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Abstract

As concern grows over increasing human population and the effects of industrialization on the
environment, agriculture and air quality have become important areas of research. Both are vital
to human prosperity, determining what we eat and what we breathe. The interactions between
agriculture and air quality (defined by ozone and particulate matter (PM) concentrations) are
many and often poorly understood. This thesis examines their interactions in two parts. First, we
investigate the influence and characterize the importance of the variability in agricultural
ammonia emissions on surface inorganic fine PM (PM2.5). In a case study, airborne observations
indicate that summertime concentrations of ammonia throughout California and PM 2 .s in Los
Angeles are underestimated in a global chemistry model (GEOS-Chem) used to understand air
quality issues. We find that increasing ammonia emissions from livestock and fertilizer allows
the model to better represent the observations, thereby improving the model's prediction of PM2.5
conditions in wintertime, when concentrations and impacts on human health are greater. We also
use new observations (surface, aircraft, and satellite) to find that the model underrepresents the
summertime ammonia concentration near large source regions throughout the United States.
Meteorology dominates the underestimated year-to-year variability in the model over reductions
in acid-precursors. Introduction of varying ammonia emissions does not improve the model
comparison and has little impact on PM2.5. Second, we quantify the impact of air quality on
global crop production under current and future emissions scenarios. Using a relativistic
approach, we find that the maximum positive impact (highly uncertain) from total PM light
scattering can outweigh the negative impact from ozone damage in certain crops and regions.
Future scenarios indicate that reductions in air pollution may have a net negative effect on crop
production in areas dominated by the PM effect. We then employ a crop model (pDSSAT) to
more realistically predict the lessened impact of PM under stress from resource restrictions. We
also assess the effect of nitrogen deposition on crops compared to PM. Overall, we highlight the
need for better observations of both ammonia concentrations and the impacts of PM on crop
growth to reduce uncertainty in these interactions.
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Title: Associate Professor of Civil and Environmental Engineering,
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Chapter 1. Introduction

The need to produce food for a growing human population has increased the intensity of

industrial agriculture in the past century. This agricultural system relies heavily on reactive

nitrogen as an input for enhanced plant growth, which was historically a limiting nutrient, but is

now produced from inert atmospheric nitrogen in the form of ammonia (NH3) fertilizers

[Erisman et al., 2008; Sutton et al., 2008]. Excess fertilizer not used by the intended agricultural

crops is volatilized and released to the atmosphere or transported downstream to rivers and lakes.

Plants used for the production of livestock pass nitrogen through to waste products, which can

also release ammonia to the atmosphere when volatilized. This livestock waste has become the

largest source of atmospheric ammonia globally [Dentener and Crutzen, 1994], overtaking

sources such as natural ecosystems and wildfires. The future of agriculture is of concern globally

as changes in air quality (described below), nutrient transport and water balance come to light.

Agricultural nutrients transported away from source regions alter delicate balances and can cause

acidification and eutrophication [Erisman et al., 2007]. This is of particular concern in sensitive

ecosystems such as alpine terrain and wetlands [Beem et al., 2010; Ellis et al., 2013].

Industrialization has had large effects on the air quality of human-settled areas through

the modulation of pollutant concentrations. Two significant pollutants which affect air quality

are particulate matter (PM) and ground-level ozone (03). PM refers to particles suspended in air

and can be categorized based on size as either coarse PM (diameter less than 10 pm, PMIo) or

fine PM (diameter less than 2.5 [tm, PM 2.5). PMio mass is dominated by natural sources,

including dust and sea-salt, although their emission can be modified by human activities. PM2 .5

can be either emitted directly through combustion processes or formed through chemical

reactions in the atmosphere. Increases in PM2.s concentration have negative effects on human

health, as the small particles can more-readily enter the body, causing respiratory and

cardiovascular distress and an overall decrease in life expectancy [Pope et al., 2009]. PM is

projected to be the largest environmental cause of death worldwide by 2030 [OECD, 2012].

Additionally, PM contributes to reduced visibility and affects the radiation balance of the planet

[IPCC, 2013]. Ground-level ozone is formed through the reaction between NOx (NO + N02) and

volatile organic compounds (VOCs) in the presence of sunlight. Sources of NOx and VOCs are

both anthropogenic, such as motor vehicles and industrial processes, and natural. Ozone near the
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surface is an oxidant and harmful to biological processes. In humans, ozone increases acute cases

of respiratory illness [Burnett et al., 2001]. Background ozone concentrations, meaning ozone

present at a location which is not attributable to local anthropogenic sources, have increased

dramatically since pre-industrial times [ Vingarzan, 2004]. While better understanding of ozone

chemistry has allowed for effective regulation of precursors in developed countries and is

leading to a decrease in peak urban ozone concentrations, background ozone continues to

increase due to possible outside influence [Cooper et al., 2012].

Agriculture and air quality interact in numerous ways, and many of these interactions are

depicted in Figure 1.1. Agriculture can affect air quality through land use change by changing

the emissions of VOCs, which contribute to the formation of ozone and secondary organic

aerosol (SOA), a component of PM, and by changing the deposition rate of PM and ozone

themselves [Wu et al., 2012]. Dust (largely PM1o) lofted from agricultural fields and feedlots [Qi

et al., 2015] and incomplete combustion from burning of crop residue also contribute to PM

[Lemieux et al., 2004]. Non-road vehicles used in the production and transport of agricultural

products can have influences on air quality (NOx and PM emissions) similar to on-road mobile

sources [US EPA, 2015]. PM trapped within livestock buildings and high ambient ozone

concentrations can have negative impacts on animal health [Tan and Zhang, 2004].

Agriculture 4 -
Air Quality Agriculture Air Quality

Dut Particulate Livestock Effects %S
0 Dust, 8C Matr Lvsok ossrf' MteNon-road Matr ate

Vehicles -Light Scattering

vocs Ozone Crops Oxidation Ozone

a) ~ Climate b) '4 Climate

Figure 1.1. (a) Effects of agriculture (red) and agricultural production processes (gray) on air quality
(blue). (b) Effects of air quality (blue) on agriculture (red). In both: Large arrows represent regional
effects, while small arrows represent more local effects. Indirect effects act through climate (orange).
Interactions studied in this thesis are shown in green.

Agriculture also affects air quality through its influence on climate. Nitrous oxide (N20)

and methane (CH4), additional byproducts from livestock production, and carbon dioxide (C0 2)
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from non-road vehicles are greenhouse gases which are increasing the global mean temperature

[IPCC, 2013]. Temperature increases affect the chemistry responsible for PM and ozone

concentrations [Seinfeld and Pandis, 2006]. Climate change also alters meteorological

parameters which control the stagnation events responsible for extremely high air pollution

levels [Horton et al., 2014] and the trajectory of long range pollution transport [Fang et al.,

2011]. Air quality influences agriculture through the scattering and absorbing properties of PM,

which influence the climate variables important to productive crops, including precipitation and

temperature [Levy et al., 2013].

