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Abstract

Eighty five percent of images today are taken by cell phones. These images are not
merely projections of light from the scene onto the camera sensor but result from
a deep calculation. This calculation involves a number of computational imaging
algorithms such as high dynamic range (HDR) imaging, panorama stitching, im-
age deblurring and low-light imaging that compensate for camera limitations, and
a number of deep learning based vision algorithms such as face recognition, object
recognition and scene understanding that make inference on these images for a variety
of emerging applications. However, because of their high computational complexity,
mobile CPU or GPU based implementations of these algorithms do not achieve real-
time performance. Moreover, offloading these algorithms to the cloud is not a viable
solution because wirelessly transmitting large amounts of image data results in long
latency and high energy consumption, making them unsuitable for mobile devices.

This work solves these problems by designing energy-efficient hardware acceler-
ators targeted at these applications. It presents the architecture of two complete
computational imaging systems for energy-constrained mobile environments: (1) an
energy-scalable accelerator for blind image deblurring, with an on-chip implemen-
tation and (2) a low-power processor for real-time motion magnification in videos,
with an FPGA implementation. It also presents a 3D imaging platform and image
processing workflow for 3D surface area assessment of dermatologic lesions. It demon-
strates that such accelerator-based systems can enable energy-efficient integration of
computational imaging and vision algorithms into mobile and wearable devices.

Thesis Supervisor: Anantha Chandrakasan
Title: Vannevar Bush Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Motivation

It is projected that 1.2 trillion photos will be taken in 2017 [14]. 85% of these

photos will be taken by cell phones and only 10% by traditional digital cameras.

Moreover, the imaging that we do with cell phones isn't what it used to be five

years ago. The final image that we see today is not merely a projection of light

from the scene onto a sensor but results from a deep calculation. A number of

computational imaging and vision algorithms are involved in this deep calculation,

and based on their characteristics, we can classify them into three categories, ones that

(1) correct for camera limitations and extend its capabilities such as high dynamic

range (HDR) imaging, panorama stitching, image deblurring and low-light imaging

(2) reveal hidden information from a scene or add new information to a scene such

as motion magnification, video super-resolution and augmented reality and (3) make

inference on images such as face recognition, object detection, scene classification

and image captioning. Even though for most of these applications the algorithms

have matured to a large extent, only a few of them such as HDR imaging, panorama

stitching and face recognition have been implemented widely on mobile devices, while

most others remain entirely academic. The main reason for this is that most of these

algorithms are extremely computationally complex, and existing implementations on

CPU or GPU platforms are neither energy-efficient, nor high-performance enough to

21



support these applications in real-time. Figure 1-1 plots the energy efficiency and

execution time (for the same frame size) for different modern computational imaging

and vision applications when run on different platforms: CPU, GPU and dedicated

hardware accelerator. A low value for both energy and execution time is desirable for

mobile devices. For example, estimating the blur kernel for deblurring a single image

takes 2.23 minutes on a desktop CPU and 13.60 minutes on a mobile CPU. It consumes

225 microjoules of energy per pixel on a desktop CPU and 1102 microjoules of energy

per pixel on a mobile CPU. Compared to this, HEVC video decoding, which is widely

implemented on cell-phones using custom hardware, takes only 16.7 milliseconds per

frame and consumes 0.4 nanojoules of energy per pixel. Therefore, 2 - 4 orders of

magnitude improvement in execution time and 3 - 6 orders of magnitude improvement

in energy is required for most of these applications to support real-time processing

with long battery life on mobile platforms.

Mobile CPU implementation G GPU implementation * Hardware accelerator
10000 - --- -

1000 Deblurring
[Levin CVPR 2011]

100

10 Motion magnification
[Wadhwa ICCP2014]

75[chen issC2oi6] CNN G
1%

1Chen SIGGRAPH200 HDR

E jChen 55CC2016]CNN
Deblurring

[Raina ESSC1RC20161

GJ [Moons ISSCC2017 CNN
C 0.01

U.'

0.001 [Rthe ISSC 2013 HDRI

Video decoding* m
[Huang I55CC 20131 Motion magnification

[RaIns 2018 (Estrnated)
0.0001

0.01 0.1 1 10 100 1000

Execution time (seconds/frame)

Figure 1-1: Energy efficiency and execution time (for the same frame size) for dif-
ferent modern computational imaging and vision applications when run on different
platforms: CPU, GPU and dedicated hardware accelerator. A low value for both
energy and execution time is desirable for mobile devices.
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1.2 Thesis Contributions

This work obtains this performance improvement and energy reduction by design-

ing energy-efficient hardware accelerators targeted at these applications. It presents

three complete computational imaging systems: (1) an energy-scalable accelerator

for image deblurring, (2) a low-power processor for real-time motion magnification

in videos, and (3) a 3D imaging platform for automated surface area assessment of

dermatologic lesions. The first two are accelerator-based systems and they provide

2 - 3 orders of magnitude improvement in runtime and 3 - 4 orders of magnitude

improvement in energy compared to existing implementations. We have proposed a

number of energy minimization techniques to obtain these improvements, for exam-

ple, (1) performing algorithmic and architectural optimizations such as computation

reuse and reordering to either dynamically reduce energy by exploiting sparsity in

updates to data, or statically reduce energy by reusing computation results that are

common across several data elements, (2) scaling down the precision of computation

in arithmetic pipelines to reduce energy while maintaining just enough visual qual-

ity, and (3) compressing and caching data to reduce off-chip memory bandwidth and

energy. In addition to employing these techniques, each of these systems is made

configurable in terms of a number of parameters to get energy scalability by trading

off accuracy with execution time. This is essential in real-life applications where one

might still want to run a complex algorithm in a low-battery scenario but might be

willing to sacrifice some visual quality. The following subsections give an overview of

these three key projects and the following chapters describe them in detail.

1.2.1 Energy-Scalable Accelerator for Blind Image Deblurring

Camera shake is a common cause of blur in cell-phone camera images. To remove this

blur, one needs to estimate the trajectory of the camera during the exposure. This

trajectory is represented by a convolution kernel, and the deblurring problem reduces

to (1) estimating the kernel from the blurred image and (2) performing deconvolu-

tion to obtain a sharp image. State of the art kernel estimation algorithms f18] are
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computationally intensive and take more than 2 minutes to run for a single image on

a desktop CPU, accounting for 99% of the deblurring time. They also consume 225

microjoules of energy per pixel which makes them unsuitable for implementation in

software on mobile devices.

This work presents an energy-efficient and high-performance hardware accelera-

tor for kernel estimation which solves for the kernel using an iterative expectation

maximization (EM) based algorithm [18]. It starts with an initial random guess for

the kernel, and alternates between solving for the image or the kernel given the other

using a numerical solver. We propose several runtime reduction and energy mini-

mization techniques in this design; some are used both in the software and hardware

realizations and some are used in the hardware realization only. One of the key energy

minimization techniques is computation reuse and reordering to either dynamically

reduce energy by exploiting sparsity in updates to data, or statically reduce energy

by reusing computation results that are common across several data elements. An

example of dynamic reuse that we employ in both software and hardware happens

while solving for the blur kernel. To get the kernel, one has to minimize a constrained

quadratic program of the form 1kTAk - bTk such that k > 0 to obtain the kernel k.

Matrix-vector multiplications of the form y = Ax dominate the computational time,

as A can be very large, up to 841 x 841 pixels. However, we observe that during

each iteration the intermediate vector x that needs to be multiplied with A updates

only at a few indices. Therefore, we exploit this sparsity in updates, and convert

matrix-vector multiplies to a few vector-vector operations. This reduces the number

of solver multiplies, adds and DRAM accesses by 11x on an average.

The accelerator is implemented in TSMC 40 nm CMOS technology and a com-

plete system demonstration platform is designed for real-time image deblurring that

offloads the computationally expensive kernel estimation to the accelerator chip and

performs the inexpensive final deconvolution on a CPU. The accelerator achieves a

78x reduction in runtime for kernel estimation with respect to our optimized soft-

ware realization (one that employs all the energy minimization techniques that can

be performed in software) of 118] on a desktop CPU for a 13 x 13 kernel, and a 56x
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reduction in the complete deblurring time of a FullHD (1920 x 1080) image. Com-

pared to an implementation of the same algorithm on a mobile processor, it achieves

a 480 x reduction in kernel estimation time. The accelerator consumes only 105 mJ

at its nominal operating point compared to 467 J consumed by the desktop CPU, and

2284 J consumed by the mobile CPU. The system is also made configurable in terms

of a number of parameters such as the number of iterations and kernel size to get

energy scalability by trading off accuracy with execution time. This is useful in the

following scenarios: (1) If coarse camera motion is available through inertial sensors,

it can be used to initialize the kernel, and the accelerator can be configured to run

for a fewer number iterations to reduce energy. (2) In an energy constrained scenario,

one can down-sample the input image, use the accelerator to estimate a kernel of a

smaller size, and then up-sample the kernel to do deconvolution on the entire image,

for example, if the true kernel is 13 x 13, down-sampling by a factor of 2 leads to

a 2.15x reduction in energy. This energy-scalable implementation enables efficient

integration of image deblurring into battery-operated mobile devices.

1.2.2 Low-Power Processor for Real-Time Motion Magnifica-

tion in Videos

There are a number of phenomena around us that exhibit small motions that are

invisible to the naked eye. Algorithmic work by [30] has shown that computational

amplification can be used to reveal such motions. These motion magnification algo-

rithms use video as input, and analyze each pixel for slight variations in phase over

time and amplify these variations. This technology can be used for various appli-

cations such as non-invasive health monitoring, industrial infrastructure monitoring

and structural integrity assessment, which currently rely on more expensive hardware

and human intervention.

However, the state of the art motion magnification algorithms are extremely com-

putationally intensive and do not achieve real-time performance on modern CPUs.

Reported results [30] show that the fastest algorithm can only achieve a frame rate
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of 2.37 frames per second (FPS) on FullHD (1920 x 1080) and 5.33 FPS on HD

(1280 x 720) video when run on an Intel Xeon E5-2623 desktop CPU and only 0.23

FPS on FullHD and 0.52 FPS on HD video on an ARM Cortex-A15 mobile CPU.

This implies that there is a 6x to 130x performance gap that needs to be bridged to

achieve real-time performance on HD/FullHD video. Moreover, high computational

complexity leads to high energy consumption which makes the algorithm unsuitable

for implementation on battery operated portable devices like wearables, cell phones

and tablets. The motion magnification algorithm while running on an ARM Cortex-

A15 mobile processor consumes 10.36pJ per pixel, whereas video compression on

mobile phones takes on the order of 2nJ per pixel with dedicated hardware, there-

fore, four orders of magnitude reduction in energy per pixel is required to enable

energy-efficient implementation of motion magnification on mobile devices.

In this work, we present a low-power processor to accelerate motion magnification

that achieves real-time performance on HD (1280 x 720) video at 30 frames per second,

while consuming less than 0.2 nanojoules of processing energy per pixel. The processor

accelerates the algorithm proposed in [301, which uses a Riesz pyramid to decompose

each frame of the input video and separate the amplitude of the local wavelets from

their phase. It then performs temporal filtering of the phases independently at each

location, orientation and scale to isolate the frequencies of interest (for example,

a band around 1 Hz for breathing rate amplification). This is followed by spatial

smoothing to reduce noise in the phase, and finally amplification and reconstruction

of the output video by inverting the pyramid.

We propose to use the following techniques in the design of the accelerator to

achieve energy-efficiency and real-time performance: (1) Separable filtering in pyra-

mid computation and spatial filtering to reduce the number of multiplies and adds.

(2) Zero-skipping to reduce the buffering requirements of pyramid computation. (3)

Reducing the precision of computation in several modules to reduce energy and se-

lectively using block floating point representation to maintain accuracy. (4) Caching

intermediates in on-chip SRAM based line buffers to reduce external memory band-

width and save system energy. The complete motion magnification architecture is
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demonstrated on an FPGA and simulated area and power measurements in 40 nm

CMOS technology are presented in this thesis. These techniques enable efficient in-

tegration of motion magnification technology into mobile devices.

1.2.3 3D Imaging Platform for Automated Surface Area As-

sessment of Dermatologic Lesions

This work develops a tool and associated image processing/ enhancement algorithms

to enable the rapid, reproducible, and objective determination of the surface area and

volume of a cutaneous lesion or lesions in an automated fashion via 3D imaging. This

work has been done in collaboration with MIT student, Jiarui Huang, who worked

on algorithm design, its python implementation and initial testing as a part of his

Master's thesis, and Dr. Victor Huang from Brigham and Women's Hospital: Boston

Hospital & Medical Center, who collected the patient data using the system, and

provided clinical insights into the results.

For many dermatologic conditions, the initial assessment of disease severity as well

as the primary outcome measure of progression/treatment success are dependent on

an assessment of body surface area (BSA). This assessment is based on a physician's

estimation of area involvement, which has low accuracy and reproducibility. More-

over, these assessments often are performed by non-dermatologists with no training

to complete such assessments. This limitation represents a major hurdle for clinical

trials, translational research efforts, as well as daily clinical care.

In this work, we have chosen vitiligo as a model condition to demonstrate the

utility of such a tool because of low acuity of pathology experienced by the patients

allowing for investigative imaging with minimal impact on clinical care, the varied lo-

cations of presentation across the body, the relatively high prevalence affecting all skin

types and ethnicities equally (1-2% of the general population), and the underserved

nature of the disease. Existing approaches to measure the area of vitiligo lesions suffer

from many shortcomings - some require manual tracing of the lesion which is very

time-consuming because the lesions boundaries are very complex; others only give a

27



relative measure of area and not an absolute one which makes comparing different

lesions for the same person or across different people impossible; and most of these

methods ignore the curvature of the lesions and measure the projected area rather

than the true surface area of the lesion.

This work presents a new solution to surface area measurement of vitiligo lesions

by incorporating a depth camera and image processing algorithms. We show that this

system can perform lesion segmentation robustly and measure lesion area accurately

over any skin surface. Compared to the currently existing approaches, this system

has several advantages. It is easy to use, does not require any precise calibration or

professional training. It is contact-free. This eliminates the possibility of contamina-

tion and discomfort caused by manual tracing. It can measure the absolute area of

any surface.

The anticipated applications are to determine the burden of disease and response

to treatment for patient care and clinical trial applications. In particular, vitiligo,

eczema, psoriasis, and chronic wounds are immediate areas for application. In ad-

dition, determination of BSA of adverse dermatologic side effects would allow for

granular, objective grading of adverse events or determination of BSA involvement in

burns or wounds.

1.3 Thesis Outline

Chapter 2 presents a detailed architectural description and results of the image deblur-

ring accelerator. Chapter 3 presents the motion magnification processor. Chapter 4

presents the 3D imaging platform for surface area assessment of dermatologic lesions.
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Chapter 2

Image Deblurring Accelerator

2.1 Motivation

Camera shake is a common cause of blur in images. The most widely used solution

to avoid blur is to perform physical compensation using image stabilization, where ei-

ther the camera lens or the image sensor are physically moved in order to compensate

for the shake. However, this solution is limited to small camera motion. The sec-

ond solution is to do algorithmic compensation using blind image deblurring. Here,

one needs to estimate the camera trajectory which is usually unknown, hence the

deblurring is "blind". The trajectory is represented by a convolution kernel, and the

deblurring problem reduces to (1) estimating the kernel from the blurred image and

(2) performing deconvolution to obtain a sharp image, as shown in Figure 2-1. Kernel

estimation algorithms existing in literature [18, 12] are computationally intensive and

take several minutes to run in software on a CPU, accounting for 99% of the deblur-

ring time. These are unsuitable for implementation in software on mobile devices

because of both performance and energy concerns, and therefore, are our target for

hardware acceleration in this work.

