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Abstract

This thesis presents a study of electronic circuits containing superconducting devices
called Josephson junctions. Such circuits may be viewed mathematically as collections
of coupled nonlinear oscillators. Two types of circuits are analyzed in detail: one-
dimensional arrays of N junctions, connected either in series or in parallel.

For the series arrays, a longstanding mystery surrounds the stability properties of
a certain disordered periodic soluticn known as the splay state. Contrary to what
one would expect from bifurcation theory, this solution appears to be almost always
neutrally stable in O(N) directions in phase space. This peculiarity is studied here,
first for the important limiting case § = 0. where 3 is the McCumber parameter. A
fully nonlinear global result has been obtained: an explicit coordinate transformation
has been found that generates O(N) constants of motion, reduces the dimension of
the system by O(N), and uncovers a remarkable picture of the phase space foliated
by invariant low-dimensional subspaces.

As f is perturbed away from 0, the global structure becomes weakly broken. Solutions
now drift slowly from one subspace to another, as revealed by accurate computations
of the Floquet multiplizrs about the splay state for various values of 3. In the large-3
limit, the stability of the splay state is determined by an asymptotic analysis. The
asymptotic resu'ts show excellent agreement with the numerical computations.

The situation is more complicated for the parallel arrays, whose model equation is the
damped driven discrete sine-Gordon equation. The phase space is non-degenerate,
and multiple attractors are observed to coexist. These attractors are manifested
experimentally as steps and hysteresis loops in the current-voltage characteristics of
the circuit. My work is aimed at explaining the experiments of my collaborators. By
a local analysis around two types of periodic solutions, predictions have been obtained
which show good agreement with the data.

Thesis Supervisor: Steven H. Strogatz
Title: Associate Professor
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Introduction

Many systems in nature may be regarded as collections of coupled nonlinear os-
cillators [Str&Ste93]. The dynamics of such systems is important in connection with
such diverse disciplines as astronomy, mathematics, mechanics, physics, and engi-
neering {Guc&Hol83, Arn89, Lic&Lie92, Str94]. More recently, problems in biology
[Win80] and in chemistry [Kur84] have also been treated from this point of view.
Mathematically, an oscillator system is described as a (possibly large) number of
coupled ordinary differential equations.

This thesis is concerned with a specific class of dissipative systems composed of
N identical limit cycle oscillators. To study such dissipative systems analytically, it
is natural to start from the uncoupled limit, and then to introduce a weak coupling
among the oscillators. In the limit of zero coupling, all the oscillators simply converge
to a common limit cycle, but with arbitrary phase differences among them.

When coupling among oscillators is included but is “weak” (compared to the
attraction strength of the limit cycle), the limit cycle hardly deforms, and amplitude
variations are negligible [Kur84]. In this case, the state of an oscillator can be well-
approximated by a single variable, its phase on the orbit. However, the coupling
has a major effect in the direction tangential to the orbit, leading to a slow drift
of the relative phases. Now the phase relationships are no longer arbitrary, and
the coupling interactions among oscillators can result in mutual entrainment. [n
particular, for identical oscillators, this entrainment of phases often leads to complete
phase-locking, in which the phase differences converge to certain fixed values. If all
the phase differences vanish, the system is said to be completely synchronized or
phase coherent. If not, the final phases are “disordered” to some extent. In any case,
the oscillators rotate at the same frequency, and the solution is periodic.

Periodic attractors are of great importance in many applications, and we are most
interested in these solutions in this thesis. Also, the stability of periodic solutions is
wel! understood in terms of Floquet theory, even though the characteristic exponents
are often hard to evaluate. Thus, there is the possibility of treating such stability
problems analytically in practical problems. Our approach in this thesis is to apply
the tools of nonlinear oscillations and dynamical systems theory to practical problems,
rather than to develop new techniques which may be applicable in more complicated
situations.

Collections of limit cycle oscillators naturally arise in engineering. In microelec-
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tronics, for instance, advances in material science have made it possible to fabricate
massive numbers of oscillators on a single chip. Semiconductor lasers are one such
example. Because each element is tiny, such systems have several advantages, such
as well-controlled material properties, energy efficiency, and a long life span. On
the other hand, there is a disadvantage that only minute amounts of power can be
generated, unless many elements are operated collectively. Therefore, it is desirable
to form a large array of the elements, and to operate the whole array in a coherent
in-phase oscillation.

Since it is impractical (if not impossible) to manipulate the state of individual
lasers, the array must be synchronized either by a spontaneous mechanism or by a
simple external condition. The appropriate tricks are usually found by trial and error,
and this is not an easy task. Often, disordered solutions rather than coherent ones
are observed, much to the disappointment of the experimenters. Even when coherent
oscillations are achieved, one lacks a systematic knowledge of what parameters affect
the performance in which way. For example, it is reported [Mor&Koj93] that coherent
oscillation has been achieved in a two-dimensional 8 x 8 array of a certain type of
semiconductor lasers. However, these authors also reported that a transition from an
out-of-phase mode to a coherent mode occurs as the injection currents are increased,
but this observation was explained only in a heuristic way.

Josephson junctions and arrays

A superconducting device called a Josephson junction is another microscopic struc-
ture with great technological potential. A single junction is already used as the
standard voltage reference, while pairs of junctions (SQUIDs) are widely used for
high-sensitivity measurements of magnetic fields. However, more elaborate uses of
many coupled junctions are expected [ASC94] because of their extraordinarily high
oscillation frequencies and ease of fabrication, from one junction to thousands of
junctions on a chip as desired [Ben&Bur91].

Physically, a Josephson junction is an insulating (or normal-state) layer of ~10A
thickness between two superconducting domains. The layer breaks the macroscopic
wavefunctions of the superconductors [Orl&Del91], and couples the two sides only
weakly through a quantum tunneling effect. The state variable of a junction is the
phase difference ¢ between the two wavefunctions.

A widely used RCSJ (resistively and capacitively shunted junction) model assumes
that a junction is equivalent to a circuit with three branches in parallel: a capacitive,
a resistive, and a superconducting one. By writing Kirchhoff’s current law, the model
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equation in a dimensionless form becomes [Orl&:Del91):
3é+é+sing = I/I, (1)

where I is the current through the junction, and I. (the critical current) and 3 (the
dimensionless Stewart-McCumber parameter) are material constants.

The variable ¢ is an angle variable. In fact, Eq.(1) is analogous to the equation
of motion for a mechanical pendulum, with a linear damping and a drive I/I.. Then,
¢ is analogous to the pendulum angle measured from the downward vertical. For
any 8 > 0, it is known that for sufficiently large I, Eq.(1) has a unique limit cycle
solution ¢(t+T) = ¢(t)+2n (where T is the period). (Note that we consider rotating
solutions rather than librating ones.) Thus, a Josephson junction can be viewed as a
limit cycle oscillator.

The time unit in Eq.(1) is normalized by the so-called plasma frequency of a
junction, which is typically in the range of GHz to THz. It is this ultra-high frequency
that makes Josephson junctions technologically attractive. Josephson junctions have
many of the same advantages and disadvantages as the semiconductor lasers. The
material properties can be controlled over a wide range and can be made nearly
uniform; the McCumber paramcter, in particular, can be varied from 107® to 107
with a deviation less than 10% (see Chap. 3). However, single junctions produce only
very small signals, say currents of around 1mA or voltages of around 1mV.

One wa; to generate more power is to find a mechanism that brings many cou-
pled junctions into coherent oscillation. For this purpose, both one-dimensional (1D)
[Jai&al84] and two-dimensional (2D) [Ben&Bur91] arrays have been tested inten-
sively. (“Stacked arrays” consisting of layers of 1D and 2D arrays have also been
attracting attention recently [Ust&al93]. Much less research has been done on three-
dimensional arrays, and the existing studies are mostly numerical, e.g. [Sug&al93).)
The 1D arrays can be further classified as either series or parallel. Figure 1 shows
several typical array configurations.

One-dimensional series arrays with =0

The 1D series array (Fig. 1(a)) is the simplest of all. Efforts to synchronize such arrays
are reviewed in detail in [Jai&:al84]. Hadley and Beasley [Had&Bea87] were the first
to analyze series arrays from the point of view of dynamical systems theory. Following
their pioneering work, a number of physicists and mathematicians have participated
in the subsequent study of series arrays. In the past few years, a peculiar behavior of
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Fig. 1 Typical Josephson array configurations. The crosses denote junctions. (a) 1D
series arrays, (b) 1D parallel arrays, (c) 2D arrays

series array was discovered. Chapters 1 and 2 of this thesis are devoted to a further
study of this peculiarity.

Equations of motion for series arrays are derived in Chap. 1 (Sec. 2). N junctions
are connected in series, but an external load shunted in parallel to the array turns
out to be necessary to provide coupling among the junctions. The equations have a
coherent in-phase periodic solution. The local stability of this solution was studied
in [Had&Bea87, Had&al88] by numerically evaluating the Floquet multipliers. The
stability depends on the parameters I/, and 3, and the type and the values of the
load parameters. In the “overdamped” limit B = 0, the solution was found to be
stable when the load looks inductive and unstable when it looks capacitive.

This overdamped limit seemed analytically tractable since the limit cycle solu-
tion of an uncoupled junction Eq.(1) can be explicitly obtained in this case. Thus,
analytical papers which followed [Had&Bea87, Had&al88] have mostly assumed this
limit. Also, the difference in dynamics with # = 0 and with a small but finite 3 is
expected to arise only in the initial transient during which the junctions settle down
to the limit cycle. Thus, as far as the long-term dynamics are concerned, the results
obtained for the overdamped limit were also expected to be applicable to systems in
the vicinity of the limit.

The main question asked was, when the in-phase solution is destabilized with a
capacitive load, which solution does the system converge to? Numerically, a disor-
dered periodic solution, in which phases of junctions are staggerel equally in time,
was observed in this case. This solution was given different names by various authors
(such as the anti-phase state), but following [Tsadzal91] we call it the splay state since
the phases are splayed over one period.

Then, the linear stability of the splay state was studied. One naturally expected
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switching between stability and instability, but the results were surprising. Numerical
computation [Tsa&Sch92, Nic&Wie92] found that at least ¥ — 2 Floquet multipliers
are all unity, meaning that there are that many linearly neutrally stable directions to
infinitesimal perturbations. This observation remained true for most types of load,
regardless of the values of the parameters. This conclusion was unexpected. Accord-
ing to bifurcation theory, one generically expects to find neutral stability only at the
critical values of parameters. Also, since the splay state certainly appears attracting,
one wondered whether the splay state was not linearly stable but nonlinearly stable.

Meanwhile, analytical progress on the stability of the splay state was carried out
mostly for the case of a purely resistive load. This load is expected to be close to the
critical situation when the in-phase solution switches its stability, but the governing
equations become considerably simpler with more symmetries to rely on. The linear
stability analysis was then carried out after the equations are averaged over a fast
time scale [Swi&al92] or in the N = oo limit [Str&Mir92]. It appeared, deepening the
mystery further, that all N Floquet multipliers were unity in these approximations.
Numerical integration of the unaveraged governing equations [Tsa&al91] not only
agreed with this local analysis, but showed an even more remarkable observation that
all trajectories lie on nested invariant 2-tori in the phase space.

All the above peculiar observations suggested that series arrays must have a special
property. Chapter 1 of this thesis is devoted to explaining these observations and to
uncovering the nature of this special property in the 8 = 0 limit. In particular, an
unusual global structure in the N-dimensional phase space is identified as responsible.
To state briefly, the structure can be understood from the “toy-model” systern:

N
6=~ cos(Bx—0;—6) , j=1,...,N (2)
Nk:l

which is not merely a toy, but actually the weak-coupling limit of the governing
equations obtained by averaging over a fast time scale [Wie&Swi95]. The angles 6,
are the slowly modulated part of the phases ¢;, and the parameter § may be expressed
in terms of the load and the current I//..

This averaged system is fully nonlinear in appearance, but is completely solved in
Chap. 1 (Sec. 4). By use of a coordinate transformation shown in Sec. 3, the system is
first reduced to merely three equations. This transformation generates N —3 constants
»f motion, and uncovers a remarkable global picture of the phase space foliated by
invariant three-dimensional subspaces. The dynamics only occurs within a subspace
in which the initial condition is chosen to be.

11



Moreover, a Lyapunov function can be found for the reduced dynamics, and it
shows that the direction of the flow is either toward a coherent in-phase oscillation or
toward a disordered solution, depending on the sign of siné. The disordered solution
can be the splay state, but Eq.(2) shows that there is a whole (N — 2)-dimensional
invariant manifold of disordered periodic solutions in which the splay state is the
most symmetric one. The observed neutral stability corresponds to perturbations
along this invariant manifold.

The averaged equations are only approximate, but it can be proven that the most
important result, the foliated structure of the phase space, still persists in the original
equations for the series array. The array hence belongs to the “almost completely
integrable” class of dynamical systems which, I believe, does not have many examples.

The analysis is valid for all N > 3. In particular, the N = oo limit of the system
reduces to a continuity equation in a periodic domain with a simple velocity field.
Here we also have a rare example of an infinite-dimensional system that is explicitly
reducible to a small system of ordinary differential equations (Chap. 1, Sec. 5). The
reduction process from the PDE to the ODE’s is somewhat similar to the inverse
scattering method for completely integrable Hamiltonian systems (Chap. 1, App. B).

One-dimensional series arrays with g > 0

Chapter 2 of this thesis continues the study of the 1D series array. The analysis
so far has been limited to the overdamped limit 2 = 0. One would usually expect
that such delicate features as foliations and integrability would be destroyed when
the system is perturbed away from the limit of zero 8. However, numerical evidence
to the contrary was offered by Nichols and Wiesenfeld [Nic&Wie92]. They reported
that N —2 Floquet multipliers of the splay periodic solution are still unity even when
B > 0 for most types of the load. Thus, an early conjecture was that the phase-space
structure might persist for 8 > 0, and one might hope to prove that the splay state
is neutrally stable.

However, as we show numerically in Chap. 2 (Sec. 2), the splay solution is not
neutrally stable when 8 > 0. Indeed, an asymptotically stable splay state can be
found. This does not mean that our calculation is in contradiction to Nichols and
Wiesenfeld’s. In Sec. 3, we present systematic computations of the Floquet multiplier
dependence as 3 is varied, and N — 2 multipliers are found to be ertremely close to,
but not exactly equal to, unity for the parameters used in {Nic&Wie92]. (One trivial
multiplier is always equal to unity.) Or rather, it is more correct to say that the mul-
tipliers deviate substantially from unity only when f is relatively small. This explains
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all the previous observations without a paradox, and thus the mystery surrounding
the n~utral stability of the splay state seems to be mostly solved.

This computation of Floquet multipliers, however, has led to a new analytical
result as its byproduct. We have noticed that the multipliers behave in a simple
fashion when 8 > 1. To explain this observation, we have carried out a perturbation
analysis and derived the averaged equations to account for the slow modulation of the
phases, under the assumption that a combination parameter ¢ = 1/(I\/B) is small
(Sec. 4). Somewhat surprisingly, the averaged equations are identical in form to
Eq.(2). Only the dependence of the parameter 6 on the load is different. Estimates of
the Floquet multipliers by this analysis show excellent agreement with the numerics.

To summarize the results for 1D series arrays, the analysis in Chaps. |1 and 2
predicts the stability of the coherent in-phase periodic solution in two opposite limits
of the parameter 3. In the 8 = 0 limit it is common knowledge [Jai&al84, Had& Bea87,
Wie&Swi95] that the in-phase state is stable for inductive loads and unstable for
capacitive loads. In the weak coupling limit, our analysis of Chap. 1 proves this
statement. In the opposite limit of 8 > 1 (or more precisely ¢ <« 1), the opposite
statement is now seen to be true: the in-phase state is unstable when inductance
is included in the load and stable for a purely capacitive load. Since € involves a
combination of both 3 and I/I, there is an interesting singular behavior near 3 =0
when I > I. (Chap. 2, Sec. 5). This result provides a warning and a practical
statement that needs to be considered when one selects the load in applications.

Decoupling in two-dimensional arrays

Before we turn to the parallel arrays in Fig. 1(b), it seems more straightforward to
discuss the 2D arrays of Fig. 1(c). The 2D arrays are probably the most interesting of
all three configurations in Fig. 1, and at the same time the most difficult to analyze.
There have been many numerical as well as experimental papers, in addition to more
theoretical ones in the overdamped limit, written on these arrays. The great interest
in 2D arrays comes (at least in part) from their ability to spontaneously phase-lock.
Note that 1D series arrays require an external load to couple the junctions, whereas
2D arrays do not require such an external device; by just uniformly injecting and
extracting the current, the arrays can become phase-locked. Although the dynamics
has not been directly visualized yet, an indirect indication of coherent oscillation in
the 2D arrays has been obtained experimentally [Ben&Bur91].

The 2D arrays can be also viewed as a clean laboratory model for the study
of the high-T, superconductors. The structure of the high-T, materials is still not
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understood, but it is known that the grain structure of the materials forms natural
Josephson weak contacts at the grain boundaries, and the whole crystal can be viewed
as a network of distributed Josephson junctions, e.g. [Sch&al94]. A transition from
the normal state to the superconducting state might be modelled by studying a simple
2D array.

Couplings in the 2D arrays are provided via two mechanisms. One is through
the inductances between cells, as occurs in any electronic circuits of a similar shape.
Another mechanism is from the “flux-quantization” condition, and this is unique to
superconductors. This condition requires the directed sum of the ¢’s arcund each
cell to balance the total magnetic flux penetrating through the cell, and thus pro-
vides couplings among nearby junctions. Influence of the induced fields is known to
affect certain static properties significantly (e.g. current distribution) in the 2D ar-
rays [Phi&al93]). However, it is perhaps better to start analysis of the phase-locking
mechanism by considering one coupling mechanism at a time.

A preliminary study of the dynamics of the 2D arrays, excluding the effects of
inductances, has been carried out [Wat&al95] though not included in this thesis. In
simulations, the arrays are observed to phase-lock even if the coupling is due only to
flux-quantization. This occurred only when an external field is applied and when a
sufficiently large bias current is injected. Interestingly, the convergence process to-
ward the phase-locked state involves different time scales that become more widely
separated as the junctions become underdamped. Providing a random initial condi-
tion of ¢'s and ¢’s, the velocities 4.3’8 becomne almos: uniform in the fast time scale; the
vertical junctions start to rotate in a similar frequency while the horizontal junctions
come to rest. Then, vertical junctions phase-lock in each row on the intermediate
time scale. Finally, the vertical junctions in the column direction phase-lock on the
slow time scale.

The separation of the intermediate and the slow time scales depends on the applied
magnetic field, and becomes very different when the field is weak. It is clear that the
coupling mechanism within a row is different from that within a column. In fact, the
two directions almost decouple, and one can think of the 2D array as being made
up of N nearly independent rows only weakly coupled in the vertical direction. It
appears that the weak coupling is in some sense similar to the coupling mechanism
in the series arrays although this similarity has not yet been explored deeply. Each
row, then, may be viewed as a one-dimensional parallel array of the sort depicted in
Fig. 1(b).

Such a picture becomes increasingly valid when the injected current is reduced
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and the array does not have enough energy to rotate all the vertical junctions. Then,
in simulations, only several “switched” rows are observed to actively oscillate as if
they were independent one-dimensional parallel arrays. The other “non-switched”
rows become nearly quiescent, with small voltage drops across them. (These “row-
switched states” have been also experimentally observed [vdZ&al88].) In these states
the switched rows become phase-locked [Phi&al94] even when they are separated by
quiescent rows. This indicates that the rows still feel one another, and are coupled
weakly. For these observations, we see that the study of the dynamics of one row is
very irnportant and useful for understanding of the two-dimensional problems.

One-dimensional parallel arrays

The 1D parallel arrays, shown in Fig. 1(b), are interesting from this connection to the
2D arrays, but they have, in their own right, another more straightfcrward connection
to a problem that has been studied for decades. The 1D arrays can be viewed as
discrete versions of one-dimensional long continuous Josephson junctions (“long” so
that the spatial dependence of the phase ¢ must be taken into account). The long
junctions are governed by the damped driven sine-Gordon equatior.. The connection
to the completely integrable unperturbed sine-Gordon problem has been studied since
the 1970’s [McL&Sco78], e.g. the effect of dissipation on the propagation of solitons.
Long junctions are also studied from a technological point of view as a possible high-
frequency oscillator.

Similarly, 1D arrays of (small area) junctions are governed by the damped driven
sine-Gordon equation in the discrete domain. There are many similarities to the
continuous case, but there are also phenomena unique to the discrete nature of the
system. For technological applications, there is also recently growing interest in the
discrete arrays because they have advantages over their continuous counterparts in
that the output impedance and frequencies can be higher (see Chap. 3).

The 1D parallel arrays can be phase-locked coherently and achieve an in-phase
oscillation only when there is no external magnetic field. When an external field
is applied, the flux-quantization requires that the phases of neighboring junctions be
spread apart. In this case, a train of kinks (or vortices) propagate through the arrays,
providing even stronger coupling of the phases.

When kinks propagate, the boundary conditions become important. Arrays with
open ends are simpler to fabricate, and are suitable for an important application as
flux-flow oscillators [Lik86]. However, reflected waves from the boundaries complicate
the dynamics, and make it hard to study the phase-locking of junctions.
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An annular geometry, which leads to periodic boundary conditions, avoids such
complications, and is more suitable for analytical treatment. Morcover, because of
flux-quantization, this geometry “traps” an integer number of kinks within itself
[Dav&al83, Ust&al92], thus it becomes possible to study the dynamics of a single
isolated kink.

Chapter 3 of this thesis is devoted to a systematic study of a 1D parallel array of
N junctions in a circular geometry. It soon becomes clear that the governing equa-
tions do not possess simple properties like the integrability found in the original sine-
Gordon equation or the 1D series arrays: instzad the phase space is non-degenerate
and complex, as we observe apparently chaotic attractors in our simulations. Multiple
attractors coexist and hysteresis loops are observed in the current-voltage character-
istics as the bias current is swept up and down.

Therefore, my work in this chapter is aimed mainly at explaining the experiments
of my collaborators. Experimentally measurable quantities are the current-voltage
(I-V) characteristics of the whole array. As the control parameter I/l is changed,
the frequency of oscillation (averaged over all junctions and in time) changes. The
frequency is proportional to the voltage via Josephson’s voltage relation, thus the
effect appears in the I-V as a shift in the voltage. When the system remains on
the same attractor in the phase space, the characteristic draws a continuous curve as
I/1. is varied. When the system suddenly jumps from one attractor to another, it is
manifested in the I-V as a discontinuous change in the voltage.

When an array with underdamped junctions is measured, a novel structure ap-
pears in the I-V; some parts of the characteristic become almost “vertical,” or with
a nearly constant voltage, even when I is changed. These so-called “steps” reflect the
system’s preference to lock in to that voltage, or frequency. Such experimental struc-
tures are due to resonances and phase-locking in the system. Prediction of the voltage
locations of these steps necessarily requires study of the dynamics of the system.

This problem was approached by first studying the continuous counterpart of the
arrays. The continuous sine-Gordon equations are much better studied than the
discrete ones, and a review of the previous results shows two useful clues for further
investigation (Chap. 3, Sec. 2). First, such equations in a periodic domain support
two branches of traveling wave solutions, and second, the waveforms are very different
in the two branches. For low voltages, the system supports characteristic kink-like
waves with a strongly non-uniform shape. For high voltages, the waveform becomes
nearly uniform, as if the kinks were “stretched”.

The I-V curve predicted from the continuum approximation does not explain
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several features observed in the experiments and simulations of the discrete arrays.
Still, it is found that the traveling waves persist in the discrete arrays, and there
are still two branches in the I-V curve. Steps are observed in both branches, but
the mechanisms responsible for their creation are found to be different for the two
branches (Sec. 4).

In the low-voltage region, a propagating kink induces radiation that phase-locks
to the kink. This phase-locking is responsible for the creation of the steps (Sec. 5). In
the high-voltage region, on the other hand, the traveling wave solutions are spatially
and temporally uniform. These “whirling periodic solutions” undergo parametric in-
stabilities at certain drive strengths. The instabilities cause the system to bifurcate
from the traveling wave solutions, and more complicated attractors emerge from the
onset (Sec. 6). By a local analysis around each type of traveling wave solution, the lo-
cations of the steps are predicted. They are in good agreement with the experimental

data obtained for a ring of N = 8 junctions.

Format of the thesis

Each of the three chapters is prepared as a publishable unit, and includes its own
introduction, background, and references.

Chapter 1 is written with Steve Strogatz, and is reproduced from Physica, 74D,
pp.197-253 (1994). Preliminary results on the averaged equations Eq.(2) were re-
ported earlier in Physical Review Letters, 70, 2391 (1993).

Chapter 2 is written with Jim Swift, and has been recently submitted to Journal
of Nonlinear Science.

Chapter 3 is coauthored by Steve Strogatz, Herre van der Zant, and Terry Orlando,
and is still in a draft stage. Preliminary reports have already been published; the
results of Section 5 were announced in Physical Review Letters, 74, 174 (1995), and
the results of part of Section 6 appeared in ibid., 74, 379 (1995).

As the first author of each chapter, I have carried out a “substantial” part of the
research described here. There were numerous ideas and steps contributed by the
coauthors, in addition to contributions from people acknowledged in each chapter,
but it seems inappropriate to identify these contributions one by one. However, I
would like to emphasize that the experiments in Chap. 3 were carried out solely by
Herre van der Zant and Terry Orlando.
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Abstract

We show that series arrays of N identical overdamped Josephson junctions have extremely degencrate
dynamics. In particular, we prove that such arrays have N - 3 constants of motion for all ¥ > 3. The analysis
is based on a coordinate transformation that reduces the governing equations to an (N - 3)-parameter family of
low-dimensional systems. In the weak-coupling limit, the reduced equations can be analyzed completely. Either
all solutions approach the synchronous state or they converge to a continuous family of incoherent oscillations,
depending on a certain parameter value. At the transitional value of this parameter, the system becomes
completely integrable. Then the phase space is foliated by invariant two-dimensional tori, for any N > 3.
The infinite-N limit of the system is an integro-partial differential equation with rigorously low-dimensional
dynamics. It supports solitons in the integrable case, and chaotic vaves in the non-integrable case.

1. Introduction

Ever since the pioneering work of Fermi, Pasta and Ulam (1], computers have been used to
shed light on the dynamics of many-body systems. Such numerical experiments have often led to
serendipitous discoveries, sometimes with important ramifications. For instance, the observation of
recurrence phenomena by Fermi et al. ultimately led to the discovery of solitons, the Toda lattice,
and the theory of completely integrable systems.

In the past few years, some unexpected results have emerged from numerical experiments on
series arrays of superconducting Josephson junctions. One of the goals of this paper is to bring these
results to the attention of the dynamical systems community, especially those people interested in
integrable systems, coupled oscillators, or condensed-matter physics. A second goal is to present
a theory that explains much of what has been observed. Finally, we hope to encourage others to
study these problems; the numerics suggest that our theory is incomplete, and that there is further
structure waiting to be explained.

The relevant observations concern the following set of equations, obtained as the circuit equations
for a broad class of Josephson arrays:

0167-2789/94/307.00 @ 1994 Elsevier Science B.V. All rights reserved
SSDI0167-2789(94)00033-M
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o, +sino, +Q =1, j=1...N (L.1)

N
LO+RQ+CQ= 5 Y o (1.2)
k=l

where the overdot denotes differentiation with respect to dimensionless time, and R.L,C and /,
are dimensionless circuit parameters.

As long as /, is not too small, this system has certain periodic solutions known as splay states.
Numerical experiments [2,3] show that the splay states have N - 2 Floquet multipliers equal to
+1, indicating an enormous degree of neutral stability. This peculiar result holds for a wide range
of parameters and circuit configurations. Previous attempts to explain the neutral stability have
used averaging theory (4] or continuum limits [5,6], followed by linear stability analysis. While
instructive, these approaches are both approximate and local. Rigorous, global results have been
lacking.

In this paper we explain the origin of the neutral stability by proving that the system has N -}
independent constants of motion. The constants are constructed explicitly, anc their geometric
meaning is discussed. The key to the analysis is a coordinate transformation that reduces the system
to an (N - 3)-parameter family of low-dimensional systems. Loosely speaking, this transformation
plays a role akin to the inverse scattering transform for completely integrable Hamiltonian systems.
The analogy is imperfect, however, because the Josephson arrays are typically neither Hamiltonian
nor completely integrable — for many array configurations, the associated low-dimensional “reduced
systems” can have limit cycles or chaotic solutions.

This paper is organized as follows. Section 2 presents background information on Josephson
arrays and summarizes the relevant previous results. In particular, Section 2.4 lists three important
numerical observations that have inspired the theoretical work.

The analysis begins in Section 3. We introducc a class of dynamical systems that includes
Josephson arrays as a special case. Our transformation method shows that all systems of this class
are explicitly reducible to systems with N — 3 fewer variables. An immediate consequence is a
bound on the dynamical complexity of Josephson arrays. For instance, the system (1.1, 1.2) is
(N + 2)-dimensional, yet its dynamics are now seen to be effectively five-dimensional.

Unfortunately, even after the reduction, the system is still difficult to analyze. To make further
progress, Section 4 focuses on the averaged equations obtained in the limit of weakly coupled arrays.
Now the reduced system can be analyzed completely. A Lyapunov function is obtained and used
1o prove that the system has a global attracting set. As a certain parameter is varied, the attracting
set changes from a synchronous oscillation to a continuous family of incoherent oscillations. At
the transitional value of the parameter, the system becomes completely integrable. Then almost all
solutions are quasiperiodic on 2-tori, and are governed by a Hamiltonian system with one degree
of freedom. For this special case, the Hamiltonian provides an extra constant of motion, bringing
the total to N — 2 conserved quantities. This structure underlies the invariant 2-tori detected in the
early numerical experiments of Tsang et al. [7]. Of course, one has to be careful about extrapolating
from the averaged system to the original, unaveraged Josephson array equations. Some features
are destroyed by averaging; for instance, the array equations can have chaotic solutions, but the
averaged system cannot. At the end of Section 4, we indicate which features of the averaged system
hold in general.

Section 5 deals with reducible systems in the infinite-N limit. Here we have an unusual (but
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pleasant) example of an infinite-dimensional system whose dynamics are guaranteed a priori to be
effectively low-dimensional. The results and analysis in Sections 5.1 and 5.2 may be skipped on a
first reading; they are similar to the finite-V case. The new results come in Sections 5.3 and 5.4.
We invesuigate a completely integrable limit of the system, and show that it exhibits solitons. We
present several numerical examples of soliton interactions as well as a non-integrable case where
the waves are chaotic.

Section 6 highlights the limitations of the present study and discusses directions for future
research. Appendix A shows the details of a calculation needed in Section 5.1. Appendix B presents
a more algebraic and symmetric set of constants of motion for the completely integrable, finite-N
case, and shows how they are related to the constants found earlier.

A preliminary report of our work on the integrable case has appeared elsewhere [8].

2. Background: Josephson junctions and arrays

Josephson junctions are superconducting devices that can generate voltage oscillations of high
frequency, typically 10'°-10'" cycles per second. They offer exciting technological possibilities as
parametric amplifiers, voltage standards, detectors, mixers, and fast switching devices for digital
circuits. For an introduction to Josephson junctions and their applications, see [9-11].

2.1. Dynamics of a single junction

The dynamics of a Josephson junction is described in dimensionless form by
Bé + & +sing = I, (2.1)

where ¢(¢) is the quantum mechanical phase difference across the junction, /; is the dimensionless
bias current and B is the McCumber parameter, a dimensionless measure of the capacitance of
the junction [12,13]). We will assume throughout that /, is time-independent, corresponding to a
dc-current bias.

Note that (2.1) is precisely analogous to the equation governing a damped pendulum driven by
a constant torque. This mechanical analog is often useful for visualizing the dynamics of Josephson
junctions [9].

Depending on the size, geometry, and type of coupling used in the Josephson junction, the value
of B can range from 8 ~ 10~% to much larger values, say 8 ~ 105 From now on, we will assume
that all junctions have

A =0, (2.2)

the so-called overdamped limit. This limit is commonly studied in the Josephson literature [9-11],
but since it is singular, it may cause some mathematical concern. Our justifications are: (1) For a
single junction (or pendulum), the effects of the singular limit are confined to an initial transient.
After a rapid relaxation onto a slow manifold, the dynamics for small # and zero g are similar.
The same is probably true for arrays, although no results in this direction have been proven. (2)
In any case. it is unclear how to make analytical progress for arrays of junctions with 8 > 0. The
only available result is an existence proof for a particular kind of periodic solution [14].
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Fig. 1. A series array of Josephson juactions. The array is shunted by an RLC load to provide global coupling among the
junctions.

2.2. Series arrays

Arrays of Josephson junctions are technologically interesting for their device applications (11,15,
16) and for their possible connection to high-temperature superconductors [17]. From a dynamical
systems perspective, they offer intriguing examples of large systems of coupled nonlinear oscillators.

Arrays come in many different configurations: one-dimensional arrays connected in series or
parallel, or two-dimensional arrays with various connectivities. We will restrict attention to the
simplest case, in which N identical junctions are connected in series and driven by a constant bias
current. Following [18,19], we also assume that a load is connected in parallel with the array;
otherwise the junctions are not coupled.

Fig. 1 shows an array in which the load is a capacitor, inductor, and resistor in series. Notice
that the individual junctions are drawn with an effective resistance r, but without an effective
capacitance, consistent with our assumption that g = 0.

In dimensional form, the governing equations are

hd d

=Sl 4 Lsing; + -Q =1, j=1,...N, (2.3)
d*Q dQ Q d¢k

LS5+ RS Z (2.4)

from Kirchhoff’s current law and voltage law, respectively. Here # is Planck’s constant divided
by 27, e is the charge on the electron, r is the junction resistance, ¢;(¢) is the phase difference
across junction j, I, is the junction’s critical current, Q(t) is the charge on the load capacitor, I,
is the dc-bias current, and L, R, and C are the inductance, resistance, and capacitance of the load,
respectively.

Note the permutation symmetry of the equations, as well as the presence of global coupling (or
all-to-all coupling) in (2.4). One might have thought that the series array would have nearest-
neighbor coupling, but in fact each junction is coupled equally to all the others, as (2.4) shows.
(Actually, there are interactions that contribute spatially localized coupling, but they are negligibly
small in the lump circuit limit.)

To non-dimensionalize the system, let

we =2erl./h, t°=wt Q' =w/l, =1/l
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(a) in-phase swute (b) splay state (c) incoherent state

Fig. 2. A rough sketch of periodic solutions of Josephson junction series arrays. Each dot on the unit circle (opresents the
phase of a junction. (a) In-phase state: All junctions oscillate in synchrony. (b) Splay siate: Phases of the junctions are
scattered evenly. (c) Generic incoherent state: Phases are scattered nonuniformly.

. _ w"L . _ R . _

L = N R =N C" = Nw,rC.

After substituting these expressions into the governing equations and dropping the asterisks, we
obtain

é, +sing; +Q =1, j=1...,N, (2.5)

i ap_ | N
LO+RQ+C Q"ﬁ,‘z_,""" (2.6)
where the overdot denotes differentiation with respect to dimensionless time,

Of course, there are more general loads than that shown in Fig. 1, but we will concentrate on this
case since it has been studied most often in the literature. The methods to be developed in Section 3
are applicable to a broader class of loads (essentially any load describable by an integro-differential
relation between current and voltage), but we will not pursue such generalities here.

2.3. Periodic solutions of :eries arrays

The system (2.5) and (2.6) involves several parameters, and its beliavior can be complex.
However, for both technological and mathematical reasons, the periodic solutions are the most
important. They fall into three categories: in-phase, splay, and incoherent solutions.

2.3.1. In-phase state
As long as J, is not too small, there is a periodic running solution of the form

o) =d2(t) =--- = ¢n(t) forallt,

with a consistent Q(¢). If we associate each phase ¢, with a particle moving on the unit circle,
then this in-phase state appears as all N particles moving together around the circle (Fig. 2a). The
motion is typically non-uniform, as the analog of a whirling pendulum would suggest.

The in-phase solution is of special interest for device applications [15,16,20], because a coherently
oscillating array gencrates much greater power than a single junction. The mathematical existence
of the in-phase state is usually obvious from inspection of the governing equations. On the other
hand, its stability is much more difficult to determine. A great deal of research has been devoted
to this important question [15,16,18,19]).
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2.3.2. Splay state
A splay state is a periodic solution for which the individual waveforms are identical but staggered
equally in ume:

1 N-1
0p, (1) = @p, (l + -VT) == Ppy (l+ —V- ) for all ¢,
where T is the oscillation period, and (py,....px) is a permutation of (1,...,N). The name is

motivated by the appearance of the state when plotted on a phasor diagram - the phases are
“splayed™ apart on the unit circle. In a sense, such a solution is maximally out of phase. In the
highly special case of averaged systems, where the interactions between oscillators depend only on
the differences of the phases (4,21], splay states are simply those in which the oscillators are evenly
spaced on the circle (Fig. 2b). For further discussion of averaged systems, see Section 2.4,

It is non-trivial to prove the existence of splay states for Josephson arrays [14] or other systems
of oscillators [22], although their existence is clear for averaged systems. In practice, splay states
are sometimes attracting and are then found easily by numerical integration. (Further discussion of
the stability of splay states is also postponed to Section 2.4.)

If a splay state exists, then in fact there are (N — 1)! of them, since the indices can be permuted
arbitrarily without atfecting the governing equations (2.5) and (2.6). This enormous multiplicity
has led to the proposal that splay states could be used as possible memory states of a dynamic
“multiswitch [23].

2.3.3. Continuous family of incoherent periodic solutions

A third and somewhat mysterious class of periodic solutions has been observed numerically in
Josephson arrays (2,5]. These incoherent states are similar to splay states in that the phases are
scattered on the unit circle. The difference is that the phases are not equally staggered in time.

It is an open problem to prove that such periodic solutions exist for Josephson arrays. For
the trivial case of averaged systems, such solutions clearly exist; any phase configuration with its
centroid at the origin will do. Note however that the higher moments need not vanish (Fig. 2c);
this is what distinguishes the incoherent states from the splay state.

In averaged systems the condition of zero centroid imposes two constraints on the incoherent
states; therefore they form a codimension-2 submanifold of phase space. The splay state is the
most symmetric of all the incoherent states, and lies at the center of this manifold, in some sense.
For more general systems, numerical evidence suggests that the incoherent states again form a
low-codimension submanifold, but a proof has not been found. A possible strategy for a proof is
outlined at the end of Section 4.5.

2.4. Previous results

2.4.1. Stability of the in-phase state

Early analyses of Josephson junction series arrays were based mainly on regular perturbation
theory and numerical simulations [15,16]. More recent approaci:es huve combined Floquet theory
and numerics. In pioneering work, Hadley and Beasley [18, found numerically that for overdamped
arrays, the in-phase state is stable if the load is inductive and unstable if it is capacitive. Hadley et
al.[19] explained these results with Floquet theu:y, and also considered arrays with more general
loads. The local stability of the in-phase state was found to depend in a complex way on the circuit
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parameters. Much remains to be understood here, but we shall be concerned with a different set of
questions in what follows.

2.4.2. Ubiquitous neutral stability of the splay state

Tsang et al.[7] tried to get an analytical handle on Josephson arrays by studying the simplest
possible case: an array with a pure resistive load. Then Q(f) can be eliminated from (2.5) and
(2.6). yielding a set of N first-order equations for the phases. They showed that the system had a
generalized time-reversal symmetry, which implied that the in-phase state could not be attracting.
So whore would trajectories go in the long run? Their numerical simulations revealed something
1otally unexpected: as long as /, is not too small, all trajectories seemed to be confined to invariant
2-tori, no matter what N they considered! The tori were nested, with the splay state at the center.
The invariance of the tori implied that the splay state was neutrally stable in all N directions. Tsang
et al.[7] guessed that these highly non-generic results might be due to the reversibility symmetry,
but that later turned out to be only part of the story.

The situation was clarified by several studies. First, Golomb et al.[5] analyzed a model system of
phase oscillators, and found that the degeneracy disappeared when higher harmonics were included
in the governing equations. This suggested that the pure sinusoidal form of the Josephson current
relation was responsible for the original degeneracy. They also considered a model with first
harmonics only:

N
: . e . .
di=1+asing, + ﬁ; lsm(m +a), j=1...,N, (2.7)

where a, ¢, and a are constants. (The notation differs from their original paper.) When a = 0, this
system reduces to that studied by Tsang et al.[7]. Using linear stability analysis in the infinite-¥
limit, Golomb et al.[5] found that when a = 0, the splay state was indeed neutrally stable in all
directions. If a # 0, then all out two directions were neutrally stable, regardless of the value of a.