This thesis focuses on the remaining interactions between agriculture and air quality

depicted in Figure 1.1, but not yet discussed. (1) Agriculture impacts air quality through the

formation of inorganic PM2.5 due to the emission of ammonia in the presence of atmospheric

acids (Chapters 2 and 3). (2) Air quality modifies crop production through the scattering of light

by PM, the damaging impact of ozone, and the transportation of nutrients (Chapters 4 and 5). We

focus on these particular interactions because they are applicable to large-scale, global issues. In

addition, we have access to and have developed expertise ourselves in the relevant chemical and

radiative processes, and the appropriate tools and observations are available and accessible to

further our understanding of these systems. Each interaction, including additional motivation,

previous work and more specific objectives, is described in the following chapters.
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Chapter 2. An Investigation of Ammonia and Inorganic Particulate Matter in

California during the CalNex Campaign

Adaptedfrom: Schiferl, L. D., C. L. Heald, J. B. Nowak, J. S. Holloway, J. A. Neuman, R.

Bahreini, I. B. Pollack, T. B. Ryerson, C. Wiedinmyer, and J. G. Murphy (2014), An

investigation of ammonia and inorganic particulate matter in California during the CalNex

campaign, J. Geophys. Res. Atmos., 119, 1883-1902, doi:10.1002/2013JD020765.

2.1. Introduction

Atmospheric ammonia (NH3) plays a key role in both the formation of fine particulate

matter (PM2 .5) and in the biogeochemical cycling of nitrogen. Basic ammonia can act to

neutralize the acidity of atmospheric acids, leading to the formation of inorganic aerosol (e.g.,

ammonium sulfate or ammonium nitrate). Understanding the formation of these aerosols is

critical to addressing air quality issues, as exposure to particles has negative effects on human

health [Pope et al., 2009]. Aerosols can also impact climate, given their ability to adjust the

energy budget of the planet through scattering and absorption of solar radiation and their role in

cloud formation [IPCC, 2007]. Finally, the nitrogen contained in these aerosols can be

transported and eventually deposited downwind, a particular concern for sensitive ecosystems

[Beem et al., 2010]. If nitrogen becomes oversaturated in the soil or aquatic ecosystems,

environmental degradation through acidification and eutrophication may occur [Erisman et al.,

2007].

Prior to the development of industrial agriculture practices, the major sources of

ammonia to the atmosphere included biomass burning, wild animals, and natural soils [Holland

et al., 1999]. Human population growth has increased the need for reliable food sources in the

form of crops and livestock. The industrial production of ammonia as a fertilizer has increasingly

supplied this need over the last century [Erisman et al., 2008; Sutton et al., 2008]. Thus, large

agriculture operations now account for the majority of global ammonia emissions [Dentener and

Crutzen, 1994]. These emission sources include fertilizers applied to plant crops and the waste

by-products of domesticated animals, particularly those raised in large feedlots. Other sources of

ammonia include industrial manufacturing processes, the ocean, fossil fuel combustion, and
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automobile catalytic conversion [Bouwman et al., 1997]. However, due largely to the challenges

associated with in situ measurement of atmospheric ammonia [von Bobrutzki et al., 2010] and

local variations in emission control factors such as livestock diet and waste management and

storage [Hristov et al., 2011], uncertainties in these emissions and the subsequent

transformations into the particle phase remain large.

Sulfur dioxide emitted into the atmosphere is oxidized to form sulfuric acid (H2SO4),

which readily partitions to the aqueous phase, dissociating to produce sulfate (S04 2-). In the

presence of atmospheric ammonia, a progression of salt formation occurs with increasing total

ammonia levels: ammonium bisulfate to letovicite to fully neutralized ammonium sulfate. In

higher relative humidity (RH) conditions and at lower total ammonia levels, the aerosol is more

likely to stay in aqueous phase as a solution of component ions [Seinfeld and Pandis, 2006].

After all available sulfuric acid has been neutralized, the remaining ammonia can react with

nitric acid (HN03) to form ammonium nitrate aerosol. Thus, ammonium nitrate formation

generally occurs in areas of high ammonia and nitric acid and low sulfate concentrations. For

ammonium nitrate, the gas and aerosol phases exist in equilibrium, dependent on temperature (T)

and RH. Lower temperature and higher RH enhance partitioning to the aerosol phase. The phase

of ammonium nitrate aerosol can vary between aqueous and solid as well, depending on the

temperature, RH, and the history of RH (i.e., hysteresis of deliquescence). This

thermodynamically coupled system, as well as the presence of additional species with

displacement potential (e.g., NaCl, organic acids) in the same environment, complicates the

formation and equilibrium of inorganic aerosol.

Much of California (CA) experiences high ambient concentrations of surface-level

particulate matter. Both the Los Angeles (LA) Basin and the Central Valley are often in

exceedance of the Environmental Protection Agency's (EPA) air quality standards for PM2.5 ,

which have been established to reduce the negative health effects caused by exposure to

atmospheric particles. In particular, the 98th percentile of the 24 h PM2.5 concentration inboth

regions exceeded the standard of 35 ptg m~ 3 every year from 1999 to 2007 [Cox et al., 2009]. The

PM2.5 in these areas of high human population and large agricultural production is largely

composed of inorganic aerosol formed through acid-base neutralization, where urban centers are
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a source of ammonia and NOx (NO +NO 2) from mobile sources, which mix with ammonia from

fertilizer and animal waste in agriculturally productive areas. Ammonia emissions in California

are some of the highest in the country [Goebes et al., 2003]. Sulfur dioxide is emitted from

power generation and shipping near the coast. The topography of California also plays an

important role in controlling PM2 .5 levels as the numerous valleys and mountain ranges allow for

trapping and diversion of pollutants. Thus, it is particularly critical in California to understand

inorganic PM2.5 formation and the role of precursor emissions to achieve air quality compliance.

Observations made in the LA Basin show that inorganic PM 2.5 is formed from gas

precursors in the urban core and that ammonia emissions from agriculture on the eastern side of

the basin drive the conversion of nitric acid to nitrate downwind. Both emission of ammonia

from volatilization and the transition of aerosol into the gas phase are more likely when

temperatures are higher, such as due to daytime heating or during the summer months [Russell

and Cass, 1986; Chow et al., 1994; Neuman et al., 2003; Nowak et al., 2012]. Inorganic species

are 50-60% of the PM2.S mass in the summer in the LA Basin and about 40% in the winter

[Chow et al., 1994; Hand et al., 2012].

Although not as well studied, inorganic PM2.5 formation in the Central Valley is

becoming a larger concern as both human population and agriculture are currently growing at a

rate higher than that in the LA Basin [Hall et al., 2008]. The acidity of the region is determined

by local sources, with complete neutralization of acids closer to high agricultural ammonia

emissions sources [Jacob et al., 1986; Chow et al., 1996, 1998; Neuman et al., 2003]. Clarisse et

al. [2010] report summertime ammonia concentrations ranging from 10 to 20 ppb detected by the

Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument in the Central Valley.