Recent research has shown energy and performance benefits of hardware acceler-

ators for several computational photography and computer vision applications such

as high dynamic range and low-light imaging [21], obstacle detection [151 and deep

learning based object recognition [9]. However, image deblurring has so far been im-
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plemented only in software running on CPU/GPU platforms, which do not support

real-time processing and have high energy consumption, making these implementa-

tions unsuitable for mobile devices.

2.2 Background

The expectation maximization (EM) based kernel estimation algorithm proposed in

[18] is highly accurate but computationally expensive (taking more than 2 minutes to

run for a single image frame on a CPU), making it an ideal candidate for hardware

acceleration. Since camera shake blur is spatially-invariant, a 128 x 128 patch is chosen

from the blurred image for kernel estimation to reduce the size of the problem. The

blurred patch B is modeled as B = K 0 S + N where K is the unknown kernel, S is

the unknown sharp image and N is noise. The convolution operation can equivalently

be expressed as a matrix multiplication - blurred image b = Tks +n = TTk + n, where

Th, and T, are the Toeplitz matrices for K and S, and b, s, k and n are raster scan

flattened versions of their 2D counterparts. In this thesis, both representations are

used - the ID representation is used in context of the two optimization problems that

are solved to get the kernel and the sharp image, and the 2D representation is used

in context of the processing of the inputs to these optimization problems, which are

2D images.

Given this model, the EM algorithm has two key steps:

1. E-step or Image Refinement: In the E-step, the algorithm starts with an

Select a Kernel Estimation using
patch Multi-resolution EM Output

7F Kernel

E -nput-te D econvo ution]

B purrt kmg nta 1% of deblurringBlurred Image Initial 99% of deblurring time on CPU time on CPU OutputKernel Target for acceleration Sharp Image

Figure 2-1: Expectation maximization (EM) based blind image deblurring.
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initial guess for the kernel, which can be random, or obtained from inertial sen-

sors in a mobile device, and finds the sharp image s which minimizes the

cost function I|b - Tksl 2 + R(s) where the first term is the convolution error

and the second term is a regularization term which ensures that the deriva-

tives of the estimated sharp image are sparse, like in naturally occurring sharp

images. The algorithm also computes a covariance matrix C around the

sharp image estimate, which signifies how confident it is about this sharp image.

Since the regularization term makes the cost function non-quadratic, its min-

imization is done using an iteratively re-weighted least squares (IRLS)

deconvolution engine and the covariance is computed using a covariance

estimator.

2. M-step or Kernel Refinement: In the M-step, the algorithm uses the refined

sharp image s and the covariance C from the E-step, and finds the kernel k

which minimizes the expected convolution error subject to the constraint that

all kernel entries are positive. This simplifies to solving a constrained quadratic

program (QP) 1kTAkk + b T k such that k > 0 where the matrix Ak is given

by Ak(il,i 2 ) = Es(i + ii)s(i + i 2 ) + C(i + i1 ,i + i2 ) and the vector bk is

given by bk(il) = s(i + ii)b(i) ([181 provides a detailed derivation of this

simplification). In this work, the' computation of the QP coefficients, Ak and

bk, is done using an image correlator, and solution of the constrained QP is

found using a gradient projection solver.

As shown in Figure 2-1, the refined kernel obtained from the M-step is fed back

into the E-step and the two steps are iterated multiple times until the desired number

of iterations are performed. To avoid local optima, the EM iterations are carried out

at successively higher resolutions of the patch size (32 x 32, 64 x 64, 128 x 128),

with the kernel at higher resolutions seeded from the result of the lower resolutions.

We varied the size of the image patch used for kernel estimation from 256 x 256 to

32 x 32 in software, and observed that choosing a patch size smaller than 128 x 128

compromises the quality of the obtained kernel, and the resulting deblurred image
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has several ringing artifacts. The estimated kernel from a single patch is finally used

for deconvolution of the full 1920 x 1080 blurred image. This deconvolution accounts

for only 1% of the runtime, and is therefore done on a CPU using Gaussian or sparse

prior based approaches described in [191.
In this thesis, we present the first hardware accelerator for kernel estimation, which

accounts for 99% of the time in image deblurring applications. It reduces kernel

estimation time by 78x (from 2 minutes to about a second) and energy by three

orders of magnitude compared to a software implementation of the same algorithm

on an Intel Core i5 CPU, making it suitable for integration into mobile devices. The

accelerator also provides 10x energy scalability through configurability in the number

of iterations and the kernel size (from 7 x 7 to 29 x 29), allowing the system to trade

off runtime with image quality in energy-constrained scenarios.

We use the following techniques to obtain high throughput and low energy and

area of the kernel estimation accelerator:

1. A multi-resolution IRLS deconvolution engine with DFT based matrix

multiplication for image refinement. (Section 2.3)

2. A high-throughput image correlator for computing the coefficient matrices

of the kernel QP. (Section 2.4)

3. A high-speed selective update based gradient projection solver for solv-

Image Refinement (E-step)

IRLS Based Deconvolution Engine

16 SRAM Covariance Weights Conjugate Shared 1D
Banks Estimator Engine Gradient Solver FFT Engine

Scheduling Engine
tUk

DRAM DRAM Upsampler Correlator PjGradient
DRACtri Projection Solver

-Keirnell Refinement (M-step)

Figure 2-2: Accelerator system architecture.
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ing the kernel QP. (Section 2.5)

These modules are controlled by a centralized scheduling engine to run the EM

algorithm (Figure 2-2). They use 16 shared 4096 x 32 bit SRAMs as scratch memory

and interface to an external DRAM for intermediate storage. A 32 bit floating point

(FP) datapath is used in all modules to avoid inaccuracies in the estimated kernel,

which can cause undesirable ringing artifacts in the deconvolved image. Since the

image and kernel refinement steps are non-concurrent, data and clock gating are used

by the scheduler to save energy.

Additionally, instead of running the EM algorithm on the image (S, B) itself, it

is run on the gradients of the image (S-,, B.,) to determine the kernel, where -y = 0

corresponds to the horizontal gradient and -y = 1 corresponds to vertical gradient,

since it is found to give better results in practice [18].

2.3 Multi-Resolution IRLS Deconvolution Engine with

DFT Based Matrix Multiplication

Image refinement entails solving a minimization problem to get the sharp image s, but

since the cost function to be minimized, Ib - TksY 2 + R(sy), is not quadratic because

of the regularization term, we use the iteratively re-weighted least squares (IRLS)

approach [19]. This involves repeating the following two steps until convergence. In

each iteration i,

1. Approximate the non-linear cost function with a quadratic one using a regular-

ization weights matrix Wi- 1 , and minimize the quadratic by solving the linear

system (TjTk + Wfzl))s) = TTb_ to obtain s .

2. Use the solution s. to find updated regularization weights W(') and repeat.

The linear system in each iteration is solved using a conjugate gradient (CG) solver.

Here, the regularization weights penalize the gradients in the smooth regions more

than in the edge regions, enforcing a sparse prior on the sharp image gradients. For

a detailed derivation, see [18].
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2.3.1 IRLS Optimizations

We propose the following optimizations to the IRLS-based deconvolution engine to

reduce the number of FP operations and area compared to [19]:

1. DFT Based Matrix Multiplication: We observe that the most compu-

tationally intensive step in the IRLS deconvolution is the multiplication with

n 2 x< 2 matrix TkTTk in each CG iteration, where n x n is the size of the sharp im-

age. This multiplication is equivalent to convolution with the auto-correlation

of kernel k. Since k is large, we implement this convolution in the frequency

domain as a multiplication with the squared magnitude of the 2D DFT of k.
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Figure 2-3: Left: 2D DFT with shared ID FFT and transpose memory. Right:
Reconfigurable ID FFT architecture. Bottom: Schedule for register bank access for
I/0 and FFT computation.
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This reduces the computational complexity of the matrix multiplication and

gives an improvement in the number of floating point operations by 8.8x for

128 x 128, 10.2x for 64 x 64 and 12.2x for a 32 x 32 image and a 13 x 13 kernel

compared to a spatial convolution based approach.

2. Time-Shared Floating Point 1D FFT Architecture: We perform the

2D DFT by taking ID DFT of rows followed by columns. Instead of having

dedicated ID FFT engines for computing row and column DFTs, we propose

using a shared ID FFT engine and an SRAM-based transpose memory similar

to [13] (Figure 2-3). The 1D FFT engine supports point sizes (N) of 32, 64 and

128 for multi-resolution processing by time-sharing only 8 radix-2 butterflies to

perform all log(N) steps of the FFT and each step in N/16 sub-steps (Figure

2-3). This choice of radix and number of butterflies minimizes the area required

to support the required point sizes while meeting 2 pixels/cycle throughput.

To avoid stalls, the engine uses 2 register banks, each of which can store 128

samples, as a ping-pong buffer as shown in the schedule in Figure 2-3.

2.4 High-Throughput Image Correlator

After completing the E-step, we get the sharp image (S,) and covariance image (C-,)

for both the horizontal (-y = 0) and the vertical (-y = 1) gradient components and

we use these to obtain a better kernel by solving the quadratic program (QP) from

section 2.2 in the M-step. Setting up the QP requires computing its coefficient matrix

Ak. For an n x n sharp image, S , and an m x m kernel, the m 2 x m 2 matrix, Ak,

is the sum of the two Aky matrices corresponding to the two gradient components.

These are given by

n-1 n-

Aky (mXl + Y1, mX 2 + Y2) = SY(x - x1, y - Yi) * S,(x - X2 , y - Y2)
x=m-1 y=m-1

+ (C(X - x1, y - Yi) when x1 = X2 and y = Y2)
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where the shifts (x1 , y1 ) and (x 2, y2 ) vary from to (0, 0) to (m - 1, m - 1). The

processing for both the S, term and the C. term is similar, so let us focus our

attention on the S. term. The computation time for this term is 0(m 4), which is too

high to meet the runtime specifications for the accelerator.

2.4.1 Correlator Optimizations

We propose the following optimizations to the correlator to reduce the correlation

execution time and buffering requirements compared to the software implementation

of the same algorithm proposed in [181:

1. Diagonal Computation Reuse: We observe that along the diagonals of Aky,

the relative shift (Ax, Ay) = (Xi - x 2 , y1 - Y2) remains constant between the

two shifted images S. (x - x1, y - Yi) and S.(x - x 2 , y - Y2) with absolute shifts

(x 1, x 2) and (yi, Y2), as shown in Figure 2-4. Therefore, the same corresponding
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Figure 2-5: Highly parallel correlator architecture with 6 processing elements enabled
by image tiling in the image buffer gives 6 x improvement in throughput.

elements are multiplied, but the summation of the product is performed over

different pixels. We propose doing this multiplication S,(x, y)S (x -Ax, y -Ay)

only once for each relative shift (Ax, Ay), and then using integral image [28] of

the product to compute each entry along the diagonals. For example, for all the

entries along the fourth diagonal shown in yellow in Figure 2-4, the relative shift

is (1, 0). We compute the product S-(x, y)S(x - 1, y -0) and its integral image,

and then we accumulate the product over different rectangles shaded in gray

to get the values for Ak,(3, 0), A,,,(4, 1), AkJ5, 2) and so on in constant time

with 3 operations for each of the elements of the integral image. This technique

makes the computation of matrix Ak-, O(m 2) rather than O(m 4 ), providing a

speedup of 42x for computing the correlation for a typical 13 x 13 kernel.

2. Six-Parallel Correlator Architecture with Image Tiling: Diagonal con-

putation reuse alone cannot meet the throughput requirements of the correlator.

We further increase throughput by designing a highly parallel correlator archi-

tecture, which consists of an array of 6 processing elements (PEs) as shown

in Figure 2-5, each of which computes the correlation matrix elements for all

absolute shifts which correspond to the same relative shift using diagonal com-

putation reuse. The mapping of correlation computation to the PEs is shown
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in Figure 2-6 for a toy kernel of size 3 x 3. The computation happens in two

passes over the image, where in the first pass, the relative shift is positive, and

in the second pass the relative shift is negative.

The challenge here is how is to feed these PEs in parallel from a single image

buffer. To solve this, we make the PEs work on horizontally consecutive relative

shifts as shown in Figure 2-5 and feed them by adding a series of shift registers

which delay one stream of image pixels. Then to read the image and the shifted

image simultaneously from the image buffer, we tile the image across 4 single

port SRAM banks, so that two versions of the image with any relative shift

between them can be accessed in parallel. If the pixel location and the shifted

location point to the same SRAM bank, the conflict is resolved by pre-fetching

the next required pixel from a different SRAM bank in the current access and

then toggling the data. This allows the PEs to be fed in parallel and gives A

6 x improvement in throughput over the design with only diagonal computation

reuse.
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Figure 2-8: Inside the correlation PE, the pixels and shifted pixels are multiplied
together and accumulated along each row by the column MAC. The first m - Ay
accumulated columns are subtracted from the last m - Ay accumulated columns and
,ent to the row accumulator. Accumulation and subtraction is similarly performed
across the rows.
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3. Merged Correlation PE Architecture: Figures 2-7 and 2-8 show the ar-

chitecture of a correlation PE. Each PE is initialized with the input image size

(n x n), the kernel size (m x m) and the 2D relative shift (Ax, Ay) and it

calculates the correlation matrix elements for that relative shift as shown in

Figure 2-7. One approach for computing correlation by the PEs would be to

first multiply the corresponding pixels and compute the integral image by accu-

mulating across columns followed by rows, and then to access four elements at a

time from the integral image and use them to compute each matrix element as

shown in Figure 2-4. This approach is used several computer vision algorithms

that require integral image computation such as real-time object detection [28],

robust feature extraction f5] and surface normal calculation [151. This approach

requires at least storing the entire n x n integral image, which in the worst case

is 128 x 128. However, in our case, we only need to access a subset of elements

from the integral image, and the locations of those elements are known a pri-

ori, so we can do better. To reduce the buffering requirements, we propose a

different architecture that merges the integral image computation step with the

subsequent step of calculating the matrix elements. Our approach reduces the

buffering requirement to m x m + 3 * m x 1, where m = 32 in the worst case to

accommodate the largest kernel, achieving a 14.6 x reduction compared to the

naive approach. Figure 2-8 highlights the buffers in yellow, and the paragraphs

below give the processing details.

Following the initialization, the PE receives one pixel from the image and one

from its shifted version every cycle. Inside the PE, the column MAC unit

performs multiply accumulate across the columns for each row, and is cleared

once a row is complete. At the start of each row, the first m - Ay results from

the MAC are written to the current row buffer. As the last m - Ay results

start coming out of the MAC, entries from current row buffer are read and

subtracted from the MAC results by the column subtractor as shown in Figure

2-8 and results are sent to the row accumulator.
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The column subtractor results are accumulated across rows by the row accumu-

lator and results are written to accumulated row buffer (a). Accumulated row

buffer (a) is copied into accumulated rows SRAM when the next row processing

starts and into accumulated row buffer (b). Copying into row buffer (b) is nec-

essary since the buffers are implemented using single port SRAMs, and in the

row accumulation step we need to be able to read and write at the same time.

An alternative implementation would be to ping-pong between the buffers (a)

and (b) for read and write, but that would introduce extra multiplexers. After

the first m - Ax rows, the processing happens as with earlier rows with the

difference that the results are not copied into the accumulated rows SRAM.

For the last m - Ax rows, row subtractor reads the corresponding rows from

accumulated rows SRAM, and performs the final row difference and writes the

results to the results buffer.