In a complementary study, Swift et al.[4] considered the limit of weak coupling, rather than
large N. They analyzed (2.7) for a = 0 and for || « 1, using the method of averaging (29,35].
This method exploits the presence of two widely separated time scales: the fast oscillations of the
individual junctions occur on an O(1) time scale, whereas the relative phase arift between junctions
occurs on a much longer O(1/¢) time scale. Swift et al. averaged over the fast oscillations to obtain
a simpler averaged system that governs the long-term drift. The splay state of the averaged system
was found to be neutrally stable in N directions, as expected. Moreover, nested 2-tori were proven
to exist for the averaged system linearized about the splay state. This approach also provided
accurate analytical approximations for the two frequencies on the tori.

The next round of studies revealed that splay states are neutrally stable for an unexpectedly
wide class of Josephson arrays. Tsang and Schwartz [2] considered an array with a series LC-
load. This system is not reversible, but they found that the splay state was still neutrally stable
in an enormous number of directions: now N — 2 Floquet multipliers were equal to + 1. Nichols
and Wiesenfeld [3] then computed the Floquet multipliers of the splay state for several kinds of
loads; at least N - 2 multipliers were always equal to + 1. This remained true even for junctions
with B > 0 (except, curiously, when the load was purely capacitive - the splay state was linearly
stable in that case). Strogatz and Mirollo [6] showed that the ubiquitous neutral stability could
be understood analytically in the infinite-N limit. Their approach also predicted the non-neutral
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Floquet muitipliers to within 0.1% of their numerically computed values.
We summarize the local stability results as follows:

Observation 1. The periodic splay state of (2.5) and (2.6) is neutrally stable in at least vV -2
directions, for a wide range of parameters and choice of loads.

For the exceptional case of the pure resistive load, the degeneracy was observed not only locally
but also globally:

Observation 2. For the resistively loaded array (2.7) with a = 0, the splay state is neutrally stable
in all N directions, for a wide range of parameters. Moreover, all trajectories seem to be confined
to invariant 2-tori.

Actually, the statement about the 2-tori is now thought to be false, strictly speaking. Golomb
et al.[5] and Swift [24] have shown numerically that chaotic trajectories can occur for certain
choices of parameters and initial conditions. This occurs even for N = 3. Nonetheless, it is still
intriguing that “typical” trajectories appear to lie almost exactly on 2-tori, for a fairly wide range
of parameters,

2.4.3. Hints of global structure

The local analyses cited above do not get at the root of the degeneracy. A more global analysis
is needed. Nichols and Wiesenfeld [3] expressed optimism about the possibility of progress in this
direction:

...Under ordinary circumstances, analytic headway for nonlinear systems is notoriously difficult,
without some special properties on which to capitalize. Since the neutral stability of orbits is
decidedly nongeneric behavior, there must be some deep explanation for it. Moreover, since it
is common to many different circuit configurations, the origin of the underlying structure must
be quite general, .... This structure, in turn, may make the Josephson-junction arrays tractable,
analogous to a Hamiltonian system being integrable.

We show in the following sections that this comment was prophetic.

Previously, there were indications that the key role was played by the incoherent periodic solutions
(not only the splay state). In their numerical study of (2.7), Golomb et al.[5] observed that for a
certain parameter range, almost all trajectories were attracted to a manifold of incoherent periodic
states. Tsang and Schwartz [2] also numerically found a similar attracting manifold of periodic
states in the LC-loaded Josephson arrays. Furthermore, their observations of the phase portrait of
N = 4 oscillators led them to an important conjecture; each incoherent state has a two-dimensional
surface as its basin of attraction.

These numerical results are summarized as:

Observation 3. There appears to be a manifold of incoherent periodic states. It seems to be related
to the degeneracy found in the local analysis of the splay state.

In Section 4.5 we give a unified explanation of all three observations, taking care to indicate
which parts of our explanation are rigorous, and which parts are plausible but still unproven.
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3. Reducible systems

In this section we introduce a nonlinear transformation that explicitly reduces a fairly large class
of .V-dimensional oscillator systems (.V > 3) to three-dimensional ones. The method is explained
in Section 3.1, starting from the most general form of the equations to which the transformation
applies (as far as we know). The governing equations for Josephson arrays are reducible by this
transformation, as we show in Section 3.2.

3.1. Reduction

3.1.1. General reducible systems
Consider N identical phase oscillators governed by a system of ordinary differential equations of
the form

8, = f + gcosh, + hsind,, j=1,N, 3.0

where 6, is the phase of the jth oscillator, and f, g, h are functions of 8,,8,,- -, 8n, and 2r-periodic
in each argument. (This is the simplest case. More generally, the right hand sides of (3.1) could
depend explicitly on time as well as on any auxiliary dynamical variables, e.g., the charge on a load
capacitor in the case of the Josephson arrays described in Section 3.2.) The key restriction is that
/. &, h must not depend on the subscript j.

Intuitively, the functions f, g,h describe common fields determined by the states of all the
oscillators. The situation is similar to that encountered in mean-field models, although the three
functions are not necessarily averaged quantities of the state variables. In particular, the system
need not have permutation symmetry.

3.1.2. Change of variables

The phase space for (3.1) is N-dimensional. A priori, a trajectory could explore the entire space.
However, we are going to show that each trajectory is actually confined to a three-dimensional
subspace. To see this, consider the following change of variables:

tan(§(0,(1) - 6(1))] = ‘/'l—f—y%'%tan[i(w;-'l’(r))l. Jj=1.N, (3.2)

where y, are constants, and 0 < y < 1. We claim that an arbitrary solution {6,(¢)} of the system
(3.1) has the form (3.2), and that it can be generated from a set of parameters {y;} that is frozen
in time. The evolution of &(¢), y(t), and ¥(¢) is unknown for now. We will shortly derive the
governing equations for these variables.

First, a few words about where (3.2) comes from. It was originally motivated by an analogy
with the method of “variation of parameters.” We had been studying a special case of (3.1) in
the infinite-N limit, and we found that the transformation (3.2) arose naturally when studying the
travelling waves for that system (see Section 5.3). In this simpler probiem, the quantities & ()
and ¥ (¢) were simply proportional to ¢, and y (1) was constant. Later we realized that by allowing
those quantities to have arbitrary time-dependence, we could apply the same transformation to the
finite-N system. Another, perhaps more natural, way to motivate (3.2) has been pointed out by
J. Swift (personal communication). Consider the finite-N system for the special case where f, g, h
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Fig. 3. Graph of the time-dependent transformation (3.2). The transformation converts solutions 8, (f) into constants y,.
The mapping depends on a distoriion parameter y(1), as well as two reference phases @ (1) and ¥ (1).

are constants. Then the solution for 8,(¢) can be found explicitly; it has the form of (3.2), but
again with 6 (¢) and ¥ (r) simply proportional to ¢ and y(¢) constant. By variation of parameters,
one is led to (3.2).

We are going to use (3.2) to change variables in (3.1), but before going into the algebra, let
us consider what the transformation (3.2) means geometrically. It is a change of coordinates that
relabels the phases from 8, to y; (see Fig. 3). First we go into a non-uniformly rotating coordinate
system, characterized by the angle 8 (¢). Then we reparametrize the circle by a time-dependent,
nonlinear transformation characterized by a distortion parameter y(¢). Finally, if we rotate again,
but now according to ¥ (¢), we claim that all the oscillators appear motionless ~ we have converted
an arbitrary solution {6,(¢)} into a frozen state {y;}.

The meaning of @(¢) and ¥(¢) is clear, but what does y(r) measure? The transformation curve
of Fig. 3 is linear when y = 0. As y increases, the curve becomes bent and the distribution of
y, is increasingly distorted from that of 6,. The curve is monotonic for all y, so we can think of
the inverse mapping in a similar manner. Now we interpret y; as the preimages, and 6, as their
images. This is often the more useful point of view.

3.1.3. Reduced equations

Readers with a background in celestial mechanics may recognize the tranformation tan(v/2) =
V(T + 7)/(T =y)1an(E/2). It appears in the analysis of the gravitational two-body problem. Here,
v, E, and y correspond to the true anomaly, the eccentric anomaly, and the eccentricity, respectively.
The relation (3.2) is a time-dependent version of this transformation, with a phase shift applied to
all N oscillators.

Now we rewrite (3.1) in terms of the new variables. The following formulas from classical
mechanics are well known [25], and allow us to convert between our two “anomalies™:

. _ \/l-yisin(w,—'l’) . cos(y, - ¥) -~y
sin(6; - 8) = T=ycos(y, —F) ' cos(f; - 8) = T—ycos(w, <9} (3.3)

(To derive these formulas, one solves (3.2) for 6, — @ and then applies trigonometric identities.)
These formulas yield

_ [cos(y, —¥) —y]cos® - /1 —_y!sinesin(w, -¥)
- 1-ycos(y, - ¥) !

cos 8,
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[cos(y, - ¥) —7]sin@ + /I - y2cos@sin(y, —¥)
. (3.4)
I - ycos(y, —¥)

sinf, =

and these expressions are then substituted into the right hand side of (3.1).
To rewrite the left hand side of (3.1), we solve (3.2) for 6, and differentiate with respect 10

time. Let ' (1) = /(T + 7)/(1 = ). Then

d d
adl - =12 ! -
dzw’ 6) = -d’{arctan(rtan[‘_y(w, ¥}
2 . r )
= 5 ri ; -y -y
1+F31an'[§(w,-‘1’)l( anl3 (v, )]+c052[§(w,—‘1‘)]( ! ))

r r . .
= i z _p)-¢
cos?[§(w, - ¥)] + *sin*[3(y, - ¥)) (rsm(w, )

Since

cos?[}(y, - ¥)] + Msin®[§(y, - ¥)] = §(FP+ 1) - (I = 1) cosy, - ¥)
_l—ycos(y, - ¥)
= -

i dr? li(l-l-?_ v _
I-y) TH1-y2 " 1=y

Pz rq{-y Y g
6,=6+ l—'/cos(w,—‘l’)(l—-}'zsm(w’—w) tp)

. . . _ _ _ 2 ¢
-0 ysin(y, - ¥) - (1 -y%) . 35
V1I-7i1-ycos(y, - ¥)] (32)

Next, substitute (3.4) and (3.5) into (3.1). After multiplying both sides by (1 - ycos(y, - ¥)),
we obtain:

ysin(y, - ¥) - (1 -y
Vi

+g{[(cos(y, — ¥) — y]cos @ - /1 - y2sinOsin(y; - ¥)}

+h{[cos(yw, - ¥) —y]sin® - /T - yicosOsin(y, - ¥)}, j=1,-- N

The terms above can be organized as a linear combination of 1, cos(y; — ¥), and sin(y, — ¥).
The fact that no higher harmonics are generated is remarkable. This is the crucial property that
underlies the success of the reduction procedure.

Now writing out the linear combination with the appropriate coefficients in brackets, we obtain:

= f(1-ycos(y, - ¥))

6 (1 -ycos(y; - ¥)) +
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0=(8-V1-72¥ - f +gycos6 + hysinB)
+cos(y, -¥)(-70 + 7 f —gcos® - hsin6)

. v . .
+sin(y, - ¥) +gV1-y3sin0 - h\/I - y2cos®), j=1,--- N.
Observe that the coefficients do not depend on j since we have assumed that f, g, and 4 do not
depend on j. Thus the equations will be satisfied identically for all j and for all ¢ if the three
coefficients vanish independently. This can be achieved if the unknown functions y, 6, ¥ evolve
according to

p=-(1-y2)(gsin® —hcosB®), y¥ = -/1-y2(gcosO + hsinB),

y0 =yf —gcos® - hsin6. (3.6)
This is a closed system for (y, ¥, @) since 6y, ---, Ox in the functions f, g, 4 can be expressed
in terms of these new dependent variables via (3.2). The frozen phases {y,} of the N oscillators

appear in the system mcrely as parameters. As long as these three ordinary differential equations
are satisfied, {6,(¢)} is guaranteed to satisfy the N equations (3.1).

3.1.4. Converting initial conditions

Given the reduced systeru (3.6), two questions immediately arise: how do we obtain initial
conditions for the “reduced variables” (y, ¥, @) to start integrating (3.6), and how do we
determine the “system constants” {y,} ? Given an arbitrary initial condition {6,(0)} in the old
coordinates, we need to convert these N values to the new set of N + 3 values {y,},7(0), ¥(0),8(0)
so that (3.2) is satisfied at ¢ = 0. The equations (3.2) provide N constraints, but we have N + 3
unknowns. Hence there are many ways to achieve this conversion.

One natural choice is to evolve from the “identity conversion™:

y(0) =6(0) = ¥(0) =0, y, =6,00), j=1...,N, (3.7)

by which (3.2) is trivially satisfied at ¢+ = 0. In Section 4.2 we shall see that another way
of converting initial conditions provides much more insight into the phase space structure. For
the moment, however, we are content to observe that there is at least one way to reduce the
N-dimensional problem to a three-dimensional one. Since (3.7) shows that an arbitrary initial
condition can be converted, we conclude that (3.2) expresses the general solution of the system
(3.1).

3.1.5. Removing a coordinate singularity

Another question regarding (3.6) is that the equations, in general, cease to be valid at y = 0.
Unless g, h — 0 as y — 0, @ and ¥ become singular. At the same time, y < 0 seems possible at
y = 0 so that y might not stay positive, contrary to its definition. Such troubles are only artifacts
of a coordinate singularity, and can be avoided in the following manner.

The system (3.6) involves one amplitude variable y and two phase variables 8 and ¥. To avoid
the singularity at y = 0, we introduce a Cartesian-type coordinate system

x =ycos®, y=ysin®, ®=60-¥, (x2+p’<l). (3.8)
Then
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X =7cosO -0sin6
= =(1-;")(gsin® —hcosO)cosO —sinO(;f - gcosO - hsinO)
= -/sin@ + 1gsinOcosO + h(l - y*cos’* O)
=—yf +xvg + (1 -x>Hh. (3.9)
Similarly,
v=xf-(-yHg-xyh. (3.10)
The angle @ is defined in such a way to subtract out singularities of the two phase equations. Thus,
7o =6 - ¥
7(yf —gcos® —hsinB) + }'\/T:_r_z(gcosa + hsin 8)
22f = (1 =1=71)(7gcosO + yhsin8)
Pf - (1= VT=7)(xg +yh).

Hence,

é=y-tovi-¥ (3.11)

)
o (xg + yh).

Aty = 0, Egs. (3.9)-(3.11) reduce to a well-behaved set of equations:
x=h, y=-g, d=f. (3.12)

The initial conditions and the system constants are obtained in this coordinate system by rewriting
(3.7):

x(0) =p(0) =®(0) =0, v, =0,0), j=1,....N. (3.13)

When a trajectory passes through the origin y = 0 in (3.6), € and ¥ jump discontinuously by
+n. In this new coordinate system, however, their difference @ still changes continuously. Since
y is now computed by y = /x? + y2, it remains non-negative. When y = 0, & and ¥ are not
determined. This is reasonable, and poses no problems because we can still compute §, via (3.2).
For y = 0, we find

0,=60+(y;-¥)=y, +®.
So, we do not need to know @ and ¥ but only their difference @. The coordinate singularity at
y = 0 is resolved in this way.

3.2. Josephson junction arrays as reducible systems

3.2.1. Reduction

The reduction method of the previous section is immediately applicable to the Josephson junction
array equations (2.5) and (2.6). To see this, we note that the N equations (2.5) have the form
of (3.1) where 8, = ¢,, f = Ip - Q. g =0, and h = -1. The function f depends on another
d namical variable Q, but there is no difference in the reduction procedure. Since we derived the
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reduced equations (3.9)~(3.11) from (3.1) without applying any operations on /. g, and A, the
reduction 1s sull valid even when these funcuons depend on auxiliary dynamical variables or on
ume explicutly. The .V phase equations can be sausfied by integrating only three equations, but now
they are coupled with the evolution equations for the non-reducible auxiliary variables. Specifically,
the equations (2.5) and (2.6) become

x=-y(lp-Q)-(1-x% from (3.9),

v=x(lg-Q) + xy from (3.10),

. . - Ji-x

D = (Ip—Q)+l——”_E—'-}' from (3.11), (3.14)

with
, . P& .

LO+RQ+C'Q= =% "(Isg-Q-singy). (3.15)

Nk:l

ok 1s expressed by x, y, @ through the transformation.

It is clear that (3.14) and (3.15) is equivalent to a fifth-order system of ordinary differential
equations with variables (x,y,®,Q,Q) when L # 0. When L = 0, (3.15) can be solved for Q
to obtain a fourth-order system with variables (x,y, ®,Q). In any case, we have reduced the N
equations (2.5) to three equations (3.14).

3.2.2. Relation to neutral stability

Any trajectory of these Josephson junction arrays is, therefore, confined to a subspace of ¥V - 3
fewer dimensions than the whole phase space. Three dimensions of the subspace are accounted for
by the transformation (3.2); by allowing 7, ¥, € to vary for fixed {y,}, the image {6,} sweeps out
a three-dimensional manifold. Choosing a different set of {y,} would produce another manifold.
The product of such a manifold with the auxiliary directions (Q and Q if necessary) is the subspace
from which a trajectory cannot escape.

These facts are reminiscent of Observation | in Section 2.4, which deals with the widespread
occurrence of N — 2 neutral directions. If one computes the Floquet multipliers of a periodic orbit,
one of them is always + 1, corresponding to perturbations along the orbit. The other N ~ 3 unit
multipliers must correspond to the number of dimensions we have reduced. The precise connection
will not become clear until Section 4.5, when we demonstrate the foliation of phase space by
invariant subspaces. This foliation is the source of the ubiquitous neutral stability.

3.2.3. Chaotic dynamics in resistively loaded arrays

What behavior do we expect from the reduced systems? Although this question has not yet been
investigated in general, there is preliminary evidence of complicated behavior.

Consider a purely resistively loaded array. The governing equations are then given by (2.7) with
a=0:

N
: . e . .
¢,=l+asm¢,+1—v-k§lsm¢k, Jj=1--,N. (3.16)

Assume that |a + &| < |, so that there are no fixed points [5,7]. Then trajectories typically appear
to lie on 2-tori as in Observation 2 of Section 2.4. However, Golomb et al.[5,26] found numerical
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Fig. 4. Poincaré sections of the reduced system (3.17) at @ = 0 (mod 2n) for N = 3 junctions. Each section shows one
trajectory starting at x = y = @ = 0 at { = 0. The initial conditions are ¢, (0) = 3n/5, ¢2(0) = 0, ¢3(0) = ~7x/10. The
identity conversion (3.13) requires the preimages to be w, = ¢,(0). These values are fixed in time.

(a) a = |, € = -0.7. The section shows an invariant closed curve, suggesting that the trajectory lics on a 2-torus in the
original phase space. (b) a = 1, ¢ = —1.95. Period-5 islands. (c) a = 1.5, ¢ = -0.7. Chaos.

evidence for aperiodic trajectories for systems as small as N = 6, depending on the parameters
a and e. Swift [24] further demonstrated numerically that chaos occurs even for N = 3. He
transformed the three angles ¢, linearly into the mean phase ¢ and two phase differences. Since é
is monotonically increasing when |a + | < 1, the Poincaré return map at ¢ = 0 (mod 27) is well
defined. Depending on the parameters, chaotic-looking Poincaré sections were obtained.

We employ the same idea, but using the nonlinear reduction. The equations (3.16) reduce to the
three equations corresponding to the special case of (3.14) and (3.15):

N N
Xx=-y (l + %Zsind’k) +a(l-x%), y= x(l + %Zsinq&k) -axy,

k=l k=l

N
o 4 . l—\/l—yI
d=1+ Nk§-|sln¢k ay " , (3.17)

where ¢x = @ (x,y,®;{y,}) is given by the transformation (3.2), and y = VxT ¥ y2. Here @
plays a similar role to the mean phase of the ¢’s.

Now (3.17) is numerically integrated, and every time @ = 0 (mod 2r), a point (x, ) is plotted.
(The initial condition is converted by (3.13).) Fig. 4 shows three Poincaré sections obtained for
N = 3 using a randomly chosen set of ¢;(0), #,(0), and ¢3(0).

Fig. 4a shows the section when a = 1, = -0.7. We find a set of points on a closed curve; the
trajectory is (very nearly) on a 2-torus, and is quasiperiodic. The closed curve passes through the
origin because the conversion (3.13) requires the trajectory tostart fromx =y = ® =0at¢ = 0.
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Fig. 4b shows the case a = l.& = —1.95. The section produced by one trajectory looks like
islands surrounding a period-35 orbit.

Fig. 4c is the case a = 1.5,& = —0.7. This section 1s clearly chaotic.

These results suggest that the system has invariant tori that break as parameters are varied, a
behavior familiar from weakly non-integrable systems [27-29], such as the Hénon-Heiles system
(30]. However, the flow here is not Hamiltonian nor even volume-preserving, although it is
reversible. The Poincaré map appears to be area-preserving, but only if @ is strobed at multiples of
2n. Perhaps the KAM theory for reversible flows [31] can be used to shed light on the numerical
cbservations above.

4. Global structure

To make further analytical progress, we consider the limit of weakly coupled arrays. Averaging
theory leads to a simpler set of equations that can be analyzed completely.

The equations considered in this section are a generalization of those studied by Swift et al.{4].
They averaged the resistive load equations (3.16), assuming that |a| < | and |¢| < | — |a|. The
averaged equations were found to take the form

N
: 1 .
0, =w+ —ﬁkzslcos(ak-t),), j=1,...,N,

where w is a constant, and time has been rescaled. The variable 6, is a nonlinearly transformed
version of the phase ¢, in (3.16).

Swift [32] later derived the more general averaged equations governing (2.5) and (2.6) with an
arbitrary RLC load. Weak coupling was put in by hand, by inserting a small parameter in front of
Q in (2.5). The resulting equations [32] are

: | & .
0,=w+ﬁ§|cos(ak—o,-5), ji=1,...,N (4.1)

where ¢ is a parameter that depends on the values of R, L, C, and I;.

The averaged equations (4.1) are of interest beyond their connection to Josephson arrays. For
instance, when averaging theory is applied to the system (2.7) of Golomb et al. in the limit of
weak coupling, one again obtains (4.1). In this case J is given by sind = (signe)sina. Eq. (4.1)
also appears as the averaged system for globally coupled van der Pol oscillators with linear coupling
{33], and for a globally coupled version of the complex Ginzburg-Landau equation [34]. Finally,
from a mathematical point of view, (4.1) is perhaps the simplest nontrivial N-body system coupled
by nonlinear interactions.

In Section 4.1, we derive and analyze the reduced equations for (4.1). Section 4.2 presents a way
of converting initial conditions that is much more illuminating than the identity conversion (3.7).
This new conversion is used in Section 4.3 to provide global information about the dynamics of
(4.1). Section 4.4 presents numerical illustrations of the results.

We will see that the phase space of (4.1) possesses highly degencrate global structures. Some
of them persist in the Josephson array equations (2.5) and (2.6) before averaging. Section 4.5
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discusses which structures survive, and explains the three observations previously made in Section
24

4.1. Reduction of averaged systems

In a frame rotating at angular velocity w, (4.1) is equivalent to

v
=':7Zc°s(0""81“5)' j=L....N. (4.2)

k=1

Thus the constant w does noi affect the essential dynamics. Eq. (4.2) is in the form of (3.1), where

N
[ =0, g=‘—l&,—§cos(0k—¢$). ——Zsm(l)k-é) (4.3)

k=i

The reduced equations in the polar expression (3.6) become

=22 L2 $ in(o, - 6 - 8), ‘I’-——VZCOS(O;‘—O 8),

k=l

76 = ——Lcos(ﬂk -6 -46).
k=

We intentionally use these polar coordinates instead of their Cartesian counterpart. Although a
coordinate singularity arises, it causes no trouble, as will be seen in Section 4.2.
Using the formula (3.3), this set of equations becomes

7 )2 K sin(y, — ¥) +sinél—722~: v —cos{yy - ¥)
1

h) 3 (l_
7 = cosd N l—,'cos(wk—'l’) —yeos(y - W)’

y_ (l-*,")'/2 5y -cos(yi - ¥) l—/ sin (v - ¥)
y¥ = cosd N l-ycos(wk-‘l‘) sind Z i-ycos(yx -¥)’
Y--cos(wk-‘l’) (-2 & sin(y - ¥)

76 = Cosaﬁlgl——l—ycos(w—'l’) —sind N 2 T ycosw = P)- (4.4)

The system looks intimidating, but it is actually very simple. First, notice that @ has disappeared
from the right hand sides. Hence the dynamics is determined only by (¥,y) while € is driven
passively by them. Since the dynamics is effectively two-dimensional, we know immediately that
the system is never chaotic.

Second, note that there are only two types of sums on the right hand sides of (4.4). The form of
these sums suggests that they might be partial derivatives of a common function. Indeed. a useful
function can be constructed as follows. If we define

- - ycos(yx - ¥)
H(¥,7) —kz-:'lo ( N ) (4.5)
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then we produce the two sums mentioned just above:

v .
d ~ -
it = _l' ,s‘m(m ¥) (4.6)
oY R = 1 —ycosly, - ¥)
and
on _ o ( o2 1
3 _.a;_( tlog(l - %) + % glos[l-/cos(w—?’)l)
_ Z cos(yi — ¥)
- l—/- 1 - ycos(yy — ¥)
_ 1 7y —cos{y, —¥)
= N(l—y!)gl-rcos(w—%' (4.7)
Thus we can express the (y, ¥)-dynamics of (4.4) as:
1_772 = A . a1"cos:5+(l-/ ) smé
¥ V1-72 M 1 01
i + 3y 0sJ + 159 —sind. (4.8)

4.1.1. Hamiltonian when siné = 0
When sind = 0, the system becomes completely integrable. Consider, for example, the case
0 = 0. (The case = n is similar.) Then (4.8) shows that H is conserved:

Y-, ”,au (= 2)[(_\/T '-“7'59_11) %7_1+ (\/1 = vfan) au] _o.

-/6 y oY v T2

For this case, we could express (4.8) as a one degree-of-freedom Hamiltonian system. To see this,
leta=1//1- 2. Then (4.8) becomes

M aH

¥’ da

which is in Hamiltonian form. The appropriate phase space for this system is a cylinder, since H 1s
periodic in ¥. The trajectories lie on contours of M, and are typically closed orbits (or fixed points
in exceptional cases). Hence ¥ (1), a(t), and therefore y(t) are typically periodic in ¢.

What can we say about the remaining @-direction? In (4.4), @ does not appear on the right
hand sides. In particular, @ is dependent only on (¥, 7). Suppose after one period T of the (¥,7)
motion, @ shifis by some amount, say 8(t + T) = @(t)+ 2aW, where W denotes the winding
number. Then, since ¥ and y have returned to their starting values, the same shift of @ occurs on
all following cycles. Therefore, when sind = 0, the solutions of (4.4) are typically quasiperiodic,
with trajectories confined to invariant 2-tori. Thus (4.1) is completeiy integrable when sind = 0.

'f.’=+

a=-

4.1.2. Lyapunov function for general 6 ,
When sind # 0, we may still compute H from (4.8). As before, terms involving cosd vanish,
and now we obtain:
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H = Psind. (4.9)

where

atw b = (= [ (P%Y 4 Loy
P(¥.r {w,h) = (1 ,)[u ,)(07) +71(0,,,)

is a positive definite function since 0 < y < 1. (Again. there is slight ambiguity at y = 0.) Thus, X
acts as a Lyapunov function in this general case, and the sign of sind determines the direction of
change in H.

To interpret the function P more intuitively, substitute (4.6) and (4.7) back into the right hand
side of (4.9):

N B 2 N — . _ 2
P LZ 7 .cos(wk ¥) + _I_Z\/l ./‘sm(w:.- ¥) .
1\’1‘“l 1 -ycos(yx - ¥) Nkal 1 —ycos(yx - ¥)
Using the formula (3.3) also in reverse,

2
| o Y
P = (WZCOS(& —9)) + (%‘;sln(ok—a))

k=l

2

Define

N
R explis(n)) = &) exp(ife), R20, 6 <R, (4.10)
k=l

which denotes the “order parameter™, or the centroid vector of the N oscillators located on a unit
circle according to their phase angles. Then
P = [Rcos(¢ - @)]* + [Rsin(¢ - 6))® = R?.

Hence H = R¥sind. So H is stationary only when R = 0, i.e., when the N oscillators are distributed
such that their centroid vanishes. From (4.10), these special states satisfy

| X | X
N2c050k=-ﬁ23in9k=0. (4.11)
k=1 k=t
States satisfying (4.11) play an important role in the rest of the article. From now on, we refer to
them as “incoherent” states of the averaged systems.

4.1.3. Remaining issues
Two issues still need io be addressed:

(1) The analysis could potentially fail when y = 0. As discussed in Section 3.1, the reduced
equations (4.4) can become singular at this value.

(2) We would like to visualize the Lyapunov function . For instance, what do its level curves
look like? And what is the meaning of increasing or decreasing H?

These matters are resolved in the next two sections by locating the incoherent states at the center
of a picture that clarifies everything.
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4.2. Constraints and constants of motion

4.2.1. Chouce of constraints

In this section we reconsider how to convert the original imitial conditions {6,(0)} into the
initial conditions of the reduced variabi.s {;(0). 8(0), ¥(0)} and the system constants {y,}.
As explained in Secuon 3.1, there are many ways to achieve this conversion. Since we determine
N + 3 values from .V constraints, three additional constraints may be imposed to eliminate the
multiplicity of the conversion. In Section 3.1 we showed one way of achieving this, namely the
identity transformation (3.7). In this approach, all three constraints are imposed on the reduced
variables, that is, we required that y(0) = ¥(0) = 6(0) = 0.

Although it shows that the reduction is valid, this approach is not suitable if one wants to take
a global view of the system. Here is the drawback: using (3.7), each initial condition {6,(0)}
yields different system constants {y,} so that the flow (3.6) itself is changed whenever the initial
condition is replaced. All solutions originate from the same point y = @ = ¥ = 0, and evolve
under different flows (3.6). Both of these features are confusing and ungeometric: normally we
want different solutions to start from different points in phase space, and to evolve under the same
flow.

A better choice of the constraints is to impose all three of them on the system constants rather
than on the reduced variables. In this way, we are able to vary initial conditions of the reduced
variables while keeping the system constants the same. By changing initial conditions y(0), ¥(0),
and 6 (0) over their full ranges, a three-dimensional family cf trajectories is bundled together and
distinguished from all others by the marker {,}. The parameters {y,} specify a three-dimensional
invariant subspace in the original phase space, and thereiore can be interpreted as a set of constants
of motion. Since there are three constraints on them, the number of independent constants of motion
is N - 3. The whole phase space of {6,} is, in this way, dzcomposed into an (N — 3)-parameter
family of invanant subspaces.

4.2.2. Parametrization by incoherent states

What are the appropriate constraints to impose on the {y,}? One of them turns out 10 be
somewhat arbitrary, as we'll see below, while the remaining two constraints are quite natuial - they
are suggested by the form of the averaged equations (4.4) at y = 0.

For y = 0, the polar coordinate expression of the reduced equations becomes singular (as expected
from Section 3.1). However, this singularity poses no problem (even without resorting to Cartesian
expressions) by choosing appropriate constraints on {y,}. When y = 0, the first equation of (4.4)
becomes

N N
V= -llVZ[cosésin(wk ~¥)-sindcos(y, - ¥))] = %Zsin(m -¥-4).
k=l k=t
We impose two constraints:
I & 1<
ﬁZcosm= NZSinw=0. (4.12)
k=l k=l

Then
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N

cost¥ + d) ) sint¥ + J) >
.= '——.\T—‘lemv/k-—.\.——?‘lcoswk =0

so that » = 0 becomes stationary. When ; = 0, the transformation (3.2) reduces to
0,() =y, + (80 -¥()].
Hence. regardless of (6 - ¥). we find

Y v
—%Zcost)k = %Zsinﬂk =0 forally (413)
k=l k=1

and, from (4.2),
6, =0 forallandr

The condition (4.13) is the same as (4.11), i.e., the phases are “incoherent™. These states are fixed
points of the systein (4.2), or rigidly rotating periodic solutions of (4.1) in the original frame. The
condition ¥ = 0 is now synonomous with the subspace of incoherent states, thanks to (4.12). This
subspace is invariant under the flow.

The second and third equations of (4.4) are also satisfied consistently by imposing (4.12). Their
right hand sides clearly vanish when y = 0, as does the coefficient y of the left hand sides. Now,
¥ and @ do not have to diverge. In fact, ¥ and € can be arbitrary as long as ¥ = € (required
from y — O limit of (4.4)). This is consistent with the fact that the mapping curve (3.2) is linear
when 7 = 0, therefore, we do not need the values of ¥ and 6 themselves.

By imposing the natural constraints (4.12), we have made the polar coordinate expression (4.4)
valid everywhere. The constraints are imposed on the system constants, and therefore have a more
natural geometric interpretation.

4.2.3. Convertibility of initial conditions

When the new constraints (4.12) are imposed, a new problem arises: given an arbitrary initial
condition {8,(0)} of the original system, we need to be able to convert it into reduced variables
»(0), ©(0). ¥ (0) and system constants {y;}, subject to the constraint that the {y,} be incoherent.
Is such a conversion possible for an arbitrary initial condition {8,(0)}? If not, then (3.2) would
represent only a particular solution, rather than the general solution of the system. The following
lemma shows that such a conversion is indeed possible for almost all initial conditions.

Lemma. For almost all values of 8,, - -, O, there exist reduced variables y, 8, ¥, and constants
w1, - - Wy such that (3.2) and (4.12) are both satisfied. The only exceptions are “majority clusters”
in which N/2 or more of the 8, are equal (mod 27).

Remark. The following proof will show why majority clusters are special.

Proof. Since (3.2) is invariant under
0, ~y,, 8-V, 7v—(-7), (4.14)

the formulas (3.3) and (3.4) are, too. Therefore the two equations in (3.3) become
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O=6tn
Fig. 5. Index theory is applied to the region inside the dashed circle of radius 1| — ¢, ¢ — O0+. The radial and angular
coordinates are y and &, respectively. For each phase 6,, @ = 6, = n on the unit circle becomes a singular point of the

vector field (V,, Vg).
V1 -73sin(6, - 6) v + cos(8, - 8)

sin(y, - ¥) = [F7c0s(8,-8) cos(y, - ¥) = [+ 7c0s(6,-0) (4.15)
Thus, (4.12) is equivalent to:
N . N
1 ysin(f, — ) l «— ; +cos(f; -6)
Vo =2 — = = =
e Ng::l | + ycos(f; - O) 0. % Nkz“:l 1 + ycos(f; — 6) 0. (4.16)

Here, the 6, are given and fixed, and we seek a solution (6, 7) in the allowed region 0 < @ < 2n,
0 < y < 1. The strategy is to interpret a solution (8, ) as a fixed point of a continuous vector field
defined by (Vg, ¥;), and then to use index theory to prove that the vector field has a fixed point.

If we interpret @ and y as the angle and radius in polar coordinates (Fig. 5), then the allowed
region corresponds to the unit disk, and Vg and V) represent the angular and radial components of
a vector field, respectively. The vector field is continuous in the open disk 0 < y < 1. On the circle
y = 1, (4.16) shows that Vg diverges at & = 6, £ n for k = 1,..., N. Thus, when computing the
index, we choose a slightly smaller circle y = | — €, and then take ¢ — 0+.

How does ¥, change on this circle? The denominator of the kth term of V,, i.e., (1 +ycos(6,-6)).
vanishes at y = | and 6, — @ = tn. However, the numerator (y + cos(8, — €)) also vanishes. To
resolve the kth term around this singularity, let y = | —e and 4 = @ -6, t n where 0 < ¢, |y} « 1.
Then

1 y+cos(6,-60) 1 l-e-cosu | —e + u%/2 + 0(u*)
N1 +ycos(0,—60)  N1-(l—-€)cosy Ne+ u2/2 + O(eu?, u*)’

Fix ¢ and change u. As we pass near the singularity, the term tends to —1/N (when u = 0).
Sufficiently far from the singularity, the value of the term is +1/N.

Now we derive a condition that ensures that the vector field has non-zero index on the circle
7 =1-¢€, €6 — 0+. (By a standard theorem [35], this will immediately imply the existence of
a fixed point inside, as desired.) Specifically, we would like ¥, to be positive everywhere on the
circle, so that the the vector field always points outward. Consider the contributions of the various
terms to the index. If 8, -- -, @x are all distinct, then even though the kth term in the sum for V,
becomes —1/N, the other (N —~ 1) terms are all +1/N, hence ¥, remains positive. When two 8's
are identical, two terms in ¥, become —1/N at the corresponding singularity so that ¥, becomes
non-positive unless there are at least three other 8's with different phases from the two. More
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generally, one can see that | stays positive all over the circle if and only if the largest group of
idenuical #'s ithe largest “cluster™) contains less than half of the oscillators.

From now on. suppose that the size of the largest cluster is less than N/2. so that }. 1s positive
evervwhere on the circle. Then, since }g is well-behaved everywhere on ; = 1 - ¢, the vector tield
always points outward. Hence the index along the circle is + 1. We conclude that the vector field
must have at least one fixed point inside the disk. The coordinates of this fixed point are the
desired solution (6.;) of (4.16).

Once we obtain € and y at the solution, these values are substituted in (3.2) to obtain ¥V
equations for ¥ and {,}. Another, somewhat arbitrary, constraint on {y,} can be imposed at this
moment to determine ¥ uniquely. One candidate is

N
ZW =0. (4.17)
k=t

This constraint picks one incoherent set of {w,} from others that differ only by a rigid rotation.
Solving (3.2) for y, and substituting it into (4.17), we obtain

N )
Z ‘P+2arctan( l_{tan[%(ﬁk—a)]) =0 (4.18)
Pt 1 +7 -

which determines ¥. Finally, {,} is obtained from (3.2). Thus the conversion is complete. This
concludes the proof of the lemma. O

Remarks

(1) The fixed point guaranteed by the lemma seems 10 be unique. Numerical evidence for this
conjecture is presented in the subsection after the next. We have been unable to find a proof of the
uniqueness.

(2) The lemma fails for states that contain majority (> N/2) clusters. It turns out that these states
are incompatible with the incoherence condition (4.12). To understand why the failure occurs,
regard the transformation (3.2) as a reparametrization of the unit circle, mapping y, to 8,. The
circle is stretched in some places and shrunken in others, but the ordering and topology of the
oscillators are preserved. For almost all configurations {6, }, this reparametrization can successfully
produce a preimage {;} with its centroid at the origin. However, when there is a cluster containing
at least N/2 oscillators, the centroid cannot possibly vanish; even if all the remaining oscillators
are pushed diametrically opposite the cluster, they still cannot counterbalance it. Hence, there is no
hope of expressing such a state in terms of an incoherent preimage.

(3) Although our method of parametrizing the {6,} by incoherent {y,} was suggested by the
particular form of the averaged system (4.4), the method has nothing to do with the evolution
equations themselves. The same conversion works for other reducible equations of the form (3.1).

4.2.4. Potential function

The expressions Vg and V, defined in (4.16) seem to be partial derivatives of some function,
just as the sums in (4.4) were partial derivatives of a function H. This analogy is, of course, due
to the invariance of (3.2) with respect to the exchanges (4.14). It is easy to see that if we define a
function
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N
. I ¢ I +;cos(f, - 6)
UB. ) = _\—,kzllog( (4.19)

| -2

corresponding to X in (4.5), then we obtain formulas corresponding to (4.6) and (4.7), namely

U 1 ysin(f - 6)
— = — = I
06 'sz:l 1 + ycos(f; - 6) e

au 1 Y o+ cos(8; - O) v,
oy ;V(l-72)§l+;'cos(8k-—9) T 1=y (4.20)

where 0 < y < 1, as before. Fixed points of (4.16) correspond precisely to stationary points of U.
The vector (Vg/7.V,/(1 - 72)) points in the direction of steepest ascent on the potential function
Uu.

The functions H and U are strikingly similar. In fact, they differ only by a sign. To see this, use
the first equation of (3.3) to express H in (4.5) as

I sin(y, - ¥)
M= Vglog(m). (4.21)
Using the symmetric counterpart (4.15), U in (4.19) becomes
U= %élog (:%:%) . (4.22)
Therefore,
U701 = -n¥.ri{y,}). (4.23)

Another interesting relation between the two functions is that & can be regarded as H via the
transformation

u_'uv 77 e/""W]. 8“'""17‘ (424)

Thus if the given data sets, {6,} for & and {y,} for K, are the same, then U at (6 ;) gives the
same value as X at (¥ £ &, y). This is useful when we draw contour curves of both tunctions and
study their surfaces.

