar performance. For FMM and CHOLESKY

however, performance is worse than the directory-based baselines when the period is set to 100. As

discussed in Section 3.7.3, both benchmarks heavily rely on spinning for synchronization. At 256

cores, spinning becomes the system bottleneck and period = 100 significantly delays the spinning

core from observing the updated variable. It is generally considered bad practice to heavily use

spinning at high core count.

65

2



Table 3.7: Storage Requirement - Storage requirement of different cache coherence protocols
(bits per LLC cacheline). Ackwise assumes 4 sharers at 16 or 64 cores and 8 sharers at 256 cores.

# cores (N) full-map directory Ackwise Tardis

16 16 bits 16 bits 40 bits
64 64 bits 24 bits 40 bits

256 256 bits 64 bits 40 bits

. m 14 bits 18 bits 20 bits 64 bits
1.05 3

1.00

0 095 1

0.90 t ill I[-

Figure 3-11: Tardis' Performance Sensivity to the Timestamp Size.

On average, Tardis with self increment period of 100 performs 3.4% worse than MSI with 19.9%

more network traffic. Tardis with self increment period of 10 makes the performance 0.6% within

baseline MSI with 46.7% traffic overhead.

Scalable storage is one advantage of Tardis over directory protocols. Table 3.7 shows the per

cacheline storage overhead in the LLC for two directory baselines and Tardis. Full-map directory

requires one bit for each core in the system, which is O(N) bits per cacheline. Both Ackwise and

Tardis can achieve 0(logN) storage but Ackwise requires broadcasting support and is thus more

complicated to implement.

Different from directory protocols, Tardis also requires timestamp storage for each L 1 cacheline.

But the per cacheline storage overhead does not increase with the number of cores.

Timestamp Size

Figure 3-11 shows Tardis's performance with different timestamp sizes. All numbers are normal-

ized to the full-map directory-based baseline. As discussed in Section 3.5.2, short timestamps roll

over more frequently, which degrades performance due to the rebase overhead. According to the re-

sults, at 64 cores, 20-bit timestamps can achieve almost the same performance as 64-bit timestamps

(which never roll over in practice).

Lease

Finally, we sweep the value of the lease in Figure 8-1. Similar to the self increment period, the lease

controls when a cacheline expires in the LI cache. Roughly speaking, a large lease is equivalent to