2.5 Selective Update Based Gradient Projection Solver

The gradient projection solver 17] takes the kernel from the previous EM iteration, and

the matrix Ak and the vector bk computed by the correlator as inputs. It computes the

refined kernel by minimizing the constrained quadratic program, J(k) = lkTAkk +

bTk, such that k > 0. The constraints ensure that the kernel is a blur kernel. The

solver refines the kernel by iteratively executing two sequential steps as shown in

Figure 2-9:

1. Search along the steepest descent direction, that is the direction -g where

g = Akk + bk, from the current point k. Whenever a constraint is encountered,

bend the search direction so that it stays feasible, and locate the first local

minimizer of J along this piece-wise linear path. The minimizer is called the

Cauchy point k,.

2. Explore the face of the feasible box on which the Cauchy point lies by solving

a sub-problem, in which the value of k at the indices i at which the constraints
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Figure 2-9: Gradient projection solver with selective update and hardware sharing.

are active (which means equal to zero in our case) are held fixed at k , using a

conjugate gradient solver, for faster convergence.

At the end of each iteration, the quadratic cost function is evaluated and compared

with its value from the previous iteration; if the difference is small, the kernel is taken

as final.

2.5.1 Gradient Projection Solver Optimizations

We perform the following optimizations to the gradient projection solver to ensure

fast convergence and reduce energy compared to [7]:

1. Selective Update: Matrix-vector multiplications with Ak dominate the com-

putational time in the algorithm, as Ak can be very large (49 x 49 to 841 x 841

depending on the kernel size). However, we observe that during each iteration

the vector to be multiplied with Ak updates only at a few indices with respect

to its value from the previous iteration. Our selective update algorithm (Figure

2-9) converts matrix-vector multiplication to a few element-wise multiplications

and additions on two vectors. For example, as shown in Figure 2-9, if the vector

x updates only at index 1 with respect to its value in the previous iteration,
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that is, it becomes x1 + Ax1 instead of x1 in the previous iteration, we read only

the second column of the Ak matrix instead of all columns to compute the new

result vector y. This reduces the number of solver multiplies, adds and DRAM

accesses by 11 x on an average.

2. Datapath Sharing: We propose an architecture that shares floating point

units between non-concurrent steps (Cauchy point computation and conjugate

gradient refinement), resulting in 56% area savings in the solver hardware (Fig-

ure 2-9).

External
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A matrix access
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FPUs

FPAdd]

FPSub

FPMult

FPDiv

LShared Intermediate Index Vectors for

SRAMs Vectors Assisting Selective
Update

I
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Compute Compute Find the first Determine

grad-nt and sort minimum along the Active Set
breakpoints projected gradient

Conjugate Gradient Solver State Machine
Evaluate
cost and Update Check Update the Compute the

check the search +-cnegne solution an~d. maximum
convergence direction residual step

Figure 2-10: Cauchy point computation and conjugate gradient solver state machines.

2.5.2 Gradient Projection Solver Architecture

The gradient projection solver consists of schedulers for Cauchy point computation

and conjugate gradient solver as shown in Figure 2-10, which are essentially hard-

coded state machines that execute the steps of the algorithm on the shared floating

point units. The steps that do not have a data dependency between them are executed

in parallel, and the ones that do are executed sequentially. In this way the scheduler
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extracts the maximum amount of parallelism given the I/O bandwidth constraints.

Figure 2-11 shows an example of the mapping of computation during three different

sequential steps of conjugate gradient refinement onto the shared arithmetic units.

The utilization of the arithmetic units depends on the maximum available parallelism.

The following paragraphs provide details on how the optimizations described ear-

lier are used in context of the algorithm.

1. Cauchy Point Computation: To initialize the solver, we read the m2 x I

vectors k (from the previous EM iteration) and bk, where 49 < m 2 < 841, from

the DRAM and store them in local SRAMs to avoid DRAM access latency and

energy penalty in each gradient projection solver iteration. Then, we stream

in matrix Ak from the DRAM in row-major order, and evaluate the gradient

g = Akk + bk and the cost function kT (Akk + bk). At each index (i), we use

gradient gi to calculate the breakpoint ti, which is the maximum step that one

can take along the negative gradient direction starting from the current solution

ki before the solution along that dimension becomes zero (hits a constraint),

that is, ti = ki/gi. We calculate breakpoints for all indices where the gradient

gi is positive. We also store these indices in a local buffer to later assist in

executing the selective update based matrix multiplication algorithm described

earlier.

Once all breakpoints are computed, we sort the unique breakpoints in ascending

order using a merge sort based approach using a single floating point compara-

tor. For each distinct pair of breakpoints ti and ti+1 in this sorted list:

(a) We compute the projected gradient p where, pi = -gi when ti > ti and 0

otherwise.

(b) Starting at the current k, the objective function till the next breakpoint

can be written as a function of the step size At in the direction of the

projected gradient p as J(k + Atp) = fo + fi(At) + If 2 (At)2 where fi

bkp + kTAp and f2 PTAkP. We minimize this objective function with

respect to the step size At, to get the optimal At* = -fl/f2. The most
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computationally expensive operation here is matrix multiplication of Ak

with p for computing fi and f2. However, we observe that the projected

gradient p updates only at a few indices at a time, depending on the number

of breakpoints ti that are less than or equal to ti in each interval, and we

use the selective update technique described earlier to reduce the number

of computations while calculating AkP.

(c) If At* is > 0 and < (tj+' - ti) and the second derivative f2 > 0, then it

is the local minimum and it lies on the current segment. In this case, we

update the Cauchy point k, k + At*p and proceed to conjugate gradient

refinement. Otherwise, if fi > 0, the minimum is at the boundary. In this

case, k, = k and we proceed to conjugate gradient refinement. Otherwise,

we update k to k + (tJ+1 - ti)p and return to step (1) and examine the

next pair of breakpoints.

2. Active Set Determination: Once we have the Cauchy point k,, we compute

the updated gradient g for the next step and find the set of non-active indices,

that is, indices at which k, is non-zero. The conjugate gradient refinement is

then run on the non-active set only. We store the non-active set indices in a

run-length encoded format, so that DRAM requests for the coefficients of the

Ak matrix can be issued in bursts rather than one at a time, thus reducing

the amount of time spent waiting for DRAM reads. In practice, only 50% of

the indices are non-active on an average, which makes the matrices and vectors

within the conjugate gradient loop 50% smaller, leading to correspondingly

fewer DRAM accesses and FP operations.

3. Conjugate Gradient (CG) Refinement: It solves the linear system Ak,nakna

-ga, where Ak,na, kna and gna denotes are the respective matrices and vectors

at the non-active (na) indices, with a check to restrict the step length in case

the solution violates any constraints. The initial value for kna is the Cauchy

point k, at non-active indices (kc,na). The refinement step typically runs for 10

- 15 iterations till it converges to the minimum. The conjugate gradient state
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machine sequences the following steps on the shared floating point units:

(a) Initialize the residual rcg and the search direction pcg equal to r, = pcg

-Ak,nakna - gna. Also, initialize the residual norm p = rrc.

(b) Repeat the following steps until convergence or until a new constraint is

activated:

i. First, compute the step size a = p/pTqcg where qc= AknaPcg. Com-

puting qc is the most computationally intensive step and it is per-

formed using the non-active sub-matrix multiplication as described

earlier. Then, determine the maximum allowable step size in each di-

mension based on the constraints aoaz -k'/p g. Choose the final

step size a* = min[a, mini (max(0, ata))].

ii. Update the solution kna = kna+a*pc,. In addition, update the gradient

as well, incrementally, by reusing the qc computation, rather than

waiting until the end of conjugate gradient refinement and reading the

complete Ak matrix to compute the updated gradient, ga= g- a +

a*qcg. If during a computation, a constraint is hit then exit the loop.

iii. Compute the new residual rc, = r c - a*qcg and check for convergence

by comparing the norm of the new residual p = rT rcg with the norm

of the last residual Plast. If this difference is smaller than the tolerance,

exit the loop.

iv. Compute a step size for the search direction update Pp/Plast, update

the search direction pcg rcg + pcg, and return to step (a).

4. Convergence Checking: After the completion of CG refinement, we have

the updated solution k at all indices, but the updated gradient g at only the

non-active indices. To compute the updated gradient at the active indices, we

again use the selective update based matrix multiplication algorithm, where we

read in only a sub-matrix of Ak at the active rows and non-active columns and

multiply it with the change in the solution at the non-active indices, to get the
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change in the gradient at the active indices. Since in the average case only 50%

of the indices are non-active, this results in DRAM accesses and FP operations

for only 25% of the Ak matrix. Once we have the updated gradient, we also

compute the new cost without re-reading the Ak matrix, using J = 1kT (g bk).

We compare this cost with its value from the previous iteration, and if the

difference is smaller than some tolerance, the solution k is taken as final, else

the two steps are repeated.

........."."... Chip Features

Technology 40 nm CMOS

Gate Count 2728 kgates

Core Area 2.1 mm x 2.1 mm

SRAM 272 kBytes

Core VDD 0.9 V

I/O VDD 2.5 V

Frequency 25 - 83 MHz

Core Power 59.5 mW (0.9 V, 83 MHz)

Kernel Size 7 x 7 to 29 x 29 pixels

Figure 2-12: Die photo and chip features.

2.6 Results

The accelerator is fabricated in 40 nm CMOS technology. The chip micrograph and

features are shown in Figure 2-12 and the test setup is shown in Figure 2-13. Logic

utilization and power breakdown of the chip are shown in Figure 2-14 and Figure

2-15. Figure 2-16 shows the deblurring results for test images of size 1920 x 1080 and

two different kernel sizes. It can be seen that the determined blur kernel successfully

deblurs the input blurred images on the left.

2.6.1 Runtime and Energy Reduction

The accelerator achieves runtime reduction by 78x for kernel estimation with respect

to our realization of [18] (which incorporates all the software only algorithmic opti-
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Figure 2-13: Test setup for image deblurring accelerator. The chip is connected to
Virtex-6 FPGA on Xilinx ML605 development board. The estimated kernel and the
deblurred Full HD image (1920 x 1080) are displayed on the host PC.

mizations that we have proposed) on an Intel i5 CPU for a 13 x 13 kernel, and by

56x for complete deblurring of a 1920 x 1080 image, with final deconvolution per-

formed on the CPU (Table 2.1). Compared to our realization of [18] on a mobile

processor (Cortex-A15), it achieves a 480x reduction in kernel estimation time. Also,

compared to a related work [12] which implements deblurring on a GPU, this work

achieves a substantial reduction in kernel estimation time. Our kernel estimation

time is independent of image size, while deconvolution time scales linearly.

The accelerator consumes 105 mJ for the above test case at the nominal operating

point (0.9 V, 83 MHz) compared to 467 J consumed by the CPU (measured using

Intel PowerTOP), and 2284 J consumed by the mobile CPU (measured using on-

board energy monitors). At the minimum energy point at (0.67 V, 38 MHz), the

energy consumption is 33% lower than at nominal (Figure 2-17), which can be used

for batch processing of blurred images in cell-phones.
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Figure 2-14: Logic utilization for each processing block (total 2728 kgates).

2.6.2 Energy Scalability

The number of EM iterations can be tuned to trade off image quality with runtime,

achieving 10 x energy scalability from 11 mJ to 105 mJ as shown in Figure 2-18. If

coarse camera motion is available through inertial sensors, it can be used to initialize

the kernel, leading to fewer iterations and lower energy. Similarly, for deblurring

videos, the kernel estimated from one frame can be used as a starting point for the

next frame. The processor also allows configurability in kernel size from 7 x 7 to 29 x 29

which leads to quadratic variation in energy (Figure 2-19). In an energy constrained

scenario, one can down-sample the input image before selecting a 128 x 128 patch,

use the accelerator to estimate a kernel of a smaller size, and then up-sample the

kernel to do deconvolution on the entire image, e.g., if the true kernel is 13 x 13,

down-sampling the input image by a factor of 2 in each dimension allows using a

7 x 7 kernel, leading to a 2.15x reduction in energy as shown in Figure 2-19.

51



Power Breakdown
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Figure 2-15: Total power breakdown for logic blocks and memory (total 59.5 mW).

2.7 Conclusion

In this chapter of this thesis, we presented the first hardware accelerator for kernel

estimation in image deblurring applications. It features

1. A multi-resolution IRLS-based deconvolution engine with DFT based matrix

multiplication which achieves at least 8.8x reduction in the number of floating

point operations.

2. A highly parallel image correlator with diagonal computation reuse and image

tiling which achieves a speedup of two orders of magnitude over the baseline.

3. A selective update based gradient projection solver which achieves 11 x increase

in speed and 56% reduction in area compared to the baseline.

These techniques result in a 78x reduction in kernel estimation time, and a 56x

reduction in the total deblurring time of 1920 x 1080 images with respect to a CPU,
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Figure 2-16: Test 1920 x 1080 blurred image, output kernel of size 13 x 13 (top) and
21 x 21 (bottom) and deblurred image.
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Table 2.1: Comparison with state of the art algorithms on different platforms

Size Time (s) Energy

(J)
Algorithm and Kernel Patch Image Kernel Final De- Full Kernel
Platform Size Size Size Esti- convo- Deblur- Esti-

mation lution ring mation

This Work (based 13 x 128 x 1920x 1.70 0.75 2.45 0.105
on [18] with Accel- 13 128 1080
erator + CPU)

[181 on Intel Core i5 13 x 128 x 1920 x 134.00 0.75 134.75 467.000
13 128 1080

[18] on Samsung 13 x 128 x 1920 x 816.00 - - 2284.800
Exynos 5422 13 128 1080
Cortex-A15

[121 on GPU 15 x - 441 x 169.70 0.80 170.50 -
15 611

and three orders of magnitude reduction in energy. The accelerator supports up to

10x energy scalability through configurability in iterations and kernel size, allowing

the system to trade off runtime with image quality in energy-constrained scenarios.

This energy-scalable implementation enables efficient integration of image deblurring

into mobile devices.

2.8 Future Work

There are several possible directions in which this project can be extended, for exam-

ple,

e The current algorithm assumes a spatially invariant blur, that is, the same blur

kernel is used for deblurring different parts of the image. While this assumption

is approximately valid in many common camera shake scenarios, it is not valid in

general. One possible direction for future work would be to extend this work to

handle spatially variant blur, by determining blur kernels from several patches in

a single image, using them to deblur the image locally, and then reconstituting
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Energy Savings with Voltage and Frequency Scaling
4.5 . 120

4.0

3.5 0.9 V

3.0 .- 80
0.77 VE

2.5 6
250.67 V 0.73 V -6

c2.0 19.4 mW i

1.5 - 40 W

1.0
33% lower energy - 20

0.5 than at nominal 10 Iterations
0.0 0

30 36 42 48 54 60 66 72 78 84 90
Frequency (MHz)

Figure 2-17: By employing voltage and frequency scaling, the system obtains the
minimum energy point at (0.67V, 38MHz), where the energy consumption is 33%
lower than at nominal, and can be used for batch processing.

the final deblurred image. Since the accelerator determines the kernel from one

patch at a time, it should be portable to this multi-patch scenario.

" Another possible extension would be to evaluate the energy scalable nature of

this accelerator while deblurring a video. It would be interesting to measure

how quickly the algorithm converges if the kernel for one frame is initialized

to the final kernel from the previous frame, and measure the resulting energy

savings.