These ammonia concentrations are much larger than the 2 ppb observed outside the valley.

Inorganic PM2.5 makes up 25-35% of the total PM2.5 here in the summer but 50% in the winter

[Chow et al., 1996; Hand et al., 2012].

In this study, we use aircraft measurements made during the California Research at the

Nexus of Air Quality and Climate Change (CalNex) campaign to investigate inorganic PM2.s

formation and ammonia emissions in California as represented by the GEOS-Chem model. The

16



CalNex observations are particularly valuable for investigating inorganic aerosol formation as

both gas-phase precursors and speciated aerosol were measured in this campaign. This includes a

rare characterization of vertically distributed ammonia concentrations [Neuman et al., 2003;

Nowak et al., 2012], which are challenging to measure in situ [von Bobrutzki et al., 2010] and are

a critical element to fine PM formation in California.

2.2. CalNex Airborne Observations

The CalNex field study (www.esrl.noaa.gov/csd/projects/calnex/) took place during May

and June 2010 in California and the nearby Pacific coastal waters [Ryerson et al., 2013]. For this

analysis, we use in situ observations from 16 NOAA WP-3D aircraft flights throughout

California (flight tracks shown in Figure 2.1). Aircraft sampling was generally conducted below

6 km altitude, with much of the flight time dedicated to the lower troposphere. The majority of

flight time (about 80%) also occurred during the day.

37ON-------- ----- -------

35ON ----

33*N ---------- - ---- - -

1240W 121*W 1180W 115*W

0 1 2 3 4 5 6 [km]

Figure 2.1. Location of 16 NOAA WP-3D flights during the CalNex field campaign (May-June 2010)
used in this study, colored by aircraft altitude. Also shown are the two regions used in the analysis:
Southern CA (shaded light gray) and the Central Valley (shaded dark gray).

In this study, we use CalNex observations of both gas- and particle-phase inorganic

species concentrations. Ammonia was measured by chemical ionization mass spectrometry

(ClIMS) [Nowak et al., 2007, 2012] with an average uncertainty of (30% + 0.2 ppb) (calibration

uncertainty + measurement imprecision). This imprecision is determined from the variability in

the periodic background measurements, which are interpolated for use in the calculation of the
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ambient concentration (total signal-background) at each measurement. Sulfur dioxide was

measured by pulsed UV fluorescence [Ryerson et al., 1998] with an uncertainty of

(1 5% + 0.5 ppb). Nitric acid was measured by CIMS [Neuman et al., 2002] with an uncertainty

of (15% + 0.052 ppb). The submicron particle ions were measured by aerosol mass

spectrometry (AMS) [Jayne et al., 2000; Jimenez et al., 2003; Bahreini et al., 2009] with an

average uncertainty of 30%. The aerosol concentrations are reported in pg sm- 3, where standard

conditions are set to 1013.25 hPa and 00 C. The AMS nominally reports submicron aerosol mass

concentrations [Liu et al., 2007]; we note that this may represent an underestimate of fine aerosol

mass when compared with the model simulation (see Section 2.3). Gas-phase nitrogen oxides,

NO and N02, were measured by ozone-induced chemiluminescence [Ryerson et al., 2000;

Pollack et al., 2010] with an approximate uncertainty of 4%. The gas-phase species and

meteorology parameters (T, RH) were reported at 1 s resolution and the particle ions at 10 s

resolution. All observations are averaged to 1 min prior to analysis, and we retain only those

minutes with valid measurements for all six of our key species (ammonia, nitric acid, sulfur

dioxide, ammonium, nitrate, and sulfate). For comparison with the GEOS-Chem model, airborne

CalNex observations are then gridded to the spatial and temporal resolution of the model (see

Section 2.3.1).

2.3. GEOS-Chem Model Simulation

2.3.1. General Description

The GEOS-Chem chemical transport model (www.geos-chem.org) is used to interpret the

CalNex plane flight observations. GEOS-Chem is driven by assimilated meteorology from the

NASA Global Modeling and Assimilation Office; here we use the GEOS-5 product. For this

analysis, we perform a series of nested simulations of GEOS-Chem v9-01-01 over North

America for 2010 at 0.50 x 0.667' horizontal resolution with 47 vertical layers, typically seven

layers within the lowest 1 kn [Wang et al., 2004; Chen et al., 2009]. Boundary conditions are

produced with the same version of the global model at 2' x 2.5' horizontal resolution.

The sulfate-nitrate-ammonium aerosol system, coupled to gas-phase chemistry, is

represented in GEOS-Chem [Park et al., 2004]. Gas-aerosol phase partitioning of these species is

described by the thermodynamic equilibrium model ISORROPIA II [Fountoukis and Nenes,
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2007] and dependent on local temperature and RH conditions. The implementation of

ISORROPIA II in GEOS-Chem assumes that the species exist on the upper, metastable branch of

the hygroscopic hysteresis curve, a valid assumption in all regions where the RH regularly

exceeds the deliquescence relative humidity [Pye et al., 2009], see Section 2.5.3 for further

discussion. Gas and particle removal occurs via wet scavenging in convective and stratiform

precipitation [Mari et al., 2000; Liu et al., 2001] as well as dry deposition based on surface layer

resistances [ Wesely, 1989]. These removal methods will be discussed in greater detail in Section

2.5.2. We include a fix for unreasonably low nighttime GEOS-5 planetary boundary layer (PBL)

heights as described by Heald et al. [2012].

2.3.2. Inorganic Emission Inventories

Over the United States (US), anthropogenic emissions in GEOS-Chem follow the

Environmental Protection Agency's National Emissions Inventory for 2005 (EPA NEI-2005).

The NEI-2005 used in GEOS-Chem is a compilation of several inventories as described by Kim

et al. [2011]. Emissions rates in NEI-2005 are reported for an August weekday, and these rates

are temporally scaled in GEOS-Chem for individual species. For SOx (sulfur dioxide + sulfate)

and NOx, an annual scale factor based on emissions trends as well as monthly and

weekday/weekend scaling based on NEI- 1999 is applied (since such scaling factors are not

available from NEI-2005). Only monthly scaling is applied to ammonia emissions [van

Donkelaar et al., 2008], where this scaling is uniform across the US. Figure 2.2a shows the

GEOS-Chem NEI-2005 emissions of ammonia, SOx, and NOx for May 2010 over both the

continental US and zoomed in to California. Anthropogenic ammonia emissions (which include

gasoline vehicles, livestock, agricultural fertilizer, and many smaller sources) are largest in

agricultural areas, such as the Midwest, Great Plains, and the Central Valley of California.

Additional ammonia emission hot spots occur over cities with high automobile usage, such as

Los Angeles. Anthropogenic SOx emissions are associated with electricity production, industrial

processes, and near-coastal shipping activities. Anthropogenic NOx emissions are largely from

mobile sources in urban areas and interstate corridors.