4.2.5. Numerical conversion of initial conditions

We have not found an explicit analytical expression for the solution (y,8) of (4.16). Computing
it numerically, however, is not difficult. The following procedure has worked for all the cases we
have tested, and we conjecture that it is valid in general.

For all initial conditions {6,} without a majority cluster, the potential & is found numerically to
have a unique minimum within 0 < y < 1. The minimum can be reached from a suitable starting
point by following, for example, the steepest descent path.

To facilitate intuition, we plot typical contour curves of & in Fig. 6, for N = 8. The values
of 8,,...,0, are indicated by dots on the unit circle; the numbers attached to them indicate the
multiplicity of phases at that point. In Fig. 6 there is one cluster of size two, and six isolated
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—

Fig. 6 Fig. 7

Fig. 6. A typical contour of . plotied on the plane with polar coordinates y and 6, and assuming there 1s no majority
cluster. The dots on the umit circle represent the phases 8,, given as parameters. The numbers attached to the dots denote
multiplicities. There are N = 8 oscillators. The values of 8, are: n. 2r/3, n/4, n/6, 0 (double), —n/4, and -3n/4. The
level curves are closed and off-centered. The minimum can be easily computed; the solid line is the steepest descent path
obtained numencal'ly.

Fig. 7. A typical contour of M, plotted on the plane with polar coordinates y and ¥. The incoherent conversion of initial
conditions 1s used. The dots represent the preimages v, computed for the 8, given in Fig. 6. The centroid of , 1s at the
ongin. The function X is convex, with its minimum at the ongin.

oscillators. The contours of U (dashed closed curves) decrease monotonically from a maximum
near y = 1, where U is large and positive, to a minimum at the innermost contour. This is the
stationary point we would like to compute.

The minimum is typically located opposite the centroid of the oscillators with respect to the
origin. Hence, y = R and @ = ¢ + n is a good initial guess of the location. Integrating along the
steepest descent direction from this guess, the path (shown in Fig. 6 as a solid curve) converges to
the minimum. The coordinates (y, ©) of the minimum yield the initial conditions for the system
(4.4) (or other reduced equations), and the minimum value of I/ gives the initial value of —H.
Recall that this quantity will be conserved in the averaged system with sind = 0.

4.3. The Lyapunov function

This section resolves the second issue posed at the end of Section 4.1: we clarify the geometric
meaning of the Lyapunov function M of the reduced system. By imposing the incoherence condition
(4.12) on the system constants {w,}, we will see that H measures the phase coherence of the N
oscillators.

4.3.1. H with the incoherence constraints
Recall from (4.7) that

y —cos(y — ¥)
1 —ycos(yx - VW)

oM _ F(¥,y)
dy = 1=y

L
, where F(¥,7) = N"Z_:l
Now imposing the constraint (4.12), we obtain

N
F(¥V,y=0) = -%ZCGS(W -¥)=0.
k=l
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R.yH
] .
in-phase state
max t

T (V - 3)-parameter family
) ) of invanant subspaces
increasing
coherence

04l >

manifold of
splay state ™~ incoherent states

Fig. 8. Foliatiou of the N-dimensional phase space (schematically) for the averaged systems. Two extreme sets are the
in-phase state (maximizing the order parameter R, the distortion parameter 7, and the Hamiltoman M) and the man:fold
of incoherent states (where R, 7, and H all vanish). The incoherent states are connected to the in-phase siate via an
(N - 3)-parameter family of invanant subspaces, shown as leaves of the foliation.

Thus F and M vanish on the incoherent manifold.
Moreover, F is strictly increasing in the y-direction for all ¥ since

oF _ lﬁ’: [t -ycos(ywx —¥)] - [y-cos(wx — ¥))[-cos(ywi —¥)]
a9y ~ N

=i [t - 7cos(ye - ¥))?

1 SN 1 —cost(yy - ¥)
=ﬁk2|[l 7 >0

- ycos(yx - ¥)]

for incoherent {y,}.

Now adopting radius y and angle ¥ as the polar variables, the graph of M becomes a convex well.
In this new coordinate system, the contours of H become concentric curves centered at the origin,
the minimum of M. Fig. 7 shows typical level curves of H for N = 8. The preimages v,,..., s
satisfying the incoherence constraints are shown as dots, just as the 8's were in Fig. 6.

The function X has the following properties. From (4.5), H = 0 at y = 0. Since F is an
increasing positive definite function of y, 3H/8y — +> monotonically as y — 1. Moreover, H
itself monotonically increases with respect to y; in fact, H — o as y — | for any ¥.

The levels of H reflect the coherence of the oscillators. For instance, as y — 1, and therefore as
H - 20, the oscillators are close to the in-phase state. At the other extreme, y = 0 and H = 0
implies 6; = v, + (@ — ¥), as shown in Section 3.1. In this case {6,} becomes the incoherent
state {w,} itself, only rotated rigidly by the angle (6 - ¥). Hence, the Lyapunov function * is yet
another measure of the phase coherence of the oscillators, as are y and R.

This interpretation of # has powerful global implications for the averaged system (4.1). From
(4.9), H = R¥sind. When sind > 0, M increases in time, and the oscillators approach the in-phase
state for almost all initial conditions. When sind < 0, M decreases, meaning that they spread
apart until their centroid vanishes. Thus, the in-phase state is globally attracting when sind > 0,
whereas the incoherent manifold is attracting when sind < 0. At the critical value sind = 0,
every trajectory runs along a contour of M. As shown above, such contours are closed loops. Each
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Fig. 9. A typical contour of (¥, ;) when there is a majonty cluster of size V/2. The dots represent the parameters y,,
whose values are: #, Sn/6, n/2, n/4. and -n/3 (multiplicity 4). On the unit circle, X 1s infinite everywhere, except at
the cluster of four oscillators where 11 assumes a finite value. The contours are tangent to the circle at the singular point.
The solid curve 1s a computed trajectory of the integrable averaged system (d = 0). It is not penodic but converges to the
singular point. When the cluster size exceeds V/2, a similar picture is obtained.

trajectory undergoes periodic motion in the (¥,y) space. In the full phase space, the motion is
quasiperiodic on 2-tori, for reasons given in Section 4.1.

Fig. 8 shows a schematic drawing of the N-dimensional phase space. On one side, there is an
(N - 3)-dimensional manifold of incoherent states, the most disordered states of the system. On
the opposite side, there is the in-phase state, the most ordered one. There is only one such state
although there are many ways to approach it. In fact, each point on the incoherent manifold is
connected to the in-phase state through a three-dimensional invariant subspace. Such subspaces are
stacked side by side as an (N — 3)-parameter family, shown in Fig. 8 as a family of curves. The
N - 3 parameters are the {,}, subject to the two incoherence constraints (4.12) and the third,
arbitrary constraint (4.17). On each invariant subspace, the flow is either toward the in-phase state
(if sind > 0), toward the incoherent manifold (siné < 0), or neither (sind = 0). In this last case,
the motion is quasiperiodic.

4.3.2. Majority clusters

The analysis in the last section does not apply if there is a majority cluster, i.e., if N/2 or more
6's are initially equal. Nevertheless, this (highly exceptional) case can be handled by resorting to
the identity conversion (3.7). Recall that the preimage (v, } is then taken to be identical to {6,(0)},
and in return, we restrict attention to the trajectory that starts at y(0) = ¥ (0) = 6(0) = 0.

When we use the identity conversion, the contours of H are off-centered like those of U, as
described in the preceding section. Indeed, since {y,} is now identical to {6,}, the contour maps
for H and U are the same after a rotation by 180 degrees, thanks to (4.24).

Fig. 9 shows typical contours of M for the case where there is a majority cluster. Here, four of
the eight oscillators have equal y's. The resulting contour map is qualitatively different from Fig.
6 - the critical point occurs on the circle, and all the contours emanate from it. (The contours for
larger clusters of size > N/2 look similar.)

The change in contours can be explained by a local analysis of H near y = 1. If we rewrite X in
(4.5) as

| N
M= ﬁ‘glos[l - yeos(yx — ¥)] - flog(1 - %),
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we see that the asymptotic behavior as ;» — | is determined by the competition of the terms on the
right hand side. The second term becomes singular like

~Ylog(l - ;%) ~ —{log(l =) — +x asy—1.

The first term becomes singular at y = | only when ¥ = y, for some k. Then, the kth term in
the sum gives a contribution of

L
N

Since the singularities of both terms are ~ log(l - 7), we only need to compare the coefficients.
We see that as 7 — |,

log {1 - ycos(yy — ¥)] ~ l—l\ilog(l -y)—-x asy—1.

finite if exactly N/2 of the y; equal ¥,

- if more than N/2 of the y, equal ¥,
H —
+5  otherwise.

Therefore, when there is no majority cluster, M is +> everywhere on the circle y = 1. When
there is a majority cluster, X still equals + > at all points of the circle except at the cluster; there it
is either finite or —oc. In this case all contour curves originate from one side of the singular point
and return to the other side as in Fig. 9.

To illustrate some of the new effects caused by a majority cluster, consider the trajectories of the
averaged system, in the case sind = 0. Recall that when we use the identity conversion, only the
trajectory starting from y(0) = ¥(0) =0 is meaningful. This solution is shown in Fig. 9 as a solid
curve. It follows a contour of H and converges to the singular pointon y = 1. In contrast to Fig. 6,
the trajectory does not execute periodic motion in y and ¥, but rather terminates at a cluster state.

4.4. Visualizing flows

In this section we present numerical phase portraits of the averaged system (4.1) for N = 3
and N = 4. We assume sind = 0 unless otherwise stated. Although the essential dynamics can
be understood already by the (y, ¥)-diagram of the reduced system, it is much more instructive
to view the dynamics in the original §-coordinates. We thereby obtain a picture of the phase
space that improves upon the schematic Fig. 8. For instance, the incoherent manifold and the
(N - 3)-parameter family of invariant subspaces can be visualized directly.

Without loss of generality, the permutation symmetry of (4.1) enables the oscillators to be ordered
as follows:

Oy <ON-1<...€0:<6,<6N+2m.

Eq. (4.1) also implies that if 6, = 8, at any time, they remain equal forever. Thus 6, = 8, defines
an invariant hyperplane for each (i, j) pair, and the whole phase space is partitioned into invariant
cells. The ordering given above defines a “canonical invariant region [21,36]. Trajectories that start
in this region are stuck in there forever; in more physical terms, the oscillators can never pass each
other as they run around the unit circle.
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Fig. 10. Flow of the integrable (6 = 0) averaged system for ¥V = 3 in the onginal coordinates 8,. The linear transformation
0= z/’_| 0, uy =0, -(0:+65)/2, uy = V3(8;-83)/2 is used 10 bring out the picture’s inherent symmetry. The mean
phase & is decoupled. and is not shown. Only one triangular region, corresponding to the ordenng 63 < 6, < 6, <8y + 2n
1s shown since flows in the other regions are equivalent by symmetry. The phase portrait shows a continuous family of
penodic orbuts circulating around the splay state (dot in the center). If the mean phase direction were restored, the motion
would appear as quasipeniodic motion on 2-tori.

Fig. 11. Flow of the intcgrable (6 = 0) averaged system for N = 4 in the original coordinates 8,. The linear transformation
8 = Z,‘_l 0, up = (0, +8;-0y-04)/4, uy3 = (26, F0; 4+ 03-0,)/4 is used. The mean phase 4 is decoupled, and is
not shown. The tetrahedron s the canonical invariant region, corresponding to the ordering 6, < 0;<60,<6,<64+2n.
Notauon: dotted edges of the tetrahedron = two pairs of cqual 8's; solid edges = three equal 8's; vertices = in-phase
solutions; dashed bar inside = filament of incoherent states; dot at center = splay state. Three thin solid loops inside the
region are computed trajectorics. Four thick curves forming two closed loops are trajectorics on the faces of the tetrahedron
representing clustered configurations of oscillators.

4.4.1. Integrable flow for N = 3
Since the right hand side of (4.1) depends only on the phase differences, the mean phase can

be removed from the dynamics. For N = 3, for example, we may use the linear transformation
{2,21}:

3
9 = }ZG,,. U = 0| - §(82+0;). U = }\/5(02-0,).
k=l

Since 4 is passively driven by the (u,u;) dynamics, it suffices to draw the effective dynamics on
the (uy, uy)-plane. In Fig. 10, the canonical invariant region 03 < 8, < 0, < 03 + 2n appears as a
triangle. The sides u; = 0, uy - u2/V3 = 0, and u, + uz/V3 = 2x correspond to 85 = 6,, 6, = 6,,
and 6, = 63 + 2r, respectively. The vertices all correspond to the in-phase state 6, = 6, = 6,
(mod 2x). There are three ways to approach the in-phase state while maintaining the order of the
three oscillators. Since the §-direction is projected out, the periodic solutions look like fixed points.

The dot in the center of the triangle is the splay state
61(1) = 62(1) + 31 = 05(1) + §n for all 1.

It satisfies the incoherence conditions (4.11), and being periodic, it also appears as a fixed point
in the figure.
Through the transformation (3.2) and the three constraints (4.12) and ( 4.17), we must obtain

vi=3§n, v2=0, yy=-in
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trom almost all init1al condiuions. This is the preimage of the oscillators. Generic trajectories form
concentric loops around the splay state. Each trajectory 1s indeed on a 2-torus when the #-direction
1s reinstated.

On the edges of the tnangle, two of the oscillators are in phase. Because the size of this cluster
exceeds .V/2. the initial conditions cannot be converted to the splay phase preimage. The edges of
the tnangle are separatrices (separating neighboring canonical invariant regions corresponding to
different choices of the ordening), and the behavior differs qualitatively from the generic case. From
Fig. 10 we see that trajectories on the edges are attracted toward the vertices. Starting from one
isolated oscillator and a cluster of two others, they eventually merge to form a cluster of three, i.e.
they approach the in-phase state. On the separatrices, the motion is not quasiperiodic, but rather
appears to have a dissipative character.

4.4.2. Integrable flow for N = 4

Since # can be projected out, we may display the phase portrait for N = 4 in three dimensions.
This turns out very helpful. The dimension of the incoherent manifold becomes V - 3 = 1, which
1s not trivial as it was for N = 3.

As pointed out by Tsang and Schwartz [2], a nice transformation in this case is

4
9:%20/(, u.=§(0.+0;-0;—0.), u2.3=;'{(x0,q:62+03—04).
k=t

Fig. 11 shows the projection of the canonical invarant region
04<0:<0,<6,<04+2n

onto the (u,,us, u3)-space. The four side walls of the tetrahedron u; + uy = 0, u; —u; = 0,
u; —uy = 0, and u; + u; = n correspond to 0y =05, 03 =8, 6, =80, and 6, = 64 + 2m,
respectively. There are six edges. Four of them, shown in the figure as solid lines, correspond to
three identically phased 8's (the 3+ 1 states). Two other edges, shown as dotted lines, are two pairs
of equal 6’s (the 2+2 states). As can be easily checked from (4.1), the points on the 2+2 edges
are fixed (meaning the solutions are periodic when @ is reinstated). The four vertices, also shown
as fixed points, all correspond to the in-phase solution as before. There are four ways to approach
the in-phase state while staying in the canonical invariant region.

There is a dashed bar inside the tetrahedron, connecting the 2+ 2 edges. It is the one-dimensional
manifold of incoherent states. Each point on this bar appears fixed since the incoherent states are
periodic solutions of (4.1). The dot in the middle of the incoherent manifold is the splay-phase
solution, i.e., four oscillators with equally spaced phases.

Generic trajectories are shown as thin solid curves inside the region. They are periodic in the
figure, meaning quasiperiodic when 8 is included. Trajectories close to the splay state oscillate
around the incoherent bar in an almost circular fashion. Trajectories far from the bar are strongly
distorted. One large loop shown in the figure visits all four corers closely. The trajectory is slow
near corners, and runs rapidly in between. This motion describes the situation when four oscillators
are almost in-phase, but one of them suddenly departs from the other three, rotates once, and
reapproaches the group. Such “phase slips™ appear for any N when a trajectory is close to the
in-phase solution. Phase slips also occur for most trajectories when sind > O (in-phase is attracting)

52



S Watanabe. S H Strogaiz  Phyvsica D 74 (19931 197-253 227

(b)

o~

uy

[ [{(((CON

=
./V't
4.

o]\
\
T n N
; 7 ‘» 0
0
T 1 uy L4 " uy
"y 3 u3 -2

Fig. 12. Trajectones of the integrable flow for N = 4, corresponding to a particular preimage {v,}. The reduced equations
(4.4) with 0 = 0 are integrated from ¥(0) = 6(0) = 0 and vanous values of 710). For each 7(0), the trajectory 1s a closed
orbit. As y(0) vanes. the orbits sweep out a warped surface. The surface intersects the incoherent filament transversely.
Changing {w,} moves this intersection along the filament.

(@) w14 = £92/10, way = £1/10. (b) w4 = £3Ir/4, w23 = ;4. This choice of {y,} yields the most symmetnc
possible surface. It emanates from the splay state (solid dot at center).

if we wait for a long time. In this case, the time between slips becomes unbounded as a trajectory
approaches the in-phase state.

The four thick curves (forming two closed loops) in Fig. 11 are trajectories on the boundary
walls of the tetrahedron, meaning a pair of 8's are identically phased. This is when the size of the
largest cluster is exactly N/2. The flow is toward the 2 + 2 edges, and must end up there. Non-paired
oscillators come together to form a cluster that competes with the paired ones.

On the 3+1 edges (four solid lines) the flow is directed toward the vertices, i.e., the in-phase
state. Thus the flow on the separatrix is similar to that of Fig. 4.5; once again, quasiperiodic motion
does not occur if there is a sufficiently large cluster.

4.4.3. Invariant subspaces

For N = 4, we can visualize the (N — 3)-parameter family of three-dimensional subspaces. If 4
is projected out, then & is eliminated from the phase portrait. (Note that 8, — 6, does not involve
6.) Thus we should see a one-parameter family of two-dimensional surfaces foliating the interior
of the tetrahedron. The sole parameter is the location of the surface along the incoherent manifold.

One such surface is computed and shown in Fig. 12a. We chose a set of {y,} satisfying the three
constraints. The reduced equations (4.4) were then integrated numerically from 8(0) = ¥(0) =0
(without loss of generality), for various values of 7(0). Next the transformation (3.2) was applied
1o the results to recover {6,(¢)}. Finally these phases were themselves converted to the phase
differences (u,,uz,43) shown in Fig. 12a.

When y(0) = 0, the trajectory is confined to the incoherent manifold. As y(0) is increased, the
orbits sweep out a warped surface, as expected. Each trajectory is periodic. (These closed orbits
correspond to invariant 2-tori in the full phase space, after we reinstate 4.)

A different choice of {y,} would produce another surface. In particular, 4 = £31/4,y23 =
+n/4 (evenly spaced oscillators as the preimage) produces a symmetric surface emanating from
the splay-phase dot (Fig. 12b). The two principal curvatures of this surface at the splay state have
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Fig. 13. Trajectones of the averaged system with & # 0. In contrast to Fig. 12, the trajectones are spirals, not closed orbuts.
However, they sull lic on the same warped surface as in Fig. 12, since this surface 1s determined solely by {,}. and the
same y's as used as in Fig. 12a.
(a) Outward spiral: 6 = +x/100, 7(0) = 0.5, ¥(0) = 68(0) = 0. (b) Inward spiral: § = -x/100, 7(0) = 0.99,
¥(0) =6(0) =0.

the same magnitude.

These membrane-like surfaces are neatly stacked side by side, skewered by the incoherent filament.
On each surface the dynamics are governed by a one degree of freedom Hamiltonian system. Note
that the “frame” of the membrane surfaces, i.e., the limiting trajectory as y — I, is formed by the
four edges of the 3+ 1 states, joined at the in-phase vertices.

We now have a global picture of phase space that improves on the earlier schematic Fig. 8. The
warped surfaces of Figs. 12a and b correspond to the curves that connect the in-phase state to the
incoherent manifold in Fig. 8. The in-phase dot in Fig. 8 should be represented, more precisely, by
the whole frame of the 3+ 1 edges of Fig. 12.

There is also a correspondence between Figs. 10 and 12: if we flatten any of the warped surfaces
of Fig. 12, we obtain a picture similar to Fig. 10. In both cases, a continuous family of closed curves
is bounded by a polygon; only the number of vertices is increased. Trajectories near the polygonal
frame slow down near the vertices and run rapidly in b (ween. They generally have N phase-slirs
before completing a period of the (¥, y)-dynamics.

We conclude with two examples where sind # 0; then M is no longer conserved. Fig. 13a plots
a representative trajectory for the case 4 = +/100. For this case, H is a monotonically increasing
function of time, and the trajectory spirals out to the in-phase state. The trajectory is, however,
confined to the same warped surface as in Fig. 12a since this surface is determined by {v;}, and the
same {y,} have been used in both figures. Fig. 13b shows the case d = —n/100. Now the trajectory
spirals down to the incoherent filament, and approaches a final state predetermined by the {y,}.

4.5. Origin of degeneracy

4.5.1. Degeneracy of averaged systems

There are three levels of degeneracy exhibited by the averaged system (4.2). We discuss them in
order of increasing specialization.

First, the whole phase space has a cellular structure, made up of identically-shaped invariant
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regions. The flows nside all the cells are equivalent. These properties follow from the permutation
symmetry of the system.

Second, each .V-dimensional cell is itself partitioned into three-dimensional invariant subspaces.
This partitioning occurs for all “reducible™ systems of the form (3.1); the averaged system (4.1)
belongs 1o this suhclass. This level of degeneracy is due 10 the absence of explicit higher harmonics
in (3.1). The transformation (3.2) works in this case, and converts the .V-dimensional system to
the reduced three-dimensional system for (7,¥,6). Nevertheless, the reduced dynamics can be
rich: there can be tixed points, periodic solutions, chaos, coexistence of dissipative and conservative
behaviors, etc.

Third, the averaged system (4.1) is more special than other reducible systems because it possesses
a rotational invariance - it depends only on the phase differences of the oscillators, not on the
phases themselves. When we apply the transformation (3.2) to the averaged system, the variable
6 is canceled upon taking phase differences, and so the right hand sides of (4.1) depend only on y
and ¥. Thus the averaged system has effectively two-dimensional dynamics, and chaos is therefore
impossible.

It is interesting that the effective system turned out to have a Lyapunov function whose properties
were independent of {y,}. This enabled the averaged system to be thoroughly analyzed. Along the
way, we found it useful to constrain the {w,} to be incoherent. These constraints associated y = 0,
or equivalently % = 0, with the manifold of incoherent states. Notice that this association was not
mandatory; we might have chosen 7 = 0 to label some other states by imposing different constraints.
However, the “core” of dynamics of the averaged system happened to be the incoherent manifold,
so our choice seemed natural. In particular, given that the incoherent states are stationary under
the flow (4.1). it seemed sensible to tailor the coordinate system (¥, 7) around them. This explains
why we didn't need to resort to Cartesian expressions when analyzing the averaged systems.

4.5.2. Surviving structure in non-averaged systems

Many of the results obtained for averaged systems carry over 0 more general reducible systems,
including Josephson arrays. The main difference is that general systems are not rotationally invariant;
6 no longer disappears from the right hand sides of the reduced equations. Thus the reduced system
is now three-dimensional, not two-dimensional.

Furthermore, the incoherent states are no longer stationary, and the coordinate system cannot be
tailored to the flow. In particular, the states with y = 0 are no longer fixed. To avoid a coordinate
singularity, we must resort to a Cartesian-type coordinate system, as described in Section 3.1.

However, the conversion of initial conditions is unaffected. The best approach is still to impose
the three constraints (4.12) and (4.17) on a set of constants {y,}. One set of {w,} corresponds to
a particular three-dimensional subspace. Thus the trajectories of all reducible systems are confined
1o the same subspaces as before - only the evolution inside the subspaces is different, and depends
on the governing equations.

4.5.3. Explaining previous observations

Our results shed some light on the observations listed in Section 2.4.

Observation 1 (existence of at least N — 2 neutrally stable directions around the splay state)
is now proven. The results of Section 3.2 hinted that this observation was somehow related to
reducibility, but it was not clear how different subspaces were related to one another. We now see
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that the neutral stability tollows from the toliation of phase space by an (N - 3)-parameter family
of invanant subspaces: .V - 3 neutral directions correspond to perturbations from one siubspace
to another, and one additional direction corresponds to trivial perturbations along the splay-phase
orbit 1self.

Then why dcesn’t the in-phase periodic solution exhibit a similar degeneracy? Because (as shown
in Section 4.4) the in-phase solution lies at the “hinge” of the fohation where all the subspaces
meet. it i1s meaningless to speak of perturbations across subspaces at this point, and so the in-phase
state can be attracting, at least in some cases.

Although Observation | was onginally suggested by numerical experiments on the splay state,
it is now clear that the same statement holds for all incoherent periodic states (if they exist).
Moreover, even for arbitrary, non-periodic trajectories, we may conclude that there are at least
N -3 Lyapunov exponents equal to zero.

The status of Observation 2 (foliation by invariant 2-ton for resistively loaded arrays) is more
problematic. We have proven that Observation 2 is correct in the weak-coupling limit - the averaged
equations then have 4 = 0 and the Hamiltonian ® provides an additional constant of motion,
yielding complete integrability and the desired foliation by 2-tori. But for the case of stronger
coupling, Observation 2 is probably false, strictly speaking, because the tori seem to break as the
coupling increases. Nevertheless, a family of invariant 2-tori might persist near the splay state;
perhaps this issue can be settled using KAM theory for reversible systems [31].

Observation 3 (the existence of a manifold of incoherent periodic states) is the most problematic
of all. Such a manifold certainly exists in the weak-coupling limit. It is attracting, repelling, or
neutral depending on 4, and it organizes the dynamics of the averaged system. But its existence in
general is an open problem. In the next subsection we present some tentative ideas on this topic.

4.5.4. Persistence of incoherent manifold

Numerical results suggest that a manifold of incoherent periodic states persists if the coupling is
not weak, and that such manifold exists for certain Josephson arrays as well. Using the reduction
method, we may outline a strategy for an existence proof, at least for the resistively loaded array
and for a certain parameter range, as follows.

The reduced equations are (3.17). Numerics suggest (but this is not proven) that for an appro-
priate range of parameters, the disc x? + y2 < | at @ = 0 is mapped into itself at ¢ = 2x. Since
the flow in between is continuous, Brouwer's fixed point theorem implies that the map of the disc
to itself has a fixed point, corresponding to a solution of the flow that is 2n-periodic in @. From
(3.2) it is clear that all 8, advance by 27 when & advances by that amount, and x and y return
1o their original values. Hence the fixed point of the map corresponds to a time-periodic solution
of the array equations.

This argument holds regardless of {v,}, as long as the map is well-defined. Thus each subspace
contains an incoherent periodic solution. (Strictly speaking, the centroid does not vanish for these
solutions. However, the word “incoherent” should not be confusing.) Changing {w,} continuously,
we generate a2 manifold of incoherent periodic states.

It will be interesting to see if this heuristic argument can be made rigorous.
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5. Continuum limit

This section deals with the infinite-V limit of the reducible system (3.1). For series arrays of
Josephson junctions, .V 1s typically on the order of 103. Thus. the continuum limit is a reasonable
approximation. However, our main interest 1s theoretical: the continuum limit gives rise to an
integro-paruial differential equation with low-dimensional effective dynamics as well as interesting
soliton-like soluuions.

For finite .. the dependent variables are the phases 6,,....6y. visualized as particles moving
on the unit circle. In continuum limit we are less interested in this Lagrangian view. Instead. we
concern ourselves with the densuty p(0. 1) of oscillators at a given angle 8 at ume /. It satisfies the
normalization constraint

R
fp(().t)d@: 1 forall 1. (5.1)

-X

Each oscillator is now viewed as a constituent particle of a “flu‘d”. The density function, therefore,
obeys the conservation law

ap 0
ot T o6

(pv) =0, (5.2)
where v (6. 1) is the velocity field. The appropriate v must be the generalization of the velocity of
an individual oscillator in the finite-N case, given by (3.1). Thus, taking N — x, v is given by

v(0,t) = f + gcosB + hsiné, (5.3)

where f, g, h are functions of time . Eq. (5.2) with (5.3) is the governing equation for the
oscillator density p. (The finite-N equations can be recovered by taking the density function p to
be a sum of 4-functions and by considering the characteristics of (5.2).) We are now asked to solve
this kinematic wave problem posed on a periodic domain.

Usually, waves in a periodic domain are analyzed by decomposition into Fourier modes and then
considering interactions among the modes. However, since we have already analyzed the finite-N
version, we only need to extend our reduction method to the infinite-N equation. In Section 5.1, we
show that the partial differential equation (5.2) can be reduced to just three ordinary differential
equations. Section 5.2 analyzes the averaged equations for this system, obtained in the weak-coupling
limit. Then the effective dynamics become two-dimensional, and a Lyapunov function and global
stability results can be obtained.

Egs. (5.2, 5.3) can be viewed as one of the rare examples of an infinite-dimensional evolu-
tion equation whose dynamical complexity is rigorously bounded. It can produce at most three-
dimensional chaos, as well as quasiperiodicity on 2-tori, depending on the functions f, g, and h. For
one special case (Section 5.3) the system becomes completely integrable, and solitons are observed
as in other integrable systems. Finally, Section 5.4 shows some illustrative numerical examples of
solitary waves, chaos, and wave interactions.
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5.1, General reducible systems

5.1.1. Reduction

The reduction of the continuity equation (5.2) with (5.3) i1s based on the same idea as the
reduction of the finite-.V equations (3.1). However, the details differ slightly, and are described
here for completeness.

The main idea is to reduce (5.2) via a time-dependent change of coordinates from 6 to y, using
(3.2):

lan[%(ﬂ-—a(!))]=‘[IT-i—'T/7-(£{T)lan[§(w—'P(l))]. (5.4)

The claim is that the time-dependent density p(8,¢) will transform into a stationary density a{y)
if (y, ¥, @) satisfy appropriate ordinary differential equations, 10 be determined. The two densities
are related by:

p(0,1)d0 = a(y)dy for all ¢, (5.5)

to conserve oscillators in any infinitesimal interval.

We organize the necessary formulas. First, (3.3, 3.4) can be used just by reading 6, as 6 and y,
as w. The symmetric counterpart of (3.3) is (4.15), which can be used in the same manner. Now,
solve (5.4) with respect to ¢ to obtain

v = ¥(1) + 2arctan(I" (1)"'tan[$(6 - 6(1))]), (5.6)

where I' = /(1 + 7)/(1 - y) as in Section 3.1. Following the strategy used to derive (3.5), we
obtain

oy . YA l-ycos(y - ¥)

T l_}'zsm(«/ ¥) it 6.
(This relation can be also obtained from (3.5) by considering the symmetry (4.14).) From (5.6)
one finds

oy _ 1 -ycos(y —¥)
30 = T . (5.8)
Using these formulas, (5.2),(5.3) can be expressed in terms of the new coordinate . In Appendix

A we show that the continuity equation can be satisfied identically, regardless of g (v ), by imposing
the three equations:

(5.7)

y =—-(1-y%)(gsin® - hcosO),

¥ = —/1-y2(gcos® + hsin8),
70 = yf —gcos® - hsinO, (5.9)
which are identical to the reduced equations (3.6) for the finite-V system.
Thus the infinite-dimensional system (5.2, 5.3) is reduced to a system of three ordinary differential

equations for (y,¥,8). The reduced system involves a time-independent function o(y) as a
paramelter.
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512 Converting iniual conditions

Given an iniual density p(8.0) = po(6), one can determine initial conditions for the reduced
variables ;(0). ¥ (0). and ©(0). as well as the stationary (preimage) distribution (). As in the
finite-V case. we could use the idenuty conversion

20 =P(0)=60(0)=0 (s0.0=yvy), aly) = pol(8). (5.10)
A better approach is to parametrize by the incoherent states of the averaged system (shown in
Section 5.2). We impose three constraints on g (y ), analogous to (4.12) and (4.17):
Var
fa(w)coswdw:fa(w)sinwdw: /o(w)wdw:O. (5.11)
¥-x
The range of integration [¥ - 7, ¥ + n] (in the last relation) is chosen so that ¥(0) can later be
computed easily. The normalization (5.1) yields an additional constraint

fa(w)dw -1 (5.12)

To use the parametrization by incoherent states, we need to prove that we can find an incoherent
preimage o () as well as initial conditions y(0), ¥ (0),6(0), given an arbitrary initial condition
po(8). The index argument in Section 4.2 goes through with little modification, with the usual
caveat that po(8) must not have a “majority cluster”, i.e., a d-spike that contains at least half of
the oscillators. Once we find (8,7) for po(6), then ¥ and g(y) can be determined from (5.11)
and (5.5).

Specifically, (7,0) is obtained as the root of the first two equations of (5.11), rewritten as:

ysin(8 — )
1 4+ ycos(6 - 6)

v + cos(f - 6)

po(6)d0 = ¢ ycos(6 - 6)

po(6)d8 = 0, (5.13)

which comes from a potential function

u@é.y) =){log(' +’°°s(8"9))po(a)d0. (5.14)
vVi-7
Then ¥ is given by the third equation of (5.11), written as
O+x
/ [‘P+2arctan( :;};wn[Q(O—G)])] po(6)do =0, (5.15)
é-x

since @ € [@ - 1,0 +n] corresponds to y € [¥ —n, ¥ + n]. Lastly, the incoherent density preimage
o(y)is

a0 1 4 ycos(8 - 6)

a(y) = po(8) =— = po(0) ——F—= .

For any o (y) satisfying (5.11) and (5.12), we may associate a three-dimensional set of trajectories
by changing y, ¥, and 6 over their full ranges. Since infinitely many such a(y) can be found,
the phase space of (5.2) with (5.3) is foliated by an infinite-parameter family of three-dimensional
subspaces. (Recall there used to be N — 3 parameters for the finite-N systems.) The density o (y)
characterizes the subspaces.

(5.16)
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3.2 Averaged system

It is expected that (5.9) is too hard to analyze in general. so we focus on the averaged system
obtained in the weak-coupling limit.

5.2.1. Reduction
Taking the limit N — x of the finite-V averaged system (4.2), we obtain (5.2) and (5.3) with

/=0, g=fp<o.ncos(e-¢s)do, h=fp(0.usm(e-5)do. (5.17)

Substitution of these expressions into (5.9) gives the reduced equations

’ }{pw.z)sinw-e - 8)de,

P -2
l’”’ =—}{p<0,z)cos(o—e-5)de.
-7
v = ¥
-7

Using (3.4) and (5.5), these equations become

l-/_/! = S(t)cosé + T(t)sind,

\/T/il_,f =60 = T(1)cosd - S(1)sind, (5.18)
where

S = f m::?:;w.;q;)d(w)dw

T() = l’_";::s(("w'_";,))a(wdw-

This is the infinite-V version of the averaged system. Note that & does not appear on the right
hand sides, so the essential dynamics is only two-dimensional.

5.2.2. Lyapunov function
It is straightforward to see that when sind = 0,

H(P.y) =}{|og("’°°"'£’"'))a(w)dw (5.19)

V-7

is a conserved quantity for (5.18). For other values of 4, this function is a Lyapunov function since

M = R%sind, (5.20)
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where

Rinexplinlny] = fexp(:ﬁ)p(t),l)d(}. R>0.0&R (5.21)
denotes the order parameter of the oscillator density.

5.2.3. Phase coherence

By imposing the incoherence constraints (5.11), the set where 7 = 0 becomes synonomous with
the incoherent states. Moreover, the Lyapunov function H vanishes at 7 = 0, and its convexity can
be easily shown. As in Section 4.3, H measures the phase coherence of the oscillators.

The dynamics on the invariant subspaces is governed by M. If siné = 0, H is conserved, from
(5.20). Then ¥(¢) and y(1) are periodic, and the system is completely integrable. If sind < 0,
H decreases monotonically and each trajectory spirals down to the incoherent state a(y) that
labels the invariant subspace. The manifold of incoherent states is a global attracting set. Finally, if
sind > 0, then M increases and all trajectories (except the incoherent ones) approach the in-phase
state. As ¢ — x. a d-function appears in p, even when the initial density is smooth.

5.3. Solitons

The previous section contains no surprises; the finite-N results of Section 4 carry over to the
continuum limit. Now we turn to new phenomena. We restrict attention to the averaged system
with sind = 0, unless stated otherwise. Since this case is completely integrable, we expect to find
something analogous to solitary wave solutions [37], traveling at a constant speed without changing
shape. We shall see that the averaged system indeed exhibits such solutions. In addition, we study
the motion of an individual oscillator when such waves occur, and show that the transformation
(5.4) collapses to extremely simple form. Finally, we consider recurrence phenomena for this
system.

5.3.1. Traveling waves

Although it is easy to obtain traveling wave solutions starting from the usual assumption p(0,1) =
p(8 — Ut), we take a more indirect approach here to illuminate the geometrical interpretation of
the traveling waves.

Recall that the phase space is partitioned into a family of three-dimensional invariant subspaces,
parametrized by the incoherent density o(y). The dynamics on each of the subspaces is similar;
they all have the same Lyapunov function.

Still, one of the subspaces occupies a special position geometrically. It is the subspace correspond-
ing to the uniform distribution g(y) = constant. It corresponds to the splay state of the finite-V
case, where the oscillators’ phases are equally spaced. For N = 4, this subspace is the membrane
shown in Fig. 12b.

The splay state for V = 3 and N = 4 lies at the center of the canonical invariant region, as shown
in Figs. 10-13. Moreover, it is the center of the incoherent manifold itself (the dashed filament
in Figs. 11-13). By analogy, we expect that the uniform distribution state for the continuum
limit is located at the center of both the phase space and the incoherent manifold. The subspace
parametrized by, and emanating from, this state is expected to be the most symmetric of all the
subspaces. In fact, this is the subspace of all possible traveling wave solutions.
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To see this, we derive the waves directly from the reduced equations (5.18). As noted. the special
subspace 1s parametrized by the uniform density

1

The integrals in (5.18) are now easy to evaluate:

sin(y - ¥) 1 _ | siné .
f 1 -ycos(y —¥) anw T n f | - 7coséd" =0

y—cos(y —¥) 1 lf(l 1 -2 )d‘: -1 =32

—dy = — - =
I -ycos(y-¥)2rn v ny 1 - ycosé

Hence (5.18) becomes

5= sino L -0 - /1T=37)
y A
) Y _N_-n
70 = _L = cos&l_____]_/'
V1-2 7

It is more convenient to use a = (1 — y2)~!/2. The equations then become
cosd
a+ 1’

The solution can be obtained explicitly. Assume € (0) = ¥ (0) = 0 for simplicity. Then the solution
IS

a=(a-1)sind, 2:!1’/:
a

a(t) =1 + (ag - 1) e/,

. 2 4 (ag - 1)et*n?
-1 -
(1) = jcotd [31sm6 log( 2 + 1 )] )

2+ (ag—1)eftind
ao+l ’

In particular, when sind = 0 (and we let § = 0 without loss of generality), this reduces to

¥ (1) = jcotd [tsind - log(

a(t) =ag (y(t) =y), Ot)=Ut, ¥Y() =V,

where ag, 70, and

ve_a _1=VT-77 1L V=T

o+l y? ’ a+l "~ 72

are all constants.

From now on, focus on this integrable case sind = 0. Since a (or y) is constant, the mapping
used in the transformation (5.4) is stationary. Since the preimage g () is always stationary, the
image p(68.t) also looks stationary in the frame moving with 8 (). Moreover, the speed of the
frame is the constant ® = U. Hence, this solution represents a traveling wave in the f-coordinate.
Fig. 14 illustrates these relations.
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Fig. 14. Change of coordinates for the traveling wave solutions. In this simple case, the mapping curve is fixed since the
distortion y reduces to a constant. The preimage density a(y) is uniform. Individual oscillators move at uniform velocity
— ¥ with respect to . In the original coordinates, the oscillators move non-uniformly, hesitating near the peak of the density
p and running rapidly in between.