" Numerical optimization is required in several computer vision algorithms such

as visual odometry and video super-resolution. One extension could involve

porting and evaluating the architecture of the numerical optimizers (conjugate

gradient and gradient projection) proposed in this work in the context of these

new applications.
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Chapter 3

Motion Magnification Processor

3.1 Motivation

Over the past few centuries, microscopes have revolutionized our world. They reveal

to us a tiny world of objects, life and structures that are too small for us to see

with our naked eyes. Recent research in computer vision [30, 29, 31] has led to a

new class of algorithms that can magnify tiny motions, or in other words, can act

as motion microscopes. They do not use optics like a regular microscope to make

small objects bigger, but instead use a video camera and image processing to reveal

to us the tiniest motions and color changes in objects and people - changes that are

impossible for us to see with our naked eyes. These motion magnification algorithms

work by analyzing the changes in light at every pixel that are caused when objects

move, and by making those changes bigger while carefully separating them from the

noise that exists in images. The applications of this technology include, but are not

limited to, visualization of blood perfusion [31], contact-less health monitoring by

extraction of vital signs from motion magnified video, baby monitoring, analysis of

vibrations in mechanical systems and structures [8] and remote sound recovery [10].

However, state of the art motion magnification algorithms are extremely com-

putationally intensive and do not achieve real-time performance on modern CPUs.

Reported results [30] show that the fastest algorithm can only achieve a frame rate

of 2.37 frames per second (FPS) on FullHD (1920 x 1080) and 5.33 FPS on HD
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(1280 x 720) video when run on an Intel Xeon E5-2623 desktop CPU and only 0.23

FPS on FullHD and 0.52 FPS on HD video on an ARM Cortex-A15 mobile CPU.

This implies that there is a 6x to 130x performance gap that needs to be bridged to

achieve real-time performance on HD/FullHD video.

Moreover, the high computational complexity leads to high energy consump-

tion which makes the algorithm unsuitable for implementation on battery-operated

portable devices like cell phones and tablets. The motion magnification algorithm

while running on an ARM Cortex-A15 mobile processor consumes 10.36pJ per pixel,

where as video compression on mobile phones takes only 2nJ per pixel with dedicated

hardware, therefore, four orders of magnitude reduction in energy per pixel is required

to enable energy-efficient implementation of motion magnification on mobile devices.

We envision a world where motion microscopes would be as accessible to users as

are cameras today, and they would be used in real-time for applications such as non-

invasive breathing rate monitoring in battery-operated baby monitors and measuring

fluid depth and velocity using handheld devices [32]. In this work, we design a dedi-

cated processor that can be integrated with a cellphone camera to perform real-time

motion magnification. This would enable efficient integration of motion magnification

technology into portable devices.

The next section starts with a brief description of the phase-based motion magni-

fication algorithm pipeline and then outlines the processor architecture and the major

circuit blocks that we implement to realize the motion magnification processor. For

each circuit block, we present the area and power simulation results in TSMC 40 nm

LP process. The power numbers are for a clock period of 3.3 ns and a supply voltage

of 0.99 V.

3.2 Processor Architecture

The motion magnification processor performs phase-based motion magnification based

on the algorithm proposed by [30, 29], which manipulates motion in videos by ana-

lyzing the signals of local phase over time in different spatial scales and orientations.
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Figure 3-1: Motion magnification pipeline.

Figure 3-1 shows the processing pipeline of the processor. It uses a Riesz pyramid

to decompose the video into several local sinusoids/wavelets with different spatial

frequencies and separate the amplitude of these wavelets from their phase. It then

performs temporal filtering of the phases independently at each location, orientation

and scale. Temporal filtering isolates the motions in the frequency bands of interest,

for example in 1 - 2 Hz band for breathing rate monitoring. It is followed by spatial

smoothing to reduce noise in the phase, which improves the final magnification re-

sults. The processor amplifies or attenuates the temporally band-passed phases and

reconstructs the video by inverting the pyramid. The following subsections describe

the architecture of each stage in the processing pipeline in greater detail.

3.2.1 Color-Space Convertor

The first step in the processing is color-space conversion which is performed off-chip.

This takes in each RGB pixel (8 bits per pixel per channel) from the input video

frame and converts it into a YIQ pixel using a simple matrix multiplication:

Y 0.299 0.587 0.114 R

I 0.596 -0.274 -0.322 G (3.1)

[0.211 -0.523 0.312 B
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Motion magnification is performed only on the Y (luminance) channel by the accelera-

tor. Doing this conversion off-chip reduces the I/0 bandwidth used by the pixels from

24 bits to 8 bits for both the input and the output images. This is important because

the on-chip implementation of the motion magnification accelerator is I/0 limited.

The motion magnified luminance is finally combined with the IQ (chrominance) chan-

nels of the original video, and passed through inverse color space conversion to get

the output RGB video:

R 1 0.956 0.621 Y

G =1 -0.272 -0.647 I (3.2)

B 1 -1.106 1.703 Q

3.2.2 Riesz Pyramid Constructor

Original Image (Luminance) [0,255] 8.8

-+*G 12 *G 12 G 12 G

G2
G1

Go

[0,255] 8.0 T 2T

L22

L1,

'1L1

[-255,255] 8.8

LOL Laplacian Pyramid L

Figure 3-2: Laplacian pyramid computation from luminance frame. Here, G denotes
a 5 x 5 2D Gaussian convolution kernel, and it is used for smoothing before down-
sampling by a factor of 2 in each dimension.

Image pyramid (Figure 3-2) is the basic structure for multi-resolution image pro-

cessing used in a large number of computer vision algorithms. The pixels of an image
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in the pyramid are recursively processed and up-sampled or down-sampled to create

an increasingly finer or coarser image for analysis.

Riesz pyramid constructor takes each input luminance frame and creates a Riesz

pyramid from it. Each pixel in the Riesz pyramid is a triplet (L, R1, R2) where L is

the Laplacian, and RI and R2 are the x and y derivatives of the Laplacian. Figure

3-2 shows the algorithm for computing the Laplacian pyramid from the luminance. It

takes the input luminance image, blurs it by convolving it with a 5 x 5 Gaussian kernel

and down-samples it by a factor of 2 in each direction. The result is an image which is

half the size in each dimension. Then it takes this down-sampled image, up-samples

it by 2 by inserting zeros after alternate pixels in both directions and smoothing the

result with a 5 x 5 Gaussian filter, and subtracts it from the original. The results

of this subtraction are the high frequency details, the Laplacian, of the image. Then

this processing is repeated recursively on the output image to get the lower frequency

components. At the end we get a pyramid of images, which is a decomposition of the

original image into localized sinusoids /wavelets of different frequencies. Once we have

the Laplacian pyramid we can take its x and y derivatives to get the Riesz pyramid.

Figure 3-3 shows the hardware architecture of the Riesz pyramid constructor which

consists of 6 pyramid levels operating in parallel. The outputs of the finer levels are

the inputs to the coarser levels. Figure 3-4 shows the architecture of each level. The

input image to the level is first blurred with an anti-aliasing Gaussian filter, G and

then down-sampled by 2 to give the output image for the next level. Additionally, the

down-sampled image is up-sampled, which means that we first introduce a zero after

each pixel in both dimensions and then smooth it out with an interpolation filter,

which is also a Gaussian. This is subtracted from the original image (buffered in the

luminance buffer), to get the Laplacian. The Laplacian needs to be buffered in the

Laplacian buffer, so that derivative filters DX and DY can operate on it to generate
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Frame

Riesz Pyramid Constructor
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Pyramid Level 1I

40x23 Riesz 5

Pyramid Level 5

20 x 12

Lowpass Buffer

Tagged Riesz
1 Triplet

(L, R 1, R2 )

Figure 3-3: Architecture of Riesz pyramid constructor.

the final Riesz triplet.

Dx = [-0.5

D, =D T

0 +0.5( (3.3)

(3.4)

Separable filtering with reordering Now we are going to look more carefully

at the filtering operations happening at each pyramid level. The easiest way to

implement such filtering is by using a 2D filter which, in this case, is a 5 x 5 Gaussian

kernel, G:

1G 2--
256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

(3.5)

In this case, the filter is slid over the image in row or column major order and in

64



Luminance
from level n-1

Pyramid

Anti-aliasing
filter (5x5

Gaussian (G)
filter, 4 column
downsampling

line buffer)

Luminance
line buffer

(4 columns)

level n

1 2

t2

Interpolation
filter (4*G, 2

column
upsampling
line buffer)

Subtract

Laplacian line buffer (2 columns)

Riesz filters (Dx, Dy)

Luminance
-+ to level n+1

-1AOMi A M
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Figure 3-4: Architecture of each level of the Riesz pyramid constructor.

the area in which it overlaps with the image, the corresponding pixels are multiplied

with the filter coefficients and added to get the output at the center of the filter. This

leads to 21 constant multiplies and 24 adds for computing one output pixel. However,

in this case we can do better because of the nature of the filter. A 2D Gaussian filter

is separable, which means that you can achieve 2D filtering by applying the ID filters,

GY and G2, along columns followed by rows (or vice versa).

1 F1
GX = - * 1 4 6 4 1]

16

G = G T

(3.6)

(3.7)

This change leads to 6 constant multiplies with smaller constants and 8 adds per

output pixel for both column and row filtering. We can, in fact, do even better by
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noticing that the filter is symmetric. For the coefficients that are the same, we can

add the corresponding pixels first and then multiply with the coefficient. This leads

us to 4 constant multiplies and 8 adds. In total, separable filtering with reordering in

Riesz pyramid computation reduces the number of multiplies by 5.25x and number

of adds by 3x.

Buffer area reduction using zero-skipping Since we want to read the input

pixels only once from the external memory to save energy and time, we buffer them

locally. For column filtering, we buffer 4 pixels in registers and when we read the fifth

pixel we can compute the filter output at the third pixel. Now the output of column

filtering is produced column major, so we need to buffer 4 columns before we can

apply the row filter. These columns are buffered in 4 banks of an SRAM-based line

buffer, where the banks can be read in parallel. Given this, let us look at the buffering

requirements for the entire pyramid level. The anti-aliasing and interpolation filters

are both separable 5 point Gaussian filters, so they need buffering of 4 columns. The

D. Riesz filter is a 3-point derivative filter, so it needs buffering of 2 columns. Since

there is a latency till the output of the interpolation filter starts to appear, we need

to buffer the original input pixels in the luminance buffer and this takes up 4 more

columns, making the total buffer requirement 14 columns.

We can reduce the buffering requirements to 11 columns using the following tech-

niques:

" Column first rather than row first filtering reduces the buffering requirement by

43% over row first filtering.

" Interpolation filter needs to store only half of the samples after column filtering

since every alternate column is a column of zeros. By skipping the zero samples,

we reduce the total buffering requirement of the Riesz pyramid constructor by

another 16%.

Riesz pyramid level pipeline precision Incoming luminance pixels are unsigned

8 bit numbers (which we denote as U8.0, where U means unsigned, and 8.0 means
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8 integer bits and 0 decimal bits). The separable 5 point Gaussian filter in the

pyramid constructor has coefficients [1, 4, 6, 4, 1], this filtering effectively adds 4 bits

after column filtering and 4 more bits after row filtering, a total of 8 decimal bits

(U8.8). Laplacian calculation results in addition of a sign bit to these 16 bit numbers,

so L becomes 17 bits (S8.8, where S means signed). Riesz calculation results in

subtracting two Laplacians, which adds 1 more decimal bit, but we truncate that

least significant bit and keep 17 bits for each Riesz component.

For the next level of the pyramid, the input is 16 bits, we could do full precision

computation which will add 8 more decimal bits, but instead we truncate the filtered

values to 16 bits. To use the same RTL specification for each level, we add 8 zeros

to the right of the luminance values, to make them unsigned 16-bit numbers, and

then feed them into the first level of the pyramid constructor. We implement a right

shift by 4 after each filtering operation. The width of the column buffer in the first

pyramid level, however, is kept at 12 bits rather than 16 bits, since the last 4 bits are

guaranteed to be zero, and the width of the luminance buffer for the first pyramid

level is kept at 8 bits rather than 16 bits, since the last 8 bits are guaranteed to be

zero. The buffer sizes are summarized in Figure 3-6. Each buffer is implemented

using a two-port register file which allows a read and a write to occur simultaneously.

Area and power breakdown The total area of pyramid constructor is 486854pm 2

and its breakdown is shown in Figure 3-5a. The total power consumed by the phase

calculator engine is 9.86mW and its breakdown is shown in Figure 3-5b. While the

line buffers consume 79% of the area, they consume 35% of the power. 65% of the

power is consumed by the filtering logic and the FIFOs.

67



Power Breakdown of Pyramid Constructor

16%

16%

21% 7%
6%

7%

15%

30% 65%
17%

Filtering logic and FIFOs
Downsampling line buffers
Laplacian line buffers
Luminance line buffers
Upsampling line buffers

S
0
0
S

Filtering logic and FIFOs
Downsampling line buffers
Laplacian line buffers
Luminance line buffers
Upsampling line buffers

(a) Area breakdown of pyramid constructor. (b) Power breakdown of pyramid constructor.

Figure 3-5: Area and power breakdown of pyramid constructor.
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Type Banks Level Height Width per bank SRAM Kbits
(bits)

0 720 12 33.75
1 360 23.00

Downsampling line 4 2 180 12.00
buffer 3 90 16 6.00

4 45 3.00

5 23 1.50
0 720 22.50

1 360 11.50

Upsampling line 2 2 180 16 6.00
buffer 3 90 3.00

4 45 1.50
5 23 0.75

0 4x720 =2880 8 22.50
1 4x360= 1440 22.50

Luminance line 2 4x180= 720 11.25
buffer 3 4x90= 360 16 5.75

4 4x45= 180 3.00
5 4x23 =92 1.50
0 720 23.90
1 360 12.21

Laplacian line 2 2 180 17 6.37
buffer 3 90 3.18

4 45 1.59
5 23 0.79

Total buffer size 230.07

Figure 3-6: Line buffer sizes at different levels of the Riesz pyramid constructor.
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3.2.3 Phase Calculator
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Phase Computation Pipeline
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Figure 3-7: Phase calculator architecture.

The phase computation block receives (Lm, Ri,m, R2,rn) from the Riesz pyramid

converter at each pixel of the pyramid frame m and the block reads the same pixel from

the previous frame (frame m - 1) from the DRAM as shown in Figure 3-7. These two

values can be interpreted as being in rectangular coordinates. The phase calculator

converts them into spherical coordinates (Am, 0 m, #mn), where Am is the magnitude,

0m is the orientation and 0, is the phase, and computes the phase difference AO,

between the two pixels.

Lm =Am cos(om)

Ri,m =Am sin(m) cos(Om)

R2 ,m =Am sin(m) sin(Om)

(3.8)

(3.9)

(3.10)

Given (Lm, Ri,m, R2,m) we can solve these equations to get the spherical representa-

tion (Am, Om, 0m) but the solution is not unique. If (Am, q5m, 0m) is a solution, so is
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(Am, -q0m, m +7r). So we compute #S mcos(Om), Omsin(m) which are invariant to this

sign ambiguity. In addition, since we need to spatially filter the phase subsequently,

we must unwrap the phase (such that there are no sharp discontinuities every 27r).

We do this by first computing the phase difference and then accumulating it to get

the unwrapped phase.