66



p lease=5 eease=10 rease=20e

S109 10

~~~~ 0y0 V 0

Figure 3-12: Tardis' Performance Sensitivity to the Length of Leases.

a long self increment period. For benchmarks using a lot of spinning, performance degrades since

an update is deferred longer. The network traffic also goes down as the lease increases. For most

benchmarks, however, performance is not sensitive to the choice of lease. However, we believe

that intelligently choosing leases can appreciably improve performance; for example, data that is

read-only can be given an infinite lease and will never require renewal. We defer the exploration of

intelligent leasing to Chapter 4.

3.8 Additional Related Work

We discuss related work on timestamp based coherence protocols (cf. Section 3.8.1) and scalable

directory coherence protocols (cf. Section 3.8.2).

3.8.1 Timestamp based coherence

To the best of our knowledge, none of the existing timestamp based coherence protocols is as simple

as Tardis while achieving the same level of performance. In all of these protocols, the timestamp

notion is either tightly coupled with physical time, or these protocols rely on broadcast or snooping

for invalidation.

Using timestamps for coherence has been explored in both software [112] and hardware [116].

TSO-CC [45] proposed a hardware coherence protocol based on timestamps. However, it only

works for the TSO consistency model, requires broadcasting support and frequently self-invalidates

data in private caches. The protocol is also more complex than Tardis.

In the literature we studied, Library Cache Coherence (LCC) [99] is the closest algorithm to

Tardis. Different from Tardis, LCC uses physical time based timestamps and requires a globally

synchronized clock. LCC has bad performance because a write to a shared variable in LCC needs

to wait for all the shared copies to expire and this takes a long time. This is much more expensive

than Tardis which only updates a counter without any waiting. Singh et al. used a variant of LCC

on GPUs with performance optimizations [131]. However, the algorithm only works efficiently for

67



release consistency and not sequential consistency.

Timestamps have also been used for verifying directory coherence protocols [121], for ordering

network messages in a snoopy coherence protocol [105], and to build write-through coherence

protocols [25, 152]. None of these works built coherence protocols purely based on timestamps.

Similar to our work, Martin et. al [105] give a scheme where processor and memory nodes process

coherence transactions in the same logical order, but not necessarily in the same physical time order.

The network assigns each transaction a logical timestamp and then broadcasts it to all processor and

memory nodes without regard for order, and the network is required to meet logical time deadlines.

Tardis requires neither broadcast nor network guarantees. The protocol of [25] requires maintaining

absolute time across the different processors, and the protocol of [152] assumes isotach networks

[80], where all messages travel the same logical distance in the same logical time.

3.8.2 Scalable directory coherence

Some previous works have proposed techniques to make directory coherence more scalable. Limited

directory schemes (e.g., [11]) only track a small number of sharers and rely on broadcasting [89]

or invalidations when the number of sharers exceeds a threshold. Although only O(logN) storage

is required per cacheline, these schemes incur performance overhead and/or require broadcasting

which is not a scalable mechanism.

Other schemes have proposed to store the sharer information in a chain [30] or hierarchical

structures [101]. Hierarchical directories reduce the storage overhead by storing the sharer infor-

mation as a k-level structure with logAN bits at each level. The protocol needs to access multiple

places for each directory access and thus is more complex and harder to verify.

Previous works have also proposed the use of coarse vectors [66], sparse directory [66], software

support [31] or disciplined programs [33] for scalable coherence. Recently, some cache coherence

protocols have been proposed for 1000-core processors [84, 127]. These schemes are directory

based and require complex hardware/software support. In contrast, Tardis can achieve similar per-

formance with a very simple protocol.

68



Chapter 4

Tardis with Relaxed Consistency Models

4.1 Introduction

The Tardis protocol discussed in the previous section has a few drawbacks, making it suboptimal in

a real multicore system. First and foremost, Tardis only supports the sequential consistency (SC)

memory model. While SC is simple and well studied, commercial processors usually implement

more relaxed models since they can deliver better performance. Intel x86 [129] and SPARC [149]

processors can support Total Store Order (TSO); ARM [128] and IBM Power [102] processors

implement weaker consistency models. It is difficult for commercial processors to adopt Tardis if

the target memory models are not supported.

Another drawback of Tardis is the renew message that is used to extend the logical lease of a

shared cacheline in a private cache. These messages incur extra latency and bandwidth overhead.

Finally, Tardis uses a timestamp self-increment strategy to avoid livelock. This strategy has subop-

timal performance when threads communicate via spinning.

In this chapter, we will address these drawbacks of the original Tardis protocol and make it

more practical. Specifically, we will discuss the changes to the cores and the memory subsystem

in order to implement TSO and other relaxed consistency models on Tardis. We also propose new

optimization techniques (MESI, livelock detection and dynamic leasing) to reduce the number of

renew messages in Tardis, which improves performance.

Our simulations over a wide range of benchmarks indicate that our optimizations improve the

performance and reduce the network traffic of Tardis. Compared to a full-map directory-based

coherence protocol at 64 cores, optimized Tardis is able to achieve better performance (1.1 % average

improvement, up to 9.8%) and lower network traffic (2.9% average reduction, up to 12.4%) at the

69



same time. The improvement becomes more prominent as the system scales to 256 cores where

Tardis further improves performance (average 4.7%, upto 36.8%) and reduces the network traffic

(average 2.6%, upto 14.6%). While the optimized and baseline Tardis protocols require timestamps

in the LI cache, they are, overall, more space-efficient than full-map directory protocols and simpler

to implement.

The rest of this chapter is organized as follows. In Section 4.2, we discuss how Total Store Order

(TSO) is implemented in Tardis. Then we discuss optimziations to Tardis to reduce the number of

renewals in Section 4.3. Our evaluation is presented in Section 4.4.

4.2 Tardis with TSO

The original Tardis protocol only supports the sequential consistency (SC) memory model. Al-

though SC is intuitive, it may overly constrain the ordering of memory operations. In practice, this

may lead to suboptimal performance. To resolve this disadvantage of SC, relaxed consistency mod-

els have been proposed and widely implemented in real systems. Most of these models focus on

the relaxation of the program order in SC (Rule I in the SC definition). Specifically, the program

order of a core may appear out-of-order in the global memory order. The more relaxed a model

is, the more flexibility it has to reorder memory operations, which usually leads to better overall

performance.

In this section, we show how Tardis can be. generalized to relaxed consistency models. We first

use Total Store Order (TSO) as a case study since it has a precise definition and is the most widely

adopted. We will present the formal definition of TSO (Section 4.2.1), the Tardis-TSO protocol

(Section 4.2.2), an example program (Section 4.2.3) and optimizations (Section 4.2.4). Finally, we

generalize the discussion to other memory models (Section 4.2.5).

4.2.1 Formal Definition of TSO

The TSO consistency model relaxed the Store -4 Load constraint in the program order. This allows

a load after a store in the program order to be flipped in the global memory order (assuming that the

load and the store have no data or control dependency). This means that an outstanding store does

not block the following loads. In an Out-of-Order (OoO) processor, when a store reaches the head of

the Re-Order Buffer (ROB), it can retire to the store buffer and finish the rest of the store operation

there. The loads following the store can therefore commit early before the store finishes. Since

70



store misses are common in real applications, this relaxation can lead to significant performance

improvement.

Similar to SC, the definition of TSO also requires a global order (specified using <m.) of all

memory instructions. However, the global memory order does not need to follow the program

order for Store -+ Load dependency. Specifically, TSO can be defined using the following three

rules [132]. The differences between TSO and SC are highlighted in boldface.

Rule 1: L(a) <p L(b) > L(a) <m L(b)

L(a) <P S(b) L(a) <, S(b)

S(a) <P S(b) S(a) <,, S(b)

S(a) <P,, L(b) EE5(a) <nj L(b) # required in SC but not in TSO

Rule 2: Value of L(a) = Value of Max<,, {S(a) I S(a) <,, L(a) or S(a) <P L(a)}

Rule 3: X <, FENCE > X <,, FENCE

FENCE <P X > FENCE <, X

In TSO, the program order implies the global memory order only for Load -> Load, Load -

Store and Store -÷ Store constraints. Since there is no Store - Load constraint, a load can bypass

the pending store requests and commit earlier (Rule 1). Although the load is after the store in the

program order, it is before the store in the global memory order.

In an out-of-order processor, TSO can be implemented using a store buffer, which is a FIFO

for pending store requests that have retired from ROB. If the address of a load is found in the store

buffer, then the pending data in the store buffer is directly returned; otherwise, the load accesses the

memory hierarchy (Rule 2).

TSO uses afence instruction when a Store -+ Load order needs to be enforced (Rule 3). In a

processor, a fence flushes the store buffer enforcing that all previous stores have finished so that

a later committed load is ordered after stores before the fence in physical time. If all memory

operations are also fences, then TSO becomes SC.

4.2.2 Tardis-TSO Protocol

In this section, we describe how TSO can be implemented on Tardis. Specifically, we discuss the

changes to the timestamp management policy as compared to the Tardis SC protocol.

71



Program Timestamp Management

The original Tardis SC protocol uses a single program timestamp (pts) to represent the commit

timestamp of an instruction. Since the program order always agrees with the global memory order

in SC, pts monotonically increases in the program order.

In TSO, however, the program order does not always agree with the global memory order.

Following Rule 1 in TSO's definition, a store's timestamp is no less than the timestamps of all

preceding loads, stores and fences in the program order. A load's timestamp is no less than the

timestamps of all preceding loads and fences, but not necessarily preceding stores. As a result, a

single monotonically increasing pts is insufficient to represent the ordering constraint.

To express the different constraints for loads and stores respectively, we split the original pts into

two timestamps. The store timestamp (sts) represents the commit timestamp of the last store, and

the load timestamp (lts) represents the commit timestamp of the last load. Like pts, both sts and lts

are maintained in each core in hardware. According to Rule 1, both should monotonically increase

in the program order because of the Load -* Load and Store -4 Store constraints. Furthermore, the

timestamp of a store (sts) should be no less than the timestamp of the preceding load (lts) because

of the Load -4 Store constraint. For a load, however, its lts can be smaller than sts because there is

no Store -+ Load constraint.

A fence can be simply implemented as a synchronization point between sts and lts. Specifically,

a fence sets lts = Max(lts, sts). This enforces Rule 3 in TSO because operations after the fence

are ordered after operations before the fence in physiological time order (and therefore the global

memory order). If each memory operation is also a fence, then the commit timestamp for each

operation monotonically increases and the protocol becomes Tardis SC.

In a traditional coherence protocol, the main advantage of TSO over SC is the performance

gain due to loads bypassing stores in the store buffer. In Tardis, besides bypassing, TSO can also

reduce the number of renewals compared to SC. This is because the lts/sts in TSO may increase

more slowly as compared to the pts in SC. As a result, fewer shared cachelines expire.

Data Timestamp Management

The timestamp management logic largely remains the same when the consistency model switches

from SC to TSO. However, the timestamp rules for data in the store buffer need some slight changes.

For single-threaded cores, timestamp management in the private L 1 can also be changed for load

72



requests for potentially better performance.

Specifically, for a dirty cacheline in modified state in the store buffer or LI cache, the Its does

not have to be greater than the wts of the cacheline. With SC, in contrast, its cannot be smaller than

wts. With respect to the global memory order, the behavior in TSO means that the load can commit

at an its smaller than the commit timestamp of the store creating the data (wts). This behavior

certainly violates SC but it is completely legal in TSO.

According to Rule 2 of TSO, a load should return either the last store in global memory order

or the last store in program order, depending on which one has a larger physiological time. Since a

dirty cacheline was written by a store from the current core prior to the load, even if the load has a

smaller commit timestamp than the store, Rule 2 still holds. A more formal proof of correctness is

presented in Chapter 5.

Unlike in traditional processors, TSO can be implemented with Tardis even on in-order cores

that do not have a store buffer. This is because Tardis can directly implement the correct memory

ordering using logical timestamps. This will become clear in the example presented in the next sec-

tion. We note that our implementation of Tardis TSO still has a store buffer to improve performance.

Note that if multiple threads can access the same private cache, then the above optimization

for dirty LI cachelines may not be directly applied in the Ll cache (but it is still applied in the

store buffer). This is because a dirty line might be written by any thread sharing the L 1. For these

systems, this optimization can be turned off in the L 1.

4.2.3 TSO Example

Listing 4.1: Example Program

[core0l [corel]

B = 1 A = 2

L (B) -+ ri FENCE

L(A) - r2 L(B) -- r3

We use the example program in Listing 4.1 to demonstrate how timestamps are managed in

Tardis TSO. The execution of the program is shown in Figure 4-1. For simplicity, we do not model

the store buffer and execute one instruction per step for each core.

Initially, both addresses A and B are cached in Shared (S) state in both cores' private caches as

well as the shared LLC. wts of all lines are 0; rts of all lines of address A are 5 and rts of all lines of

address B are 10.

73



Initial State
Core 0 Core l

A 0 5 0 A sTo 510
B I s |o 0 B I s o10 0

A 550

state wts rts data

Step 1 Step 2
Core 0 Corel1 Core 0 Core1

A s o 5 A MI 61612 A | 5 0 A M66121

B |M11|11|1| B s o 10o B M11111 B |s l o10 o
~=it~o ss=,lt=OSts= 11. lts=0 ,",,sts--6,It=6

A M owner=1 Lj A M owner=1
B Mowner=0 B Mowner=0

Step 3
Core 0 Core 1

A 50 M 662:

B M 111 11 B s o 10 0
sts=I1I, Its=() P, sts=6, Its=6

r2=0 )A |M owner=1 |[r3=O0
B -| --er -o -

Figure 4-1: Tardis-TSO
= 10. A private cacheline
highlighted in red.

Example - Execution of the program in Listing 4.1 in Tardis with lease
in M state means it is modified and dirty. Changed states at each step are

Step 1: core 0 writes to address B and core 1 writes to address A. Exclusive ownership of A

and B are given to core 1 and core 0, respectively, and both stores are performed by jumping ahead

in logical time to the end of the lease. After the stores, core O's sts jumps to timestamp 11 and core

1's sts jumps to 6, but the lts of both cores remain 0.

Step 2: core 0 loads address B. The value of the previous store from core 0 is returned (rl = 1).

Since B is in the dirty state, the load does not increase the lts (cf. Section 4.2.2). In core 1, a fence

instruction is executed which synchronizes the lts and sts to timestamp 6.

Step 3: core 0 loads address A. Since its lts is 0 which falls between the wts and rts of cacheline

A, this is a cache hit and value 0 is returned (r2 = 0). In core 1, the load to address B also hits the

Ll since its lts = 6 falls within B's lease. As a result, the loaded value is also 0 (r3 = 0).

Listing 4.2 shows the physiological commit time for each instruction in Listing 4.1. It also

shows the global memory order using arrows. Physiological time is represented using a logical

timestamp and physical time pair (ts, pt) where ts is the commit timestamp and pt is the physical

commit time of the instruction. According to the definition, (tsi, pt) < (ts2, pt2 ) if ts1 < ts2 or

(tsi = ts2 and pt1 < pt2 ).

74

M



Listing 4.2: Global memory order of the Tardis-TSO example - The arrows show the global

memory order of the all the six memory operations performed by the two cores.

[coreol [corel]

(11, 1)(6, 1)

I
(0, 2) (6, 2)

(0, 3) (6, 3)

The execution is definitely not sequentially consistent since the program order in core 0 is vi-

olated between the first (B = 1) and the second (L (B)) instructions. But it obeys all the invariants

of TSO. Note that the store buffer is not included in the example since we are modeling in-order

cores, but TSO can still be implemented. This feature is not available in traditional physical time

based coherence protocols. For this example, adding the store buffer will not change the hardware

behavior.

4.2.4 TSO Optimizations

Many optimization techniques have been proposed in the literature to improve performance of the

basic SC/TSO consistency model. Examples include load speculation to hide instruction stall la-

tency due to Load -- Load and Store -+ Load dependency, and store prefetch to enhance Store -+

Store and Load -+ Store performance [55]. For TSO, the speculation can also go over fences.

Tardis TSO is compatible with these optimizations. In fact, it may be even simpler to support

them on Tardis than on traditional coherence protocols since the timestamps can help preserve/check

memory order. For example, for load -÷ load relaxation, multiple loads can be speculatively exe-

cuted in parallel, and the wts and rts of the loaded cachelines are stored inside the core (e.g., in the

ROB). To enforce load -* load dependency, the processor only needs to commit instructions with

ascending timestamp order (and reissue a load with a new timestamp if necessary). In contrast, a

traditional processor needs to snoop on invalidation messages in order to detect a speculation fail-

ure. Fence speculation can also be implemented in a similar way using timestamps. In general,

Tardis allows all memory operations to be speculatively executed arbitrarily, as long as their com-

mit timestamps obey the consistency model. This flexibility makes it easier to reason about and

implement these optimizations.

75



Table 4.1: Memory Order Constraints for Different Consistency Models - L represents a load,

S represents a store, and F represents a fence. For release consistency, rel represents a release and

acq represents an acquire.

Consistency Ordinary Synchronization
Model Orderings Orderings

SC L-+L,L-S,
S L, S -+S

TSO L--L,L S, S-4F,F-+L,F-+F
S S

PSO L L,L S S-F,F-*S,- L,
F-F

RC L/S - rel, acq -- L/S,
rel/acq -- rel/acq

4.2.5 Other Relaxed Consistency Models

Similar to TSO, other memory consistency models (Table 4.1) can also be supported in Tardis with

proper changes to the timestamp rules. Given the relationship between the program order and the

global memory order, it is usually straightforward to adapt Tardis for different models. In this

section, we briefly discuss Partial Store Order (PSO) and Release Consistency (RC) to illustrate

how Tardis can support them with minimal algorithmic change.

Partial Store Order (PSO)

The PSO consistency model [149] relaxes both the Store -4 Load and the Store -+ Store orderings.

Similar to TSO, we use the lts and sts to model the program order constraints. In PSO, since Load

-* Load is enforced but Store -÷ Load is not, which is the same as TSO, the rule for lts is also the

same. Namely, pts should monotonically increase independently of store timestamps.

The timestamp order for stores, however, does not need to monotonically increase, since Store

- Store is relaxed. Therefore, the timestamp of a store (ts) only needs to be no less than the current

lts (ts > lts, due to the Load -a Store constraint). And sts represents the largest store timestamp so

far (instead of the last store timestamp), namely sts = Max(sts, ts).

For a fence instruction, lts synchronizes with sts, namely lts = Max(lts, sts). The resulting lts is

the timestamp of the fence.

Release Consistency (RC)

Release consistency [56] relaxes all the program order constraints; furthermore, it also relaxes the

ordering constraints for synchronizations. Specifically, an acquire guarantees that all of the follow-

76



ing (but not the previous) operations are ordered after the acquire and a release guarantees that all

the previous (but not the following) operations are ordered before the release.

In Tardis, we need to maintain timestamps for acquire (acquire_ts) and release (releaseits)

operations, as well as the maximal commit timestamp (maxjts) so far. A normal load or store

operation (commit timestamp ts) can be performed as long as its timestamp is greater than acquire ts

(ts > acquire_ts); maxits represents the largest commit timestamp as seen by the core so far (maxts

= Max(max-ts, ts)). At a release instruction, releasets and maxts are synchronized (releasets

= Max(releasets, maxts)). At an acquire instruction, acquirets and releasets are synchronized

(acquire_ts = Max(acquire-ts, release-ts)).

4.3 Renewal Reduction Techniques

As previously discussed, a major drawback of the original Tardis protocol is the requirement of

cacheline renewal. With load speculation, latency of renew messages can be largely hidden, but

network traffic overhead remains. As shown in Section 3.7, most of the renewed cachelines have

their values unchanged. Therefore, these renewals are not necessary in theory. In this section, we

discuss techniques to reduce unnecessary renew messages.

4.3.1 MESI on Tardis

The original Tardis protocol implements MSI where a read to a private cacheline loads it in S

(shared) state in the LI cache. As the lts (or pts in SC) increases in a core, these data will expire

and be renewed. When the cacheline is private to a core, these renewals are unnecessary since there

is no need to maintain coherence for private data to a core.

The MESI protocol can mitigate this issue. MESI adds an E (Exclusive) state to MSI. The E

state is granted for a request if the cacheline is not shared by other cores. Like a cacheline in M state,

an exclusive cacheline is owned by a private cache and therefore never expires. If the lts is greater

than the rts, the rts of that line is extended silently without contacting the timestamp manager. This

can be done since the line is owned by the core and not shared by other cores. Since all thread local

data are in E state in a MESI protocol, these data do not incur any renewal request.

Different from traditional coherence protocols, Tardis can grant E state to a core even if other

cores are still sharing the line. This is similar to granting M state without the need for invalidation.

However, for performance reasons, it is still desirable to only grant E state to private data. Because

77



if the E state is granted to a shared cacheline, then extra write back messages are required when

other cores read the cacheline that is exclusively owned. In Tardis, a cacheline is likely to be not

shared if it has just been loaded from DRAM, or if it has just been downgraded from the E or M to

S state. Therefore, we add an E-bit to each cacheline in the LLC to indicate whether the cacheline is

likely to be shared or not. The E-bit is set when the cacheline is loaded from DRAM and also when

the cacheline is written back from a private cache. The E-bit is reset when the cacheline becomes

cached upon a load request. Note that the E-bit may be unset even if no core is sharing the line (e.g.,

all sharers silently evict the line); or it may be set when some cores are sharing the data (e.g., the

cacheline was evicted from the LLC but still cached in the LIs). Neither case affects the functional

correctness of the implementation.

4.3.2 Livelock Detection

A disadvantage of Tardis is that propagating a store to other cores may take an arbitrarily long time.

Because there is no invalidation mechanism, a writer does not notify the cores that currently cache a

stale version of the cacheline. In the worst case, if a core spins on a stale cacheline with a small lts (or

pts in SC), it never sees the latest update and livelock occurs (Listing 4.3). In practice, this spinning

behavior is commonly used for communication in parallel programs. Although such livelock is not

precluded by the consistency model, it should be disallowed by the coherence protocol. Therefore,

every write should eventually propagate to other cores.

Listing 4.3: Threads communicate through spinning

[Core 0] [Core 1]

//spin (its = 10) //store (sts = 20)

while (!done) { ...

pause done = true

}..

Baseline: Periodic Self Increment

The original Tardis protocol solves the livelock problem by self incrementing the pts (or lts in TSO)

periodically to force the logical time in each core to move forward. For a spinning core (e.g., core

0 in Listing 4.3), the lts will increase and eventually become greater than the rts of the cacheline

being spun on at which point the line expires and the latest value will be loaded.

78



However, this simple livelock avoidance mechanism has some performance issues. It is difficult

to set the self increment rate for this mechanism. Setting the rate too high or too low both cause

performance degradation. For example, a cacheline being spun on may have an rts much larger than

the current Its of the core. Therefore, if the increasing rate is set low, it takes significant time before

the its increases to rts for the stale line to expire.

On the other hand, if the rate is set too high, performance also suffers since the shared cachelines

would expire frequently. In this case, the Its quickly exceeds the rts of cached data and thus renewals

are required. Most of these renewals are unnecessary and can be avoided if the self increment rate

is lower.

Livelock Detector

Relying on cacheline expiration is not the only way to avoid livelocks. We make a key observation

that a separate message can be sent to check the freshness of a cacheline before its lease expires

in a private cache. Like a renew request, if the latest data is newer than the cached data, the latest

cacheline is returned. If the cached data is already the latest version, however, a check response is

returned without extending the rts of the cacheline in the LLC.

The check request can resolve the dilemma of picking an appropriate increasing rate for Its.

First, with the introduction of the check message, a core does not need increase its its to be greater

than the rts of a cached line to detect staleness. Therefore, the self increment rate can be reduced,

which decreases the number of renewal requests. Second, since a check request can be sent when its

is much smaller than rts, a core no longer need to wait for a long physical time to detect staleness.

Generally, a check request should be sent when the program seems to livelock as it keeps loading

stale cachelines. In practical programs, such a livelock is usually associated with variable spinning,

which typically involves a small number of cachelines and is therefore easy to detect in hardware.

We designed a small piece of hardware next to each core to detect livelock. It contains an

address history buffer (AHB) and a threshold counter (threshcount). The AHB is a circular buffer

keeping track of the most recently loaded addresses. Each entry in AHB contains the address of a

memory access, and an accesscount, which is the number of accesses to the address since it was

loaded to AHB. When accesscount becomes greater than the threshcount, a check request is sent

for this address (Algorithm 1). The value of threshcount can be static or dynamic. We chose to use

an adaptive threshold counter scheme (Algorithm 2) in order to minimize the number of unnecessary

check messages.

79



The livelock detection algorithm (Algorithm 1) is executed when a core reads a shared cacheline.

It is not executed when a core accesses cachelines in E or M state since no livelock can occur for

those accesses. If the accessed address does not exist in the AHB, a new entry is allocated. Since

AHB is a circular buffer, this may evict an old entry from it. We use the LRU replacement policy

here but other replacement policies should work equally well. For an AHB hit, the accesscount is

incremented by 1. If the counter saturates (i.e., reaches threshcount), a check request is sent and

the accesscount is reset. All accesscounts are reset to 0 when the lts increases due to a memory

access, since this indicates that the core is not livelocking, and thus there is no need to send checks.

Algorithm 1: Livelock Detection Algorithm (called for each read request to a shared LI
cacheline).

1: Input: addr // memory access address
2: Return Value: whether to issue check request
3: Internal State: AHB, threshcount

4: if AHB.contains(addr) then
5: AHB[addr].access count ++
6: if AHB[addr].accesscount == threshcount then
7: AHB[addr].accesscount = 0
8: return true
9: end if

10: else
11: AHB.enqueue(addr)
12: AHB[addr].access count = 0
13: return false
14: end if

The counter threshcount may be updated for each check response (Algorithm 2). If the checked

address was updated, then threshcount should be reset to the minimal value, indicating that check

requests should be sent more frequently since data seems to be updated frequently. Otherwise, if

checkthresh number of consecutive check requests returned and the cacheline has not be modified,

then threshcount is doubled since it appears unnecessary to send check requests that often. Adap-

tively determining the value of threshcount can reduce the number of unnecessary check requests

if a thread needs to spin for a long time before the data is updated.

Note that the livelock detector can only detect spinning involving loads to less than M (the

number of entries in AHB) distinct addresses. Therefore, the livelock detector cannot capture all

possible livelocks and thus self incrementing lts is still required to guarantee forward progress.

For practical programs, however, spinning typically involves a small number of distinct addresses.

80



Algorithm 2: Adaptive Threshold Counter Algorithm (called for each check response).
1: Input: check-update // whether the checked address has been updated.
2: Internal State: threshcount
3: Constant: mincount, max_count, check_count, check_thresh

4: if check-update then
5: threshcount = mincount
6: checkcount =0
7: else
8: checkcount ++
9: if checkcount == checkthresh and

thresh count < max count then
10: threshcount= threshcount x 2
11: endif
12: end if

So the livelock detector is able to capture livelock in most programs. We still self increment lts

periodically but the frequency can be much lower, which can significantly reduce the number of

renewals due to lease expiration.

4.3.3 Lease Prediction

Besides self incrementing lts, memory stores are the main reason that the timestamps increase in

Tardis. The amount that an sts increases is determined by the lease of the previous data version,

because the sts of the store must be no less than the cacheline's previous rts. Therefore, the lease of

each cacheline is important to the timestamp incrementing rate as well as the renew rate. The origi-

nal Tardis protocol uses a static lease for every shared cacheline. We first show that a static leasing

policy may incur unnecessary renewals. We then propose a dynamic leasing policy to mitigate the

problem.

Static Lease vs. Dynamic Lease

We use the example in Listing 4.4 as a case study to show when static leases are ineffective. In this

example, both cores run the same program. They both load addresses A and B and then store to B.

When either address A or B is loaded to an L I cache, a lease L is taken on the cacheline. With static

leases, L is a constant. In the first iteration, after loading, each cacheline has a lease of (0, L). When

the store to address B is performed, the core's sts jumps ahead to the end of the lease (sts = L + 1).

At the end of the first iteration, the FENCE instruction increases lts to the value of sts. Therefore,

both lfs and sts equal L + 1.

81



Listing 4.4: The case study parallel program

[Core 01 [Core 1]

while(B < 10) { while(B < 10) {

print A print A

B++ B++

FENCE FENCE

} }

In the next iteration, when both cores load A again, they both see that A has expired in their

L I caches. The expiration of cacheline A is because the lts (i.e., L + 1) is greater than the end of

the lease (i.e., L). This expiration is due to the store to B in the previous iteration as well as the

FENCE at the end of the loop. As a result, both cores need to renew cacheline A at the timestamp

manager. And these renewals need to happen for each following iteration of the loop. In principle,

these renewals to A are unnecessary, since A has never been changed. Note that using a larger static

L does not solve the problem. This is because a store to B will simply jump further ahead in logical

time and cacheline A will still expire.

Our solution to this problem is to use different leases for different addresses. Intuitively, we

want to use large leases for read only or read intensive data, and use small leases for write intensive

data. In the example in Listing 4.4, if A has a lease 10 and B has a lease 0, then each store to B

increases the sts and lts only by 1. So it takes about 10 iterations before A has to be renewed again.

The renew rate is mainly a function of the ratio between these two leases; the absolute lease values

are not critical.

In a real system, it is non-trivial to decide what data is more read intensive and therefore should

have a larger lease. Here, we explore hardware only solutions and design a predictor to decide

the lease for each cacheline. It is possible to do this more accurately with software support; such

explorations are left for future work.

Lease Predictor

Our lease predictor is based on the observation that cachelines that are frequently renewed are

more likely to be read intensive. Therefore, a cacheline should have a larger lease if it is renewed

frequently. A lease predictor is built into the timestamp manager to process this logic.

Initially, all the cachelines have the minimal leases (minjease). The lease predictor increases

the lease for a certain cacheline when it appears more read intensive. The algorithm for dynamic

82



leasing is shown in Algorithm 3. For a renew request from the L I to the timestamp manager, the

last lease (req_lease) of the cacheline is also sent.

Algorithm 3: Lease Prediction Algorithm (called for each LLC request).
1: Input

2: reqlease # For a Renew request, req-lease is the previous lease of the cacheline
3: req-type # Write, Read or Renew
4: Return Value: For a Read or Renew request, the lease taken on the cacheline.
5: Internal State: curlease, min-lease, max-lease

6: if req-type == WRITE then
7: curlease = min lease
8: else if req-type == RENEW and reqjlease == curlease

and cur lease < max-lease then
9: curlease = curlease x 2

10: end if
11: return cur-lease

For a write request, the curlease is updated to the minimal value that a lease can be (min-lease).

Our reasoning is that the write indicates that the cacheline might be write intensive. Therefore,

assigning a large lease to it makes the lts jump ahead further, which causes unnecessary renewals

of other cachelines. For read request (i.e., a Ll cache miss), cur/lease is used for the requested

cacheline. For a renew request, curlease is compared with the request lease (req_lease). If they

are different, then curlease is used for the cacheline. Otherwise, curlease is doubled since the

cacheline seems to be renewed multiple times by the same core and is therefore likely to be read

intensive. If curlease already reached the maximal value (max/lease), then it should no longer

increase.

The initial value of curlease is the minimal value a lease can have (min-lease). This means

that for a cacheline first loaded to the LLC, we always assume it is write intensive. We made this

design decision because incorrectly giving a large lease to a write intensive cacheline is much more

harmful than giving a small lease to a read intensive cacheline. If a cacheline with a large lease is

written, a large number of cachelines in the core's LI might expire due to the program timestamp

jumping ahead. In contrast, if a read only cacheline is given a small lease, only this cacheline needs

to be renewed and other cachelines are not affected.

4.4 Evaluations

In this section, we evaluate the performance of Tardis with relaxed consistency models and the

optimizations proposed in Section 4.3.

83



Table 4.2: System Configuration.

System Configuration

Number of Cores N = 64
Core Model Out-of-order, 128-entry ROB

Memory Subsystem

Cacheline Size 64 bytes
Ll I Cache 16 KB, 4-way
Li D Cache 32 KB, 4-way
Shared L2 Cache per Core 256 KB, 8-way
DRAM Bandwidth 8 MCs, 10 GB/s per MC
DRAM Latency 100 ns

2-D Mesh with XY Routing

Hop Latency 2 cycles (1 -router, 1-link)
Flit Width 128 bits

Table 4.3: Tardis Configuration.

Baseline Tardis

Static Lease 8
Self Increment Period 100 memory accesses

Livelock Detector
AHB size 8 entries
Threshold Counter min 100, max 800
Check Threshold 10

Lease Prediction

Minimal Lease Value 8
Maximal Lease Value 64

4.4.1 Methodology

System Configuration

We use the Graphite [110] multicore simulator to model the Tardis coherence protocol. Configura-

tions of the hardware, Tardis, and its enhancements are shown in Table 4.2 and Table 4.3.

The baseline Tardis has the same configuration as discussed in Section 3.7. The static lease is

chosen to be 8. And the lts self increments by 1 for every 100 memory accesses. In the optimized

Tardis, the address history buffer (AHB) contains 8 entries by default. The threshold counter can

take values ranging from 100 to 800. The threshold counter is doubled if 10 consecutive checks

respond that the data has not been changed. The minimal lease is chosen to be 8 and the maximum

lease is 64. Therefore, four possible lease values (i.e., 8, 16, 32, 64) exist. We chose four lease

values because having more values does not significantly affect performance.

84



C_ 1.10 0.20

1.05 4 0.15

n 1.00 0.10

E 05C S0.95 0.05

Z0.9 - 0.00SC SC TSO SC SC TSO
MSI MESI MESI MSI MESI MESI

(a) Speedup (b) Renew Rate

Figure 4-2: MESI and TSO - Average speedup (normalized to directory + MESI + TSO) and
renew rate over all benchmarks.

Baselines

The following coherence protocols are implemented and evaluated for comparison. With the excep-

tion of Section 4.4.2, all the configurations use the TSO consistency model and MESI.

Directory: Full-map MESI directory coherence protocol.

Base Tardis: Baseline Tardis as discussed in Chapter 3.

Tardis + live: Baseline Tardis with livelock detection. its self increments by 1 for every 1000

memory accesses.

Tardis + live + lease: Tardis with both a livelock detector and lease predictor.

Our experiments are executed over 22 benchmarks selected from Splash2 [153], PARSEC [24],

sparse linear algebra [43] and OLTP database applications [157]. For sparse linear algebra, we

evaluated sparse matrix multiplication (SPMV) and symmetric Gauss-Seidel smoother (SYMGS) from

the HPCG benchmark suite (Top 500 supercomputer ranking). For OLTP database, we evaluated

two benchmarks YCSB and TPCC. All benchmarks are executed to completion.

4.4.2 Consistency Models and MESI

Figure 4-2 shows the speedup of MESI and TSO on Tardis normalized to the baseline directory

coherence protocol with MESI and TSO. All experiments have both livelock detection and lease

prediction enabled. Both MESI and TSO can improve the overall performance of Tardis. On av-

erage, using MESI instead of MSI improves the performance of Tardis SC by 0.6%; using TSO

instead of SC further improves performance by 1.7%.

MESI and TSO can also reduce the renew rate of Tardis. We define renew rate as the ratio of the

number of renew requests over the total number of LLC accesses. Figure 4-2b shows the renew rate

85



0.5

0.4 SC
. TSO

RC
0.2

0.1

BARNES CHOLESKY VOLREND

Figure 4-3: Renew Rate of SC, TSO and RC.

reduction of MESI and TSO on Tardis. MESI reduces the number of renew messages since private

read-only data is always cached in E state and therefore never renewed. TSO further reduces the

renew rate since the lts may increase slower than the pts in SC (cf. Section 4.2.2) leading to fewer

expirations and renewals. MESI and TSO together can reduce the average renew rate from 19.2%

to 13.0%.

Although not shown in these figures, TSO can also significantly decrease the rate at which

timestamps increase. This is because lts can stay behind sts. Therefore, lts and sts may increase

slower than how pts increases in Tardis SC. On average, the timestamp increment rate in Tardis TSO

is 78% of the rate in Tardis SC.

Figure 4-3 shows the renew rate of SC, TSO and RC on Tardis with MESI. Due to some issues

with running pthread synchronization primitives on RC, we implemented hardware-based synchro-

nization for this experiment and therefore use a separate graph to present the results. For these

benchmarks, relaxed consistency models lead to significantly fewer renewals. This is because more

relaxed models allow stale cachelines to be read by a core, making renewals less necessary.

4.4.3 Livelock Detector and Lease Predictor

We now evaluate the performance and hardware cost of the livelock detector and lease predictor

presented in Section 4.3. All coherence protocols in this section use MESI and TSO.

Performance and Network Traffic

Figure 4-4 shows the performance of Tardis after adding livelock detection and lease prediction

compared to the baseline Tardis protocol. All numbers are normalized to the baseline full-map

directory protocol.

First, we see that CHOLESKY and SYMGS on baseline Tardis have much worse performance than

the directory protocol. Both benchmarks heavily use spinning to communicate between threads. As

86



Base Tardis Tardis + live M Tardis + live + lease
1.101.--

' . 0.27 0.24

0

Figure 4-4: Speedup from Renew Reduction Optimizations - Performance improvement of
livelock detection and lease prediction optimizations. All results are normalized to the full-map
directory baseline.

1.6 Dram Traffic Common Traffic [~]Renew Traffic Invalidation Traffi
S14 Base Tardias+ //ardis+Liv+es

~09

Figure 4-5: Network Traffic Reduction from Renew Reduction Optimizations - Network traffic
breakdown of different cache coherence configurations. All results normalized to the directory
baseline.

a result, it may take a long time for the cacheline spun on to expire. The livelock detector can close

the performance gap between Tardis and directory because a spinning core is able to observe the

latest data much earlier. RADIOS ITY also uses spinning. However, the core does other computation

between checking the value of the variable being spun on. Therefore, our livelock detector cannot

capture such spinning behavior and forward progress is enforced through self incrementing its. This

leads to suboptimal performance. Completely eliminating such performance degradation requires

rewriting the application using synchronization primitives that are better than spinning. Over the

benchmark set, the optimizations improve the performance of Tardis by 7.5% with respect to the

baseline Tardis and 1.1% (up to 9.8%) with respect to baseline directory protocol.

Figure 4-5 shows the network traffic breakdown for the same four configurations as in Fig-

ure 4-4. For each experiment, we show dram traffic, common traffic, renew traffic and invalidation

traffic. Common traffic is the traffic in common for both directory coherence and Tardis, including

shared, exclusive and write back memory requests and responses. Renew traffic is specific to Tardis

including renew and check requests and responses. Invalidation Traffic is specific to the directory-

based protocol, including the invalidation requests to shared copies from the directory, as well as

the messages sent between the L 1 caches and the LLC when a shared cacheline is evicted.

87



Compared to a directory-based protocol, Tardis is able to remove all the invalidation traf-

fic. However, the renew traffic adds extra overhead. The baseline Tardis configuration incurs a

large amount of renew traffic on some benchmarks (e.g., RADIOSITY, CHOLESKY, VOLREND and

WATER-SP). Some of the renew traffic is due to fast self incrementing lts (e.g., RADIOSITY, CHOLESKY

and WATER-SP). For these benchmarks, the livelock detection scheme can significantly reduce the

self increment rate and therefore reduce the amount of renew traffic. On average, the livelock de-

tection algorithm reduces the total network traffic by 5.4% compared to the baseline Tardis.

For some benchmarks, shared cachelines expire because the lts jumps ahead due to a write (e.g.,

VOLREND, RADIOSITY) and renew messages are generated. Our lease prediction algorithm is able to

reduce these unnecessary renewals by using a larger lease for read intensive cachelines. On top of

the livelock detection optimization, lease prediction further reduces the total network traffic by 1.5%

on average. With both livelock detection and lease prediction, Tardis can reduce the total network

traffic by 2.9% (up to 12.4%) compared to the baseline directory protocol.

Although not shown here, we also evaluated an idealized leasing scheme which is modeled

by giving each successful renew message zero overhead. This idealized configuration models a

scheme where the optimal leases are chosen through an oracle. The idealized scheme has similar

performance as the optimized Tardis but eliminates almost all the renewal messages; some renewals

are still needed if the data has actually been changed.

Hardware Complexity

The hardware overhead for the livelock detector and lease predictor is generally small. Each livelock

detector contains 8 AHB entries and each entry requires an address and a counter. Assuming 48-bit

address space and a counter size of 2 bytes, the detector only requires 64 bytes of storage per core.

To implement the lease predictor, we need to store the current lease for each LLC and LI

cacheline. The lease is also transferred for each renew request and response. However, there is no

need to store or transfer the actual value of the lease. Since a lease can only take a small number

of possible values (e.g., 4 in our evaluation), we can use a smaller number of bits (e.g., 2 bits) to

encode a lease. Therefore, the storage overhead is less than 0.4%.

88



SDir LL Detect Self 10
SBase Tardis Self 10 LL Detect Self 100
MBase Tardis Self 100 M LL Detect Self 1000

M Base Tardis Self 1000 - 3.0

1.02.54CUU

CU ~2.0,a)j

0.5 1.50. +

z 1.00

0.0 WATER-SP SYM0.5

Figure 4-6: Sensititvity of Tardis to the its Self Increment Rate - Normalized speedup (bars)
and network traffic (+ signs) of Tardis as the lts self increment period changes.