The shape of the traveling wave follows from (5.16). We obtain

_l b} —
p(é),l):a(ao) L__vi-7y ' vi-» (5.23)

3y) " ImT+ycos(6-6) 2nl+ycos(@-U1)"

where we have written simply y instead of yo. This solution is a solitary bump on the circle. It
involves one parameter y. When y = 0, the solution reduces to the uniform distribution, i.e., the
preimage o (y) itself. As y increases, the height of the bump grows monotonically, and diverges
when y — 1, since

1 Ji-y? _L\/I—*/l _ 1 [T+y

Pmax = MK S T ycos¢  2m L-y 2\ 1=y

The wave speed U changes from 1/2 (y =0ora=1)tol (y—~lora— ) monotonically -
taller waves travel faster.
The velocity field v(8,t) is obtained from (5.3) by substituting (5.17) and setting 6 = O:

\/l-yif cos(6' — 0)dé’
2n 1

+ ycos(6’' - Ut)

v(0.1) = }{p(o',z)cos(o' ~0-5)d6’
d=0

= ~Acos(8 — Ut),

IRV A I
—
Here v is the speed of individual oscillators in the stationary frame. In the frame of the traveling
wave, the velocity of an oscillator becomes
v(0,0)-U =-[U + Acos§}), §=6-U1.

It is easy to show that 0 < A < U < 1 for 0 < y < 1. Hence the oscillators always move backward
relative to the density wave, and their speed is nonuniform; they hesitate near the peak of p

A=
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{Z = =n) and run rapidly through the trough (¢ = 0). In other words, each oscillator lingers near
all the others until the tume comes for it 10 “phase slip™ abruptly.

5.3.2. Transformation

Now suppose we wish to convert the nonuniform motion of an individual oscillator into uniform
motion by changing variables from £ = # - ('t (nonuniform) to, say, n (uniform). The standard
technique is to use the tuime of travel as the new coordinate. The time required for an oscillator to
travel fromé =0t & is

j£ _] a¢ = - 2 arctan u-tan('ﬁ)
A = I LB v M)

This must equal to the amount of time for the oscillator to travel from n = 0 to n at a constant
speed W. Hence

n VUT- 12

W= -ﬁarctan (T‘—F—Ttan(iﬁ)) .

Also, we require that n = +n when { = +n so that the period agrees in both coordinates. Then
the constant W is determined as

/2 ol _ (] ~ 2
W=_,/Uz_,‘2=_[(l_rlz),“_\/l__./z)z] A - )y

Thus ¥ denctes the converted, uniform speed of the oscillators. The transformation now becomes
V U - .“: 1
n = 2arctan (T‘:rlanlz(o—Ul)] .

Next observe that the phase configuration rotates rigidly in the new coordinates, since all the
oscillators have the same uniform velocity. Therefore, by going into yet another rotating frame,
the oscillators can be made to appear motionless or frozen. This is achieved by introducing a new
coordinate y, where

q:w-—Vt.
Hence the overall transformation is
U+ A4
tan{$(0 - Ut)] = ——=——=tan[§(y - V1)].
[2( )] m [!(W )l
Since
U+ A4 U+ A 1+ 1 47y

V=&~V ~Jieg T

we have recovered the transformation (3.2) for this particular case:

xanli(O—Ut)] = lli'::tan[{(w—m)]. (5.24)
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(A} (B) ()
l' o) i
J\i) ’
0 B-O0) . y-¥(O) X O 2n O
(D) \ (E)
[
1 1
"

Fig. 15. Five initial densities py(8) (solid curves) and their computed preimages o(y) (dashed curves) are shown. The
preimages are incoherent, as required by the constraint (5.12). Note that py and ¢ are shown translated by the amounts
6(0) and ¥(0), respectively. Details of the cases (A)-(E) are given in Table I. (A) I-soliton; (B) 2-soliton, n apart; (C)
2-soliton, n/2 apart; (D) 3-soliton; (E) sinusoidal.

Thus, on this most symmetric subspace of solutions, the distortion parameter y becomes a constant
while the two charactenistic phases ¥ and @ are just linear in f.

As mentioned in Section 3.1, the transformation (3.2) between 6 and w was inspired by these
travelling waves. A slight generalization was required to extend to finite N: the three constants
U.V,y in (5.24) had to be replaced by time-dependent functions evolving according to (3.6). But
the freezing of the oscillators in the y frame carried over perfectly to finite N: as shown earlier, all
solutions of (3.1) can be written in the form (3.2), where {w,} is constant on trajectories.

5.4. Numerical results

We now present numerical experiments to illustrate the motion and interaction of solitons. The
numerical integrations were done using the reduced system (5.9), expressed in Cartesian-type
coordinates as in (3.9)-(3.11), and using (5.11) to convert the initial condition. The validity of
the method was confirmed by comparing the results to those obtained from a conventional spectral
method applied to the original system (5.2) and (5.3).

5.4.1. Converted densities

Fig. 15 shows five initial densities po(8), two of which are to be used in the sir1uliticns discussed
below. For each po(8), we compute its preimage density (), as well as the vuincs <€ (7, ¥,0),
by solving (5.13)-(5.16). Table 1 summarizes the cases.

In case (A), po(8) is the 1-soliton solution (5.23), with parameters y(0) = 7, and 8(0) = 6,.
The peak is at @ = 8, = =. For such a 1-soliton initial condition, it is easy to find the minimum of
U(O,7) in (5.14). One can show that y = y, and @ = 6, satisfies (5.13). Using these values, ¥
from (5.15) and o(y) from (5.16) can be computed. The preimage o(y) is a constant function,
a(w) = 1/2n. This was to be expected, since the 1-soliton solution po(6) lies on the manifold
parametrized by the splay state.

In cases (B) and (C), po(8) is a superposition of two solitons with different amplitudes. (The
density po(0) must be divided by 2 to normalize it after superposition.) The phase difference
between the two pulses is 7 for (B) and n/2 for (C). The amplitude parameters y; and y; for both
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Table |

Five inual densities p; () and the corresponding 1™tial conditions for the reduced vanables. obtained by soiving (5.13)~-
(5.16) The resulting incoherent preimages o (w ) are shown in Fig. 5. In the table. pw 8. 7,.8,) = (1, 2my[(} - -3t 3
(1 + ,cos(8 - A,)1] denotes the traveling wave solution with an amplitude parameter 7, and a translational offset 6,.
Angular vanables are shown within [-n. n}.

Case pot0) 710) ¥(0)n 6(0)/n

(A) PwiB7,.0)) 0.9505910 0 0.2500000
(B) Y2 owi6:iy,.6)) 0.3333333 0 -0.7500000
(o} Y pwi8:7,.6)) 0.7285979 -0.1040134 -0.6048600
(D) §3 . pw(6.7,.6)) 0.4614420 -0.0826765 -0.7316964
(E) s+ $sing) 0.6246950 0 -0.5000000

In this column, the parameter values are:

(A) y, = 0.9505910, 8, = n/4,

(B) 7 = 09874146, 6, = -3n/4, 7; = 0.9505910, 8; = n/4,

(C) 7= 0.9874146, 0, = —3’!/4. = 0.9505910, 92 = -n/4,

(D) 7y = 0.9900428. 8, = 3n/4, y; = 0.9943868, 6, = -3n/4, y; = 0.9964039, 8, = -n/4.

cases are chosen such that the height of the two peaks are 1 and 1/2. In both cases, the computed
preimages o(y) consist of two almost symmetric bumps roughly 7 apart. The calculated o (y)
satisfied the constraints (5.11) and (5.12) within numerical accuracy.

For these cases, the computed values of 7(0) and 6 (0) (Table 1) are not obvious combinations
of the parameters y,> and 6, (although case (B) seems simple). Rather, they are obtained by
minimizing Y. This potential function U itself is superposable as seen from (5.14). That is, if two
densities p,(0) and p,(6) correspond to U, and U,, respectively, then the potential corresponding
10 po(8) = (p1 + p2)/2 is U(O,y) = (U + U,)/2. For the cases (B) and (C), p, and p, are
two 1-soliton solutions. Then, min¥, and minl, are achieved at (8,,7,) and (83, y;), respectively.
Unfortunately, (8, 7) is not a linear combination of these two, but is obtained in a more elaborate
manner through minimization of the superposed potential functions.

The remaining two cases (D) and (E) correspond to 3-soliton or sinusoidal initial densities,
respectively. The preimages are found to have somewhat irregular shapes.

5.4.2. Soliton interactions for an integrable system

For cases (B) and (C) above, we now consider the evolution of p(6, (), assuming that the system
is governed by the completely integrable averaged system (5.2, 5.3, 5.17) with 6 = 0.

Fig. 16 shows the evolution for case (B). In Fig. 16a, we plot y(¢), ¥ (¢), and 6 () of the reduced
equations, over onec period of ¥ (t). (The period T =~ 16.8.) The other phase variable 8(¢) also
seems to advance by 2n during this period. The distortion parameter y(¢) oscillates twice during
one period. The periodicity is made clearer in Fig. 16b, which plots the trajectory using (y, ¥) as
polar coordinates. As expected, the trajectory is a closed loop, corresponding to a contour of the
Hamiltonian H in (5.19). The loop is small, indicating that the initial condition py(8) is fairly
close to an incoherent state. Since y never assumes large values, we expect the image p(8,¢) to be
a slight distortion of the preimage a(y) for all time.

In Fig. 16¢ the evolution of p(6,t) is displayed directly. The spatial coordinate is co-moving
with @ (). Therefore, only variations due to y and ¥ should be visible in the figure, and we
should see periodic motion with period T. Indeed, such recurrence is observed, the first and the
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b

8-ty

2 0

Fig. 16. Evolution of the 2-soliton case (B) for the integrable averaged system. One period of the (7, ¥)-dynamics (T = 16.8)
is plotted here.

(a) Solution of the reduced equations. (b) In the polar diagram of 7 and ¥, the projected trajectory is a small loop. (c)
The density p(6,1), plotied in a frame co-moving with @ (1). Two peaks persist for all time.

last waveforms being identical. Because of the small distortion from the preimage, the two pulses
are distinguishable for all time, although an exchange of their identities can be seen.

Fig. 17 plots the evolution for case (C) in a similar manner. Again, one period in (1) is
computed (T = 19.2), but now € () advances more than 2n, probably because of the asymmetric
shape of po (Fig. 17a). The trajectory in Fig. 17b is still periodic, but the loop is much larger than
in the previous case. Since y becomes close to 1, we see a rather different picture of p(o,t). As
shown in Fig. 17c, one of the two pulses disappears and is completely absorbed by the other, then
emerges from the other side.

In Figs. 16 and 17, one might be misled into thinking that the fundamental period of p(8,1) is
T/2, not T. This is because the preimage g (y) is almost symmetric, and the trajectory in (7, ¥)
polar coordinates is almost an ellipse. The true periodicity is clearer for trajectories starting from
less symmetric initial densities like (D) and (E) (results not shown).

5.4.3. Chaotic waves for a non-averaged system

At the end of Section 3, we pointed out that KAM-like chaos can occur in the resistively loaded
array. We now present numerical results illustrating similar chaos for the continuum limit. The
point is not that the chaos is particularly dramatic (it isn't), but rather that the system provides a
simple, explicit example of an infinite-dimensional system whose dynamical complexity is rigorously
bounded (the system’s reducibility implies that the chaos is at most three-dimensional).

Consider the Josephson junction array equations (3.16) for the case of a pure resistive load. In
the limit N — x, the equations give the velocity field

v(6,0) = l+asin0+efp(¢,1)sin¢d¢. (5.25)

which should be used in the continuity equation (5.2). The system is reducible, since the velocity
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Fig. 17. Evolution of the 2-soliton case (C) for the integrable averaged system, plotied as in Fig. 16. Here T = 19.2.
(a) Solution of the reduced equations. (b) In the polar diagram of y and ¥, the projected trajectory is a large loop. (c)
The density p(8,1). One pulse is absorbed by the other to form a sharp spike, but re-emerges.

takes the form (5.3) with
f=l+efp(¢,l)simpd¢, g=0, h=a. (5.26)

We numerically integrated (5.9), for a = 2 and & = -2. Instead of specifying the initial density
po(8), the preimage density (), and the initial values of (x,y,®) were input directly. Fig. 18
shows a chaotic case corresponding to

o(w) = 2=[1-Jsin(3y)], x(0) =0, y(0)=-009, ®(0)=0.

The chaos is not obvious in Fig. 18a; one would need to integrate much longer to see it, but
then the graph would become cluttered with uninteresting details. It is more revealing to plot a
Poincaré-section. Fig. 18b shows a section taken at @ = @ (0) (mod 2r). The coordinates are x
and y as in Fig. 4. The section consists of 1,000 returns, computed by integration up to ¢ = 6283.
The trajectory seems to be part of a “chaotic sea”; it does not explore the entire region, but appears
10 be confined between invariant tori. Fig. 18c shows p (8, ) over the same short time interval used
in Fig. 18a. For clarity, the density is plotted in a frame moving with € (¢). Small initial fluctuations
grow and form two sharp spikes, then decay. Although this plot suggests that the situation is nearly
recurrent, Fig. 18b strongly suggests that the dynamics is chaotic on a longer time scale.

6. Open questions

We conclude with some suggestions for future research.
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ni€

Fig. 18. Chaotic evolution of a wave in a reducible but non-integrable system (the resistively loaded Josephson array in the
continuum limit). The parameters are @ = 2 and ¢ = —2. (a) Solution of the reduced equations, for 7 < 5.4. (b) Chaos is
visible in the Poincaré-section at @ = @ (0) (mod 2x), obtained by computing up 10 ! = 6283. (c) Evolution of density
p(o,1), fort <54

(1) Our analysis of Josephson arrays is restricted to the limit of overdamped junctions (8 = 0).
But there is numerical evidence 3] that even if B > 0, certain arrays still have enormously
degenerate phase space structure. Does a high-dimensional manifold of incoherent states exist for
these systems as well?

(2) For the overdamped systems studied here, we have shown (Section 3) that the dynamics
can be reduced to a much smaller s=t of differential equations. Specifically, the dynamics of the N-
dimensional system (3.1) is captured completely by the 3-dimensional system (3.6). Unfortunately,
the reduced system appears intractable. Can one make progress on its analysis?

(3) Can one find a connection between the partially integrable systems studied here, and more
familiar integrable many-body systems like the Toda lattice {37)?

(4) In any case, is there a more algebraic interpretation of the constants of motion? Goebel has
recently obtained some clegant results in this direction [38].
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Appendix A. Reduction of continuum limit systems

This appendix provides details of the reduction discussed in Section 5.1. In particular, we derive

the three equations in (5.9). starting from (5.2) and (5.3).
We first express 0 (pr)/06 in (5.2) in terms of the new coordinates. From (5.5) and (5.8),

1 -ycos(y —¥)
. (A1)
Vi-i2

Using (3.4), v in (5.3) can be rewritten as

_ v _
pl(0.1) = a(w)o—e =a(y)

(1=-ycos(y —¥) v = f(1-ycos(y —¥))
+g [—7c056 +cos@cos(y - ¥) -1 -y¥sinO@sin(y - V’)]

+h [—7sin9 +sin@cos(y - ¥) + 1 - y2cos@sin(y —'{’)] .
Thus,
O puy < 0¥ 0
56PY) = 36 aw(pv)
1 - ,cos(y — ¥) 1 8
Vi-72  J1-720y

=1 "°,°i(7"’,' ) (o' ()1 (1 - ycosty - ¥))

+g(-ycos® + cosOcos(y —¥) - V1 -72sin@sin(y - ¥))
+h(-ysin® +sinBcos(y - ¥) + V1 - y2cos@sin(y - ¥))]
+o(w)[yfsin(y - ¥) + g(-cosOsin(y — ¥) - V1 - y2sin@cos(y - ¥))

[a(w)(1 = ycos(y - ¥))v]

+h(-sin@sin(y — ¥) + V1 - y2cosOcos(y - ¥))]}. (A.2)
Next, compute dp/dt by
0 _0p 2v 0 w

ot = o T aroy
where t is the “new” time coordinate and t = ¢. From (A.1), we find

ap _ 9 (1- y(t)cos[y - P(1))
3t —G(W)at( VI-7(0)? )

__o - — ) [=jcos(y - ¥) - y¥sin(y - ¥)] + yp(1 - ycos(y - ¥) 1}

(1-yH)¥
= T 5 - costy = 1) = (1 = Psinty - #)] (A4)
and
ap _ 0 1-y(r)cos(y —¥(1))
oy ~ oy (UW) VI-7(@)]? )
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y) rsin(y - ). (A.5)

i
oV ,H—;-cos(w—‘i’))+

Lo (I
From this point on, only algebraic manipulations follow. For brevity, let ¢ = cos(y - ¥) and
s = sin(y - ¥). Substituting (5.7), (A.4), and (A.5) into (A.3), we obtain

(1- ;':)"2(:)—’: = ol -c) =¥ =)
+[E(1 =) - 95 -6VT =72 (1 =70 ][a" (1 = y¢) + ays]

=a[yy-c-yst) —rsV/1=741 -7¢)0)
+o' (1 =y0) [P = 72) =95 =61 =3 (1 = y0)].

Since
y—c-yst=y-c-y( - = —-c(l =yc),
the final expression becomes
_,2y32 . , . .
U= 0p _ o se_ysyT-728] + ' [¥(1 =71 = is -0V -y (1 -y0)].

l-yc Ot
We can now express the continuity equation (5.2) in the new coordinate system. Rewrite (A.2)

(A.6)

as
_ 4232
a-v7) mpv)=a’\/l—?z[f(l—yc)+g(-—ycosO+ccosO—s\/l—-,'lsina)

1 -yc a6
+h(-ysin® +csin® + sy/1 - y2cosO)]

+0/1-72[yfs + g(~scos @ —cy/1-7%sin80)
+h(-ssin@ + cy/1 —y2cos@)].
Substitution of (A.6) and (A.7) into (5.2) yields

-y rap 98
0= T—7c (-5'-+5§(pv))

= a{c[-7-g(1 - y})sin@ + h(l -7%)cos O]
+5V1 - 72(-y0 + 7f - gcos® — hsin6)}
+0'(VT= 72 (¥ 1 -72-6 + [ —ygcosO - 7hsin6)

+c/1=y2(y8 —yf + gcosO + hsin6)
+s[-7-g(1 = y?)sin®@ + h(1 - y*)cosO]}.

This equation is satisfied for all ¢ regardless of a(w), c =cos(y - ¥), and s = sin(y — P if
-y -g(1=72)sin® + h(1 = y*)cosO® =0,
—y8 + yf - gcos® — hsin® =0,
¢/T-72-6 + f -ygcos® - yfsin6 =0.

These are equivalent to the three equations in (5.9).

(A7)
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Appendix B. Symmetric constants of motion
B.1. [Introduction

This appendix is concerned exclusively with the finite-V averaged system (4.1), or equivalently
(4.2), with sind = 0. We prove that this system is completely integrable. using a more algebraic
approach than in Section 4.

Recall that in the first proof, the integrability followed from the existence of .V - 2 independent
constants of motion, namely {y,} (only (N - 3) of which are independent) and H. The system
was thus found to be reducible to a one-degree-of-freedom Hamiltonian system. This approach is
similar in spirit to the inverse scattering technique [27,37] for integrable Hamiltonian systems.
Our preimage {y,} is reminiscent of the time-independent eigenvalues in Lax’s formalism, and the
functions (7, ¥,8) are analogous to the time-dependent part of the scattering data. (We stress,
however, that this analogy is very loose. In particular, (4.1) does not arise from the conservative
limit of the Josephson junction equations, but rather the extremely overdamped limit. Moreover,
our governing equations are not formulated explicitly in terms of a Hamiltonian.)

For the case of the Toda lattice [37], Flaschka found constants of motion of this scattering type
(39]. A different set of constants, however, was found independently by Hénon [40} by direct
algebraic methods. These constants have the virtue of being symmetric in their indices, but they are
harder to obtain systematically. The two sets of constants of motion are equivalent to each other
{37,39].

We show below that N — 2 constants of motion of the Hénon type, i.e. symmetric ones, can be
found for (4.2), and we discuss their relation to the Flaschka type constants of motion, {y,} and
. In Section B.2, one of the constants is written down and its invaraiance is checked explicitly.
Then in Section B.3 we use the permutation symmetry of the system to generate many additional
constants, N — 2 of which are proven to be functionally independent. Sections B.4 and B.5 contain
several notes on the constants of motion, including their relationship to the constants from Section
4,

We would like to acknowledge the contributions of two other workers, and to thank them for
generously sharing their unpublished results. Jim Swift [41] discovered the symmetric constants for
the averaged system for N = 3 and 4, and conjectured their form for arbitrary N. Charles Goebel
(38)] found a way to simplify the calculations in this appendix, using Mdbius transformations. He
also independently realized that systems of the form (3.1) have N — 3 constants of motion.

B.2. Invariance

For convenience, we define the following shorthand notations:

C, =cos[4(8,-8,)], S, =sin({(6,-6)], c, = cot[§(6,-6)],
Cupk = cosl8, - (8, + 6], Suyi = sin(8, - §(6, + 6,)],

C, =cos(8,-6,), S, =sin(d, -6,),

(1. P2 Py PN=1,PN) = SpipySpaps -~ Son-ionSewpr -

We will often use trigonometric conversion formulas between sums and products, ¢.g.,
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Cy - Cyy = costHy - ) -costtly —Hy)

2an{id, - A ]sin(fy - 18 + 0] = 25250, (B.1)

For the system (4.2) Swift has shown [41] several constants of motion when N = 3 or 4:

-~ for N = 3.1 = §,:52,38;, 15 conserved. and
~for N =4 Ji = Si3Sy . S = Si3Sa . Jy = S48y are all conserved, hence [ = -J,J;3 =
51151353455, is also conserved.

Motivated by these results, one expects that
I =(1,23, - . N-LN)=81853 SvovSwi (B.2)

is a constant of motion of the system (4.2). Such a conjecture can be proved as follows. Since any
8, is involved in exactly two of the sine terms in (B.2),

xa - ésl’s’]"'Sl-—l.t—lst—lJCu+|Sl§l.l+2"'SN-I,NSNl
- 1SIZSIJ o 'St—Z.I-ICJ-I.JSI,:-rISl«Q-I.M-Z : "SN—I..\'S.’VI ’

where the indices are reduced modulo N. A simpler expression is obtained when this is divided by
I

ol

2
75—‘ =C 41— Ctl-l.l . (83)
Thus the change of / along a trajectory of (4.2) is
2, 201, Y o
7’ 160 Z(Cl,,.,.l ct,_ [,)0, ZCI,_,*|(8,—0,+|). (B.4)
1=1 =l

From (4.2),
N -6)=(Ci+Cy+Cy+ - +Cm)-(Cp+Cn+Cyn+ - +Cn2).
C,, and C1, Cy and C,; cancel. Then from (B.1) and analogous identities, we obtain
N -86:1) = (Cy -Cy) + (Coy =Ca2) + - + (Cni - Cx2)

= 285128312 + 251282 + - + 2S2SwM2
= 2812 [Ss3p2 + Saspiz + - + Swp2] -

Hence, using a formula similar to (B.1),

Ncy, (91 - éz) 2C12 [Sanz2 + Ssp2 + - + Svavn)

(S31 +83) + (Sa +S8a2) + -+ (Svi +S32).

Each product of a cosine and a sine term was converted back to sums of sine terms.
Similar expressions are obtained for the other indices cyclically. Substitute these expressions into
(B.4):
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N
——I—[ = (83 + 83 + (S +S2)+ - + (Sv_y, + Syv_i2) + 18y + Sh)

$(Sn +8S0) + (S +Ss3) + -+ (Sv2 + S+ (S + 83

+(Ss3 + Sss) + (Se3 + Ses) + -+ + (Si3 + Sis) + (53 + 854)

.

+(Say +S0) + (Syy + Sy + -+ (Syoay + Svon) + (Svoiv +Sv-11).

Disregarding the parentheses, we see that the first term of each row cancels with the last term of
the next row. The second term of each row cancels with the second to the last term of two rows
below. Similarly, all the terms cancel in pairs and disappear. As a result,

i=0. (B.5)

Therefore. I is a constant of motion of (4.2).

To get some intuition about what / measures, observe that / vanishes when 8, = 6,., for any J
from | 1o V. Geometrically,this condition defines the boundary of the canonical invanant region
(Section 4.4). On the other hand, / is maximized at the center of this region, corresponding to the
splay state. Therefore, / is essentially a measure of the distance from the boundary of the canonical
invariant region.

B.3. Independence

Since the system (4.2) is invariant with respect to exchange of two indices, 8, — 8,, it follows
that any quantity of the form

I = (p1,P2.....PN-1,PN) = Smmspzm"'spn-muspm (B.6)

is a constant of motion as long as (py,---,pn) is a permutation of (1,---, N). By taking all possible
permutations, we can generate many constants of motion. Of course, some of the constants of
motion are identical (apart from sign) because of the symmetries:

(Pl-l’:---pr—l»PN) = (Pz:Plo----PNaPl) (l'Ola‘ion).
= (PN, PN-1,-.- PP} (inversion).

However, there still remain (N — 1)!/2 constants of motion after these symmetries are considered.
We show below that a sufficient number of constants of motion for integrability are included in
this set.

How many independent constants of motion are required for integrability? Since (4.2) is posed
in non-Hamiltonian form, (N — 1) constants of motion are necessary, in principle. Actually, we
only need N -2 constants, because of the rotation invariance of the averaged system; the right hand
side of (4.2) depends only on phase differences of oscillators. After a linear change of variables
into the mean phase and (N — 1) phase differences, we see that the mean phase is decoupied,
and is just driven passively by the dynamics of the phase differences. Notice that the constant of
motion in (B.6) is also expressed solely in terms of phase differences. In the phase space the surface
I = const. is a cylinder extending in the mean phase direction.
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For v = 3. we have (3 - 1)!/2 = 1 constanls of motion, 1.e.
[ =123 = AYSR RS ST

This particular case, therefore, is already completely integrahle.

For N > 4, we have more constants of motion than required. Obviously, there are relationships
among them. We now provide a proof that there are .V -2 independent constants of motion out of
the set. (Functional relationships among the dependent constants of motion for N = 4 and 5 can
be found explicitly, as shown in Section B.4.)

Theorem. Consider the following set of (N —1) constants of motion, obtained by cyclically permuting
the indices 2 to NV:

ll =<l,2.3,4,....N—2vN—li‘v)‘
l: =(l,3,4,5,....N"l'Ny2>|
Iy =(1,45.6,....N,2,3),

Iy, =(LN.2.3,..,N=-3,N-2,N-1). (B.7)

Then any N — 2 of these constants are independent.

Proof. We construct the Jacobian matrix and then compute its rank by applying row and column
operations. Our goal is to show that the matrix has an (N -2) x (N -2) minor with non-zero
determinant.

Consider the (N —1) x (N —1) matrix whose (i, j) element is given by 81,/00,,1 <i<N-1,2<
j < N, chosen to preserve the rotational symmetry of the indices. The elements are simplified by
multiplying the ith row by a factor 2/ 1, 10 produce similar expressions 10 (B.3). As a result of this
operation, we obtain the matrix

Clyy + Cly; Clyq + Clyg Clas + Claz -~ Cv— N + ClV-1N-2 cty) + Ctyn-i
Cly + Claw Clag + Clyy Clas + Claz -+ Cly— v + CIN-1N-2 Clyz + CtyN-|
Clys + Clay Cly + Cl3z Clas + Clay -+~ CIV-IN + Cty_1.N-2 Ctyz + Cly N1

Clay + Clay Clys + Clyg Cles + Clug -+ Clv— i N + CIv-1 Cly2 + ClyN-1
Cly3 + Clay Clyg + Clyz Clys + Clay -+ Cty—11 + CIN-IN-2 Ctyz + Ctyy

The first column, for example, only involves cty, Cl23 and ct,n since the index 2 in (B.7) is always
next to one of the indices 1, 3, or N. Only two entries in this first column involve cty;. All the
other entries in this column equal cty3 + Ctay. For the other columns, a similar pattern is observed.
Thus, the matrix can be reduced subtracting consecutive rows. For the rows (N—=1),...,2, subtract
each row from the one above. The first row is left unchanged. Then, the matrix becomes
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Clyy + Clay Clyg + Clya Clys + Clyy -~ Cly v -+ Cly oy vo2 Clyy + Cly vy

Clay = Clyy Cly —Cly 0 0 Clyy = Clyy
Clry — Clay Clya — Clyg Cly —Clgy - 0 0
0 Clyg — Cly Clgy — Clgg - 0 0
0 0 Clys — Clyy - - 0 0
0 0 0 oo Clyoggp —Cly—pv-2 0
\ 0 0 0 s Cly— g N-2—Cly_ v Clyy —Clywv-y )

This matrix can be transformed into upper triangular form {42]. The result is that the diagonal
elements of the ma‘rix may be obtained recursively as:

D, = SvaSan.

D, = Sv353Sye + SaDy,

Dy = Sn4S53S541Saays3 + SsaDa,
Dy = SvsS43532551Sss164 + SesDs,

Dy_s=Svyn-3Sn-an-s - SnSN-31SN-3N-3N-2N-4 + Sn-2n-3Dxn_s,

Dy_3 = Svn-2Sn-3n-4 - SnSN-2.SN-2N-2N-1N-3 + SN n-2Dv-s,

Dy_3 = Syn-1Sn-2n-3" S2SN-1aSN-1N-1NN-2 + Snv-1 DNy,

Dy_, =0. (B.8)

The rank of the Jacobian matrix is given by the number of non-zero diagonal elements. If there
were fewer than N - 2 independent constants of motion in (B.7), then some of Dy,...,Dy_;
would have to vanish identically in some open set in the N-dimensional phase space. We show
below that this cannot happen. Note that none of S, terms vanish because of the assumption that
6, # 6,(i # j, mod 2n).

First, D, vanishes only on 8, — (83 + 6,)/2 = mn , which are (N - 1)-dimensional planes. Thus,
D, cannot be identically zero in any open ball in the phase space.

Next, consider D, as a function of 8, by fixing the phases of the other oscillators. Then, from
(B.8), D, becomes a linear combination of harmonics: sin[}84 — (85 — }8,)] and sin( 16, - $65).
Since 8, # 93 + 2mn, it follows that 6; — 40, # 463 + mn. Hence, the two harmonics are out of
phase, and their superposition vanishes only at isolated values of 8,. Therefore D, cannot vanish
identically in any open ball, either.

Considering D; as a function of 65, a similar argument applies. We can continue this approach
up to Dy_3.

Finally, Dy_; can be divided by a common factor Sy ~_,. Then, consider the result as a function
of @,_,. Dy_1/Snn-1 becomes a superposition of sin(§0~_. - io.)sin[BN_. - §(0~ +6n_2)],
sin[$0v_) — (-2 — §0N-3)), and sin(48y_, — $6x_2). The first one produces a higher harmonic
term cos[ie,v_. - §(8, + On + O5_)], which cannot be eliminated by the other terms. Thus, the
resultant function may vanish only at isolated 6y_,, which implies Dy_; can vanish only on some
surface in the phase space.
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This concludes the proof that there are N - 2 independent constants of motion out of (B.7). Z
B.4. Dependent consianis

This section points out some explicit relationships among dependent constants of motion. As
shown above. one of the diagonal elements Dy _, always vanishes. Accordingly, there must be one

dependence relation among /i...., Iv_y.

When .V = 4. there are {4 — 1)!/2 = 3 constants of motion. i.e. L =71.2.3.4) . =13432
and [; = /1.4.2,3). As Swift found, there is a simpler set of constants of motion, J; = 5153
. J» = 81354 and J3 = S4523. These sets are related to each other via J\*> = —I[y/13 | 5 o=
-5L1/1, and J32 = =I1,/1,. Such a reduction of constants of motion is possible for even N.
Jieen Jy are found to satisfy J; + Jy = Js. By eliminating Jy, ..., /3, and factoring, we obtain the
relation in terms of [y, ..., I; as well:

L+ I + l3l| =0.

For N > 4, permutation of indices produces more constanis of motion than the ones shown
in (B.7). When N = 5. for instance, there are (5 — 1)!/2 = 12 constants of motion of the
form (B.6), i.e. Iy = {1,2,3,4,5) , I, = (1,3,4,5,2) . I = (1,4,5,2,3) , Iy = (1,5.2,3,9),
Is = (1,2,4.5.3) . Ig = (1,4,5.3.,2) , I = (1,5,3.2,4) , Iy = {1,3,2,4,5) , Iy = (1,2,5,3,4) ,
Lo = (1,5,3.4.2) . I, = (1,3,4,2,5) and I3 = (1,4.2,5,3). Three constants of motion out of
I,,....1, are independent as proved. The “trivial” relations among I,.... 1, are:

Ll = -hLl; = =i = Lls = =lsh = Isly,
Lls = -Llgly and I, -1 = -Ly+ls=05L-13.

These determine Is,...,[,2 once [y,..., I4 are given. The last remaining relation is analogous to the
one for N = 4, namely

Ll + 12]314 + I]I‘I| + LWL = 0.
B.5. Relating the two sets of constants

Now we relate the constants {,} and X found in Section 4, to the /'s shown in (B.7). Consider

I, of (B.7):

I, =(1,234,.. . N-2N-LN)

= sin[}(8, - 62)]sin[}(82 - 63)] ..sin[$(By-0))].

The first term of the product is

sin[§(8, - 6;)] = sin[§(6, - 6) - }(6,-86)]

=sin(§(8, - )] cos[{(6, - 6)] - cos(4(8, - 8)]sin[§(8, - 6)].

The half-angle formula corresponding to (3.3) 1s

. 1 +; .
sin(3(0,-6)] = ‘/:—:/Esi"w—/l_—ﬁsmli(w, -¥)],
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/ 1 -y
VI—;'cosw, -¥)

cos[3(0, - 8)] =

cos[3(y, - ¥)].

Thus,
sin[$(6, - 6,)]

_ VI=7sin[§(y - ¥) ] cos[§(y - ¥)] - cos[§(y, - ¥)]sin[§(y: - ¥)]}
= {[1-7cos(y; ~#)][l = ycos(yr - ¥)]}\2

= {(T=7cos(y, —P)][1 - ycos(ys -

YN sin{§ (y1 - w2)].

Expressing the other terms similarly, we obtain

ll:knnl-y

cos(y, — ¥)

sin[§ (e — Wie) ],

where indices are reduced mod V. Hence,

! - _ a1 ycostu - ¥)

Nloslu-NkZ.:llog(sm[z(wk Wie1)]) Nkz.:llos( N )
From (4.5),

| I o .

wlosl = 5 3 log(sin(§(wk - wiri)]) - H.

k=1

This connects /), with {y;} and M. For the other Is, it is clear from this derivation that only
the order of summation in the first term of the right hand side is modified. In particular, if the
permutation (py,p;,---.pn) gives a constant /, then the relation reads:

| 1 & .
ylos/ = ﬁlglog(sm[i(w,, - Wp, ) - M.
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Abstract

A long standing mystery surrounds the stability properties of the splay-
phase periodic solutions to a series array of N Josephson junction oscilla-
tors. Contrary to what one would expect from dynamical systems theory,
the splay state appears to be neutrally stable for a wide range of system
parameters. It has recently been explained why the splay state is neutrally
stable when the Stewart-McCumber parameter 3 (a measure of the junction
internal capacitance) is zero. In this paper we complete the explanation of
the mystery. We show that the splay state is indeed hyperbolic — either
asymptotically stable or unstable — provided 3 > 0. We conclude that
there is only a single unit Floquet multiplier, based on accurate and sys-
tematic computations of the Floquet multipliers for 3 ranging from 0 to
10. The apparent neutral stability of the splay state is a result of N — 2
Floquet multipliers being extremely close to 1 for 3 larger than about 1. In
addition, two more Floquet multipliers approach 1 as 3 gets large. We then
do asymptotic analysis in the large 8 limit to clarify the situation. In the
asymptotic approximation, N — 2 multiplers are identically equal to 1, and
two of the multipliers approach 1 in excellent agreement with the numerical
results.

Abbreviated Title: Stability of periodic solutions in Josephson arrays.
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1 Introduction

Arrays of Josephson junctions have been studied intensely by mathematicians
because of their interesting properties as dynamical systems. A single Joseph-
son junction oscillator is analogous to the familiar physical pendulum, and the
coupling of an arbitrary number of oscillators allows us to study the connec-
tion between ordinary differential equations and partial differential equations
[Pey&Kru84, Tsa&al9l]. On the other hand, practical interest in Josephson junc-
tions stems from their extremely high frequencies, but their amplitude is so small
that many junctions must be coupled together in order to get a macroscopic volt-
age oscillation [Jai&al84, Had&al88, Ben&Bur9l].

One-dimensional arrays of Josephson junctions may be classified as either series
or parallel. Parallel arrays are well approximated by a nearest-neighbor diffusive
coupling [Wat&:al95]. This leads to discrete sine-Gordon models, which support
“solitons” propagating across the junctions. In series arrays, the junctions are
coupled in an all-to-all fashion. For this “global” coupling, the spatial coordinate
is irrelevant, unlike in parallel arrays, and particularly good analytical progress
has been made.

In this paper. we consider series arrays of N identical Josephson junctions
shunted by a seiies LRC load (Fig. 1). After standard non-dimensionalization,

the governing equations reduce to [Had&al88|:

Béi+ i +sing, +Q=1, j=1,...,N,
5., Q@ _Len (1)
L I = = — .
Q+12+ =N Lz=:l Pk
Here, ¢; is the phase difference across the j-th junction, /; is the DC bias cur-
rent, and NL, NR, C/N are the load inductance, resistance, and capacitance,
respectively. (Thus L is the inductance per junction, etc. This scaling, intro-
duced in [Had&al88], is convenient for comparing different numbers of junctions.)
As mentioned in the previous paragraph, the junctions are globally coupled even
though they are arranged in series. Mathematically, the equations have permuta-

tion symmetry with rcspect to the indices . The only nonlinearity is the sin ¢,
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Figure 1: Circuit diagram for a series array of N identical Josephson junctions
subject to a constant bias current [;, and shunted by a series LRC load.

term. In particular, the second equation is linear. We emphasize that the bias
current [, is constant in time. The equations become much more difficult to
analyse with an AC bias current. (The US voltage standard uses a series array
of Josephson juctions with an AC bias current: The average voltage across the
juctions is proportional to the frequency of the bias current due to the Josephson
relation [Kau&al87).)

The dimensionless Stewart-McCumber parameter 3 is a measure of the junc-
tion internal capacitance. Junctions can be made with 3 ranging from 107°
to 107 [McC88, vdZ&al94]. Much progress has been made in analysing sys-
tem (1) in the limit 3 = 0, where the phase space of each oscillator is a circle
[Jai&al84, Tsadal9l, Swikal92, TsadSch92, Str&Mir93, Wat&Str94]. In this pa-
per we study the more difficult case when 3 > 0, where the shape of the oscillation
in the (¢;, ¢,) plane is affected by the coupling.

A mechanical analog of a single Josephson junction (Eq.(1) without Q) is a
damped pendulum of mass 3, with applied torque I,. The coupling in Eq.(1) arises
in the mechanical analog if the pendula slide with friction around a common axle,
and the axle is itself a torsional harmonic oscillator (Q is the angle of the axle, L
is proportional to the moment of inertia, etc.).

The most important periodic solutions of system (1) are the in-phase and the
splay-phase states. In this paper, “periodic” means that ¢;(t + T') = ¢,(¢) + 27

for all t and all j where T > 0 is the period. The junctions oscillate coherently in
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the in-phase state: ¢,(t) = ¢,(t) for all j. The splay state is also periodic, but the
individual waveforms are staggered equally in time: ¢,(t) = ¢, (t + (j — 1)T/N)
for all j. (This is one splay state: the indices j can be exchanged arbitrarily
due to the permutation symmetry of Eq.(1).) Technological applications of both
states — the in-phase state as a high-frequency oscillator [Lik86, Had&al88] and
the splay state as a voltage amplifier [Ter&Bea94] — are being sought. Since the
existence of a single splay state automatically implies the existence of (N — 1)!
splay states by the permutation symmetry, the possibility of using these states as
multiple-memory device is also being studied [Ots91, Sch& Tsa94].

The linear stability of periodic solutions is quantified in terms of Floquet multi-
pliers. A periodic solution of an ordinary differential equation (ODE) in n dimen-
sions has n Floquet multipliers. One of these multipliers is always 1, corresponding
to perturbations along the solution, and the other n — 1 multipliers can be thought
of as the eigenvalues of the fixed point of the Poincaré map. (The periodic solution
of the ODE is a fixed point of the Poincaré map.) A Floquet multiplier inside the
unit circle in the complex plane indicates a decaying perturbation, while those
outside the unit circle are “unstable.”

Previous numerical studies [Had&Bea87, Had&al88, Tsa&Sch92, Nic&Wie92]
have computed Floquet multipliers for various combinations of the loads, the bias
current [, and 3. The stability properties of the two solutions appear roughly
complementary (although bistable situations or chaotic attractors may arise). For
example, when the in-phase state is stable, the splay state is usually unstable.