X:= LmLm-i

- AmAi-1(cos(#m) cos(#m-1 )

- AmA-1 (cos(#m) cos(#m-1)

~AmAm-(cos(Om) cos(#m- 1)

- AmAm-1 cos(#m - Om-1)

-AAm- cos(Aom)

Y :=R,mLm-i

- Am sin(#m) cos(Om)Am-i cos(qm- 1 )

~ AmAm-1 cos Om sin(#m - qm-1)

AmAm-1 cos Om sin(Aom)

Z:= R2,mLm-l

- Am sin(om) sin(Om)Am-, cos(#mi)

AmAm-1 sin Om sin(#m - #m-1)

- AmA- sin Om sin(Aom)

+ Ri,mRi,m-i + R2,mR2,m-1

+ sin(#m) cos(Om) sin(#m- 1 ) cos(0m- 1 )

+ sin(#m) sin(Om) sin(#m-1) sin(0m- 1 ))

+ sin(m) sin(#m-1) cos(Om - Om-1))

+ sin(#m) sin(#m- 1))

- Ri,m-iLm

- Am-i sin(#m-1) cos(Om-)Am cos(#m)

- R2,m-lLm

- Am_, sin(4m- 1) sin(0m- 1 )Am cos(om)

To compute the phase difference, we use the relations specified above. We first com-

pute X, Y and Z defined above by substituting the expressions for Lm, Ri,m, R2,m

at frames m and m - 1 in spherical coordinates; and then use these to compute

Aom cos Om, Am sin Om as shown in the equations below. Here, we make a simplify-
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ing assumption that Om ~ Om-1.

X 2 = A A2_Cos 2 (AOm)

Y 2 + Z 2 = A2A 2sin 2 (,AOm)

x 2 + (Y 2 + z 2 ) = A2A _

Aom = cos-i
IN/X2 +y2 +Z2)

Y
COS 1M Y

/Y 2 +Z 2

sin m =M -
/lY 2 + Z2

The phase calculator circuit implements this computation, as can be seen in Figure

3-7 using fixed point arithmetic. Next, we shall talk about the precision scaling

techniques we have employed in this arithmetic pipeline to reduce energy.

Phase computation engine receives Lm, Ri,m, R2,m each of which is a 17 bit value

(S8.8). We move the decimal point to the left to normalize them and make them

SO.16. The computation of X, Y and Z is done in full precision, with X being S2.32

(35 bits) and Y and Z being S1.32 (34 bits). We then truncate the last 3 bits of the

result making X S2.29, and Y and Z S1.29. We square each of these intermediates;

X 2 is U4.58 (62 bits), and Y 2 and Z2 are U2.58 (60 bits). Y 2 + Z2 is U3.58 (61

bits). This is extended to 63 bits by left padding with 2 zeros, so that we can use the

same block FP shifter architecture described in the next paragraph. X2 + (Y 2 + Z 2 )

is U5.58 (63 bits). Next we take the square root of these two sums (Y 2 + Z 2 ) and

(X2 + (y2 + Z 2)).

Using block floating point to reduce square root complexity To take the

square root of the two sums generated using the logic described above, we need a

square root block with 64 integer bits, and 16 decimal bits for precision. An 80-bit

square root module would have an area of 28519pm 2. The two square root modules

that we require would account of 43.7% of the area, and consume 37.5% of the power

of the phase calculator block. To reduce the complexity of the square root block, we
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convert the input of the square root to a 16-bit block floating point (FP) notation (as

shown in Figure 3-7) using a Block FP module. This allows us to use a 32 bit input

square root module (16 integer bits and 16 decimal bits), which gives a 16-bit output

(8 integer bits and 8 decimal bits). This reduces the area of the square root module

by 85.3% and the power by 69.3%, and the area of the phase calculator module by

37.3% and power by 26% at the expense of reduced accuracy that does not adversely

affect the motion magnified results.

The block FP module scans the unsigned 63 bit number and finds the index j of

the most significant 1. If j is even, it adds 1 to it to make it odd; this is needed for

the correct computation of the square root. If j > 15, then it returns bits at locations

j, j - 1, . . . , j - 15. It also returns the integer j - 15, which will tell us how much

towards the left we need to shift the output of the square root module. If j < 15,

it returns the 16-bit number shifted left by 15 - j and also the integer 15 - j as the

amount of right shift needed to get the original number back. Note that since j is

odd, the shift in both cases is guaranteed to be even. We send half of this shift to

the downstream pipeline, since it will be required to convert the result of the square

root into a fixed point number. The square root returns an unsigned 16 bit number

(U8.8). We shift this number by half of the shift of the original number to get a 40

bit number.

Pipelined square root The pipelined square root implements a digit-by-digit

square root calculation algorithm (similar to long division). Its input is a 16-bit

unsigned number with all integer bits, its output is a 16-bit unsigned number with 8

integer bits and 8 decimal bits. Figure 3-8 shows the architecture of one pipeline stage

of the square rooter; the pipeline stage index i varies from 0 to 15. The stages are

separated by 1-element pipeline FIFOs. One pipeline stage computes 1 digit of the

output. The 32 bit operand op is initialized to the 16-bit input number, concatenated

with 16 zeros on the right. The result res is initialized to zero. In each pipeline stage

the operand op is compared to resi + 23-2 . If it is greater, the operand for the

next stage is obtained by subtracting resi + 2 30-2i from the operand, else the operand
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16 bits 16 bits 32 bits

opo= input 0 reso= 0

opi resi

opi opi - (resi + 230-21) resi/2 resi/2 + 23O-21

opi > resi + 230-2  0 1 0 1

Pipelined Square
Rooter Stage i

opi.1I resi.+1

16 bits 16 bits

res15 = output

Figure 3-8: Architecture of pipelined square rooter.

is passed on as is. In the first case, the result is updated to resj/2 + 230-2 and in

the second case to resi/2. Finally, the square root is obtained by taking the least

significant 16 bits of the result of the last pipeline stage.

Pipelined divider After the square root, we compute cos A<1 m, cos 0m and sin 0 m

using the three dividers. The dividend of the top divider from Figure 3-7 is a trun-

cated version of X, which is a 32 bit signed integer (S2.29) as described earlier. The

divisor of the top divider is the output of the top square root which is an unsigned

40 bit number (U3.37). The divider converts the dividend to a sign magnitude repre-

sentation, and extends it on the left and the right with zeros to make it U3.37 (same

as the divisor). The divider has a pipelined long-division type architecture that com-

putes one bit of the quotient in each pipeline stage. It compares the dividend so

far with the divisor, if the divisor is smaller, it outputs 1 as the quotient bit and

subtracts the divisor from the dividend and shifts the result left by 1, else it outputs

zero as the quotient bit and shifts the dividend left by 1. The quotient is computed

to 1 integer bit and 12 decimal bits, since cosine lies between -1 and 1. The result
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is converted back into two's complement (14 bit signed integer, S1.12) based on the

sign of the dividend. The other two divisions are performed similarly yielding signed

14 bit integers for cos Om and sin 6m.

Arc cosine Finally, to get Aqm we need to compute the cosine inverse of cos Aqm,

which is a number between -1 and 1 in S1.12 representation. We use a lookup table

based arc cosine architecture. The result is normalized by 7r. The lookup table has

4097 entries for positive values of the input; for the negative values we compute the

result for input x using 7r - cos- 1 (-x). The arc cosine output is an 11 bit unsigned

integer of the form U1.10.

Obtaining the final phase components Once we have Amn from the arc cosine

block, we have to multiply it with cos Om and sin Om which are the outputs of the

bottom two dividers in Figure 3-7. The top multipliers multiplies Ao4m, which is

U1.10 (or a 12 bit signed integer, S1.10 which lies between 0 and 1 inclusive) with

cos Om, which is S1.12 (a 14 bit signed integer which lies between -1 and 1 inclusive),

to produce a 25 bit signed integer (S2.22) output. We then truncate the multiplier

output to a 12 bit signed integer only (S1.10) which is sufficient for precise motion

magnification results.

Area and power breakdown The total area of the phase calculator engine is

82996pm 2 and its breakdown is shown in Figure 3-9a. The total power consumed by

the phase calculator engine is 3.01mW and its breakdown is shown in Figure 3-9b.

After the optimization of the square root using block floating point intermediates,

most of the power is consumed by the multipliers and adders that generate the input

to the square root blocks.

3.2.4 Accumulation of Phase Components

The output of the phase calculator is the phase difference between two successive

frames (z/m cos m, A,4m sin 0m). The absolute phase is obtained by adding this
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(a) Area breakdown of phase calculator.
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(b) Power breakdown of phase calculator.

Figure 3-9: Area and power breakdown of phase calculator.
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phase difference to the absolute phase of the previous frame, which is stored on and

read from off-chip memory. The phase difference is guaranteed to be between -r and

7r (i.e. the normalized phase difference is guaranteed to be between -1 and 1), but

the absolute phase is unbounded, and its range depends on the number of previous

frames it is accumulated over. To have sufficient dynamic range, the absolute phase is

computed and stored in a signed 16-bit floating point representation (with 5 exponent

bits and 10 mantissa bits). The top level motion magnification module contains two

modules that convert each phase (lifference component from a 12 bit signed integer

(S1.10) to a 16-bit float. It also contains two floating point adders that perform the

accumulation for each phase component.

3.2.5 Temporal Filter

Sine Temporal Filter
Phase Cosine Temporal Filter Filtered

bo Phase

x[n] X + y[n]
a,

p[n - 1] -- -------------------------- -- .+ - p[n]

q[n- 1] --- --- ----------------------- a2

b, ' X + -- q[n]

x[n] = <pcos6 2 y[n] = (p'cos6
or <psin3 X or

9p'sinO

Figure 3-10: Architecture of temporal filter.

The motions of interest from the video are isolated and de-noised with temporal

filters, typically band-pass infinite impulse response (IIR) filters. Let x[n] denote the

phase (either #cosO or #sinO) at each pyramid pixel as a function of time (n). This is

the input to the temporal filter. Let y[n] denote the filtered phase, the output of the

temporal filter. The relationship between x[n] and y[n] can be expressed in terms of

their z-transforms X(z) and Y(z) as:
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Y(z) bo + b 1z-1 + b2 z 2 ... (3.11)
X(z) 1 + aiz- 1 + a2 z- 2 

...

The values of the coefficients ai's and bi's can be calculated from the band-pass

filter's center frequency and bandwidth, which depend on the application.

This IIR filter is implemented recursively in the time domain using difference

equations (shown below for a second order filter).

Y(z) _ bo + b 1z- 1 + b2 z 2 ..

X(z) 1 + ai z 1 + a2z- 2 
...

y[n] = box[n]+

(bix[n - 1] - aiy[n - 11)+

(b 2x[n - 2] - a2y[n - 2])

y[n] = box[n] + p[n - 1]

p[n] = blx[n] - aiy[n] + q[n - 1]

q[n] b2x[n] - a2y[n]

Figure 3-10 shows the hardware architecture of the temporal filter that imple-

ments these difference equations. The phase (either OcosO or OsinO) comes from the

phase computation engine, and the intermediates are accessed from off-chip memory.

The number of coefficients (or the order of the band-pass filter) directly impacts the

number of previous frames accessed for filtering a pixel, which determines the number

of off-chip memory accesses. In this work, we have fixed the number of coefficients

to 5 but kept the values configurable, so that the processor works for a range of

applications.

For the final implementation, the phase inputs to this module are 16-bit floating

point values with 5 bit exponent and 10 bit mantissa. All computation happens in

16-bit floating point representation. The multipliers and adders in the module are

pipelined.
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Area and power breakdown The total area of the temporal filter is 13312pm2

The total power consumed by the temporal filter is 0.902mW.

3.2.6 Spatial Filter

Sine Spatial Filter

Cosine Spatial Filter
1280 x 720

From
temporal Spatial Filter 0
filter

p'sinO 640 x 360 --_-__'sin6

<O'cos- Spatial Filter 1 - "cosI

40 x 23

Spatial Filter 5

Level Level

Figure 3-11: Spatial filter architecture.

Temporally filtered phase is de-noised using a spatial filter. The sine and cosine

components of the phase are filtered independently, and within each component each

pyramid level is filtered independently. Figure 3-11 shows the architecture of the

spatial filter. It consists of a 7 x 7 Gaussian filter, which is implemented using

separable horizontal and vertical 7 point filters with the following filter coefficients:

256 18 33 49 56 49 33 18] (3.12)

Since the throughput of the temporal filter is one pyramid pixel per cycle, not all

spatial filters can be kept busy concurrently, so the filtering core (the multiply ac-

cumulate tree) can be shared between the filtering engines (they still, however, need

their own separate column buffers). Since the spatial filter is a 7 point separable filter,

6 columns are buffered at each level. The column buffer sizes are shown in Figure
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3-12.

Type Banks Level Height Width per bank SRAM Kbits(bits)
0 720 67.50

1 360 34.50

2 180 18.00
Spatial line buffer 6 16

3 90 9.00
4 45 4.50

5 23 2.25

Total buffer size 1 1 135.75

Figure 3-12: Line buffer sizes in the 7 point spatial filter.

Area and power breakdown The total area of spatial filter is 421438pm 2 and its

breakdown is shown in Figure 3-13a. The total power consumed by the spatial filter

is 5.925mW and its breakdown is shown in Figure 3-13b. This breakdown assumes

that there is a separate filtering core for each level. Some reduction in area (but

not power) might be possible by sharing the filtering core between different levels of

the spatial filter, however, it would introduce extra multiplexing/demultiplexing logic

overhead. This is not explored in this architecture.

3.2.7 Phase Amplifier

Spatio-temporally filtered phase components (0#"cos6, q"sinO) are finally squared and

added to obtain #1"2 , which is passed through a pipelined 1-select square rooter to

obtain the magnitude of the phase #". This phase is multiplied with an amplification

factor a, which is then converted into the motion magnified Laplacian pyramid Lout

using the following relations. Figure 3-14 shows the architecture of the phase amplifier

engine that performs this computation.

Lout = Acos(#)cos(a#") - ((R1q$"cos(O) + R2#"sin(O))/")sin(a#")

= Acos(O)cos(a#") - ((Asin(#)cos(0)#"cos(O) + Asin(#)sin(0)#"isin(0)) /0")sin(a")

= Acos(#)cos(a#") - Asin(#)sin(ao") = Acos(# + a#")
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Figure 3-13: Area and power breakdown of spatial filter.

CORDIC algorithm

We use CORDIC algorithm to compute sine and cosine of the amplified phase.

The basic operation in the algorithm is a vector rotation as shown in Figure 3-15.

It involves rotating a vector (Xi, yi) by an angle a, to get the vector (xi+1 , Yi+i). The

rotation can be expressed using the following set of equations:

Xj+1 = r Cos (aj + 0j)

= r cos ai cos #2 - r sin a, sin #,i

= (cos aj)xi - (sin aj)y,

yi+1 = r sin (ai + 0j)

= r sin a cos Oi + r cos at sin #,

= (sin ae)xi + (cos aj)y,

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

The above equations can be equivalently written in matrix format as shown below.

The extra term pi denotes the direction of the rotation, it is -1 for clockwise and 1
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Figure 3-14: Phase amplification architecture.

for anti-clockwise rotation.

xi+1 COs hap -p i. sin a xi w ge t c ,
yi+ 1 pi sin ozi COS ai yi

COS azs -pi. tan cei Xi (3.20)
p-i tan ai

By starting with (xO, yo) = (1, 0), we perform a sequence of rotations until the total

rotation angle, EjOpi becomes equal to the input angle zo, whose sine and cosine

we want to compute. In other words, the remaining rotation angle zi = zo-E= Piai ,

becomes equal to zero. When this happens, the final value xn, will give us the cosine,

and the final value y,, will give us the sine of the input angle.

We choose the rotation angle at each step, aj, and the rotation direction at each
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(xi+1, yi +1)
r sin(ai + 13) r

(Xi, yi)
rr sin3i

Qi

Pi

r cospi

r cos(ai + @i)

Figure 3-15: Vector rotation.

step, pi, using

ai= tan-1 (2-') with i E {o, ... , n - 1} (3.21)

pi = sign(zi) (3.22)

to ensure convergence. Choosing tan ai to be a power of 2 ensures that the multi-

plication with the scaled rotation matrix can be accomplished using only shifts and

adds. The rotation angle sequence, aj, is calculated in advance, quantized according

to the chosen quantization scheme, and stored in a look-up table from which it can

be retrieved during the execution of the CORDIC algorithm.