Figure 2.2a also shows the seasonality of ammonia, SO, and NOx emissions from all

sectors in California. Anthropogenic sources provide the largest portion for all three species.
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Figure 2.2. (a) May 2010 standard GEOS-Chem anthropogenic emission rate for ammonia, SO, and NOx
in the (top) United States and (middle) California. (bottom) Monthly total emission for each species over

California in 2010: all sources (black line), anthropogenic sources only (shaded gray). SO, emissions
include ship sources over oceans. (b) May 2010 modified anthropogenic emission rate for ammonia, SO,

and NOx in California.

Only ammonia shows a strong seasonal variation, with a summer peak, representing the higher

volatility corresponding to higher temperatures and increased agricultural activity. This

seasonality is described by Park et al. [2004]. Total annual anthropogenic emissions over the

domain in California shown for ammonia, SO, and NOx are 75 Gg N yr-, 91 Gg S yr-1, and

285 Gg N yr-1, respectively.
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Biofuel emissions, referring to burning of fuel for domestic use, such as heating and

cooking by wood or coal, in GEOS-Chem generally follow the NEI- 1999 inventory in the United

States, which includes weekday and weekend emissions values. This is true for both SOx and

NOx. Ammonia biofuel emissions, however, are from the 1990 Global Emissions Inventory

Activity (GEIA) as described by Bouwman et al. [1997]. Biofuel has little variability throughout

the year but does peak in the winter due to increased heating needs.

The Fire INventory from NCAR (FINN) [ Wiedinmyer et al., 2011] is used to describe the

daily biomass burning emissions of particulate matter and reactive trace gases, including sulfur

dioxide, NOx, and ammonia, for 2010. In the US, emissions from biomass burning are the largest

in the summer months, driven primarily from wildfires in the western states [ Wiedinmyer and

Neff, 2007]. For May 2010, biomass burning contributes 0.7% of ammonia emissions and 0.3%

of NOx emissions in California.

Natural ammonia emissions are also from the 1990 GEIA inventory and include

emissions from natural ecosystems and the ocean. These natural emissions show a summertime

peak similar to that of the anthropogenic sector and are the second largest category after

anthropogenic sources, making up 13% of total ammonia emissions in California in May.

Lightning NOx has been updated in GEOS-Chem v9-0 1-01 by Murray et al. [2012] to

provide an improved parameterization through regional scaling. All other relevant emissions,

such as soil NOx, are described by Pye et al. [2009].

2.3.3. Previous GEOS-Chem Studies of Inorganic PM in the United States

A number of previous studies have evaluated the GEOS-Chem simulation of surface

inorganic PM2.5; we highlight here some recent relevant results. Pye et al. [2009] find that

concentrations of inorganic aerosol are widely underpredicted over the entire United States, but

they conclude that ammonia inventory errors are not the primary reason for these discrepancies

and instead point to missing processes and low model horizontal resolution (horizontally 4' x

50). Zhang et al. [2012], who also use the high-resolution nested version of GEOS-Chem used in

this study, report little bias in NHx (ammonia + ammonium) but significant positive biases for
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nitric acid, ammonium, and nitrate, which they suggest may be associated with excess production

of nitric acid from N205 hydrolysis. Based on comparisons with IASI satellite observations,

Heald et al. [2012] suggest that California ammonia emissions are underestimated in the GEOS-

Chem model, which leads to underproduction of nitrate at the surface in this region. Elsewhere in

the US, they find a high bias in nitrate in all seasons except spring, consistent with Zhang et al.

[2012]. Walker et al. [2012] also report an underestimate of surface ammonium nitrate

concentrations in California. They suggest that a doubling of ammonia emissions is required to

simulate annual observed nitrate concentrations in southern California, while even a tenfold

increase in the Central Valley does not make up for the low bias in nitrate in that region. They

also suggest that a high bias in the GEOS-5 mixed layer depth may account for some of the low

nitrate bias, as particles are allowed to disperse into a greater volume near the surface.

2.4. Model Simulation of CalNex Observations

For this analysis, we separate the CalNex observations into two regions: the LA Basin

and surrounding area, referred to here as the "Southern CA" region, and both the Sacramento and

San Joaquin Valleys, referred to collectively here as the "Central Valley" region (shown in

Figure 2.1). The demarcation is 34.75'N latitude, with about 75% of the observations over the

Southern CA region and about 25% over the Central Valley. Measurements taken outside of

these two primary regions (e.g., over the ocean, in the San Francisco Bay area) constitute about

15% of the number of total measurements from CalNex and are not included in our analysis. As

shown by NEI-2005, the Southern CA region is dominated by NOx and ammonia emissions from

vehicles and industrial SO, especially within the Los Angeles core area. Ammonia emissions

from agriculture dominate the Central Valley region. High NOx emissions are seen over urban

areas in the Central Valley, and SOx emissions are quite low here compared to Southern CA

(Figure 2.2a).

Given that the CalNex aircraft does not uniformly sample a grid box and that it is not

possible for a coarse Eulerian model, such as GEOS-Chem, to reproduce plumes as

concentrations diffuse through a grid box [Rastigejev et al., 2010], any of the isolated high-

concentration plumes observed during CalNex can bias the comparison with model

concentrations. Thus, all averaging done in these comparisons will use median value in a grid
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box or bin, rather than mean, as a test of model performance. Furthermore, plume-chasing

aircraft sampling strategies can further bias the comparison between model and measurements. It

is not clear to what degree this may impact our comparisons; we use regional averages

throughout this study in an attempt to mitigate this effect.

The median concentrations of the six main species of interest (gases: ammonia, sulfur

dioxide, nitric acid; and particle ions: ammonium, sulfate, nitrate) at all altitudes for both

observations and the model are compared over the entire region in Figure 2.3. The model

reproduces the general spatial distribution of these species, and particularly the transition from

the Southern CA to Central Valley regions. However, the model substantially underestimates

observed ammonia concentrations, by up to 24 ppb gridded median in the Central Valley,

consistent with the underestimates reported by Heald et al. [2012] and Walker et al. [2012].

Sulfur dioxide in the model is noticeably low in the Central Valley as well, especially in the

southern Central Valley. Model values for nitric acid and all three aerosol species are slightly

underestimated in the southern Central Valley, and slightly overestimated on the northern end.

Nitric acid, ammonium, and nitrate are slightly low in Southern CA. Heald et al. [2012] report a

consistent low bias in simulated nitrate in southern California compared to surface observations

in 2004 but little to no bias in mid-northern California. Except for ammonia, the median model

biases for an individual grid box are less than 2 ppb (for the gas-phase species) or 2 tg sm-3 (for

the particle-phase species). Uncertainties in the observations are proportional to the measured

concentration. Typical uncertainties in this region are 3 ppb for 10 ppb measured ammonia,

0.15 ppb for 1 ppb measured sulfur dioxide, 0.3 ppb for 2 ppb measured nitric acid, and

0.3 pg sm- 3 for 1 pLg sm-3 measured particle ion species.