4.4.4 Sensitivity Study

Self Increment Rate

Figure 4-6 shows the performance and network traffic of Tardis sweeping the self increment period

with and without livelock detection. The self increment period is the number of read requests before

lts increments by one. All results are normalized to a baseline directory-based protocol. The Base

Tardis Self 100 is the default baseline Tardis configuration and LL Detect Self 1000 is the

default optimized Tardis configuration (LL Detect stands for livelock detection).

In WATER-SP, changing the self incrementing rate does not affect performance regardless of

whether livelock detection is turned on or not. This is because WATER-SP does not have spinning so

livelock detection does not have any effect. However, the network traffic sees a significant reduction

when the self increment period is large. This is because a large period slows down the increasing

rate of lts, which reduces the number of cacheline expirations and renewals.

In SYMGS, for Tardis without livelock detection, performance is very sensitive to the self in-

crement period because SYMGS intensively uses spinning to communicate between threads. If self

increment is less frequent, a thread waits longer for the stale data to expire and thus performance

degrades. With livelock detection, however, check requests are sent when spinning (potential live-

lock) is detected. Therefore, the latest value of a cacheline spun on can be returned much earlier.

In contrast, Tardis with the livelock detector can always match the performance of the baseline di-

rectory protocol, regardless of the self increment period. With livelock detection and a large self

increment period (e.g., 1000), Tardis can achieve good performance and low network traffic at the

same time.

89



Base Tardis AHB size=2 E= AHB size=8
AHB size=1 AHB size=4

4 1.1

+ 1.01

0

CHOLESKY SYMGS

Figure 4-7: Sensitivity of Tardis to the Size of the Address History Buffer - Throughput and
network traffic of CHOLESKY and SYMGS in Tardis as the AHB size changes. Results normalized to
the baseline Tardis without livelock detection.

Base Tardis LL thresh=100 G LL thresh=400
LLthresh=10 LL thresh=200

5 1.1

0C

0.
0z

Figure 4-8: Sensitivity of Tardis to the Threshold of Livelock Detection - Throughput and net-
work traffic of CHOLESKY and SYMGS in Tardis as the check threshold changes. Results normalized
to the baseline Tardis without livelock detection.

Address History Buffer Size

In Figure 4-7, we swept the number of entries in the address history buffer in a livelock detector

for CHOLESKY and SYMGS. According to the results, after the AHB buffer size is no less than 2,

performance does not change. This is because in both (and most other) programs, spinning only

involves a very small number of distinct memory addresses. CHOLESKY only spins on two addresses

and SYMGS only spins on one address. Tardis uses a buffer size eight by default.

There do exist benchmarks where some other work is done during spinning and thus more than

eight distinct addresses are involved (e.g., RADIOSITY). Here, livelock detection is ineffective and

forward progress is guaranteed by self incrementing the program timestamp.

Livelock Threshold Counter

Figure 4-8 shows the performance and network traffic normalized to the baseline Tardis when

sweeping the minimal threshold counter (min.counter in Algorithm 2) in the livelock detector. The

90



M1. 1.31 Base Tardis M Tardis + live M Tardis + live + leas 2.5.

2.0
0.74 0.16 0.22 1.5

+i 1.5

100
0Z9 L [ 1 1 M MZ M

C'c' cp CC' ;' C)0.5z

Figure 4-9: Performance Comparison at 256 Cores - Speedup and network traffic of different
cache coherence protocols at 256 cores.

maximal threshold counter is always eight times of the minimal value. Whenever an address in the

AHB has been accessed for threshcount times, a check request is sent to the timestamp manager.

With a larger threshcount, checks are sent after spinning for a longer period of time which can hurt

performance. On the other hand, larger threshcount can reduce the total number of check messages

and network traffic. In practice, the threshcount should be chosen to balance this trade-off. We

chose 100 as the default threshold counter.

Scalability

Finally, Figure 4-9 shows the performance and network traffic (normalized to the directory baseline)

of all benchmarks running on a 256-core system. Compared to the directory baseline, the optimized

Tardis improves performance by 4.7% (upto 36.8%) and reduces the network traffic by 2.6% (upto

14.6%). Although not shown in the graph, we also evaluated Tardis and the directory baseline

where both schemes consume the same area overhead. Since Tardis requires less area than directory

for coherence meta data, it can have a 37% larger LLC. In area normalized evaluation, Tardis can

outperform the baseline directory by 6% on average.

Note that at 256 cores, the performance improvement of Tardis is greater than the 64 core case.

This indicates that Tardis not only has better scalability in terms of storage as core count increases,

it also scales better in terms of performance.

91



92



Chapter 5

Formal Proof of Correctness for Tardis

5.1 Introduction

In this chapter, we formally prove the correctness of the Tardis cache coherence protocol by showing

that a program using Tardis strictly follows Sequential Consistency (SC) and Total Store Order

(TSO). We also prove that the Tardis protocol can never deadlock or livelock. The original Tardis

protocol has a number of optimization techniques applied for performance improvement. In this

chapter, however, we only prove the correctness for the core Tardis protocol with MSI. We then

briefly discuss the correctness of generalizations of the base protocol.

We prove the correctness of Tardis by developing simple and intuitive invariants of the system.

Compared to the popular model checking [42, 79, 109] verification techniques, our proof technique

is able to scale to high processor counts. More important, the invariants we developed are more

intuitive to system designers and thus provide more guidance for system implementation.

The rest of the chapter is organized as follows. First, the Tardis protocol is formally defined in

Section 5.2. It is proven to obey sequential consistency in Section 5.3 and to be deadlock-free and

livelock-free in Section 5.4. We then prove that Tardis can correctly implement TSO in Section 5.5.

We extend the proof to systems with main memory in Section 5.6. Finally, Section 5.7 describes

some related work.

5.2 Tardis Coherence Protocol

We first present the model of the shared memory system we use, along with our assumptions, in

Section 5.2.1. Then, we introduce system components of the Tardis protocol in Section 5.2.2 and

93



Core, P2 P--- -

L1I -nRq nRp

Network

Sc2pRq c2pRp p
2 c/

F L2 '-----------'

Figure 5-1: The Model of a Multi-Core Processor - Buffers are used for communication between
a core and its local LI cache (mRq and mRp), and between an LI and the shared L2 (c2pRq, c2pRp
and p2c).

formally specify the protocol in Section 5.2.3.

5.2.1 System Description

Figure 5-1 shows the architecture of a shared memory multicore system based on which Tardis

will be defined. The cores can execute instructions in-order or out-of-order but always commit

instructions in order. A processor talks to the memory subsystem through a pair of local buffers

(LBs). Load and store requests are inserted into the memory request buffer (mRq) and responses

from the memory subsystem are inserted into the memory response buffer (mRp).

We model a two-level memory subsystem assuming all data fits in the L2 cache. Discussion of

the main memory will be discussed later in Section 5.6. The network between LI and L2 caches

is modeled as buffers. c2pRq (standing for "child to parent requests") contains requests from L 1

to L2, c2pRp (standing for "child to parent responses") contains responses from L 1 to L2, and p2c

(standing for "parent to child") contains both requests and responses from L2 to L1. For simplicity,

all the buffers are modeled as FIFOs and get-msg() returns the head message in the buffer. However,

the protocol also works if the buffers only have the FIFO property for messages with the same

address, and messages with different addresses can be received out-of-order. Each LI cache has a

unique id from 1 to N and each buffer associated with the LI cache has the same id. The id is also

associated with the cachelines or messages in the corresponding caches or buffers.

5.2.2 System Components in Tardis

In our model, the state of the system can be expressed using the states of the caches and buffers.

The states of these components have been defined in Table 5.1.

94



Table 5.1: System components of Tardis - States of caches and buffers.

Component States Message Types
Li LI [addr] = (state, data, busy, dirty, wts, rts) -
L2 L2 [addr] = (state, data, busy, owner, wts, rts) -

mRq mRq.entry = (type, addr, data, pts) LdRq, StRq
mRp mRp.entry = (type, addr, data, pts) LdRp, StRp

c2pRq c2pRq.entry = (id, type, addr, pts) GetS, GetM
c2pRp c2pRp.entry = (id, addr, data, wts, rts) WBRp
p2c p2c.entry = (id, msg, addr, state, data, wts, rts) ToS, ToM, WBRq

Each LI cacheline contains five fields: state, data, busy, wts and rts. The state can be M, S or I.

For ease of discussion, we define a total ordering among the three states I < S < M. data contains the

data value of the cacheline. A cacheline has busy = True if a request to L2 is outstanding with the

same address. A request can be sent only if busy is set to False, which prevents duplicate requests

sent from the same core. If dirty is set to true, the cacheline has been modified by the core after

loading into the L1. Finally, wts and rts indicate the lease on the cacheline.

An L2 cacheline has similar states as an L1 cacheline. But different from an Li cacheline, it

contains one more field owner, which is the id of the LI that exclusively owns the cacheline in the

M state. As in LI, busy in L2 is set when a write back request (WBRq) to an LI is outstanding.

Each entry in mRq contains four fields: type, addr, data and pts. The type can be S or M

corresponding to a load or store request, respectively. The pts is a timestamp specified by the

processor indicating the minimum timestamp that the memory request must be performed at. mRp

has the same format as mRq, but pts here is the actual timestamp of the memory operation. pts in

mRp must be no less than the pts in the corresponding mRq.

Three buffers (c2pRq, c2pRp and p2c) are used to model the network. For a message in each

buffer, id identifies the Li cache that the message comes from or goes to. A message in c2pRq

can be either a shared (GetS) or modified (GetM) request, which is indicated by the type field. The

addrfield is the address of the request, and pts is inherited from the request from the core (in mRq).

A message in c2pRp must be a write-back response (WBRp), which contains both the address and

data of the cacheline, as well as its wts and rts. Finally, a message in p2c can be a shared response

(ToS), modified response (ToM), or write-back request (WBRq). Whether it is a request or response

is determined by the msg field, which can be either Req or Resp. Whether it is a shared or modified

response is determined by the type field.

95



Table 5.2: State Transition Rules for L1.

Rules and Condition Action
LoadHit mRq.deqo
let (type, addr, -, pts) = mRq.get msgo mRp.enq(type, addr, data, max(pts, wts))
let (state, data, busy, dirty, wts, rts) = LI [addr] If (state = M)
condition: -, busy A type = S A (state = M V (state = S A pts ; rts)) rts := max(pts, rts)
StoreHit If (dirty = True)
let (type, addr, data, pts) = mRq.get-msg() let pts' = max(pts, rts)
let (state, data, busy, dirty, wts, rts) = LI [addr] Else
condition: , busy A type = M A state = M let pts' = max(pts, rts + I)

mRq.deqo
mRp.enq(type, addr, -, pts')
wts := pts'
rts := pts'
dirty:= True

LiMiss c2pRq.enq(id, type, addr, pts)
let (type, addr, data, pts) = mRq.get msgo busy:= True
let (state, data, busy, dirty, wts, rts) = LI [addr]
condition: , busy A (state < type v (state = S A pts > ris))
L2Resp p2c.deq()
let (id, msg, addr, state, data, wts, rts) = p2c.get-msg() listate state
let (listate, l1data, busy, dirty llwts, lirts) = Ll [addr] lldata data
condition: msg = Resp busy:= False

dirty := False
llwts:= wts
lirts := rts

Downgrade If (state = M)
let (state, data, busy, dirty, wts, rts) = LI [addr] c2pRp.enq(id, addr, data, wts, rts)
condition: , busy A 3 state'. state' < state state := state'

A LoadHit and StoreHit cannot fire
WriteBackReq p2c.deqo
let (state, data, busy, dirty, wts, rts) = Ll [addr] If (state = M)
condition: p2c.get msgo.msg = Req c2pRp.enq(id, addr, data, wts, rts)

A LoadHit and StoreHit cannot fire state := S

Table 5.3: State Transition Rules for L2.

Rules and Condition Action
ShReqS c2pRq.deqo
let (id, type, addr, pts) = c2pRq.get-msg() rts := pts'
let (state, data, busy, owner, wts, rts) = L2 [addr] p2c.enq(id, Resp, addr, S, data, wts, pts')
condition: type = S A state = S

A ] pts'. pts' > rts A pts' > pts
ExReqS c2pRq.deqo
let (id, type, addr, pts) = c2pRq.get-msg() state:= M
let (state, data, busy, owner, wts, rts) = L2 [addr] owner := id
condition: type = M A state = S p2c.enq(id, Resp, addr, M, data, wts, rts)
ReqM p2c.enq(owner, Req, addr, _, _, _, _)
let (id, type, addr, pts) = c2pRq.get-msg() busy:= True
let (state, data, busy, owner, wts, rts) = L2 [addr]
condition: state = M A , busy
WriteBackResp c2pRp.deqo
let (id, addr, data, wts, rts) = c2pRp.get msg() state := S
let (state, l2data, busy, owner, l2wts, l2rts) = L2 [addr] l2data := data

busy:= False
l2wts = wts
l2rts = rts

96



5.2.3 Protocol Specification

We now formally define the core algorithm of the Tardis protocol. The state transition rules for L 1

and L2 caches are summarized in Table 5.2 and Table 5.3 respectively, with the timestamps related

rules in Tardis highlighted in red. For all rules where a message is enqueued to a buffer, the rule can

only fire if the buffer is not full.

Specifically, the following six transition rules may fire in an LI cache.

1. LoadHit. LoadHit can fire if the requested cacheline is in M or S state and the lease has

not expired. If it is in the M state, then rts is updated to reflect the latest load timestamp. The pts

returned to the processor is the maximum of the request's pts and the cacheline's wts.

2. StoreHit. StoreHit can only fire if the requested cacheline is in the M state in the LI cache.

Both wts and rts are updated to the timestamp of the store operation (pts'), which is no less than the

request's pts. If the cacheline is clean, then pts' is also no less than the cacheline's rts + 1. If the

cacheline is dirty, however, pts' only needs to be no less than the cacheline's rts.

3. LiMiss. If neither LoadHit nor StoreHit can fire for a request and the cacheline is not busy,

it is an LI miss and the request (GetS or GetM) is forwarded to the L2 cache. The cacheline is then

marked as busy to prevent sending duplicate requests.

4. L2Resp. A response from L2 sets all the fields in the Ll cacheline. The busy flag is reset

to False. Note that after L2Resp fires, a LoadHit or StoreHit may be able to fire immediately

afterwards.

5. Downgrade. A cacheline in the M or S states may downgrade if the cacheline is not busy and

LoadHit and StoreHit cannot fire. For M to S or M to I downgrade, the cacheline should be written

back to the L2 in a WBRp message. S to I downgrade, however, is silent and no message is sent.

6. WriteBackReq. When a cacheline in M state receives a write back request, the cacheline is

returned to L2 in a WBRp message and the LI state becomes S. If the requested cacheline is in S or

I state, the request is simply ignored. This corresponds to the case where the line self downgrades

(e.g., due to cache eviction) after the write back request (WBRq) is sent from the L2.

The following four rules may fire in the L2 cache.

1. ShReqS. When a cacheline in the S state receives a shared request (i.e., GetS), both the rts

and the returned pts are set to pts', which can be any timestamp greater than or equal to the current

rts and pts. The pts' indicates the end of the lease for the cacheline. The cacheline may be loaded at

any logical time between wts and pts'. A ToS message is returned to the requesting L1.

97



2. ExReqS. When a cacheline in the S state receives an exclusive request (i.e., GetM), the

cacheline is instantly returned in a ToM message. Unlike in a directory protocol, no invalidations

are sent to the sharers. The sharing cores may still load their local copies of the cacheline but such

loads have smaller timestamps than the store from the new owner core.

3. ReqM. When a cacheline in M state receives a request and is not busy, a write back request

(i.e., WBRq) is sent to the current owner. busy is set to True to prevent sending duplicate WBRq

requests.

4. WriteBackResp. Upon receiving a write back response (i.e., WBRp), data and timestamps

are written to the L2 cacheline. The state becomes S and busy is reset to False.

5.3 Proof of Correctness

We now prove the correctness of the Tardis protocol specified in Section 5.2.3 by proving that

it strictly follows sequential consistency. We first give the definition of sequential consistency in

Section 5.3.1 and then introduce the basic lemma (cf. Section 5.3.2) and timestamp lemmas (cf.

Section 5.3.3) that are used for the correctness proof.

Most of the lemmas and theorems in the rest of the paper are proven through induction. For each

lemma or theorem, we first prove that it is true for the initial system state (base case) and then prove

that it is still true after any possible state transition assuming that it was true before the transition.

In the initial system state, all the LI cachelines are in the I state, all the L2 cachelines are in

the S state and all the network buffers are empty. For all cachelines in LI or L2, wts = rts = 0 and

busy = False. Requests from the cores may exist in the mRq buffers. For ease of discussion, we

assume that each initial value in L2 was set before the system starts at timestamp 0 through a store

operation.

5.3.1 Sequential Consistency

Sequential consistency has already been defined in Section 3.2. We repeat the definition here.

Definition 2 (Sequential Consistency). An execution of a program is sequentially consistent iff

Rule 1: VX, Y E { Ld, St} from the same processor; X <p Y z=- X <m Y.

Rule 2: Value of L(a) = Value of Max<m{S(a)IS(a) <m L(a)}, where L(a) and S(a) are a load

and a store to address a, respectively, and Max<m selects the most recent operation in the global

memory order

98



In Tardis, the global memory order of sequential consistency is expressed using timestamps.

Specifically, Theorem 1 states the invariants in Tardis that correspond to the two rules of sequential

consistency. Here, we use <ts and <pt to represent (logical) timestamp order that is assigned by

Tardis and physical time order that represents the order of events, respectively.

Theorem 1 (SC on Tardis). An execution on Tardis has the following invariants.

Invariant 1: Value of L(a) = Value of Max<ts{S(a)|S(a) <rs L(a)}.

Invariant 2: VSi (a), S2(a), Si (a) -1 #s S2(a).

Invariant 3: VS(a), L(a), S(a) =ts L(a) * S(a) <pt L(a).

Theorem I will be proved later in this section. However, Theorem 1 itself is not enough to

guarantee sequential consistency; we also need the processor model described in Definition 3. The

processor should commit instructions in the program order, which implies physical time order and

monotonically increasing timestamp order. Both in-order and out-of-order processors fit this model.

Definition 3 (In-order Commit Processor). VX, Y E {Ld, St} from the same processor, X <P Y a

X ts Y AX <Pt Y.

Now we prove that given Theorem 1 and our processor model, an execution obeys sequential

consistency per Definition 1. We first introduce the following definition of the global memory order

in Tardis.

Definition 4 (Global Memory Order in Tardis).

X <m Y X <ts Y V (X =ts Y A X <Pt Y )

Theorem 2. Tardis with in-order commit processors implements Sequential Consistency.

Proof. According to Definitions 2 and 3, X <P Y a X ts Y A X <pt Y = X <m Y. So Rule I in

Definition I is obeyed. We now prove that Rule 2 is always true.

S(a) ts L(a) =# S(a) <ts L(a) V S(a) =t, L(a). By Invariant 3 in Theorem 1, this implies

S(a) ts L(a) z= S(a) <ts L(a) V (S(a) =ts L(a) A S(a) <pt L(a)). Thus, from Definition 4, S(a) ts

L(a) e S(a) <m L(a). We also have S(a) <m L(a) > S(a) ts L(a) from Definition 4. So {S(a) |S(a) ts

L(a)} {= S(a) S(a) <,, L(a) }. According to Invariant 2 in Theorem 1, all the elements in {S(a) S(a) <m

L(a)} have different timestamps, which means <m and <ts indicate the same ordering. Therefore,

Max<ts{S(a) S(a) ,s L(a)} = Max<m{S(a) S(a) ts L(a)}. So Rule 2 is true following Invariant I

in Theorem 1. El

99



Li state = M

ToM WBRp
L2 state = s response

L2 state = M

Figure 5-2: A Visualization of Lemma 1 - Exactly one master block exists for an address.

In the following two sections, we focus on the proof of Theorem 1.

5.3.2 Basic Lemma

We first give the definition of a master block for ease of discussion.

Definition 5 (Clean Block). A master block can be an L2 cacheline in S state, or an Li cacheline

in M state, or a ToM or WBRp message in a network buffer

Lemma 1. V address a, exactly one master block exists for the address.

The basic lemma is an invariant about the cacheline states and the messages in network buffers.

No timestamps are involved.

A visualization of Lemma I is shown in Figure 5-2 where a solid line represents a clean block.

When the L2 state for an address is S, no Ll can have that address in M state, and no ToM and WBRp

may exist. Otherwise if the L2 state is M, either a ToM response exists, or an LI has the address in

M state, or a WBRp exists. Intuitively, Lemma 1 says only one block in the system can represent the

latest data value.

Lemma 1 Proof For the base case, the lemma is trivially true since the network and all Lls are

empty; each block in the L2 is in S state and therefore is a master block. We now consider all the

possible transition rules that may create a new master block.

Only the ExReqS rule can create a ToM response. However, the rule changes the state of the

L2 cacheline from S to M and thus removes a master block. So the number of clean blocks for

that address remains one. Only the L2Resp rule can change an L 1 cacheline state to M. However,

it removes a ToM response from the p2c buffer. Both Downgrade and WriteBackReq can enqueue

WBRp messages and both will change the LI cacheline state from M to S or I. Only WriteBackResp

changes the L2 cacheline to S state but it also dequeues a WBRp from the buffer.

In all of these transitions, a master block is created and another one is removed. By the induction

hypothesis, exactly one master block per address exists before the current transition, and there still

100



remains one master block for the address after the transition. For other transitions not listed above,

no master block can be created or consumed so at most one master block per address exists after

any transition, proving the lemma. D

5.3.3 Timestamp Lemmas

Lemma 2. At the current physical time, a master block has the following invariants.

Invariant 1 Its rts is no less than the rts of all the other blocks (i.e., a cacheline in L1 or L2, or

a network message in a buffer) with respect to the same address.

Invariant 2 Till the current physical time, no store has happened to the address at timestamp ts

such that ts > rts.

Proof We prove the lemma by induction on the transition sequence. For the base case, only one

block exists per address so Invariant 1 is true. All the stores thus far happened at timestamp 0 which

equals the rts of all the master blocks, so Invariant 2 is also true.

According to Lemma 1, for an address, exactly one master block exists. By the induction

hypothesis, if no timestamp changes and no master block is generated, Invariant 1 is still true after

the transition. Therefore, we only consider rules where a timestamp changes or a new master block

is generated. By the transition rules, a timestamp can only be changed if the block is an L2 cacheline

in the S state or an LI cacheline in the M state. In both cases the block is a master block. After

the transition, the rts of the master block can only increase and is still no less than the rts of other

cachelines with the same address, and thus Invariant I holds. In all rules where a new master block

is created, it copies the wts and rts of the previous clean block to the new block. Therefore, Invariant

1 also holds in this case.

Similarly, by the induction hypothesis, Invariant 2 is true after the transition if no store happens,

no rts changes and no master block is generated. We consider the three cases separately. A store can

happen only in the StoreHit rule, which changes both wts and rts of a master block to max(pts, rts +

1). For the stored cacheline, since no store has happened with timestamp ts such that ts > oldrts

(induction hypothesis), after the transition, no store, including the current one, has happened with

timestamp ts such that ts > max(pts, oldrts + 1) > old-rts. For an rts change, all rules touching

it (i.e., LoadHit, StoreHit, ShReqS) can only increase its value. Therefore, if no store exists after

the previous rts in logical timestamp order, it cannot exist after the new rts either. Finally, in cases

where a new master block is generated, the new master block has the same rts as the previous one,

and no store exists after this rts. El

101



Lemma 3. For any block B in a cache or a message (WBRp, ToS and ToM), the data value associ-

ated with the block is created by a store St such that St.ts < B.wts, and St has happened before the

current physical time. Furthermore, no other store St' has happened such that St.ts < St'.ts < B.rts.

St.ts is the timestamp of the store St and B.wts (B.rts) is the wts (rts) of block B.

Proof We prove the lemma by induction on the transition sequence. We have assumed that each

value in the L2 is set by an initial store before the execution starts. Therefore, for the base case,

each block is created by the corresponding initial store which happened before the current physical

time. The initial store is also the only store happened to each block. Therefore, the hypothesis is

true.

We first prove part one of the lemma, that after a transition, for each block, there exists a store St

that creates the data of the block such that St.ts < wts and St happened before the current physical

time. Consider the case where the data of a block does not change or is copied from another block.

By the induction hypothesis, if St exists before the transition, it must exist after the transition as

well, since wts never decreases during data copying (actually it never changes), and physical time

always advances. The only transition that changes the data of a block is StoreHit. In this case, a

store will create a new block with wts equal to the timestamp of the store, and the St has happened

in physical time starting from the next transition.

We now prove part two of the lemma, that for any block B, no store St' 0 St has happened such

that St.ts < St'.ts < B.rts. By the induction hypothesis, for the current transition, if no data or rts is

changed in any block or if a block copies data and rts from an existing block, then the hypothesis is

still true after the transition. The only cases in which the hypothesis may be violated are when the

current transition changes rts or data for some block, which is only possible for LoadHit, StoreHit

and ShReqS.

For LoadHit, if the cacheline is in the S state, then rts remains unchanged. Otherwise, the

cacheline must be a master block (i.e., a cacheline in M state in an L 1), in which case rts is increased.

Similarly, ShReqS increases the rts and the cacheline must be a master block as well. By Invariant

2 in Lemma 2, no store has happened to a master block with timestamp greater than rts. And thus

after the rts is increased, no store can have happened with timestamp between the old rts and the new

rts. Namely, no store St' could have happened such that oldrts < St' < new-rts. By the induction

hypothesis, we also have that no store St' could have happened such that St.ts < St'.ts < oldrts.

These two inequalities together prove the hypothesis.

For StoreHit, both rts and data are modified. For the stored cacheline, after the transition, St.ts

102



= wts = rts = max(pts, old rts + 1). Thus, no St' can exist between wts and rts since they are equal.

For all the other cachelines with the same address, by Invariant 1 in Lemma 2, their rts is no greater

than the old rts of the stored cacheline and is thus smaller than the timestamp of the current store.

By the induction hypothesis, no store St' exists for those blocks after the transition. Thus, in the

overall system, no such store St' can exist for any block, proving the lemma. E

Finally, we prove Theorem 1.

Theorem 1 Proof We will prove the three invariants in Theorem 1 individually.

According to Lemma 3, for each L(a), the loaded data is provided by an S(a) and no other store

S'(a) has happened between the timestamp of S(a) and the current rts of the cacheline. Therefore,

no S'(a) has happened between the timestamp of S(a) and the timestamp of the load, which is no

greater than rts by the transition rules. Therefore, Invariant 1 in Theorem I is true.

By the transition rules, a new store can only happen to a master block and the timestamp of the

store is max(pts, rts + 1). By Invariant 2 in Lemma 2, for a clean block at the current physical time,

no store to the same address has happened with timestamp greater than the old rts of the cacheline.

Therefore, for each new store, no store to the same address so far has the same timestamp as the

new store, because the new store's timestamp is strictly greater than the old rts. And thus no two

stores to the same address may have the same timestamp, proving Invariant 2.

Finally, we prove Invariant 3. If S(a) =, L(a), by Invariant I in Theorem 1, L(a) returns the

data stored by S(a). Then, by Lemma 3, the store S(a) must have happened before L(a) in the

physical time. E

5.4 Deadlock and Livelock Freedom

In this section, we prove that the Tardis protocol specified in Section 5.2 is both deadlock-free

(Section 5.4.1) and livelock-free (Section 5.4.2).

5.4.1 Deadlock Freedom

Theorem 3 (Deadlock Freedom). After any sequence of transitions, if there is a pending request

from any core, then at least one transition rule (other than the Downgrade rule) can fire.

Before proving the theorem, we first introduce and prove several lemmas.

103



Lemma 4. If an Li cacheline is busy, either a GetS or GetM request with the same address exists

in its c2pRq buffer or a ToS or ToM response with the same address exists in its p2c buffer

Proof. This can be proven through induction on the transition sequence. In the base case, all the LI

cachelines are non-busy and the hypothesis is true. An LI cacheline can only become busy through

the LiMiss rule, which enqueues a request to its c2pRq buffer. A request can only be dequeued

from c2pRq through the ShReqS or ExReqS rule, which enqueues a response into the same L I's

p2c buffer. Finally, whenever a message is dequeued from the p2c buffer (L2Resp rule), the L 1

cacheline becomes non-busy, proving the lemma. D

Lemma 5. If an L2 cacheline is busy, the cacheline must be in state M.

Proof. This lemma can be proven by induction on the transition sequence. For the base case, no

cachelines are busy and the hypothesis is true. Only ReqM makes an L2 cacheline busy but the

cacheline must be in the M state. Only WriteBackResp downgrades an L2 cacheline from the M

state but it also makes the cacheline non-busy. El

Lemma 6. For an L2 cacheline in the M state, the id of the master block for the address equals the

owner of the L2 cacheline.

Proof According to Lemma 1, exactly one master block exists for the address. If the L2 state is M,

the master block can be a ToM response, an L 1 cacheline in the M state, or a WBRp. We prove the

lemma by induction on the transition sequence.

The base case is true since no L2 cachelines are in the M state. We only need to consider cases

wherein a master block is created. When ToM is created (ExReqS rule), its id equals the owner in

the L2 cacheline. When an LI cacheline in the M state is created (L2Resp rule), its id equals the id

of the ToM response. When a WBRp is created (WriteBackReq or Downgrade rule), its id equals the

id of the LI cacheline. By the induction hypothesis, the id of a newly created master block always

equals the owner in the L2 cacheline, which does not change as long as the L2 cacheline is in the M

state. El

Lemma 7. For a busy cacheline in L2, either a WBRq or a WBRp exists for the address with id

matching the owner of the L2 cacheline.

Proof. We prove the lemma by induction on the transition sequence. For the base case, no cacheline

is busy and thus the hypothesis is true. We only need to consider the cases where an L2 cacheline is

busy after the current transition, i.e., -,busy - busy and busy # busy.

104



Only the ReqM rule can cause a -busy -> busy transition and the rule enqueues a WBRq into

p2c with id matching the owner and therefore the hypothesis is true.

For busy = busy, the lemma can only be violated if a WBRq or WBRp with a matching id is

dequeued. However, when a WBRp is dequeued, the cacheline becomes non-busy in L2 (Write-

BackResp rule). If a WBRq is dequeued and the LI cacheline is in the M state, a WBRp is created

with a matching id. So the only case to consider is when the WBRq with a matching id is dequeued,

and the LI cacheline is in the S or I states, and no other WBRq exists in the same p2c buffer and

no WBRp exists in the c2pRp buffer. We now use contradiction to show such a scenario can never

happen.

The L2 cacheline can only become busy by sending a WBRq. The fact that the dequeued WBRq

is the only WBRq in the p2c means that the L2 cacheline has been busy since the dequeued WBRq

was sent (otherwise another WBRq will be sent when the L2 cacheline becomes busy again). Since

p2c is a FIFO, when the WBRq is dequeued, the messages in the p2c must be sent after the WBRq

was sent. By transition rules, the L2 cacheline cannot send ToM with the same address while being

busy, so no ToM with the same address as WBRq may exist in the p2c buffer when the WBRq

message dequeues. As a result, no master block exists with id = owner. Then, by Lemma 6, no

master block exists for the address (L2 is in the M state because of Lemma 5), which contradicts

Lemma 1. E

Finally, we can prove Theorem 3.

Theorem 3 Proof If any message exists in the c2pRp buffer, the WriteBackResp rule can fire. Con-

sider the case where no message exists in c2pRp buffer. If any message exists in the p2c buffer's

head, the L2Resp rule can fire, or the WriteBackReq, LoadHit or StoreHit rule can fire. For the the-

orem to be violated, no messages can exist in the c2pRp or p2c buffer. Then, according to Lemma

7, all cachelines in L2 are non-busy.

Now consider the case when no message exists in c2pRp buffer or p2c buffer and a GetS or

GetM request exists in c2pRq for an LI cache. Since the L2 is not busy, one of ShReqS, ExReqS

and ReqM can fire, which enqueues a message into the p2c buffer.

Consider the last case where there is no message in any network buffer. By Lemma 4, all LI

cachelines are non-busy. By the hypothesis, there must be a request in mRq for some core. Now if

the request is a hit, the corresponding hit rule (LoadHit or StoreHit) can fire. Otherwise, the LiMiss

rule can fire, sending a message to c2pRq. El

105



5.4.2 Livelock Freedom

Even though the Tardis protocol correctly follows sequential consistency and is deadlock-free, live-

lock may still occur if the protocol is not well designed. For example, for an LI miss, the Down-

grade rule may fire immediately after the L2Resp but before any LoadHit or StoreHit rule fires. As

a result, the LiMiss needs to be fired again but the Downgrade always happens after the response

comes back, leading to livelock. We avoid this possibility by only allowing Downgrade to fire when

neither LoadHit nor StoreHit can fire.

To rigorously prove livelock freedom, we need to guarantee that some transition rule should

eventually make forward progress and no transition rule can make backward progress. Specifically,

the problem in formalized in Theorem 4.

Theorem 4. After any sequence of transitions, if there exists a pending request from any core, then

within a finite number of transitions, some request at some core will dequeue.

Table 5.4: Lattice for a Request - For a load request, L1.miss " (LJ.state = I V (L1.state = S /\ pts

> LJ.rts)). For a store request, L].miss ' (Li.state < M). bufferNameexist means a message exists
in the buffer and bufferNamerdy means that the message is the head of the buffer. bufferName-rdy
implies bufferName-exist.

1 L1.miss A -iL.busy
2 L.miss A L1.busy A c2pRq-exist A , c2pRq-rdy
3 Ll.miss A Ll.busy A c2pRq-rdy A L2.state = M A -L2.busy
4 Ll.miss A Li.busy A c2pRq-rdy A L2.state = M A L2.busy A p2cRqexist A -p2cRq-rdy
5 Ll.miss A Ll.busy A c2pRq-rdy A L2.state = M A L2.busy A p2cRq-rdy A ownerLl.state = M

6 LI.miss A L1.busy A c2pRq-rdy A L2.state = M A L2.busy A p2cRq-rdy A ownerLi.state < M
7 LI.miss A L1.busy A c2pRq-rdy A L2.state = M A L2.busy A -p2cRqexist
8 L .miss A L1.busy A c2pRq-rdy A L2.state = S
9 Ll.miss A L1.busy A p2cRp-exist A -p2cRp-rdy

10 Li.miss A Li.busy A p2cRp-rdy
I1 , Ll.miss

In order to prove the theorem, we will show that for every transition rule, at least one request

will make forward progress and move one step towards the end of the request and at the same time

no other request makes backward progress; or if no request makes forward or backward progress for

the transition, we show that such transitions can only be fired a finite number of times. Specifically,

we define forward progress as a lattice of system states where each request in mRq (load or store)

has its own lattice. Table 5.4 shows the lattice for a request where the lower parts in the lattice

correspond to the states with more forward progress. We will prove livelock freedom by showing

that for any state transition, a request either moves down the lattice (making forward progress) or

stays at the current position but never moves upwards. Moreover, transitions which keep the state

106



of every request staying at the same position in the lattice can only occur a finite number of times.

Specifically, we will prove the following lemma.

Lemma 8. For a state transition except Downgrade, WriteBackReq and WriteBackResp, either

a request dequeues from the mRq or at least one request will move down its lattice. For all the

state transitions, no request will move up its lattice. Further; the system can only fire Downgrade,

WriteBackReq and WriteBackResp for a finite number of times without firing other transitions.

We need Lemmas 9 to 16 in order to prove Lemma 8.

Lemma 9. If an Li cacheline is busy, then exactly one request (GetS or GetM in c2pRq) or response

(ToS or ToM in p2c) exists for the address. If the Li cacheline is non-busy, then no request or

response can exist in its c2pRq and p2c.

Proof This lemma is a stronger lemma than Lemma 4. We prove this by the induction on the

transition sequence. For the base case, all LIs are empty and no message exists and thus the lemma

is true.

We only need to consider the cases where the busy flag changes or any request or response is

enqueued or dequeued. Only the LiMiss, L2Resp, ShReqS and ExReqS rules need to be consid-

ered.

For LIMiss, a request is enqueued to c2pRq and the LI cacheline becomes busy. For L2Resp, a

response is dequeued and the LI cacheline becomes non-busy. For ShReqS and ExReqS, a request

is dequeued but a response in enqueued. By the induction hypothesis, after the current transition,

the hypothesis is still true for all the cases above, proving the lemma. E

Lemma 10. If an L1 cacheline is busy, there must exist a request at the head of the mRq buffer for

the address and the request misses in the L1.

Proof. For the base case, all LI cachelines are non-busy and the lemma is true.

We consider cases where the LI cacheline is busy after the transition. Only LiMiss can make

an LI cacheline busy from non-busy and the rule requires a request to be waiting at the head of the

mRq buffer. If the L 1 cacheline stays busy, then no rule can remove the request from the mRq buffer.

By the induction hypothesis, the lemma is true after any transition. El

Lemma 11. If an L2 cacheline is busy, there must exist a request with the same address at the head

of the c2pRq buffer in L2.

107



Proof. The proof follows the same structure as the previous proof for Lemma 10.

Lemma 12. For a memory request in a c2pRq buffer, its type and pts equal the type and pts of a

pending request to the same address at the head of the mRq at the Li cache.

Proof. By Lemmas 9 and 10, the LI cacheline with the same address must be busy and a pending

request exists at the head of the mRq buffer. Only the LiMiss rule sets the type and pts of a memory

request in a c2pRq buffer and they equal the type and pts of the request at the head of mRq. E

Lemma 13. For a memory response in a p2c buffer (i.e., ToM or ToS), its type equals the type of a

pending mRq request to the same address at the L1 cache; if type = S, its rts is no less than the pts

of the pending mRq request.

Proof. Similar to the proof of Lemma 12, a request with the same address must exist in mRq of the

corresponding core. Only the ShReqS and ExReqS rules set the type and rts of the response, and

type equals the type of a memory request and if type = S, rts is no less than the memory request.

Then the lemma is true by Lemma 12. D

Lemma 14. When the L2Resp rule fires, a request with the same address at the head of mRq will

transition from an Li miss to an Li hit.

Proof. Before the transition of L2Resp, the LI cacheline is busy, and a response is at the head of the

p2c buffer. By Lemma 13, if the pending processor request has type = M, then the memory response

also has type = M and thus it is an LI hit. If the pending processor has type = S, also by Lemma 13,

the memory response has type = S and the rts of the response is no less than the pts of the pending

request. Therefore, LoadHit can also fire.

Lemma 15 (Coverage). The union of all the entries in Table 5.4 is True.

Proof By Lemma 4, if Li.busy we can prove that c2pRq-exist V p2cRp-exist => True.

Then, it becomes obvious that the union of all the entries is true. D

Lemma 16 (Mutually Exclusive). The intersection of any two entries in Table 5.4 is False.

Proof. For most pairs of entries, we can trivially check that the intersection is False. The only tricky

cases are the intersection of entry 9 or 10 with an entry from 3 to 8. These cases can be proven False

using Lemma 9, which implies that c2pRqexist A p2cRp-exist => False. D

108

El



Now we can prove Lemma 8.

Lemma 8 Proof We need to prove two goals. First, for each transition rule except Downgrade,

WriteBackReq and WriteBackResp, at least one request will dequeue or move down the lattice.

Second, for all transition rules no request will move up the lattice.

We first prove that a transition with respect to address a, never moves a request with address

a2 (, a,) up its lattice. The only possible way that the transition affects the request with a2 is by

dequeuing from a buffer, which may make a request with a2 being the head of the buffer and thus

becomes ready. However, this can only move the request with a2 down the lattice.

Also note that each processor can only serve one request per address at a time, because the mRq

is a FIFO. Therefore, for the second goal we only need to prove that requests with the same address

in other processors do not move up the lattice. We prove both goals for each transition rule.

For LoadHit and StoreHit, a request always dequeues from the mRq and the lemma is satisfied.

For the LiMiss rule, before the transition, a request must exist and be in entry I in Table 5.4.

Since busy = True after the transition, it must move down the lattice to one of entries from 2 to 10.

Since the LI cacheline state does not change, no other requests in other processors having the same

address move in their lattice.

For the L2Resp rule, according to Lemma 14, a request will move from L].miss to L].hit. In

the lattice, this corresponds to moving from entry 10 to entry 11, which is a forward movement.

For another request to the same address, the only entries that might be affected are entry 4, 5 and

6. However, since p2c is a FIFO and the response is ready in the p2c buffer before the transition,

no WBRq can be ready in this p2c buffer for other requests with the same address. Therefore, no

other requests can be in entry 5 or 6. If another request is in entries 4, the transition removes the

response from the p2c and this may make the WBRq ready in p2c and thus the request moves down

the lattice. In all cases, no other requests move up the lattice.

For the ShReqS or ExReqS rule to fire, there exists a request in the c2pRq buffer, which means

the address must be busy in the corresponding L I (Lemma 9) and thus a request exists in its mRq and

misses the LI (Lemma 10). This request, therefore, must be in entry 8 in Table 5.4. The transition

will dequeue the request and enqueue a response to p2c and thus moves the request down to entry

9 or 10. For all the other requests with the same address, they cannot be ready in the c2pRq buffer

since the current request blocks them, and thus they are not in entries 3 to 8 in the lattice. For the

other entries, they can only possibly be affected by the transition if the current request is dequeued

109



and one of them becomes ready. This, however, only moves the request down the lattice.

The ReqM rule can only fire if a request is ready in c2pRq and the L2 is in the M state.

According to Lemma 9 and Lemma 10, there exists a request in one mRq that is in entry 3 in a table.

After the transition, this request will move to entries 4 or 5 or 6 and thus down the lattice. For all

the other requests, similar to the discussion of ShReqS and ExReqS, they either stay in the same

entry or move down the lattice.

Finally, we talk about the Downgrade, WriteBackReq and WriteBackResp rules. The Down-

grade rule can only fire when the L 1 cacheline is non-busy, corresponding to entry 1 and 11 if the

request is from the same LI as the cacheline being downgraded. Entry 1 cannot move up since it is

the first entry. If a request is in entry 11, since it is an LI hit now, the Downgrade rule does not fire.

For a request from a different L1, the Downgrade rule may affect entry 5 and 6. However, it can

only move the request from entry 5 to 6 rather than the opposite direction.

For the WriteBackReq rule, if the LI cacheline is in the S state, then nothing changes but a

message is dequeued from the p2c buffer, which can only move other requests down the lattice. If

the LI cacheline is in the M state, then if a request to the same address exists in the current L1, the

request must be a hit and thus WirteBackReq cannot fire. For requests from other LIs, they can only

be affected if they are in entry 4. Then, the current transition can only move them down the lattice.

For the WriteBackResp rule, the L2 cacheline moves from the M to the S state. All the other

requests can only move down their lattice due to this transition.

Now, we prove that Downgrade, WriteBackReq and WriteBackResp can only fire a finite num-

ber of times without other transitions being fired. Each time Downgrade is fired, an LI cacheline's

state goes down. Since there are only a finite number of LI cachelines and a finite number of states,

Downgrade can only be fired a finite number of times. Similarly, each WriteBackReq transition

consumes a WBRq message, which can only be replenished by the ReqM rule. And each Write-

BackResp transition consumes a WBRp, which is replenished by Downgrade and WriteBackReq and

thus only has finite count. D