Additionally, to avoid multiplication with a scale factor cos ai in each iteration

i, the computation in each iteration is simplified to the following, and the initial

vector (xO, Yo) = (1, 0) is multiplied with the cumulative scale factor for all iterations

00 cos a. This cumulative scale factor can be pre-computed. xsi and ysi below
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denote the scaled versions of xi and yj.

1

pitan ai

-- i. tan ai xsi

1 ysi

To summarize the CORDIC algorithm to compute cosine and sine of an angle 6

becomes:

pi = sign(zi)

xsi+i = xsi - pi(ys i)

ysi+ I= ysi + pi(xi >> i)

(3.24)

(3.25)

(3.26)

(3.27)Zi+1 = zi - Pi.ai

(3.28)

with zo = 0, xso =7JI e cos ac (pre-computed), yso = 0, and ai = tan-1 (2 -i) (pre-

computed).

Input angle pre- and post-processing

The above algorithm is valid for angles 0 such that -7r/2 < 0 < r/2. For 7r/2 <

0 < 7r and -7r < 0 < -7r/2, we use the relations given in Figure 3-16. There is no

transformation required when 0 lies in quadrant I and IV. For quadrant II, the input

to CORDIC is 0 - 7r/2,

cos(0 - 7r/2) = cos 0 cos(7/2) + sin 0 sin(7r/2) = sin 0

so, sin0 = cos(0 - 7r/2)

sin(0 - 7r/2) = sin 0 cos(7r/2) - cos 0 sin(7r/2) =- cos 0

so, cos 0 = - sin(0 - 7r/2)

(3.29)

(3.30)

(3.31)

(3.32)
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n/2

-T/2

Figure 3-16: Mapping
-7r/2 and 7r/2.

of -ir < 0 <w to CORDIC unit whose input must lie between

For quadrant III, the input to CORDIC is 0 + 7/2,

cos(9 + wr/2) = cos 0 cos(7r/2) - sin 9 sin(7r/2) =- sin 0

so,

sin(0 +

sin 0

ir/2)

- cos( + 7r/2)

= sin 0 cos(7/2) + cos 0 sin(7r/2) = cos 0

so, cos 0 = sin(O + 7r/2)

(3.33)

(3.34)

(3.35)

(3.36)

Pipelined CORDIC Architecture

We implement the CORDIC algorithm described above using a pipelined architecture

shown in Figure 3-17. The architecture has 16 identical pipeline stages, each of which

corresponds to an iteration of the CORDIC algorithm. xsi and ysi are both 18 bit

signed integers. The residual angle zi is a 17 bit signed integer. ai's are 17 bit signed

integers stored in a combinational lookup table. xsO is initialized with an 18 bit signed

integer 18'h09B74 which is equal to the cumulative scale factor. yso is initialized to
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CORDIC pipeline stage i

Xsi ysi Zi

Rotation
angle
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2-i 2-i table ai

XSi +1 YSi +1 Zi +1

Figure 3-17: Architecture of one pipeline stage of CORDIC based sine and cosine
computation. The module has 16 such stages (i varies from 0 to 15).

0.

Area and power breakdown The total area of phase amplifier is 51866pm 2 and

its breakdown is shown in Figure 3-18a. The total power consumed by the phase

amplifier is 1.318mW and its breakdown is shown in Figure 3-18b.

3.2.8 Image Re-constructor

The phase amplified Laplacian pyramid is finally inverted to get the output image

using the pyramid inversion algorithm shown in Figure 3-20. This algorithm is imple-

mented by the image re-constructor, which consists of multiple levels similar to the

pyramid constructor, only that the data flow is in the reverse direction. The smallest

resolution low-pass image is read from the local low-pass buffer. It is up-sampled by

a factor of 2 by inserting a zero after each pixel along the rows and the columns, fol-

lowed by an interpolation using a 5 x 5 Gaussian filter. This filter is also implemented

as separable ID column and row filters. The Laplacian (high frequency component)

is added to this up-sampled image to get the output image at that level, which is the

low-pass input to the next higher level. This processes is repeated until we get the
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(a) Area breakdown of phase amplifier.

Figure 3-18: Area and power
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* FIFO to hide phase magnitude computation latency
* FIFO to hide square root latency
* Rest

(b) Power breakdown of phase amplifier.

breakdown of phase amplifier.

final image. The architecture of each level is shown in Figure 3-21, which shows the

separable interpolation filter and the adder for summing the low-pass and high-pass

components to generate the output image. The column buffer sizes are shown in

Figure 3-19.

Area and power breakdown The total area of the image reconstructor is 234907pm2

33% of this area is taken up by the upsampling line buffers and the rest by the logic.

Almost all of the logic area comes from two large FIFOs that hide the DRAM latency

which is incurred while accessing the Laplacian values for each level from the DRAM.

The total power consumed by the image reconstructor is 4.63mW.

3.3 FPGA Demonstration

The complete system described so far was tested on a Xilinx VC707 FPGA board.

The motion magnification pipeline was verified to be working correctly on the test
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Type Banks Level Height Width per bank SRAM Kbits
________(bits)

0 720 22.50

1 360 11.50

Upsampling line 2 2 180 16 6.00
buffer 3 90 3.00

4 45 1.50

5 23 0.75
Total buffer size 45.25

Figure 3-19: Line buffer sizes in the 5 point up-sampling filter inside image re-
constructor.

videos. It operates at a throughput of 1 pyramid pixel per cycle, which implies that

running at a frequency of 37 MHz is sufficient to process HD (1280 x 720) at 30

frames per second. The system achieves this real-time performance on the FPGA. It

will be fabricated in 40 nm CMOS technology for which area and power numbers are

presented in each subsection. The estimated core power for the chip is approximately

9 mW at the real-time frequency; it can be further reduced to about 3 mW with

voltage scaling.

3.4 Conclusion

To conclude, state of the art motion magnification algorithms are extremely com-

putationally intensive and do not achieve real-time performance on modern CPUs.

In this work, we present a low-power processor to accelerate motion magnification

that achieves real-time performance on HD (1280 x 720) video at 30 frames per sec-

ond, while consuming less than 0.2 nanojoules of processing energy per pixel. The

processor accelerates the algorithm proposed in [30], which uses a Riesz pyramid to

decompose each frame of the input video and separate the amplitude of the local

wavelets from their phase. It then performs temporal filtering of the phases indepen-

dently at each location, orientation and scale to isolate the frequencies of interest (for

example, a band around 1 Hz for breathing rate amplification). This is followed by

spatial smoothing to reduce noise in the phase, and finally amplification and recon-
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Figure 3-20: Pyramid inversion algorithm.

struction of the output video by inverting the pyramid.

We propose to use the following techniques in the design of the accelerator to

achieve energy-efficiency and real-time performance: (1) Separable filtering in pyra-

mid computation and spatial filtering to reduce the number of multiplies and adds.

(2) Zero-skipping to reduce the buffering requirements of pyramid computation. (3)

Reducing the precision of computation in several modules to reduce energy and se-

lectively using block floating point representation to maintain accuracy. (4) Caching

intermediates in on-chip SRAM based line buffers to reduce external memory band-

width and save system energy. The complete motion magnification architecture is

demonstrated on an FPGA and simulated area and power measurements in 40 nm

CMOS technology are presented in this thesis. These techniques enable efficient in-

tegration of motion magnification technology into mobile devices.

3.5 Future Work

There are several immediate directions for future work. We are working on fabri-

cating the motion magnification processor. Whereas the number of chip I/Os is not
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Figure 3-21: Image re-constructor architecture.

a concern in the FPGA implementation, it presents a major limitation for the on-

chip implementation. The algorithm generates several intermediates at the various

pipeline stages - the Riesz pyramid, the phase components, the temporal filtering

intermediates - which are produced by filtering/ accumulating temporally over suc-

cessive frames. The on-chip SRAMs are not big enough to hold a complete frame

worth of intermediates locally, so these intermediates are read from and written to

the DRAM. Since each intermediate is required in each cycle (by different pipeline

stages), this leads to a large I/0 and DRAM bandwidth requirement. To solve these

problems, we clock the DRAM and the I/0 at a higher frequency than the chip itself.

We can trade off DRAM and I/0 bandwidth and energy with processor area and

energy. For example, computation of phase needs Riesz values from two successive

frames. One architecture (that is employed in our current FPGA implementation),

has one Riesz pyramid constructor that operates sequentially on the frames. The

Riesz values of the current frame are written to the DRAM once they are computed

and are accessed again by the phase calculator when it needs to compute the phase

difference between the next frame and this frame. Another possible architecture is one

where there are two Riesz pyramid constructors, one operating on the current frame

and one operating on the previous frame in parallel. In this case, the Riesz values

(which take 51 bits per pyramid pixel) are not written and read from the DRAM,

only the image pixel values (which are 6 bits per pyramid pixel) are read twice from
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the DRAM. Therefore, this architecture reduces both DRAM and I/0 bandwidth and

energy at the expense of having two instantiations of the Riesz pyramid constructor.

We plan to explore such trade-offs in the on-chip implementation.

Another technique that could be used for energy minimization is active pixels

detection. We define active pixels as the pixels which are undergoing the motion. Ac-

tive pixels are typically less than 50% of total pixels since large portions of the scene

remains static from frame to frame. These active pixels can be detected from the

temporal filter output, and we can perform motion magnification for the subsequent

frames on the active pixels only to reduce the amount of computation, memory band-

width and energy. Finally, we can perform dynamic voltage and frequency scaling

together with active pixels detection to reduce energy while maintaining the through-

put.

3.6 Acknowledgements

We would like to thank Intel Corporation for sponsorship and Professor Fr6do Durand,

Professor William T. Freeman, Dr. Mondira Pant and Dr. Dongsuk Jeon for valuable

feedback. We would also like to thank MIT undergraduate student, Natalie Mionis

for contributing to the design of the test platform for this work.

91



92



Chapter 4

A 3D Imaging Platform for

Automated Surface Area Assessment

of Dermatologic Lesions

4.1 Motivation

For many dermatologic conditions, the initial assessment of disease severity as well

as the primary outcome measure of progression or treatment success are dependent

on an assessment of body surface area (BSA) involved in the disease. This assess-

ment is based on a physician's visual estimation of area involvement, which has low

accuracy and reproducibility. Moreover, these assessments often are performed by

non-dermatologists with no training to complete such assessments. This limitation

represents a major hurdle for clinical trials, translational research efforts, as well as

daily clinical care. For example, estimation of BSA helps determine who is a candidate

for systemic immuno-suppression for psoriasis and atopic dermatitis among other dis-

eases. It also is a key factor in determining the grade of cutaneous adverse reactions

to chemo- and immuno-therapies, and determines whether a patient can stay on a

cancer therapy. This chapter addresses the limitations of existing methods to measure

body surface area and presents a tool and associated image processing/enhancement
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algorithms to enable rapid, reproducible, and objective determination of surface area

of a cutaneous lesion(s) in an automated fashion via 3D imaging.

This work has been done in collaboration with MIT student, Jiarui Huang, who

worked on the python implementation of the algorithm and its initial testing as a part

of his Master's thesis, and Dr. Victor Huang from Brigham and Women's Hospital:

Boston Hospital & Medical Center, who collected patient data using our system,

and provided clinical insights into the results. My contributions were the design

of the platform architecture, identification of the algorithms to be used for each

processing step and performing extensive validation, measurements and analysis on

clinical data. We completed and submitted the Harvard Affiliated Application for

Institutional Review Board (IRB) Review of Multi-Site Research. Our application

has been successfully reviewed and accepted (Federal Wide Assurance: FWA00004881

and FWA00000484).

4.1.1 Vitiligo

In this work, we have chosen vitiligo as a model condition to demonstrate the utility

of such a tool for the following reasons:

" Low acuity of pathology experienced by the patients allowing for investigative

imaging with minimal impact on clinical care.

" Varied locations of presentation across the body.

" Relatively high prevalence affecting all skin types and ethnicities equally (1-2%

of the general population).

" Underserved nature of the disease.

The clinical need for a reliable, reproducible, inexpensive, and practical assessment of

surface area and volume of lesions is present, however, across an array of inflammatory

skin diseases (for example psoriasis, atopic dermatitis, drug reactions, etc.), wounds

(for example graft-versus-host disease, chronic wounds, etc.), and pigmented lesions
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(for example atypical moles, melasma, etc.), and this work is extensible to these

disease types.

Vitiligo affects 1-2% of the general population, and there are an estimated 3 to 6

million individuals in the United States suffering from it. Recent work has demon-

strated the significant psychological, social, professional, and interpersonal repercus-

sions for those afflicted [4, 23]. Clinical and translational efforts to address the burden

of vitiligo, however, have lagged behind the recognition of the impact of this disease.

The lack of a reliable, objective, and reproducible outcome measure that can be as-

sessed quickly has hampered clinical and translational investigation of treatments

for vitiligo. Vitiligo Area Scoring Index (VASI) and Vitiligo European Task Force

(VETF) measures, commonly used in clinical trial contexts, which are based on a

physician's visual assessment of the percentage of body surface area affected by vi-

tiligo, were demonstrated to have a smallest detectable change of 7.1% and 10.4%

respectively, which is quite large [16].

4.1.2 Existing Approaches for Objective Measurement of Le-

sions

Figure 4-1: Surface area measurement with planimetry using Visitrak. This approach

requires contact with the lesion and manual tracing. Image from [3].

The gold standard of lesion area assessment involves planimetry, where a lesion is

manually traced onto a transparent grid sheet, which is then retraced onto the Visitrak

pad [2] that automatically calculates the area of the trace as shown in Figure 4-1.

The advantage of this approach is that the area obtained is an absolute area, however,

manual tracing is very time-consuming because of the complex shapes of the lesions

and may cause discomfort to the patient. It is also limited to small lesions, and not
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suited to evaluate involvement across an entire body.

Attempts at image analysis based on 2D color images of the lesion suffer from the

same necessity of manual lesion segmentation. ImageJ is an open-source, Java-based

image processing program developed at and distributed by the National Institutes of

Health [1, 241. To use ImageJ to measure a lesion, the lesion needs to be photographed

first with a ruler in the photographic frame to allow ImageJ calibration. The lesion

outline needs to be manually traced and then the ImageJ software can calculate

the lesion area. Compared to Visitrak, this method is non-lesion-contact but it is

cumbersome because the lesion outline needs to be manually traced. Also, this method

only measures the projected area rather than the curved surface area.

An image analysis program [26] has been developed which performs automatic

lesion segmentation from 2D color images of the lesion, but only provides the relative

change in lesion area for a sequence of images, and no absolute measurement, which

makes comparing different lesions for the same person or across different people im-

possible. It also fails at segmenting large lesions and gives inaccurate measurements

over curved surfaces.

This work addresses all of these shortcomings; it is user-friendly, non-lesion-

contact and gives an absolute measurement of lesion area over any curved surface.

4.1.3 Impact

A tool that can measure the surface area in an automated fashion would be useful to

pharmaceutical companies designing trials, researchers, and general dermatologists.

Patients potentially can use this to monitor their own disease progression.

The most immediate customers would be those involved in clinical trials for drugs

treating dermatologic lesions or with dermatologic side effects. Using the vitiligo

space as an example, most clinical trials currently require large cohorts followed over

6 months to see changes because of the limitations of outcome assessments used.