Figure 2.4 compares the median vertical profiles of the inorganic gas and particle species

in the Southern CA and Central Valley regions. The standard deviation of the observations in

each altitude bin is also shown to denote the high degree of observed variability. Some of the

high variability and vertical structure reported aloft reflects the limited number of observations at

these altitudes, particularly in the Central Valley where the aircraft mainly sampled below 3 km

altitude. In general, both the observations and the simulation agree that species concentrations

decrease with increasing altitude due to surface sources and the short lifetimes of these species.
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Figure 2.4. Vertical profiles of median CalNex plane flight observations (black) and median GEOS-Chem

simulated concentration along those flight paths (red) averaged in 500 m altitude bins for the (top) six

main gas precursors and particle ions and (bottom) NOx as a precursor to nitric acid. The Southern CA

region and Central Valley region are shown separately. The standard deviation of the observations in each

altitude bin is shown in gray. The number of points in each bin is shown in blue.

Exception to this occurs in the near-surface layer, where deposition can reduce concentrations.

Median model near-surface ammonia is biased low by a factor of 5 in the Central Valley and a

factor of 2.5 in Southern CA. The model simulation of ammonium and nitrate is correspondingly

low in Southern CA, consistent with an underestimate in ammonia precursor emissions.

However, the model overproduces ammonium nitrate concentrations in the Central Valley

despite the very low simulated ammonia concentrations, suggesting both that ammonium nitrate
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formation is not ammonia limited in this region and that ammonium nitrate production is

overestimated in the model. This is inconsistent with Walker et al. [2012] who find that 2009

surface nitrate concentrations are underestimated by the GEOS-Chem model throughout

California; however, they apply different scaling factors to their emissions, and a direct

comparison is not possible, as they do not provide emission totals for California. The model

simulation in the Central Valley also suffers from an underestimate of sulfur dioxide levels by

about a factor of 3 (below 2 km), with a simultaneous overestimate in near-surface sulfate.

Although the nitric acid comparison is good in both regions, the simulated near-surface NOx

concentration, also shown in Figure 2.4, is biased high in Southern CA by 27% and low in the

Central Valley by 52%.

The discrepancies between the CalNex observations and GEOS-Chem model simulation

identified above could be due to several factors within the model. In the following section, we

explore these factors, diagnose simulated sensitivities due to model uncertainties, and propose

solutions to reconcile these differences.

2.5. Exploring the Sensitivities of the GEOS-Chem Simulation

2.5.1. Gas-to-Particle Partitioning

The ISORROPIA II thermodynamic equilibrium model in GEOS-Chem determines both

the partitioning of ammonia into ammonium in order to neutralize sulfate and the partitioning of

ammonium nitrate between the particle and gas phases. In GEOS-Chem, these calculations are

based on the model ambient temperature and RH and the model concentrations of total ammonia,

sulfate, total nitrate, sodium, and chloride. The concentration of ions present in submicron dust

can also be treated in ISORROPIA II, but this is not included in the GEOS-Chem

implementation due to the challenges of characterizing the variability in dust composition. Given

the assumption of metastable equilibrium enforced by the GEOS-Chem model, ammonium

nitrate particles remain deliquesced in ISORROPIA II through the lowest ambient RH levels (see

Section 2.5.3 for further discussion).

Due to the sensitivity of ammonium nitrate equilibrium to temperature and RH, any bias

in these parameters from the assimilated meteorology could affect the ammonium and nitrate
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equilibrium concentrations. Figure 2.5 compares the observed and model (assimilated)

meteorology for both the Southern CA and Central Valley regions. The median model

temperature profile is generally biased low by about 1 C in both regions, with a modest

overestimate near the surface in the Southern CA region. However, the model and observations

are highly correlated, with linear regression slopes close to 1. The RH comparison is somewhat

more scattered, as expected given the challenges of both measuring and predicting RH. The

median model bias in RH for individual observations ranges from about 5 to 10%, in both

directions, but no mean bias is evident.

SOUTHERN CA
30

T -
20 - T.
10-

0 -
-10 - .R 0.93'
-20 -m 1.16

-20 -10 0 10 20 30
Observations

6- T
5 .Observations --

-- 4 -odel -.
4-

13

2-

0 . . . . .
-20 -10 0 10 20 30

Temperature [*C]

100 ' ' ' ' +
RH . ,:.

80 - .[%] *-.. r./"
60 - -. .- '

40

20 . . '.76
0 - m=Q.751

0 20 40 60 80 100
Observations

6 RH
5-
4.
3
2

0
0 20 40 60 80 100

Relative Humidity [%]

CENTRAL VALLEY
30 ' ' ' ' -

T
20 - [*C]

10-

0
-10-5 - .-'- I

R = 0.97
-20 .-' , =m 1.171

-20 -10 0 10 20 30
Observations

6 T
5
4-
3>
2-.
1-

-20 -10 0 10 20 30
Temperature [*CJ

100  '.

80-R80 %]. -
60 .

40 -

20 -R = 0.59
0 M = 1.18
0 20 40 60 80 100

Observations

6 RH
5
4-
3-
2
I
0 ,

0 20 40 60 80 100
Relative Humidity [%]

Figure 2.5. Comparison of CalNex plane flight observations and GEOS-Chem model meteorology along
those flight paths for temperature (T) and relative humidity (RH). Southern CA region and Central Valley
region are shown separately. (top) Scatterplots (orthogonal regression line in red, 1:1 line in broken blue,
R is correlation coefficient, m is slope). (bottom) Median vertical profiles (as in Figure 2.4).

In order to determine the effects that these errors in meteorology (T, RH) could have on

the simulated profiles, we perform a series of sensitivity simulations where the meteorological

inputs into ISORROPIA II are varied. Given T and RH conditions experienced at the surface in

California during this time of year, little sensitivity is expected; however, at the colder and drier

condition aloft, errors in meteorology may more adversely affect the simulation. Thus,

simulations are performed for 1 C and +10% RH from the original GEOS-5 values at all

vertical levels. The impact of varying the temperature within the observed uncertainty on species

concentration is very small with virtually no change in the median concentration profiles
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(maximum variation in a vertical bin for any species is 0.2 pig sm-, not shown). The impact of

varying RH is similarly small for all regions, except for nitrate concentrations aloft (maximum

variation in a vertical bin of 0.5 ptg sm-3 at 5 km), where limited observations are available to

evaluate the simulation. Thus, we conclude that the simulation of nitrate concentrations below

3 km is not sensitive (less than 0.2 pg sm-3 variation) to the estimated uncertainty in model RH

for the region. Overall, we conclude that model bias in temperature and RH during CalNex does

not significantly impact the gas-to-particle partitioning in the model and cannot account for

model bias in the simulation.

Chloride ion (Cl-) can impact the fine inorganic PM system discussed here in two ways.