Finally, we can prove Theorem 4.

Theorem 4 Proof If there exists a pending request from any processor, by Lemma 8, some pending

request will eventually dequeue or move down the lattice, which only has a finite number of states.

For a finite number of processors, since the mRq is a FIFO, only a finite number of pending requests

can exist. Therefore, some pending request will eventually reach the end of the lattice and dequeue,

110



proving the theorem.

5.5 Other Consistency Models

In Section 7.3, we proved that the Tardis protocol follows sequential consistency. In this section, we

show that Tardis also supports relaxed consistency models with simple changes. We use Total Store

Order (TSO) as an example, which is defined in Definition 6 ([132]). We only prove for correctness,

but not deadlock and livelock freedom, since the proof is similar to the sequential consistency case.

Definition 6 (TSO). An execution of a program follows TSO iff

Rule 1: V address a, bfrom the same processor; L(a) <p L(b) =* L(a) <m L(b), L(a) <p S(b) =

L(a) <m S(b), S(a) <p S(b) = ' S(a) <m S(b).

Rule 2: Value of L(a) = Value of Max<m{ S(a)|S(a) <m L(a) V S(a) <P L(a)}

Rule 3: X <P Fence = X <m Fence, Fence <P X * Fence <m X

Different from the processor model for SC (Definition 3), TSO requires a slightly different

model for the processor. We define the following processor model for the TSO consistency model.

Definition 7 (TSO Processor). V address a and b, L(a) <p L(b) = L(a) <ts L(b), L(a) <p S(b) =

L(a) ts S(b),S(a) <P S(b) -> S(a) t, S(b). VX,Y E {Ld,St,Fence}, X <p Y => X <pt Y

Furthermore, the rules for the memory system (Table 5.2) also need some changes to fully model

TSO. Specifically, we change the LoadHit rule to be the one shown in Table 5.5. When a cacheline

is dirty, a load to it can be performed at a timestamp smaller than the current wts of the cacheline;

therefore, the pts does not have to increase.

Table 5.5: LoadHit Rule for TSO - The change for TSO is underlined.

Rules and Condition Action
LoadHit mRq.deqo
let (type, addr, _, pts) = mRq.get msg0 mRp.enq(type, addr, data, max(pts, wts))
let (state, data, busy, dirty, wts, rts) = Li [addr] If (dirty)
condition: , busy A type = S A (state = M V (state = S A pts < rts)) mRp.enq(type, addr, data, pts)

Else
mRp.enq(type, addr, data, max(pts, wts))

If (state = M)
rts := max(pts, rts)

Using similar proof techniques as in SC, it is straightforward to show that both Rules 1 and 3 in

Definition 6 are obeyed. We show a proof of Rule 2 in this section.

Before proving Rule 2, we need the following lemmas.

111

1:



Lemma 17. The wts and rts of the master block of an address never decrease.

Proof. This lemma is an extension of Lemma 1 which says only one master block can exist for an

address. Lemma 17 further states that the timestamps of the block should never decrease. Proving

the lemma is very straightforward by induction. All rules that create a master block (i.e., L2Resp,

WriteBackReq, ExReqS, WriteBackResp) copy the wts and rts from the previous master block,

and thus do not decrease the timestamps. All rules that modify the timestamps of a master block

(i.e., LoadHit, StoreHit, ShReqS) will only increase a timestamp but never decrease them. Li

Lemma 18. The wts and rts of cachelines with the same address never decrease within a particular

Li.

Proof. A cacheline within an L I may or may not be a master block. If it is a master block, it must be

in modified state, otherwise, it must be in shared state. We show that between any pair of cachelines

(A,, A 2 ) that are adjacent in physical time with the same address in the same L1, the cacheline that

exists later in time (A 2 ) has greater or equal wts and rts compared to the preceding cacheline (A I),

namely A 1 .wts < A2.wts and A .rts < A,.rts.

First, if both A I and A 2 are in modified states, the timestamps of A 2 are no less than the times-

tamps of A I due to Lemma 17 and therefore the Lemma is true. If A I is in shared state and A 2

is in modified state, then the timestamps of Al must be copied from a master block that exists

before A I and therefore A 2 . Therefore, A i's timestamps must be less than or equal to A2 's times-

tamps. If A 2 is in shared state, then A 2 might come from a Downgrade, WriteBackReq or L2Resp

rule. If it is Downgrade or WriteBackReq, then A1 must be in modified state and A 2 .wts = Al.wts,

A 2 .rts =A1 .rts. Finally, if A 2 comes from the L2Resp rule, then the A2 's timestamps must be copied

from a shared L2 cacheline through a ShReqS rule. Since the p2c buffer is a FIFO, A I (either in

shared or modified state) must come from a shared L2 cacheline earlier than the firing of ShReq_S

that creates A 2 . Therefore, the lemma is true for all possible cases. l

Now we can prove Rule 2 in Definition 6.

Theorem 5. For each L(a), Value of L(a) = Value of Max<,{S(a)IS(a) <m L(a) V S(a) <P L(a)}

Proof. First, observe that Lemmas 1, 2 and 3 are still true after the changes are made for TSO. This

is because all the three lemmas are about the states of cachelines in the memory system, while the

changes made for TSO are only about states of the cores. For the same reason, Invariants 2 and 3 in

112



Theorem 1 are also true. Namely, VS1 (a), S2(a), Si (a) #,s S2(a), and VS(a),L(a),S(a) =t, L(a) -

S(a) <pt L(a).

Given these invariants, we now prove Rule 2 by considering two cases: whether the load is to a

dirty cacheline or not.

Case 1. A core i loads a non-dirty cacheline with address a. The cacheline can be in either

shared or modified state, but the dirty bit is unset. In this case, the LoadHit rule is exactly the same

as before. Following the proof of Theorem I, we have Value of L(a)= Value of Max<,s{S(a)IS(a) <ts

L(a)}. In order to prove Rule 2 in Definition 6, we need to show that - S'(a).(S'(a) <p L(a) A

VS" (a) E { S(a)IS (a) <m1 L (a)}1. S" (a) <m, S'(a)).

We prove this by contradiction. If such an S'(a) exists, then we have S'(a) <P L(a) A S'(a) >ts

L(a). This means S'(a).ts >, A.wts, where A is the cacheline with address a in core i's private cache

when the load occurs. The existence of S'(a) means there must have existed another LI cacheline

A' with address a in modified state earlier than A (namely, A' <pt A) and that A'.wts >ts A.wts. This

contradicts Lemma 18.

Case 2. A core i loads a dirty cacheline with address a. In this case, the timestamp of the load

does not have to be greater than or equal to the wts of the cacheline. Because the cacheline is dirty,

it must be in modified state in the LI. According to Lemmas 2 and 3, the load returns the data from

a store that has the largest timestamp of all of the stores ever occurred to the address when the load

occurs. Namely, Value of L(a) = Value of Max<,,,{S(a)}. Therefore, the statement in the Lemma is

obviously true. E

5.6 Main Memory

For ease of discussion, we have assumed that all the data fit in the L2 cache, which is not realistic for

some shared memory systems. A multicore processor, for example, has an offchip main memory

that does not contain timestamps. For these systems, the components in Table 5.6 and transition

rules in Table 5.7 need to be added. And for the initial system state, all the data should be in main

memory with all L2 cachelines in I state, and with mrts = mwts = 0.

Most of the extra components and rules are handling main memory requests and responses and

the I state in the L2. However, mwts and mrts are special timestamps added to represent the largest

wts and rts of the cachelines stored in the main memory. These timestamps guarantee that cachelines

loaded from the main memory have proper timestamps.

113



Table 5.6: System Components to Model a Main Memory.
Component Format Message Types

MemRq MemRq.entry = (type, addr, data) MemRq

MemRp MemRp.entry = (addr, data) MemRp

Mem Mem [addr] = (data)
mnwts, nmrts - -

Table 5.7: State Transition Rules for Main Memory.

Rules and Condition Action
L2Miss MemRq.enq(S, addr, _)
let (id, type, addr, pts) = c2pRq.get-msg() busy:= True
condition: L2.[addr].state = I
MemResp state := S
let (addr, data) = MemRp l2data := data
let (state, l2data busy, owner, wts, rts) = L2.[addr] busy:= False

wts:= mwts
rts := mrts

L2Downgrade p2c.enq(owner, Req, addr,___, _)
let (state, data, busy, owner, wts, rts) = L2.[addr] busy:= True
condition: state = M A busy = False

L2Evict MemRq.enq(M, addr, data)
let (state, data, busy, owner, wts, rts) = L2.[addr] state := I
condition: state = S niwts:= max(wts, mwts)

mrts := max(wts, mnrts)

In this section, we prove that the Tardis protocol with main memory still obeys sequential con-

sistency (SC). Although not included, the proof for TSO is similar. The system can also be shown

to be deadlock- and livelock-free using proofs similar to Section 5.4. For the SC proof, Lemma I

needs to be changed slightly. Instead of stating that "exactly" one master block exists for an address,

we change it to "at most" one master block exists for an address. Then, we just need to show that

the modified Lemmas 1, 2, and 3 are true after the main memory is added.

In order to prove these lemmas, we need to prove the following Lemma 19.

Lemma 19. If an L2 cacheline is in the I state, no master block exists for the address.

Proof. We prove by induction on the transition sequence. The hypothesis is true for the base case

since no master block exists. If an L2 cacheline moves from S to I (through the L2Evict rule), the

master block (L2 cacheline in S state) is removed and no master block exists for that address. By

the transition rules, while the L2 line stays in the I state, no master block can be created. By the

induction hypothesis, if an L2 cacheline is in the I state after a transition, then no master block can

exist for that address. E

For Lemma 1, we only need to include Lemma 19 in the original proof. For Lemmas 2 and 3,

114



we need to show the following properties of mwts and mrts.

Lemma 20. If an L2 cacheline with address a is in I state, then the following statements are true.

" mwts is greater than or equal to the wts of all the copies of blocks with address a.

" mrts is greater than or equal to the rts of all the copies of blocks with address a.

" No store has happened to the address at ts such that ts > inrts.

" The data value of the cacheline B in main memory comes from a store St such that St.ts < mwts

and St happened before the current physical time. And no other store St' has happened such

that St.ts < St'.ts < mrts.

Proof. All the statements can be easily proven by induction on the transition sequence. For S -+ I

of an L2 cacheline, since mwts and mrts are no less than the cacheline's wts and rts, respectively, by

Lemmas 2 and 3, all four statements are true after the transition.

Consider the other case where the L2 cacheline stays in I state. Since no master block exists

(Lemma 19), the copies of the cacheline cannot change their timestamps and no store can happen.

By the transition rules, the mts never decreases after the transition. So the hypothesis must be true

after the transition.

To finish the original proof, we need to consider the final case where the L2 cacheline moves

from I to S state (MemResp rule). In this case, wts and rts are set to mwts and mrts respectively. By

Lemma 20, both Lemma 2 and Lemma 3 are true after the current transition.

5.7 Additional Related Work

Both model checking and formal proofs are popular in proving the correctness of cache coherence

protocols. Model checking based verification [42, 94, 79, 109, 22, 23, 74, 34, 32, 46, 159, 108,

107, 75, 39, 160] is a commonly used technique, but even with several optimizations, it does not

typically scale to automatically verify real-world systems.

Many other works [121, 10, 104, 26, 90] prove the correctness of a cache coherence protocol

by proving invariants as we did in this paper. Our invariants are in general simpler and easier to

understand than what they had, partly because Tardis is simpler than a directory coherence protocol.

Finally, our proofs can be machine-checked along the lines of the proofs for a hierarchical cache

coherence protocol [145, 119].

115



Part II

Scalable Concurrency Control

116



Chapter 6

Concurrency Control Scalability Study

6.1 Introduction

The number of cores on a single chip has been growing significantly. Processors with hundreds of

cores are ready available in the market, and single-chip thousand-core systems may appear within a

few years. The scalability of single-node, shared-memory database management systems (DBMSs)

is even more important in the many-core era. But if the current DBMS technology does not adapt

to this reality, all this computational power will be wasted on bottlenecks, and the extra cores will

be rendered useless.

In this section, we take a peek at this future and examine what happens with transaction process-

ing at one thousand cores. We limit our scope to concurrency control since it is one of the system

components that is most difficult to scale. With hundreds of threads running in parallel, the com-

plexity of coordinating competing accesses to data will become a major bottleneck to scalability,

and will likely dwindle the gains from increased core counts.

We implemented seven concurrency control algorithms in a main memory DBMS and used

a high-performance, distributed CPU simulator to scale the system to 1000 cores. Implementing

a system from scratch allows us to avoid any artificial bottlenecks in existing DBMSs and instead

understand the more fundamental issues in the algorithms. Previous scalability studies used existing

DBMSs [77, 81, 117], but many of the legacy components of these systems do not target many-core

CPUs. To the best of our knowledge, there has not been an evaluation of multiple concurrency

control algorithms on a single DBMS at such large scale, prior to our work.

Our analysis shows that all algorithms fail to scale as the number of cores increases. In each

case, we identify the primary bottlenecks that are independent of the DBMS implementation and

117



argue that even state-of-the-art systems suffer from these limitations.

This chapter makes the following contributions:

" A comprehensive evaluation of the scalability of seven concurrency control schemes.

" The first evaluation of an OLTP DBMS on 1000 cores.

" Identification of bottlenecks in concurrency control schemes that are not implementation-

specific.

The remainder of this section is organized as follows. We begin in Section 6.2 with an overview

of the concurrency control schemes used in our evaluation. Section 6.3 describes the multicore

architecture of our study. We present our analysis in Sections 6.4 and 6.5, followed by a discussion

of results in Section 6.6. Finally, we survey related work in Section 6.7.

6.2 Concurrency Control Schemes

OLTP database systems support the part of an application that interacts with end-users. End-users

interact with the front-end application by sending it requests to perform some function (e.g., re-

serve a seat on a flight). The application processes these requests and then executes transactions in

the DBMS. Such users could be humans on their personal computer or mobile device, or another

computer program potentially running somewhere else in the world.

A transaction in the context of one of these systems is the execution of a sequence of one or more

operations (e.g., SQL queries) on a shared database to perform some higher-level function [62]. It

is the basic unit of change in a DBMS: partial transactions are not allowed, and the effect of a group

of transactions on the database's state is equivalent to any serial execution of all transactions. The

transactions in modern OLTP workloads have three salient characteristics: (1) they are short-lived

(i.e., no user stalls), (2) they touch a small subset of data using index look-ups (i.e., no full table

scans or large joins), and (3) they are repetitive (i.e., executing the same queries with different

inputs) [135].

An OLTP DBMS is expected to maintain four properties for each transaction that it executes: (1)

atomicity, (2) consistency, (3) isolation, and (4) durability. These unifying concepts are collectively

referred to with the ACID acronym [68]. Concurrency control permits end-users to access a database

in a multi-programmed fashion while preserving the illusion that each of them is executing their

transaction alone on a dedicated system [18]. It essentially provides the atomicity and isolation

guarantees in the system.

118



We now describe the different concurrency control schemes that we explored in our many-core

evaluation. For this discussion, we follow the canonical categorization that all concurrency schemes

are either a variant of two-phase locking or timestamp ordering protocols [18]. Table 6.1 provides a

summary of these different schemes.

6.2.1 Two-Phase Locking

Two-phase locking (2PL) was the first provably correct method of ensuring the correct execution

of concurrent transactions in a database system [21, 47]. Under this scheme, transactions have to

acquire locks for a particular element in the database before they are allowed to execute a read or

write operation on that element. The transaction must acquire a read lock before it is allowed to

read that element, and similarly it must acquire a write lock in order to modify that element. The

DBMS maintains locks for either each tuple or at a higher logical level (e.g., tables, partitions) [53].

The ownership of locks is governed by two rules: (1) different transactions cannot simultane-

ously own conflicting locks, and (2) once a transaction surrenders ownership of a lock, it may never

obtain additional locks [18]. A read lock on an element conflicts with a write lock on that same

element. Likewise, a write lock on an element conflicts with a write lock on the same element.

In the first phase of 2PL, known as the growing phase, the transaction is allowed to acquire as

many locks as it needs without releasing locks [47]. When the transaction releases a lock, it enters

the second phase, known as the shrinking phase; it is prohibited from obtaining additional locks at

this point. When the transaction terminates (either by committing or aborting), all the remaining

locks are automatically released back to the coordinator.

2PL is considered a pessimistic approach in that it assumes that transactions will conflict and

thus they need to acquire locks to avoid this problem. If a transaction is unable to acquire a lock for

an element, then it can wait until the lock becomes available. If this waiting is uncontrolled (i.e.,

indefinite), then the DBMS can incur deadlocks [18]. Thus, a major difference among the different

variants of 2PL is in how they handle deadlocks and the actions that they take when a deadlock is

detected. We now describe the different versions of 2PL that we have implemented in our evaluation

framework, contrasting them based on these two details:

2PL with Deadlock Detection (DLDETECT): The DBMS monitors a waits-for graph of

transactions and checks for cycles (i.e., deadlocks) [60]. When a deadlock is found, the system

must choose a transaction to abort and restart in order to break the cycle. In practice, a centralized

deadlock detector is used for cycle detection. The detector chooses which transaction to abort based

119



DL _DETECT 2PL with deadlock detection.

Two-Phase Locking (2PL) NOWAIT 2PL with non-waiting deadlock prevention.

WAITDIE 2PL with wait-and-die deadlock prevention.

TIM ESTAMP Basic T/O algorithm.

Timestamp Ordering (T/O) MVCC Multi-version T/O.

OCC Optimistic concurrency control.

H-STORE T/O with partition-level locking.

Table 6.1: The Concurrency Control Schemes under Evaluation.

on the amount of resources it has already used (e.g., the number of locks it holds) to minimize the

cost of restarting a transaction [18].

2PL with Non-waiting Deadlock Prevention (NOWAIT): Unlike deadlock detection where

the DBMS waits to find deadlocks after they occur, this approach is more cautious in that a transac-

tion is aborted when the system suspects that a deadlock might occur [18]. When a lock request is

denied, the scheduler immediately aborts the requesting transaction (i.e., it is not allowed to wait to

acquire the lock).

2PL with Waiting Deadlock Prevention (WAITDIE): This is a non-preemptive variation of

the NOWAIT scheme where a transaction is allowed to wait for that transaction that holds the lock

that it needs if the transaction is older than the one that holds the lock. If the requesting transaction

is younger, then it is aborted (hence the term "die") and is forced to restart [18]. Each transaction

needs to acquire a unique timestamp before its execution and the timestamp ordering guarantees

that no deadlocks can occur.

6.2.2 Timestamp Ordering

Timestamp ordering (T/O) concurrency control schemes generate a serialization order of transac-

tions a priori and then the DBMS enforces this order. A transaction is assigned a unique, monoton-

ically increasing timestamp before it is executed; this timestamp is used by the DBMS to process

conflicting operations in the proper order (e.g., read and write operations on the same element, or

two separate write operations on the same element) [18].

We now describe the T/O schemes implemented in our test-bed. The key differences between

the schemes are (1) the granularity that the DBMS checks for conflicts (i.e., tuples vs. partitions)

and (2) when the DBMS checks for these conflicts (i.e., while the transaction is running or at the

end).

120



Basic T/O (TIMESTAMP): Every time a transaction reads or modifies a tuple in the database,

the DBMS compares the timestamp of the transaction with the timestamp of the last transaction that

reads or writes the same tuple. For any read or write operation, the DBMS rejects the request if

the transaction's timestamp is less than the timestamp of the last write to that tuple. Likewise, for

a write operation, the DBMS rejects it if the transaction's timestamp is less than the timestamp of

the last read to that tuple. In TIMESTAMP, a read query makes a local copy of the tuple to ensure

repeatable reads since it is not protected by locks. When a transaction is aborted, it is assigned a

new timestamp and then restarted. This corresponds to the "basic T/O" algorithm as described in

[18], but our implementation uses a decentralized scheduler.

Multi-version Concurrency Control (MVCC): Under MVCC, every write operation creates a

new version of a tuple in the database [19, 20]. Each version is tagged with the timestamp of the

transaction that created it. The DBMS maintains an internal list of the versions of an element. For

a read operation, the DBMS determines which version in this list the transaction will access. Thus,

it ensures a serializable ordering of all operations. One benefit of MVCC is that the DBMS does not

reject operations that arrive late. That is, the DBMS does not reject a read operation because the

element that it targets has already been overwritten by another transaction [20].

Optimistic Concurrency Control (0CC): The DBMS tracks the read/write sets of each trans-

action and stores all of their write operations in their private workspace [86]. When a transaction

commits, the system determines whether that transaction's read set overlaps with the write set of

any concurrent transactions. If no overlap exists, then the DBMS applies the changes from the

transaction's workspace into the database; otherwise, the transaction is aborted and restarted. The

advantage of this approach for main memory DBMSs is that transactions write their updates to

shared memory only at commit time, and thus the contention period is short [144]. Modem imple-

mentations of OCC include Silo [144] and Microsoft's Hekaton [41, 95].

T/O with Partition-level Locking (H-STORE): The database is divided into disjoint subsets

of memory called partitions. Each partition is protected by a lock and is assigned a single-threaded

execution engine that has exclusive access to that partition. Each transaction must acquire the locks

for all of the partitions that it needs to access before it is allowed to start running. This requires the

DBMS to know what partitions that each individual transaction will access before it begins [120].

When a transaction request arrives, the DBMS assigns it a timestamp and then adds it to all of

the lock acquisition queues for its target partitions. The execution engine for a partition removes

a transaction from the queue and grants it access to that partition if the transaction has the oldest

121



Application Target Multicore Host Machines

Fig ure 6 -1: G raphite Si m u a...cor In r s r c re -A p i ai n th e d a e m p ed t s m u a d

coe hrad dpoye cor corepl hos mchies

recentO exaree incoeH-tre[8 ]

6.3~_ .r May-oerBe et-e

Sinc may-coe cipswihuptm 1 core dortet xsw efre u nlssb sn

Graphete-[1: GaahCPU simulator Inastrctre Ap124catoe.n thed aBMS waped tsimlemeted

aor thad delorye o n e ugile hat maychntines.tefntoaiynee froreprmnsh

6.3ia nyr-sngC ste DBMS iestw-Bfed.Fsweanesethtootebtteekext

other than concurrency control. This allows us to study the fundamentals of each scheme in isolation

without interference from unrelated features. Second, using a full-featured DBMS is impractical due

to the considerable slowdown of the simulator (e.g., Graphite has an average slowdown of 10,000 x).

Our engine allows us to limit the experiments to reasonable time. We now describe the simulation

infrastructure, the DBMS engine, and the workloads used in this study.

6.3.1 Simulator and Target Architecture

Graphite [I 10] is a fast CPU simulator for large-scale multicore systems. Graphite runs off-the-

shelf Linux applications by creating a separate thread for each core in the architecture. As shown in

Figure 6-:1, each application thread is attached to a simulated core thread that can then be mapped

to different processes on separate host machines. For additional performance, Graphite relaxes

cycle accuracy, using periodic synchronization mechanisms to loosely adjust the timing of different

hardware components. As with other similar CPU simulators, it only executes the application and

122

I



Tiled Chip Multi-Processor

4 4 A

4.:,
4 -4

4 -4 AA

-A A -4

Tile

___r SW

p 12

I Core Li

Figure 6-2: Target Architecture - Tiled chip multi-processor with 64 tiles and a 2D-mesh
network-on-chip. Each tile contains a processing core, L1 and L2 caches, and a network switch
(SW).

does not model the operating system. For this paper, we deployed Graphite on a 22-node cluster,

each with dual-socket Intel Xeon E5-2670 processors and 64GB of DRAM.

The target architecture is a tiled multicore CPU, where each tile contains a low-power, in-order

processing core, 32KB L1 instruction/data cache, a 512KB L2 cache slice, and a network router.

This is similar to other commercial CPUs, such as Tilera's Tile64 (64 cores), Intel's SCC (48 cores),

and Intel's Knights Landing (72 cores) [6]. Tiles are interconnected using a high-bandwidth, 2D-

mesh on-chip network, where each hop takes two cycles. Both the tiles and network are clocked at

1GHz frequency. A schematic of the architecture for a 64-core machine is depicted in Figure 6-2.

We use a shared L2-cache configuration because it is the most common last-level cache design

for commercial multicores. In a comparison experiment between shared and private L2-caches, we

observe that a shared L2 cache leads to significantly less memory traffic and higher performance for

OLTP workloads due to its increased aggregate cache capacity (results not shown). Since L2 slices

are distributed among the different tiles, the simulated multicore system is a NUCA (Non-Uniform

Cache Access) architecture, where L2-cache latency increases with distance in the 2D-mesh.

6.3.2 DBMS

We implemented our own lightweight main memory DBMS to run in Graphite. It executes as a

single process with the number of worker threads equal to the number of cores, where each thread

is mapped to a different core. All data in our DBMS is stored in memory in a row-oriented manner.

The system supports basic hash table indexes and a pluggable lock manager that allows us to swap

in the different implementations of the concurrency control schemes described in Section 6.2. It also

123



allows the indexes and lock manager to be partitioned (as in the case with the H-STORE scheme) or

run in a centralized mode.

Client threads are not simulated in our system; instead, each worker contains a fixed-length

queue of transactions that are served in order. This reduces the overhead of network protocols,

which are inherently difficult to model in the simulator. Each transaction contains program logic

intermixed with query invocations. The queries are executed serially by the transaction's worker

thread as they are encountered in the program logic. Transaction statistics, such as throughput,

latency, and abort rates, are collected after a warm-up period that is long enough for the system to

achieve a steady state.

In addition to runtime statistics, our DBMS also reports how much time each transaction spends

in the different components of the system [70]. We group these measurements into six categories:

USEFUL WORK: The time that the transaction is actually executing application logic and op-

erating on tuples in the system.

ABORT: The time spent on executing transactions that eventually abort.

TS ALLOCATION: The time that it takes for transactions to acquire unique timestamps from

the centralized allocator.

INDEX: The time that the transaction spends in accessing the hash index (e.g., lookups, inserts,

and deletes), including the overhead of low-level latching of the buckets in the hash tables.

WAIT: The total amount of time that a transaction has to wait. A transaction may either wait

for a lock (e.g., 2PL) or for a tuple whose value is not ready yet (e.g., T/O).

MANAGER: The time that the transaction spends in the lock manager or the timestamp manager.

This excludes any time that it has to wait.

6.3.3 Workloads

We next describe the two benchmarks that we implemented in our test-bed for this analysis.

YCSB: The Yahoo! Cloud Serving Benchmark is a collection of workloads that are repre-

sentative of large-scale services created by Internet-based companies [35]. For all of the YCSB

experiments in this thesis, we used a ~20GB YCSB database containing a single table with 20 mil-

lion records. Each YCSB tuple has a single primary key column and then 10 additional columns

each with 100 bytes of randomly generated string data. The DBMS creates a single hash index for

the primary key.

Each transaction in the YCSB workload by default accesses 16 records in the database. Each

124



access can be either a read or an update. The transactions do not perform any computation in

their program logic. All of the queries are independent from each other; that is, the input of one

query does not depend on the output of a previous query. The records accessed in YCSB follows a

Zipfian distribution that is controlled by a parameter called theta that affects the level of contention

in the benchmark [63]. When theta=0, all tuples are accessed with the same probability. But when

theta=0.6 or theta=0.8, a hotspot of 10% of the tuples in the database are accessed by ~40% and

~60% of all transactions, respectively.

TPC-C: This benchmark is the current industry standard for evaluating the performance of

OLTP systems [140]. It consists of nine tables that simulate a warehouse-centric order processing

application. All of the transactions in TPC-C provide a warehouse id as an input parameter for

the transaction, which is the ancestral foreign key for all tables except ITEM. For a concurrency

control algorithm that requires data partitioning (i.e., H-STORE), TPC-C is partitioned based on this

warehouse id.

Only two (Payment and NewOrder) out of the five transactions in TPC-C are modeled in our

simulation in this chapter. Since these two comprise 88% of the total TPC-C workload, this is a

good approximation. Our version of TPC-C is a "good faith" implementation, although we omit the

"thinking time" for worker threads. Each worker issues transactions without pausing; this mitigates

the need to increase the size of the database with the number of concurrent transactions.

6.3.4 Simulator vs. Real Hardware

To show that using the Graphite simulator generates results that are comparable to existing hard-

ware, we deployed our DBMS on an Intel Xeon E7-4830 and executed a read-intensive YCSB

workload with medium contention (theta=0.6). We then executed the same workload in Graphite

with the same number of cores.

The results in Figure 6-3 show that all of the concurrency control schemes exhibit the same

performance trends on Graphite and the real CPU. We note, however, that the relative performance

difference between MVCC, TIM ESTAMP, and OCC is different in Figure 6-3b. This is because MVCC

accesses memory more than the other two schemes and those accesses are more expensive on a two-

socket system. Graphite models a single CPU socket and thus there is no inter-socket traffic. In

addition to this, the throughput of the T/O-based and WAITDIE schemes drops on 32 cores due

to the overhead of cross-core communication during timestamp allocation. We discuss this issue in

more details in Section 6.4.3.

125



0.35 .-. DL DETECT .7 - DL_DETECT

030 +- NOWAIT 0.6 -+-+ NOWAIT
X o WAITDIE o 0 WAITDIE
C 0.25 -a TIMESTAMP -. 0.5 - * TIMESTAMP

4- 0.15_- - _0.3-__
"0.05 'O 0.-

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of Cores Number of Cores

(a) Graphite Simulation (b) Real Hardware

Figure 6-3: Simulator vs. Real Hardware - Comparison of the concurrency control schemes
running in Graphite and a real multicore CPU using the YCSB workload with medium contention

(theta=0.6).

6.4 Design Choices & Optimizations

One of the main challenges of this study was designing a DBMS and concurrency control schemes

that are as scalable as possible. When deploying a DBMS on 1000 cores, many secondary aspects

of the implementation become a hindrance to performance. We did our best to optimize each al-

gorithm, removing all possible scalability bottlenecks while preserving their essential functionality.

Most of this work was to eliminate shared data structures and devise distributed versions of the

classical algorithms [18].

In this section, we discuss our experience with developing a many-core OLTP DBMS and high-

light the design choices we made to achieve a scalable system. Additionally, we identify fundamen-

tal bottlenecks of both the 2PL and T/O schemes and show how hardware support mitigates these

problems. We present our detailed analysis of the individual schemes in Section 6.5.

6.4.1 General Optimizations

We first discuss the optimizations that we added to improve the DBMS's performance across all

concurrency control schemes.

Memory Allocation: One of the first limitations we encountered when trying to scale our

DBMS to large core counts was the malloc function. When using the default Linux version of

malloc, we found that the DBMS spends most of the time waiting for memory allocation. This is

a problem even for read-only workloads, since the DBMS still needs to allocate local records for

126



C1
x 10

0 a theta=0
10 - theta=O.6

theta=0.8

C. 10-
CP

0

100 101 102 103
Number of Cores

Figure 6-4: Lock Thrashing - Results for a write-intensive YCSB workload using the
DLDETECT scheme without deadlock detection. Each transaction acquires locks in their primary
key order.

reads in TIMESTAMP and to create internal metadata handles for access tracking data structures.

We tried running optimized versions (TCMalloc [57], jemalloc [48]), but both yielded similar

disappointing results at 1000 cores.

We overcame this by writing a custom malloc implementation. Similar to TCMalloc and

jemalloc, each thread is assigned its own memory pool. But the difference is that our alloca-

tor automatically resizes the pools based on the workload. For example, if a benchmark frequently

allocates large chunks of contiguous memory, the pool size increases to amortize the cost for each

allocation.

Lock Table: As identified in previous work [81, 124], the lock table is another key contention

point in DBMSs. Instead of having a centralized lock table or timestamp manager, we implemented

these data structures in a per-tuple fashion where each transaction only latches the tuples that it

needs. This improves scalability, but increases the memory overhead because the DBMS maintains

additional metadata for the lock sharer/waiter information. In practice, this metadata (several bytes)

is negligible for large tuples.

Mutexes: Accessing a mutex lock is an expensive operation that requires multiple messages to

be sent across the chip. A central critical section protected by a mutex will limit the scalability of

any system (cf. Section 6.4.3). Therefore, it is important to avoid using mutexes on the critical path.

For 2PL, the mutex that protects the centralized deadlock detector is the main bottleneck, while for

T/O algorithms it is the mutex used for allocating unique timestamps. In the subsequent sections,

we describe the optimizations that we developed to obviate the need for these mutexes.

127



6.4.2 Scalable Two-Phase Locking

We next discuss the optimizations for the 2PL algorithms.

Deadlock Detection: For DLDETECT, we found that the deadlock detection algorithm is

a bottleneck when multiple threads compete to update their waits-for graph in a centralized data

structure. We solved this by partitioning the data structure across cores to make the deadlock de-

tector completely lock-free. When a transaction updates its waits-for graph, its thread inserts the

transactions that the current transaction is waiting for into its local queue without holding any locks.

This step is local (i.e., no cross-core communication), as the thread does not write to the queues of

other transactions.

In the deadlock detection process, a thread searches for cycles in a partial waits-for graph by

only reading the queues of related threads but not locking the queues. Although this approach may

not discover a deadlock immediately after it forms, the thread is guaranteed to find it on subsequent

passes [20].

Lock Thrashing: Even with improved deadlock detection, DL DETECT still does not scale

due to lock thrashing. This occurs when a transaction holds its locks until it commits, blocking all

the other concurrent transactions that attempt to acquire those locks. This becomes a problem with

high contention and a large number of concurrent transactions. It is the main scalability bottleneck

of all 2PL schemes.

To demonstrate the impact of thrashing, we executed a write-intensive YCSB workload (i.e.,

50/50% read-write mixture) using a variant of DL DETECT where transactions acquire locks in

primary key order. Although this approach is not practical for all workloads, it removes the need

for deadlock detection and allows us to better observe the effects of thrashing. Figure 6-4 shows

the transaction throughput as a function of the number of cores for different levels of contention.

When there is no skew in the workload (theta=0), the contention for locks is low and the throughput

scales almost linearly. As the contention level increases, however, thrashing starts to occur. With

medium contention (theta=0.6), the throughput peaks at several hundred cores and then decreases

due to thrashing. At the highest contention level (theta=0.8), the DBMS's throughput peaks at 16

cores and cannot scale beyond that. Simulation results show that almost all the execution time is

spent on waiting for locks. This indicates that lock thrashing is the key bottleneck of lock-based

approaches that limits scalability in high-contention scenarios.

Waiting vs. Aborting: The thrashing problem can be mitigated in DLDETECT by aborting

128



- 0.22 2200

1800s

0.19 1400
1200 4.-81000 

000.20- ' , e

- 0 lus l0us lO0us ims lims 100s
Timeout Threshold

Figure 6-5: Waiting vs. Aborting - Results for DL_DETECT with varying timeout threshold
running high contention YCSB (theta=O.8) at 64 cores.

some transactions to reduce the number of active transactions at any point in time. Ideally, this

keeps the system running at the highest throughput for each curve in Figure 6-4. We added a

timeout threshold in the DBMS that causes the system to abort and restart any transaction that has

been waiting for a lock for an amount of time greater than the threshold. Note that when the timeout

threshold is zero, this algorithm is equivalent to NO_WAIT.'

We ran the same YCSB workload with high contention using different timeout thresholds on a

64-core CPU. We measure both the throughput and abort rate in the DBMS for the DL _DETECT

scheme sweeping the timeout from 0-100 ins.

The results in Figure 6-5 indicate that when the CPU has a small number of cores, it is better to

use a shorter timeout threshold. This highlights the trade-off between performance and the transac-

tion abort rate. With a small timeout, the abort rate is high, which reduces the number of running

transactions and alleviates the thrashing problem. Using a longer timeout reduces the abort rate

at the cost of more thrashing. Therefore, in this paper, we evaluate DL _DETECT with its timeout

threshold set to lO0ps. In practice, the threshold should be based on an application's workload

characteristics.

6.4.3 Scalable Timestamp Ordering

Finally, we discuss the optimizations that we developed to improve the scalability of the TIC-based

algorithms.

Timestamp Allocation: All T/C-based algorithms make ordering decisions based on transac-

tions' assigned timestamps. The DBMS must therefore guarantee that each timestamp is allocated

to only one transaction. A nafve approach to ensure this is to use a mutex in the allocator's critical

section, but this leads to poor performance. Another common solution is to use an atomic addi-

129



tion operation to advance a global logical timestamp. This requires fewer instructions and thus the

DBMS's critical section is locked for a smaller period of time than with a mutex. But as we will

show, this approach is still insufficient for a 1000-core CPU. We now discuss three timestamp al-

location alternatives: (1) atomic addition with batching [144], (2) CPU clocks, and (3) hardware

counters.

With the batched atomic addition approach, the DBMS uses the same atomic instruction to

allocate timestamps, but the timestamp manager returns multiple timestamps together in a batch for

each request.

To generate a timestamp using clock-based allocation, each worker thread reads a logical clock

from its local core and then concatenates it with its thread id. This provides good scalability as

long as all the clocks are synchronized. In distributed systems, synchronization is accomplished

using software protocols [111] or external clocks [36]. On a many-core CPU, however, this imposes

large overhead and thus requires hardware support. To the best of our knowledge, only Intel CPUs

support synchronized clocks across cores at the present moment. It is not clear if synchronized

clocks will be continuously supported in the future.

Lastly, the third approach is to use an efficient, built-in hardware counter. The counter is phys-

ically located at the center of the CPU such that the average distance to each core is minimized.

No existing CPU currently supports this. Thus, we implemented a counter in Graphite where a

timestamp request is sent through the on-chip network to increment it atomically in a single cycle.

To determine the maximum rate that the DBMS can allocate timestamps for each method, we

ran a micro-benchmark where threads continuously acquire new timestamps. The throughput as a

function of the number of cores is shown in Figure 6-6. We first note that mutex-based allocation has

the lowest performance, with -1 million timestamps per second (ts/s) on 1024 cores. The atomic

addition method reaches a maximum of 30 million ts/s at 16 cores, but throughput decreases as the

number of cores increases. At 1024 cores, the allocation throughput is only 8 million ts/s. This is

due to the cache coherence traffic resulting from writing back and invalidating the last copy of the

corresponding cache line for every timestamp. This takes one round trip of communication across

the chip or ~100 cycles for a 1024-core CPU, which translates to a maximum throughput of 10

million ts/s at 1GHz frequency. Batching these allocations does help, but it causes performance

issues when there is contention (see below). The hardware-based solutions are able to scale with

the number of cores. Because incrementing the timestamp takes only one cycle with the hard-

ware counter-based approach, this method achieves a maximum throughput of 1 billion ts/s. The

130



-10000 C-e lock
L +-. Hardware

Atomic batch=16
1000 o o Atomic batch=8

- - Atomic

100 Mutex

00

1 10 100 1000
Number of Cores

Figure 6-6: Timestamp Allocation Micro-benchmark - Throughput measurements for different
timestamp allocation methods.

performance gain comes from removing the coherence traffic by executing the addition operation

remotely. The clock-based approach has ideal (i.e., linear) scaling, since this solution is completely

decentralized, so long as synchronized clocks are available.

We also tested the different allocation schemes in the DBMS to see how they perform for real

workloads. For this experiment, we executed a write-intensive YCSB workload with two different

contention levels using the TIM ESTAMP scheme. The results in Figure 6-7a show that with no con-

tention, the relative performance of the allocation methods are the same as in Figure 6-6. When there

is contention, however, the trends in Figure 6-7b are much different. First, the DBMS's throughput

with the batched atomic addition method is much worse. This is because in our implementation,

when a transaction is restarted due to a conflict, it gets restarted in the same worker thread and is as-

signed the next timestamp from the last batch. But this new timestamp may still be less than the one

for the other transaction that caused the abort. Therefore, the current transaction may continuously

restart until the thread.fetches a new batch. The non-batched atomic addition method performs as

well as the clock and hardware counter approaches. Hence, the DBMS uses atomic addition without

batching to allocate timestamps because the other approaches require specialized hardware support

that is currently not available on all CPUs.

Distributed Validation: The original OCC algorithm contains a critical section at the end of

the read phase, where the transaction's read set is compared to previous transactions' write sets

to detect conflicts. Although this step is short, as mentioned above, any mutex-protected critical

section severely hurts scalability. We solve this problem by using per-tuple validation that breaks

up this check into smaller operations. This is similar to the approach used in Hekaton [95] but it is

simpler, since we only support a single version of each tuple.

Local Partitions: We optimized the original H-STORE protocol to take advantage of shared

131



90- o a Clock 3.0
80 _- HW Counter

x e-e Atomic batch=16 x 2.5--70 -a Atomic batch=8

_2 60-- Atomic - 2.0-
50 - 0-* Mute 1.
40- -

C' 30 - 1.0 -
$20--

S 0 - .. 0-- - - - - ... . 0.5-

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Cores Number of Cores

(a) No Contention (b) Medium Contention

Figure 6-7: Timestamp Allocation - Throughput of the YCSB workload using TIMESTAMP with

different timestamp allocation methods.

memory. Because the DBMS's worker threads run in a single process, we allow multi-partition

transactions to access tuples at remote partitions directly instead of sending query requests that are

executed by the remote partitions' worker threads. This allows for a simpler implementation that is

faster than using inter-process communication. With this approach, the data is not physically par-

titioned since on-chip communication latency is low. Read-only tables are accessed by all threads

without replication, thus reducing the memory footprint. Finally, we use the same timestamp allo-

cation optimizations from above to avoid the mandatory wait time to account for clock skew [135].