A more accurate measure that is more sensitive to change would allow more rapid

assessments of fewer patients. Our own pilot data suggest that reliable changes can

be seen as early as 1-3 months with standard treatments for vitiligo. The other
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space where such assessments may have utility is in the assessment of dermatologic

side effects. In particular, in the area of targeted immunotherapy for cancer, 70-80%

of drugs involve cutaneous side effects. These side-effects are often dose limiting,

and the Common Terminology Criteria for Adverse Events uses body surface area to

determine Grade 3 toxicity requiring dose reduction or trial termination from Grade

2 toxicity. These assessments are often completed by non-dermatologists with limited

experience in making such assessments. This leads to unnecessary dose reduction or

medication cessation both in research trials and regular clinical care.

General dermatologists may find such assessments useful, particularly as data

using these objective measures becomes increasingly used to determine suitability of

therapies for particular diseases. Already, guidelines have been developed for the

use of first and second generation biologic medications for the treatment of psoriasis

based on body surface area involvement. The application of this technology to the

monitoring of pigmented lesions would incorporate a factor not currently being used

to evaluate atypical moles, namely lesion volume in addition to area and regularity.

Finally, the evaluation of chronic wounds and response to treatment is intimately

related to surface area and volume of wounds that is currently too cumbersome to

determine in the regular clinical flow.

Finally, patients themselves may be interested in applying such a technology to

monitor their own progression and response to treatment over time.

4.2 System Workflow

The 3D imaging system developed in this work has high accuracy, and requires min-

imal manual labor and resources to implement. It is envisioned to be used in an

outpatient clinical setting or at home by patients for the evaluation of disease sever-

ity and progression. This system will allow objective and reproducible assessments of

disease burden with a high sensitivity to change over time.

The system workflow starting from image capture to area calculation consists of

the following steps (Figure 4-2):
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Figure 4-2: System workflow starting from image capture to area calculation.

1. A 3D camera (Kinect V2 in our case) captures color and depth images and stores

them in files. The camera can capture the images using available ambient light

sources. Supplementary lighting, for example an ultraviolet Wood's lamp or a

flash, may also be used to capture more detailed images. These raw data files

are labeled with the patient's number and date.

2. The system registers the depth image with the color image since the two images

are captured using two cameras at different locations, with different fields of

view and resolutions.

3. It pre-processes the color image using contrast enhancement with algorithms

such as gamma correction, histogram equalization and contrast limited adap-

tive histogram equalization (CLAHE) to get a more distinguishable contour for

lesion segmentation.

4. It performs lesion segmentation using watershed [6] algorithm.
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5. It calculates the surface area of the segmented lesion using:

Lesion area ~ D(i, j)2D (ij)2 + DY(i, j) 2 + l Ox Oy (4.1)
(ij)cLesion

D(i + 17j) - D(i - 1 j)(42Dz(i, j) = ' ',j-~i1j (4.2)
2D(i, j)O

D(ilj + 1) - D(ij -1)(43)
2D(i, j)Oy

Here (i, j) are pixel coordinates. D(i, j) is the depth of pixel (i, j). The camera

has a field of view Fx x Fy degrees with a resolution of Rx x Ry pixels and each

image pixel corresponds to a field of view of Ox x Q, degrees where Ox = Fx/Rx

and Oy = Fy/Ry.

The following sections describe each of these steps in detail and the final section

presents the results.

4.3 3D Image Acquisition and Processing

4.3.1 3D Image Acquisition

This system uses Kinect for 3D image acquisition; it captures two images - a color

image and a depth image. We tested our system with Kinect versions 1 and 2. Kinect

version 1 (VI) has a color image resolution of 640 x 480 pixels and a depth image

resolution of 320 x 240 pixels and uses stereopsis for depth measurement. Kinect

version 2 (V2) has a color image resolution of 1920 x 1080 pixels and a depth image

resolution of 512 x 424 pixels and uses time-of-flight for depth measurement. Because

of the different techniques used to measure depth, the effective depth measurement

ranges are also different. Kinect VI has an effective measurement range from 0.4 m

to 4 m while Kinect V2 has a range from 0.5 m to 4.5 m. Even though we use Kinect

for image acquisition, our platform not limited to it; it can support any camera that

provides a color and a depth image, and the mapping between the two.

For light-skinned patients, the vitiligo lesions are not completely discernible in am-
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bient light. This system uses a supplementary ultraviolet Wood's lamp to illuminate

the lesion area, which makes the lesions more discernible. The effect of supplementary

lighting is illustrated in the results section.

4.3.2 Color and Depth Image Registration and Depth Image

Completion and De-noising

In order to calculate the surface area, we need to register the depth image with the

color image because the two images are captured by different cameras in Kinect that

are offset with respect to each other and have different resolutions and fields of view.

Simply scaling them and stacking one on top of the other does not give desirable

results. The difference in resolutions of the two images is shown in Figure 4-3. We

use a function called coordinate mapper from Microsoft's SDK to map each color

image pixel to a depth pixel. The results are shown in Figure 4-4.

Figure 4-3: Images captured by Kinect V2: Left: Color image (1920 x 1080), Right:
Depth image (512 x 424). Dimensions of the two images are different. Black area
indicates missing depth values.

Notice that the depth value can be missing at several pixels. If an object is outside

Kinect's depth measurement range or the depth measurement is too noisy, then the

corresponding depth pixel will be missing (black). We fill in pixels that contain no

depth values with the average depth of the 4 nearest valid pixels towards the top,

the bottom, the left and the right of the missing pixel to improve the accuracy of

area calculation. To improve the depth estimates for the pixels with missing depth
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Figure 4-4: Coordinate mapper maps the color image onto the depth image: Left:
Mapped depth image, Right: Overlaid color and depth images.

values even further more sophisticated algorithms such as [25, 33, 17, 27] could be

used in future work which use information from the color image to fill holes in the

depth image.

The other reason for missing depth information is the difference in the fields of

view of the color and the depth cameras. The color camera has a field of view of

84.1 x 53.8 degrees while the depth camera has a field of view of 70.6 x 60 degrees.

Since the color camera has a larger field of view, some objects that are only captured

by the color camera cannot find their corresponding depth pixels in the depth image,

which causes two black strips at the left and right ends of the mapped image. To

avoid error due to this, it is necessary that the lesion not be near the edge of the

image when the image is captured.

4.3.3 Color Image Enhancement

Skin de-pigmentation is visually different on various types of skin. Vitiligo lesions on

lighter skin are less distinguishable than those on darker skin. The system, therefore,

incorporates a contrast enhancement tool to aid lesion segmentation as shown in Fig-

ure 4-5. The tool implements the following existing contrast enhancement algorithms:

Gamma Correction Gamma correction is a simple nonlinear transformation. For

an input pixel I(x, y), the output pixel after gamma correction O(x, y) is given by:

O(x, y) = [a * I(x, y) + (4.4)
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Figure 4-5: A screen-shot of the contrast enhancement tool.

where a operates as an intensity amplifier, / as a range shift, and -y as the gamma

coefficient. The difference in intensity between two pixels will be accentuated if

- < 1 and lessened if y > 1. The original image is returned when y = 1. This

simple transformation in intensity involves only three parameters and therefore it is

computationally efficient yet powerful. In this system, gamma correction is applied

to all three color channels independently.

Histogram Equalization A histogram is a graphical representation of the pixel

intensities in the image. The left side of the graph represents the information in the

darker areas in the image and the right side represents the brighter area. The height

of each bar indicates the frequency of pixels in a specific intensity range, typically

from 0 to 255. Consider a grayscale input image X with gray levels ranging from

0 to L - 1. From a probabilistic model point of view, each bar in the histogram of

this image represents the probability density of pixels with gray level i. Define the

cumulative distribution function Fx(i) of pixels with intensity level i as

Fx ()= (4.5)
j=0
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where nj is the number of pixels with gray level j and n the total number of pixels

in the image. Histogram equalization [11] converts the input image to the output

image Y such that Fy(i) is linear, or the mass density function fy(i) = (Fy(i))'

is constant. This spreads out the most frequent intensity values in the image and

therefore increases the global contrast of the image.

CLAHE Histogram equalization considers the global contrast of the image. How-

ever, in many cases, it is sub-optimal. An improved technique known as adaptive

histogram equalization [20] is used to provide better contrast processing. Adaptive

histogram equalization divides images into tiles with a much smaller size than the

dimension of the image. Each tile is first histogram equalized. Then bilinear inter-

polation is applied to soften tile borders. Adaptive histogram equalization produces

excellent results in enhancing the signal component of an image, but it also amplifies

the noise in the image. To address this problem, contrast limitation is introduced. In

the contrast limited adaptive histogram equalization, or CLAHE [34], a contrast limit

threshold 3 is specified. If any histogram bin is beyond /, the corresponding pixels

will be clipped and distributed evenly into other bins before histogram equalization.

Lab Color Space Lab color space is designed to approximate human vision. It

describes perceivable colors using three parameters: L for lightness, a for green-red

color opponents and b for blue-yellow color opponents. By converting the original

image from RGB color space to Lab color space, this system can adjust the lightness

layer to reveal hidden details that are not apparent, without losing the color features.

After the adjustment, the Lab image is converted back into an RGB image for further

processing. This system provides the user the option to perform color adjustment in

Lab color space to increase segmentation accuracy.

Integrated Tool All the methods described above are incorporated in the contrast

enhancer to reveal unapparent details. It provides a variety of options to the user,

including whether to operate in Lab color space, perform gamma correction and

different modes of histogram equalization. The user interface along with the sample
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processing image is shown in Figure 4-5.

4.3.4 Lesion Segmentation from Color Image

We perform segmentation using the watershed algorithm [61, and compare our results

with [26]. A detailed description of the watershed algorithm is beyond the scope

of this thesis, please refer to [6] for an explanation. We focus our discussion on

how we use the watershed algorithm. Our approach is semi-autonomous: the user

is presented with the image in a graphical interface shown in Figure 4-6. The user

marks, very coarsely, some background pixels with a red marker and some lesion

pixels with a green marker. When the user presses 'spacebar' the segmented output

is shown. The interface also shows the background area and the lesion area in red and

green respectively overlaid on the original image. Pressing 's' saves the segmentation

results. If the user detects a mistake in the segmentation, he/she can go back to the

image window and annotate some more pixels with red and green markers, and press

'spacebar' again to see the updated results. Once satisfied with the segmentation, the

user can press 's' to save the segmented result. Absence of this interactiveness was a

major limitation of [261 since the dermatologist could not correct any mistakes made

by the algorithm and that led to inaccurate results in certain scenarios.

4.3.5 3D Surface Area Calculation

After lesion segmentation, the final step is to calculate the lesion area. A naive method

for calculating area is to count the number of pixels in the lesion. This method has the

following drawbacks: first, it only gives a relative measure of the area (with respect

to the size of the image), not an absolute one. Moreover, the size of the lesion in the

image changes with distance. The larger the distance the smaller size it appears in the

image. This method, therefore, requires the image to be taken at the same distance

and with the same camera perspective each time in order to track progress of the

lesion. This is difficult to implement reliably in a clinical setting. To get an absolute

measure of the area, this method also requires that a ruler be incorporated in the
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huukv (bash) 0 X1
1. Python: VLAMS/Code (python3.6)

tMUX 0 X2 X Pvthon: VLAMS/Cod... X3

Figure 4-6: User interface for watershed segmentation. Left: The user marks very
coarsely some pixels in the background with a red marker and some pixels in the
lesion with a green marker. Middle: When the user presses 'spacebar' the segmented
output is shown. Right: The interface also shows the background area and the lesion
area in red and green respectively overlaid on the original image. Pressing 's' saves
the segmentation results.
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z P = (x, y, z) = (x, y, D (x,y))

0

xZ dy d

Figure 4-7: If the area of lesion S is directly calculated from the color image without
using the depth information, the area projected on the x - y plane is obtained instead
of the actual surface area.

image at the distance of the lesion, so that one can get the correspondence between

pixels and real distance. Secondly, this method only calculates the projected surface

area, not the true curved surface area. In our system, using the depth information, we

are able to calculate the absolute area in squared millimeters instead of the relative

area. We now describe how we calculate the area of the segmented lesion.

Let S be the lesion to be measured as shown in Figure 4-7. Assume that the

sensor plane is the x - y plane. Any point P = (x, y, z) = (x, y, D(x, y)) corresponds

to a point in the color image with coordinates (x, y) and a depth value D(x, y). The

surface area of S is given by:

Is OD (2aD ) Ildx dy (4.6)

If the depth gradient is ignored, that is, a - -= 0, then the above formula

gives the projected surface area ffs dx dy.

The surface integral from Equation (4.6) takes a continuous depth function, but

the data from the hardware is discrete. Consider that the camera has a field of view
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D
Figure 4-8: One single pixel captures a projected area AS at distance D.

Fx x Fy degrees with a resolution of Rx x Ry pixels. Assume that the camera is ideal

without distortion. Then, each pixel corresponds to a field of view of Ox x 0 degrees

where Ox F/Rx and O, = Fy/Ry. Consider that a projected surface AS with width

Ax and height Ay at distance D is captured in one single pixel. Assume that both

Ox and 0Y are small, then by trigonometry, Ax DO and Ay = Dy. Thus, we have

AS = AxAy = D2OO,,, as shown in Figure 4-8.

Since the surface is not necessarily flat, we also need to incorporate the gradient

of depth in order to give a better approximation. The gradient of depth at pixel (i, j)

can be approximated using the central difference theorem. Consider three horizontally

aligned pixels (i-1,j), (ij) and (i+1,j) that correspond to physical locations x-t, x

and x+t. These locations have distances L(x-t), L(x) and L(x+t) respectively, where

L(x) = D(i, j), as shown in Figure 4-9. Given that a single pixel has a horizontal

field angle of Ox, we can see that t = DOx. Then, at location x or pixel (i, j), the

horizontal gradient approximation is given by:

OL(x) L(x + t) - L(2 -t) (7D() + ,J) -D(i- 1 j) .4.
Ox 2t 2D(iJ )OX
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k L(x)

L(x-t) L(x+t)

Ii Ii i

x-t x x+t

Figure 4-9: Example of using central difference to approximate gradient. Three pixels

(i - 1, J), (i, j) and (i + 1, j) correspond to three physical location x - t, x and x + t.
The gradient (green) at point (x, L(x)) is approximated by the slope (red) of the line
connecting point (x - t, L(x - t)) and point (x + t, L(x + t)).

Using the same argument, the vertical gradient approximation is given by:

L(y) L(y + t) - L(y - t) _

Oy 2t
D(ij+1) - D(ij - 1) _

2D(ij)O

The surface area is the sum of the area of each pixel in the lesion and can be

written as:

A ~ (D(p)2 D (p)2 + Dy (p) 2 + IoxO Oy
pcLesion

(4.9)

Once the lesion area is obtained, it can be stored in a clinical database for progress

tracking.
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4.4 Results

4.4.1 Patient Demographics

To validate our imaging approach, after institutional review board approval, 9 patients

with a diagnosis of vitiligo were recruited for the study, with different skin types and

having varied presentation and size of vitiligo lesions. All the data was collected

on-site at Brigham and Women's Hospital/Faulkner by Dr. Victor Huang.

4.4.2 Distance Calibration

Figure 4-10: Area measurement of a box with a known surface area at 914 mm
(approximately 3 ft). The image taken with a Kinect V2. A ruler on the floor
measures the true distance of the box. Left: The color image. Middle: The color
image overlaid with the mapped depth image. Right: Segmentation result.