First is from the reaction of sea salt (NaCl) with nitric acid, which leads to the formation of

sodium nitrate (NaNO3) while releasing hydrochloric acid (HCl). In GEOS-Chem, only

accumulation mode sea salt is included in the calculation of the gas-aerosol equilibrium state

with ISORROPIA II. Second is through the neutralization reaction of hydrochloric acid with

ammonia to form ammonium chloride (NH 4Cl). Hydrochloric acid for this reaction is typically

emitted directly from urban sources [Kaneyasu et al., 1999], which are not included in GEOS-

Chem. We find that AMS-observed airborne chloride concentrations during CalNex were low

(less than 1.2 jig sm- 3 at all points) throughout the region studied. This chloride measured is

typically in the form of ammonium chloride, rather than sea-salt chloride [Canagaratna et al.,

2007]. The model overpredicts the median chloride concentrations by a factor of 2, suggesting

that, while the comparison is not exact, the missing hydrochloric acid sources in the model are

not critical for predicting chloride levels. Sensitivity tests verify that reducing simulated chloride

concentrations to observed levels (or less) does not significantly impact the equilibrium of

ammonium nitrate formation in the model (less than 0.1 pg sm-3 mean concentration change near

the surface). Therefore, there is little evidence that we are missing a substantial source of

ammonium or nitrate in the form of sodium nitrate or ammonium chloride in our simulation of

California.

ISORROPIA II represents only the equilibrium partitioning of fine particles; therefore,

any possible sink of nitric acid onto coarse sea salt or dust is not represented here. However, the

comparison of Figure 2.4 does not suggest that we are missing a large nitric acid sink in
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California, as simulated nitric acid values are within 20% of observations at all altitudes. While

we have neglected the impact of organic acids and dust on nitrate formation in the GEOS-Chem

simulation, we do not expect either to play a dominant role in the inorganic gas-particle system

or the simulation biases described here as concentrations of these species are low during

California summer [Fairlie et al., 2010; Myriokefalitakis et al., 2011].

2.5.2. Wet and Dry Deposition

Wet deposition processes allow for the removal of chemical species from the atmosphere

as they are incorporated into precipitation. GEOS-Chem uses wet deposition schemes by Liu et

al. [2001] for aerosols and Mari et al. [2000] for gases to determine how much of a given

species is removed. These schemes are driven primarily by the presence of convection and

precipitation within the meteorological input parameters.

Over the California domain shown in Figure 2.1, the NHx wet deposition flux makes up a

much smaller fraction of total NHx deposition than dry deposition (0.8 Gg N month-' mean wet

deposition compared to 2.2 Gg N month-' mean dry deposition for May and June 2010). The

CalNex time period represents the driest season in California. Most of the precipitation occurs

over the mountains to the east of the Central Valley. As this is largely driven by the regional

meteorology, wet deposition of SOx and total nitrate follows similar seasonal patterns.

We use monthly mean wet deposition measurements from the National Atmospheric

Deposition Program National Trends Network (NADP/NTN) (nadp.sws.uiuc.edu/ntn) at nine

sites in California in 2010 to test the simulated wet deposition in GEOS-Chem. The observations

and model agree that wet deposition levels of all three ion species in May and June are low, both

in absolute terms (Figure 2.6) and compared to other times of the year (not shown). The

comparison of observed and simulated mean wet deposition fluxes in Figure 2.6 shows a slight

model underestimate of wet deposition at sites east of the Central Valley, but these sites are

outside of the domain of the aircraft measurements. Thus, wet removal does not control the

budget of trace gases and particles over California in this season, and biases in the GEOS-Chem

simulation cannot be attributed to this process.
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Figure 2.6. Scatterplots of mean May-June 2010 NADP/NTN and GEOS-Chem wet deposition flux at

nine sites (squares) and CASTNET and GEOS-Chem dry deposition velocity at six sites (circles) in

California. Site locations are shown in upper left; 1:1 line is shown in broken blue. Gray lines represent

extent of minimum and maximum weekly observed and daily model velocity values. Ammonia dry

deposition is not measured by CASTNET. Only wet deposition of ions is measured by NADP/NTN.

GEOS-Chem uses the Wesely [1989] resistance parameterization for dry deposition. This

scheme combines aerodynamic resistance, boundary layer resistance, and canopy surface

resistance terms to calculate a deposition velocity. This deposition velocity is combined with the

ambient species concentration to determine the dry deposition flux.

Dry deposition of gaseous ammonia dominates the simulated NHx mass loss to deposition

during May and June in California (63% of total NHx deposition, 85% of NHx dry deposition).

30

NH4 .

- ..-

40ON

38N

36ON

34ON

.

0.8

0.6

0.4

0.2

0.0
0
5

4

3

NU)3

I

2-4



Similarly for SO, and total nitrate, the dry deposition of the gas species dominates that of the

aerosol. Dry deposition of nitric acid clearly dominates the total nitrogen deposition throughout

California in May and June, accounting for 6.9 Gg N month-' of the 11 Gg N month-' mean total

nitrogen deposition (63%). This is consistent with US nitrogen deposition budget reported by

Zhang et al. [2012], where nitric acid dry deposition makes up the largest portion of total

nitrogen deposition annually throughout the US. Simulated May 2010 dry deposition velocities

over land in California range from 0.3 to 0.5 cm s-1 for ammonia and from 0.2 to 4.0 cm s-1 for

nitric acid. These velocities are highly affected by land type and density of vegetation.

Average dry deposition velocity values from seven California sites in the EPA Clean Air

Status and Trends Network (CASTNET) (www.epa.gov/castnet) are compared with GEOS-

Chem for May and June 2010 in Figure 2.6. CASTNET does not report ammonia dry deposition

velocities. It is critical to note that the dry deposition velocities from CASTNET are derived

quantities from the Multilayer Model. Thus, the comparison with GEOS-Chem is in fact a

comparison of two models. However, we use these comparisons to provide an estimate of

potential bias in the GEOS-Chem simulation. Based on these few point sites for comparison, the

model deposition velocity is biased high for sulfur dioxide and nitric acid and somewhat low for

the aerosols.

We conduct a sensitivity simulation to test whether these potential biases in dry

deposition velocity may contribute to the discrepancies between the simulation and the CalNex

observations. In this simulation, sulfur dioxide and nitric acid dry deposition velocities are

reduced by 50%, lowering the minimum sulfur dioxide velocity from 0.3 cm s-1 to 0.2 cm s-1,

and the aerosol dry deposition velocity is increased by 70%, all changed to match the CASTNET

values. The impacts of this change on sulfur dioxide are small. The near surface median sulfur

dioxide concentration in Southern CA is increased by 0.04 ppb, nearly halving the bias in this

region. A relatively insignificant increase of about 0.03 ppb is seen in the Central Valley. Nitric

acid experiences a larger change in the near-surface concentration in both regions, with median

increases of 0.37 ppb in Southern CA and 0.12 ppb in the Central Valley. This creates an

overestimation in nitric acid in Southern CA and matches the CalNex observations in the Central

Valley. The increase in nitric acid also enhances ammonium nitrate formation. The overall
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change is larger in the Central Valley however, where the ammonium nitrate increase in

Southern CA is completely offset by increased aerosol deposition. Only a small decrease in

concentration, less than 0.03 pg sm-3 for all aerosol species, can be attributed to the change of

the aerosol dry deposition velocity alone. While the improvement in surface sulfur dioxide

concentration in Southern CA and nitric acid concentration in the Central Valley made by

altering the dry deposition velocities corrects much of the original discrepancy for those species

seen in Figure 2.4, confidence in the derived CASTNET values is low, and thus, it is not clear

that the bias in sulfur dioxide and nitric acid can be correctly attributed to errors in dry

deposition velocity. We note that the dry deposition velocities of ammonia have not been

evaluated against observations; although, a similar 50% decrease in simulated ammonia dry

deposition velocity does not produce any significant changes to the species concentrations

simulated for CalNex (nor do we see any significant change in concentrations under the extreme

test of reducing ammonia dry deposition velocities by 90%). The modest sensitivity of the

simulation to the assumed sulfur dioxide and nitric acid dry deposition velocities suggests that

this could be a small source of bias in the model simulation.