However, many numerical studies made a puzzling observation: often, the splay
state is not asymptotically stable when the in-phase state is unstable; rather, it
is only neutrally stable (i.e. Liapunov stable but not asymptotically stable). For
an R-load with § = 0, Tsang et al. [Tsa&al91] found evidence that there are N
Floquet multiplers on the unit circle (one complex conjugate pair and N — 2 unit
multipliers). Tsang and Schwartz found that there are N — 2 unit multipliers
for the 3 = 0 junctions coupled with an LC-load [Tsa&Sch92]. Nichols and
Wiesenfeld [Nic&Wie92] did an excellent study of five different cases: two with
B = 0 and three with > 0. They always found, to within their numerical
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accuracy, N — 2 unit multipliers when 3 = 0. For 3 > 0, they found that the
splay state seems to be neutrally stable in .V — 2 directions for an LC or an
LRC-load, but asymptotically stable for a (-load. This difference is surprising
because the C-load is a limiting case of the L(-load. Nichols and Wiesenfeld
were very careful when stating their conclusions. They warned that numerical
evidence cannot prove neutral stability because one cannot distinguish between a
unit multiplier and one that is extremely close to 1.

All previous analytical studies of this peculiar phenomenon have assumed 3 =
0 for simplicity. The neutral stability when 3 = 0 can be understood in the weak
coupling limit [Swi&al92, Wie&Swi95] or in the limit N — oo [Str&Mir93]. A
rigorous explanation was obtained in [Wat&Str94}, where it is shown that the
phase space of the system (1) has a simple foliated structure when 3 = 0. This
phase space structure gives rise to N — 3 independent constants of motion, and
hence causes the splay solution to have N — 2 unit multipliers.

The present paper deals with what happens when 3 is positive. Since Nichols
and Wiesenfeld found apparent neutral stability in two of the three cases when
3 > 0, an early conjecture was that the phase-space structure of the 4 = 0
equations might persist for 8 > 0, and one might hope to prove that the splay
state is neutrally stable. But as we show numerically in Section 2, the splay
solution is not neutrally stable when 3 > 0 with an LC-load. Unlike Nichols and
Wiesenfeld [Nic&Wie92], we choose L = 1 and C = 1/4 since this is “close” to
a C-load (1/C is large compared to L). We find that either the in-phase or the
splay-phase solution can be asymptotically stable, depending on 3. This leads
us to suspect that the neutral stability observed when 3 > 0 in other regions of
the L — C parameter space is also only approximate. Furthermore, an LRC-load
is qualitatively similar to an LC-load because the resistance in the shunted load
only adds to the internal resistance of the junctions.

We choose N = 4 for all our numerical studies, since this is the smallest NV that
shows the degenerate structure of the § = 0 equations. Generically there should
be a single unit Floquet multiplier, but there are two unit multipliers when g =0

and N = 4. (In contrast, our analysis in Section 4 will be for an arbitrary N > 3.)
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In section 3 we present systematic computations of the Floquet multipliers as
a function of 3, which demonstrate that there is only a single unit multipler when
3 > 0. Starting with the parameters used by Nichols and Wiesenfeld [Nic& Wie92]
for both the LC and ('-load, we continue the branch of splay solutions between
3 =0and .3 = 10 using AUTO86 [Doe& Ker86]. This allows us to track the single
critical real multiplier (since N = 1) into the regime where the splay solution
is unstable. We find that this multiplier approaches 1 as 3 — 0, as expected.
However this multipler is also asymptotic to 1 as 3 — oc. In fact, the multiplier
approaches 1 so quickly that Nichols and Wiesenfeld could not distinguish it from
1 when 3 = 1.1 in the L(-load case. (Our calculations are consistent with theirs.)
At smaller 3, where the critical multiplier is significantly smaller than 1, the splay
state is unstable in a different direction and thus Nichols and Wiesenfeld did not
find the state with their forward integration. On the other hand, in the ('-load
case it turns out that the splay state is stable for 3 small, and they observed an
asymptotically stable splay state at 4 = 0.1. For both loads, we also find that .V
Floquet multipliers approach 1 as 3 — oo, indicating that the junctions become
uncoupled in this limit.

In section 4 we carry out a perturbation analysis that takes advantage of
the decoupling of the oscillators as 3 — oc. Assuming ¢ = 1/([,\/3) < 1, we
derive the averaged equation for the phase drift of the osciliators. The averaged
equation turns out to have the same form as the averaged equation when ;3 = (:
it predicts that the splay solution has N — 2 unit multipliers. While for ;3 = 0
this approximate result can be made rigorous [Wat&Str94], we view this as an
“explanation” of why NV —2 of the multipliers are so close to unity for intermediate
and large 8. The averaged equations show no bistability between the splay and
in-phase solution; which is stable depends on a single complex conjugate pair of
multipliers. We estimate this multiplier pair from the averaged equation and find
excellent agreement with our numerical results.

For any L RC-load, the averaging predicts that the in-phase state is stable for
large enough Iy\/B, while the splay-phase solution is neutrally stable for a (' load

in this same limit (¢ < 1). These conclusions are opposite of the common knowl-
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edge [Jai&al84, Had&Beas7, Wie&Swi95] which assumes 3 = 0. This paradox is
discussed and resolved in Section 5. When I, is large, the ;3 = 0 limit becomes

singular, and we have two competing results near 3 = 0.

2 Numerical integration of the equations

In this section we numerically integrate the equations (1) using a standard ODE. in-
tegrator. This has the disadvantage that we cannot find unstable states. Nonethe-
less we will convince the reader that the degeneracy observed when 3 = 0 does
not persist when 3 > 0, although the degeneracy re-appears approzimately when
3 is large.

Since Nichols and Wiesenfeld observed an asymptotically stable splay state in
the C-load case, we are interested primarily in the LC and LRC loads. These
are not qualitatively different in the Josephson junction system because of the
internal resistance of the junctions. Thus, we only consider the LC load.

We shall find that in some parameter regions of the LC-load system, there
are asymptotically stable splay solutions, which persist when a small nonzero
resistance is added to the load. We will also show other types of periodic solutions

that can be attracting.

2.1 Time-delayed coordinates

Both the in-phase and the splay states are phase-locked states, and the phase
relations among junctions are defined in terms of time lags rather than mere dif-
ferences in angles ¢; at each instant ¢ since the waveform 4,(t) is nonuniform. A
process to convert a solution ¢;(t) into the phase information is ther:fore neces-
sary.

One useful algorithm [Ash&Swi93] is based on time delays between the “fir-
ings” of oscillators. We define each junction to “fire” when ¢, = ¢ (mod 27) for
some fixed ¢*. (We choose ¢* = 0.) Let t;(p) be the time of the p-th firing of the
j-th junction. We monitor firings of all the junctions, and calculate the phases

every time junction N fires. Assume that p and q satisfy t;(q) < tn(p) < t;(q+1).
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Then we define the phase (normalized time lag) of the j-th junction to be:

tn(p) — 11(‘1)) (
T,

[
~

0,(p) = 2r (

where T, is an approximate period of the junction. The phase 8,(p) is approxi-
mately the angle that oscillator j covers between its most recent firing and the pth
firing of oscillator N. Among the candidates for T,, we choose 1, = t,(g+1)—1,(q)
in the following. This has an advantage that 6, always falls in the interval
0 < 6, < 2r. The “time-delayed coordinate” 6; is an angle coordinate and we

identify 6; = 0 with 8, = 2x.

2.2 Periodic attractors

We integrate the system (1) with N = 4 by an adaptive time-step Runge-Kutta
integrator, and compute the time-delayed coordinates. We have tested both LC
and C loads, but will focus on one representative case when L =1, R =0, C =
1/4. An array with this load exhibits a variety of periodic solutions depending on
the parameters (I, 3). The initial conditions are chosen to illustrate the transient
dynamics.

Four cases are shown in Fig. 2. For each case, two graphs are shown; an upper
graph shows the time-delayed coordinates ;. Since 8y = 0 by definition, only
three curves can be seen. Each lower graph shows the amplitude of the first and

the second ‘complex) moments of 8;’s. They are R, and R, defined by

N
Rn(t)e®n® = 3" emi0 | R >0 (3)

k=1
(For general N, m ranges from 1 to floor[N/2].) The amplitude of the first moment
R, was originaily introduced by Kuramoto as an “order parameter” to measure
the phase coherence of a population of phase oscillators [Kur84]. Indeed, R, = 1 if
and only if the oscillators are in-phase. When R, = 0, we say that the oscillators
are “incoherent” (this is our definition of an incoherent state). The splay state is
characterized by R; = 0 for all j. The horizontal t-axis for the figures denotes the

(discrete) firing time tn(p). The first several firings are ignored since the junctions
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Figure 2: Time-delayed coordinates 6; (upper graphs) and the amplitude of the
first and the second Fourier coefficients R, and R, (lower graphs) as functions of
t. Cases (a-c) uses L =1, R=0, C = 1/4, and [, = 1.5. Only the McCumber
parameter 3 is changed: (a) 0.7, (b) 0.15, (c) 0.3. Case (d) uses the same load but
with [y = 2.5 and B = 1. A trajectory converges to (a) the in-phase state, (b) the
splay state, (c) the 2+2 incoherent state, and to (d) a (generic) incoherent state.
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rapidly change their phases. During this transicnt, the time-delayed coordinates
are not meaningful.

For Figs. 2(a) to (c), the bias current is fixed at [, = 1.5, and only the McCum-
ber parameter 3 is changed. Fig. 2(a), which shows a stable in-phase attractor,
uses 3 = 0.7. Since §, = 0 is identified with §; = 27, we see that four junctions
have become synchronized after ¢ =~ 100. This is also clear from the moments:
both R, and R; converge to 1.

In Fig. 2(b), 3 = 0.15 is used. The phase differences converge to 27 /N, thus
the attractor is the splay state. The way the trajectory approaches the attractor
is somewhat interesting. Note that R, vanishes at ¢ ~ 200, after which the state
is incoherent, i.e. Y0, exp [¢8;] = 0. If the angles 0, are plotted on the unit circle,
they are scattered so that their center of mass lies at the origin. For N = 4, this
is possible only when the 8,’s form two “antiphase” pairs; for example 6, = 63+«
and 6, = 04 + w. After R, vanishes, only the angle a = 6, — 0; = ; — 6, between
the two pairs changes. This slow drift can be seen from R;(t) which also vanishes
at t =~ 1000. The angle is then a = 7 /2, indicating the splay-phase solution.

Fig. 2(c) uses an intermediate value 3 = 0.3. At t ~ 200, R, vanishes and the
phases are again incoherent. Drift as in (b) occurs, but in the opposite direction.
At t =~ 300, R, converges to unity, while @ — 0 or =, depending on how one
numbers the oscillators. The final state is two pairs located 180 degrees apart.
We call this state the “2+2 incoherent” periodic solution.

With I, = 1.5 as in Figs. 2(a-c), we did a parameter sweep of Aj = 0.01, and
found that the splay state is stable for § < 0.21 and the 242 incoherent state is
stable for 8 > 0.19. This bistability suggests that there exists an unstable generic
incoherent state when 0.19 < § < 0.21. By “generic,” we mean that 0 < a < 7/2.

Fig. 2(d) uses the same load, but both I, = 2.5 and 5 =1 are larger than the
previous values. We see that R, vanishes at t =~ 300 again while R, stays constant
for t > 250. The constant value is neither 0 nor 1 so that the final state appears
to be a generic incoherent state with 0 < a < 7/2. Different initial conditions
converge to incoherent states with different R, (and thus different a.) It appears

that there is an incoherent periodic state for each value or R; (or a), just as
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there is in the equations with J = 0. However, we believe that the states are not
exactly periodic but are drifting very slowly towards either the splay or the “2+2
incoherent” state. In the next section we will give indirect evidence for this slow
drift.

When [, and J3 are larger, for example I; = 4 and § = 5, there appears to be a
periodic state with any values of the angles 6;. During the transient dynamics the
delay coordinates are not meaningful, but after this, the angles 6; stay constant at
whatever values they happened to “fall into.” In other words, the oscillators are
effectively decoupled, and they maintain any phase relationship. Mathematically
speaking, there appears to be an attracting 4-torus with a linear flow. As with the
case described in figure 2(d), however, we expect that the dynamics are actually

“generic”, and drift occurs on a timescale too long to observe.

2.3 Three-dimensional projection

The dynamics become more apparent by using a linear transformation of the
time-delayed coordinates [Ash&Swi92, Tsa&Sch92, Wat&Str94]. Since we are
only interested in the relative phase differences, we change the coordinates by, for
example, up; = 0 + 0, £ 03 £ 04 and uz3 = 60, F 0, + 03 — 04, then only show uy,
us, and us. Figs. 3(a-d) show the dynamics of Figs. 2(a-d), respectively, in these
coordinates.

The trajectories run inside a tetrahedron in this representation. The faces
of the tetrahedron correspond to when two 8;’s are identical (a “2+1+1" state).
Each edge >f the tetrahedron corresponds to one of two types of oscillation: *2+2”
(shown as dotted lines) or “3+1” (as solid lines). Since no change in ordering
of junctions occurs in Fig. 2 after a short transient, the phases maintain the
relationship, say, 04 < 83 < 0, < 6, < 04+ 2r. Thus, a trajectory does not escape
from the tetrahedron. (Such escape, however, is not prohibited and may happen
for more complicated attractors.) The four vertices correspond to the in-phase
state. (There are four ways to approach this state while maintaining the ordering.)
The incoherent bar inside the tetrahedron is the set of incoherent states for which

R, vanishes. (The incoherent bar, indicated by a dashed line, generalizes to an
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Figure 3: Projection of trajectories onto a three-dimensional space defined by a
linearly transformation of the time-delay coordinates: ug; = 6, + 6, & 65 + 6,4 and
uz3 = £60, F 02 + 65 — 84. Only the phase differences u;, u,, us are shown. The
cases (a-d) correspond to the cases in Fig. 2, respectively. The vertices of the
tetrahedron correspond to the in-phase state while the bar inside the region is the
set of incoherent states. The two endpoints of the bar are both 2+2 incoherent
states, while the dot in the middle of the bar is the splay state.
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(N — 3)-dimensional incoherent manifold when there are NV oscillators.) The two
end points of the bar are 2+2 incoherent states, while the dot at the midpoint
is the splay state. The trajectories shown are actually discrete sets of points at
{tn(p)}, but the points are connected in the figures for clarity.

In Fig. 3(a) the trajectory starts at a point inside the tetrahedron, but con-
verges to the in-phase state at a vertex. In Fig. 3(b), on the other hand, the initial
condition is near the in-phase state but the trajectory converges to the splay state.
This process consists of two stages; the first fairly rapid fall onto the incoherent
bar is followed by a slow drift along the bar.

In Fig. 3(c) the initial condition is also near the in-phase state, and the tra-
jectory falls onto the incoherent bar. However, this time, it converges to the 2+2
incoherent state at the end of the bar. In Fig. 3(d) the trajectory does not appear
to move along the incoherent bar once it hits the bar. The calculation is halted
at t =~ 600. However, we expect that there is a very slow drift along the bar as
described earlier.

From the above computation and visualization we obtain two new insights
into the problem. First, defining phase differences of the junctions in terms of
time-delays is useful not only for visualization but also as a means to define “in-
coherence.” The set of all incoherent states seems to form an invariant manifold.
It would be interesting to prove this starting with the original equations. However,
since the definition of incoherence uses the time-delay coordinates, it is difficult
to work with the ODE directly. Even for the relatively simple case with 3 = 0,
where the splay state is known to exist for several types of the loads (which implies
that an (N — 2)-dimensional manifold of periodic solutions exists at least locally
near the state [Wat&Str94]), we cannot prove that these periodic solutions are
incoherent using the time-delay definition.

Second, occurrence of the drift along the incoherent bar implies that the de-
generate phase space structure of the # = 0 limit is broken for 3 > 0. In this
limit, the tetrahedron region in Fig. 3 is foliated by a family of invariant sub-
spaces [Wat&Str94]. If such degeneracy were to persist when g > 0, then the

structure would prohibit a trajectory from moving from one subspace to another,

95



thus the drift would not occur. As a resuit of this drift, the splay state, the 2+2
incoherent state, or more generic incoherent states can become asymptotically

stable.

2.4 Waveforms

The time-delayed coordinates 8; are useful to investigate the dynamics, but do
not show direct information on ¢;(t). Therefore, we investigate the waveforms
and symmetry properties of the periodic solutions in this section.

Figures 4(a-d) show the waveforms for (a) the in-phase state, (b) the splay
state, (c) the 242 incoherent state, and (d) the generic incoherent state, respec-
tively. (The case (d) is close enough to being periodic.) Each upper graph displays
sin @; (the supercurrent through the j-th junction) as a function of ¢, whereas each
lower graph shows the same solution in terms of the phase portrait (¢;, cb.j) for all
j. The dashed curve in the lower graph denotes the trajectory of an uncoupled
(single) junction with the same parameters (I, 3).

The trajectories for the in-phase state and the 2+2 incoherent state are signif-
icantly altered from the trajectory without coupling. In contrast, the trajectories
for the splay state and the generic incoherent state are almost unchanged in shape.
This is partly due to the parameter values; note that figures (b) and (d) have the
largest (3 values. Furthermore, when the state is incoherent the coupling terms in
equation (1), %, tend to cancel each other.

In all four cases, the four trajectories in the phase portraits follow the same
curve. This must be the case for all but the generic incoherent state in figure
(d). Let us explain: We have already given the general form of the in-phase,
splay, and 2+2 incoherent solutions. Each of these states has a single waveform,
with different phase shifts between the oscillators. For any incoherent state with
N = 4, the oscillators can be numbered so that ¢3(t) = ¢,(t + T/2), and ¢4(t) =
#2(t+T/2), where T is the period. In figure (d), we observe that ¢2(t) = ¢1(t +c¢)
for some phase shift ¢, but in general these two waveforms can be different. We
have in fact observed two distinct waveforms for a generic incoherent state in a

different parameter regime.
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with the same I, and 3 values.

97



b4y

(b)
X

Figure 5: Lissajous figures obtained by plotting the difference of the voltages
across junctions 2 and 4 versus that of junctions 1 and 3. Four figures are super-
imposed, corresponding to the periodic states in Fig. 2. The in-phase state (a)
appears as a point at the origin.

Finally, we show a way to distinguish between the different types of oscillations
which does not require the time-delay technique. In Fig. 5 we plot b2 — ¢4 vs.
é1 — ¢3. Since ¢§_,~ is proportional to the voltage across the Josephson junction, we
call this the Lissajous figure created by the voltage signals.

All ¢;(t) are synchronized for the in-phase solution, thus the figure for case (a)
appears as the point at the origin. The pattern of the other states depends on the
order of the oscillators: we choose initial conditions or permute the oscillators so
that ¢y < ¢2 < ¢3 < ¢4 < $1+27. The splay state (b) has a 4-fold symmetry while
a generic incoherent state (d) has only 2-fold rotational symmetry about the origin.
The 2+2 incoherent state appears as a diagonal line with a slope +1 (The slope
can also be —1, depending on initial conditions, since two different states have the
correct ordering: ¢y = ¢ =3 — T =@ —TOr ¢y =P — T =3~ 7T = ¢4 — 2
for all t.) The symmetries of the Lissajous figures are easily explained from the
waveforms. For example, phase shifting the splay state by a quarter period rotates

the Lissajous figure by 90 degrees.
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Finally, we mention that the Lissajous figures can be extended to three dimen-
sions using the coordinate 61 — é2 + d3 — ¢4. The resulting figures are analogous

to figure 3, but they can be made without computing the time-delay coordinates.

3 Floquet multiplier computation

In this section we report on calculations of the Floquet multipliers of the splay-
phase state. The Floquet multipliers provide local information which is comple-
mentary to the images of the phase space shown in the previous section. The
degenerate dynamics of the equations when § = 0 is reflected by the fact that the
splay state has N — 2 unit multipliers when g = 0. Conversely, if the dynamics is
nondegenerate, then there must be exactly one unit Floquet multiplier.

We calculate the multipliers of the splay state as a function of 3 for two
types of the shunt loads, an LC load and a purely capacitive load. We find that
there is a single unit Floquet multipler when 3 > 0, indicating that the system is
nondegenerate. However, when f3 is larger than about 1, there are N —2 multipliers
very close to 1. This is why we observed an apparently neutrally stable incoherert
state in Fig. 2(d): the Floquet multiplier which measures the speed of the drift in
the incoherent manifold is extremely close to 1.

Furthermore, a complex conjugate pair of multipliers approaches 1 as g — oco.
Thus, in the large B limit there are N unit Floquet multiplers, corresponding to
the oscillators being effectively uncoupled, which we observed in the numerical
integrations.

In order to calculate the Floquet multipliers, we first find a stable splay state
for one set of parameters, then use a continuation method to compute the branch of
periodic solutions as £ is varied, holding the other parameters fixed. Solutions can
be obtained regardless of stability, which clarifies the dependence of the multipliers
on f.

The starting solution is found by choosing the same parameters as two of the
cases studied by Nichols and Wiesenfeld [Nic&Wie92|, specifically, their cases II
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and III:

[NWI] N=4 L
NWII] N=4 L

I

075 R=0 C=20 [,=25 3=1.1
0 R=0 C=1 [I,=15 pg=0.1

(We have scaled their actual parameter values to suit our definition.)

In both cases, we have chosen an initial condition close to the splay state.
Since the waveform is nonuniform, ¢;(0) = 27j/N is not a good starting point.
Instead, we have computed the periodic solution ¢*(t) of the uncoupled equation
(Eq.(4) shown later) for the given (I, 3), then assigned the initial condition as
9;(0) = ¢*(Tj/N) where T is the period. The choice is especially useful for the
LC-load (case II), and it enables us to obtain the splay state (or, at worst, an
incoherent state extremely close to the splay state) sufficiently fast. We do not
need an extrapolation technique as used in [Nic&Wie92|.

Next, we sweep 3 up to 10 using the continuation and bifurcation package
AUTO86 [Doe&Ker86]. Then, 3 is decreased from 10 down to almost 0. AUTO86
computes the Floquet multipliers, but not accurately enough for our purposes. To
improve the accuracy, we output a point on the periodic solution at each value
of 3, and integrate the Jacobian matrix for one full period. The eigenvalues of
the resulting matrix are the Floquet multipliers, which we compute using Math-
ematica. There must always be a unit multiplier corresponding to perturbation
in the direction of the periodic orbit. This multiplier is computed to at least
within 8 significant figures. (AUTO86, which only estimates Floquet multipliers
for the purpose of detecting bifurcation points, has calculated the trivial multi-
plier within 3-7 digits.) Also, the multipliers for the starting value of 3 agree with
those obtained in [Nic&Wie92].

Figure 6 shows the magnitude of the computed multipliers. The figures (a)
and (b) correspond to [NWII] and [NWIII], respectively. The left figures show all
the multipliers whereas the right ones are enlarged views of the shaded box in the
left figure. To resolve the real multiplier near unity, the shaded box in the right
figure is further enlarged as the inset. The number of multipliers is the same as
the dimension of the system, thus there are ten multipliers in (a) and eight in (b).

They are labeled as “cc” (complex conjugate pairs), “r” (real), and “u” (the unit
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multiplier). One sees that the unit multiplier is computed accurately, and shows
no visible deviation from unity even in the inset.

Although these multipliers provide only local information around the splay
state, we can roughly associate them with the global dynamics described in Section
2. For example, five multipliers in (a) and four in (b) have magnitudes well below
unity, especially when 3 is small. They correspond to the rapid initial transient
when the junctions shuffle and change firing order. After these directions are
contracted, all the junctions have similar periods. The convergence speed of this
initial stage is instantaneous when 8 = 0 and becomes slower as 3 becomes large.
One real multiplier in (a) which always stays near 0.9 seems to correspond to a
perturbation in the charge @ on the capacitor. This multiplier behaves differently
from the others.

After the initial transients are over, the time-delayed coordinates described in
Section 2 become meaningful, and the dynamics involves the phase differences.
The three nontrivial multipliers of near-unit magnitude, shown in the blow-ups
in Figs. 6(a,b), represent this dynamics. From now on, our interest is focused on
these three multipliers. The incoherent manifold is the key to understanding the
dynamics. Two multipliers (the c.c. pair) correspond to the dynamics transversal
to this manifold. If they have magnitude greater than unity, then trajectories
depart from the manifold and the in-phase state is usually stable. When their
magnitude is below unity, the incoherent manifold as a whole is attracting.

The real multiplier near unity, which we call the “critical multiplier” in the
following, represents the dynamics along the manifold. (We describe 4 oscillators.
In general there are N — 3 such multipliers.) When the critical multiplier is less
than 1, the splay state is attracting within the incoherent manifold. When it is
larger than 1, the drift on the incoherent manifold is away from the splay state.
In the 8 = 0 equations the critical multiplier is exactly unity, and there is no drift
on the incoherent manifold.

Figure 6 shows that the magnitude of the “transverse multipliers” deviates
substantially from 1 when B is small. The magnitude changes in a nontrivial

fashion, switching stability at finite 8 in either case. Using an LC load, the
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(a) LC-load
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Figure 6: Dependence of the magnitude of Floquet multipliers with respect to
B, for (a) an LC load (case [NWII]) and for (b) a C load (case [NWIII]). All
multipliers are shown in the left figures while the shaded regions are enlarged in
the right figures. In order to resolve the real multiplier near unity, another set
of enlargements (of the shaded region in the right figures) are shown as insets.
There are 10 multipliers for (a) and 8 for (b). The letters denote “cc” (complex
conjugate pairs), “r” (real), and “u” (the unit multiplier). The arrows labeled

“NW?” point to the 3 values used in [Nic&Wie92].
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incoherent manifold is repelling for small 3, and attracting for larger values. For
a (' load, it is reversed.

The critical multiplier is extremely close to 1 at moderate 3. This explains
why it appeared in [Nic&Wie92] that degenerate phase space structure persists
even for 3 > 0. However, the enlarged figures suggest that the critical multiplier
is asymptotic to, but never equal to, unity. Thus, we believe that a drift occurs
on the incoherent manifold for all § > 0, even though it is so slow as to be
unobservable for large 3. Analysis Wat&Str94] predicts that the real multiplier

must be exactly 1 at 8 = 0. Fig. 6 is in agreement.

4 Weak coupling limit
4.1 Small parameter

In Fig. 6 one notices that the Floquet multipliers depend on 3 in a simple manner
when 8 > 1. In particular, it seems certain that the three multipliers with the
magnitudes near unity — a complex conjugate “transverse” pair and the critical
“drift” multiplier — approach exactly 1 in the 3 — oo limit. This indicates
almost complete decoupling of the four junctions. Each junction converges to
a limit cycle, but the phase relations hardly change after that. In general, the
coupling among junctions becomes weak regardless of the load (or of N) when 5
is large. The mechanism is simple; the phases ¢; become almost linear in ¢, and
the charge Q in Eq.(1) becomes nearly stationary, i.e. Q ~ 0. Theun, since the rate
of change in Q feeds back the coupling among junctions, they are only weakly
coupled.

However, the effect of coupling can still accumulate over a long time scale,
and eventually result in mutual phase-locking. In this section we will derive the
averaged equation which describes the slow dynamics. The analysis is valid for
all N > 3. We start by identifying a small parameter € and carry out a formal
perturbation expansion. The reduced averaged equation is then analyzed, which
enables us to estimate the c.c. pair of Floquet multipliers near unity.

The method we use is two time-scale analysis. The fast time scale is the
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Josephson frequency, and the slow scale accounts for the drift of the relative
phase differences. However, let us first identify a small parameter € from starting
with the uncoupled equation. When g is large, the junctions are only weakly
coupled so that @ in Eq.(1) is negligible at the first estimate. Then, the equation

for junction j becomes the single junction equation:
80; + &, +sing; = . (4)

It is more convenient to rescale time into 7 = Iyt. Then,

@9; +e[‘%

2. =
172 i + €“sing; = €l (5)

where I' = 1/\/B and ¢ = 1/(Iy+/B) are convenient parameters which replace I
and B. (The reason will become evident after an approximate solution is dis-
played.) We hold T fixed at any value, and take ¢ — 0+. Thus, we fix 4 and let
I, — 00, but since the asymptotic analysis holds when I;\/8 is large, we can also
interpret the results for fixed I, > 1 and 3 — oo.

The “single pendulum” equation (4) is well studied, and possesses a unique
limit cycle (of the second kind) when € is sufficiently small [Lev&al78]. The

solution can be approximated by posing a solution of the form
00
¢i(rie) = 3_ €"ym(To)
"3
To = (1 + Z c"‘wm) T
m=1
where the strained coordinate is used in the second equation to take account of a
slight frequency change. The functions y,, must be periodic in T, for all m > 0.
Since the solution is running periodic, yo grows in time. Substituting this form
into Eq.(4), the unknowns y,, and w, can be determined order by order. The

result is

¢; = (To + 0;) + € sin(To + ;) + T cos(To + 0;) + . ...

where 6; is an integration constant. It is a remarkable fact that when I, or g is
large the first correction to constant angular velocity depends only on €. This is

why ¢ is the “correct” small parameter. Physically, the small € limit occurs when
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the friction is small compared to the applied torque. The period is about 27 in
7, or 2r/l, in t. Since the period becomes small as ¢ — 0, we can think of T
fixed, ¢ = 0 as the high-frequency limit. It can be also said that the parameter
€% measures the amplitude of the (almost harmonic) fluctuations in ¢;.

There are no secular terms in the lower order expansions, implying that we
do not need to stretch the time coordinate at lower orders. We notice that w; =
wy = w3 = 0. At O(¢€®), a secular term arises for the first time, which is eliminated

by choosing w, appropriately: wy = —1/2.

4.2 Perturbation expansion for LRC load

When coupling is considered, the small parameter ¢ plays a double role; the so-
lution ¢; can be approximated perturbatively, and the coupling becomes weak as
¢ — 0 since ¢; is almost linear in ¢. Because of this second role, one can still
perturbatively obtain the solution of the coupled equations without much mod-
ification to the analysis above. The only crucial part is how to eliminate the
new secular terms produced by the coupling. Some of them are j-dependent, and
therefore cannot be eliminated simply by modulating the time T, further. We
notice that it is sufficient to modulate the constant phase 6; slowly. In this way,
we obtain the slow-time equations for 6;.

We first rescale time in Eq.(1) from ¢t to 7 = It as before. The equation

becomes
d2¢’+l‘¢’+c smcb +eFdQ—eF j=1,...,N
Y0 hiQ . .0 edd o
_ ¢ Pk
L tera +e cr2 [‘NZ

We further rescale the charge by

am=ch+ 22

The first term is a DC-component of Q which blows up as ¢ — 0. This happens
because the DC-component of the driving term " éx increases without bound

as ¢ = 0, and can only be balanced by the capacitive term on the left hand side.
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By subtracting off this amount, the scaled remainder ¢ behaves regularly as ¢ — 0.

The equations are now

2 4.

¢ +6F%+€2Sin¢j+fﬂ=6[‘, j=1,...,N,

éi{"’ ddr dd (6)
dq  dg 4 b _

dr? +ead1_+e bg = Z( )

where a = R/(T'L) = RyB/L, b=1/(LCT?*) = B/(LC), K = 1/L.
A straightforward “naive” expansion breaks down, and thus we define the
second slow time scale. The fast time scale Tp is modulated at O(¢*) as in the

uncoupled equation, while the slow scale T} is found to be much slower than the

first scale.

To = (1 + Z mem) T , Tl = 65T0 (7)

m=4

We pose the solution of the form similar to the uncoupled case.

¢;(To,Ti;€) = Y €"ymi(To, Th) , j=1,...,N,
& (8)
q(To,Tii€) = Y €"qm(To, T1)

m=0
We require ym; and ¢, to be bounded for all m and time except yo;. As we go
over the first few orders of expansion, we notice that y;; = 0, and ¢, = 0 for

m = 0,1, 2. Therefore, we start our analysis from the form:

6;(To, Ti;€) = yoj(To, T1) + Y €"ymj(To, Th) , j=1,...,N,
oo m=2 (9)
9(To, Tri;¢) = Y €"qm(To,T)

m=3
The leading order term in ¢; is the same as in the uncoupled case except for

the dependence of the phase on Tj:
vo; = To + 60;(Th) , j=1,...,N. (10)

The only nonlinear term is sin ¢;, which can be expanded in powers of ¢ after

Eq.(9) is substituted:
sing; = Z €" Smj (11)

m=0
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where Sp, = sin yo;, S1, = 0, S2; = Y2, €S yoj, S3; = Y3; COS Yo;, Sa; = Ya; COS Yo; —
(y3;/2) sin yo,, and so on.

Substitute these expansions into Eq.(6), and equate like powers of €. At O(1)
and O(e) the equations are trivially satisfied. At O(€®) we need to solve d3ys; +
sin(Tp + 6o;) = 0 for each j (where 3, is a shorthand notation for 9/9T,). Because
yzj is bounded in Ty and Tj,

y2j = sin (To + 00;(T1)) + 02;(T1) - (12)

To the accuracy we seek the solution, modulation of 8; in T) is negligible, and
the term can be absorbed into the initial condition of fp;. Thus, we set 8,; = 0.
The equation at O(e3) becomes
O%ys; + Lo sin(Tp + 6oj) = 0

K N
nga = :’V Z 60 sin(To + 0()/,) .

k=1

(13)

Both y3; and g3 must be bounded. Thus,
y3j = [ cos(To + 0o;) + 03; , g3 = c3(Ty) — KRy cos(Tp + ©,) (14)

where R;(T)) and ©,(T}) are the amplitude and the phase of the slowly varying
moment, defined in (3). We set 63; = 0 for a similar reason as before, but another

integration constant c3 cannot be eliminated in such a way.
At O(€*) we obtain

: . 1,
B%ys; — D?sin(To + 0o;) + KRy sin(To + ©y) + 5 5in (2(To + 6o;)) = 0

0%2qs + aK R, sin(Tp + ©,) = —% i sin(Tp + Oox) = —TK Ry sin(Tp + ©,) .
= (15)
The solution is
{ ya; = —[?sin(To + 6o;) + %sin (ATo+60;)) + KRysin(To +01) ¢
qga = ¢c4(T\) + (a + T)K Ry sin(To + ©,) .
At O(€®) we obtain
O%ys; — I cos(To + Bo;) + K Ry(a + 2T) cos(To + @11)

427 cos (2(To +00;)) + Do + 5) = 0 (17)

K
63(]5 +dR, COS(TO + 61) - z‘Rz cos (2(To + 02)) + (bCa - Kw.,) =0.
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where d = K [a(a + ') — b+ I'* — K|. Here secular terms have appeared for the

first time. We eliminate them by choosing
wy=—1/2 |, 3= Kwy/b=—-K/(2b) . (18)
Then, ys; and g5 become periodic:

3r
Ys; = —Fs COS(TO + 00]') + I(Rl(a + QF) COS(TO + @1) + -]3' COs (2(T0 + 00]‘))

rd

i
g5 = cs(Ty) + dR, cos(To + ©,) — 1—‘6-122 cos (2(To + ©3)) .

(19)
Finally, at O(¢€®), we obtain

O%yes; + [periodic terms in To) + %Rl sin(© — g;) + [(ws + 0160;) =0
- N
0%qe + [periodic terms in Tp] + [bcs — Kws — I E O] =0.

k=1
(20)

The solvability conditions are obtained by setting the non-periodic terms to zero.
We may choose ws arbitrarily since it can be compensated by changing o; without

affecting the solution. Thus, set ws = 0. Then, from the equation for ys;,

K K
0160;(Th) = — =Ry 8in(©) — bp;) = — 5 = Z sin(fox — 6o;) (21)
“or oar N &=
for j = 1,..., N. This is the leading order equation which governs the slow phase

shift due to weak coupling of junctions. Secular terms in the equation for g¢ can
be removed by

KZ 1 N N
Z Z sin(fo¢ — fox) =0 . (22)

K 1 X
“=F NG ML L

A system of equations similar to Eq.(21) has been derived in [Jai&al84] from
a more informal argument, based on an assumption that current through the
junctions Q is small. Compared to this approach, we have identified clearly what
the small parameter is, and used systematic perturbation methods. The coefficient
in the averaged system have been determined rigorously, which enables us to

explain the numerical observations in Section 3, as shown below.
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4.3 Floquet multipliers for LRC load

Equation (21) allows us to analytically predict a pair of Floquet multipliers around
the splay state. From Eqgs.(7), (10) and (21),

dij_l s K1 K o1 Y

P —é 5T NZsm(Ook—-%,) 1-¢° Tl N; sin(yox — yo;) - (23)
Rewrite it as
gyo—j—1+f—icos( — yoj — 6) (24)
dTy N Jor = o . i
where s |
€ 1 iy
= fd —_— e — . 2
“=5r = ang 4 03 (25)

Although this is a system for yo;, not for @;, it is sufficient for the leading
order estimate of Floquet multipliers. The splay state solution can be expressed
as Op; = 275 /N, or yo; = To+27j/N. Equation (24) admits analytical evaluation
of multipliers around the state since the Jacobian matrix is constant along the
orbit [Ash&Swi92). Thus, the Floquet exponents are simply eigenvalues of the

matrix. In general, for a system of the form

. N
$i=0+=Y Gl —%;) ,i=1...,N (26)
Nk:l

(where G is a 2r-periodic function), the in-phase solution has a Floquet exponent
A = —kG'(0) with multiplicity .V — 1, along with the zero exponent. The Floquet

exponents around the splay state, 1; = 2mj/N, are
K & -
A = 2 3 GH2rk[N) - (NP — 1) (27)
k=1

where p takes on N adjacent integer values [Ash&Swi92]. When N = 4 we can
choose p € {—1,0,1,2}. The trivial exponent is Ao = 1, and the complex conjugate
pair which determines stability of the splay state in directions transverse to the
incoherent manifold is A+;. The other N — 3 Floquet exponents correspond to
perturbations within the incoherent manifold. (When N = 4, the real exponent

Az determines the stability of the phase within the incoherent bar.)
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For Eq.(24), G(¥) = cos(¥ — §), and the nontrivial Floquet exponents of the
in-phase solution are A = —xsiné. All the Floquet exponents of the splay-phase
solution are 0 except

At) = —(sind Ficoséd) . (28)

¢

o] x

Note that there is no bistability for Eq.(24): when ksiné > 0 the in-phase state
is asymptotically stable and the splay state is unstable. When «siné < 0 the
in-phase state is unstable and the splay state is neutrally stable. When siné = 0,
global analysis shows that the in-phase is unstable and the splay is neutrally stable
[Wat&Str94).

For the splay state, all of the Floquet multipliersare 1, except u4+, = exp(A4,T),
where T = 2w /Q is the period. Substitution of Eq.(25) with @ =1 yields
N= ]

|u£1] = exp [Tk sin 6] = exp [—Q_IEW_L (29)

Now, we replace yo; by ¢; and To by 7 in Eq.(24). Since only (k/Q) — the
ratio between the basic frequency and growth rate of perturbation — is important
for the multipliers, the leading order estimate is unchanged. Similarly, recovering
the dimensionless time t from 7 does not affect Eq.(29), either. (The Floquet
ezponents are affected by scaling time, but not the Floquet multipliers.) Thus,
two Floquet multipliers of the splay state of Eq.(1) should be well approximated
by Eq.(29) as e — 0.

The other Floquet multipliers of the splay solution are all 1 in the limit ¢ — 0,
corresponding to neutral directions within the incoherent manifold. For N = 4,
the single “critical” multiplier is unity in the asymptotic approximation. While
the Floquet multipliers yield only local results, the global phase portrait of the
averaged equation (24) has been completely analyzed [Wat&Str94]. It possesses
the same degenerate structure (i.e. no drift on the incoherent manifold) as the
original system Eq.(1) with § = 0. However, while the degeneracy is exact for the
B = 0 case, it is only approximate for # > 0. Perhaps the slow drift on the inco-
herent manifold could be extracted from Eq.(1) when a higher order expansion is
carried out. The drift would show up as higher harmonics in the coupling function

of Eq.(24). Second moments R; and ©; do appear in intermediate expressions;
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see Eq./19). However, we went to the next order in the expansion and found that
the coupling function is still purely sinusoidal, i.e. there is no drift. It could be
that there is no drift to all orders in ¢, implying that the drift is exponentially
small.

In the averaged equations (24), the degenerate phase space is foliated by in-
variant three-dimensional subspaces [Wat&Str94]. Each subspace is transversal to
the incoherent manifold, thus is parametrized by the incoherent state it crosses.
The in-phase state is connected to this incoherent state via the subspace. The flow
in the subspace can be either toward the in-phase or to the incoherent state. The
two nontrivial Floquet multipliers u4, correspond to this dynamics (evaluated at
the splay state). Therefore, they must be the complex conjugate pair in Fig. 6
whose magnitude is near unity. Fig. 7(a) shows comparison of the computed data
in Fig. 6(a) with the formula (29). There is a good agreement. The error becomes
less than 10~* for 8 > 2 (or € < 0.3 since I, = 2.5).