6.5 Experimental Analysis

We now present the results from our analysis of the different concurrency control schemes. Our

experiments are grouped into two categories: (1) scalability and (2) sensitivity evaluations. For the

former, we want to determine how well the schemes perform as we increase the number of cores.

We scale the number of cores up to 1024 while fixing the workload parameters. With the sensitivity

experiments, we vary a single workload parameter (e.g., transaction access skew). We report the

DBMS's total simulated throughput as well as a breakdown of the amount of time that each worker

thread spends in the different parts of the system listed in Section 6.3.2.

We begin with an extensive analysis of the YCSB workload. The nature of this workload allows

us to change its parameters and create a variety of scenarios that stress the concurrency control

schemes in different ways. Next, we analyze the TPC-C workload, where we vary the number of

warehouses and observe the impact on the throughput of the algorithms. The H-STORE scheme

is excluded from our initial experiments and is only introduced in Section 6.5.5 when we analyze

132



14
12 M DL DETECT TIMESTAMP

J,12 + NO WAIT .- e MVCC 1 0
10 .> aWAITDIE - oCC

- - -M Useful Work
06 =-0 Abort

6- iM Ts Alloc.

CL 0.4 Index

2 Manager
'Z4 2\, V- -C -DO

0 00 400 600 800 1000 '00 o4 8
Number of Cores

(a) Total Throughput (b) Runtime Breakdown (1024 cores)

Figure 6-8: Read-only Workload - Throughput and runtime breakdown of different concurrency
control algorithms for a read-only YCSB workload.

database partitioning.

6.5.1 Read-Only Workload

In this first scalability analysis experiment, we executed a YCSB workload comprising read-only

transactions with a uniform access distribution. Each transaction executes 16 separate tuple reads

at a time. This provides a baseline for each concurrency control scheme before we explore more

complex workload arrangements.

In a perfectly scalable DBMS, the throughput should increase linearly with the number of cores.

However, this is not the case for the T/O algorithms as shown in Figure 6-8. Performance stops

increasing after a few hundred cores. The time breakdown in Figure 6-8b indicates that timestamp

allocation becomes the bottleneck with a large core count. OCC hits the bottleneck even earlier

since it needs to allocate timestamps twice per transaction (i.e., at transaction start and before the

validation phase). Both OCC and TIM ESTAM P have significantly worse performance than the other

algorithms regardless of the number of cores. These algorithms waste cycles because they copy

tuples to perform a read, whereas the other algorithms read tuples in place.

6.5.2 Write-Intensive Workload

A read-only workload represents an optimistic (and unrealistic) scenario, as it generates no data

contention. But even if we introduce writes in the workload, the large size of the dataset means

that the probability that any two transactions access the same tuples at the same time is small. In

reality, the access distribution of an OLTP application is rarely uniform. Instead, it tends to follow a

power law distribution, where certain tuples are more likely to be accessed than others. This can be

from either skew in the popularity of elements in the database or skew based on temporal locality

133



4.5 - DL DETECT &-- TIMESTAMP

a 4.0 4-4 NOWAIT - MVCC
X3.5- E 3 WAIT-DIE - OCC 1.0

3.5 .. -0.8

2.5 Useful Work
2.0 0.6 E=Abort

1
.
5  

.-- 04 Index

1.0 2 1 Wait

0 0.5 M Manager

0.0o 200 400 600 800 1000 o- 140 0
Number of Cores

(a) Total Throughput (b) Runtime Breakdown (512 cores)

Figure 6-9: Write-Intensive Workload (Medium Contention) - Results for YCSB workload
with medium contention (theta=0.6).

0.

0.C
X 0.
C
0

0.

0.
nr

0 200 400 600 800 1000
Number of Cores

(a) Total Throughput

Figure 6-10: Write-Intensive Workload (High
high contention (theta=0.8).

.1.0
0.8

M Useful Work
0.6- CMI Abort

0,4 Ts Alloc.

04Index

0.2 M Wait
= Manager

0.0
C> o

(b) Runtime Breakdown (64 cores)

Contention) - Results for YCSB workload with

(i.e., newer tuples are accessed more frequently). As a result, this increases contention because

transactions compete to access the same data.

We executed a write-intensive YCSB workload comprising transactions that each accesses 16

tuples. Within each transaction, an access is a write with 50% probability. The amount of skew in

the workload is determined by the parameter theta (cf. Section 6.3.3). Higher theta means more

skew. We run transactions with medium and high contention levels.

The medium contention results in Figure 6-9 show that NOWAIT and WAITDIE are the only

2PL schemes that scale past 512 cores. NOWAIT scales better than WAITDIE. For DLDETECT,

the breakdown in Figure 6-9b indicates that the DBMS spends a larger percentage of its time wait-

ing. DL_DETECT is inhibited by lock thrashing at 256 cores. NOWAIT is the most scalable

because it eliminates this waiting. We note, however, that both NOWAIT and WAITDIE have a

high transaction abort rate. This is not an issue in our experiments because restarting an aborted

transaction has low overhead; the time it takes to undo a transaction is slightly less than the time it

takes to re-execute the transaction's queries. But in reality, the overhead may be larger for workloads

where transactions have to rollback changes to multiple tables, indexes, and materialized views.

134

25 - DILDETECT TIMESTAMP
SNO-WA T I- VCC

20- n WAITD DIE -OCC

15-

10 '

- - - - --5 -
05-



0

0.71

0.6-

0.5F-----

I-. DL DETECT
0.3[ -+ NO WAIT

.- a TIMESTAMP

2 ..- MVCC
-, oCC

0. .0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Theta

Figure 6-11: Write-Intensive Workload (Variable Contention) - Results for YCSB workload
with varying level of contention on 64 cores.

The results in Figure 6-9a also show that the T/O algorithms perform well in general. Both

TIM ESTAMP and MVCC are able to overlap operations and reduce the waiting time. MVCC performs

slightly better since it keeps multiple versions of a tuple and thus can serve read requests even if they

have older timestamps. OCC does not perform as well because it spends a large portion of its time

aborting transactions; the overhead is worse since each transaction has to finish before the conflict

is resolved.

With higher contention, the results in Figure 6-10 show that performance of all of the algorithms

is much worse. Figure 6- 1Oa shows that almost all of the schemes are unable to scale to more than

64 cores. Beyond this point, the DBMS's throughput stops increasing and there is no performance

benefit to the increased core count. NOWAIT initially outperforms all the others, but then suc-

cumbs to lock thrashing (cf. Figure 6-4). Surprisingly, OCC performs the best on 1024 cores. This

is because although a large number of transactions conflict and have to abort during the validation

phase, one transaction is always allowed to commit. The time breakdown in Figure 6-10b shows

that the DBMS spends a larger amount of time aborting transactions in every scheme.

To better understand when each scheme begins to falter with increased contention, we fixed

the number of cores to 64 and performed a sensitivity analysis on the skew parameter (theta). The

results in Figure 6-11 indicate that for theta values less than 0.6, the contention has little effect on

the performance. But for higher contention, there is a sudden drop in throughput that renders all

algorithms non-scalable and the throughput approaches zero for values greater than 0.8.

135

0

-6-
13



50-

40 M useful Work
0.6 = Abort

3 - M --Ts Alloc
04 UIndex

20 -- DL DETECT TIMESTAMP'x
NO WAIT - MVCC 02 - Wait

10- o a WAITDIE - 0CC - Manager

0 2 4 6 8 10 12 14 16
Number of Rows Accessed per Transaction 0

(a) Total Throughput (b) Runtime Breakdown (transaction length = 1)

Figure 6-12: Working Set Size - The number of tuples accessed per core on 512 cores for trans-

actions with a varying number of queries (theta=0.6).

6.5.3 Working Set Size

The number of tuples accessed by a transaction is another factor that impacts scalability. When a

transaction's working set is large, it increases the likelihood that the same data is accessed by con-

current transactions. For 2PL algorithms, this increases the length of time that locks are held by a

transaction. With T/0, however, longer transactions may reduce timestamp allocation contention. In

this experiment, we vary the number of tuples accessed per transaction in a write-intensive YCSB

workload. Because short transactions lead to higher throughput, we measure the number of tu-

ples accessed per second, rather than transactions completed. We use the medium skew setting

(theta=0.6) and fix the core count to 512.

The results in Figure 6-12 show that when transactions are short, the lock contention is low.

DL_DETECT and NOWAIT have the best performance in this scenario, since there are few dead-

locks and the number of aborts is low. But as the transactions' working set size increases, the

performance of DL_DETECT degrades due to the overhead of thrashing. For the T/O algorithms

and WAITDIE, the throughput is low when the transactions are short because the DBMS spends

a majority of its time allocating timestamps. But as the transactions become longer, the timestamp

allocation cost is amortized. OCC performs the worst because it allocates double the number of

timestamps as the other schemes for each transaction.

Figure 6-12b shows the time breakdown for transaction length equals to one. Again, we see

that the T/O schemes spend most of their execution time allocating timestamps. As the transactions

become longer, Figures 6-8b and 6-9b show that the allocation is no longer the main bottleneck.

The results in Figure 6-12 also show that the T/O-based algorithms are more tolerant to contention

than DLDETECT.

136



-1.4

1.2 -- e DL DETECT
.4-0

C: 1.0 NO-WAIT
o0a a WAIT DIE

0.8 -- a TIMESTAMP

~0.6 MVCC -

CLC

D0.4-

20.2--

.. 0.2 0.4 0.6 0.8 1.0
Percentage of Read Requests

Figure 6-13: Read/Write Mixture - Results for YCSB with a varying percentage of read-only
transactions with high contention (theta=0.8).

6.5.4 Read/Write Mixture

Another important factor for concurrency control is the read/write mixtures of transactions. More

writes lead to more contention that affect the algorithms in different ways. For this experiment,

we use YCSB on a 64 core configuration and vary the percentage of read queries executed by each

transaction. Each transaction executes 16 queries using the high skew setting (theta=0.8).

The results in Figure 6-13 indicate that all of the algorithms achieve better throughput when

there are more read transactions. At 100% reads, the results match the previous read-only results

in Figure 6-8a. TIM ESTAMP and OCC do not perform well because they copy tuples for reading.

MVCC stand out as having the best performance when there are a small number of write transactions.

This is also an example where supporting non-blocking reads through multiple versions is most

effective; read queries access the correct version of a tuple based on timestamps and do not need

to wait for a writing transaction. This is a key difference from TIMESTAMP, where late arriving

queries are rejected and their transactions are aborted.

6.5.5 Database Partitioning

Up to this point in our analysis, we assumed that the database is stored as a single partition in

memory and that all worker threads can access any tuple. With the H-STORE scheme, however,

the DBMS splits the database into disjoint subsets to increase scalability [135]. This approach

achieves good performance only if the database is partitioned in such a way that enables a majority

of transactions to only access data at a single partition [120]. H-STORE does not work well when the

workload contains multi-partition transactions because of its coarse-grained locking scheme. It also

137



10

x

C
0

..
-C

2-,

U0 200 400 600 800 1000
Number of Cores

Figure 6-14: Database Partitioning - Results for a read-only workload on a partitioned YCSB

database. The transactions access the database based on a uniform distribution (theta=0).

matters how many partitions each transaction accesses; for example, H-STORE will still perform

poorly even with a small number of multi-partition transactions if they access all partitions. To

explore these issues in a many-core setting, we first compare H-STORE to the six other schemes

under ideal conditions. We then analyze its performance with multi-partition transactions.

We divide the YCSB database into the same number of partitions as the number of cores in each

trial. Since YCSB only has one table, we use a simple hashing strategy to assign tuples to partitions

based on their primary keys so that each partition stores approximately the same number of records.

These tests use a write-intensive workload where each transaction executes 16 queries that all use

index look-ups without any skew (theta=0.0). We also assume that the DBMS knows what partition

to assign each transaction to at runtime before it starts [120].

In the first experiment, we executed a workload comprised only of single-partition transactions.

The results in Figure 6-14 show that H-STORE outperforms all other schemes up to 800 cores.

Since it is specially designed to take advantage of partitioning, it has a much lower overhead for

locking than the other schemes. But because H-STORE also depends on timestamp allocation for

scheduling, it suffers from the same bottleneck as the other T/O-based schemes. As a result, the

performance degrades at higher core counts. For the other schemes, partitioning does not have a

significant impact on throughput. It would be possible, however, to adapt their implementation to

take advantage of partitioning [124].

We next modified the YCSB driver to vary the percentage of multi-partition transactions in the

workload and deployed the DBMS on a 64-core CPU. The results in Figure 6-15a illustrate two im-

portant aspects of the H-STORE scheme. First, there is no difference in performance whether or not

138

DLDETECT -VCC

+-O NWAIT -OCC

D 13 WAITDIE -xHSTORE

- TIMESTAMP



.
1 0

1.0 1oreadonly
C - readwrite 4 8-c 0.8L C
0 0

.66 - o o part=1 -a 0.6-
+ part=2

.4-'

0.4 - CLpart=4
A-. part=8-CA-

3 0.2 - 2 part= 16 .
20.2

.- c
0.0 0.2 0.4 0.6 0.8 1.0 200 400 600 800 1000

Percentage of multi-partition transactions Number of Cores

(a) Multi-Partition Percentage (b) Partitions per Transaction

Figure 6-15: Multi-Partition Transactions - Sensitivity analysis of the H-STORE scheme for
YCSB workloads with multi-partition transactions.

a0,18 0.25
lot - 02 ------------

0.14 -- --------------- 0.20-
0.12 1o0.250-

-0. - - - -

0.04 e0.0 .-.suo " T- 1 so~0.05-
3 0.02 5 .TNITSTAUP0o Z0 10 5 0 5 0 00 0 s 100 IS0 200 250 30 0 0 5 0 5 00.0I0SO0 10 5 200 250 300

Number of Cores Number of Cores Number of Cores

(a) Payment + NewOrder (b) Payment only (c) NewOrder only

Figure 6-16: TPC-C (4 warehouses) - Results for the TPC-C workload running up to 256 cores.

the workload contains transactions that modify the database; this is because of H-STORE's locking

scheme. Second, the DBMS's throughput degrades as the number of multi-partition transactions in

the workload increases because they reduce the amount of parallelism in the system [120, 144].

Lastly, we executed YCSB with 10% multi-partition transactions and varied the number of

partitions that they access. The DBMS's throughput for the single-partition workload in Figure 6-

15b exhibits the same degradation due to timestamp allocation as H-STORE in Figure 6-14. This

is also why the throughputs for the one- and two-partition workloads converge at 1000 cores. The

DBMS does not scale with transactions accessing four or more partitions because of the reduced

parallelism and lock contention on the partition.

6.5.6 TPC-C

Finally, we analyze the performance of all the concurrency control algorithms when running the

TPC-C benchmark. The transactions in TPC-C are more complex than those in YCSB, and TPC-C

is representative of a large class of OLTP applications. For example, they access multiple tables

with a read-modify-write access pattern and the output of some queries are used as the input for

139



C10 C2S '-.o rT . 10

6 15 e-oTIMESTAMP
6- 15 6

4 10- 4
rr? - - -r 2-_

2o 3
0 200 400 600 Boo 1000 it- 0 200 400 00 00 10 00 400 600 Bo0 1000

Number of Cores Number of Cores Number of Cores

(a) Payment + NewOrder (b) Payment only (c) NewOrder only

Figure 6-17: TPC-C (1024 warehouses) - Results for the TPC-C workload running up to 1024

cores.

subsequent queries in the same transaction. TPC-C transactions can also abort because of certain

conditions in their program logic, as opposed to only because the DBMS detected a conflict.

The workload in each trial comprises 50% NewOrder and 50% Payment transactions. These

two make up 88% of the default TPC-C mix and are the most interesting in terms of complexity.

Supporting the other transactions would require additional DBMS features, such as B-tree latching

for concurrent updates. This would add additional overhead to the system.

The size of TPC-C databases are typically measured by the number of warehouses. The ware-

house is the root entity for almost all tables in the database. We follow the TPC-C specification

where -10% of the NewOrder transactions and -15% of the Payment transactions access a "re-

mote" warehouse. For partitioning-based schemes, such as H-STORE, each partition consists of

all the data for a single warehouse [135]. This means that the remote warehouse transactions will

access multiple partitions.

We first execute the TPC-C workload on a 4-warehouse database with 100MB of data per ware-

house (0.4GB in total). This allows us to evaluate the algorithms when there are more worker threads

than warehouses. We then execute the same workload again on a 1024-warehouse database. Due

to memory constraints of running in the Graphite simulator, we reduced the size of this database

to 26MB of data per warehouse (26GB in total) by removing unimportant attributes from tables.

This does not affect our measurements because the number of tuples accessed by each transaction

is independent of the database size.

4 Warehouses

The results in Figure 6-16 show that all of the schemes fail to scale for TPC-C when there are fewer

warehouses than cores. With H-STORE, the DBMS is unable to utilize extra cores because of its

partitioning scheme; the additional worker threads are essentially idle. For the other schemes, the

results in Figure 6-16c show that they are able to scale up to 64 cores for the NewOrder transaction.

140



TIMESTAMP, MVCC, and OCC have worse scalability due to high abort rates. DLDETECT does

not scale due to thrashing and deadlocks. But the results in Figure 6-16b show that no scheme

scales for the Payment transaction. The reason for this is that every Payment transaction updates

a single field in the warehouse (WYTD). This means that either the transaction (1) must acquire an

exclusive lock on the corresponding tuple (i.e., DLDETECT) or (2) issue a pre-write on that field

(i.e., T/O-based algorithms). If the number of threads is greater than the number of warehouses,

then updating the warehouse table becomes a bottleneck.

In general, the main problem for these two transactions is the contention when updating the

WAREHOUSE table. Each Payment transaction updates its corresponding warehouse entry and each

NewOrder will read it. For the 2PL-based algorithms, these read and write operations block each

other. Two of the T/O-based algorithms, TIMESTAMP and MVCC, outperform the other schemes

because their write operations are not blocked by reads. This eliminates the lock blocking problem

in 2PL. As a result, the NewOrder transactions can execute in parallel with Payment transactions.

1024 Warehouses

We next execute the TPC-C workload with 1024 warehouses with up to 1024 cores. Once again, we

see in Figure 6-17 that no scheme is able to scale. The results indicate that unlike in Section 6.5.6,

the DBMS's throughput is limited by NewOrder transactions. This is due to different reasons for

each scheme.

With almost all the schemes, the main bottleneck is the overhead of maintaining locks and

latches, which occurs even if there is no contention. For example, the NewOrder transaction reads

tuples from the read-only ITEM table, which means for the 2PL schemes that each access creates

a shared-lock entry in the DBMS. With a large number of concurrent transactions, the lock meta-

data becomes large and thus it takes longer to update them. OCC does not use such locks while a

transaction runs, but it does use latches for each tuple accessed during the validation phase. Acquir-

ing these latches becomes an issue for transactions with large footprints, like NewOrder. Although

MVCC also does not have locks, each read request generates a new history record, which increases

memory traffic. We note, however, that all of this is technically unnecessary work because the ITEM

table is never modified.

The results in Figure 6-17b indicate that when the number of warehouses is the same or greater

than the number of worker threads, the bottleneck in the Payment transaction is eliminated. This

improves the performance of all schemes. For T/O schemes, however, the throughput becomes too

141



high at larger core counts and thus they are inhibited by timestamp allocation. As a result, they are

unable to achieve higher than ~10 million txn/s. This is the same scenario as Figure 6-12a where

2PL outperforms T/O for short transactions.

H-STORE performs the best overall due to its ability to exploit partitioning even with ~12%

multi-partition transactions in the workload. This corroborates results from previous studies that

show that H-STORE outperforms other approaches when less than 20% of the workload comprises

multi-partition transactions [120, 144]. At 1024 cores, however, it is limited by the DBMS's times-

tamp allocation.

6.6 Discussion

We now discuss the results of the previous sections and propose solutions to avoid these scalability

issues for many-core DBMSs.

6.6.1 DBMS Bottlenecks

Our evaluation shows that all seven concurrency control schemes fail to scale to a large number

of cores, but for different reasons and conditions. Table 6.2 summarizes the findings for each of

the schemes. In particular, we identified several bottlenecks to scalability: (1) lock thrashing, (2)

preemptive aborts, (3) deadlocks, (4) timestamp allocation, and (5) memory-to-memory copying.

DL DETECT Scales under low-contention. Suffers from lock thrashing.

NO WAIT Has no centralized point of contention. Highly scalable. Very high abort
rate.

WAIT_ DIE Suffers from lock thrashing and timestamp bottleneck.

TIM ESTAMP High overhead from copying data locally. Non-blocking writes. Suffers from
timestamp bottleneck.

MVCC Performs well w/ read-intensive workload. Non-blocking reads and writes.
Suffers from timestamp bottleneck.

OCC High overhead for copying data locally. High abort cost. Suffers from times-
tamp bottleneck.

H-STORE The best algorithm for partitioned workloads. Suffers from multi-partition
transactions and timestamp bottleneck.

Table 6.2: A Summary of Bottlenecks - A summary of the bottlenecks for each concurrency

control scheme evaluated in Section 6.5.

Thrashing happens in any waiting-based algorithm. As discussed in Section 6.4.2, thrashing is

alleviated by proactively aborting. This leads to the trade-off between aborts and performance. In

142



general, the results in Section 6.5.2 showed that for high-contention workloads, a non-waiting dead-

lock prevention scheme (NOWAIT) performs much better than deadlock detection (DLDETECT).

Although no single concurrency control scheme performed the best for all workloads, one may

outperform the others under certain conditions. Thus, it may be possible to combine two or more

classes of algorithms into a single DBMS and switch between them based on the workload. For

example, a DBMS could use DL DETECT for workloads with little contention, but switch to

NO_ WA IT or a T/O-based algorithm when transactions are taking too long to finish due to thrashing.

One could also employ a hybrid approach.

These results also make it clear that new hardware support is needed to overcome some of these

bottlenecks. For example, all of the T/O schemes suffer from the timestamp allocation bottleneck

when the throughput is high. Using the atomic addition method when the core count is large causes

the worker threads to send many messages across the chip to modify the timestamp. We showed in

Section 6.4.3 how the clock and hardware counter methods performed the best without the draw-

backs of batching. Thus, we believe that they should be included in future CPU architectures.

We also saw that memory issues cause slowdown in some of the schemes. One way to alleviate

this problem is to add a hardware accelerator on the CPU to do memory copying in the background.

This would eliminate the need to load all data through the CPU's pipeline. We also showed in

Section 6.4.1 how malloc was another bottleneck and that we were able to overcome it by devel-

oping our own implementation that supports dynamic pool resizing. But with a large number of

cores, these pools become too unwieldy to manage in a global memory controller. We believe that

future operating systems will need to switch to decentralized or hierarchical memory allocation,

potentially with hardware support.

6.6.2 Multicore vs. Multi-node Systems

Distributed DBMSs are touted for being able to scale beyond what a single-node DBMS can sup-

port [135]. This is especially true when the number of CPU cores and the amount of memory

available on a node is small. But moving to a multi-node architecture introduces a new performance

bottleneck: distributed transactions [18]. Since these transactions access data that may not be on

the same node, the DBMS must use an atomic commit protocol, such as two-phase commit [61].

The coordination overhead of such protocols inhibits the scalability of distributed DBMSs because

the communication between nodes over the network is slow. In contrast, communication between

threads in a shared-memory environment is much faster. This means that a single many-core node

143



with a large amount of DRAM might outperform a distributed DBMS for all but the largest OLTP

applications [144].

It may be that for multi-node DBMSs two levels of abstraction are required a shared-nothing

implementation between nodes and a multi-threaded shared-memory DBMS within a single chip.

This hierarchy is common in high-performance computing applications. More work is therefore

needed to study the viability and challenges of such hierarchical concurrency control in an OLTP

DBMS.

6.7 Additional Related Work

The work in [139] is one of the first hardware analyses of a DBMS running an OLTP workload.

Their evaluation focused on multi-processor systems, such as how to assign processes to processors

to avoid bandwidth bottlenecks. Another study [126] measured CPU stall times due to cache misses

in OLTP workloads. This work was later expanded in [14] and more recently by [143, 122].

With the exception of H-STORE [53, 72, 135, 151] and OCC [86], all other concurrency control

schemes implemented in our test-bed are derived from the seminal surveys by Bernstein et al. [18,

20]. In recent years, there have been several efforts towards improving the shortcomings of these

classical implementations [41, 77, 117, 144]. Other work includes standalone lock managers that

are designed to be more scalable on multicore CPUs [124, 81]. We now describe these systems in

further detail and discuss why they are still unlikely to scale on future many-core architectures.

Shore-MT [77] is a multi-threaded version of Shore [28] that employs a deadlock detection

scheme similar to DLDETECT. Much of the improvements in Shore-MT come from optimizing

bottlenecks in the system other than concurrency control, such as logging [78]. The system still

suffers from the same thrashing bottleneck as DLDETECT on high contention workloads.

DORA is an OLTP execution engine built on Shore-MT [117]. Instead of assigning transactions

to threads, as in a traditional DBMS architecture, DORA assigns threads to partitions. When a

transaction needs to access data at a specific partition, its handle is sent to the corresponding thread

for that partition where it then waits in a queue for its turn. This is similar to H-STORE's partitioning

model, except that DORA supports multiple record-level locks per partition (instead of one lock per

partition) [118]. We investigated implementing DORA in our DBMS but found that it could not be

easily adapted and requires a separate system implementation.

The authors of Silo [144] also observed that global critical sections are the main bottlenecks in

144



OCC. To overcome this, they use a decentralized validation phase based on batched atomic addition

timestamps. But as we showed in Section 6.4.3, the DBMS must use large batches when deployed

on a large number of cores to amortize the cost of centralized allocation. This batching in turn

increases the system's latency under contention.

Hekaton [41] is a main memory table extension for Microsoft's SQL Server that uses a variant

of MVCC with lock-free data structures [95]. The administrator designates certain tables as in-

memory tables that are then accessed together with regular, disk-resident tables. The main limitation

of Hekaton is that timestamp allocation suffers from the same bottleneck as the other T/O-based

algorithms evaluated in this chapter.

The VLL centralized lock manager uses per-tuple 2PL to remove contention bottlenecks [124].

It is an optimized version of DLDETECT that requires much smaller storage and computation

overhead than our implementation when the contention is low. VLL achieves this by partitioning

the database into disjoint subsets. Like H-STORE, this technique only works when the workload is

partitionable. Internally, each partition still has a critical section that will limit scalability at high

contention workloads.

The work in [81] identified latch contention as the main scalability bottleneck in MySQL. They

removed this contention by replacing the atomic-write-after-read synchronization pattern with a

read-after-write scheme. They also proposed to pre-allocate and deallocate locks in bulk to improve

scalability. This system, however, is still based on centralized deadlock detection and thus will

perform poorly when there is contention in the database. In addition, their implementation requires

the usage of global barriers that will be problematic at higher core counts.

Others have looked into using the software-hardware co-design approach for improving DBMS

performance. The "bionic database" project [76] focuses on implementing OLTP DBMS operations

in FPGAs instead of new hardware directly on the CPU. Other work is focused on OLAP DBMSs

and thus is not applicable to our problem domain. For example, an FPGA-based SQL accelerator

proposed in [40] filters in-flight data moving from a data source to a data sink. It targets OLAP

applications by using the FPGA to accelerate the projection and restriction operations. The QIOO

project is a special hardware co-processor for OLAP queries [154]. It assumes a column-oriented

database storage and provides special hardware modules for each SQL operator.

145



146



Chapter 7

TicToc Concurrency Control

7.1 Introduction

In the previous chapter, we saw how traditional concurrency control algorithms failed to scale in

many-core shared-memory systems due to various fundamental scalability bottlenecks. In this chap-

ter, we present a new concurrency control algorithm that eliminates these bottlenecks. Interestingly,

the fundamental idea behind the new concurrency control algorithm is the same as the one behind

Tardis cache coherence protocol (Chapters 3, 4 and 5), namely, logical leases. Different from Tardis

which applies logical leases to multicore hardware, in this chapter we apply logical leases to soft-

ware, and more specifically, to concurrency control algorithms.

The new concurrency control algorithm we developed is called TicToc which combines ideas

from both Timestamp Ordering (T/O) and Optimistic Concurrency Control (OCC) algorithms. It

can achieve higher concurrency than state-of-the-art T/O schemes and completely eliminates the

timestamp allocation bottleneck, which is a main obstacle of scaling as discussed in Chapter 6.

The key idea of TicToc is a technique that we call data-driven timestamp management: instead

of assigning timestamps to each transaction independently of the data it accesses, TicToc embeds

the necessary timestamp information (in the form of logical leases) in each tuple to enable each

transaction to compute a valid commit timestamp after it has run, right before it commits. This

approach has two benefits. First, each transaction infers its timestamp from metadata associated

with each tuple it reads or writes. No centralized timestamp allocator exists, and concurrent trans-

actions accessing disjoint data do not communicate. Second, by determining timestamps lazily at

commit time, TicToc finds a logical-time order that enforces serializability even among transactions

thtit overlap in physical time and would cause aborts in other T/O-based protocols. In essence, Tic-

147



Toc allows commit timestamps to move in logical time to uncover more concurrency than existing

schemes without violating serializability.

We present a high-performance, OCC-based implementation of TicToc, and prove that it en-

forces serializability. We also design several optimizations that further improve TicToc's scalability.

Finally, we compare TicToc with four other modem concurrency control schemes in the DBx1000

main-memory DBMS [2], using two different OLTP workloads on a multi-socket, 40-core system.

Our results show that TicToc achieves up to 92% higher throughput than prior algorithms under a

variety of workload conditions.

7.2 The TicToc Algorithm

Like other T/O-based algorithms, TicToc uses timestamps to indicate the serial order of the trans-

actions. But unlike these previous approaches, it does not assign timestamps to transactions using a

centralized allocator. Instead, a transaction's timestamp is calculated lazily at its commit time in a

distributed manner based on the tuples it accesses. There are two key advantages of this timestamp

management policy. First, its distributed nature avoids all of the bottlenecks inherent in timestamp

allocation [157], making the algorithm highly scalable. Second, laziness makes it possible for the

DBMS to find the most appropriate order among transactions that can minimize aborts.

7.2.1 Lazy Timestamp Management

To see why lazy timestamp management can reduce conflicts and improve performance, we consider

the following example involving two concurrent transactions, A and B, and two tuples, x and y. The

transactions invoke the following sequence of operations:

1. A read(x)

2. B write(x)

3. B commits

4. A write(y)

5. A commits

This interleaving of operations does not violate serializability because the end result is identical

to sequentially executing A before B, even though A commits after B in physical time order.

Traditional T/O algorithms assign timestamps to transactions statically, essentially agreeing on

a fixed sequential schedule for concurrent transactions. This eases conflict detection, but limits con-

148



currency. In this example, if transaction A is assigned a lower timestamp than transaction B, then

both transactions can commit since the interleaving of operations is consistent with the timestamp

order. However, if transaction A is assigned a higher timestamp than transaction B, A must eventu-

ally abort since committing it would violate the schedule imposed by timestamp order. In practice,

the timestamp allocation process does not know the data access pattern of transactions. What times-

tamp a transaction gets may be completely random, making it very hard to avoid unnecessary aborts

due to bad timestamp allocation.

By contrast, TicToc does not allocate timestamps statically, so it does not restrict the set -of

potential orderings. It instead calculates the timestamp of each transaction lazily at the transaction's

commit time by inspecting the tuples it accessed. In our example, when transaction A reaches its

commit point, TicToc calculates the commit timestamp using the versions of the tuples x and y it

actually reads/writes rather than their latest version in the database, which might have changed since

the transaction accesses those tuples. And since the version of tuple x read by A is older than the

one written by B, A will be ordered before B and both transactions can commit.

To encode the serialization information in each tuple, each data version in TicToc has a logical

lease represented using the write timestamp (wts) and the read timestamp (rts). Conceptually, a

particular version is created at timestamp wts and is valid until timestamp rts, in logical time. A

version read by a transaction is valid if and only if that transaction's commit timestamp is in between

the version's wts and rts. And a write by a transaction is valid if and only if the transaction's commit

timestamp is greater than the rts of the previous version. Formally, the following invariant must hold

for transaction T to commit:

3 committs,

(Vt E {tuples read by T}, t.wts < committs < t.rts)

A(Vt E {tuples written by T},t.rts < committs)

This policy leads to serializable execution because all the reads and writes within a transaction

occur at the same timestamp. Intuitively, the commit timestamp order determines the serialization

order. A read always returns the version valid at that timestamp and a write is ordered after all the

reads to older versions of the tuple. We will prove that TicToc follows serializability in Section 7.3.

7.2.2 Protocol Specification

Like standard OCC algorithms, each transaction in TicToc accesses the database without acquiring

locks during normal operation. This is known as the read phase. When the transaction invokes

149



the commit operation, the protocol then takes the transaction through the validation phase to check

whether it should be allowed to commit. If it does, then it enters the write phase where the transac-

tion's changes are applied to the shared database.

We now discuss these phases in further detail.

Read Phase

The DBMS maintains a separate read set and write set of tuples for each transaction. During this

phase, accessed tuples are copied to the read set and modified tuples are written to the write set,

which is only visible to the current transaction. Each entry in the read or write set is encoded as

{tuple, data, wts, rts}, where tuple is a pointer to the tuple in the database, data is the data value

of the tuple, and wts and rts are the timestamps copied from the tuple when it was accessed by the

transaction. For a read set entry, TicToc maintains the invariant that the data version is valid from

wts to rts in logical time; namely, no transaction can write to the tuple at a timestamp between the

tuple's current wts and rts.

Algorithm 4 shows the procedure for a tuple access request in the read phase. A new entry in the

read set is allocated. The pointer to the accessed tuple, data value and timestamps of the tuple are

stored in the entry. Note that the data value and timestamps must be loaded atomically to guarantee

that the value matches the timestamps. We explain in Section 7.2.6 how to efficiently perform this

atomic operation in a lock-free manner.

Algorithm 4: Read Phase of TicToc.

Data: read set RS, tuple t
1 r = RS.getnew-entry()

2 r.tu ple = t
# Atomically load wts, rts, and value

3 < r value = t.value, r.wts = t.wts, r.rts = t.rts >

Validation Phase

In the validation phase, TicToc uses the timestamps stored in the transaction's read and write sets to

compute its commit timestamp. Then, the algorithm checks whether the tuples in the transaction's

read set are valid based on this commit timestamp.

The first step for this validation, shown in Algorithm 5, is to lock all the tuples in the trans-

action's write set in their primary key order to prevent other transactions from updating the same

tuples concurrently. Using this fixed locking order guarantees that there are no deadlocks with other

150



Algorithm 5: Validation Phase

Data: read set RS, write set WS
# Step I - Lock Write Set

1 for w in sorted(WS) do
2 1 lock(w.tuple)
3 end

# Step 2 - Compute the Commit Timestamp
4 committs = 0
5 for e in WS U RS do
6 if e in WS then
7 committs= max(commit ts, e. tuple.rts +1)
8 else
9 committs = max(commit ts, e. wts)

10 end
11 end

# Step 3 - Validate the Read Set
12 for r in RS do
13 if r. rts < committs then

# Begin atomic section
14 if r.wts 7 r.tuple.wts or (r.tuple.rts < committs and isLocked(r tuple) and r.tuple not

in W) then
15 abort()
16 else
17 r.tuple.rts = max(commit ts, r.tuple.rts)
18 end

# End atomic section
19 end
20 end

transactions committing at the same time. This technique is also used in other OCC algorithms (e.g.,

Silo [144]).

The second step in the validation phase is to compute the transaction's commit timestamp using

the wts and rts of each accessed tuple, which are available in the read and write sets. As discussed

in Section 7.2.1, for a tuple in the read set but not in the write set, the commit timestamp should

be no less than the tuple's wts since the tuple would have a different version before this timestamp.

For a tuple in the transaction's write set, however, the commit timestamp needs to be no less than

its current rts + 1 since the previous version was valid till rts.

In the last step, the algorithm validates the tuples in the transaction's read set. If the transaction's

committs is less than or equal to the rts of the read set entry, then the invariant wts < committs <

rts holds. This means that the tuple version read by the transaction is valid at committs, and thus no

further action is required. If the entry's rts is less than committs, however, it is not clear whether the

151



local value is valid or not at committs. It is possible that another transaction has modified the tuple

at a logical time between the local rts and committs, which means the transaction has to abort. It is

also possible that no other transaction has modified the tuple, in which case the rts can be extended

to committs, making the version valid at committs.

Specifically, the local wts is first compared to the latest wts. If they are different, the tuple has

already been modified by another transaction and thus it is impossible to extend the rts of the local

version. If wts matches, but the tuple is already locked by a different transaction (i.e., the tuple is

locked but it is not in the transaction's write set), it is not possible to extend the rts either. If the rts

is extensible, the rts of the tuple can be extended to committs. Note that the whole process must be

done atomically to prevent interference from other transactions. The DBMS does not validate tuples

that are only in the write set but not in the read set, since they are already protected by the locks

acquired at the beginning of the validation phase, and no other transactions can possibly change a

locked tuple's timestamps.

In TicToc, there is no centralized contention point during transaction execution. The locks

and atomic sections protect only the tuples that a transaction touches. In Section 7.4, we present

optimizations to further reduce the contention caused by these operations.

Write Phase

Finally, if all of the tuples that the transaction accessed pass validation, then the transaction enters

the write phase. As shown in Algorithm 6, in this phase the transaction's write set is written to

the database. For each tuple in the transaction's write set, the DBMS sets both its wts and rts to

committs, indicating a new version of the tuple. All locks that were acquired during the validation

phase ai-e then released, making the tuple accessible to all other transactions.

Algorithm 6: Write Phase

Data: write set WS, commit timestamp commit-ts
1 for w in WS do
2 write(w.tuple. value, w.value)
3 w.tuple.wts = w.tuple.rts = committs
4 unlock(w. tuple)

5 end

7.2.3 Example

We now revisit the example in Section 7.2.1 and explain how TicToc is able to commit both trans-

actions A and B even though previous OCC algorithms could not. Figure 7-1 shows a step-by-step

152



Step 1

1 x y X y x y x y Physical

2 - Time

3 Wts
4 rts

A.read(x) B.write(x) A.write(y) A commits @ 3
B commits @ 4

Figure 7-1: An Example of Two Transactions Executing in TicToc - The logic of the two
transactions are shown in Section 7.2.1.

diagram. In this example, one operation occurs in each physical step. The wts and rts for tuples x

and y are encoded as the start and end point of the vertical bands.

Step 1: Transaction A reads tuple x. The current version of x and its timestamps (wts = 2 and

rts = 3) are stored in A's read set.

Step 2: Transaction B writes to tuple x and commits at timestamp 4. The version of x will be

overwritten and both the wts and rts of the new version will become 4.

Step 3: Transaction A writes to tuple y. Since the previous version of y has rts = 2, the new

version can be written at timestamp 3. At this point, the new version of y is only stored in the write

set of transaction A and is not visible to other transactions yet.

Step 4: Transaction A enters the validation phase. According to Algorithm 5, the commit times-

tamp should be the maximum of the read tuple's wts and write tuple's rts +1, which is timestamp 3

in this example. Then, transaction A validates the read set by checking whether the version of tuple

x it read is valid at timestamp 3. Since transaction A's version of tuple x is valid from timestamp 2

to 3, it passes the validation phase and commits.

Note that when the DBMS validates transaction A, it is not even aware that tuple x has been

modified by another transaction. This is different from existing OCC algorithms (including Heka-

ton [95] and Silo [144]), which always recheck the tuples in the read set. These algorithms would

abort transaction A in this example because tuple x has already been modified since transaction A last

read it. TicToc is able to commit such transactions because it uses logical timestamps to determine

the serialization order, which can be different from the physical time order in which transactions

commit.

153

I Step 2 1 Step 3 I Step 4



7.2.4 Discussion on Aborts

A transaction may not always be able to validate its read set during the validation phase, which leads

to aborts. For example, if tuple y in Figure 7-1 was originally valid from timestamps 1 to 4, then

transaction A's commit_ts has to be 5. Since x's rts cannot be extended to 5, A has to abort. In this

case, transaction A aborts not because of the conflicts between transactions A and B, but because of

the timestamps.

In general, the reason that these aborts occur is because serializability may be violated due to

other concurrently running transactions that change the tuples' timestamps. For the example above,

imagine that there exists a transaction C reading tuple x and y after B commits but before A commits.

C is able to commit at timestamp 4 as it observes B's write to x and the original value of y. C will

extend the rts of y to 4. This now means that A cannot commit without violating serializability

because there is a dependency cycle between A, B and C'. Note that when A enters the validation

phase, it does not know whether C exists or not. The way timestamps are managed in TicToc

guarantees serializability, which requires certain transactions to be aborted.

7.2.5 Discussion

Beyond scalability and increased concurrency, TicToc's protocol has two other distinguishing fea-

tures. Foremost is that the transaction's logical commit timestamp order may not agree with the

physical commit time order. In the example shown in Figure 7-1, transaction A commits physically

after transaction B, but its commit timestamp is less than transaction B's commit timestamp. This

means that A precedes B in the serial schedule. The flexibility to move transactions back and forth