2.5.3. Emissions

Given the changes in human and livestock populations in parts of California as well as

changes in mitigation technology, the NEI-2005 used in GEOS-Chem may not adequately

describe our study period in 2010. Russell et al. [2012] indicate that N02 concentrations have

decreased by about 30% in cities across the US, including near LA, between 2005 and 2011 due

to increased emission controls. This likely accounts for the model overestimate of NOx in the

Southern CA region shown in Figure 2.4. As for ammonia, the total number of cattle, a key

source of ammonia, in the San Joaquin Valley increased by 24% from 2002 to 2010 (United

States Department of Agriculture California livestock inventory (www.nass.usda.gov/ca)),

creating a large emissions underestimate. Applying ammonia emissions inventories correctly is

also difficult given the variety of waste management and dietary factors which can affect the

local emission levels at a given time.

We investigate the magnitude of adjustment to the NEI-2005 anthropogenic emissions

which can reconcile our model simulation with the CalNex observations. Our initial comparisons
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showed that the model ammonia concentrations were low throughout California, but this

difference is much greater in the Central Valley. Figure 2.7 disaggregates the NEI-2005

California ammonia emissions into two key source sectors: livestock and on-road mobile

sources. This clearly delineates the livestock ammonia emission in the Central Valley region and

the on-road mobile ammonia source in the Southern CA region, as well as in the vicinity of San

Francisco. We investigate the impact of increasing the livestock ammonia emission by a factor of

5 over the entire inventory area in our modified simulation. In addition, using the same CalNex

airborne measurements as in this study, Nowak et al. [2012] show that the NEI-2005 ammonia

emissions are quite low for the eastern side of the LA Basin, where many dairy operations exist.

They report a measured ammonia emission rate of 12-64 Gg yr-' from livestock in this eastern

LA region, compared to the NEI-2005 rate of about 0.37 Gg yr-1. We set the livestock ammonia

emission rate in the single east LA model grid box consistent with the region discussed by

Nowak et al. [2012] to 12 Gg yr' in our modified simulation. This is more than 30 times the

original value rather than the 5 times increase imposed elsewhere. Although not yet available in

gridded format, the NEI-2008 version 3 (www.epa.gov/ttnchiel/net/2008inventory.html)

supports a large growth in livestock ammonia emissions in California, compared to NEI-2005: a

doubling in the Central Valley and 17 times increase in Southern CA.
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Figure 2.7. NEI-2005 ammonia emissions in GEOS-Chem for May 2010 over California: all sources,

livestock only, and on-road mobile only.

The model sulfur dioxide concentrations are underestimated in the Central Valley as well.

This low bias is larger in the southern Central Valley region than in the north. In an effort to

better represent observed concentrations, we increase the northern and southern Central Valley
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sulfur dioxide emission by 3 times and 10 times, respectively, in our modified simulation. This

increases the Central Valley mean May 2010 SOx emission rate from 3 kg S km-2 month-l to

31 kg S km- 2 month-'. This model underestimate of sulfur dioxide concentrations in the Central

Valley may be related to upwind urban sources (e.g., from Fresno, Sacramento, Bay Area) or

local sources of sulfur dioxide. However, we are unable to attribute this discrepancy based on the

observations used here. This requires further exploration. The scaling factors selected are based

solely on the observed bias in the baseline simulation (Figure 2.4). We also implement a 30%

reduction in anthropogenic NOx emission from the NEI-2005 values based on Russell et al.

[2012]. The new May emission rates for anthropogenic ammonia, SO, and NOx in the modified

GEOS-Chem simulation are shown in Figure 2.2b. The annual anthropogenic emissions rates

over the California domain shown are now 280 Gg N yr-1, 118 Gg S yr-, and 209 Gg N yr-1 for

ammonia, SO, and NOx, respectively.

Vertical profiles comparing the results from the modified emissions simulation with the

standard run are shown in Figure 2.8. In the Southern CA region, the low ammonia concentration

bias is overcorrected by the increased emissions. The increase in emissions compensates for

much of the bias in ammonia in the Central Valley; however, a pronounced near-surface

underestimate remains. The low bias in sulfur dioxide concentrations is halved in the Central

Valley and completely eliminated in Southern CA. Increased ammonia emissions in both regions

act to neutralize more nitric acid, decreasing its concentration while promoting ammonium

nitrate aerosol formation. The NOx concentration comparison in Southern CA is much improved

with lower NOx emissions, while a low bias remains in the Central Valley. However, this drop in

NOx creates a modest low bias in nitric acid near the surface in both the Central Valley and

Southern CA which is much larger than the nitric acid decrease caused by the ammonia increase

alone. Excess dry deposition of nitric acid in the model (discussed in Section 2.5.2) may also

contribute to this underestimation. Inorganic aerosol concentrations increase in both regions due

to increased availability of ammonia and sulfur dioxide. This substantially improves the

simulation of inorganic PM2.5 in Southern CA but worsens the already high-biased simulation of

ammonium and sulfate in the Central Valley and produces an overestimate in nitrate (consistent

with the US-wide overestimate in nitrate concentrations reported by Heald et al. [2012]). We
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Figure 2.8. Same as Figure 2.4 but with vertical profiles resulting from the GEOS-Chem simulation with

modified emissions added in green. The number of points per bin remains the same.

note here that these comparisons may also be influenced by the AMS size cutoffs which may

underestimate the fine PM mass concentrations when compared to the model.

The results of these emissions modifications, in concert with the sensitivities explored in

Sections 2.5.1 and 2.5.2, suggest that uncertainties in the GEOS-Chem simulation of the

inorganic gas-particle system are dominated by emissions. Accurate emission inventories are

critical to the ability to effectively model reactive nitrogen and PM2.5 formation in California.

The emissions modifications we have made are the largest source of concentration variation and
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the closest we have come to reducing initial errors among the factors examined in Section 2.5.

However, we note that we have applied uniform scaling factors to the NEI-2005, where emission

trends likely differ considerably at the county level.