It is clear from Eq.(29) that , for small €, the splay state is always stable in the
directions transverse to the incoherent manifold. Conversely, we expact the in-
phase state to become unstable as ¢ — 0. This agrees with previous computation

of Floquet multipliers around the in-phase state [Had&al88].

4.4 Other loads

One notices that Eq.(29) does not involve R or C. When the shunt load involves
L, it dominates the load when ¢ is sufficiently small (the high-frequency limit), and
the in-phase state becomes always unstable. For RC or C loads, similar analysis
to the previous sections can be carried out. We again obtain the same equation
(24) as the modulation equation with the parameters:

RCload: «k=1/(2RI3f?) and é=n

Cload: x=C/[2I28(C +B)] and & =r1/2 (30)

The in-phase state is stab'e (or unstable) when «siné > 0 (or < 0, respectively).
Therefore, for an RC load, the parameter values are marginal and indeterminate

at this order. Complex attractors may easily arise for the original system (1).
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Figure 7: Magnitude of a complex conjugate pair of Floquet multipliers around
the splay state as a function of 3. Computation (dots; same as in Fig. 6 except
scaling) and averaging theory (curve; see text) show an excellent agreement for
large B. The error is shown in the insets. (a) LC load (case [NWII]), (b) C load

(case [NWIII)).
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On the other hand, the in-phase state is stabilized for small ¢ with a C load.
The magnitude of the nontrivial Floquet multipliers around the splay state is

always larger than unity:

Cr
= ex — . 31
Fig. 7(b) compares this approximation with the computed complex conjugate pair

near unity in Fig. 6(b). Good agreement is achieved for 8 > 4 (e < 0.3).

5 Discussion

Previous analytical studies of the stability of the in-phase and splay-phase states
have assumed the overdamped limit 8 = 0. It is common knowledge [Jai&al84,
Had&Bea87, Wie&Swi95] that the in-phase state is stable for inductive loads and
unstable for capacitive loads. Our result with nonzero f is opposite: the in-
phase state is unstable when L is included and stable for a purely capacitive load,
provided I;\/f is large enough. To resolve the paradox we did experiments with
the LC-load considered in section 2, varying I, and 3. First we consider g = 0.
For I, greater than approximately 2.1, the in-phase state is stable. However,
there is a bifurcation curve § = f(I;) which is asymptotic to 8 = 0 as I, — oo.
For 8 < f(I,) the in-phase state is stable, but for 8 > f(I;) the in-phase state
is unstable and the splay solution is apparently neutrally stable. (There is no
observed hysteresis.) For example, at I, = 4, the in-phase state is stable for
0 < B < 0.25, and the splay is neutrally stable for # > 0.25. Since 8 = f(I}) is
asymptotic to S = 0 we have the two competing results: when 8 = 0 the in-phase
is stable for I, sufficiently large, while for # > 0 the in-phase is unstable for I,
sufficiently large! This singular behavior must be taken into account when one
selects the load in applications in order to operate the series Josephson arrays in
a desired state.

Singular behavior also occurs in the C-load system. Although the in-phase is
unstable when 8 = 0, for any 3 > 0 the in-phase is stable for I, sufficiently large.

Bifurcation curves in the ;-8 plane which are asymptotic to # = 0 are seen in
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the results of numerical computation of the Floquet multipliers of the in-phase
state in Fig. 2 of Hadley et al. [Had&al83).

In summary, we have shown that the apparent neutral stability of the splay-
phase state over a wide range of parameters is only approximate when 3 > 0.
When [, and 3 are moderate, we can easily find asymptotically stable splay solu-
tions for an LC or C-load. When [,1/3 is large, the averaged equations predict no
drift on the incoherent manifold — which implies a neutrally stable splay state.
This “explains” why the drift on the incoherent manifold is so slow as to be unob-
servable. It is understandable that previous researchers concluded that the splay
solution is neutrally stable when 3 > 0, but this is now seen to be a red herring

in “the mystery of the neutrally stable splay.”
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Abstract

We study the damped driven discrete sine-Gordon equation with a pe-
riodic boundary condition as a mode! of a circular array of N Josephson
junctions connected in parallel. The system traps an integer number of
kinks, and supports two branches of traveling wave solutions, distinguished
by the frequencies.

In the low-frequency region, a propagating kink induces radiation that
phase-locks to the kink. The kink, then, tends to propagate at a set of
certain velocities corresponding to the wave number of radiation. Unex-
pectedly, the wave numbers outside the first Brillouin zone are physically
relevant, due to the nonlinearity of the system.

In the high-frequency region, the traveling wave solutions are spatially
and temporally uniform. We show that these “whirling periodic solutions”
undergo parametric instabilities at certain drive strength. We analyze the
onset of the instabilities, then numerically study the secondary bifurcations
and complex spatiotemporal behaviors that occur past the onset.

The dynamics of the phase-locking and the parametric instabilities in
the two regions is reflected as “resonant steps” in the current-voltage char-
acteristics of the Josephson ring. We measure a ring of ¥ = 8 underdamped
junctions; the observed voltage locations of these steps are in good agree-
ment with the predictions.
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1 Introduction

For decades, the dynamics of one-dimensional (1D) long continuous Josephson
junctions have been studied [Lik86] because of their possible applications in su-
perconducting electronics. For example, Josephson flux-flow oscillators operate in
the millimeter and sub-millimeter wave range (order of a terahertz) and, when
operated under resonant conditions, they can achieve very narrow linewidths
[Ust&al91]. The long continuous junctions are well modelled by the perturbed
sine-Gordon equation. Therefore, interest in the junctions has been fueled also
by the mathematical aspect [McL&Sco78, Kiv&Mal89]. From their point of view,
the junctions are an ideally controlled laboratory to test the theory of nonlinear
dynamics and wave propagation, for example, interactions of sine-Gordon kinks
and antikinks.

One-dimensional parallel arrays consisting of small-area Josephson junctions
can be viewed as discrete versions of long continuous junction. Technologically,
the discrete arrays have advantages over continuous junctions in that the output
impedance and frequencies can be higher [Ust&al95]. Mathematically, they pro-
vide a framework to study the relation between discrete and continuous systems.
A single junction is a phase oscillator analogous to a mechanical pendulum. Par-
allel arrays of N junctions are equivalent to systems of /N pendula coupled to their
neighbors by diffusive interactions [Sco69, Nak&al74, Cir&al81].

The dynamics of such 1D discrete arrays has not been investigated in de-
tail. Compared to the integrable conservative sine-Gordon equation, the ef-
fects of discreteness and damping destroy the integrability, and the phase space
becomes highly complex. Currently, there is a growing interest in such non-
integrable lattices obtained from completely integrable partial cifferential equa-
tions [Dun&al83). Although exact solutions are almost never expected in these
“perturbed” problems, solitons may still survive.

Regardless of whether the governing equations are perturbed or not, bound-
ary conditions are important in the sine-Gordon systems. An infinite domain is
mathematically simple, but has less connections to applications. For finite con-
tinuous Josephson junctions, both open-ended [Cos&al78, Pac&al81] and annular
[Dav&al83, Ust&al92] geometries have been studied. The annular junctions lead
to periodic boundary conditions, which avoid complications caused by the re-
flection of kinks at the boundaries. Moreover, the circular geometry “traps” an
integer number of kinks in a ring, which makes it possible to study the dynamics
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of a single isolated kink.

In this paper, we present a systematic study of a 1D discrete array of N un-
derdamped Josephson junctions in a circular geometry. As a discrete counterpart
of the annular long junctions, such an array still traps an integer number of kinks.
However, the kinks are affected by the lattice structure, and the geometry is ex-
tremely useful to isolate the discreteness effects from the boundary effects. We
study the dynamics of the array by analytical, experimental, and numerical meth-
ods. The theoretical results are interpreted in terms of the current-voltage (/-V)
characteristics, and tested against experimental measurements on arrays of N =8
Josephson junctions.

The paper is organized as follows. In Section 2, we first derive the discrete
damped driven sine-Gordon equation as the model equation of the circuit, then
review the properties expected of the /-V curve if the system were approximated
by the continuous dissipative sine-Gordon equation. The /-V curve depends on
the number M of trapped kinks, and for M = 1, the system supports a traveling
wave in the form of a single kink. The traveling wave solutions trace out two
distinct branches on the I-V characteristic, and the waveforms on these branches
are quite different. This distinction between the two branches will be a key to the
analysis in the later sections.

In Section 3, we explain our experiments, including a description of how to
vary parameters in the system. We also show a typical I-V for different M values,
and use that result to determine the last free parameter in the system.

Our junctions become highly underdamped and discrete as the temperature is
decreased. Then, novel structures show up in the experimental I-V characteristic.
These structures are many “steps,” almost vertical segments in the /-V where V
is nearly constant over a range of I. In Section 4, we classify these steps into
two types. We show numerical evidence that, even in a discrete ring, soliton
solutions of the continuous equations still survive as traveling waves. However,
the waveforms as well as the I-V characteristics can be significantly altered. In
Sec.4.2 we will see the effect of discreteness in the waveform. In Sec.4.3 branches
of traveling waves for the discrete system are found by numerical continuation
methods on the I-V characteristics. These sections reveal that there are two
types of mechanisms that generate the steps.

The first type of step, in the low-voltage region, is explained in Section 5.
Because of the discrete lattice structure, a small amplitude wave is radiated in
the wake of a moving kink, and the wave and the kink phase-lock to form a
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traveling wave. A formula obtained from the phase-locking condition is tested
experimentally, and shows good agreement with the data. The formula predicts
that it is possible to distinguish the lattice eigenmode m from m + N in a discrete
array of NV oscillators. We will explain the origin of this non-intuitive observation
in Sec.5.3.

The second type of step, in the high-voltage region, is analyzed in Section
6. We linearize the nonlinear system around a simple basic state, and perform a
linear stability analysis. In sections 6.1-6.3, we derive the voltage locations of the
steps in this region, and test the predictions against experiments. The analysis is
extended to arrays with free boundaries in Sec.6.4-6.5.

The analysis in Section 6 is restricted to the neighborhood of the first bifurca-
tion from the assumed basic state. The dynamics becomes highly nonlinear along
a step further away from the branching points. We investigate this nonlinear dy-
namics by numerical methods in Section 7. Various secondary bifurcations occur
as we move up the step, leading to increasingly complex spatiotemporal dynamics,
although it appears that the dynamics becomes restabilized once the amplitude
of oscillation becomes large enough.

Finally, Section 8 is a summary, and also states several future directions.
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2 Model of Josephson rings

Figure 2.1(a) shows a schematic drawing of our discrete Josephson ring with N = 8
junctions. The experimental apparatus consists of an outer ring and an inner
island, both of which are made of niobium, a superconducting material. The two
rings do not touch each other except at eight places of area 2 pm? where the two
superconducting layers are separated by a thin (~ 10 A) Al;O; oxide barrier. At
these eight places tunnel Josephson junctions are formed, and they are denoted
by their standard circuit symbol, crosses. The same amount of bias current is
injected from 8 probes. They distribute within the rim, go through one of the
junctions, and are then extracted from the probe attached to the inner island.
The voltage is measured between the two superconductors at V+ and V —.

This section is a preliminary study of the Josephson ring. We first derive the
model equations for the array in Sec. 2.1. In Sec. 2.2 we approximate the model by
the continuum limit and find traveling wave solutions. This simple study reveals
two distinct branches of periodic solutions, and serves as a good starting point to

approach more difficult discrete equations.

2.1 Model equations

In Fig. 2.1(b), the cells j — 1 through j + 1 are shown schematically. The two
horizontal lines represent the outer and inner superconductors. Superconduct-
ing wires can be viewed as inductors, and support dynamic voltage drops; the
horizontal currents through these inductors are denoted as I;°" (upper) and [ J'?°‘
(lower). The bias current I}“ is injected from the top of the junction j, and /§**
is extracted from below.

The state of a junction j is described by its phase difference ¢;(t). The voltage
drop across the junction is then given by the Josephson voltage-phase relation:

b . .
Vi=56 (2.1)

where ®o = h/(2€) is the flux quantum, h is the Planck’s constant, and e is the
charge of an electron.

A single junction is well described by the RCSJ (resistively and capacitively
shunted junction) model [Orl&Del91]. In this model the junction consists of a
capacitive, a resistive, and a superconducting branch, all connected in parallel.
For this model, Kirchhoff’s current law at the top and the bottom nodes of the
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Fig. 2.1 (a) Schematic drawing of a discrete ring of N = 8 Josephson junctions.
(b) Three cells in the array.
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junction j reads:
CVi+Vj/R+ Ising; =[P =[P+ IR =1 P+ % (2.2)

where C and R are the internal capacitance and resistance of a junction. respec-
tively, and I. is the critical current. We have assumed that the junctions are
fabricated to be uniform in all their properties.
A third equation comes from the nature of phases in the superconducting state;
a line integral of th~ phase differences around a closed loop on a superconductor
must equal the magnetic flux enclosed by the loop [Orl&Del91]. For a loop around
cell j, this requires
Bi+1 — ¢ =219; /Do (2.3)
where ®; is the total flux penetrating the cell. (The dependence on the maguetic
field comes from requiring the ¢’s to be gauge-invariant [Orl&Del91].) In our
experiment, we impose a uniform external field ®** perpendicular to the array.
There is also a contribution of an induced field. We only take into account of the
contribution of the horizontal currents into the adjacent cell. The effect of longer
range inductances has been studied and found to be negligible. (See Sec.2.3.)
Then,
®; = & — (Ly [P + Lo IP™) (2.4)

where L,, L, are the top and bottom inductances, respectively.

Eliminatc V;, I;°p, and I}’“‘ from Eqgs.(2.1-2.4) to obtain

1. T. ) I; .
;;d’j + w—¢j +sin ¢; = -I'J' + A* (i1 —20; + j-1) ,J=1,...,N (2.5)
p c

P

where
w: =2rl.[(®C) , T'Jw, = ®o/(27I.R) , A% = ®o/(271.L) , (2.6)

and

I; = (LIIJi-" + L 1"/ L (2.7)

where L = L, + L,. It is more customary to write these equations in terms of the

following parameters:
Ly =®0/(271,) ‘the Josephson inductance) (2.8)
and

B =2rI.CR?*/®, (the dimeusionless Stewart-McCumber parameter) . (2.9)
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Then,
wp= INLC . N =L,/L , T=1//3. (2.10)

Here «, is called the “plasma frequency” of a Josephson junction, and is the
reonance frequency of the internal capacitance and the Josephson inductance of
a junction.

By assumption, we inject and extract dc currents uniformly, so /; is indepen-
dent of j. After rescaling time by 1/w,, the governing equations become:

@J+F¢J+Sln¢1=I/IC+A2V2¢J R J:l,’N ('_)_11)

where V?¢, = (¢,41 — 20, + ¢,_,) is the nearest neighbor diffusive coupling term.
These equations can be viewed as a discretized version of the damped driven
sine-Gordon equation.

A useful mechanical analog is a chain of N pendula (d;j + sin ¢,), each of
whicn is viscously damped (I‘éj), driven by a constant torque (//1.), and coupled
to its nearest neighbors by torsional springs (A?’V?¢,). The parameter [ is the
damping factor while A? measures the spring constant. It is also a measure of
discreteness; when A? > 1, the solutions are expected to be appreximated well
by the continuum approximation, but as A2 becomes small, the discrete nature of
the equations show up. (See Sections 3 and 4.)

We now consider the boundary conditions for our ring. The circular geome.ry
imposes a periodic boundary condition, but there is an arbitrariness by an integer
multiple of 27 since ¢; are angle variables:

djen(t) = #(t) + 27 M for all j and ¢ (2.12)

where the winding number M is an integer. Each 27 twist in the phase can be
regarded as one kink, thus M denotes the total number of kinks in the ring. The
number M is given as a parameter, and is held fized for all t. That is, M kinks
are “trapped” in the ring, and the number stays invariant under the dynamics.

A kink is also called a vortex, a topological charge, or a fluxon. The last
name comes from the relation betw.e. the phase and the magnetic flux. From
Eq.(2.3,2.12), we obtain

M=

M = (¢ns1 — 61)/(27) = ( (b,-) /%o , (2.13)

J

meaning that the total flux through the array must be quantized in the unit of
the flux quantum, and M denotes the ratio.
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Equations (2.11,2.12) constitute our model system. There are symmetries in

the system which can be seen by defining another set of angles
p; = ¢; +2rMj/N (2.14)

which eliminates the M-dependence of the boundary condition. The governing
equations Eq.(2.11) remain unchanged except the sinusoidal nonlinearity term,
sing; = sin(y; — 2rMj/N). Clearly, the system remains invariant under the
change of the parameter M — M + N since this term is kept the same. More-
over, it can also be shown that, if there is a solution {#;(¢)} for the system with
M = M,, then there is a corresponding solution {¥)x_;(t)} for the system with
M = —M,. Spatial structure of these solutions are just mirror images, and espe-
cially when we look at the spatially averaged quantities, these two solutions are
indistinguishable. Due to these symmetries, the number of kinks can be restricted
to M =0,...,floor[N/2] without loss of generality.

Although we will mainly deal with the circular arrays in this paper, we extend
our analysis in Section 6 to an array with open ends. In this case, the governing
equations Eq.(2.11) remain the same for j = 2,..., N — 1. To keep the form of
the equations identical at the endpoints j = 1 and N, we define artificial phases
¢o and @n ;. and the boundary conditions:

do(t) = d1(t) —27f , dn41(t) = dn(t)+ 27 f . (2.15)

The parameter f = ®°*/®, (called “frustration”) is in a sense analogous to M/N
for the ring, but can take all real values. From symmetry, it can be restricted to
0< f<L/2

We close this section by introducing a characteristic voltage. Under the above
non-dimensionalization and scaling of time, the voltage-phase relation Eq.(2.1)

becomes:
Vi= =6 = Vod;/A (2.16)

where Vo = ®owo/(27) and wy = 1/VLC. This frequency wp is the frequency
of an electromagnetic wave propagating in the array when it is approximated as
an LC-transmission line. When the system converges to a periodic attractor of

frequency w, for example, then
V = Vow/A (2.17)
is the measurable voltage, averaged in space and time.
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2.2 Continuum approximation

Continuous sine-Gordon equations are better studied than the discrete counter-
part, even when damped and driven [McL&Sco78, Mar&Imr80, Mag80, Bur& Lif83,
Mag83]. It is natural to study the discrete problem by perturbing off of the con-
tinuous approximation. Although the /-V characteristic derived from this ap-
proximation is significantly altered in the discrete system (as we will discuss in
later sections), it is still useful to review this case before we discuss the discrete
model. In particular, this simple analysis reveals two distinct branches in the /-V
characteristics, and solutions in the two branches are qualitatively different. We
emphasize this difference because it will become a crucial point for our studies of
the discrete arrays.

An obvious way to take a continuum limit is to change the spatial coordinate
J to a continuous variable £ = j/N, and to approximate the coupling term of

Eq.(2.11) by the spatial derivatives:
1
V20,(t) = Sz + 1/N,t) = 20(2,t) + 6(z = 1/N,t) = sdeu(z, ) + ... . (218)

If we retain only the second derivative, then the discrete equations Eq.(2.11)
are approximated by the continuous damped driven sine-Gordon equation:

¢+ Lo +sing=1/1.+ \o,, , £€]0,1] (2.19)
where A = A/N, with boundary conditions
oz +1,t) =@(z,t)+27M | ¢ (x+1,t) = p(z,t) forall z,t. (2.20)

Such a system also arises as the model equations for an annular long (continuous)
Josephson junction when the surface damping (the term proportional to ¢..,) is
negligible.

Conservative sine-Gordon equations (i.e., with I' = I = 0) in a periodic domain
support kink (soliton) solutions. Even in the presence of the damping and the
drive, similar traveling waveforms can exist [Mag80, Bur&Lif83] and, in this case,
can become an attractor. To see the existence, let us seek traveling wave solutions
for the system (2.19,2.20) of the form

plz,t)=h(£) , E=x+ut (2.21)

for a constant u, where u is to be determined as part of the solution. This reduces
to finding a solution of an ordinary differential equation

(u? = A)A"(€) + uTh'(€) +sinh(€) = I/ (2.22)
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with the boundary condition
h(€+ 1) = h(£) +2n M for all £. (2.23)

Equation (2.22) is the equation for a single driven damped pendulum, with an
effective mass (u? — A\?) and a damping factor ul.

Consider first when u > A. By scaling the independent variable as £ =
Vu? = 22, Eq.(2.22) takes the “standard form” for the single pendulum equa-
tion:

d*h dh

a=T/y1-(Au)?. (2.25)

This system has been well documented, e.g. in [Bur&Lif83, Str94], and we

with

quickly review results necessary for our purpose. It is an autonomous second order
system, and its phase space is a cylinder: h € [0,27] and dh/dn € (—o0,00). (We
identify A = 0 with A = 2x.) For a given a, a unique (running) periodic attractor
exists for sufficiently large I. As I is decreased, the attractor disappears either
by a homoclinic (when 0 < & < a*) or by a saddle-node infinite-period (a > a~)
bifurcation, where a* ~ 1.2 is a constant. We denote this critical current value
by I = I"(a). It is known that I* —» 0 (I"/al. = 4/7) as a — 0, I* = 1 as
a — a" from below, and I* = 1 for a > a*. For the parameter region a < o™ and
I" < I < 1, the periodic attractor coexists with two fixed points, one attracting
and another being a saddle point.

The periodic attractor satisfies

h(n+ Tsp) = h(n) + 2 for all n, (2.26)

where Tsp(a, I) is the period of the “single pendulum” periodic solution. The
boundary condition Eq.(2.23) can be satisfied only on this attractor. Then, the
fundamental period of Eq.(2.23) must be 1/M. The period is related to Tsp by
the scaling:

1/M = Vu? — ATsp(a, I) . (2.27)

From Eqgs.(2.25,2.27), we obtain
u = A1 (/] (2.28)
Tsp(a,I) = Va2 —-T?/(MT)) . (2.29)
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Now treat a as a free parameter. Then, Eq.(2.29) implicitly determines [(«).
Since the phase ¢ (or h) changes by 27 M over the period 1 in &, or 1/u in ¢, the

average frequency is

w=2rM/(1/u) =2rMu, (2.30)

which can be converted to the averaged voltage by Eq.(2.17) to approximate the
voltage for the discrete system. In this way, the /-V curve is traced out as « is
varied.

The valid range of a is ([';00). As a — oo, the other variables tend to
the limits u = A, Tsp = 00, w = 27MA = we, V = 20MV/N = V,, and
[ — [I + (Tw¢)?]"/? = I,. In the opposite limit of @ — T, they tend to the limits
u— 00, Tsp = 0, w = 00, V = 00, and I — ['w. This latter limit is simply the
Ohmic line where voltage is proportional to current.

When u < A, there is another branch of traveling wave solutions. We convert,
the variables in Eq.(2.22) by

E=—-VA—-u?p , h=m—-g. (2.31)

Then, the equation becomes the standard form again:

d*g dg . Qe
;1—17—2-+ad—1’-+smg—l/1c (2.32)

a=T/\JMup =1, or , u=A[1+ (/)] . (2.33)

Equation (2.30) is now changed to

with

Tsp(a, I) = Va? + T2/(MTA) . (2.34)

The parameter a now runs from 0 to 0o, and Eqs.(2.33,2.34) draws another branch
of the I-V curve.

As a = oo, we find u = A, Tsp = 00, w = wy, V = V; (from below), and
I — I,. Thus, the two branches coincide at (I,V) = (I, V). As a — 0, we obtain
u—0,Tsp >00,w—0,V —>0,and I = 0.

Equations (2.28,2.29,2.33,2.34) are numerically solved by a squeezing algo-
rithm. The two branches of the resulting I-V characteristic are shown in Fig. 2.2.
The parameters M = 1, N = 4, A = 1 (thus, A = 0.25), and T = 0.1 are used
(in order to make a comparison with a direct integration of the discrete system
in Sec. 4.2 which uses these values). The first branch (corresponding to u > \)
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Fig. 2.2 A branch of traveling wave solutions for the continuous system (2.19,2.20),
shown in terms of an I-V characteristic. One kink (M = 1) is trapped in a ring,
with the parameters [ = 0.1, N = 4, A = 1, thus A = A/N = 0.25. (The
parameters are the same as those to be used in Fig. 4.2 later.) A sharp peak
at V = V, separates the low- and the high-voltage regions. One waveform is
shown from each region. (a) the low-voltage region in which a kink maintains its
characteristic shape, (b) the high-voltage region in which it is “stretched” over
the ring.

appears in the region V > V, while the second one (u < A) in 0 < V < V,. We
call these two regions the high-voltage and the low-voltage regions from now on.
For M = 0, the critical voltage V; = 0, thus there is no low-voltage region exists
but only the high-voltage one does.

The calculation does not determine the stability of the solutions. It has been
shown that the low-V region is entirely stable and that the negative resistance
(slope) part of the high-V region is unstable [Mag80, Bur&Lif83]. The stability
of the positive resistance part in the high-V region, which one might expect to
be stable, is subtle. Detailed analysis [Mag80, Bur&Lif83, Mag83] has been made
only for the case M = 0. Burkov and Lifsic showed [Bur&Lif83] that the part
of the I-V curve is unstable for all I < I.. However, the analysis assumes an
infinite domain, so does [Mag80]. In the periodic domain Maginu [Mag83] showed
that the branch is mostly stable, including when I < I, but can be occasionally
destabilized. We will come back to this point in Section 6.

In Fig. 2.2 we also show computed traveling waveforms h(£) at two points
marked (a) and (b) in the I-V curve with a positive slope. Three periods £ € {0, 3]
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are shown. The waveform at (a) (the low-V’ region) exhibits a sharp kink in each
period; the phase h stays almost constant except at certain £'s when it changes
rapidly by 27. The width of the kink (called the penetration depth) shrinks to 0
as u — A. The critical velocity is often called the “speed of light” of a kink since
this shrinkage mechanism is analogous to Lorentz contraction. The value V; is the
voltage corresponding to this velocity.

The waveform in the high-V region contracts in the same way as u — A
from above. However, the solution corresponding to the negative slope part is
unstable, and is therefore not observed in this current-biased system. Thus, the
stable waveform in (b) appears qualitatively different from that in (a). Now, the
phase h changes almost linearly in £, and there is no particular location that could
be called a kink in a usual sense. Since a full 27-twist of phase is still trapped in
each period, we regard this state of the kink as being “stretched”. As V increases,
the modulation in the waveform decreases.

Finally, when M > 1, we note that the traveling waveforms will appear identi-
cal to those for M = 1 except the £ coordinate is scaled by 1/M. For example, for
M = 3, the waveforms corresponding to {a,b) remain unchanged, but £ changes
from 0 to 1 while the phase h still changes from 0 to 6r. (In the I-V curve,
the voltage axis is also scaled by M since the phases now change by 2Mr during
each circulation period of a given kink.) The kinks repel one another and dis-
tribute themselves evenly around the ring. This is the only possible configuration
consistent with a traveling wave.
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3 Experiments on Josephson rings

In this section we discuss our experiments in detail. In Sec. 3.1 we describe the
experimental setup, including how to control parameters and how to measure the
I-V characteristics. In Sec. 3.2 we present several experimentally measured [-V
characteristics when the coupling parameter A is large. The /-V depends on the
number of trapped kinks M. From this dependence we can extract the value of a

remaining unknown parameter L.

3.1 Experimental setup

We have measured more than 10 different Josephson rings with different junction
parameters, geometries and fabricated with different technologies. All junctions
are made of niobium with aluminum tunnel barriers and show nearly ideal junction
behavior indicating the high quality of the junctions. The junctions are generally
made as a commercial process and, as a consequence, junction parameters are well
controlled and highly uniform. Variations in junction parameters are expected to
be less than 5-10 %.

In this paper, we discuss the results of one ring in detail. Its results are rep-
resentative for the other rings. The ring is fabricated with a four mask selective-
niobium-anodization process at AT&T Bell laboratories and MIT Lincoln Labo-
ratory. The outer ring diameter is 48 pm and the Josephson junctions have areas
of 2 um?. The junction capacitance is determined from circuit diagnostics yielding
C = 95 fF [vdZ&al94-1]. The junction resistance is assumed to be R = N Ryray
where Rarray is the measured array resistance.

The damping and coupling parameters ' and A? are determined mainly by
the junction material and electronic properties but can also be controlled, to
a certain extent, by changing the temperature T', because a lower T increases
the critical current I.(T) of a junction. The parameter ' is proportional to
I.(T)~"/? whereas A? is proportional to I.(T)~!. The temperature dependence
of I.(T) is well described by the Ambegaokar-Baratoff dependence [Duz& Tur81]
with I.(0)R, = 1.9 mV where R, = N Rarrayn is the normal state resistance of
a junction. In practice, one can decrease /. in an accurate way by one order
of magnitude below its zero temperature value. Close to the critical tempera-
ture T, = 9.2 K of niobium, I(T) changes too rapidly with T to stabilize the
temperature accurately.

Since our junctions are high quality tunnel junctions, the I-V characteristic

133



Fig. 3.1 Schematic I-V characteristic of a ring (M = 0), showing the voltage-
dependent conductance. The branch at V = 0 is the superconducting state, and
the branch at V > 0 is the finite voltage state. There is hysteresis between the two
branches. Our experiments are carried out below V,,, thus the subgap resistance
Rarray.sg determines the damping factor I' rather than the normal state resistance

Rarrny. n

for the array is highly nonlinear, as shown in Fig. 3.1 [Lik86, Orl&Del91]. For
high voltage, the I-V is linear with a slope equal to 1/Rarrayn, but there is a
steep decrease of the current at the “gap” voltage V = Vg,,. Below the gap,
the “subgap” resistance Racraysg is determined by the number of quasiparticles
(paired electrons) and hence is temperature dependent. In the present paper we
work only within the gap region where the instantaneous voltages across junctions
are smaller than the gap voltage. Hence, we use R,ray,s¢ to determine the damping
coefficient I'. Just below T, the parameters are I' &~ 0.3 and A% ~ 10. As we lower
the temperature down to about T = 4.2 K, both parameters are decreased to
[ ~ 0.03 and A? = 2.2. Thus, our junctions are underdamped, and (moderately
to highly) discrete.

In our ring with A% > 1, the current is actually injected at one node, instead of
at all nodes as assumed in the derivation of the model equation (2.11). Uniform
current injection requires a more complicated fabrication technology, as additional
pieces of metal (to be used as normal resistors) are needed to connect the nodes
with the superconducting current leads. The parameter A% not only measures
discreteness but also the typical length scale over which currents are spread out.
Thus, for arrays with A? < 1, the normal metal resistors are essential; we have
obtained good agreement between, for instance, the expected depinning current in
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highly discrete arrays and data taken on linear arrays built this way [vdZ&al94-2].
However, for larger A2, we believe that the need for normal metal resistors is not as
strong and our results in fact confirm this. Comparison with numerical simulations
on arrays with uniform current injection are in good quantitative agreement with

our data on rings with one-node injection, as will be shown in this paper.

3.2 I-V characteristics

Arrays are measured in a He-4 probe with standard equipment. At room temper-
ature the leads are filtered with radio-frequency-interference filters with a cut-off
frequency of 10 kHz. Inside the vacuum can, a small magnet produces a magnetic
field ®*** perpendicular to the array. Figure 3.2 plots typical I-V curves for rings
cooled down in different applied magnetic fields. The bias current is swept up and
down at an ertremely slow rate of about 0.001 Hz. A typical frequency of oscilla-
tion of the junctions (Josephson frequency) is on the order of 100 GHz; thus we
virtually observe no transient at all, and the measured voltages reflect an average
over trillions of cycles. Each point on the I-V curve corresponds to an attractor
of the system. The measured voltage corresponds to the average frequency on an
attractor because of the relation Eq.(2.17).

The number of vortices M is controllable: cooling the system down in a mag-
netic field of about M flux quanta ®, corresponds to trapping eractly M kinks
in the ring. As shown in Fig. 3.2, when the ring is cooled through T, in zero
field (M = 0), the I-V curve follows the superconducting states (the V = 0 axis)
up to a “depinning current” and jumps to a finite voltage at I = 0.84I.. (The
schematic Fig. 3.1 corresponds to this case.) With M = 1 applied to the ring,
the depinning current nearly vanishes and the voltage starts to increase as soon
as current is injected. This part of the I-V curve is qualitatively similar to the
low-voltage region in Fig. 2.2. Near V = 0.2mV, the average voltage saturates.
The saturation voltage is the analog of V; in Fig. 2.2. In general, when the /-V
curve becomes almost vertical, we call the vertical part of the curve a step. At the
top of the step, around I,z = 0.55]., a sudden jump to the high-voltage region
occurs.

For M = 2,3, and 4, we also see steps, but at different saturation voltages,
about 0.35, 0.43, and 0.48 mV, respectively. On the other hand, we have observed
that the I-V curve for 5®, (= (N/2 + 1)®,) is identical to the one when cooling
down with 3¢, (= (N/2 — 1)®,). This is consistent with the symmetry of the
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Fig. 3.2 Experimental I-V curves corresponding to the five possible situations
with M kinks trapped in a N = 8 ring. Measured parameters: A2 =4.0, [ = 0.17
Inset: voltage position of the steps vs. M. Curve is Eq.(3.1) with a fitting value
Vo = 0.25 mV.

model system discussed in Sec. 2.1. Specifically, the I-V curve is invariant under
M — N—-Mfor M =0,1,...,floor[N/2]. Thus, a total of 4 different steps can
be observed in our ring of 8 junctions.

Figure 3.2 shows that the voltage locations of the steps are not proportional
to M. In contrast, in the continuous approximation, the critical voltage V(M) =
2rMVy/N = V) is proportional to M [Dav&al83, Ust&al92]. Therefore, this
nonlinear dependence on M is a signature of discreteness [Ust&al95]. van der
Zant et al. have performed [vdZ&al94-1] a linear analysis of one-dimensicnal
(1D) parallel arrays with open ends for A> > 1. In such a system, resonances
occur at voltages determined by the dispersion relation of a 1D discrete, linear
transmission line of inductances L and junction capacitances C. A similar analysis
for a ring geometry yields that the resonant voltage peaks are given by

Vm/Vo = 2|sin(M=/N)| . (3.1)
(We denote the saturation voltages for the discrete rings by the same notation
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Vs, or more formally V,(M), as in the continuous rings.) In the inset of Fig. 3.2,
we plot the voltage position of the resonant steps as a function of M. The solid
curve is Eq.(3.1) with a fitting parameter Vo = 0.25mV. (This indicates that
L = 18.5 pH, a reasonable value for our geometry.)

The two data points near the Brillouin zone edge (M = N/2) are somewhat
lower than predicted by Eq.(3.1). Including mutual-inductance interactions be-
tween cells in the ring explains this effect quantitatively[vdZ&al94-1]. However,
since the deviation is fairly small, we conclude that considering only the self-
inductance L in our model system is a good approximation, thus justifying our
assumption in Eq.(2.4).

Now that the last unknown parameter L has been determined by this analysis,
there will be no adjustable parameters in the rest of this paper.
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4 Steps in the -V characteristics

Our experiments indicate that for sufficiently large A2, say A? > 10, the [-V
curves are smooth. These curves exhibit only one step around Vy; which is an
analog of the critical voltage V; of the continuum approximation of Sec.2.2. How-
ever, when A? is decreased by lowering the temperature, novel structures appear
which significantly alter the /-V curve of the continuous approximation.

These structures are described in Sec. 4.1. The dynamics is then simulated
in Sec. 4.2. We observe that the motion of each phase ¢,(¢) is the same, up to
time lags. This indicates that traveling waves still exist even though the ring is
now discrete. The corresponding branches of periodic solutions are numerically
followed in Sec. 4.3. There are two distinct regions as in the continuum approx-
imation. Novel steps appear in both regions of the /-V, but we obtain a strong

evidence that these steps are created by separate mechanisms.

4.1 Novel features of I-V characteristics

As temperature is decreased, the array becomes underdamped and discrete. This
is a parameter regime that has not been much studied before. In the particular
sample we discuss, both parameters can be decreased as low as A? = 2.2 aud
[ = 0.03. One experimental /-V curve for T = 7.0 K, trapping one kink M = I,
is shown in Fig. 4.1(a). The overall structures are similar to before; for low
voltages, a large resonant step occurs at V = 0.75V,5. At [ = 0.35/,, a jump to the
high-voltage region occurs. When the current is decreased, the system follows a
“return path” in the high-voltage region, and when [ becomes as small as 0.25/,,
the system jumps back to the low-voltage region.

However, there are also new structures that were not present for higher 7.
The steps in the high-voltage region are very clear. The return path is a smooth
curve only down to V = 4.2V, and shows three “glitches” at V = 3.8V;, 3.1V4,
and 2.2Vp. As shown in Fig. 4.1(a), there is even hysteresis when biasing on the
glitch at V = 2.2V,

There are also new structures in the low-vol.age part, shown enlarged in the
right figure of Fig. 4.1(a). In the first upgoing part of the /-V curve we observe
these fine structures. Beside the largest step near V = 0.78V,, which probably
corresponds to the critical voltage V(M ), there is also an almost vertical part at
V = 0.6415. Although subtle, there is also a smaller fluctuation at V = 0.45V},
which starts to become more pronounced when T is further decreased.
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Fig. 4.1 (a) Experimental I-V curve for N =8, M =1, A* = 2.6, and ' = 0.035
showing structures both in the low- and the high-voltage regions. (b) I-V curve
generated by a direct integration of the model system using the same parameter
values. The two figures on the right of (a,b) are enlarged views of structures in
the low-V region.

To gain insight into the origin of these new structures, we have integrated
Egs.(2.11,2.12), and drawn an /-V characteristic in Fig. 4.1(b) using the param-
eters from the experiments in (a). As in the experiment, [ is slowly swept up and
down several times, and for each I, the system is given sufficient time to converge
to an attractor. After the convergence, we measure an average frequency, then
convert it into the average voltage according to Eq.(2.17).

In Fig. 4.1(b) we observe similar structures to those found in the experiments.
In the high-voltage region, there are three steps which occur at similar voltage
positions as in the experiments. There are also three clear steps in the low-voltage:
region at similar voltage locations to those in (a). For a fixed I (e.g. 0.251.),
multiple attractors can coexist, resulting in the hysteresis loops.

The height of the steps, however, are considerably larger in the simulations
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than in the experiment. Since the height depends on the size of basins of at-
traction, it is possible that thermal noise plays an important role. Also, since
the return path is considerably higher in the experiment, we perhaps need to in-
clude the effect of the realistic voltage-dependent conductance in the RCSJ model.
Nonetheless, our study in the present paper mainly focuses on understanding the
mechanisms for the structures and predicting their voltage (i.e. horizontal) loca-

tions. For this purpose, the model system provides an adequate approximation.

4.2 Waveforms

Our numerical studies indicate that many data points on the -V curve corre-
spond to periodic solutions. These periodic solutions are the discrete analog of
the traveling waves found in the continuum approximation in Sec. 2.2,

Figure 4.2 is an [-V curve, obtained by the simulation of an N = 4 ring
with M = 1 kink. (We chose a smaller N to reduce the size of computation
discussed in Sec. 4.3.) Dots represent the computed data while the solid curve
is the continuum approximation with the same parameter values. (In fact, the
curve is just reproduced from the /-V curve in Fig. 2.2 since we have used these
parameter values for the figure.) The computed data points are clearly separated
into the low- and the high-voltage regions. Two steps are visible in the low-V’
side while there is only one step in the high-V side. Therefore, even for this small
ring, qualitative features of the I-V curve are similar to Fig. 4.1.

Two points marked as (a) (in the low-V region) and (b) (high-V') are chosen
from the data, just as we did in the continuum approximation, and the solutions
are studied more carefully To numerical accuracy, solutions at both points are
found to be strictly periodic (running) solutions of the form:

$i(t) =¢i(t+T)+2x for all j, t (4.1)

where T is the period. The point (a), whose voltage is lower than (b), has a longer

period since
ViVo =w/A =2r/(TA) . (4.2)

All four phases ¢;(t),j = 1,...,4, for both (a) and (b) are shown in Fig. 4.3 for
three periods. (The horizontal axis is time, scaled by the period.) The waveform
for the junction j = 1 is shown thicker than the others for clarity. Clearly, the
four waveforms are identical but only shifted in time by 7'/4 from j to j+1. Thus,
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Fig. 4.2 I- V curve for a N = 4 ring with M =1, A* = 1, ' = 0.1. Dots represent
data points from direct integration of the model while the curve is the branch
of traveling waves in a continuous approximation (reproduced from the /-V in
Fig. 2.2) using the corresponding parameter A = 0.25.

the solutions are not only periodic, but traveling waves of the form:
¢;(t) = f(t+Tj/N) (4.3)

where f is the waveform.