in logical time allows TicToc to commit more transactions that would abort in other concurrency

control algorithms.

Another feature of TicToc is that logical timestamps grow more slowly than the number of

committed transactions. Moreover, the rate at which the logical timestamp advances is an indicator

of the contention level in the workload. This is because different transactions may commit with the

same logical timestamp. Such a scenario is possible if two transactions have no conflicts with each

other, or if one transaction reads a version modified by the other transaction. At one extreme, if all

transactions are read-only and thus there is no contention, all transactions will have the same commit

timestamp (i.e., they all commit at timestamp 0). At the other extreme, if all the transactions update

IA<B due to write-after-read on x, B<C due to read-after-write on x, and C<A due to write-after-read on y.

154



the same tuple, each commit would increase the tuple's wts by one, and the logical timestamp would

increase at the same rate as the number of committed transactions. Since most OLTP workloads

have some contention, the DBMS's logical timestamps will increase more slowly than the number

of committed transactions; the higher the contention, the faster logical timestamps advance. We will

show this in Section 7.5.5.

7.2.6 Implementation

As shown in Algorithms 4 and 5, both the read and validation phases require the DBMS to atomi-

cally read or write tuples' timestamps. But implementing these atomic sections using locks would

degrade performance. To avoid this problem, TicToc adopts an optimization from Silo [144] to

encode a lock bit and a tuple's wts and rts into a single 64-bit word (TS-word) in the following

form:

TSword [631: lock bit (1 bit).

TS-word [62:481: delta = rts - wts (15 bits).

TSword [47: 0]: wts (48 bits).

The highest-order bit is used as the lock bit. The wts is stored as a 48-bit counter. To handle

wts overflows, which happens at most once every several weeks for the most active workloads, the

tuples in the database are periodically loaded in the background to reset their wts. This process is

infrequent and can be performed concurrently with normal transactions, so its overhead is negligible.

Algorithm 7 shows the lock-free implementation to atomically load the data value and times-

tamps for a tuple, which is part of Algorithm 4. TSword is loaded twice, before and after loading

the data. If these two TSword instances are the same and both have the lock bit unset, then the data

value must not have changed and is still consistent with the timestamps. Otherwise, the process is

repeated until the two loads of TSword are consistent. There are no writes to shared memory dur-

ing this process. To avoid starvation, one could revert to more heavy-weight latching if this check

155



repeatedly fails.

Algorithm 7: Atomically Load Tuple Data and Timestamps

Data: read set entry r, tuple t
1 do
2 vi = t.readts word()
3 read(r.data, t.data)
4 v2 = t.readts-word()

5 while v] # v2 or vl.lockbit = 1;
6 r v'ts = v.wts
7 r rts = vl.wts + vl.delta

Similarly, Algorithm 8 shows the steps to atomically extend a tuple's rts in TicToc's validation

phase (Algorithm 5). Recall that this operation is called if commitgts is greater than the local rts; the

DBMS makes the local version valid at committs by extending the rts of the tuple. The first part

of the algorithm is the same as explained in Algorithm 3; validation fails if the tuple's rts cannot

possibly be extended to committs.

Algorithm 8: Read-Set Validation

Data: read set entry r, write set W, commit timestamp committs
i do
2 success true
3 v2 = vi rtuple.readgtsword()
4 if r wts z vi.wts or (v1.rts < committs and isLocked(r tuple)) and r.tuple not in W then
5 1 Aborto
6 end

# Extend the rts of the tuple
7 if vl.rts < commit ts then

# Handle delta overflow
8 delta = committs - vl.wts
9 shift = delta - delta A Ox7fff

10 v2.wts = v2.wts + shift
11 v2.delta = delta - shift

# Set the new T S word
12 success = compare-andswap(rtuple.ts-word, vi, v2)

13 end
14 while not success;

Since we only encode delta in 15 bits in TS-word, it may overflow if rts and wts grow far

apart. If an overflow occurs (line 8-11), we increase wts to keep delta within 15 bits. Increasing

wts this way does not affect the correctness of TicToc. Intuitively, this is because increasing the wts

can be considered a dummy write to the tuple at the new wts with the same data. Inserting such a

dummy write does not affect serializability. Increasing wts, however, may increase the number of

aborts since another transaction may consider the version as being changed while it has not actually

changed. This effect is more problematic if delta uses fewer bits. Our experiments indicate that 15

156



bits is enough for the overflow effect to be negligible.

Finally, the new wts and delta are written to a new TSword and atomically applied to the tuple.

The DBMS uses an atomic compare-and-swap instruction to make sure that the TSword has not

been modified by other transactions simultaneously.

7.2.7 Logging and Durability

The TicToc algorithm can support logging and crash recovery in a similar way as traditional con-

currency control algorithms. The DBMS can use the canonical ARIES approach if there is only a

single log file [113]. But ARIES cannot provide the bandwidth required in today's multicore sys-

tems [162]. Implementing arbitrarily scalable logging is out of the scope of this thesis and is left

for future work. In this section, we briefly discuss one idea of implementing parallel logging with

multiple log files on TicToc.

Parallel logging has been studied in other DBMSs [147, 162]. The basic idea is to perform

logging in batches. All transactions in a previous batch must be ordered before any transaction in a

later batch, but the relative ordering among transactions within the same batch can be arbitrary. For

each batch, logs are written to multiple files in parallel. A batch is considered durable only after all

the logs within that batch have been written to files.

In TicToc, the batching scheme requires that transactions in a later batch must have commit

timestamps greater than transactions in a previous batch. This can be achieved by setting a minimum

commit timestamp for transactions belonging to the new batch. To start a new batch, each worker

thread should coordinate to compute the minimum commit timestamp that is greater than the commit

timestamps of all transactions in previous batches. Each transaction in the new batch has a commit

timestamp greater than this minimum timestamp. Setting a minimum timestamp does not affect the

correctness of TicToc since timestamps only increase in this process, and transactions are properly

ordered based on their timestamps. The performance of this parallel logging scheme should be the

same as with other concurrency control algorithms [147, 162].

7.3 Proof of Correctness

In this section, we prove that the TicToc algorithm enforces serializability.

157



7.3.1 Proof Idea

To prove that a schedule is serializable in TicToc, we need to show that the schedule is equivalent

to another schedule where all the transactions are executed sequentially. Previous T/O concurrency

control algorithms use the transactions' unique timestamps to determine the serial order. In TicToc,

however, the commit timestamp is derived from the accessed tuples and no global coordination takes

place, and thus two transactions may commit with the same timestamp. Therefore, transactions

cannot be fully ordered based on their commit timestamps alone.

We show that in TicToc, the equivalent sequential order is actually the physiological time (cf.

Section 3.3) order among transactions. More formally, we define the global sequential order in

Definition 8.

Definition 8 (Serial Order). Using <s, <, and <ps to indicate serial order, commit timestamp

order and physical commit time order, respectively, the serial order between transaction A and B is

defined as follows:

A <s B A <ts BV (A =s B AA <p B)

The serial order defined in Definition 8 is a total order among all the transactions. Transaction

A is ordered before transaction B if A has a smaller commit timestamp or if they have the same

commit timestamp but A commits before B in physical time. If A and B both have the same logical

and physical commit time, then they can have arbitrary serial order, because they do not conflict.

The goal of the correctness proof is summarized as follows:

Theorem 6. Any schedule in TicToc is equivalent to the serial schedule defined in Definition 8.

To prove this, we show that a read in the actual schedule always returns the value of the last

store in the serial schedule. We also prove that transactions having the same commit timestamp and

physical commit time do not conflict.

7.3.2 Formal Proofs

We first prove a useful lemma that will be used to prove subsequent Lemmas 22 and 23.

Lemma 21. Transactions writing to the same tuple must have different commit timestamps.

Proof According to Algorithms 5 and 6, a tuple is locked while being written, therefore only one

transaction can write to that tuple at any time. According to line 3 in Algorithm 6, both wts and rts

158



of the modified tuple become its commit timestamp.

According to line 7 in Algorithm 5, if another transaction writes to the same tuple at a later time,

its commit timestamp must be strictly greater than the tuple's current rts. Since rts never decreases

in the TicToc algorithm, the commit timestamp of the later transaction must be greater than the

commit timestamp of the earlier transaction. Therefore, transactions writing to the same tuple must

have different commit timestamps. D

Two properties must be true in order to prove Theorem 6. First, transactions that have the same

commit timestamp and physical time must not conflict. Second, a read always returns the latest

write in the serial schedule. We now prove these two properties of TicToc:

Lemma 22. Transactions that commit at the same timestamp and physical time do not conflict with

each other

Proof According to Lemma 21, write-write conflicting transactions must have different commit

timestamps. Therefore, we only need to show that all read-write or write-read conflicting transac-

tions commit at different logical or physical time.

Consider a pair of transactions committing at the same physical time. One reads a tuple and the

other writes to the same tuple. Then, the commit timestamp of the reading transaction must be less

than or equal to the tuple's current rts. And the commit timestamp of the writing transaction must

be greater than the tuple's current rts. Therefore, they have different commit timestamps. D

Lemma 23. A read operation from a committed transaction returns the value of the latest write to

the tuple in the serial schedule.

Proof. We first prove that if a committed transaction's read observes another transaction's write,

then the reading transaction must be ordered after the writing transaction in the serial schedule.

A tuple's wts is always updated together with its value, and the wts is always the commit times-

tamp of the transaction that writes the value. Line 9 in Algorithm 5 states that if another transaction

reads the value, then its commit timestamp must be greater than or equal to wts. If the commit times-

tamp equals wts, then the reading transaction still commits after the writing transaction in physical

time because the writing transaction only makes its writes globally visible after its physical commit

time. By Definition 8, the reading transaction is always ordered after the writing transaction in the

serial schedule.

159



We next show that the write observed by the following read is the latest write in the serial

schedule. In other words, if the writing transaction has timestamp ts, and the reading transaction

has timestamp ts2, no other write to the same tuple commits at timestamp ts such that ts1 I ts < ts2 .

According to Algorithm 5, when the reading transaction commits, it can observe a consistent

view of the tuple's TSword with wts and rts, where tsi = wts and ts2 < rts. This implies that so far

in physical time, no write to the same tuple has happened between tj and t2 in logical time because

otherwise the wts of the tuple would be greater than t1 . No such write can happen in the future

either, because all future writes will have timestamps greater the tuple's rts and thus greater than

t2 . E

Proof of Theorem 6. According to Lemma 22, transactions with the same commit timestamp and

physical commit time do not conflict. Thus, they can have any serial order among them and the

result of the serial schedule does not change.

According to Lemma 23, for transactions with different commit timestamps or physical commit

time, a read in a transaction always returns the latest write in the serial schedule. According to

Lemma 21, only one such latest write can exist so there is no ambiguity. Then, for each transaction

executed in the actual schedule, all the values it observes are identical to the values it would observe

in the serial schedule. Hence, the two schedules are equivalent. D

7.4 Optimizations

The TicToc algorithm as presented so far achieves good performance when tested on a multi-socket

shared memory system (cf. Section 7.5). There are, however, still places in the validation phase that

may create unnecessary contention and thus hurt performance. For example, locking the transac-

tion's write set during the validation phase may cause thrashing for write-intensive benchmarks.

In this section, we discuss several optimizations that we developed for TicToc to minimize

contention. We also discuss how TicToc works for weaker isolation levels for those applications

that find serializability too strong.

7.4.1 No-Wait Locking in Validation Phase

In TicToc's validation phase (Algorithm 5), tuples in a transaction's write set are locked following

the primary key order. The process of locking the write set is essentially a Two-Phase-Locking

(2PL) protocol. As discussed in Chapter 6, lock waiting leads to lock thrashing at high core counts,

160



transactions A B C D

tuples x y z U V

-- Locking -- > Waiting

Figure 7-2: An Example of Lock Thrashing.

leading to significant performance degradation, even if the locks are acquired in the primary key

order [157]. Thrashing happens when a transaction already holds locks and waits for the next lock.

The locks it already holds, however, may block other transactions.

Consider a pathological case shown in Figure 7-2 where each transaction tries to lock two tuples.

Transaction D has already acquired both of the locks that it needs, while transactions A, B, and C

are waiting for locks held by other transactions. When transaction D commits, C is able to acquire

the lock and make forward progress. Transactions A and B, however, still need to wait. The end

result is that the four transactions commit sequentially.

Note that, in this particular example, it is actually possible to abort transactions A and C so that

B and D can acquire the locks and run in parallel. After they finish, A and C can also run in parallel.

This schedule only takes half the execution time compared to the pathological schedule. In practice,

however, it is very challenging to quickly find out what transactions to abort at runtime to maximize

parallelism.

A better approach to avoid the thrashing problem is to use a 2PL variant based on non-waiting

deadlock prevention in TicToc's validation phase [18]. This protocol optimization, which we refer

to as No-Wait, is like running a mini concurrency control algorithm inside of the TicToc algorithm.

With No-Wait, if a transaction fails to acquire a lock for a tuple in its write set during the validation

phase, the validation is immediately aborted by releasing all locks the transaction already holds.

Then, TicToc restarts the validation phase. The transaction sleeps for a short period (1 ps) before

retrying to reduce thrashing. Our experiments show that the algorithm's performance is not overly

sensitive to the length of this sleep time as long as it is not too large.

The No-Wait optimization minimizes lock thrashing and allows more transactions to validate

simultaneously. In the example in Figure 7-2, if No-Wait is used, then A or B may run in parallel

with D.

161



7.4.2 Preemptive Aborts

The first step of the validation phase (cf. Algorithm 5) locks the tuples in the transaction's write

set before it examines the read set. If a transaction ends up aborting because the read set validation

fails, then this locking becomes an unnecessary operation. Furthermore, these locks may block

other transactions from validating, which hurts overall performance. We observe that for some

transactions the decision to abort can actually be made before locking the write set tuples. We call

this optimization preemptive abort. A transaction that aborts preemptively does not need to go

through the whole validation phase. This saves CPU time and reduces contention.

To better understand this, consider a transaction with one tuple in its read set. This transaction

will fail the validation phase if this tuple's local rts is less than the transaction's commit timestamp

and its local wts of the tuple in the read set does not match the tuple's latest wts in the shared

database. A tuple's latest wts can be atomically read from the TSword of the tuple. The transac-

tion's commit timestamp, however, cannot be accurately determined before the write set is locked

because a tuple's rts in the write set might be changed by a different transaction. The key obser-

vation here is that we just need to find an approximate commit timestamp. Thus, this optimization

allows us to abort some transactions early without executing all the logic in the validation phase.

We compute the approximate commit timestamp using the local wts and rts in the read and write

sets. For each tuple in the read set, the approximate commit timestamp is no less than the tuple's

local wts; for each tuple in the write set, the approximate commit timestamp is no less than the

tuple's local rts + 1. Note that the actual commit timestamp is no less than the approximate commit

timestamp, because the latest timestamps in the tuples cannot be less than the local timestamps.

Once an approximate commit timestamp is determined, it is used to decide if the transaction should

be preemptively aborted.

7.4.3 Timestamp History

TicToc always aborts a transaction if its local rts of a tuple is less than committs and the local wts

does not match the latest wts. There are some cases, however, where the latest wts is greater than

the transaction's committs but the local version is still valid at committs. Such transactions may

commit without violating serializability, but the TicToc algorithm discussed so far always aborts

them.

Figure 7-3 shows such an example. Transaction A first reads tuple x with wts = 2 and rts = 2.

162



Later, tuple x's rts is extended to timestamp 3 due to the validation of transaction B. Then, tuple x is

modified by transaction C and thus the latest wts and rts both become 4. Finally, transaction A enters

the validation phase and validates tuple x at committs = 3 (not 2 because transaction A accessed

other tuples not shown in the figure). At this point, transaction A only has the local timestamps

of x (wts = 2 and rts = 2) and knows that the local version is valid at timestamp 2, but does not

know if it is still valid at timestamp 3. From transaction A's perspective, it is possible that the local

version has been extended to timestamp 3 by some other transaction; it is also possible, however,

that some other transaction did a write that is only valid at timestamp 3. Based on all the information

transaction A has, these two situations are indistinguishable.

Step 1 Step 2 Step 3 Step 4

I x X X x Physical
Time2

-------- ----
" A.read(x) B extends C.write(x) A validates x

x's rts with committs = 3

Figure 7-3: An Example of the Timestamp History Optimization - The DBMS uses a tuple's

timestamp history to avoid aborting a transaction.

To prevent these unnecessary aborts, we can extend TicToc to maintain a history of each tuple's

wts rather than just one scalar value. When a new version is created for a tuple, the wts of the old

version is stored in a structure called the history buffer. The value of the old version of the tuple does

not need to be stored since transactions in TicToc always read the latest data version. Therefore,

the storage overhead of this optimization is just a few bytes per tuple. In our implementation, the

history buffer is a per-tuple array that keeps a fixed number of the most recent wts's. This way, the

DBMS does not perform garbage collection.

During a transaction's validation phase, if the rts of a tuple in the read set is less than committs

and the wts does not match the latest wts, the DBMS checks if the wts matches any version in the

tuple's history buffer. If so, the valid range of that version is from the local wts to the next wts in the

history buffer. If committs falls within that range, the tuple can pass validation. This way, some

unnecessary aborts can be avoided.

163



7.4.4 Lower Isolation Levels

The TicToc algorithm described in Section 7.2 provides serializable isolation, which is the strictest

isolation level in ANSI SQL. With minimal changes, TicToc can also support lower isolation levels

for those applications that are willing to sacrifice isolation guarantees in favor of better performance

and lower abort rate.

Snapshot Isolation: This level mandates that all of a transaction's reads see a consistent snap-

shot of the database, and that the transaction will commit only if it does not conflict with any

concurrent updates made since that snapshot. In other words, all the read operations should hap-

pen at the same timestamp (commitrts) and all the write operations should happen at a potentially

later timestamp (commitwts), and the written tuples are not modified between commitrts and com-

mit_wts.

To support snapshot isolation, instead of using a single committs and verifying that all reads

and writes are valid at this timestamp, two commit timestamps are used, one for all the reads (com-

mit-rts) and one for all the writes (commitwts). The algorithm verifies that all reads are valid at

commitrts and all writes are valid at commit_wts. It also guarantees that before the transaction

writes to a tuple, its previous vts is less than or equal to commitrts. All of these can be imple-

mented with minor changes to Algorithm 5.

Repeatable Reads: With this weaker isolation level, a transaction's reads do not need to happen

at the same timestamp even though writes should still have the same commit timestamp. This means

there is no need to verify the read set in the validation phase. For a tuple read and updated by the

same transaction, however, the DBMS still needs to guarantee that no other updates happened to

that tuple since the transaction last read the value.

7.5 Experimental Evaluation

We now present our evaluation of the TicToc algorithm. For these experiments, we use the same

DBx 1000 OLTP DBMS [2] discussed in Chapter 6.

Since DBx1000 includes a pluggable lock manager that supports different concurrency con-

trol schemes, we can easily compare different concurrency control algorithms in the same system.

Specifically, we implemented five concurrency control algorithms for our evaluation.

TICTOC: Time traveling OCC with all optimizations

SILO: Silo OCC [144]

164



HEKATON: Hekaton MVCC [95]

DL DETECT: 2PL with deadlock detection

NOWAIT: 2PL with non-waiting deadlock prevention

We deployed DBx 1000 on a 40-core machine with four Intel Xeon E7-4850 CPUs and 128 GB

of DRAM. Each core supports two hardware threads, for a total of 80 threads. The experiments

with more than 40 threads (shaded areas in the throughput graphs) use multiple threads per core,

and thus may scale sub-linearly due to contention. To minimize memory latency, we use numactl

to ensure each thread allocates memory from its own socket.

7.5.1 Workloads

We next describe the two benchmarks that we implemented in the DBx 1000 DBMS for this analysis.

TPC-C: This workload is the current industry standard to evaluate OLTP systems [140]. It

consists of nine tables that simulate a warehouse-centric order processing application. Only two

(Payment and NewOrder) out of the five transactions in TPC-C are modeled in our evaluation in

this section, with the workload comprised of 50% of each type. These two transaction types make

up 88% of the default TPC-C mix and are the most interesting in terms of complexity for our

evaluation.

YCSB: The Yahoo! Cloud Serving Benchmark is representative of large-scale on-line ser-

vices [35]. Each query accesses a single random tuple based on a power law distribution with a

parameter (theta) that controls the contention level in the benchmark [63]. We evaluate three differ-

ent variations of this workload:

1. Read-Only: A transaction contains only read queries following a uniform access distribution

(theta=0).

2. Medium Contention: 16 queries per transaction (90% reads and 10% writes) with a hotspot

of 10% tuples that are accessed by ~60% of all queries (theta=0.8).

3. High Contention: 16 queries per transaction (50% reads and 50% writes) with a hotspot of

10% tuples that are accessed by ~75% of all queries (theta=0.9).

For all of the YCSB experiments in this chapter, we used a - 10 GB database containing a single

table with 10 million records. Each tuple has a single primary key column and then 10 additional

columns each with 100 bytes of randomly generated string data.

165



7.5.2 TPC-C Results

We first analyze the performance of all the concurrency control algorithms on the TPC-C bench-

mark.

The number of warehouses in TPC-C determines both the size of the database and the amount

of concurrency. Each warehouse adds -100 MB to the database. The warehouse is the root entity

for almost all of the tables in the database. We follow the TPC-C specification where -10% of the

NewOrder transactions and -15% of the Payment transactions access a "remote" warehouse.

We first run TPC-C with four warehouses, as this is an example of a database that has a lot of

contention. We then run an experiment where we fix the number of threads and scale the number of

warehouses in the database. This measures how well the algorithms scale when the workload has

more parallelism opportunities.

4 Warehouses

The results in Figure 7-4 show that the performance improvements of additional threads are limited

by contention on the WAREHOUSE table. Each Payment transaction updates a per-warehouse tuple in

this table and each NewOrder transaction reads that tuple. Since there are only four such tuples in

the entire database, they become the bottleneck of the whole system.

o-x DLDETECT + -+ HEKATON - NOWAIT +-+ SILO - * TICTOC

-2.0 0.8

1.5- 0.6

- -- ------ -

0 20 40 60 80 0 20 0 so

Thread Count Thread Count

(a) Throughput (b) Abort Rate

Figure 7-4: TPC-C (4 Warehouses) - Scalability of different concurrency control algorithms on
the TPC-C workload with 4 warehouses.

The Payment transaction is simpler and faster than NewOrder transactions. In SILO, when the

Newfrder transaction enters the validation phase, it is likely that a Payment transaction has already

modified the tuple in the WAREHOUSE table that is read by the NewOrder transaction. Therefore,

SILO (like other traditional OCCs) frequently aborts these NewOrder transactions.

In TICTOC, the NewOrder transaction would also see that the WAREHOUSE tuple has been modi-

166



fied. But most of the time the transaction can find a logical commit timestamp that satisfies all the

tuples it accesses and thus is able to commit. As shown in Figure 7-4, TICTOC achieves 1.8 x better

throughput than SILO while reducing its abort rate by 27%. We attribute this to TICTOC's ability to

achieve better parallelism by dynamically selecting the commit timestamp.

The figure also shows that DLDETECT has the worst scalability of all the algorithms. This

is because DLDETECT suffers from the thrashing problem discussed in Section 7.4.1. Thrashing

occurs because a transaction waits to acquire new locks while holding other locks, which causes

other transactions to block and form a convoy. NO_WAIT performs better than DLDETECT as it

avoids this thrashing problem by not waiting for locks. But NOWAIT still performs worse than

TICTOC and SILO due to the overhead of using locks. HEKATON also supports non-blocking reads

since it is a multi-version concurrency control algorithm. A read to an earlier version of a tuple can

be performed in parallel with a write to the new version of the same tuple. However, HEKATON is

slower than TICTOC and SILO due to the overhead of maintaining multiple versions.

Variable Number of Warehouses

As we increase the number of warehouses while fixing the number of worker threads, the contention

in the system will decrease. In Figure 7-5, the number of warehouses is swept from 4 to 80 and the

number of worker threads is fixed to 80.

-5.0 0.8

4.0- /.6
3..0

0.4-
2.00

0 20 40 to 80 0 20 40 60 80
Number of Warehouses Number of Warehouses

(a) Throughput (b) Abort Rate

Figure 7-5: TPC-C (Variable Warehouses) - Scalability of different concurrency control algo-

rithms on TPC-C as the number of warehouses change. The number of worker threads in DBx1000

is fixed at 80.

When the number of warehouses is small and contention is high, TICTOC performs consistently

better than SILO for the same reason as in Section 7.5.2. As the number of warehouses grows,

parallelism in TPC-C becomes plentiful, so the advantage of TICTOC over SILO decreases and

eventually disappears at 80 warehouses, at which point transactions have little contention. With

167



respect to the scheme's measured abort rate, shown in Figure 7-5b, TICTOC has consistently fewer

aborts than SILO for fewer than 80 warehouses because it is able to dynamically adjust the logical

commit timestamp for transactions to reduce the number of aborts.

7.5.3 YCSB Results

We now compare TicToc to other concurrency control schemes under the YCSB workload with

different parameter settings.

Read-Only

We executed a YCSB workload comprising read-only transactions with a uniform access distribu-

tion. This provides a baseline for each concurrency control scheme before we explore more complex

workload arrangements.

The results in Figure 7-6 show that all of the algorithms except for HEKATON scale almost

linearly up to 40 threads. Beyond that point, scaling is sub-linear as the threads executing on the

same physical core contend for the CPU. TICTOC and SILO achieve better absolute performance

than the other algorithms because they do not have locking overheads. H EKATON is limited by its

centralized timestamp allocation component. It uses a single atomic add instruction on a global

counter, which causes threads accessing the counter from different cores to incur cache coherence

traffic on the chip. In our 4-socket system, this limits HEKATON to ~5 million timestamps per

second.

X1X DLDETECT b-A NO_WAIT W-6 TICTOC
+ + HEKATON * * SILO

30.0

25.0

.Q 20.0-

10.0 -

25.0

0.0
0 20 40 60 80

Thread Count

Figure 7-6: YCSB (Read-Only) - Results of a read-only YCSB workload for different concurrency

control schemes.

168



x-x DLDETECT + -+ HEKATON -' NCWAIT * -+ SILO - o TICTOC

4.0 0.20

c3.0-s 0.2-

0.1-
- +0

2.0 - -4-- 0.1

0 20 40 60 80 0 20 40 60 80
Thread Count Thread Count

(a) Throughput (b) Abort Rate

Figure 7-7: YCSB (Medium Contention) - Results for a read-write YCSB workload with medium
contention. Note that DLDETECT is only measured up to 40 threads.

Medium Contention

In a read-only workload, transactions do not conflict with each other and thus any algorithm without

artificial bottlenecks should scale. For workloads with some contention, however, the ways that the

algorithms handle conflicts affect the DBMS's performance.

Figure 7-7 shows the throughput and abort rate of the medium-contention YCSB workload. The

results in Figure 7-7a show that SILO and TICTOC both scale well and achieve similar throughput.

But the graph in Figure 7-7b shows that TICTOC has a ~3.3x lower abort rate than SILO. This

is due to TICTOC's data-driven timestamp management, as transactions can commit at the proper

timestamp that is not necessarily the largest timestamp so far.

The throughput measurements show that DLDETECT again has the worst scalability of all

the algorithms due to lock trashing. NOWAIT does better since transactions can get immediately

restarted when there is a conflict. H EKATON performs better than the 2PL schemes since multiple

versions allows more read operations to succeed (since they can access older versions) which leads

to fewer transaction aborts. But this adds overhead that causes H EKATON to perform worse than

TICTOC and SILO.

High Contention

We now compare the algorithms on a YCSB workload with high contention. Here, conflicts are

more frequent and the workload has lower inherent parallelism, which stresses the DBMS and

allows us to more easily identify the main bottlenecks in each algorithm.

As expected, the results in Figure 7-8 show that all algorithms are less scalable than in the

medium-contention workload. We note, however, that the performance difference between TICTOC

169



1.01.

2. - ---- 0.2
0.

0.0 " " " ' 0.00 20 40 60 8 0 20 40 60 8
Thread Count Thread Count

(a) Throughput (b) Abort Rate

Figure 7-8: YCSB (High Contention) - Results for a read-write YCSB workload with high con-
tention. Note that DL_ DETECT is only measured up to 40 threads.

and SILO is more prominent. As we discuss next, this performance gain comes partially from the

optimizations we presented in Section 7.4.

Both TICTOC and SILO have similar abort rates in Figure 7-8b under high contention. The

timestamp management policy in TICTOC does not reduce the abort rate because the workload is

too write-intensive and the contention level is so high that both algorithms have similar behaviors

in terms of aborting transactions.

7.5.4 TicToc Optimizations

We now evaluate the optimizations we presented in Section 7.4 to determine their individual effect

on TicToc's overall performance. To do this, we run DBx1000 multiple times using TicToc but

enable the optimizations one-at-a-time. We use four different configurations in this experiment:

1. No Opts: TicToc without any optimizations.

2. NoWait: TicToc with No-Wait locking described in Section 7.4.1.

3. NoWait + PreAbort: TicToc with No-Wait locking and preemptive aborts described in Sec-

tion 7.4.2.

4. All Opts: TicToc with No-Wait locking, preemptive aborts, and timestamp history described

in Section 7.4.3.

Recall that this last configuration is the default setting for TicToc in all of the other experi-

ments in this thesis. We also include the performance measurements for SILO from Figure 7-8a for

comparison.

The results in Figure 7-9 show the performance, abort rate, and time breakdown (at 80 cores)

for the TPC-C workload with four warehouses. At 80 threads, TICTOC without optimizations

achieves 35.6% higher throughput than SILO, and has a 32% lower abort rate. This gain comes

170

_= a



from the greater parallelism exploited by the TICTOC's timestamp management policy. Using the

No-Wait optimization for locking transactions' write sets provides another 38% performance gain

at 80 threads, while not affecting the abort rate. In Figure 7-9c, we see that the gains of basic TIC-

TOC over SILO mainly come from reducing the abort rate. Optimizations do not reduce TICTOC's

abort rate further, but they do reduce the amount of time wasted in aborting transactions. These

optimizations effectively make each abort take a shorter amount of time.

+-* SILO - No Opts +- NoWait - NoWait + PreAbort x x AM Opts

(20 0.8 Useful(W)rk A Abort Manager

F .r 7-9: T0.6 T mease1s0

-1z. sfmei 7 ywC i 4 r

siia efrac mrvmn asi ,P- u i oe rmdifrn set oiTICTC TC

1. 0.4 0.6

004

0 20 40 60 80 0 20 40 80 80rO PO 
44

Volvler
Thread Cout Thread Count

(a) Throughput (b) Abort Rate (c) Execution Time Breakdown (80
threads)

Figure 7-9: TicToc Optimizations (TPC-C) - Throughput measurements of TicToc using different
optimizations from Section 7.4. The system runs with the TPCC workload with 4 warehouses.

Figure 7-10 shows the same experiments on the high contention YCSB workload. Here, we see

similar performnance improvement as in TPC-C but it comes from different aspects of TICTOC. TIC-

TOC without any optimizations only performs 10% better than SILO, and most of the performance

improvement comes from the No-Wait and preemptive abort optimizations. In contrast to Figure 7-

9, using preemptive aborts provides a larger performance gain in YCSB. This is partly because in

YCSB each transaction locks more tuples during the validation phase. Preemptive aborts alleviate

the contention caused by these locks.

10 0.6 I= Ueful Work M Abort Me uge|

O1.00.8 .........

0..8
a .

4
4~. 0.4

~0.4. 0.00 20 08 80 00 1
0.2 ;.2

0* 20 I 20 40 60 58 o o 0gIe o Vo10
Thread Count Thread Count

(a) Throughput (b) Abort Rate (c) Execution Time Breakdown (80
threads)

Figure 7-10: TicToc Optimizations (YCSB) - Throughput measurements of TicToc using different

optimizations from Section 7.4. The system runs with the high-contention YCSB workload.

We observe that the timestamp history optimization does not provide any measurable perfor-

mance gain in either workload. This was initially surprising to us, but upon further investigation

we are convinced that this is indeed correct. In a way, TICTOC without this optimization already

171



stores multiple versions of a tuple in each transaction's private workspace. This means that each

transaction can commit in parallel using its own version. Although in theory timestamp history can

enable more concurrency, in practice there is no clear performance benefit for the workloads we

evaluated.

7.5.5 Logical Time Analysis

We analyze how TicToc's commit timestamps grow over time under different levels of contention. If

timestamps grow slower relative to the total number of committed transactions, then the amount of

synchronization among transactions is less infrequent, which means the contention level is low. For

this experiment, we execute the medium and high contention YCSB workloads from Section 7.5.3

and track the commit timestamps of transactions over time. We also include TSALLOC as a base-

line where each transaction is assigned a unique timestamp using an atomic add instruction. This is

representative of the timestamp growth rate in other T/O-based algorithms, such as HEKATON.

Figure 7-11 shows the relationship between logical timestamps and the number of committed

transactions for the three configurations. With the TSALLOC protocol, the number of committed

transactions and logical timestamps increase at the same rate. In TicToc, however, logical times-

tamps increase at a slower rate: 64x and lOx slower than the number of committed transactions,

respectively, for low and high contention levels in YCSB. What is interesting about these measure-

ments is that the rate of growth of logical timestamps indicates the inherent level of parallelism in a

workload that can be exploited by TicToc. In the high contention workload, for example, this ratio

is 10 x. This corroborates our results in Figure 7-8a, which show the DBMS is only able to achieve

7.7x (which is smaller than 10 x) better throughput when executed on multiple threads compared

to a single thread, in the high contention YCSB workload.

7.5.6 Isolation Levels

All of the experiments so far have used serializable isolation. Serializable isolation is the strictest

isolation level and thus usually has less concurrency than lower isolation levels. We now compare

the DBMS's performance when transactions execute under snapshot isolation (SI) and repeatable

read isolation (RR) levels versus the default serializable isolation (SR). All five algorithms support

the RR level. For SI, we are able to run it only with the TICTOC and HEKATON algorithms. This

is because supporting SI requires the DBMS to maintain multiple versions for each tuple, which is

difficult for the other algorithms. We use the medium- and high-contention YCSB workloads from

172



10000 1 1 1

0- +- +TSALLOCE 8000 -g
.U High t
D 6000- Medium , to
EI

4000-
E ,toE
E 2000-

0

0 2000 4000 6000 8000 10000
Number of Committed Txns

Figure 7-11: Logical Time Analysis - Comparison of the growth rate of the timestamps in TICTOC
versus TSALLOC.

Section 7.5.3 for our experiments.

The medium-contention YCSB results are shown in Table 7.1. For this setting, the workload has

enough parallelism and thus all the optimistic T/O-based algorithms only see small improvements

when running at a lower isolation level (4.7% for TICTOC and 5.6% for SILO), whereas for the

pessimistic 2PL algorithms the improvement is more pronounced (67.4% for DLDETECT and

200.0% for NOWAIT). HEKATON only has a 21.3% improvement from SR to RR. The abort rate

measurements in Table 7. 1b show that the lower isolation levels achieve lower abort rates because

there are fewer conflicts between transactions. As expected, all the algorithms have the fewest

number of aborted transactions under RR since it is the most relaxed isolation level.

DLDETECT HEKATON NOWAIT SILO TICTOC
SR 0.43 1.55 0.63 2.32 2.57
SI - 1.78 - - 2.69
RR 0.72 1.88 1.89 2.45 2.69

(a) Throughput (Million txn/s)

DL DETECT HEKATON NOWAIT SILO TICTOC
SR 0.35% 11.6% 63.2% 6.47% 1.76%
SI - 1.96% - - 1.54%
RR 0.10% 1.94% 9.9% 0.71% 0.72%

(b) Abort Rate

Table 7.1: Isolation Levels (Medium Contention) - Performance measurements for the concur-
rency control schemes running YCSB under different isolation levels with 40 threads.

The high-contention YCSB results are shown in Table 7.2. Lower isolation levels have better

performance than serializable isolation. Again, the throughput of the RR isolation level is slightly

better than SI's. In general, for this workload setting we found that different isolation levels do not

173



cause large reductions in abort rates due to the significant amount of contention on hotspot tuples.

DL DETECT HEKATON NOWAIT SILO TICTOC
SR 0.005 0.18 0.30 0.52 0.82
SI - 0.23 - - 0.90

RR 0.010 0.23 0.35 0.80 1.04

(a) Throughput (Million txn/s)

DL DETECT HEKATON NOWAIT SILO TICTOC
SR 74.0% 34.4% 69.9% 46.8% 44.3%
SI - 30.9% - - 40.1%

RR 74.3% 30.4% 71.3% 42.3% 39.7%

(b) Abort Rate

Table 7.2: Isolation Levels (High Contention) - Performance measurements for the concurrency
control schemes running YCSB under different isolation levels with 40 threads.

7.5.7 TicToc on 1000 Cores

In this section, we study the scalability of TicToc at a larger scale, by running TicToc on the same

simulated 1000-core processor as we used in Chapter 6. In Figure 7-12, we present the through-

put (in million transactions per second) of TicToc and six other traditional concurrency control

algorithms at different levels of contention (low, medium, and high contention). The database is

unpartitioned in this experiment, and thus HSTORE is not included.

* DLDETECT o a TICTOC - MVCC - TIMESTAMP r-u NOWAIT m WAITDIE - OCC

16 14 3.0
714 - 12- 7 .

12 2.
S02.0
10- .2. - -

g1 4 6- - 0-1.0

2 2 ..- -~:

0 0 o.c 0 -W0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Thread Count Thread Count Thread Count

(a) Low Contention (b) Medium Contention (c) High Contention

Figure 7-12: TicToc on 1000 Cores (YCSB) - Throughput measurements of TicToc compared to
classic concurrency control algorithms that are evaluated in Chapter 6. The system runs with the
different contention level on the YCSB workload.

We observe that TicToc significantly outperforms other concurrency control algorithms, espe-

cially when the contention level is high. In the high contention case (Figure 7-12c), TicToc outper-

forms other algorithms by an order of magnitude. This is because TicToc allows more transactions

to commit in parallel by dynamically determining their commit order. The performance of TicToc

174



plateaus after 512 cores due to the limited parallelism in the workload.

175



176



Chapter 8

Sundial Distributed Concurrency

Control

8.1 Introduction

In Chapter 6, we saw how concurrency control can be a serious scalability bottleneck in a OTLP

DBMS when deployed on a shared memory multicore machine. We also saw how logical leases

can completely remove the scalability bottleneck and improve performance of an OLTP DBMS in

Chapter 7. In this chapter, we extend the idea of logical leases beyond a single multicore machine.

We show how logical leases can improve the performance of a distributed database management

system (DDBMS).

When the computational and storage demands of an OLTP application exceed the resources

of a single-node system, an organization must turn to a distributed DBMS. Such systems split the

database into disjoint subsets, called partitions, that are separately stored across multiple shared-

nothing nodes. If transactions only need to access data at a single node, these systems achieve

great scalability [3, 4]. The trouble, however, arises when transactions have to access multiple

nodes. These distributed transactions incur two problems. First, distributed concurrency control

over the network imposes a performance and scalability bottleneck. Second, reading data from a

remote node incurs significant latency and network traffic, and caching remote data locally requires

complex protocols to handle updates.

Recent work on overcoming these problems in distributed DBMSs can be grouped into three

categories. First, protocol-level improvements to reduce synchronization among transactions [103,

177



142, 49]. However, these schemes still limit the concurrency of the DBMS or incur extra overhead.

We will make qualitative and quantitative comparisons to some of these schemes. Second, hardware

improvements, including using atomic clocks to order transactions [36] or optimized networks that

enable low-latency remote memory access [44, 150]. However, the hardware is not widely avail-

able or is cost prohibitive for some organizations. Third, there have been proposals to restrict the

programming model for transactions [115, 142]. Such limitations make it difficult to port existing

applications to these systems. Ideally, we want concurrency control protocols that achieve good

performance on commodity hardware using an unrestricted programming interface.

To hide the long network latency, previous work has proposed to replicate hotspot shared data

across multiple database nodes [37], such that some distributed transactions become single-node

transactions. However, this requires profiling the database workload or manual identification of

hot data, which adds extra complexity for the users. It would be easier if the database can dy-

namically replicate data across nodes during normal operation through the caching mechanism to

reduce distributed transactions [7], but the complexity of maintaining coherence across caches is

prohibitive [123], leading to limited adoption of the idea.

To address these issues, we introduce Sundial, a new distributed concurrency control protocol

that outperforms existing approaches through two main contributions. First, Sundial uses a new

distributed concurrency control algorithm that eliminates the need for transactions to wait for locks

and reduces false aborts from read-write conflicts. Second, Sundial natively provides strongly con-

sistent data caching without requiring an additional protocol or external system, and uses cached

data only when beneficial.

The fundamental principle behind both components in Sundial is logical leases. Similar to Tic-

Toc, logical leases allow the DBMS to dynamically determine the logical order among transactions

while enforcing serializability guarantees. A transaction dynamically computes its commit times-

tamp to overlap with leases of all the accessed tuples. Different from TicToc, Sundial uses logical

leases not only for concurrency control, but also for caching data that map to a remote server in

the local server's main memory. In a sense, Sundial combines ideas in both TicToc and Tardis and