In order to test the accuracy of area calculation of this system, we measure a

box with known surface area at different distances. This box has a surface area of

524.80mm 2. The experimental set-up is shown in Figure 4-10. The test results are

shown in Table 4.1. From the results, we see that Kinect version 1 has its optimal

measurement at around 0.6 in while Kinect version 2 has its optimal measurement

at around 0.9 m. We use Kinect version 2 in our experiments since it gives a more

accurate measurement, but the accuracy of depth measurement goes down with an

increase in depth. This is because Kinect V2 uses time-of-flight to measure depth,

and the light returned from farther away pixels is weaker and leads to more noise

in the depth estimate. From this experiment we conclude that to obtain the most

accurate surface area measurements using Kinect V2, we should image the lesions at

about 0.9 in distance from the camera.
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Table 4.1: Area measurement at different distances

Distance (mm) 609 762 914 1067 1219 1371
Area from Kinect V1 (mm2) 492.11 487.16 491.70 464.86 463.56. 461.53
Area from Kinect V2 (mm 2) 437.64 504.94 507.88 490.30 494.41 479

4.4.3 Surface Area Measurements and Comparison

We use our approach to measure the lesion surface area for 9 patients in two different

lighting conditions: natural lighting and UV Wood's lamp lighting. These results are

presented in Figure 4-11. For comparison, we also manually trace the lesion boundary

on a transparent sheet with a marker at the same time. This contour is then retraced

on the planimetry device and area measurement is recorded for each lesion. We also

take an image of the transparent sheet with the manually traced lesion and a ruler,

use our segmentation algorithm to segment out the contour and measure the number

of pixels occupied by the lesion. We then convert the area in number of pixels to

an absolute area by measuring how many pixels span 15 cm on the ruler. Note

that the planimetry measurements are not perfectly accurate and error may result

from inaccuracy of manual segmentation, inaccuracy of the planimetry machine, and

the thickness of the markers used to trace the contour of the lesion etc. However,

since planimetry is the most widely used method in a clinical setting, we use those

results as comparison benchmarks. The figures following the results chart show the

segmentation results obtained using our system for the 9 patients, the captions have

a discussion of the results. For privacy reasons, we have cropped the images to hide

the identities of the patients. The figures also show the hand traced lesion boundaries

side by side for comparison.

From the chart in Figure 4-11, it can be seen that out of the 14 measurements,

10 show close correspondence between the area calculated by our system in at least

one lighting condition and at least one benchmark measurement (planimetry or pixel

counting with calibration). It should be noted that even the benchmark measure-

ments may have many sources of error as described earlier. First failure case is for

patient 5. In this case, the image of the lesion is taken at a very oblique angle, and
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we suspect that the large error arises due to the limited depth measurement accuracy

of the Kinect device. The second one is for patient 3. In this case, the measurements

with our system were taken without ultraviolet lighting whereas the benchmark mea-

surements were taken with ultraviolet lighting. Since patient 3 is light skinned, the

full extent of the lesion is only discernible in the presence of ultraviolet lighting, which

explains the lower area measurement obtained from our system. The last two failure

cases are for patient 8. In this case, the patient is very light skinned and the lesion

boundaries are barely discernible even with ultraviolet lighting. In all the other cases,

our system performs well.

4.5 Conclusion

This work presents a new solution to surface area measurement of vitiligo lesions by

incorporating a depth camera and image processing algorithms. We show that this

system can perform lesion segmentation robustly and measure lesion area accurately

over any skin surface. Compared to the currently existing approaches, this system

has several advantages. It is easy to use, does not require any precise calibration or

professional training. It is contact-free. This eliminates the possibility of contamina-

tion and discomfort caused by manual tracing. It can measure the absolute area of

any surface.

The anticipated applications are to determine the burden of disease and response

to treatment for patient care and clinical trial applications. In particular, vitiligo,

eczema, psoriasis, and chronic wounds are immediate areas for application. In ad-

dition, determination of BSA of adverse dermatologic side effects would allow for

granular, objective grading of adverse events or determination of BSA involvement in

burns or wounds.

4.6 Future Work

There are several research directions to extend this work in the future, such as:

111



* Progression measurements. One immediate goal is to obtain area measure-

ments from images of the same lesion taken over multiple visits. The percentage

difference between them will give us a measure of treatment efficacy. Using this

we can quantify the sensitivity (the minimum observable change) of our ap-

proach.

" Depth de-noising using color image. To improve the depth estimates for

pixels with missing depth values even further, more sophisticated algorithms

such as [25, 33, 17, 27] could be used which use information from the color

image to fill holes in the depth image.

* Extension to other dermatological conditions. Our intermediate to long

term goal is to adapt these approaches to be appropriate for the evaluation of

inflammatory skin diseases (e.g. psoriasis, atopic dermatitis, drug reactions,

etc.), wounds (e.g. graft-versus-host disease, chronic wounds, etc.) and pig-

mented lesions (e.g. atypical moles, melasma, etc.). This would entail making

modifications to the algorithm based on pathology (e.g. de-pigmented lesions of

vitiligo versus pigmented lesions such as melanocytic nevi versus erythematous

lesions of drug reactions versus volumetric lesion determination in wounds).

Our final objective is to optimize the imaging hardware for clinical use and

workflows.
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Figure 4-11: Surface area measurements for 9 patients using images taken with differ-
ent lighting conditions and comparison to planimetry measurements taken with the
planimetry device and obtained by pixel counting.
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Patient 1 (Left Anterior Neck)

Figure 4-12: Results for patient 1, lesion on the left anterior neck. Left: Original im-
age. Middle: Our segmentation result. Right: Manually segmented lesion boundary.

Patient 2 (Right Cheek)

Figure 4-13: Results for patient 2, lesion on the right cheek. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary.

Patient 3 (Nasolabial Folds)

Figure 4-14: Results for patient 3, lesions on the left and right nasolabial folds. Left:
Original image. Middle: Our segmentation result. Right: Manually segmented le-
sion boundary. In this case the measurements with our system were taken without
ultraviolet lighting whereas the benchmark measurements were taken with ultravio-
let lighting. Since the patient is light skinned, the full extent of the lesion is only
discernible in the presence of ultraviolet lighting, which explains the lower area mea-
surement obtained from our system.
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Patient 5 (Anterior Neck)
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Figure 4-15: Results for patient 5, lesion on the anterior neck. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary. In
this case, the image of the lesion is taken at a very oblique angle, and we suspect that
the large error arises due to the limited depth measurement accuracy of the Kinect
device.

Patient 6 (Left Thumb)

Figure 4-16: Results for patient 6, lesion on the left thumb.
Middle: Our segmentation result. Right: Manually segmented
row shows the results with natural light, bottom row shows the

Left: Original image.
lesion boundary. Top

results with UV light.

115



Figure 4-17: Results for patient 6, lesion on the right thumb.
Middle: Our segmentation result. Right: Manually segmented

Figure 4-18: Results for patient 6, lesion on the right wrist.
Middle: Our segmentation result. Right: Manually segmented

Patient 6 (Right Thumb)

Left: Original image.
lesion boundary.

Patient 6 (Right Wrist)

Left: Original image.
lesion boundary.

Patient 6 (Left Wrist)

Figure 4-19: Results for patient 6, lesion on the left wrist. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary. Top
row shows the results with natural light, bottom row shows the results with UV light.
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Patient 7 (Right Leg)

Orr'

Figure 4-20: Results for patient
Middle: Our segmentation result.
row shows the results with natural

7, lesion on the right leg. Left: Original image.
Right: Manually segmented lesion boundary. Top
light, bottom row shows the results with UV light.

Patient 7 (Left Leg)

cJ'

Figure 4-21: Results for patient
Middle: Our segmentation result.
row shows the results with natural

7, lesion on the left leg. Left: Original image.
Right: Manually segmented lesion boundary. Top
light, bottom row shows the results with UV light.
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Patient 8 (Left Wrist)

Figure 4-22: Results for patient 8, lesion on the left wrist. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary. The
patient is very light skinned and the lesion boundaries are barely discernible even
with ultraviolet lighting.

Figure 4-23: Results for patient 8, lesion on the right wrist. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary. The
patient is very light skinned and the lesion boundaries are barely discernible even
with ultraviolet lighting.
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Patient 8 (Left Ankle)
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Figure 4-24: Results for patient 8, lesion on the left ankle. Left: Original image.
Middle: Our segmentation result. Right: Manually segmented lesion boundary. Top
row shows the results with natural light, bottom row shows the results with UV light.

Patient 9 (Left Cheek)

Figure 4-25: Results for patient 9, lesion on the left cheek. Left: Original image.

Middle: Our segmentation result. Right: Manually segmented lesion boundary. Top

row shows the results with natural light, bottom row shows the results with UV light.
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Patient 10 (Left Abdomen)

I It %

Figure 4-26: Results for patient 10, lesion on the left abdomen.
Top row - Left: Original image. Right: Our segmentation result. Natural lighting.
Middle row - Left: Original image. Right: Our segmentation result. UV lighting.
Bottom row - Manually segmented lesion boundary.
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Chapter 5

Conclusion

To summarize, this thesis argues that energy-efficient hardware accelerators are re-

quired to enable complex computational imaging, vision and machine learning ap-

plications on mobile devices. We demonstrate that hardware acceleration can lead

to two to three orders of magnitude improvement in performance and three to four

orders of magnitude improvement in energy for applications such as image deblurring

and motion magnification using several energy minimization techniques.

We present three complete computational imaging systems: (1) an energy-scalable

accelerator for image deblurring, (2) a low-power processor for real-time motion mag-

nification in videos, and (3) a 3D imaging platform for automated surface area as-

sessment of dermatologic lesions. In future work this approach can be extended to

a variety of new applications such as autonomous visual understanding, augmented

reality, and portable medical imaging systems, to create efficient implementations of

the algorithms involved for energy-constrained mobile devices.

The first part of this thesis presents the first hardware accelerator for kernel es-

timation in image deblurring applications. It features a multi-resolution IRLS-based

deconvolution engine with DFT based matrix multiplication which achieves at least

8.8 x reduction in the number of floating point operations, a highly parallel image cor-

relator with diagonal computation reuse and image tiling which achieves a speedup

of two orders of magnitude over the baseline, and a selective update based gradient

projection solver which achieves 11x increase in speed and 56% reduction in area
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compared to the baseline.

The accelerator achieves a 78x reduction in kernel estimation time, and a 56x

reduction in the total deblurring time of 1920 x 1080 images with respect to a CPU,

and three orders of magnitude reduction in energy. The accelerator supports up to

10x energy scalability through configurability in iterations and kernel size, allowing

the system to trade off runtime with image quality in energy-constrained scenarios.

This energy-scalable implementation enables efficient integration of image deblurring

into mobile devices.

There are several possible directions in which this project can be extended, for

example, the current algorithm assumes a spatially invariant blur, that is, the same

blur kernel is used for deblurring different parts of the image. While this assumption

is approximately valid in many common camera shake scenarios, it is not valid in

general. One possible direction for future work would be to extend this work to

handle spatially variant blur, by determining blur kernels from several patches in a

single image, using them to deblur the image locally, and then reconstituting the final

deblurred image. Since the accelerator determines the kernel from one patch at a time,

it should be portable to this multi-patch scenario. Another possible extension would

be to evaluate the energy scalable nature of this accelerator while deblurring a video.

It would be interesting to measure how quickly the algorithm converges if the kernel

for one frame is initialized to the final kernel from the previous frame, and measure

the resulting energy savings. Numerical optimization is required in several computer

vision algorithms such as visual odometry and video super-resolution. One extension

could involve porting and evaluating the architecture of the numerical optimizers

(conjugate gradient and gradient projection) proposed in this work in the context of

these new applications.

In the second part of this thesis, we present a low-power processor to acceler-

ate motion magnification that achieves real-time performance on HD (1280 x 720)

video at 30 frames per second, while consuming less than 0.2 nanojoules of process-

ing energy per pixel. We propose to use the following techniques in the design of

the accelerator to achieve energy-efficiency and real-time performance: (1) Separable
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filtering in pyramid computation and spatial filtering to reduce the number of mul-

tiplies and adds. (2) Zero-skipping to reduce the buffering requirements of pyramid

computation. (3) Reducing the precision of computation in several modules to reduce

energy and selectively using block floating point representation to maintain accuracy.

(4) Caching intermediates in on-chip SRAM based line buffers to reduce external

memory bandwidth and save system energy. The complete motion magnification

architecture is demonstrated on an FPGA and simulated area and power measure-

ments in 40 nm CMOS technology are presented in this thesis. These techniques

enable efficient integration of motion magnification technology into mobile devices.

There are several directions in which this work can be extended. We are working

on fabricating the motion magnification processor. Whereas the number of chip I/Os

is not a concern in the FPGA implementation, it presents a major limitation for the

on-chip implementation. The on-chip SRAMs are not big enough to hold a complete

frame worth of intermediates locally, so these intermediates are read from and written

to the DRAM. Since each intermediate is required in each cycle, this leads to a large

I/0 and DRAM bandwidth requirement. To solve these problems, we clock the

DRAM and the I/0 at a higher frequency than the chip itself. We can also trade

off DRAM and I/0 bandwidth and energy with processor area and energy. Another

technique that could be used for energy minimization is active pixels detection. We

define active pixels as the pixels which are undergoing the motion. Active pixels

are typically less than 50% of total pixels since large portions of the scene remains

static from frame to frame. These active pixels can be detected from the temporal

filter output, and we can perform motion magnification for the subsequent frames on

the active pixels only to reduce the amount of computation, memory bandwidth and

energy. Finally, we can perform dynamic voltage and frequency scaling together with

active pixels detection to reduce energy while maintaining the throughput.

The third part of this thesis presents a new solution to surface area measurement

of vitiligo lesions by incorporating a depth camera and image processing algorithms.

We show that this system can perform lesion segmentation robustly and measure

lesion area accurately over any skin surface. Compared to the currently existing
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approaches, this system has several advantages. It is easy to use, does not require

any precise calibration or professional training. It is contact-free. This eliminates

the possibility of contamination and discomfort caused by manual tracing. It can

measure the absolute area of any surface.

We use our approach to measure the lesion surface area for 9 patients in two

different lighting conditions: natural lighting and UV Wood's lamp lighting. We

compare the results obtained from our system with those obtained by manual trac-

ing/segmentation of the lesion followed by either planimetry or pixel counting to

compute area. Out of 14 measurements, 10 show close correspondence between the

area calculated by our system in at least one lighting condition and at least one bench-

mark measurement (planimetry or pixel counting with calibration). We analyze the

failure cases to inform future image collection, for example, we conclude that very

oblique angles and absence of supplementary lighting while imaging patients with a

light skin-tone can lead to a large error in the measured area.

There are several research directions to extend this work in the future. One imme-

diate goal is to obtain area measurements from images of the same lesion taken over

multiple visits to assess disease progression. The percentage difference between them

will give us a measure of treatment efficacy. Using this we can quantify the sensitivity

(the minimum observable change) of our approach. To improve the depth estimates

for pixels with missing depth values even further, more sophisticated algorithms could

be used which use information from the color image to fill holes in the depth image.

Our intermediate to long term goal is to adapt these approaches to be appropriate

for the evaluation of inflammatory skin diseases (e.g. psoriasis, atopic dermatitis,

drug reactions, etc.), wounds (e.g. graft-versus-host disease, chronic wounds, etc.)

and pigmented lesions (e.g. atypical moles, melasma, etc.). This would entail mak-

ing modifications to the algorithm based on pathology (e.g. de-pigmented lesions of

vitiligo versus pigmented lesions such as melanocytic nevi versus erythematous le-

sions of drug reactions versus volumetric lesion determination in wounds). Our final

objective is to optimize the imaging hardware for clinical use and workflows.
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