Note that the array is discrete in space, and we only see a set of four phases at
any given time. Nonetheless, there is apparently a continuous waveform propa-
gating through the array, which can be visualized in the (¢, t)-plane as in Fig. 4.3.
In contrast to the continuum system, we are not able to observe the waveforms by
taking instantaneous spatial snapshots. In other words, space and time are not
treated on equal footing for a traveling wave in a discrete system. This leads to a
non-intuitive consequence described in Sec. 5.3.

The waveforms for the two cases (Figs. 4.3(a,b)) are quite different. In the
low-V region (a), the waveform is wiggly, and the phases change nonuniformly
in time. The “wiggle” consists of a sharp change in ¢ by almost 27 (a kirk),
with a small oscillation of two crests per period superimposed on it. This can be
intuitively understood from the mechanical analog: pendula driven by a relatively
small torque have just enough energy to overturn. For most of their cycle, they
are hanging near the bottom (¢ =~ 0 mod 2r). At t =~ 0,T,2T,..., the pendulum
1, for example, flips by 2r. Then, since the pendulum is underdamped, the flip is
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Fig. 4.3 Solutions at points marked as “a” (I = 0.251., V = 0.997V;) and “b”
(I =0.2921., V = 2.90V,) in Fig. 4.2. All ¢;(t), j =1,...,4 are shown for three
periods. [The period is T = 6.30 for (a) and 2.17 for (b).] The solutions are
traveling waves propagating in a discrete ring.

followed by an overshoot, which appear as the “ringing” oscillation in Fig. 4.3(a).

It is difficult to give mathematically rigorous existence proofs of traveling waves
in discrete media. Levi [Lev88] has proved existence for the limiting case when the
width of a kink is “thin” (only one junction overturning at a time). The solution
(a) in the figure is indeed a computed example of Levi’s solution. (For N = 2
it reduces to a “caterpillar” solution [Lev90].) However, for larger A values, the
thickness increases and several pendula may overturn at the same time (especially
for larger N). Numerically, the traveling waves still seem to persist, though it is
an open problem to establish this mathematically.

In contrast to the wiggly waveform of (a), the waveform in the high-V region
Fig. 4.3(b) can be well approximated by a straight line. Though the winding
number is still M, there is no rapid change in phases as in (a). It is as if M
kinks were “stretched” uniformly across the ring in the high-V region. In the
language of the mechanical analog, all the pendula are rotating almost rigidly.
This happens when the applied torque [ is large, but the damping factor I is also
important. Notice that (as shown in Fig. 4.2) similar bias current values are used
for (a) and (b). But since I' is small, the pendula have relatively large inertia,
and are hard to stop once they start rotating. This is the high-V branch, and for
the same value of I, the two branches can coexist.
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4.3 Continuation of periodic solutions

In Fig. 4.2 the low-V region is not approximated well by the continuum limit, but
still the solutions seem to be traveling waves. Thus, we wonder how much of the
numerical simulation can be explained in terms of traveling wave solutions of the
discrete equations. In this section, we study the original model system using a
bifurcation and continuation package AUTO86 [Doe& Ker86| that can “continue” a
one-parameter family of periodic solutions as the parameter is varied continuously.

Specifically, we start from a “known” periodic solution ¢;(t + T') = ¢;(t) + 27
provided for one set of parameters. Then AUTO86 continues a branch of periodic
solutions as a parameter (the bias current [ in this case) is varied. It is harder
to find a branch of traveling waves as it leads to a system of delay-differential
equations. We content ourselves with continuing general periodic solutions, then
later check that they are indeed traveling waves, by outputting the computed
waveforms. AUTQ86 rephrases the computation of periodic solutions as a bound-
ary value problem with an additional integral condition (to remove arbitrariness
of time translation). The problem is discretized by a collocation method, and
Newton's method obtains a solution [Doe&Ker86).

We have used the same parameters as before, i.e. N =4, M =1, A2 =1, and
[' = 0.1. The initial solution is found by a direct integration of the model system
(2.11,2.12) at a large I (e.g., 0.81.) where the system is attracted to the high-
voltage part of the I-V quickly. The waveform of the solution is almost straight,
like in Fig. 4.3(b). The continuation algorithm does not depend on stability of
the solutions; the whole branch is then resolved, including the unstable part.
Also, AUTOB86 uses pseudo-arclength parametrization [Doe&Ker86] which makes
it possible to continue beyond the turning points of the parameter /.

The result is shown as a curve (partly solid, partly dotted) in Fig. 4.4. (In
the inset of the figure, the curve is shown together with the data points from
numerical simulations used in Fig. 4.2). Somewhat surprisingly, the apparently
disjoint branches in the low- and high-V regions are successfully connected. The
almost uniform waveform in the high-V region is continuously deformed to the
wiggly solution of the low-V region. The sharp peak present in the continuous
sine-Gordon equation at V = V, is now rounded and much lower. Predicting the
voltage location and the height of the transition peak between the two regions is
important, but we do not know how to describe this curious loop.

The solid part of the continued curve is stable whereas the unstable portion
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Fig. 4.4 I-V curve for the same set of parameters as in Fig. 4.2. The curve denotes
a branch of periodic solutions continued by AUTO86. Solid (dashed) part of the
curve corresponds to stable (unstable) solutions, respectively. Inset: the same
curve is shown with data points from simulation, as in Fig. 4.2.

is shown dotted. (Stability is determined by monitoring Floquet multipliers in
AUTOB86, and also checked by our program which integrates the Jacobian flow.)
In the inset, we find no data points from the direct simulation in the unstable
part. They lie on the stable part of the curve. There are two stabilized segments
on or near the “loop”, where we do not see any data points. We think there are
indeed attractors located at these segments, but are nout accessible in the phase
space by our procedure of ramping I up and back down. We would need a more
elaborate preparation of the initial condition and the bias current / to see these
stable states.

In Fig. 4.4 we confirm that all the data points in the low-voltage region cor-
respond to simple traveling wave solutions. In contrast, points on the step in the
high-voltage region are off from the branch of periodic solutions. Moreover, they
seem to emanate from the branch at a point where the stability of the periodic
solution switches. Therefore, the steps in the two regions are created by different
mechanisms.

In Sections 5 and 6, we examine the low- and the high-voltage regions, respec-
tively. For the low-V part, we will look for a condition for which kinks and small
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oscillations form wiggly traveling waves together. For the high-V part, we expect
that the steps are created by an instability of a simple traveling wave solution,

and more complicated attractors emerge from the onset.
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5 Low-voltage region

In Section 4 we observed that the low-voltage part of the [-V" curve is substantially
different in the discrete arrays from its continuous analog. The curve can exhibit
substructures and peaks, and the waveform of the solutions in this region are
wiggly, as in Fig. 4.3(a). The waveform consists of a kink and a superimposed
small amplitude wave. The kink might be described by the continuous sine-
Gordon approximation, but there is no analog for the superimposed wave. The
generation of this “radiation” by a moving kink is an essential feature introduced
by discreteness.

The mechanism for generating these small-amplitude waves has been studied
since early simulations of Currie et al. [Cur&al77] in which small amplitude waves
were generated in the wake of a kink in a highly discrete one-dimensional sine-
Gordon system in an infinite domain. Part of the kinetic energy of the kink is
taken away by the emitted waves, causing it to slow down. This decay process
was carefully studied by Peyrard and Kruskal [Pey&Kru84]. They showed that a
moving kink appears as a time-dependent forcing term in the equations of motion
for the radiated waves, and certain linear modes are excited when their natural
frequencies resonate with the forcing frequency. They also found that the precise
shape of the kink was relatively insignificant in determining the resonant frequen-
cies; those are determined by the eigenfrequencies of the lattice itself. Boesh et
al. [Boe&al89] made a more formal study of this phenomenon in terms of phonon
bands. They also made a change of variables to a collective coordinate in order
to explicitly separate the kink from the radiation. This approach was especially
successful in determining the Peierls-Nabarro frequency of a kink trapped in a
potential well [Boe&Wil89).

Although a Josephson junction has loss mechanism while oscillators in these
studies are conservative, excitation of certain modes still occurs in the Josephson
ring and is sustained when underdamped. Recently, Ustinov et al. [Ust&al93]
applied Peyrard and Kruskal's method to a highly dicrete Josephson ring, and
showed that resonances occur between the moving kinks and the generated wave.
This enabled them to predict a set of voltages for steps in the low-voltage region
of the I-V curve when M = 1. The results were in good agreement with their
simulations. In Sec.5.1-5.2 we follow this argument while clarifying their reasoning
of the dispersion relation. In Sec.5.2 the formula is tested experimentally, and we
generalize it to when there are multiple kinks in a ring. The formula is not periodic
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in the mode number of the radiation. which results in a non-intuitive consequence
that one can distinguish mode m from m + N. Sec.5.3 discusses this peculiar
effect.

5.1 Phase-locking of kink and radiation

The dispersion relation of the linear modes plays an important role in coupling of
kink and the modes. It was derived in [Ust&al93] by plugging into the sine-Gordon
equation Eq.(2.11) the exponential form ¢;(t) = ¢oexpi(w,t + kpj) where w, is
the frequency of the radiation, k is the wave number, and p is the lattice spacing.
Then, the equation was linearized by replacing sin ¢; by ¢;. However, the phases
are not librating at small angles, and this linearization is not consistent.

What we need is an approximate form of a large amplitude kink, and the
dispersion relation of linear waves around the kink. The kink can be approximated

crudely by a step function

w0, J<ut
¢;(t) —{ o . j> ot (5.1)
where v is the velocity of the kink. (Peyrard and Kruskal approximated the kink
a little more precisely, but the resonance condition is unaltered.) Then, we derive
equations for the deviation u;(t) = ¢;(t) — ¢;(t), which is assumed to be small
enough that terms of O(u?) are negligible. The linearized system is

i + Tuj + uj = A*V?y; (5.2)

For an underdamped chain, the dispersion relation for the mode u; = exp i(wrt +
kpj) is
w?(k) = 1 + 4A*sin®(kp/2) . (5.3)

r

The formula for resonances obtained in [Pey&Kru84, Boe&al89] requires that the
linear mode moves with the kink:

v= ‘% = phase velocity . (5.4)
Given the kink velocity v, this determines the wave number that can phase lock
with the motion of the kink.

When the condition Eq.(5.4) is met and the kink and the particular linear
mode couple, the whole structure forms a traveling wave. The phases ¢ at lattice
points then undergo identical motion with a time lag. This is what we observed
in Sec.4.2 for the Josephson rings.
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5.2 Preferred velocities

The system studied by Peyrard and Kruskal [Pey&Kru84] is a conservative system
(no damping I' = 0, no drive I = 0) in an infinite domain. (However, for simula-
tions, they used an absorbing boundary condition to avoid reflections.) A moving
kink radiates linear waves, and gradually slows down by losing its energy. A sur-
prising phenomenon they discovered was that the decay of the kink speed was
highly nonuniform: there was a discrete set of velocities at which the decay rate
abruptly became small. The kink cruised at these velocities in a quasi-stationary
fashion.

Moreover, by adding a small external drive (//I. < 1073) at each site j to com-
pensate the small energy loss, the kink propagation at these velocities was made
truly steady. The existence of such “preferred” velocities implies from Eq.(5.4)
that the system prefers certain wave numbers for the small-amplitude radiated
waves. There is a selection criterion for the wavenumbers.

The proposed criterion for their system is based on their numerical observa-
tions. The roots k for Eq.(5.4) can be obtained as intersections of two graphs,
1 + 4A%sin®(kp/2) and (vk)?. For a given v, there can be multiple roots. As v is
varied, a pair of roots coalesce and disappear, and these v’s are observed to agree
with the preferred velocities remarkably well. The quasi-stationary propagation
of kinks implies that little energy is taken away from the kink by the radiation
in the moving frame of the kink. Their criterion explains a sudden change in the
decay rate, but it still remains mysterious why it can also explain that the rate
becomes nearly zero.

In the Josephson ring, we also observe similar “preferred” velocities of the kink.
Actually, these could be better described as “allowed” velocities. For a ring, there
is a different selection criterion from that of Peyrard and Kruskal, which comes
from a purely geometric constraint: the wave number has to conform with the
imposed periodic geometry. For one kink (M = 1), the wave number has to

satisfy [Ust&al93|

k =2rm/(Np) (5.5)
where m = 1,2,... is the mode number of the linear wave.
Substituting this into Egs.(5.3,5.4) reduces to
Np 2. 2 1/2
v=go— [1 + 4Asin (m7r/N)] . (5.6)

At these velocities, the excited mode m is phase-locked to the kink, and together
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they form a wiggly traveling wave.
The kink speed is related to the average rotation frequency of a junction w by
w =21 /T = 2rv/(Np) which is converted to the average dc-voltage

y . 1 1 = 1/2
v—:):K:—n—; ;\_2'+451n (mW/N) ’ (!.

&)}
-3
~

This is the formula derived by Ustinov et al. [Ust&al93] which explain their nu-
merical observations of the steps in the low-voltage region well.

To clarify the physical origin of the resonance condition Eq.(5.6), it is helpful
to recall a mechanical analog of the system. We imagine a ring of N pendula, each
coupled to its nearest neighbors, whose phases ¢; are measured from the downward
vertical. In the low-voltage region, as described in Sec.4.2, a given pendulum
hangs almost straight down for much of the time, but overturns rapidly when the
kink passes by. Then, because the pendulum is underdamped, its overshooting
causes it to “ring” for several oscillations. This ringing is the essence of the
radiation excited by the kink. A resonance occurs if the pendulum rings precisely
an integer number of times between successive passages of the kink. The ringing
frequencies are the lattice eigenfrequencies of small oscillations about the kink,
and the circulation frequency of the kink is w = 2rv/(Np). Eq.(5.6) is a matching
condition (w, = mw) of these frequencies.

The formula has been tested against experimental data in Fig. 5.1, which shows
the substructures in the low-voltage region of the /-V characteristic. A single kink
(M = 1) is trapped in the ring. It uses an even smaller value A? = 2.2 (more
discrete) than in Fig. 4.1(a), making the structures clearer. In total, six resonant
steps are present, corresponding to local minima in the differential resistance
dV/dI. In the inset of the figure, Eq.(5.7) is drawn as a solid curve. A good
agreement between the model and the experiment is obtained without any free
parameters.

When there is more than one kink (M > 1), the resonance formula can be
generalized by assuming that the kinks evenly distribute themselves around the
ring, as occurs for the continuous system (Sec.2.2). Then, for a junction to ring
an integer number of times between consecutive passage of kinks, the wavenum-
ber should be restricted to k = 2rmM/(Np). The frequency of a junction now
becomes w = 2rMv/(Np). Thus, the generalized formula of Eq.(5.7) is

1/2

V w 111 .
[K;+4sm2(mM1r/N) . (5.8)
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Fig. 5.1 Experimental /-V curve for N =8 M =1, A* = 2.2, and I = 0.13. The
solid curve shows dV/dI; note six dips corresponding to six resonant steps in the
I-V curve. Inset: voltage position of these six steps vs mode number m. Curve
is the formula Eq.(5.7) without a free parameter.

We have not tested this formula against the experimental data. However, when
tested against simulations of an N = 8 junction array with parameters A? =
2.2 and T = 0.13, the formula predicts the step locations reasonably well. For
example, when there are M = 3 kinks, we observe steps at V/V, = 0.68 and 1.8;
they are close to the values predicted by the above formula: V/V, = 0.78 (m = 2)
and 2.0 (m = 1). For M = 4, we observe only one major step at V/V, = 2.0,
again close to the formula with m = 1: V/V; = 2.1. We observe several extra
steps that we cannot explain, but the mechanism and the formula seems to be
valid for M > 1.

When A? > 1 and m = 1, the formula (5.8) reduces to Eq.(3.1), which pre-
dicts the location Vs of the tallest step in the low-voltage region. However, the
derivation of Eq.(3.1) uses [vdZ&al94-1] a linear analysis of one-dimensional dis-
crete transmission line rather than the phase-locking mechanism described here.
It is not clear whether the two different physical pictures of dynamics coincide on

this particular step.

150



5.3 High wave number resonances

The formula Eq.(5.7,5.8) has peculiar consequences. Ordinarily, one expects that
in a discrete ring of NV junctions, only N/2 steps are distinct, or perhaps N at
most, as assumed in [Ust&al93]. But because the formula is not periodic in the
mode number m. the voltages V;, and V.4~ are predicted to be different for all
m. This paradox can be resolved by either finding a reason to restrict the wave
numbers m from 0 to N — 1 (or maybe —N/2+1 to N/2) or by showing that these
high wave number steps can actually be observed. We could not find any reason
for restricting the wave numbers, thus it seems that m can indeed take values
outside the first Brillouin zone, up to m = oo, at least in principle. This may
be non-intuitive since the deviation u;(t) can be expanded as a discrete Fourier
series for all {. But to test the idea, we return to the numerical study of the /-V
curves.

The existence of steps with m > N is clearly indicated by the I-V curve
shown in Fig. 5.2, using a small (but realizable) damping ' = 0.02. (Simulations
indicate that the steps corresponding to high wave numbers can be observed in a
parameter region given approximately by A <1 and [' < 0.05. A larger damping
washes out these resonances.) One kink M =1 is trapped. The mode numbers
m, given at the base of the steps, were determined by carefully examining the
traveling waveforms ¢;(t) = f(£), where £ =t + Tj/N. (Recall that there exists
such a continuous waveform, even in the discrete lattice, as discussed in Sec.3.2.)

As shown in the inset of Fig. 5.2, a waveform with m = 9 small oscillations
can occur in a ring of N = 8 junctions. The corresponding step lies between
the m = 7 and m = 8 steps; this is expected from Eq.(5.7), which predicts that
V.. is non-monotonic in m, and specifically that Vs lies between V7 and Vs. The
non-monotonicity also explains why the steps for m = 10,...,14 are not visible
in Fig. 5.2; they are hidden under the stronger resonances for m = 7,...,9, which
occur at approximately the same positions. The location of the next detectable
step, corresponding to m = 15, is well predicted by Eq. (5.7).

The physical relevance of mode numbers outside the first Brillouin zone is
readily understood in terms of the pendulum analog. The integer m is the number
of times each pendulum oscillates between consecutive sweeps of the circulating
kink. This number can be arbitrarily large, if the kink is moving sufficiently slowly
(as it will be, near the bottom of the I-V curve). Of course, in a linear discrete
system, one cannot distinguish between mode m and m + N the difference is that
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Fig. 5.2 Numerical /-V curve of the model system with N =8 M =1, A? = 1.0,
and I' = 0.02 showing high wave number resonances. The mode number m of
linear waves is indicated below each step. Inset: traveling waveforms on the
m = 6 and m = 9 steps.

there is nothing analogous to a circulating kink in a linear system. The rotation
of the kink—an inherently nonlinear phenomenon—provides the crucial reference
that allows one to discriminate mode m from m + N.
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6 High-voltage region

In this section we discuss the resonant steps in the high-voltage region of the /-
V characteristics. Unlike the low-voltage steps, these steps do not arise from a
phase-locking mechanism; instead, they emanate from bifurcation points where a
simple periodic solution becomes unstable.

Our analysis is motivated by Maginu [Mag83] who studied the stability of the
“spatially homogeneous periodic solutions” in a continuous Josephson junction
equation with a periodic boundary condition. These solutions are the traveling
wave solutions in the high-voltage region where kinks are stretched. His analysis
for M = 0 proves that such solutions can become destabilized by a parametric
instability mechanism, and spatially inhomogeneous solutions emerge. He briefly
mentions that, for M > 0, the homogeneous solutions can again be destabilized.

Our aim in this section is to analyze such parametric instabilities for a general
finite N > 2, both with no external magnetic field (M = 0) and with a magnetic
field (M = 0,1,...). Also, we are more interested in estimating the voltage
locations for these instabilities rather than proving that they do occur. In Sec. 6.1
we start from a general framework for the stability analysis of periodic solutions.
In Sec. 6.2, the Josephson ring with no trapped kinks (M = 0) is analyzed. A
small perturbation around the basic in-phase state is decomposed into modes, each
of which obeys a Hill’s equation. In the regime of interest, Hill's equation may
be approximated by a Mathieu equation. We also estimate the frequency/voltage
zones in which the basic solution is destabilized. In Sec. 6.3, the analysis is
extended to the case M > 0. The modes are now coupled, but due to the whirling
form of the basic state, the mode m is only coupled to ma + M. Because of this
simplicity, it is straightforward to predict the resonant frequencies.

This instability analysis can be extended to different boundary conditions and
to continuous systems. We extend our analysis to discrete arrays with open ends
in Sec. 6.4. This approach explains the so-called zero-field steps when f = 0, and
predicts novel steps (generalization of the zero-field steps) at various combina-
tion frequencies when f > 0. Our analysis is similar to what has been used for
predicting locations of so-called Fiske steps in a continuous Josephson junction
with a large A%. Sec. 6.5 is a discussion of this curious “coincidence”, and shows
that both the Fiske and the zero-field steps may be understood within a uniform
framework in the discrete arrays regardless of the boundary conditions.
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6.1 Stability analysis

We first review a general stability property of periodic solutions in the model
system. We denote the basic periodic solution by @}(t) where ¢3(t+T) = @}(t)+27
and T is the minimum period. We study the linear stability of this solution by

linearizing around the basic state:
6,(t) = @j(t) + uy(t) (6.1)

where u; is the perturbation. By substituting Eq.(6.1) into Eq.(2.11) and retaining

only the first order in u, we obtain
i, + [, + [cos &}(1)] u; = A*VPu, | j=1,...,N. (6.2)
The boundary conditions for a ring array become
u,+N(t) = u;(t) for all ¢t and j (6.3)
while, for a linear array,
uo(t) = up(t) , un4i1(t) = un(t) for all ¢. (6.4)

This is a linear system of 2N first-order ordinary differential equations with time-
periodic coefficients.

The local stability of the trivial solution u; = 0 is determined by the Floquet
multipliers [Nay&Moo79, Jor&Smi87]. There are 2N independent functions, each

of which satisfies
u;(t + T) = puj(t) , foralltand j (6.5)

for some (possibly complex) number u. Such a 4 is a Floquet multiplier. If all 2NV
multipliers satisfy |u| < 1, then the trivial solution is stable. If some p satisfies
|#li1, it is unstable.

One of the multipliers can be easily found. It corresponds to the eigenmode

u;(t) = 3(t) (6.6)

[t can be easily seen that this satisfies the governing equation Eq.(6.2) and the
boundary condition Eq.(6.3) or (6.4) as well as the condition Eq.(6.5). The cor-
responding multiplier is 4 = 1. In the original system Eq.(2.11), this is a pertur-
bation along the periodic orbit ¢;.
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Another general property of the multipliers can be seen when we transform
the variables according to
uy(t) = e™" %0 (1) (6.7)

which converts Eq.(6.2) into
U; — pi(t)v; = A*VP; , j=1,...,N (6.8)

where p;(t) = ['?/4 — cos #;(t). This set of equations can be cast into a time-
dependent Hamiltonian system, which implies|Gel&Lid58] that all the multipliers
for Eq.(6.8) must lie on the unit circle or, otherwise, the multipliers must come in
pairs such that their products are unity. Since the transformation Eq.(6.7) scales
the multipliers by a factor of exp(—I'T/2), this symmetry requires the p’s to lie

on the circle of
radius = e~ 7/2 (6.9)

(which we shall denote as C) or, otherwise, they come in pairs g, and p, such
that
papz = e TT . (6.10)

In addition, since all the u; are real, the multipliers must be real or, otherwise,

must come in complex conjugate pairs.

6.2 Ring, M =0
6.2.1 Approximation of stability boundaries

The simplest case is a ring array of Josephson junctions with M = 0 (no kink
trapped). In this case, the basic solution is the in-phase solution

¢3(t) = ¢°(t) (6.11)
Expand u; into the discrete Fourier series
N-1 o
uj(t) = Y. Am(t)em ™IV (6.12)
m=0
Then, Eq.(6.2) becomes
Am+TA, + [w3n+cos¢'(t)] Apn=0 ,m= —%Jr 1% (6.13)
where
wm = 2A [sin(mn /N)| (6.14)
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is the lattice eigenfrequency of the m-th Fourier mode. The modes are decoupled.
and each obeys a Hill's equation Eq.(6.13). Each equation gives two Floquet
multipliers which must satisfy the symmetry constraint Eq.(6.10). Thus there are
only two possibilities: (1) g, and g, are a complex conjugate pair lying on the
circle C'. (2) they are real with the product relation Eq.(6.10).

The mode m = 0 can be analyzed easily. The modal equation is

Ao+ TAp + [cos ¢7(1)] Ao = 0 . (6.15)
One “eigenfunction” which satisfies Eq.(6.5 is the trivial solution:
Aolt) = o7(t) (6.16)

accounting for the unit multiplier g, = 1. This eigenfunction is always (neutrally)
stable. Because of the relation Eq.(6.10), there must be a second eigenfunction
corresponding to a multiplier y, = exp(—UT). Perturbations in this direction
always decay.

For the other Fourier modes we expect generic behavior, i.e. change of stability
as parameters are varied. To estimate when the stability switches, we approximate
the whirling solution ¢*(t). For the in-phase solution, the coupling term V?¢; in
Eq.(2.11) vanishes. Thus, the equation reduces to the single junction equation:

¢6+To+sing=1/I, . (6.17)

It is more convenient to scale time by 7 = wt where w = I /(['l;). Then,

d*¢ _1dd —2 . -1

ﬁ+[‘w E-}-w sing = lw . (618)
For any fixed ' > 0, the whirling periodic solution can be obtained perturbatively
as w — oo. There is no need to modulate the time coordinate for several lower

order expansions, and we obtain [Wat&Swi95]:
1 . 1 -
o(r)=1+ Esm(r) + J[‘cos(r) +O(w™) . (6.19)

Since the correction term quickly becomes s. 1all, taking only the first term ¢*(¢) =
wt would be sufficient to estimate the multipliers. Under this assumption, and
after rescaling time as above, Eq.(6.13) becomes the damped Mathieu equation

in the standard form
AV (T) + AL (T)+ (6 + €cos T)Ap(T) = 0 (6.20)
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Fig. 6.1 Intervals D,, where the m-th mode grows due to parametric excitation.
(See texts.) The parameter ¢ = 1/w? essentially denotes the forcing frequency.
Shaded regions are Mathieu tongues. (b) is an enlarged view of (a).

where v = ['Jw, § = w? /w?, and € = 1/w?.

Depending on (4, ¢), the stability of the solution A, = 0 can be determined
graphically as in Fig. 6.1 for N = 8, A = 1.6. The shaded regions are Mathieu
tongues in which perturbations grow exponentially. Since the parameters are

related by
§=uwie, (6.21)

the allowed parameters are confined to an operating line through the origin as w is
varied. The slope of the line depends on the mode number m. Since wy-m = Wn,
there are only N/2 = 4 lines shown in the figure. Sufficiently large w corresponds
to a point near the origin, thus all modes are stable (in the sense that Am(7) = 0
as T — 00). As w is decreased, the operating point along each line crosses the
tongues. Then, the modes become unstable for some interval of w, and are later
restabilized when the point exits the tongue. In the experiment and numerical
simulations, we only see instabilities corresponding to the first tongue, emanating
from (6, €) = (1/4,0). Thus, we focus our attention on this tongue alone.

The € axis is inversely proportional to w?. Therefore, we are able to interpret
an instability interval (D, in Fig. 6.1(a), for example) as the frequency range
where the mode is unstable. In Fig. 6.1(b), such intervals for modes m = 2 to 4
are shown. The upper (lower) boundary of D,, is the lowest (highest) frequency
of the interval, which we call w = Q7 (Q, respectively). We estimate Q% by
approximating the boundary of the tongue. (See Jordan and Smith {Jor&Smi87]
for an illustration of the required perturbative calculation.) Including the effect
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of damping, the boundary is [Jor&Smi87]
1 N 2
§=-F5]1- (-’) +0(€%) (6.22)
12 €
for0 < e < I, ie. w>» 1. When v > € (or w > 1/I'), the tongue disappears

for small €. and the mode A,, is always stable. Otherwise, Eq.(6.22) gives us the
estimate. For example, when we further assume ['w < 1, then Eq.(6.22) becomes

dw? =W F2\/1 —(Tw)? = (1 £ M)W F2+ O(I'w?) .
Thus,

402 £21'* 2w 1
:t~ _m - - ~ m *)
Q’"~[1:tl‘2] ~1ir2(l:t4w31). (6.23)

Hence, the m-th resonant frequency is w = 2w,, with a small correction, as ex-

pected from the theory of Mathieu equations.

6.2.2 Comparison with numerics and experiments

This approximation Eq.(6.23) for the m-th resonant frequency explains the nu-
merical I-V curve very well. In Fig. 6.2(a) we show such an I-V together with
the predicted instability intervals D,, for N = 8, A = 1.6, and I' = 0.035. Fre-
quencies w in the formula Eq.(6.23) are converted to voltages according to the
relation V/V, = w/A. The instability intervals D, through D, agree well with the
intervals where the return path is disrupted. We expect that bifurcations occur
at both ends of each D,,. As is well-known for the first Mathieu tongue, they are
both “subharmonic” or “period-doubling” bifurcations. Clearly from Fig. 6.2(a),
w = (1 is a supercritical bifurcation; a stable branch of solutions emanates at
that point from the in-phase solution branch. On the other hand, w = Q} is
subcritical; a sudden jump occurs, and carries the system to a distant attractor
in the phase space.

Comparison with an experiment is shown in Fig. 6.3. There are resonant steps
which are associated with instability intervals of the whirling mode branch. The
voltage positions of the steps are in good agreement with the leading order esti-
mate of the formula Eq.(6.23) w = 2w, (curve in the inset). No fitting parameter
is used. The predicted instability intervals D,, contain the observed steps, how-
ever, they are smaller than the observed intervals. We have not studied the reasons
for this premature jump; one reason might be that, near the stability boundaries,
thermal noise kicks the system out of the in-phase state. Also, we notice that
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Fig. 6.2 Numerical I-V characteristics. (Frequency w is used for the horizon-
tal coordinate instead of voltage.) The interval D,, corresponds to the formnula
Eq.(6.23). Parameters: N =8, M =0, ' = 0.035, and (a) A = 1.6, (b) A =0.8.

the m = 4 step is missing in the experiment. This can be understood from the
numerics in Fig. 6.2(a). The gap between intervals D3 and Dy is so small that
there is little support for the m = 4 step. When the bias current in the numerics
is swept a little faster, we observe that a trajectory does not stop at the m = 4
step, either, but makes a jump to the m = 3 step immediately.

Therefore, one sees that observation of the steps is closely related to the insta-
bility intervals D,,. It is necessary to study the locations and widths of D,, more
carefully. Recall that a step seems to emanate from the lower-frequency end of
each D,,. Thus, to have the m-th step, it is necessary that the whirling mode not
only become unstable, but it must also regain stability at lower frequencies.

To illustrate this point more clearly, we show another numerical /-V curve in
Fig. 6.2(b), using the same parameters as in (a) except that A is now reduced by
half to 0.8. Now, we do not see a step at all, but the system jumps back to the
superconducting state (V = 0) once the return branch becomes unstable. This
is because all D,, overlap for this parameter set, and there is no point on the
whirling branch for a step to bifurcate from. In the figure D, through D, are
estimated by the formula Eq.(6.23). Q[ is not shown since the estimate becomes
clearly irrelevant due to the curvature of the tongue.

Occasionally, we observe “remnants” of steps in which the top part of a step
still appears on the I-V, but the bottom part does not reach the whirling branch
and is missing. This happens when the overlapping of the intervals D,, is relatively
small, and a trajectory “fortunately” jumps into the domain of attraction of an
attractor with a highly nonlinear motion. We are unable to analyze these more
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Fig. 6.3 Experimental I-V characteristic with N = 8, M = 0, A? = 2.6, and
[' = 0.035, which shows three resonant steps in the high-voltage region. The in-
terval D,, corresponds to the formula Eq.(6.23). Inset: dots are measured voltage
positions of the steps vs mode number m; curve is the leading order estimate
w = 2wy,

complicated attractors; but see Section 7 for numerical studies of the dynamics in
this nonlinear regime.

6.2.3 Parameter regime for steps

In our experiments, these steps are observed only when the temperature is low,
and when the system is underdamped and discrete. We make a rough estimate
of the parameter regime when we expect to see the m-th step. The conditions
are already described above; to summarize them, firstly, the instability interval
D,, must exist. Damping causes the Matkieu tongue to shrink, and thus can kill
the instability of higher wave numbers. (For the discrete ring, wavenumbers near
m = N/2 are the first to be killed.) This occurs if Eq.(6.22) does not have a root,
i.e. ¥ > €. Since w =& 2w,,, this relation translates into

wm < 1/(2) . (6.24)
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Secondly, the intervals must have a space in between so that the whirling mode

regains stability. For this to happen, it is necessary to have
ar_ <0 (6.25)

for m > 1.

Thirdly, the basic solution ¢°(¢) must exist. (Otherwise, the whole analysis
is meaningless.) For the single junction equation Eq.(6.17), the periodic solution
¢ = ¢~ exists if and only if I > I where [*(T') is the bifurcation current defined
and discussed in Sec. 2.2 below Eqs.(2.24,2.25)). (At I = I* either a homoclinic
or an infinite-period saddle-node bifurcation occurs.) Near [ = I*(T'), the branch
of the in-phase solution on the /-V curve must be bent, and the motion deviates
substantially from the whirling solution. As I is decreased below I*(I'), the system
is back in the superconducting state. Thus, there is a frequency wmin below which
the whirling in-phase oscillation cannot be sustained. Hence, any frequencies w

which appear in the analysis must at least satisfy:
w > wmin = I°(T)/(T1,) (6.26)

to guarantee existence of ¢°.
After substituting the dispersion relation Eq.(6.14) into the three conditions,

we obtain
24 FOVEL AT -
4N sin(mn /N) N ~4Nsin(mr/N)
and A {
_ (6.28)

N g 2N [sin((2m — l)1r/N)sin(7r/N)]l/2 '
(Scaling of A by N seems natural as will be seen below.) For the onset of the
m = 1 step to exist, only the first relation is necessary. For the onsets of the
m > 1 steps, both relations (6.27,6.28) must hold.

In Fig. 6.4(a) the shaded area is the parameter region in the (A/N,T')-plane
where the onset of the m-th step can be observed for N = 8 rings. As shown, I'
has to be sufficiently small, or the onset will not be possible. For a fixed I, only
an interval of A/N allows the onset.

For small T, I*(T') is almost linear, thus the left hand side of Eq.(6.27) does
not depend strongly on I'. Together with Eq.(6.28), this implies that the lower
boundary of A/N is almost vertical. This estimate is affected by the curvature
of the Mathieu tongue when N is large and m is small. On the other hand,
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Fig. 6.4 Estimated regions in the parameter plane where an onset ¢of the m-th
step is expected to occur. For (a) N = 8 and (b) N = 16, the regions are given
by Eqs.(6.27,6.28)) while, for (c) the continuum limit, Eqgs.(6.31,6.32) are used.
Small " and an intermediate A is necessary to expect the onsets.

the hyperbola in Fig. 6.4(a), given by the right hand side of Eq.(6.27), remains
accurate for any N as long as I' is small.

In Fig. 6.4(b) we show the region for N = 16. Now, there can be N/2 = 8
intervals at most so that m = 1 to 8 are shown. Qualitatively, the picture is
unchanged.

The analysis and estimate can be extended to a continuous Josephson ring,
whose governing equation is given by Eq.(2.19) and boundary condition in Eq.(2.20)
with M = 0. We linearize the system around the in-phase whirling solution
#(z,t) = ¢*(t) =~ wt, then use Fourier series to decompose the perturbation into

modes:

Ha) = 0+ 3 An(t)e?™™ (6.29)

m=-=o0
Then, A, (t) obeys the same equation Eq.(6.13) except m now ranges from —oo
to co. The dispersion relation is also modified to

W = 2TAM . (6.30)

The conditions Eqs.(6.24-6.26) are unchanged. Thus, the onset of the m-th in-
stability is expected to occur in the parameter region

2+ I"(T)/(TL))/? 1/T
yp— <A< 4—7% (631)

and 1 |
A (6.32)

> 2r[m? — (m — 1)?]1/2 = 2nv2m — 1
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The inequalities are, of course, the limit of Eqs.(6.27,6.28) as N — oc while m is
fixed, and where ) is identified with A/V.

The region is shown in Fig. 6.4(c). Again, we obtain a qualitatively similar
picture. The only difference is that the tip of the shaded region approaches the
origin as m — co. Maginu [Mag83] has shown a numerical example of the period
doubled solution in the continuous system, using a parameter set which translates
into our expressions as [ = 0.15, [ = 0.25, and A < 0.17. This is indeed within
the shaded region in Fig. 6.4(c).

Finally, we note that Doedel et al. [Doe&al88] have obtained such a parameter
region of instability for N = 2 junctions. They impose a constraint [ = (5/3)e
and considers when ¢ — 0 (the conservative limit), thus comparison of our result
with theirs is difficult. However, they find a similar tendency that damping must
be small and the coupling be intermediate to see the period-doubling bif:iication

from the in-phase solution.

6.3 Ring, M >0

We turn to the case when there are M kinks trapped in a ring. For the high

frequency region these kinks are “stretched,” and the periodic solution is the

whirling (but not in-phase) state:

2rM )
N

(This is again the leading order term of a formal perturbation expansion. The

$3(t) = wt + : (6.33)

next term is O(w~?%).) The perturbation is stil expanded in the discrete Fourier
series Eq.(6.12). The modes are, however, now coupled The coupling can be
of a long range, but under the approximation Eq.(6.23). the m-th mode is only
coupled to the (m £ M)-th modes:

. 1, .
Am +TAn + Wi An+ 5 (e Amop + €™ Amynr) = 0. (6.34)

The trivial perturbation is stili
u; = ¢, (6.35)
which corresponds to the m = 0 mode when we use the approximation Eq.(6.33)
since ¢} ~ w for all j.
In the previous section it was sufficient to approximate the instability bound-

aries only up to O(e), where ¢ is the magnitude of the parametric forcing. Our
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analysis is the same here, by formally introducing € in Eq.(6.34). Also, we neglect
the effect of I' for simplicity since the small damping was not important for the

earlier estimates when M = 0. Then,
4"1 + u),zn Am +¢€ (C‘W‘Am—lu + C_thAm+M) =0 (636)

where € = 1/2. (We do not rescale time as we did in the previous section; it
was more intuitive to use the picture of the Mathieu tongues for M = 0. but it
is no longer useful for M > 0.) The lattice eigenfrequency w,, is the same as in
Eq.(6.14).

For ¢ = 0, Eq.(6.36) is a set of harmonic oscillators with frequencies w,,. Since
the m-th oscillator is coupled only to the (m + M)-th ones, resonances occur in
the O(¢) expansion at frequencies

W R Wt weeMm (637)

for each integer £. (We use m as a running index while ¢ is fixed.)
We analyze solutions near these frequencies [Nay&Moo79]. First, choose the
positive sign. Let
W =wr+ weeM + €0 (6.38)

where m is a detuning parameter. We use the two time-scale method. Expand

Anm(t) in powers of e.

Anm(t;€) = fj € Amp(To, T1) (6.39)

p=0
where To = t and T = €T} are the fast and the slow time scales, respectively. We

treat Ty and T as independent variables. Thus,

d d?
i 0o + €0, rrehe B3 + 2€800, + €20} (6.40)

where d; = 9°/9T,. We require A, to be bounded in Tj for all m and all p > 1.
Substitute Eqgs.(6.39,6.40) into Eq.(6.36), and equate like powers of . At O(1),

we obtain
agAmo-i-w,znAmo =0 . (641)

The solution is

Amo(To, Ty) = B (T1)e™ T 4 Cp (T} )~ emTo (6.42)
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for m # 0. Since A,, = A", is necessary for the u;’s to be real, Ay = A~

too. Using w_m = wn,
Bn=C, , Cu=B . (6.43)

Also, all indices are N-periodic.
At O(e), we obtain

63Am| + W,znAml = —20p01 Amo — (eiWToAm-M,o + e-iWT°Am+M.o) (6.44)
which become, upon substitution of Eq.(6.42),
—( Am1 + w2 A1) = 2iwm (Blpe™mT — Cle™em )

_I_Bm_Mei(w+wm—M)To + Cm_Me"(w—Wm-M)To
+ Bpyye remimlo 4 O et eremin)To (6.45)

where prime denotes differentiation with respect to the slow time 7). Substitute

Eq.(6.38). Then,
_(agAml +U-’,2nAm|) = 2iwnm (B:neiu"‘To — C"ne’imeo)
+Bm_MeioT| ci(w¢+w¢+M+wm_M)To + Cm_MeiaTl ei(w‘+“"+M""m—M)T0
+ Bm+Me—iaT| e-i(w¢+we+u-wm+M)To +Cm+Me-iaT;e-i(w¢+w,+M+um+M)To (6.46)

The natural frequency on the left hand side is +wy,, and when the forcing terms on
the right hand side have this frequency, then resonance occurs and the expansion
Eq.(6.39) ceases to be uniformly valid. We will eliminate these secular terms in
order to find the stability boundary of the whirling state.