applies them to a distributed DBMS.

To evaluate Sundial, we implemented it in a distributed DBMS testbed and compared it to three

state-of-the-art protocols: MaaT [103], Google Fl [130], and two-phase locking [69]. We used two

OLTP workloads with different contention settings and cluster configurations. Sundial achieves up

to 57% better throughput with 41 % lower latency than the alternative approaches. We also show

178



that Sundial's caching feature improves throughput by up to 3 x for certain workloads with minimal

extra complexity or overhead.

In summary, this chapter makes the following contributions.

" We apply logical leases to a distributed system and build Sundial. The new distributed con-

currency control algorithm in Sundial avoids lock waiting and significantly reduces aborts

due to read-write conflicts among transactions.

" We implement a lightweight caching protocol, which allows Sundial to cache data from re-

mote nodes. The caching mechanism is tightly integrated into the concurrency control algo-

rithm with very low complexity.

" Evaluated over YCSB and TPCC benchmarks, Sundial significantly improves performance

over other baselines. Overall, Sundial's new distributed concurrency control delivers 57%

performance improvement. The caching mechanism can deliver up to 3 x performance im-

provement for workloads with hot read-intensive tables.

The rest of the chapter is organized as follows. Section 8.2 presents the design of the Sundial

concurrency control scheme. Section 8.3 introduces Sundial's distributed caching technique. Sec-

tion 8.4 discusses possible causes of aborts in Sundial and qualitatively compares Sundial with other

concurrency control algorithms. Finally, Section 8.5 presents quantitative evaluation.

8.2 Sundial Concurrency Control

In this section, we discuss the Sundial protocol in detail. In a high-level overview, Sundial uses log-

ical leases (Section 8.2.1) to seamlessly integrate caching with the concurrency control algorithm

to improve performance of distributed transactions. Sundial uses a hybrid single-version concur-

rency control algorithm that handles write-write conflicts using 2PL and read-write conflicts using

OCC (Section 8.2.2). The detailed concurrency control protocol will be presented in Section 8.2.3.

Section 8.2.4 and 8.2.5 discuss optimizations and extensions.

Our discussion assumes that the database is deployed over a homogeneous cluster of server

nodes. Each node is able to initiate a transaction on behalf of an external user, as well as to process

remote queries on behalf of peer nodes. The node initiating the transaction is called the coordinator

of that transaction. A distributed transaction accessing a remote node will execute a sub-transaction

on that node.

179



8.2.1 Logical Leases in Sundial

Logical leases allow the DBMS to determine a partial logical order among concurrent operations on

shared data. The management of logical leases in Sundial is similar to that in TicToc (cf. Chapter 7).

A logical lease is associated with each data element (e.g., each tuple), and is represented using wts

and rts. A data element can be read only at a logical time within its current lease; a lease can be

extended in order to read the tuple at a later logical time. A write to a tuple creates a new lease after

the end of the current lease.

To achieve serializability, the DBMS must compute a single commit timestamp for a transaction,

a logical time that is within the leases of all tuples it accesses. From the perspective of logical time,

all operations of a transaction are atomically performed at the commit timestamp. The DBMS can

calculate this commit timestamp using only the leases of tuples accessed by the transaction. No

centralized or inter-transaction coordination is required.

Figure 8-1 shows an example of two transactions running under Sundial. Ti reads A and B with

leases of [0, 1] and [1, 2], respectively. Ti also writes to D with a new lease of [1, 1], which is

greater than the current lease of D at [0, 0]. Ti commits at timestamp 1 since it overlaps with all the

leases it has seen. Note that before T1 commits, T2 has already modified A. But T1 does not abort

due to this conflict since Sundial computes the global serialization order using logical time. The

conflict between Ti and T2 enforces Ti to commit before T2 in the timestamp order, but neither of

the transactions has to abort.

0 1 2 3

~-~~- ~-------------- Logical
Red(A) - -------- I Time

E 2 -------- Red(B3) ------

3 -------- {-------- Write(A)

4 --------- -------.. ------ ReadC

5 Ol Version)L (l ____ --------

T1 commits @ TS=1 T2 commits @ TS=3

Figure 8-1: Logical Lease Example - Example schedule of two transactions (T] and T2) accessing
A, B, C, and D. T1 and 72's operations are highlighted in yellow and green, respectively.

T2 creates a new lease of [2, 2] and writes A. It also reads C that has a lease of [3, 3]. The two

180

E



leases, however, do not overlap. In this case, Sundial extends the lease on A from 2 to 3. The DBMS

is allowed to perform such an extension because there is no valid version of A at timestamp 3. In

contrast, reversing C's lease from 3 to 2 can also make the two leases overlap, but this is not allowed

since a previous version of C is already valid at timestamp 2. After the lease extension, the DBMS

will commit T2 at timestamp 3 since it overlaps with leases of both A and C after the lease extension.

8.2.2 Conflicts

Sundial handles different types of conflicts among transactions using different methods [18, 138].

Conflicts are either write-write (i.e., two transactions writing the same tuple) or read-write (i.e., one

transaction reads and the other writes the same tuple).

For write-write conflicts, we assume each write is actually a read-modify-write update (blind

writes will be discussed later in Section 8.2.5). There is no parallelism opportunity as the two

writes must happen sequentially. For an OCC algorithm, among the transactions that have write-

write conflicts with each other, at most one of them is able to commit while the others have to

abort. This leads to performance degradation and waste of system resources. Sundial uses the more

conservative 2PL concurrency control for write-write conflicts to avoid excessive aborts that can

occur with OCC [158].

For read-write conflicts, for ease of discussion, we ignore the order between the read and write

operations in the two transactions. In this case, OCC is able to exploit more parallelism than 2PL by

avoiding waiting for locks. For example, the DBMS can execute a transaction that updates a tuple

in parallel with another transaction that reads an old value of that same tuple. As long as the reading

transaction is logically ordered before the writing transaction, the DBMS can commit both of them

simultaneously without requiring either one to wait for a lock. Existing OCC algorithms, however,

unnecessarily abort transactions with read-write conflicts due to their limitation in the validation

process [158]. Consider the example shown in Figure 8-2 where transaction Ti first reads tuple

A and then T2 modifies that same tuple. The DBMS successfully commits T2 before Ti starts to

validate. When Ti finishes execution, the DBMS observes that A was already modified since its last

read and therefore it will have to abort T1.

In this example, Ti's abort may be unnecessary. If a serializable order exists among all transac-

tions such that TI is logically ordered before T2, then both transactions can commit. It is non-trivial,

however, for the DBMS to discover whether such a logical order exists with low algorithmic com-

plexity at runtime. Existing techniques typically have extra requirements for the DBMS, such as

181



2PL oCC Anon

T1 T2 T1 T2 T1 T2
I m leaseR(A) R(A) R(A) [10,20]

S W(A) W(A) ease W(A).-- - [21, 21]-
icCommit

',CommiEt Comi

CommCtCit

T1 aborts due to TI commits
cksT2 T2's write logically before T2

Figure 8-2: Read-Write Conflict Example - Example schedule of two transactions with a read-
write conflict in 2PL, OCC, and Sundial.

multi-versioning [50, 148] and deterministic execution [142]. As we now discuss, Sundial does not

have these restrictions and works for any single-version database with low complexity.

8.2.3 Sundial Concurrency Control Protocol

As shown in Figure 8-3, the lifecycle of a distributed transaction in Sundial consists of three phases:

(1) execution, (2) prepare, and (3) commit. The application initiates a new transaction in the

coordinator. In the first phase (execution), the coordinator executes the transaction's program logic

and sends query requests to other nodes involved in the transaction's logic. When the transaction

completes its operations, it reaches the commit point and enters the prepare phase. This is where

the DBMS begins the two-phase commit (2PC) process, which determines whether the transaction

is able to commit, and if so, commits the transaction atomically. The 2PC contains two phases, the

prepare phase and the commit phase. In the prepare phase, the coordinator sends a commit request

to each participating remote node involved in the transaction. Each remote node can respond to

this request with either "OK" or "Abort". If all nodes agree that the transaction can commit, then

the transaction enters the commit phase, where the coordinator sends a message to all the remote

nodes to complete the transaction. Otherwise, the transaction is aborted and all of its modifications

are rolled back. To ensure that all of a transaction's modifications persist after a node failure, the

DBMS flushes log records at each node at different points during the 2PC protocol (shown as * in

Figure 8-3).

During the three phases (i.e., execution, prepare and commit), Sundial performs additional co-

ordination between the coordinator and remote nodes to calculate a transaction's commit timestamp

182

El



K7) Request from application

101 I01
Coordinator Remote Remote

Node 1 Node 2

QueryExecution read()
Phase writeo

process respo Response

Prepare Request

Prepare validatereadsetO
Phase -- -*

0.. 0K/Abort

Commit Cmmt()
Phase *commitO

ACK(

Figure 8-3: Distributed Transaction Lifecycle - A distributed transaction goes through the exe-
cution phase and two-phase commit (2PC) which contains the prepare and commit phases.

and to extend leases. Sundial does not need to send additional messages to do this and instead

piggybacks this coordination information on normal request and response messages.

We now describe how Sundial executes the three phases in more detail.

Execution Phase

During the execution phase, a transaction reads and writes tuples in the database and performs

computation. Each tuple contains additional metadata that the DBMS uses to track the logical leases

of transactions. A tuple's write timestamp (wts) and read timestamp (rts) represent the start and end

of a logical lease. Sundial uses the 2PL Wait-Die algorithm [18] to handle write-write conflicts,

which requires the DBMS to also maintain the current lock owner and a waitlist of transactions

waiting for the lock. Each tuple has the following format, where DB is the database and the subscript

n denotes the identifier of the node containing the tuple.

DBn [key] = {wts, rts, owner, waitlist, data}

Since Sundial handles read-write conflicts using OCC, it maintains the read set (RS) and the

write set (WS) for each transaction at each participating node, like how other OCC algorithms do.

The two sets are modeled as follows. The data field contains a local copy of the database tuple

that can be read (in RS) or written (in WS). An entry in the read set also contains the wts and rts

of the tuple read by the transaction. The subscript n is included because a transaction's RS or WS

183



can be spread across multiple servers; and each server maintains a subset of the RS or WS for the

transaction.

RS,[key] = {wts,rts,data}

WSn[key] = {data}

At runtime, the DBMS either processes the transaction's queries locally at the coordinator or

sends the queries to the node that contains the target tuples. In either case, the logic to process a

read or a write query is the same. Algorithm 9 shows the operations performed by Sundial on node

n when a read or write query is executed.

Algorithm 9: Execution Phase

1 Function read(key) @ node n
2 if key not in RS, then
3 # Atomically copy lease and data
4 RS,[key].[wts, rts, data] = DBn[key ].{wts, rts, data]
s committs, = Max(commit tsn, wts)
6 end
7 return RSn[key].data

8 Function write(key, new-data) @ node n
9 if key not in WS, then

10 if DB,[key]. lock() == Success then
11 WS, 2 key].data = DBndkey].data
12 commit-ts, = Max(commit ts, DB1 kevJ.rts + 1)
13 else
14 1 Abort()
15 end
16 end
17 # Updates WS1 1key.data using newdata
18 WSn[key]. update(newjdata)

19 # handle response from remote node n
20 Function handleresp(committsn) @ coordinator
21 | commit ts = Max(commit ts, commit ts,,)

For a read, if the tuple is already in the transaction's read set, then the DBMS just returns it

without updating any metadata (line 2). Otherwise, the DBMS atomically copies the tuple's wts,

rts, and D into the transaction's local read set (line 4). It also updates the transaction's commit tsn

at node n to be at least the wts of the tuple (line 5). committs, cannot be smaller than wts of the

tuple since the tuple is invalid earlier than that logical time. Then, the data in the read set is returned

to the transaction (line 7). If the transaction reads that tuple again, it will just access that version in

its read set without having to retrieve it from the database again.

For a write, if the tuple is already in the transaction's write set, then the DBMS just applies the

184



update to this cached copy and returns immediately (line 9). Otherwise, the DBMS will attempt

to acquire the lock on that tuple for the transaction (line 10). If this lock acquisition is successful

(potentially after waiting for some period of time), then the DBMS copies the tuple into the trans-

action's write set (line 11) and advances the transaction's commit ts, to be at least rts +1 (line 12).

Note at this point the updated tuple is in the transaction's private write set; its changes are not visible

to other active transactions. If the lock acquisition fails (i.e., because a transaction with a higher

priority owns it), then the DBMS immediately aborts the transaction (line 14). After the data is in

the write set, the update operation is performed (line 18) and the transaction execution continues.

Once the DBMS completes the operation for the transaction at node n, it sends the results as

well as the current committsn back to the coordinator. The coordinator executes handleresp after

receiving this response. The coordinator only keeps the largest committs it has seen so far. By

the end of the execution phase, the committs of the transaction at the coordinator is the minimum

timestamp at which the transaction can possibly commit. This final committs will be used in the

2PC protocol.

An important feature of Sundial is that a read operation from one transaction does not block

any write operation from another transaction during the execution phase (and vice versa). The tuple

lock held by one transaction only prevents another transaction from modifying that tuple's lease; it

does not stop another transaction from reading the tuple's lease metadata and the data itself, as long

as the data and metadata are consistently read from the tuple. If a transaction reads a locked tuple,

then the transaction will have a commit timestamp smaller than that of the transaction holding the

lock, but both transactions may be able to commit.

Prepare Phase

The goal of the prepare phase is for the DBMS to discover whether it is safe to commit the trans-

action at every node that it accessed. The coordinator sends the transaction's committs to each

participating node in the prepare messages. Each participating node (including the coordinator)

then executes the validateread set(commit ts) function shown in Algorithm 10.

For a write operation, since the transaction already holds the lock on the tuple in the execution

phase, the lease is unchanged since the last access from the transaction. Therefore, the lease of

a tuple in the write set must be valid at the transaction's committs. For a tuple in the read set,

however, the committs may be greater than the end of the lease of the tuple, making it unclear

whether the tuple is still valid at the committs of the transaction. Thus, Sundial will validate the

185



Algorithm 10: Prepare Phase

i Function validate read set(commit ts) @ server n
2 for key in RSn.keys() do
3 if commitjts > RS,[key].rts then
4 # Begin atomic section
5 if RS,[key]. wts != DBn[key]. wts or DBn[key]. is_locked() then
6 Abort()
7 else
8 DB,,[key].rts = Max(DBj[key].rts, commit ts)
9 end

10 # End atomic section
11 end
12 end
13 return OK

transaction's read set of each participating node and extend the leases when necessary.

For each tuple in the transaction's read set (line 2), if committs is already within the lease of

the tuple, then no updates are needed (line 3). Otherwise, Sundial tries to extend the tuple's lease. If

the current wts of the tuple is different from the wts observed by the transaction during the execution

phase, or if the tuple is locked, then the DBMS cannot extend the lease and the transaction aborts

(lines 5-6). Otherwise, the rts of the tuple is updated to be at least commitgts (line 8). Note that

lease extension is the only way to change a tuple's rts in Sundial.

If a remote node successfully validates the transaction, then the DBMS sends an OK response

to the coordinator. If the validation succeeds at all of the participating nodes (including the coordi-

nator), the transaction enters the commit phase; otherwise the DBMS aborts the transaction.

Commit Phase

When the transaction enters this phase, the coordinator sends the commit messages to all of the

participating remote nodes. Algorithm 11 shows the logic executed at each remote node. For each

modified tuple in the transaction's local write set at each node (line 2), the DBMS copies the version

from the write set to the database (line 3). The wts and rts of the tuple are both set to the committs

of the transaction (line 4-5) and the tuple is unlocked (line 6).

No special operation is required for the read set during the commit phase. This means that if a

transaction did not modify any tuples at a remote node, then the coordinator can skip it during the

commit phase. If the transaction was entirely read-only on all remote nodes, then the DBMS can

completely skip the commit phase.

Finally, for either committed or aborted transactions, each node drops the transaction's local

186



Algorithm 11: Commit Phase

1 Function commit(commit ts) @ server n
2 for key in WSn.keys() do
3 DBjdkey].data = WSj2 key.data
4 DBn[key].wts = committs
5 DBj1 key].rts = committs
6 DB, [key]. unlock()
7 end

read and write sets.

8.2.4 Indexes

Indexes require special treatment in terms of concurrency control. This is because the index's phys-

ical structure is allowed to change during a transaction's lifetime as long as its logical contents

are consistent. One challenge of enforcing consistency in indexes is the phantom read problem. A

phantom read occurs if a transaction reads a set of tuples from the index but then that set changes be-

cause another transaction modifies the index. For serializability, the DBMS must guarantee that an

index returns the same results even if a transaction accesses it multiple times. It must also guarantee

that modifications to the index follow the same logical order of transactions.

Conceptually, we can simplify the interface to an index by considering a lookup or a scan as a

read operation to the index, and an insert or a delete as a write operation to the index. With this

analogy, the basic principle of a concurrency control algorithm can be applied to indexes. In 2PL,

for example, the affected keys in the index are locked in the corresponding modes. For a scan, the

next key after the scanned set is also locked to prevent inserts into the gap between the next key and

the scanned set [113]. This guarantees that a lookup or a scan cannot occur simultaneously with an

insert or delete to the same set of tuples, eliminating the phantom anomaly. In OCC, the phantom

anomaly can be avoided by having the transaction rescanning the index structure in the validation

phase to check that the scanned set has not changed. Rescanning an index is similar to rereading a

tuple to verify that it has not been changed.

In Sundial, we apply concurrency control to indexes by considering an index node (e.g., a leaf

node in a B-tree index or a bucket in a hash index) as a tuple. Therefore, a lookup or a scan copies

the lease of the index node; and an insert or a delete locks the index node. But lookup/scan and

insert/delete do not block each other, in the same way that reads and writes do not block each other

in the basic Sundial protocol.

With a range scan, for example, a transaction maintains the wts and rts of all the index nodes it

187



scans and may extend rts for some nodes during validation. Another transaction inserting/deleting

tuples in that range will be performed at a logical time after the rts of the affected index node. If

the scanning transaction finds a committs less than or equal to this rts, it can commit logically be-

fore the inserting/deleting transaction; and both transactions may commit. Otherwise, the scanning

transaction will abort due to failed lease extension. To guarantee repeated scans return consistent

results, the current implementation of Sundial makes a local copy of each scanned index node. An

alternative, potentially more memory-efficient design is to only store the wts of the scanned index

nodes (instead of storing the whole content of the node). If a transaction rescans a same index node

at a later time, it compares the local wts and the current wts of the index node to make sure they are

the same.

8.2.5 Blind Writes

The Sundial algorithm discussed so far supports reads and updates. In practice, a query may com-

pletely overwrite a tuple without reading it first. Such a write is called a blind write. Compared

to read-modify-write updates, blind writes provide more parallelism opportunities for the DBMS

since multiple transactions can write to the same tuple in parallel; only the last write remains while

previous writes are ignored.

Sundial supports parallel blind writes with small extensions to the protocol presented so far.

During the execution phase, a blind write locks the tuple. Different from a read-modify-write oper-

ation, however, the locks for blind writes are compatible with each other. Namely, multiple trans-

actions blindly writing to the same tuple can share the same lock. During the commit phase, the

DBMS checks whether a transaction's committs is greater than the wts of the tuple that it blindly

writes to. If so, the DBMS updates the data and the tuple's wts to the transaction's committs. Note

that the DBMS did not update the tuple's rts since the transaction never reads that tuple. If the

transaction's committs is less than wts, however, the tuple has already been updated by another

blind write at a later logical time. Therefore, the current write is simply ignored; this is similar

to the Thomas Write Rule in T/O protocols [141]. According to the protocol described above, the

transaction must have committs > rts in this case, which means ignoring the write does not affect

any other transaction's reads. Finally, to handle the case where committs equals wts, the DBMS

can use any static metric to break a tie. For example, the writing transaction's ID can be stored

together with each wts in a tuple so that the (wts, ID) pairs are always different.

With blind writes, a tuple may have its wts > rts. This means the latest version is created by

188



a blind write and has not been read by any transaction yet. This does not affect the correctness of

normal read and write operations.

8.3 Sundial Data Caching

If a distributed database contains some hotspot data that is read by transactions throughout the clus-

ter, transactions accessing the data have to touch multiple servers regardless of where the hotspot

data is mapped to. If the hotspot data is mostly read-only, one solution to reduce distributed trans-

actions is to replicate the readonly hotspot data across all the servers so that every transaction can

access it locally [37, 120]. This solution, however, has several downsides. First, the database ad-

ministrator (DBA) needs to either profile the workloads or manually specify what data should be

replicated. This is a daunting task in a rapidly evolving database. Second, when replicated data

is updated, all nodes need to be notified of the update to maintain consistency. This incurs extra

complexity and overhead. Third, full table replication increases memory footprint, which can be

problematic if the replicated tables are large.

A more flexible solution to handle hotspot data is caching. Specifically, the DBMS can auto-

matically decide what remote data to cache in a server's local memory without the involvement of

DBAs or database users. A query finding the data in a local cache does not have to contact the

remote server, saving both network latency and traffic.

Implementing caching in an OLTP DBMS, however, is challenging. The main difficulty comes

from the complexity to ensure coherence among distributed caches. Namely, when a write happens

in the system, the write needs to propagate to all the caches that store the data, such that serializa-

tion is not violated due to a transaction reading stale data from its local cache. Cache coherence

is notoriously difficult to design and verify. It has been widely studied in distributed shared mem-

ory systems in both hardware [132] and software [83, 97]. It has also been studied in the context

of client-server object-oriented databases in the 1990s [52, 9, 85]. Traditional cache coherence

protocols are invalidation-based: when a tuple is modified, messages are sent to all caches hold-

ing copies to invalidate their now-stale copy of the tuple [123]. The protocol is complex, incurs

coherence traffic in the network, and is difficult to implement efficiently [133]. Given the already-

complex concurrency control protocol, the extra complexity of caching has led to limited adoption

of the idea in distributed OLTP DBMSs.

Caching, however, can be very efficiently supported in Sundial without an extra complex pro-

189



tocol. Sundial is based on logical leases, which is what our Tardis cache coherence protocol in

Chapter 3 is based on. Therefore, implementing logical-lease-based caching on top of the Sundial

distributed concurrency control algorithm (cf. Section 8.2) is relatively straightforward.

In this section, we show how caching is supported in Sundial. We present the overall caching

architecture in Section 8.3.1, the coherence protocol in Section 8.3.2, different caching policies in

Section 8.3.3 and optimization techniques in Section 8.3.4.

8.3.1 Caching Architecture

Figure 8-4 shows an overview of Sundial's caching architecture. The system only caches tuples

for read operations but not for writes. If a transaction attempts to write to a cached tuple, then

it updates the data and leases of both the remote tuple and the locally cached copy. The DBMS

maintains the cache as a network-side buffer at each node. For a read query, the DBMS always

checks the coordinator's local cache. If the requested tuple exists in the cache, then the DBMS may

read that local copy (which contains both the data and the lease). Otherwise, the DBMS sends the

query to the appropriate remote node and the response is stored in the coordinator's cache for future

accesses.

DBMS Cache
read -request to
equest Banks remote server

cache cache
hit metadata -miss

(LRU, index, etc) -tpe

respnspie response from
remote server

Figure 8-4: Caching Architecture - The cache is a network side buffer organized in multiple
banks.

To avoid any centralized bottleneck, the DBMS organizes the cache in multiple banks. Each

bank maintains the metadata of a fraction of cached tuples. The metadata includes a small index

indicating what tuples are cached in the bank. It also keeps track of the occupancy of the bank.

When the bank is full, tuples are replaced following the LRU replacement policy.

190



8.3.2 Cache Coherence with Logical Leases

The main challenge of coherent distributed caches is to ensure that the DBMS maintains a transac-

tion's consistency when it reads cached data. To guarantee that cached data is always up-to-date,

existing caching protocols either need 1) an invalidation mechanism to update all cached copies for

each tuple write, or 2) to check the freshness of data for each local cache hit. The former means

that all the caches always have the latest version of a tuple. But broadcasting on each tuple write

incurs significant network latency and bandwidth overhead. The latter solution does not have the

broadcasting overhead, but incurs a remote request for each cache hit, which offsets the gain that

caching provides.

In Sundial, an invalidation mechanism is not required due to its logical leases (which is similar

to Tardis, Chapter 3). It also avoids the necessity of contacting the remote node for each cache hit.

Sundial caches a remote tuple by storing both the data and the lease locally. A transaction can read

the cached tuple as long as the lease can satisfy the transaction's committs. Conceptually, Sundial's

cache coherence protocol has two major differences from existing coherence protocols. First, it is

lease-based. A tuple write is not responsible for invalidating cached copies, instead, each read is

responsible for getting the correct data version by taking a lease. A transaction can read a cached

tuple provided that the lease is still valid (i.e., committs falls within the lease). Second, since the

lease is logical, any node caching a tuple does not have to detect a remote write immediately after

it happens in physical time. A transaction may continue reading the physically stale cached version

for as long as it is logically valid (i.e., the lease can satisfy its commitgts). If the DBMS discovers

that the lease is too old when it validates the transaction, it sends a request to that tuple's home node

to extend the lease.

Compared to other caching protocols [52, 85], caching in Sundial has lower complexity due to

the elimination of multicasting invalidations. In Sundial, caching does not introduce new messages,

but only removes or reduces the size of existing messages.

The caching mechanism discussed so far works for SELECTs with an equality predicate on the

table's primary key. But the same technique can also be applied to range scans or secondary index

lookups. Since the index nodes also maintain leases, the DBMS can cache the index nodes in the

same way as it caches tuples. An index insert/delete is similar to a tuple write, and is detected by the

transaction when the end of the lease on an index node is smaller than committs of the transaction.

191



8.3.3 Policies

There are different ways to manage the cache at each node. We discuss a few possibilities in this

section and show their advantages and disadvantages.

Always Reuse: The simplest approach is to always return the cached tuple to the transaction

for each cache hit. This works well for read-only tuples, but can hurt performance for tuples that

are modified often since it leads to more transaction aborts. If a cached tuple has an old lease, then

it is possible that the tuple has already been modified by another transaction at its home node. If

a transaction reads the stale cached tuple, then the DBMS may try to extend the lease when the

transaction attempts to commit in the validation phase. But the lease extension may fail because

another transaction modified the tuple at the home node, which causes the current transaction to

abort.

Always Request: An alternative policy is where the DBMS always sends a request to the remote

node to retrieve the data even for a cache hit. Caching still provides some benefit in this scheme.

The DBMS sends a query request to a remote node that contains the query as well as the wts of the

expected tuple(s) that the query will return (if they exist in its cache). If the tuple at the home node

has the same wts as the cached tuple, then this means that the requesting node contains the correct

version and the DBMS does not need to return the data in the response. Although the transactions'

latencies do not change, this technique does reduce the amount of network traffic in the system

compared to the no caching scheme.

Hybrid: Lastly, Sundial uses a hybrid caching policy that strives to achieve the benefits of both

the always request and always reuse policies. At each node, the DBMS counts the number of remote

reads and writes that it sends for each table. Then, the DBMS periodically checks to see whether

a table is read intensive (i.e., the ratio between remote reads and writes is greater than a certain

threshold), and then switches to the always reuse scheme. Otherwise, the DBMS simply uses the

always request scheme to avoid increasing the number of transaction aborts.

8.3.4 Read-Only Table Optimizations

We can extend Sundial's caching scheme to optimize accesses to read-only tables. The problem

is that the lease of a cached read-only tuple may be smaller than a transaction's committs, which

192



means the DBMS has to continually extend the tuple's lease at its home node. These frequent lease

extensions are essentially wasted work that increases the amount of network traffic in the system.

We now describe two techniques that Sundial uses to reduce the number of lease extension requests

for such read-only tables. We evaluate their efficacy in Section 8.5.4.

The first optimization is to track and extend leases at the table granularity to amortize the cost

of lease extension. The DBMS can discover that a table is read-only or read-intensive because it

has a large ratio between reads and writes. For each table, the DBMS maintains a max_wts which

is the largest wts of all its tuples. max wts is updated whenever one of its tuples advances wts. A

read-only table also maintains maxrts; this means that the leases for all of the table's tuples are

at least maxrts, even if the tuple's rts shows a smaller value. If any tuple is modified, its new wts

must be at least Max(rts +1, maxrts +1). When the DBMS requests a lease extension for a tuple

in a read-only table, all the leases in the table are extended by advancing max-rts. The maxrts is

returned to the requesting node's cache. A future cache hit in that table considers the end of the

lease to be Max(max rts, rts).

Another technique to amortize the lease extension cost is to speculatively extend the lease to a

larger timestamp than what is asked for. Instead of extending the rts (or max-rts) to the committs of

the requesting transaction, Sundial extends rts to committs + lease for presumed read-only tables.

lease increases as more confidence is gained that the table is indeed read-only. This reduces the

number of lease extensions since each one is more effective. The two optimizations discussed

above are orthogonal to each other and both are implemented in Sundial.

8.4 Discussion

We now discuss two additional aspects of Sundial's concurrency control protocol and caching

scheme described in the previous sections. We first characterize the types of transaction aborts

that can occur at runtime and discuss ways for the DBMS to reduce them. We also compare Sundial

with dynamic timestamp allocation [17] algorithms and show the advantages that Sundial's logical

leases provide.

8.4.1 Transaction Aborts

As we described in Section 8.2.2, write-write conflicts are difficult for a DBMS to prevent and thus

they are not the main focus of Sundial. Therefore, we focus our discussion on aborts caused by

193



Logical Time

Case (a): DB[keyJ.wts > committs

wts rts ----- wts rts
committs

Case (b): DB[key].wts 5 committs

RS[key] I B I y
wts rts wtstI rts

committs

Case (c): Locked by another transaction

RS[key] 1s

wts rts
committs

Figure 8-5: Transaction Aborts - Three examples of when the DBMS will abort a transaction
under Sundial due to read-write conflicts.

read-write conflicts.

There are three conditions in Sundial that a transaction's committs must satisfy before the

DBMS is allowed to commit it:

commitjts > tuple.wts, Vtuple E RS (8.1)

committs ; tuple.rts, Vtuple E RS (8.2)

committs > tuple.rts + 1, Vtuple E WS (8.3)

Condition (8.1) is always satisfied since committs is updated for each read. Likewise, Condi-

tion (8.3) is also always satisfied because each write updates the committs and no other transaction

can modify the tuple's rts because of the lock. Therefore, the DBMS only aborts a transaction if it

fails Condition (8.2) in the prepare phase; this is because the transaction fails to extend a lease since

the tuple was locked or modified by another transaction (cf. Algorithm 10).

There are three scenarios where a transaction fails Condition (8.2) above, as illustrated in Fig-

ure 8-5.

Case (a): In this scenario, the tuple's wts in the database is greater than or equal to transaction

Ti's committs. The DBMS must abort Ti because it is unknown whether or not it can extend the

194



tuple's rts to committs. It is possible that another transaction modified the tuple after RS[key].rts

but before committs, in which case the DBMS aborts T1. But it is also possible that no version

was created before committs such that the version in Ti's read set is still valid at committs and

therefore Ti can commit. This uncertainty can be resolved by maintaining a history of recent wts's

in each tuple [158].

Case (b): Another transaction already wrote the latest version of the tuple to the database before

Ti's committs. The DBMS is therefore unable to extend the lease of the transaction's local version

to committs. As such, the DBMS has to abort T1.

Case (c): Lastly, in this example the DBMS is unable to extend the tuple's rts because another

transaction holds the lock for it. Again, this will cause DBMS to abort T1.

For the second and third scenarios, Sundial is potentially able to avoid them if the DBMS lets

each read operation extend the tuple's lease during the execution phase. This may reduce the number

of renewals during the prepare phase, thereby leading to fewer aborts. But speculatively extending

the leases in this manner also causes the transaction that updates the tuple to jump further ahead

in logical time, leading to even more extensions and potential aborts. We defer to future work the

understanding of under what workload conditions such optimizations would improve performance

in Sundial.

8.4.2 Sundial vs. Dynamic Timestamp Allocation

There are previous proposals for concurrency control protocols that use dynamic timestamp alloca-

tion (DTA) to determine transactions' logical commit timestamps [17]. In DTA, the DBMS assigns

each transaction a timestamp range when the transaction starts (e.g., 0 to infinity). Then, when the

DBMS detects a conflict, it shrinks the transaction's range and also pushes the boundary of ranges of

transactions in conflict with it such that ranges of conflicting transactions do not overlap. If a trans-

action's timestamp range is not empty when it commits, then the DBMS can pick any timestamp

from its range as the commit timestamp. Otherwise, the DBMS will abort the transaction. Simi-

lar to Sundial, DTA dynamically orders transactions with read-write conflicts to minimize aborts.

DTA has been applied to OCC algorithms in real-time DBMSs [91, 96], single-node multi-version

concurrency control [100], and distributed single-version concurrency control protocols [103].

195



There is one fundamental drawback of DTA algorithms that makes them less efficient than Sun-

dial in a distributed environment. The key observation is that DTA requires the DBMS to explicitly

coordinate transactions to shrink their timestamp ranges when a conflict occurs. In contrast, with

Sundial the DBMS only considers the tuples that a transaction accessed to determine a transaction's

commit timestamp. Although DTA's coordination overhead is acceptable in a single-node DBMS

setting [100], we find that distributed transactions that conflict with transactions running at other

nodes increase the complexity of timestamp range coordination and therefore degrade performance.

We use MaaT [103], a distributed DTA-based concurrency control protocol, as an example to

illustrate the problem. In MaaT, the DBMS assigns a transaction with the initial timestamp range

of [0, +oo). The DBMS maintains the range at each node accessed by the transaction so that it

can be adjusted locally when a conflict occurs. When a transaction begins the validation process

after execution, the DBMS needs to determine whether its timestamp range is empty or not. This

is done by locking the range at each participating node (through the prepare phase) and taking the

union of the ranges at the coordinator. Locking is necessary to avoid other conflicting transactions

from modifying the range. The problem, however, is that many transactions in MaaT have ranges

with an upper bound of +o. Thus, after they locked their timestamp ranges in the prepare phase,

transactions that depend on them will not have a feasible range and have to be aborted. This problem

is not MaaT-specific, but fundamental to all DTA protocols. As we will show in Section 8.5, these

aborts severely limit the performance of MaaT.

8.5 Experimental Evaluation

We now evaluate Sundial's performance for OLTP workloads. We implemented Sundial in a dis-

tributed DBMS testbed based on the DBx 1000 DBMS [157]. We extended it to work in a distributed

setting. Each node in the system has one input and one output thread for inter-node communi-

cation. The DBMS designates all other threads as workers that communicate with input/output

threads through asynchronous buffers. The testbed's workload driver submits transaction requests

in a blocking manner with one open transaction at a time per worker thread.

At runtime, the DBMS puts transactions that abort due to contention (e.g., lock acquisition

failure, validation failure) into an abort buffer. It then restarts these transactions after a small back-

off time (randomly selected between 0-1 ms). The DBMS does not restart transactions caused by

user-initiated aborts.

196



Most of the experiments are performed on a cluster of four nodes running Ubuntu 14.04. Each

node contains two Intel Xeon E5-2670 CPUs (8 threads each x 2 with HT) and 64 GB of DRAM.

The nodes are connected together with a 10 GigE network. For the datacenter experiments in

Sections 8.5.8 and 8.5.9, we use the Amazon EC2 platform. For each experiment, the DBMS runs

for a warm-up period of 30 seconds, and then results are collected for the next 30 seconds run.

8.5.1 Workloads

We use two different OLTP workloads in our evaluation. All transactions execute as stored proce-

dures that contain program logic intermixed with queries.

YCSB: The Yahoo! Cloud Serving Benchmark [35] is a synthetic benchmark modeled after

cloud services. It contains a single table that is partitioned across servers in a round-robin fashion.

Each partition contains 10 GB data with 1 KB tuples. Each transaction accesses 16 tuples as a mix-

ture of reads (90%) and writes (10%) with on average 10% of the accesses being remote (selected

uniformly at random). The queries access tuples following a power law distribution characterized

by a theta parameter. By default, we use theta = 0.9 which means 75% of all accesses go to 10% of

hot data.

TPC-C: This is the standard benchmark for evaluating the performance of OLTP DBMSs [140].

It models a warehouse-centric ordering processing application that contains five transaction types.

All the tables except ITEM are partitioned based on the warehouse ID. By default, the ITEM table is

replicated in all nodes' main memory. We use a single warehouse per node to model high contention.

8.5.2 Concurrency Control Algorithms

We implemented the following concurrency control algorithms in our testbed for our evaluation:

2PL: We used a deadlock prevention variant of 2PL called Wait-Die [18]. A transaction is

allowed to wait to acquire a lock if its priority is higher than the current lock owner; otherwise the

DBMS will abort it. We used the current wall clock time attached with the thread id as the metric

of priority. This algorithm is similar to the approach used in Google Spanner [36].

Google Fl: This is an OCC-based algorithm used in Google's Fl DBMS [130]. During the

197



read-only execution phase, the DBMS tracks a transaction's read and write set. When the transaction

goes to commit, the DBMS then locks all of the tuples accessed by the transaction. It will then abort

the transaction if it fails to acquire any of these locks or if the latest version of any tuple is different

from the version it saw during the execution phase.

MaaT: As described in Section 8.4.2, this is a state-of-the-art DTA protocol [103]. We inte-

grated the original MaaT source code into our testbed. We also improved the MaaT implementation

by (1) reducing unnecessary network messages, (2) adding multi-threading support, and (3) improv-

ing its garbage collection.

Sundial: Our approach from Section 8.2. We enable all of Sundial's caching optimizations

from Section 8.3 unless otherwise stated for a particular experiment. Each node maintains a local

cache of 1 GB. Sundial by default uses the hybrid caching policy with a threshold of 1% writes to

determine whether a table is read intensive or not.

8.5.3 Performance Comparison

We now quantitatively compare Sundial to the other baseline concurrency control algorithms using

the YCSB and TPC-C workloads on four servers. For each workload, we report throughput as we

sweep the number of worker threads from 1 to 28. After 28 threads, the DBMS's performance

drops due to context switching. We run Sundial with and without caching enabled (using the hybrid

policy).

In addition to throughput measurements, we also provide a breakdown of transactions' latency

measurements and network traffic. These metrics are divided into Sundial's three phases (i.e., exe-

cution, prepare, and commit), and when the DBMS aborts a transaction.

The results in Figures 8-6a and 8-7a show that Sundial outperforms the best evaluated baseline

algorithm (i.e., 2PL) by 57% in YCSB and 34% in TPC-C. Caching does not improve performance

in these workloads in the current configuration. For YCSB, this is because the transactions both

read and write to the only table in the database and the fraction of write queries is high. Therefore,

a remote query always sends a request message to the remote node even for a cache hit. As such,

a transaction has the same latency regardless of whether caching is enabled. In TPC-C, all remote

requests are updates instead of reads, therefore Sundial's caching does not help. In these experi-

ments, we configured the DBMS to manually replicate the ITEM table on every node, so all accesses

198



to ITEM are local.

Sundial * E 2PL MaaTj
Sundial (No Cache) -- F1

5100 A-

80-
8 60 ~-

40

20

0

Execution Phase = Commit Phase
Prepare Phase = Abort

1200 73500

1000 2 3000
800 S 2500

-o ix 2000

t600 j5o niI400 1500
10001

0 5 10 15 20 25 30 1Sundial ndal 2PL F1 MaaT Sundial Sundial 2PL F1 MaaT
#,of Threads per Server No Cache No Cache

(a) Throughput (b) Latency Breakdown (c) Traffic Breakdown

Figure 8-6: Performance Comparison (YCSB) - Runtime measurements when running the con-
currency control algorithms for the YCSB workload.

S u n d ia l w - 2 P L + M a T
- Sundial (No Cache) F1

25ai

i
5

200

150

C100

1 o 5
= 01

Execution Phase W- Commit Phase
Prepare Phase ~ Abort

2400 __ -

300

200

B100

0r d10 -15 - 20 25 30 Sundial Sundial 2PL F1 MaaT
* of Threads per Server No Cache

(a) Throughput (b) Latency Breakdown

Figure 8-7: Performance Comparison (TPC-C) - Runtime
concurrency control algorithms for the TPC-C workload.

Execution Phase E" Commit Phase
Prepare Phase Abort

250H
200-

150

100

S50 m
5 - 70 Sundial Sundial 2PL Fl Mea T

No Cache

(c) Traffic Breakdown

measurements when running the

Figures 8-6b and 8-6c show the latency and network traffic breakdown of different algorithms

on YCSB at 16 threads. We attribute Sundial's lower latency and network traffic compared to other

algorithms to the fewer number of transaction aborts that the DBMS incurs, which is due to the

dynamic timestamp assignment for read-write conflicts. Enabling Sundial's caching scheme further

reduces traffic in the execution phase. This is because for a cache hit that contains the up-to-date

tuple, although the transaction sends a request to the remote node, the data is not sent back to the

coordinator (cf. Section 8.3.3). We will provide a more detailed analysis of caching in Sections 8.5.4

and 8.5.5.

Another interesting observation in Figure 8-6b is that F1 and MaaT both incur considerable

latency in the commit phase while 2PL and Sundial do not. This is because in both 2PL and Sundial,

if the sub transaction is read-only on a remote node, the commit phase on that node can be skipped.

In F 1 and MaaT, however, this optimization cannot be applied since they have to either release locks

(Fl) or clear timestamp ranges (MaaT) in the commit phase; a round trip message is required in the

commit phase to perform these operations.

The latency and traffic breakdown of TPC-C (Figures 8-7b and 8-7c) show a trend similar to

199

= xecution Phase 17-1 Commit Phase
Prepare Phase - Abort

-



YCSB in that there are significant gains from reducing the cost of aborts. Since only one ware-

house is modeled per node in this experiment, there is high contention on the single row in the

WAREHOUSE table. As a result, all algorithms spent significant time on aborted transactions. But

both 2PL and Sundial do not incur much traffic for aborted transactions. This is because contention

on the WAREHOUSE table happens at the beginning of each transaction. In 2PL, the DBMS resolves

conflicts immediately (by letting transactions wait or abort) before sending out any remote queries.

Similar to 2PL, Sundial resolves write-write conflicts early as well; for read-write conflicts, Sun-

dial's logical leases allow it to resolve most conflicts by dynamically determine the commit order,

without aborting transactions.

8.5.4 Caching with Read-Only Tables

We next measure effectiveness of Sundial's caching scheme on databases with read-only tables.

For this experiment, we use the TPC-C benchmark because it contains a table (ITEM) that is read-

only and is shared by all the database partitions. To avoid remote queries on the ITEM, our TPC-C

implementation so far replicates the table across all of the partitions. Table replication is a workload-

specific optimization that requires extra effort from DBAs [120, 37]. In contrast, caching is more

general and completely transparent, and therefore much easier to use. We study the performance of

Sundial's different caching policies using the TPC-C benchmark. For each caching policy, we show

performance as the number of warehouses changes in the workload.

For this experiment, we use two configurations for the ITEM table:

" Replication (Rep): The DBMS replicates the table across all the partitions, thereby all ac-

cesses to the table are local.

" No Replication (NoRep): The DBMS hash partitions the ITEM on its primary key. A signifi-

cant portion of queries on this table have to access a remote node.

For the configuration without table replication, we test two different caching configurations:

" Default Caching (Cache): The original caching scheme described in Section 8.3.2.

" Caching with Optimizations (OptCache): Sundial's caching scheme with the two read-only

optimizations from Section 8.3.4.

According to Figure 8-8, not replicating the ITEM table shows a significant performance penalty.

This is because the table is intensively read by a large fraction of transactions (i.e., all NewOrder

transactions that are 45% of the workload). Most of them are distributed if ITEM is not replicated.

200



Rep Cache M Execution Phase M Commit Phase
u OptCache + + NoRep M Prepare Phase [ Abort

7600 300

c500- 7 --' 250

0 400- -200

100 r0S0

2 4 6 8 10 12 14 16 0
# of warehouses per node Rep OptCache Cache NoRepl

(a) Throughput (b) Latency Breakdown (16 warehouses per node)

Figure 8-8: Caching with Read-Only Tables - Performance of different TPC-C configurations in

Sundial with caching support.

With the caching support in Sundial, however, the performance gap can be completely closed. Since

the ITEM table is small, Sundial caches the full ITEM table at each node. Essentially, caching

achieves the same benefit as manual table replication but hides the complexity from the database

users.

From Figure 8-8, we observe that the read-only table optimizations are important for perfor-

mance. Without the optimizations, Sundial achieves modest performance gain through caching,

mainly by reducing the traffic overhead (but not latency overhead) of fetching remote data during

the execution phase (Figure 8-8b). However, a cached tuple in the ITEM table needs frequent lease

extension during the prepare phase. All of these extensions are successful. But the latency incurred

hurts performance. With the read-only table optimization, all leases in the ITEM table are extended

together when one of them needs to be, thereby greatly amortizing the cost.

8.5.5 Caching Policies

We now evaluate Sundial's caching policies for read-write tables that we presented in Section 8.3.3:

" No Cache: The DBMS's caching scheme is disabled.

" Always Reuse: The DBMS always reads a cached tuple if it exists in its local cache.

" Always Request: The DBMS always sends a request to retrieve the latest version of the tuple

even if it exists in its local cache.

" Hybrid: The DBMS always reuses cached tuples for read-intensive tables and always requests

otherwise. A table is considered to be read-intensive if less than I% of accesses to the table are

writes.

For these experiments, we use YCSB and sweep the percentage of write queries in transactions.

201



This changes whether or not the DBMS designates the single table in YCSB as read-intensive.

The results in Figure 8-9 show that reusing the cache improves performance when the data is

read-intensive. In this case, cached tuples are unlikely to be stale, therefore reading them does

not cause many unnecessary aborts. As the number of writes increases, however, many of the

transactions abort because they read stale cached tuples. This makes the performance of always

reuse even worse than just disabling the cache when more than 1% of queries are writes.

No Cache - - Always Request No Cache - - Always Reques No Cache - Always Request
Always Reuse - - Hybrid Always Reuse Hybrid Always Reuse - Hybrid

S250
200 5

0 --~150-------------
100 0
0

50
no

0.8-

0.6

0.4

0.2-

0 :

2500
1 2000-

91500-

a1000 ---

500oo -

0 .0 0.1% 1% 10% 100% 0 0.1% 1% 10% 100% 0 0.1% 1% 10% 10
Fraction of Write Queries Fraction of Write Queries Fraction of Write Queries

(a) Throughput (b) Abort Rate (c) Network Traffic

Figure 8-9: Caching Policies - Sweeping the percentage of write queries in YCSB.

In contrast, the DBMS never performs worse when always requesting compared to no caching.

It has the same abort rate as no caching since a transaction always reads the latest tuples. But

the DBMS also incurs lower network traffic than no caching since cache hits on fresh tuples do

not require data transfer. Thus, when a table is read intensive, this leads to some performance

improvement but not as much as the always reusing configuration.

Lastly, the hybrid scheme combines the best of both worlds by adaptively choosing between

always reusing and always requesting. This allows the DBMS to achieve the best throughput of all

the schemes with the lowest network traffic.

8.5.6 Measuring Aborts

We designed the next experiment to better understand how transaction aborts occur in the Sundial

and MaaT protocols. For this, we executed YCSB with the default workload mixture for trans-

actions. We instrumented DBx 1000 to record the reason .why the system aborts a transaction due

to a conflict. A transaction is counted multiple times if it is aborted and restarted multiple times.

To ensure that each protocol has the same amount of contention in the system, we keep a constant

number of active transactions running during the experiment.

The tables in Figure 8-10 show the percentage of transactions that were aborted from all transac-

tions executed. We see the abort rate of Sundial is 3.3 x lower than that of MaaT. The main cause of

202

0%

-



Abort Cases Abort Rate
Case (a): committs < DB[key].wts 1.79%
Case (b): committs > DB[key].wts 1.56%
Case (c): tuple locked 6.60%
Aborts by W/W Conflicts 4.05%
Total 14.00%

(a) Sundial

Abort Cases Abort Rate
Conflict with [x,oo) 42.21%
Empty range due to other conflicts 4.45%
Total 46.66%

(b) MaaT

Figure 8-10: Measuring Aborts - The different types of aborts that occur in Sundial and MaaT for
the YCSB workload. For Sundial, we classify the aborts due to read-write conflicts into the three
categories from Section 8.4. 1.

aborts in MaaT is due to conflicts with locked range of [x, oo) where x is some constant. As discussed

in Section 8.4.2, this happens when a transaction reads a tuple and enters the prepare phase with a

timestamp range of [x, oo). While the transaction is preparing, a subsequent transaction that writes

to the same tuple has to abort due to an empty timestamp range (cf. Section 8.4.2). In Sundial,

most of the aborts are caused by case (c) in read-write conflicts, where a transaction tries to extend

a lease that is locked by another writing transaction. There are also many aborts due to write-write

conflicts. The number of aborts due to case (a) and case (b) are about the same and lower than the

other two cases.

8.5.7 Dynamic vs. Static Timestamp Assignment

One salient feature of Sundial is its ability to dynamically determine the commit timestamp of a

transaction to minimize aborts. Many existing concurrency control protocols, in contrast, assign a

static timestamp to each transaction when it starts and use multi-versioning to avoid aborting read

queries that arrive late [41, 1, 98]. The inability to flexibly adjust commit order, however, can lead to

unnecessary aborts due to writes that arrive late (i.e., a write request to a tuple arrives after a read to

the tuple has been performed with a timestamp larger than the timestamp of the writing transaction).

In this experiment, we compare Sundial without caching against a multi-version concurrency

control (MVCC) protocol with varying amounts of clock skew between nodes (using ptp [5]). Our

MVCC implementation is idealized as it does not maintain the data versions, and therefore does not

have associated overhead in memory and computation (e.g., garbage collection) [155]. This allows

us to just compare the amount of concurrency enabled by Sundial and MVCC.

203



In Figure 8-11, we observe that even with no skew (skew less than 10 ps), MVCC has slightly

worse performance than Sundial. This degradation is mostly caused by the extra aborts due to writes

that arrive late. In Sundial, the dynamic timestamp assignment can move these writes to a later

timestamp and thus reduce these aborts. Increasing the clock skew further reduces the throughput

of the MVCC protocol. This is because writes from nodes that fall behind in time will always fail

due to reads to the same tuples from other nodes. The DBMS's performance with Sundial does not

suffer with higher amounts of clock skew since its timestamps are logical.

l Sundial (No Cache) i-' MVCC (Skew=lms)
MVCC (No Skew) . MVCC (Skew=10ms)

-0 120

X 100-

60 -

0 40-

20 -0
H.C

0 5 10 15 20 25 30
# of Threads per Server

Figure 8-11: Dynamic vs. Static Timestamp Assignment - Performance comparison between

Sundial and a baseline MVCC protocol that statically assigns timestamps to transactions.

8.5.8 Scalability

For the final two experiments, we deployed DBx 1000 on Amazon EC2 to evaluate it in larger and

more geographically dispersed clusters. We first study the scalability of the concurrency control

protocols as we increase the number of nodes in the cluster. Each node is an m4. 2xlarge instances

type with eight virtual threads and 32 GB main memory. We assign two threads to handle the input

and output communications, and the remaining six are used as worker threads. We run the YCSB

workload using the workload mixture described in Section 8.5.1.

The first notable result in Figure 8-12 is that the performance of all the protocols drop to the

same level when the node count increases from one to two. This is due to the overhead of the

DBMS having to coordinate transactions over the network [69]. Beyond two nodes, however, the

performance of all of the algorithms increase as the number of nodes increases. We see that the

performance advantage of Sundial remains as the node count increases. Again, we attribute this

to the reduction in the number of transaction aborts due to the dynamic timestamp management of

204



______________________________________ _______________ -J

o o Sundial F I 2PL 4- + MaaT 4-4 Google Fl

(A

CX
0

.-

0

400

300

200

100

0
0 10 20

# of data servers
30 40

Figure 8-12: Scalability - Throughput of concurrency control algorithms for the YCSB workload

on Amazon EC2.

Sundial.

8.5.9 Cross-Datacenter Transactions

Lastly, we measure how Sundial performs when transactions have to span geographical regions. In

the previous experiments, all of the nodes are located in the same data center and therefore have low

communication latency with each other. We deployed DBx1000 on Amazon EC2 in an eight node

cluster with each node located in a different datacenter 1. We ran the YCSB workload again and

compared the different concurrency control protocols. The results are shown in Figure 8-13.

0.20
-
'0.15

m

- 0.05-
0.00I- Suidial Sundial 2PL MaaT Google F1

No Cache

(a) Throughput

Figure 8-13: Cross-Datacenter Transactions
nodes are placed in different data centers.

Execution Phase = Commit Phase
Prepare Phase = Abort

3000
> 2500-
' 2000-

1500-
1000-

500-

Sundial Sundial 2PL MaaT Google F1
No Cache

(b) Traffic per Transaction

Throughput and Traffic per Transaction when

From the results, we observe that all the concurrency control algorithms suffer from much higher

network latencies (on average 100+ ms round trip) due to cross-continent communications, which

'North Virginia (us-east-1), North California (us-west-1), Ireland (eu-west-1), Frankfurt (eu-central-1), Singapore
(ap-southeast- 1), Sydney (ap-southeast-2), Tokyo (ap-northeast- 1), and Mumbai (ap-south- 1)

205

0 
0 

lo

LK



leads to three orders of magnitude reduction in performance. As shown in the figure, Sundial still

outperforms the other baseline concurrency control algorithms. Caching slightly improves the per-

formance of Sundial due to the reduction of network traffic, which is especially expensive in this

operating environment.

206



Chapter 9

Conclusion and Future Work

This thesis has presented a new technique, logical leases, to improve performance and scalability

of shared-memory parallel systems in both hardware and software. In particular, we have made the

following contributions.

Scalable cache coherence protocols: We have built Tardis, a scalable cache coherence pro-

tocol based on logical leases. Compared to the widely used full-map directory-based coherence

protocols, Tardis has less storage and network message overhead and achieves better performance,

while being simpler to reason about. We have described the basic Tardis protocol and evaluated

its performance compared to other coherence protocols, proposed optimizations and extensions to

Tardis, and formally proved the correctness of Tardis.

Scalable concurrency control algorithms: We have studied the scalability of seven traditional

concurrency control algorithms in a simulated 1000-core processor, and found that none of the al-

gorithms scale. For each algorithm, we identified both fundamental and artificial bottlenecks. We

have proposed TicToc, a new concurrency control algorithm for multicore databases. TicToc elimi-

nates the scalability bottlenecks in traditional concurrency control algorithms through using logical

leases. We have built Sundial, a new distributed concurrency control algorithm using logical leases

to seamlessly integrate concurrency control and caching into a unified, low-complexity protocol.

Both TicToc and Sundial significantly improve performance and reduce abort rate compared to their

counterparts.

The ideas in this thesis can motivate the following interesting future research directions:

Multi-chip shared-memory processor: In this thesis, the Tardis cache coherence protocol is

designed and evaluated in the environment of a single-chip multicore processor. A computer, how-

207



ever, may contain multiple processor chips. Applying Tardis to multi-chip systems has different de-

sign trade-offs than a single-chip environment. There are at least two interesting research questions.

First, how should Tardis be implemented across chips where each chip implements a traditional

cache coherence protocol (e.g., directory-based)? This enables large scale multi-chip systems using

existing commercial processors as building blocks. Second, how should Tardis be deployed over a

heterogeneous system, where each chip has its own coherence requirement? Due to the scalability

of Tardis, the number of processing units do need to be determined when the coherence protocol is

implemented.

Distributed Shared Memory (DSM) Systems: Today, multicore and multi-socket processors

have a shared memory programming model and enforce coherence in hardware, while clusters and

distributed systems have a message-passing programming model and handle communication in soft-

ware. As network bandwidth increases and latency reduces, the boundary between multicore and

distributed environments blur. It is an interesting research direction to study how to extend the

shared programming model to multiple servers. These systems are known as distributed shared

memory (DSM) systems. One interesting future research project is to apply Tardis to this environ-

ment, and study what hardware and/or software changes are required for maximizing performance.

It is also interesting to study how Tardis leverages new hardware features, including hardware trans-

actional memory (HTM) and remote direct memory access (RDMA), in a DSM system.

Transactional Memory: Transactional memory adds transactions to shared-memory systems

in order to reduce complexity of synchronization, making it easier for programmers to write parallel

codes. Transactional memory has been applied to both hardware and software, known as hardware

transactional memory (HTM) and software transactional memory (STM), respectively. Traditional

HTM and STM systems are implemented on top of the existing cache coherence protocols (e.g.,

directory-based protocols). Due to the complexity of the underlying coherence protocols and the

difficulty of managing transactions, HTM and STM are challenging to implement. In fact, the

first-generation Haswell processors that support HTM had to disable HTM functionality due to a

design bug [67]. We believe that since logical leases simplify the design of both cache coherence

and concurrency control protocols, it is promising to design HTM/STM systems based on logical

leases.

Fault Tolerance of Logical Leases

One benefit of using leases for caching is the simplification of fault tolerance [59]. Compared

to directory-based protocols, the amount of metadata maintained in a lease-based protocol is signif-

208



icantly reduced (i.e., from a sharer list to a simple lease). More important, leases are independent

of the number of privates caches in the system. In a lease-based protocol, a non-responding private

cache does not stall the whole system; other cores make forward progress without waiting for the

non-responding core. It is interesting future work to study the implication of logical leases on fault

tolerance in all types of shared-memory systems.

209



210



Bibliography

[1] CockroachDB. https: //www. cockroachlabs. com.

[2] DBx1000. https://github. com/yxymit/DBx1000.

[3] H-Store: A Next Generation OLTP DBMS. http: //hstore. cs .brown. edu.

[4] VoltDB. http: //voltdb. com.

[5] IEEE standard for a precision clock synchronization protocol for networked measurement
and control systems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pages 1-300,
July 2008.

[6] Intel brings supercomputing horsepower to big data analytics. http: //intel.ly/18A3EM,
November 2013.

[7] NuoDB architecture. http://go.nuodb.com/rs/nuodb/images/
Technical-Whitepaper.pdf, 2017.

[8] Santa V Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.
computer, 29(12):66-76, 1996.

[9] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Maheshwari. Efficient optimistic
concurrency control using loosely synchronized clocks. ACM SIGMOD Record, 24(2):23-
34, 1995.

[10] Yehuda Afek, Geoffrey Brown, and Michael Merritt. Lazy caching. ACM Transactions on
Programming Languages and Systems (TOPLAS), 15(1):182-205, 1993.

[11] Anant Agarwal, Richard Simoni, John Hennessy, and Mark Horowitz. An evaluation of di-
rectory schemes for cache coherence. In 25 years of the international symposia on Computer
architecture (selected papers), pages 353-362. ACM, 1998.

[12] Niket Agarwal, Li-Shiuan Peh, and Niraj K Jha. In-network coherence filtering: snoopy
coherence without broadcasts. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 232-243. ACM, 2009.

[13] Niket Agarwal, Li-Shiuan Peh, and Niraj K Jha. In-network snoop ordering (INSO): Snoopy
coherence on unordered interconnects. In High Performance Computer Architecture, 2009.
HPCA 2009. IEEE 15th International Symposium on, pages 67-78. IEEE, 2009.

[14] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A. Wood. DBMSs on a
modem processor: Where does time go? In VLDB, pages 266-277, 1999.

211



[15] Thomas J Ashby, Pedro Diaz, and Marcelo Cintra. Software-based cache coherence with
hardware-assisted selective self-invalidations using bloom filters. IEEE Transactions on
Computers, 60(4):472-483, 2011.

[16] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran, Jim N
Gray, Patricia P. Griffiths, W Frank King, Raymond A. Lorie, Paul R. McJones, and James W.
Mehl. System R: Relational approach to database management. ACM Transactions on
Database Systems (TODS), 1(2):97-137, 1976.

[171 Rudolf Bayer, Klaus Elhardt, Johannes Heigert, and Angelika Reiser. Dynamic timestamp
allocation for transactions in database systems. In 2nd Int. Symp. on Distributed Databases,
pages 9-20, 1982.

[18] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed database sys-
tems. ACM Comput. Surv., 13(2):185-221, 1981.

[19] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control - theory and
algorithms. ACM Trans. Database Syst., 8(4):465-483, December 1983.

[20] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems, chapter 5. 1987.

[21] Phillip A. Bernstein, D.W. Shipman, and W.S. Wong. Formal aspects of serializability in
database concurrency control. IEEE Transactions on Software Engineering, 5(3):203-216,
1979.

[22] Ritwik Bhattacharya, Steven German, and Ganesh Gopalakrishnan. Symbolic partial order
reduction for rule based transition systems. In Correct Hardware Design and Verification
Methods. Springer Berlin Heidelberg, 2005.

[23] Ritwik Bhattacharya, Steven M. German, and Ganesh Gopalakrishnan. Exploiting symmetry
and transactions for partial order reduction of rule based specifications. In In Antti Valmari,
editor, SPIN, volume 3925 of Lecture Notes in Computer Science, pages 252-270. Springer,
2006.

[24] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,
January 2011.

[25] Roberto Bisiani, Andreas Nowatzyk, and Mosur Ravishankar. Coherent Shared Memory on
a Distributed Memory Machine. In In Proc. of the 1989 Int'l Conf on Parallel Processing
(ICPP'89), pages 133-141, 1989.

[26] Geoffrey M Brown. Asynchronous multicaches. Distributed Computing, 4(1):31-36, 1990.

[27] Jason F Cantin, Mikko H Lipasti, and James E Smith. Improving multiprocessor performance
with coarse-grain coherence tracking. In ACM SIGARCH Computer Architecture News, vol-
ume 33, pages 246-257. IEEE Computer Society, 2005.

[28] Michael J Carey, David J DeWitt, Michael J Franklin, Nancy E Hall, Mark L McAuliffe,
Jeffrey F Naughton, Daniel T Schuh, Marvin H Solomon, CK Tan, Odysseas G Tsatalos,
et al. Shoring Lip persistent applications, volume 23. ACM, 1994.

212



[29] Lucien M. Censier and Paul Feautrier. A new solution to coherence problems in multicache
systems. Computers, IEEE Transactions on, 100(12):1112-1118, 1978.

[30] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-based cache
coherence in large-scale multiprocessors. Computer, 23(6):49-58, 1990.

[31] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS directories: A scalable
cache coherence scheme, volume 26. ACM, 1991.

[32] Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. Efficient methods
for formally verifying safety properties of hierarchical cache coherence protocols. Form.
Methods Syst. Des., 36(1):37-64, February 2010.

[33] Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Smolinski, Nima Honarmand, Sarita V
Adve, Vikram S Adve, Nicholas P Carter, and Ching-Tsun Chou. DeNovo: Rethinking the
memory hierarchy for disciplined parallelism. In Parallel Architectures and Compilation
Techniques (PACT), 2011.

[34] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A simple method for pa-
rameterized verification of cache coherence protocols. In in Formal Methods in Computer
Aided Design, pages 382-398. Springer, 2004.

[35] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In SoCC'10, pages 143-154.

[36] James C Corbett et al. Spanner: Google's globally distributed database. ACM Transactions
on Computer Systems (TOCS), 31(3), 2013.

[37] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: a workload-driven ap-
proach to database replication and partitioning. Proceedings of the VLDB Endowment, 3(1-
2):48-57, 2010.

[38] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything you always wanted
to know about synchronization but were afraid to ask. In Symposium on Operating Systems
Principles, pages 33-48, 2013.

[39] Giorgio Delzanno. Automatic verification of parameterized cache coherence protocols. In
E.Allen Emerson and AravindaPrasad Sistla, editors, Computer Aided Verification, volume
1855 of Lecture Notes in Computer Science, pages 53-68. Springer Berlin Heidelberg, 2000.

[40] Christopher Dennl, Daniel Ziener, and Jurgen Teich. On-the-fly composition of fpga-based
sql query accelerators using a partially reconfigurable module library. In FCCM, pages 45-
52, 2012.

[41] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan
Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton: SQL Server's memory-optimized
OLTP engine. In SIGMOD, pages 1243-1254, 2013.

[42] D.L. Dill, A.J. Drexler, A.J. Hu, and C.H. Yang. Protocol verification as a hardware design
aid. In Computer Design: VLSI in Computers and Processors, 1992. ICCD '92. Proceedings,
IEEE 1992 International Conference on, pages 522-525, Oct 1992.

[43] Jack Dongarra. Toward a new metric for ranking high performance computing systems.

213



[44] Aleksandar Dragojevi6, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzel-
mann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises: Distributed
transactions with consistency, availability, and performance. In SOSP, pages 54-70, 2015.

[45] Marco Elver and Vijay Nagarajan. TSO-CC: Consistency directed cache coherence for TSO.
In International Symposium on High Performance Computer Architecture, pages 165-176,
2014.

[46] E. Allen Emerson and Vineet Kahlon. Exact and efficient verification of parameterized cache
coherence protocols. In Correct Hardware Design and Verification Methods, 12th IFIP WG
10.5 Advanced Research Working Conference, CHARME 2003, L'Aquila, Italy, October 21-
24, 2003, Proceedings, pages 247-262, 2003.

[47] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and
predicate locks in a database system. CACM, 19(11):624-633, 1976.

[48] Jason Evans. jemalloc. http: //canonware. com/j emalloc.

[49] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion concurrency con-
trol. PVLDB, 8(11):1190-1201, 2015.

[50] Alan Fekete, Dimitrios Liarokapis, Elizabeth O'Neil, Patrick O'Neil, and Dennis Shasha.
Making snapshot isolation serializable. ACM Transactions on Database Systems (TODS),
30(2):492-528, 2005.

[51] Colin J Fidge. Timestamps in message-passing systems that preserve the partial ordering.
Australian Computer Science Communications, 1988.

[52] Michael J Franklin, Michael J Carey, and Miron Livny. Transactional client-server cache con-
sistency: Alternatives and performance. ACM Transactions on Database Systems (TODS),
22(3):315-363, 1997.

[53] H. Garcia-Molina and K. Salem. Main memory database systems: An overview. IEEE Trans.
on Knowl. and Data Eng., 4(6):509-516, December 1992.

[54] Kourosh Gharachorloo. Memory consistency models for shared-memory multiprocessors.
PhD thesis, Stanford University, 1996.

[55] Kourosh Gharachorloo, Anoop Gupta, and John Hennessy. Two techniques to enhance the
performance of memory consistency models. In In Proceedings of the 1991 International
Conference on Parallel Processing, pages 355-364, 1991.

[56] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. Memory consistency and event ordering in scalable shared-memory multi-

processors, volume 18. ACM, 1990.

[57] Sanjay Ghemawat and Paul Menage. TCMalloc: Thread-caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

[58] James R Goodman. Using cache memory to reduce processor-memory traffic. In ACM
SIGARCH Computer Architecture News, volume 11, pages 124-131. ACM, 1983.

[59] Cary Gray and David Cheriton. Leases: An efficient fault-tolerant mechanism for distributed
file cache consistency, volume 23. ACM, 1989.

214



[60] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger. Modelling in data base management
systems. chapter Granularity of locks and degrees of consistency in a shared data base, pages
365-393. 1976.

[61] Jim Gray. Concurrency Control and Recovery in Database Systems, chapter Notes on data
base operating systems, pages 393-481. Springer-Verlag, 1978.

[62] Jim Gray. The transaction concept: Virtues and limitations. In VLDB, pages 144-154, 198 1.

[63] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski, and Peter J. Weinberger.
Quickly generating billion-record synthetic databases. SIGMOD, pages 243-252, 1994.

[64] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance,
portable implementation of the mpi message passing interface standard. Parallel computing,
22(6):789-828, 1996.

[65] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel program-
ming with the message-passing interface, volume 1. MIT press, 1999.

[66] Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing memory and traffic require-
ments for scalable directory-based cache coherence schemes. In International Conference on
Parallel Processing. Citeseer, 1990.

[67] Mark Hachman. Intel finds specialized tsx enterprise bug on haswell, broadwell cpus. 2014.

[68] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery. ACM
Comput. Surv., 15(4):287-317, December 1983.

[69] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An evaluation
of distributed concurrency control. Proc. VLDB Endow., 10(5):553-564, January 2017.

[70] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker. OLTP
through the looking glass, and what we found there. In SIGMOD, pages 981-992, 2008.

[71] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2012.

[72] M. Heytens, S. Listgarten, M-A. Neimat, and K. Wilkinson. Smallbase: A main-memory
dbms for high-performance applications. Technical report, Hewlett-Packard Laboratories,
1995.

[73] Henry Hoffmann, David Wentzlaff, and Anant Agarwal. Remote store programming. In
High Performance Embedded Architectures and Compilers, pages 3-17. Springer, 2010.

[74] Chung-Wah Norris Ip, David L. Dill, and John C. Mitchell. State reduction methods for
automatic formal verification, 1996.

[75] Ranjit Jhala and Kenneth L. McMillan. Microarchitecture verification by compositional
model checking. In CAV, pages 396-410. Springer-Verlag, 2001.

[76] Ryan Johnson and Ippokratis Pandis. The bionic dbms is coming, but what will it look like?
In CIDR, 2013.

215



[77] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak Falsafi.

Shore-MT: a scalable storage manager for the multicore era. EDBT, pages 24-35, 2009.

[78] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anastasia Aila-

maki. Aether: a scalable approach to logging. Proc. VLDB Endow., 3(1-2):681-692, 2010.

[79] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark R. Tuttle, and Yuan

Yu. Checking cache-coherence protocols with TLA+. Formal Methods in System Design,

22(2):125-131, 2003.

[80] Paul F. Reynolds Jr., Craig Williams, and Raymond R. Wagner Jr. Isotach Networks. IEEE
Trans. Parallel Distrib. Syst., 8(4):337-348, 1997.

[81] Hyungsoo Jung, Hyuck Han, Alan D. Fekete, Gernot Heiser, and Heon Y. Yeom. A scalable
lock manager for multicores. In SIGMOD, pages 73-84, 2013.

[82] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin, Stan-
ley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John

Hugg, and Daniel J. Abadi. H-Store: A High-Performance, Distributed Main Memory Trans-

action Processing System. Proc. VLDB Endow., 1(2):1496-1499, 2008.

[83] Pete Keleher, Alan L Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Treadmarks: Dis-

tributed shared memory on standard workstations and operating systems. In USENIX Winter,

volume 1994, 1994.

[84] John H Kelm, Matthew R Johnson, Steven S Lumetta, and Sanjay J Patel. Waypoint: scaling

coherence to thousand-core architectures. In Proceedings of the 19th international conference

on Parallel architectures and compilation techniques, pages 99-110. ACM, 2010.

[85] Won Kim, Jorge F. Garza, Nat Ballou, and Darrell Woelk. Architecture of the orion

next-generation database system. IEEE Transactions on knowledge and Data Engineering,

2(1):109-124, 1990.

[86] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM
Trans. Database Syst., 6(2):213-226, June 1981.

[87] George Kurian. Locality-aware Cache Hierarchy Management for Multicore Processors.

PhD thesis, Massachusetts Institute of Technology, 2014.

[88] George Kurian, Omer Khan, and Srinivas Devadas. The locality-aware adaptive cache co-

herence protocol. In Proceedings of the 40th Annual International Symposium on Computer

Architecture, pages 523-534. ACM, 2013.

[89] George Kurian, Jason Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen Michel, Li-

onel Kimerling, and Anant Agarwal. ATAC: A 1000-Core Cache-Coherent Processor with

On-Chip Optical Network. In International Conference on Parallel Architectures and Com-

pilation Techniques, 20 10.

[90] Edya Ladan-Mozes and Charles E Leiserson. A consistency architecture for hierarchical

shared caches. In Proceedings of the twentieth annual symposium on Parallelism in algo-

rithms and architectures, pages 11-22. ACM, 2008.

216



[91] Kwok-Wa Lam, Kam-Yiu Lam, and Sheung-Lun Hung. Real-time optimistic concurrency
control protocol with dynamic adjustment of serialization order. In Real-Time Technology
and Applications Symposium, pages 174-179. IEEE, 1995.

[92] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-
cations of the ACM, 21(7):558-565, 1978.

[93] Leslie Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. Computers, IEEE Transactions on, 100(9):690-691, 1979.

[94] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[95] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel,
and Mike Zwilling. High-performance concurrency control mechanisms for main-memory
databases. VLDB, 5(4):298-309, December 2011.

[96] Juhnyoung Lee and Sang H Son. Using dynamic adjustment of serialization order for real-
time database systems. In Real-Time Systems Symposium, pages 66-75. IEEE, 1993.

[97] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems. ACM Trans-
actions on Computer Systems (TOCS), 7(4):321-359, 1989.

[98] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. Cicada: Dependably fast multi-
core in-memory transactions. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 21-35. ACM, 2017.

[99] Mieszko Lis, Keun Sup Shim, Myong Hyon Cho, and Srinivas Devadas. Memory coher-
ence in the age of multicores. In Computer Design (ICCD), 2011 IEEE 29th International
Conference on, pages 1-8. IEEE, 2011.

[100] David Lomet, Alan Fekete, Rui Wang, and Peter Ward. Multi-version concurrency via times-
tamp range conflict management. In Data Engineering (ICDE), 2012 IEEE 28th Interna-
tional Conference on, pages 714-725. IEEE, 2012.

[101] Yeong-Chang Maa, Dhiraj K Pradhan, and Dominique Thiebaut. Two economical directory
schemes for large-scale cache coherent multiprocessors. ACM SIGARCH Computer Archi-
tecture News, 19(5):10, 1991.

[102] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian, Jade Alglave, Scott
Owens, Rajeev Alur, Milo MK Martin, Peter Sewell, and Derek Williams. An axiomatic
memory model for power multiprocessors. In Computer Aided Verification, pages 495-512.
Springer, 2012.

[103] Hatem A Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi.
Maat: Effective and scalable coordination of distributed transactions in the cloud. Proceed-
ings of the VLDB Endowment, 7(5):329-340, 2014.

[104] Milo MK Martin, Mark D Hill, and David A Wood. Token coherence: Decoupling perfor-
mance and correctness. In Computer Architecture, 2003. Proceedings. 30th Annual Interna-
tional Symposium on, pages 182-193. IEEE, 2003.

217



[105] Milo MK Martin, Daniel J Sorin, Anatassia Ailamaki, Alaa R Alameldeen, Ross M Dickson,
Carl J Mauer, Kevin E Moore, Manoj Plakal, Mark D Hill, and David A Wood. Times-
tamp snooping: an approach for extending smps. ACM SIGOPS Operating Systems Review,

34(5):25-36, 2000.

[106] Friedemann Mattern et al. Virtual time and global states of distributed systems. In Proceed-
ings of the International Workshop on Paral lel and Distributed Algorithms, 1988.

[107] K. L. McMillan. Parameterized verification of the FLASH cache coherence protocol by
compositional model checking. In In CHARME 01: IFIP Working Conference on Correct

Hardware Design and Verification Methods, Lecture Notes in Computer Science 2144, pages
179-195. Springer, 2001.

[108] K.L. McMillan. Verification of infinite state systems by compositional model checking.
In Laurence Pierre and Thomas Kropf, editors, Correct Hardware Design and Verification

Methods, volume 1703 of Lecture Notes in Computer Science, pages 219-237. Springer

Berlin Heidelberg, 1999.

[109] KL McMillan and James Schwalbe. Formal verification of the Gigamax cache consistency
protocol. In Proceedings of the International Symposium on Shared Memory Multiprocess-
ing, pages 111-134, 1992.

[110] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beckmann,
Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A Distributed Paral-
lel Simulator for Multicores. In International Symposium on High-Performance Computer

Architecture, 2010.

[111] David L Mills. Internet time synchronization: the network time protocol. Communications,
IEEE Transactions on, 39(10):1482-1493, 1991.

[112] Sang Lyul Min and Jean-Loup Baer. A timestamp-based cache coherence scheme. 1989.

[113] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: a trans-
action recovery method supporting fine-granularity locking and partial rollbacks using write-
ahead logging. TODS, 17(1):94-162, 1992.

[114] Andreas Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-based coherence.
In ACM SIGARCH ComputerArchitecture News, volume 33, pages 234-245. IEEE Computer
Society, 2005.

[115] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting more concurrency
from distributed transactions. In 11th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 479-494, 2014.

[116] SK Nandy and Ranjani Narayan. An incessantly coherent cache scheme for shared memory

multithreaded systems. Citeseer, 1994.

[117] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki. Data-oriented
transaction execution. Proc. VLDB Endow., 3:928-939, September 2010.

[118] Ippokratis Pandis, Pinar Tdzdn, Ryan Johnson, and Anastasia Ailamaki. PLP: Page Latch-
free Shared-everything OLTP. Proc. VLDB Endow., 4(10):610-621, July 2011.

218



[119] Seungjoon Park and David L. Dill. Verification of FLASH cache coherence protocol by
aggregation of distributed transactions. In Proceedings of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures, pages 288-296. ACM Press, 1996.

[120] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-aware automatic database partition-
ing in shared-nothing, parallel OLTP systems. In SIGMOD, pages 61-72, 2012.

[121] Manoj Plakal, Daniel J Sorin, Anne E Condon, and Mark D Hill. Lamport clocks: verifying
a directory cache-coherence protocol. In Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, pages 67-76. ACM, 1998.

[122] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pinar TozUn, and Anastasia Ailamaki.
OLTP on Hardware Islands. Proc. VLDB Endow., 5:1447-1458, July 2012.

[123] Dan RK Ports, Austin T Clements, Irene Zhang, Samuel Madden, and Barbara Liskov. Trans-
actional consistency and automatic management in an application data cache. 2010.

[124] Kun Ren, Alexander Thomson, and Daniel J. Abadi. Lightweight locking for main memory
database systems. In VLDB, pages 145-156, 2013.

[125] Alberto Ros and Stefanos Kaxiras. Complexity-effective multicore coherence. In Parallel
Architectures and Compilation Techniques (PACT), 2012 21st International Conference on,
pages 241-251. IEEE, 2012.

[126] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The impact of architec-
tural trends on operating system performance. In SOSP, pages 285-298, 1995.

[127] Daniel Sanchez and Christos Kozyrakis. Scd: A scalable coherence directory with flexible
sharer set encoding. In High Performance Computer Architecture (HPCA), 2012 IEEE 18th
International Symposium on, pages 1-1 2. IEEE, 2012.

[128] David Seal. ARM architecture reference manual. Pearson Education, 2001.

[129] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus 0 Myreen.
x86-tso: a rigorous and usable programmer's model for x86 multiprocessors. Communica-
tions of the ACM, 53(7):89-97, 2010.

[130] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mircea
Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, et al. Fl: A distributed sql
database that scales. Proceedings of the VLDB Endowment, 6(11):1068-1079, 2013.

[131] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike O'Connor, and Tor M.
Aamodt. Cache coherence for gpu architectures. pages 578-590, 2013.

[132] Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and cache
coherence. Synthesis Lectures on Computer Architecture, 6(3):1-212, 2011.

[133] Ulrich Stern and David L Dill. Automatic verification of the SCI cache coherence protocol.
In Advanced Research Working Conference on Correct Hardware Design and Verification
Methods, 1995.

[134] Tim Stitt. An introduction to the Partitioned Global Address Space (PGAS) programming
model. Connexions, Rice University, 2009.

219



[135] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it's time for a complete rewrite).
In VLDB, pages 1150-1160, 2007.

[136] Karin Strauss, Xiaowei Shen, and Josep Torrellas. Uncorq: Unconstrained snoop request de-
livery in embedded-ring multiprocessors. In Proceedings of the 40th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 327-342. IEEE Computer Society, 2007.

[137] CK Tang. Cache system design in the tightly coupled multiprocessor system. In Proceedings
of the June 7-10, 1976, national computer conference and exposition, pages 749-75 3. ACM,
1976.

[138] Dixin Tang, Hao Jiang, and Aaron J Elmore. Adaptive concurrency control: Despite the
looking glass, one concurrency control does not fit all. In CIDR, 2017.

[139] Shreekant S. Thakkar and Mark Sweiger. Performance of an OLTP application on symmetry
multiprocessor system. In ISCA, pages 228-238, 1990.

[140] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0), June 2007.

[141] Robert H Thomas. A majority consensus approach to concurrency control for multiple copy
databases. ACM Transactions on Database Systems (TODS), 4(2):180-209, 1979.

[142] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J. Abadi. Calvin: fast distributed transactions for partitioned database systems. In
SIGMOD, pages 1-12, 2012.

[143] Pinar Tbztin, Brian Gold, and Anastasia Ailamaki. OLTP in wonderland: where do cache
misses come from in major OLTP components? In DaMoN, 2013.

[144] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden. Speedy
transactions in multicore in-memory databases. In SOSP, 2013.

[145] Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave. Modular deductive
verification of multiprocessor hardware designs. In 27th International Conference on Com-
puter Aided Verification, 2015. Accepted paper.

[146] Deborah Anne Wallach. PHD-a hierarchical cache coherent protocol. PhD thesis, Mas-
sachusetts Institute of Technology, 1992.

[147] Tianzheng Wang and Ryan Johnson. Scalable logging through emerging non-volatile mem-
ory. Proceedings of the VLDB Endowment, 7(10):865-876, 2014.

[148] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. The serial safety net:
Efficient concurrency control on modem hardware. In Proceedings of the 11th International

Workshop on Data Management on New Hardware, page 8. ACM, 2015.

[149] David L Weaver and Tom Germond. The sparc architecture manual. 1994.

[150] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast in-memory trans-
action processing using RDMA and HTM. In SOSP, 2015.

[151] Arthur Whitney, Dennis Shasha, and Stevan Apter. High Volume Transaction Processing
Without Concurrency Control, Two Phase Commit, SQL or C++. In HPTS'97.

220



[152] Craig Williams, Paul F. Reynolds, and Bronis R. de Supinski. Delta Coherence Protocols.
IEEE Concurrency, 8(3):23-29, July 2000.

[153] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop
Gupta. The SPLASH-2 Programs: Characterization and Methodological Considerations.
In ISCA, 1995.

[154] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A. Ross. Q100:
the architecture and design of a database processing unit. In ASPLOS, 2014.

[155] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical evaluation
of in-memory multi-version concurrency control. Proc. VLDB Endow., 10:781-792, March
2017.

[156] Katherine Yelick, Dan Bonachea, Wei-Yu Chen, Phillip Colella, Kaushik Datta, Jason Duell,
Susan L Graham, Paul Hargrove, Paul Hilfinger, Parry Husbands, et al. Productivity and
performance using partitioned global address space languages. In Proceedings of the 2007
international workshop on Parallel symbolic computation, pages 24-32. ACM, 2007.

[157] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stonebraker.
Staring into the abyss: An evaluation of concurrency control with one thousand cores. vol-
ume 8, pages 209-220. VLDB Endowment, 2014.

[158] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. Tictoc: Time traveling
optimistic concurrency control. In Proceedings of SIGMOD 2016, 2016.

[159] Meng Zhang, Jesse D. Bingham, John Erickson, and Daniel J. Sorin. Pvcoherence: Designing
flat coherence protocols for scalable verification. In 20th IEEE International Symposium on
High Performance ComputerArchitecture, HPCA 2014, Orlando, FL, USA, February 15-19,
2014, pages 392-403. IEEE Computer Society, 2014.

[160] Meng Zhang, Alvin R. Lebeck, and Daniel J. Sorin. Fractal coherence: Scalably verifiable
cache coherence. In Proceedings of the 2010 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO '43, pages 471-482, Washington, DC, USA, 2010. IEEE
Computer Society.

[161] Hongzhou Zhao, Arrvindh Shriraman, and Sandhya Dwarkadas. Space: Sharing pattern-
based directory coherence for multicore scalability. In Parallel Architectures and Compi-
lation Techniques (PACT), 2010 19th International Conference on, pages 135-146. IEEE,
2010.

[162] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast databases with fast
durability and recovery through multicore parallelism. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI'14, pages 465-477.
USENIX Association, 2014.

221