On the right hand side, the first and the second terms are secular, and they
can be eliminated by setting B,, = const. and C,, = const., if there are no other
secular terms. This is the case for most m’s except when m = € and (¢ + M).
For m = ¢, the fifth term is

Bl-l-M e—iaTl e —iweTo

1)

which is secular to the natural frequency of the left hand side w = w,. This can

be canceled out by the second term by imposing

— 2iwC} + Bryme T =0 . (6.47)
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For m = ¢ + M, the fourth term,

CreTigiwesnTo
now resonates witl the natural frequency w = wespr. So, we impose
Qiwerrm Biypy + Cee’ =0 (6.48)
Now, solve Eqs.(6.47,6.48) to obtain
Beam(Th) = 22w, e Cy(Ty) = 2T (6.49)

where
b A + dowpop A +1 =0 |

o 1 1
A= —— 4 = / 2 _ ) )
5 + 5\/7 Y (6.50)

C¢ will have an exponentially growing component in T if the argument of square

or,

root is negative. Otherwise, the solution is purely oscillatory and stable. The
transition to the instability occurs at

o=+ (wwernm)? , A=—0/2 . (6.51)

From Eq.(6.49), Bersm and Cg oscillate at frequencies (A + o) = +0/2 and A =
—0o/2, respectively, in the T| scale. Eqs.(6.46) for m = —¢ and —(¢ + M) are
merely conjugates of m = ¢ and ¢ + M, respectively, so that we obtain the same
conclusion. Substituting Eq.(6.51) into Eq.(6.38), the estimate of the tongue of
instability emanating from wy + weypr at € =0 is

w=wtwamt ———=0F | e=1/2 . (6.52)

N
The whirling solution is unstable within w € D, where D, = (;,0Q}) as we
defined before for the case M = 0. Indeed, the interval given in Eq.(6.52) reduces
to Eq.(6.23) for M = 0 with [' = 0.
However, the type of bifurcation at the onset of instability is different when
M #0. From Eqgs.(6.42,6.49,6.51), nontrivial modes at the onset take the form:

{ Aw = exp(—10T/2) exp(—iweTo) = exp[—i(we + €0/2)Ty)

Atimo = owrexp(ioT,/2) exp(—twermTo) = oweexpli(werm + €0 /2)To) .
(6.53)
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We choose the independent frequencies to be
wE=wet w0 Aw = wear —we - (6.54)

Then,
A(o = exp(—ino/Q) exp(zAwTo/Z)
Aeerro = oweexp(iwTy/2) exp(iAwTp/2) .
Thus, if we strobe the system at discrete times To = 27k /w, k = integer, to con-
struct a Poincaré section, we would observe these amplitude variables oscillating

at:
the slow frequency = Aw/2 . (6.56)

The instability, therefore, generically leads to a Hopf bifurcation.

Analysis near w = w¢ — weenr can be carried out in a similar way. We find
Eq.(6.50) arises as the stability criterion again (with a real A corresponding to
the stable situation), but the argument of the square root is now changed to
0? + 1/(wewesnp ). Thus, it is always positive, and the trivial solution is stable.
There are no instabilities near these frequencies. When ¢ = 0 or ¢ + M = 0,
Eq.(6.42) must be replaced. We do not pursue this exceptional case.

Fig. 6.5 compares the formula Eq.(6.52) with (a) experiment and (b) numerical
simulation. (The I-V curves are the same as Fig. 3.1(a,b), respectively.) In the
inset of Fig. 6.5(a), only the leading order estimate w X wp + wm4ar is compared
to the observed voltage positions of the three resonant steps corresponding to
m = 1,2,3. (Now, m is used to label the instability intervals.) The inset shows
that the agreement is again very well without any fitting parameter.

The validity of the correction term in Eq.(6.52) can be checked by Fig. 6.5(b)
which shows the Ohmic branch disrupted at each instability interval D,,. At
w = QF the bifurcation is subcritical while at w = Q, it is supercritical. In
Section 7 we will look at dynamics along a step.

6.4 Arrays with open ends

For parallel arrays with open ends, the boundary condition Eq.(2.12) is replaced
by Eq.(2.15). The strength of the external field is measured by the frustration
f, which can assume any real value unlike M. The notion of the parametric
instability holds in this case, too. The results are, however, more complicated. The
parameter f can be restricted to 0 < f < 1/2 as described in Section 2. Arrays
with no frustration f = 0 are simple to analyze, as the modes decouple again,
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Fig. 6.5 (a) Experimental -V characteristic with N =8, M =1, A = 2.6, and
[ = 0.035 (same as Fig. 4.1(a)). The interval D,, corresponds to the formula
Eq.(6.52). Inset: dots are measured voltage positions of the steps versus mode
number m; curve is the leading order estimate w = wp, + wWmsr- (b) Numerical
I-V curve (same as Fig. 4.1(b)). Voltage intervals D, to D3 agree well with the
intervals where the whirling solution becomes unstable.
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so we treat this case separately. Frustrated arrays (f > 0) are not completely
analyzed yet, and we will supplement analysis with numerical methods.
The first step for our analysis is to find the basic state for the ohmic branch

of the I-V characteristics. In analogy to the ring, a linear function of the form
6,(t) = ¢7(t) ~ wt + 21 [ (6.57)

is a good approximation. This solution undergoes parametric instabilities, and
resonant steps also arise in the /-V curve for these arrays. To estimate the
voltage locations, we linearize around the solution ¢°, then get the same system
Eq.(6.2) with the boundary condition Eq.(6.4).

6.4.1 Zero field

When f = 0, the whirling solution Eq.(6.57) is j-independent and in-phase. The
lattice eigenmodes are easily found. Expand u; into the discrete Fourier cosine
series [Pre&al92)

N-
uj(t)=Zl’Am(t)cos(mw(j—lﬂ)/N) . j=1,...,N (6.58)
=0

which satisfy the open end boundary conditions Eqs.(6.4), instead of Eq.(6.12)
for the ring. (Here, the prime for summation denotes a factor of 1/2 only in front
of the m = 0 term.) Its inverse is

) N

An(t) = -ﬁz:u,-(t)cos(mw(j -1/2)/N) , m=0,...,N-1. (6.59)

i=1

After substitution of (6.58) into the linearized system Eq.(6.2), we find that
each mode is decoupled again so that we obtain the same equations Eq.(6.13) with
the resonance condition w = 2w,,. Only the dispersion relation is different:

wm = 2A [sin(mw /2N)| . (6.60)

Therefore, N — 1 instead of floor[N/2] different resonant steps are observable.

Figure 6.6 shows the measured voltage steps versus mode number for an open-
ended array with N = 9 junctions. As expected, N — 1 = 8 steps are present.
The solid curve is the resonance condition w = 2w,,. As in the case of rings, no
fitting parameters enter the analysis and good agreement exists between the data
and theory. ‘
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Fig. 6.6 Voltage locations of the zero-field steps in an open-ended array with N =9
junctions. Parameters are A? = 4.0, [ = 0.063, f = 0. dots: measured voltage
positions of the steps versus mode number m; solid curve: theoretical estimate
w = 2w,, converted to voltages.

6.4.2 Frustrated arrays

Next, we turn to the more interesting case f > 0. Now the modes are coupled
because of the j-dependence of the basic solution ¢} in Eq.(6.2). The coupling is
also more complicated than in a ring with an integer M > 0.
Substituting the expansion Eq.(6.58) into Eq.(6.2) and using orthogonality, we
obtain the modal equations:
. . N-1
Am +TAn + W2 An + Y ' cmn(t)An =0 (6.61)

n=0

where the coupling coefficients are

N
Emn(t) = Cam(t) = 3 cos (m(j ~ 1/2)/N) cos (nm(j ~ 1/2)/N) cos (4(1)) -

)=l
(6.62)
Using the approximation Eq.(6.57), this can be written as
Cmn(t) = amn cos(wt) — b,y sin(wt) (6.63)
where ; (nf
Amn | _ | cos(mf) —sin(wf) Cmn
[ bmn ] B [ sin(rf)  cos(xf) ] [ Bmn ] (6.64)
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and

N
Qmn + 13mn = Zcos(mx(j —1/2)/N)cos(nm(j — 1/2)/N)exp2mif(j —1/2)] .
=1
’ (6.65)
When 2fN #integer, this sum reduces to

1
Omn + iBmn = (1/8) Y1 [1 — exp(igym)] /sin(g,m/2N) (6.66)
s=1
where g2 = 2fN £ (m + n) and ¢34 = 2fN £ (m — n). Given (m,n, f), the last
form allows easy evaluation of the coefficients, but the general trends of coupling
strengths among modes are not so transparent. When 2fN =integer (“commen-
surate” frustrations), arguments of the summation become simplified, but book-
keeping of all combinations of (m, n) is still tedious. Since one of the denominators
becomes small when g, = 0 (mod 2N) for some s, the modes m and n are most
strongly coupled, roughly speaking, near such frustrations as 2f N = m —n. How-
ever, even at these frustration values, the other terms do not necessarily vanish,
and the situation is not as clean as in the ring geometry with M > 0.

We have not yet analyzed the above system. Instead, we determine the insta-
bility intervals numerically to see the general pattern. For a fixed w, we integrate
the system Eq.(6.2) for one period T = 2r/w, and compute 2N Floquet multi-
pliers ;. The whirling mode is destabilized for the frequency w in the intervals
|p;| > 1 for some j. For the basic state ¢}(t), we use the whirling mode approxi-
mation Eq.(6.57) rather than the exact periodic solution of the governing equation
Eq.(2.11). This cuts down the numerical effort extensively not only because the
system size is halved, but also we do not need to find the periodic solution and
its period. They are trivially “known”. More importantly, finding the periodic
solution in the unstable case requires continuation, which is not an easy task. As
we have obtained a very good agreement in the previous sections for the case of
the ring by using the whirling mode approximation, we expect this approach to
be meaningful and effective here as well.

Figure 6.7 is an example of a computation for an N = 8 array frustrated by f =
0.07 at the open ends. For this small frustration, we do not observe the low-voltage
region. The high-voltage region in the I-V characteristic is shown in Fig. 6.7(a).
Magnitudes of the Floquet multipliers |u,| estimated by the above method are
shown in Fig. 6.7(b). In both figures the horizontal axis is the frequency w,
converted to the normalized voltage V/V;.
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Fig. 6.7 (a) A partial view of a numerical /-V characteristic for the N = 8 ring,
with A?> = 2.6, I' = 0.08, and f = 0.07, showing more than N — 1 steps. (b)
Magnitude of Floquet multipliers for the same parameters. (The basic solution
is approximated by the whirling solution.) The whirling solution branch becomes
unstable when magnitude of the largest multiplier exceeds unity. Such voltage
ranges agree with the intervals in (a) where the return path is disrupted. The in-
stabilities occur due to resonances at combination frequencies: such combinations
are numbered. For example, “3+4” in (b) denotes the resonance near w = w3 +wjy.
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In Fig. 6.7(a) the ohmic branch is disrupted at about ten intervals; the voltage
positions of the intervals agree with the regions in Fig. 6.7(b) in which at least
one || exceeds unity. This confirms the validity of the whirling approximation.

In Fig. 6.7(b) the magnitudes of the multipliers seem to be “symmetric” with
respect to a certain curve; this is due to the symmetry of Eq.(6.10). The curve is
the radius of the circle ', given by

exp(~[T/2) = exp(~T'r/w) = exp [-Tx(V/Vo) ™ /A] . (6.67)

In Fig. 6.7(b), we do not see the trivial multiplier of unit magnitude (nor its sym-
metric counterpart with magnitude exp(—I'T')). This is the only significant error
introduced by the whirling approximation. The two multipliers are now approx-
imated as a complex conjugate pair on the circle C, and have radius Eq.(6.67).
Fortunately, these multipliers are not related to predicting the instability intervals,
as shown in Fig. 6.7(b); thus this effect is not important in our study.

A more substantial effect in Fig. 6.7 is due to the non-zero f. There are
instability intervals corresponding to w = 2wn,, m = 2,...,7 as marked in
Fig. 6.7(b). Interestingly, we also see that combination frequencies corresponding
to W = Wm +wWm41, m = 1,...,6 are excited. This coexistence of various combina-
tion frequencies is an effect not seen in the ring, and because of this, it is possible
to have more than N — 1 resonant steps from /N junctions.

Moreover, as f increases, other combination frequencies, such as wy, + w42,
are excited. This pattern is seen in Fig. 6.8 which shows the (approximated)
instability zones as a function of both w (converted to voltages V/V;) and f. The
frustration f is varied from 0 to 0.6, thus the figure is symmetric with respect to the
horizontal f = 0.5 line. The shaded areas represent parameter sets for unstable
whirling solutions. Fig. 6.7(b) is calculated along the f = 0.07 line (indicated
by a dashed line in Fig. 6.8). Some combination resonances are numbered. For
example, “3+5” in the figure means the resonance w ~ w3 + ws.

The stability calculation assumes that ¢* exists and can be approximated
well by the whirling solution. Since substituting the assumed form Eq.(6.57)
into the governing equation reduces to the single junction equation Eq.(6.17), the
frequency still needs to satisfy Eq.(6.26). Since I*(I')/(T'l.) = 4/7 [Guc&Hol83)
for [ = 0.08 < 1, this minimum voltage for A = 1.6 is about V/V; = (4/7)/1.6 =
0.8. Thus, all voltages shown in Fig. 6.8 satisfy this condition. In addition, there
is a critical voltage similar to V,(M) which separates the low- and the high-V
regions in a ring. Since these steps branch off from the return path (high-V'), the
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Fig. 6.8 Stability estimate of the whirling solutions with respect to the whirling
frequency w (converted into voltages V/Vy) and frustration f. The other param-
eters are fixed: N =8, A2 = 2.6, and I' = 0.08. White areas correspond to stable
whirling solutions while shaded ones correspond to unstable solutions. Fig. 6.7(b)
is taken along the horizontal line f = 0.07. Some combination resonances are
marked; for example, “2+3" indicates the resonance at w = w, + w3. The solid
curve is the critical voltage Vi(f) corresponding to the “speed of light” in the
system.

region below this critical voltage is meaningless. The critical voltage is given by
Ve(£)/Vo = 2sin(fr) (6.68)

and M in the formula Eq.(3.1) for a ring is replaced by fN. This curve is shown
in Fig. 6.8 as a solid curve.

The pattern of the combination resonances is fairly clear for the chosen pa-
rameter set, and (in principle) may be analytically explained by considering the
coupling coefficients of the modal equations. Qualitatively, as f is increased,
the m-th Fourier mode becomes coupled to further and further modes m + 1,
m + 2, and so on. Roughly, we see mode m coupled to m + 2fN when f is
small. For example, the resonances 2+4, 3+5 and 4+6 all occur near the line

f = 2/(2N) = 0.125. However, this rule is not strict as we observe resonances
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246 and 4+7. for instance, for f = 0.25. Thus, the situation is more complicated
than in a ring.

Each instability zone corresponds to a resonant step as we observed in Fig. 6.7.
We always fix f. thus we cross these zones horizontally. The bifurcation on the
left side of the zone is supercritical while it is subcritical on the right side. When
two zones overlap, we do not see onsets of two steps but only one. Thus, the
width of the zones is important.

The width depends mainly on A. If we recall our analysis in a ring with M = 0,
then the width is, from Eq.(6.23), about 2w, x 2/(4w? ) = 1/wm which is propor-
tional to 1/A. The separation between two resonant frequencies is proportional
to A so that the relative size of the instability interval would change like 1/A? as
A is changed. From Eq.(6.52), we obtain the same dependence on A for the ring
with M # 0. Although we do not have an analogous explicit expression for the
frustrated open-ended arrays, we have observed a similar trend in our computa-
tions. As A is decreased from the value of Fig. 6.8, the instability zones grow and
overlap, and would eventually kill the resonant steps by eliminating the stable
regions.

The effect of damping I is primarily expressed through the curve Eq.(6.67).
It controls the radius of the circle C, and thereby governs the overall stability.
For small T, the circle is near the unit circle, and the largest Floquet multipliers
easily cross over to the unstable region. As I' becomes large, this crossover becomes
more difficult, and some instability intervals are killed, in which case most of the
shaded zones in Fig. 6.8 would be eliminated. Therefore, we conclude that the
resonant steps can be observed only in an intermediate regime of the parameters.
In particular, we expect the dependence on A and I to be qualitatively similar to
Fig. 6.4.

6.5 Discussion: comparison to Fiske and zero-field steps

In this section we continue our discussion of arrays with open ends, and relate our
study to previous analyses developed for a continuous Josephson junction.

In the last section, a testable prediction is obtained that it is possible to
observe more than N — 1 steps in a discrete array of N junctions with open ends.
In preliminary experiments we have observed 14 steps in an N = 9 junction linear
array. Although we have not yet made this into a quantitative comparison, the
prediction appears to be correct.
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These steps are generalizations of the so-called zero-field steps (ZFS) which
have been intensively studied in a continuous Josephson junction [Soe&al84, For&al90)
(and, only recently, in a discrete array [Ust&al95]) with open ends when no exter-
nal magnetic field is applied. In the continuous system the dispersion relation is
given by Eq.(6.30) and is linear in the mode number m. Since the period-doubling
bifurcation triggers the instability at zero field [Tak82, Cha&(he80], the steps are
seen at w X 2w, = 2mw;, i.e. at even multiples of the first eigenfrequency w,.

There are also additional steps called the Fiske steps (FS) that appear only
when an external magnetic field is applied. These steps occur in an upgoing part
of the I-V, i.e. in the low-voltage region V < V,(f). Their locations are observed
to be at w = mw, where m is an integer. Thus, the first zesn field step (ZFS1) is
observed at the same voltage position as the second Fiske step (FS2), but ZFS1
occurs at f = 0 while FS2 occurs at higher f when V,(f) exceeds the voltage
corresponding to 2w.

In the literature, there are several explanations of the m-th Fiske step. Some
authors [Due&al81, Erné&al83, Soe&al83] describe that, on the FS1, a moving
kink travels down the array, and upon its exit, a breather or a localized plasma
wave reflects at the boundary. When the reflected wave returns to the other
side, the next kink enters. On the FS2, a kink and a reflected wave travel in the
opposite directions. This so-called “fluxon picture” is only qualitative, and it is
not clear why a breather or a plasma wave (which should be a standing wave by
definition) should run back from one boundary to another and is reflected as the
next kink. These authors are more interested in the application of the junctions
to flux-flow oscillators, thus are urged to explain the dynamics in a very long
junction (compared to the penetration depth) near the top of a step. In this
regime, the motion is highly nonlinear and little analysis has been made, hence
even a qualitative description may be useful. Our approach, however, is to first
analyze the bottom part of a step clearly, then gradually follow the step toward
the top. From this point of view, the qualitative reasoning does not explain the
origin of the steps.

Other authors [Lik86, Sol72] take a more quantitative approach to explain the
Fiske steps in terms of excitation of the m-th cavity mode (linear standing wave)
by a moving train of kinks. They write the sine-Gordon equation Eq.(2.19) and
assume a basic state

o (r,t)=wt+ fr (6.69)

(the boundary conditions being ¢.(0,t) = #.(1,t) = f). However, instead of
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linearizing around this state, they write an incorrect perturbation equation
upe + Tuy — Auy, =sino™ — I/1. (6.70)

for the perturbation u. The right hand side is thought as a periodic forcing term,
and resonance occurs when w = mw,. Although this “derives” the right set of
frequencies, the analysis is inconsistent since Eq.(6.70) now has an O(1) quantity
on the right hand side while the left hand side is O(u) < O(1).

An improved explanation follows Kulik [Kul67] who correctly linearized the
equation and employed Floquet theory. This method has been applied both to the
zero-field steps [Tak82, Cha&Che80] and to the Fiske steps [Enp&al81, Chad:al82]
in relatively short continuous junctions. Kulik assumed a single-mode excitation,
but Enpuku et al. [Enp&al8l] showed that multi-mode oscillations (combina-
tion resonances) are necessary to explain the experimental data. The analysis of
[Enpé&al81] is similar to the continuous version of our analysis in Sec.6.4. They
assume the basic state to be the whirling solution Eq.(6.69), and derive modal
equations that are the continuous analog of our Eq.(6.61). Then, they estimate
the solutions of the equations by the method of harmonic balance while we study
the system perturbatively by introducing €. Their agreement between predictions
and experiments is very good.

This coincidence of their analysis and ours is not obvious — indeed, it is
puzzling since Fiske steps occur in the low-voltage region while our assumption of
the whirling solution is valid only in the high-voltage region. In our underdamped
discrete arrays, the basic state in the low-voltage region is far from linear in j,
and an assumption like Eq.(6.69) is not accurate. Fortunately, everything becomes
consistent when one notices the parameter values used. The assumption Eq.(6.69)
is also valid when the penetration depth (width of the kink) is much larger than
the length of the continuous junction, i.e. A2 3> 1. (This is indeed the regime
where the Fiske steps are observed.) Then, the kink will appear still “stretched”
over the whole array.

This analogy suggests that our analysis in Sec.6.4 is perhaps also applicable to
predicting Fiske steps in discrete Josephson arrays with open ends when A% >> 1.
In the continuous system, one encounters a difficulty in predicting the Fiske steps
due to linearity of the dispersion relation Eq.(6.30); one forcing frequency w can
correspond to multiple combinations of modes. However, in the discrete arrays,
identifying the combination for a particular step is perhaps easier since, e.g.,

wy + wp # wp + ws etc.
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Fig. 6.9 Dots represent the voltage locations of Fiske steps observed experimentally
in an open-ended array of N = 9 junctions with A2 = 4.1 and [ = 0.12 at
T = 7.3 K [vdZ&al94-1] varying frustration f. The steps are located along the
dashed lines of constant voltages, FS1 (the first Fiske step) through FS7 (the
seventh). There is a zone structure similar to Fig. 6.8. The solid curve is the
critical voltage Vi(f).

Recently, measurements have been made on Fiske steps in open-ended arrays
of N =9 to 20 junctions [vdZ&al94-1, Ust&al92]. In Fig. 6.9, a measurement
using N = 9 and A? = 4.1 is shown. The locations of the steps (in terms of V/V,)
are mapped out as a function of f. We see zones (clusters of data points) similar
to those in Fig. 6.8, but they are located in the low-voltage side of the critical
voltage Vi(f)/Vo = 2sin(x f) (shown as a solid curve).

The data points appear to lie on a set of vertical lines, corresponding to a
set of f-independent voltages. In terms of frequencies, these selected voltages
agree reasonably well with the lattice eigenfrequencies wy,, given by Eq.(6.60). As
described as above, this is why the m-th Fiske step is thought to be originated from
excitation of the m-th cavity mode. But these locations may be also explained
in terms of combination resonances between mode 0 (translation) and m whose
summed frequencies still equal w,,. This should then be derived from the modal
equations Eq.(6.61).

We hope to investigate this point in the future. However, even at this stage,

178



Icm0|

0.2 0.4

Fig. 6.10 Magnitudes of the coupling coefficients between the mode 0 and m = 2
or 3. The magnitudes appear to be large at the frustrations where Fiske steps are
observed in Fig. 6.9.

we may ask how strong the couplings between these modes are, by numerically
evaluating the magnitude of the coupling coefficient com in Eq.(6.63). If it is large,
then it is likely to survive in the presence of damping and to cause instability of
the basic solution. (The magnitude corresponds to € used in the analysis of a ring
with M > 0. See Eq.(6.36).)

Fig. 6.10 shows the magnitude |com| for N = 9 as a function of f. Only m =2
and 3 are shown for brevity. Since Fiske steps occur only when the resonance

frequency is in the low-voltage region, we only consider the range
V(step) < Ve(f) . (6.71)
Since V(step)/Vo = wm /A, this condition simplifies (for 0 < f < 1/2) to
f>m/(2N) . (6.72)

For both m = 2 and 3, only this frustration range is shown.

Now we compare the numerical predictions with the experimental data. In
Fig. 6.10, we see peaks in |czo| at f = 0.28, 0.38, and 0.5. In Fig. 6.5, F52 are
observed in the neighborhood of these frustrations. FS2 appears at f < 0.22 in
the experiment, too, which corresponds to the rapid rise of |cz| in Fig. 6.10. For
FS3, we find peaks in Fig. 6.10 at f = 0.33 and 0.44. Again, steps are observed
at these frustration values in the experiment.
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Therefore, this very preliminary observation suggests that analysis of the cou-
pled modal equations Eq.(6.61) leads to estimates of the Fiske step locations. If
this conjecture indeed works out, then we may understand both the Fiske and the
zero-field(-type) steps in a continuous or a discrete medium in a simple unified
manner. Moreover, calculating up to the leading order corrections, we may be
able to estimate the voltage intervals and parameter regions where we see such

structures, in a similar manner to our analysis in a ring.
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7 Dynamics along a step

In this section, we numerically study the dynamics along a step in the high-
voltage region after the whirling solution becomes unstable. Our analysis in the
previous section provides much information at the onset of instability, which we
will test against simulations in this section. The dynamics far from the onset
is hard to analyze; we follow the bifurcation sequence of attractors numerically,
and visualize the dynamics using, e.g., Poincaré sections. Although this study is
only qualitative and preliminary, a generic feature of the dynamics along a step is
found; namely, the dynamics is simple both at the bottom and at the top of a step
while it can become quite complicated in the middle. At the top of a step, large
amplitude oscillations appear to be sustained “naturally.” We focus our attention
on the Josephson rings to avoid further complications due to reflections from open
boundaries. We discuss the dynamics when there is no trapped kink (A = 0) in
Sec.7.1, and when there is a kink (M = 1) in Sec.7.2.

71 M=0

We have simulated rings with both N = 8 and N = 10 Josephson junctions.
There seems to be a relation between the size of the ring and the complexity of
the dynamics. The rings with N = 10 junctions are more interesting in the sense
that we observe bifurcation sequences. For N = 8 with M = 0, on the other hand,
we did not observe bifurcations after the initial period-doubling bifurcation. In
this section, we report observations on the N = 10 ring.

Parameter values A2 =1 and I = 0.1 are used, and the numerical I-V curve
is shown in Fig. 7.1. Four steps are seen. Since M = 0, there is no low-voltage
region in this case. The superconducting (V = 0) state goes up all the way to
I = I.. A jump to the right occurs at the critical current, and the system is then
on the ohmic line where the attractor is the in-phase whirling solution. As [ is
decreased, the I-V follows its return path. The in-phase state is stable down to
V/Vo = 4.2, but it becomes unstable for almost all the lower voltages.

The intervals of instability D; through Ds are estimated as in Section 5, and
shown in Fig. 7.1 as horizontal bars. There are small gaps between neighboring
intervals, where the whirling solution recovers stability. Thus, there are onsets of
instability occuring along the ohmic line. The only exception is the onset of the
mode m = 5. Since D4 and Ds overlap, there is no onset for the perturbation of
this mode. Indeed, we do not observe the fifth step in the simulation. The first
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Fig. 7.1 Numerical I-V for N = 10, M = 0, A?> = 1.0, and ' = 0.1. There
is no low-voltage region, and four stpes are observed in the high-voltage region.
The whirling in-phase solution becomes unstable in the intervals D, through Ds.
The third step, which emanates from an edge of D3, is studied in detail at points

“won

marked from “a” to “f”.

and second steps (at the left of D, and D,) appear to have substructures.

The dynamics along the m = 3 step, which emanates from the left edge of Dj, is
now carefully studied. Attractors at the six points marked from “a” through “f” on
Fig. 7.1 are visualized in the following. The first set of graphs is Fig. 7.2, in which
sin @, is plotted against sin ¢,. This is a Lissajous figure made of supercurrents
through the two junctions. Fig. 7.2(a) to (f) correspond to the points “a” to “f”
on Fig. 7.1, resy :ctively.

Figure 7.2(a) shows the stable in-phase solution before instability sets in. As
I is increased, the solution period-doubles (Fig. 7.2(b)), as expected from our
analysis in the previous section. The attractor is now a double loop, and becomes
more complicated as I is increased. However, this process is not the start of
a period-doubling cascade to chaos. Instead, the next bifurcation is a secondary
supercritical Hopf bifurcation to a 2-torus (Fig. 7.2(c)). When the torus breaks, an
apparently irregular motion emerges (Fig. 7.2(d)). This attractor appears chaotic,
but our preliminary computation of the largest Lyapunov exponent for (d) is zero,
thus it is iikely to be a quasi-periodic attractor with more than two frequencies.
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Fig. 7.2 Lissajous figures made of two supercurrents sin ¢, and sin ¢, showing
temporal dynamics of the system. (a) in-phase, (b) period-doubled, (c) 2-torus,
(d) irregular, (e) reversion to 2-torus, and (f) period-doubled. The labels (a-f)
denote positions on a step in Fig 7.1.

Somewhat unexpectedly, the dynamics does not become more complicated as the
bias current is increased further. In fact, reversion to a 2-torus attractor occurs
as in Fig. 7.2(e), then the torus shrinks back to a period-doubled limit cycle in
Fig. 7.2(f), which then disappears as I is increased slightly more. This causes a
jump from the step to the whirling branch as shown in the /-V curve in Fig. 7.1.

To eliminate one frequency from these diagrams, Poincaré sections are calcu-
lated by strobing the phases at each time the mean phase N=! ¥V | ¢, becomes
0 (mod 27). Then, these sections are projected onto a plane as shown in Fig. 7.3.
The axes of the projected plane are still sin ¢, versus sin¢;. Only three cases
(c-e) are shown since the periodic attractors in (a,b,f) would, of course, appear
as just one or two dots in the section. In Fig. 7.3(c), we see two “lines”; these are
actually two closed loops, but projected in an unfortunate direction. It confirms
that the attractor is quasi-periodic with two frequencies. Fig. 7.3(d) still appears
irregular despite the removal of one frequency. Reversion to a 2-torus is clearly
seen from the two closed loops in Fig. 7.3(e).
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Fig. 7.3 Projections of Poincaré sections at test points (c-e). (c) two closed loops
appearing as if two lines, (d) apparently irregular, (e) two closed loops.

Figures 7.2 and 7.3 only show temporal dynamics. To visualize the corre-
sponding spatial structures, we first show instantaneous waveforms (snapshots) in
Fig. 7.4. (Here, a waveform means a graph of ¢,(t) versus ), for fixed t.) For all
the cases, five snapshots of the waveforms, when the mean phase ¢ becomes 0, 7,
27, 3w, and 47, are shown.

Instead of the in-phase solution for (a), which would show five straight lines,
we show the case (a’). This case uses a slightly larger I than (a), and occurs
immediately after the period doubling. The waveforms in (a’) are still almost
straight, but with a slight modulation, as expected. The phases between the
second snapshot (¢ = ) and the fourth (37) are opposite. Thus, the solution
requires a 47 increase in ¢ to complete its period, as expected for period-doubling.
We observe three crests and troughs in the waveforms, consistent with the step
number m = 3 and the parametric excitation of spatial Fourier mode m = 3.

Fig. 7.4(b) is still a period-doubled limit cycle, but its spatial amplitude is
larger as it is far from the onset. The junctions seem to have separated into
four “clusters”. Junctions 2 and 3 as well as 7 and 8 are pairs almost in phase,
while junctions 4-5-6 and 9-10-1 are triplets, oscillating in a zig-zag fashion. In
Fig. 7.4(c), a quasi-periodic solution, we observe that asymmetry is generated.
The clustering is not as rigid as in (b); it appears in the figure as a pair 2-3 sitting
next to another pair 4-5. Unlike in (b), there is a movement in the j-direction, and
the pairs and triplets change members on a longer time scale. This shift seems to
explain the second frequency. In Fig. 7.4(d), the amplitude is further increased,
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Fig. 7.4 Snapshots of ¢; at five instances of time when the average phase equals
to 0, 7, 27, 37, and 47. (a') immediately after period-doubling, (b) still period-
doubled, (c) asymmetric appearance when quasi-periodic, (d) irregular, (e) regen-
eration of pairs and triplets, (f) periodic (period-doubled) motion.
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and we start to observe “kinks and antikinks” where ¢ changes from one junction
to the next rapidly (more than 7). We do not see a stationary pattern, and the
dynamics is complicated.

From this point, the pattern becomes simpler which seems to be related to
regeneration of the clusters. In Fig. 7.4(e), two pairs and two triplets are formed
again, and are fairly rigid. However, there is still a horizontal motion. In
Fig. 7.4(f), the clusters are now fixed. The pattern repeats itself in a periodic
way, and a large amplitude standing wave (breather) is formed.

Such changes in the spatio-temporal dynamics may be more quantitatively
seen in terms of the discrete Fourier modes A, (t) (defined in Eq.(6.12)). In
Fig. 7.5 time-series of the magnitudes |A,,(t)| are shown. In Fig. 7.5(a,b), only
Aj is excited, with (b) showing a larger magnitude. Let us check the oscillation
frequency. As we see about 46 crests in (a,b) from ¢ = 0 to 100, the period is
T =2 x 100/46. (Two crests in the magnitude corresponds tc 2ane full cycle in
Ajs.) Thus, the frequency of the m = 3 mode is 2 /T = 1.45. This is close to
the natural frequency w3 = 1.61, computed from Eq.(6.14) for A =1, m = 3 and
N = 10. If we include the correction term, then w equals Q3 rather than 2ws,
and Aj should oscillate at Q3 /2. From Eq.(6.23), this gives about 1.45 which is
in agreement with the observed frequency in Fig. 7.5(a,b).

In Fig. 7.5(c) we observe the modes 1,2, and 4 are slightly excited. The mode
m = 2 appears to have an incommensurate frequency from A;. All modes are
excited in Fig. 6.5(d) although the m = 3 mode is still the most active one. The
mode m = 1 apparently fluctuates aperiodically. As the standing wave structure
starts to be formed, we observe decay of the modes m # 3 in Figs. 7.5(e.f). In
(f), virtually only Aj is active, with a much larger amplitude than in (b).

72 M=1

We now consider similar numerical experiments for the case when one kink (M =
1) is trapped in a ring. Figure 7.6 shows the I-V characteristic for M = 1,
but otherwise with the same parameter values as in Fig. 7.1. There are now
four intervals of instability, denoted by D, to Dy, corresponding to the resonance
frequencies w ~ wm + wm4n- The intervals D3 and Dy overlap, and we do not
see the m = 4 step. The other intervals are separated by gaps, though tiny, from

which three steps emanate. For this case, the low-voltage region can also be seen
in the I-V.
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Fig. 7.5 Magnitudes of discrete Fourier modes |An(t)| as a function of t. Only the
m = 3 mode is excited in (a') and (b). The other modes are activated from (c) to

(e), but are suppressed again in (f).
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Fig. 7.6 Numerical I-V for N =10, M =1, A> = 1.0, and [ = 0.1. Three steps
in the high-voltage region are clear. The whirling solution becomes unstable in
the intervals D, through D,. The third step, which emanates from an edge of D3,
is studied in detail at points marked from “a” to “f”.

Again, the m = 3 step is studied in detail, at the points marked “a” through
“f”. We first study the temporal dynamics by (projections of) Poincaré sections.
The definition of the section as well as the coorainates are the same as before.
Fig. 7.7 shows the sections for (a-f). In (a) we see only one point near (0.4,0.9),
coriesponding to the periodic whirling solution before instability. As I is increased
slightly from this value, a Hopf bifurcation takes place, as expected from Eq.(6.56).
The resulting 2-torus appears in the section as a closed loop. As I is increased
further, the loop becomes larger. In (b) it appears as a figure “8” due to the
projection.

Further bifurcations occur as I becomes larger, and the section at (c) appears
complicated. However, this may be again just a quasi-periodic solution with a
complex shape or more than two frequencies. We have not measured the Lyapunov
exponents. In this region we observe another section as in (d), which may form a
very complex but single loop. These rather complicated attractors exist till higher
current values, for example, at (e). But at the top of tl.e step, we observe again a
closed loop. This shows that the attractor at (f) is only a quasi-periodic solution
with two frequencies. Somehow, in a manner that is not yet clear, this solution
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Fig. 7.7 Projections of Poincaré sections at test points (a-f). (a) one dot near
(0.4,0.9) indicating a periodic attractor, (b) a closed loop after Hopf bifurcation
corresponding to quasi-periodicity with two frequencies, (c-e) complex attractors
in the middle of a step, (f) a quasi-periodic attractor.

disappears or loses stability at (f), causing a jump to the ohmic branch.

Fig. 7.8 shows magnitudes of the discrete Fourier modes in order to study
spatio-temporal structures. To compute the “modes” we have subtracted from
the phases ¢; the whirling solution component 2rj/N. Then, the resulting part
is processed by the discrete Fourier transform. The case (a’) again uses a slightly
larger I than (a) in order to show the dynamics immediately after instability sets
in.

In both (a,b), two wavenumbers m = 3 and m = 4 are excited in agreement
with the combination resonance described in Sec.6.3; the m = 3 step is created
by instability of the whirling solution with respect to both modes m = 3 and
m + M =3 + 1 = 4. The magnitudes of these modes are almost stationary. We
have examined the real parts of A3 and A4 at (b), and observed that they oscillate
at frequencies (27 /period) 1.50 and 1.79, respectively. The values are close to the
natural frequencies of the modes w3 = 1.62 and wy = 1.90. When the correction
term (—€o/2) = —1/(4./wswa) is subtracted, the values become 1.48 and 1.76,
respectively. The mode m = 1 is also seen to have a small magnitude. We think
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Fig. 7.8 Magnitudes of discrete Fourier modes |A,(t)| (after subtracting the
whirling mode profile 2rj/N from phases ¢;) as a function of t. After onset
of instability, the modes m = 3 and m = 4 are excited in (a’) and (b). The other
modes are active in (c-e) which is suppressed again in (f).
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this originates from the discrepancy between the true waveform of the whirling
solution and the assumed fit 275 /N. In fact, the real part of A, in (b) (not shown
in the figure) oscillates at a frequency 3.30, a sum of two frequencies of A3 and
Ag4. Thus, this is the “forcing frequency” for the linear modes Q5 = w3 + wy — €0
of Eq.(6.52).

In (c) through (e) the other modes are excited and appear aperiodic, but these
modes are suppressed at the top of the step, (f). There, only the modes m =3
and 4 contribute again, with much larger amplitudes than in (b).

7.3 Discussion

For both M = 0 and 1, we have studied the dynamics on the steps other than
m = 3 in a similar manner. We have found both generic and step-dependent
features.

Generically, the dynamics become simple (either periodic or quasiperiodic with
two frequencies) near the onset and near the top of the steps. Near the onset,
the solution is approximated well by the whirling solution with a small-amplitude
excitation of one (for M = 0) or two (for M = 1) lattice eigenmodes superimposed.
Near the top of a step, the fluctuation amplitude becomes large. The dynamics
here can be described by interacting kinks and antikinks.

In the middle of a step, the behavior is step dependent. The solutions can
become complicated as described above, or just quasiperiodic with two frequencies,
as on the m = 4 step for M = 0. They can even remain periodic as observed in
our simulation of N = 8 junctions. Steps with small m, e.g. the steps m =1 and
2 in Fig. 7.1 or the step m = 1 in Fig. 7.6, contain substructures. We speculate
that these finer steps come from combination of two mechanisms we discussed
in this paper. When the number of kinks and antikinks are small compared to
the junction number N, they have enough room to move back and forth in the
j-direction. This causes excitation of small amplitude waves around the kinks,
and they may phase-lock with the kink as we described in Section 5. However,
since kinks and antikinks collide, annihilate, or reflect, it is not clear how this
phase-locking can be achieved in order to predict the location of substructures
quantitatively.
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8 Conclusion and future directions

In the present paper we have studied underdamped discrete Josephson rings by
analytical and numerical methods. using experiments as check points. Experi-
mental /-V curves with N = 8 junctions show novel features, i.e. steps both in
the low- and the high-voltage regions. The mechanisms which cause the steps are
different in the two regions: phase-locking of a kink and a linear wave, forming a
traveling wave, in the low-V region: versus parametric instabilities in the high-V
region. We have also extended the ana<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>