Figure 2.9 summarizes the near-surface air quality and inorganic PM2.5 composition for

our two regions in California by comparing the CalNex airborne observations with the standard

and modified emissions GEOS-Chem simulations. The CalNex observations show that, below 1

km, inorganic PM2.5 concentrations are about three times as high in Southern CA as in the

Central Valley, with median concentrations of 2.47 and 0.91 gg sm 3, respectively. However, the

relative speciation of inorganic fine PM is similar across California (sulfate contributes 50% and

nitrate makes up about 25%, both by mass).

SOUTHERN CA CENTRAL VALLEY
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8- SO 2 NHHNO3  8-

6. 6-
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4. 4-
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Emissions Emissions

Figure 2.9. Median species concentrations below 1 km. Comparing (top) gases species with (bottom)
aerosol species, Southern CA region with Central Valley region for three cases: CalNex airborne
observations, standard GEOS-Chem simulation, and simulation with modified emissions.

On a more local scale, both CalNex airborne observations and GEOS-Chem simulation

(with updated emissions based on Nowak et al. [2012]) capture the formation of ammonium

nitrate downwind of LA as the oxidized NOx emitted from the city core reacts with large

amounts of ammonia from farms to the east of LA. Observed near-surface inorganic PM2.5 in
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East LA is 24% higher than in LA (4.32 ig sm-3 compared to 3.48 ptg sm- 3) and is made up of

44% nitrate compared to 34% in LA. The modified simulation better captures the higher

ammonium nitrate concentration in East LA, producing 3.57 ptg sm-3 inorganic PM2.5 compared

to 1.65 [tg sm-3 in the standard simulation.

Increasing ammonia, sulfur dioxide, and decreasing NOx emissions as described in the

modified simulation decreases the overall regional biases seen in the initial comparison of the

observations and standard GEOS-Chem (Figure 2.9). Comparison of gas species is improved or

consistent with the initial comparisons in both regions. Aerosol concentrations in Southern CA

are also greatly improved, especially for ammonium and nitrate. The largest remaining

discrepancy is the simulated Central Valley inorganic particle concentrations, which are initially

too high (by 51%) compared to the observations and are increased further with the modified

emissions (now 89% overestimate). This occurs despite the continued underestimate of the gas-

phase precursors in the same region of 23%. One possible cause of this particle mass

overestimate could be the deliquescence assumptions applied in the model. Ammonium nitrate

deliquescence exhibits a hysteresis, where the RH exposure history of the particle dictates

whether the particle is deliquesced when exposed to RH between the crystallization and

deliquescence RH. Given that a three-dimensional model cannot track this particle history, an

assumption that the particle remains on the upper deliquesced branch (metastable) or lower

crystallized branch (stable) must be applied. In the GEOS-Chem model, the default is the use of

the metastable assumption, which is appropriate under higher RH conditions [Pye et al., 2009].

However, under the dry summertime conditions in California, this assumption may be erroneous.

In Figure 2.10, we examine this behavior by comparing the difference in the simulated nitrate

concentrations predicted under the modified emissions scenario with the stable and metastable

assumption along the CalNex flight tracks. Using a stable assumption, which allows for both

solid and liquid aerosol, rather than only liquid as in the metastable assumption, generally

reduces ammonium nitrate formation. This occurs throughout California, except in conditions

when both nitric acid and ammonia concentrations are sufficiently high to exceed the equilibrium

constant for the solid formation of ammonium nitrate, seen, for example, at the surface in LA. In

terms of the median comparisons presented in Figures 2.8 and 2.9, the stable assumption

eliminates about half of the ammonium nitrate overestimate in the Central Valley, but at the
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same time, it degrades the comparison with ammonium nitrate observations in Southern CA.

This may represent a key uncertainty in the simulation of ammonium nitrate in relatively dry

locations. However, we see from Figure 2.10 that in Southern CA, the median and the mean

difference in concentrations due to this shift in ammonium nitrate formation regime are of

opposite sign. Thus, the relative importance of this effect likely varies with location and

evaluation metric. The true particle history is also likely a mixture of hydration and dehydration,

suggesting that our metastable and stable simulations bracket the "true" ammonium nitrate

formation conditions. Other possible causes of the overprediction of ammonium nitrate in the

Central Valley include a missing loss mechanism, insufficient ventilation or poor representation

of transport and export from the Central Valley due to insufficiently resolved terrain, or

underestimation of the fine PM mass observed with AMS. Further investigation is required to

improve the PM simulation in this challenging region.

15

10

0
-2 -1 0 1 2

NO3 (Stable) - NO3 (Metastable) [pg sm 3]

Figure 2.10. Histograms show the difference in simulated nitrate concentrations along the CalNex flight
tracks over the Central Valley (red) and Southern CA (green) when applying the stable versus metastable
assumption in the GEOS-Chemmodel. All simulations are shown with modified emissions scenario
(described in Section 2.5.3). Also displayed are the mean (triangle) and median (diamond) values for each
distribution. All differences for the Central Valley are within the given range, while 4% of Southern CA

differences are above 2 pg sm-3 and 1% are below -2 pg sm 3 .

Finally, ammonia emissions likely peak in the afternoon due to the influence of

temperature on the volatility of ammonia and increased anthropogenic activity (farming

practices, vehicle operation) during the day [Pinder et al., 2006a]. However, ammonia emissions

in GEOS-Chem remain constant throughout the day, and this could be another limitation on the

model's ability to represent surface-level air quality. In Figure 2.11, we explore the sensitivity of

the diurnal pattern of regional surface ammonia, ammonium, and nitrate concentrations to both

the diurnal profile of ammonia emissions and the mixing depth for May-June 2010. By emitting

38

CENTRAL A Mean
VALLEY
SOUTHERN
CA



ammonia in a daytime pulse and raising the overnight PBL height by 50 hPa (an arbitrary value

chosen to test sensitivity), we see that the simulated diurnal pattern of surface concentrations of

ammonia and ammonium nitrate are highly sensitive to these factors. The sensitivity to

ammonium nitrate formation is higher in Southern CA, which is ammonia limited. Except for the

increase in surface ammonia concentration in the Central Valley, midday concentrations appear

unaffected, while the nighttime differences are on average a factor of 2. There is little impact on

sulfate concentrations under both of these scenarios (not shown). This suggests that

characterizing the diurnal trend in both emissions and mixing depth is critical to accurately

simulating hourly fine PM exposure. We note that the model simulation of predominantly

daytime airborne measurements during CalNex is virtually insensitive to these factors. Further

investigation, with a large data set of hourly measurements in multiple seasons, is required to

further investigate the processes controlling the diurnal variability of fine inorganic PM in

California.
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Figure 2.11. Hourly mean regional surface concentrations of (left column) ammonia, (middle column)

ammonium, and (right column) nitrate for May-June 2010 simulated with GEOS-Chem: standard
simulation with modified total emissions (red), afternoon pulse of ammonia emissions (green), and lifting

of the overnight PBL by 50 hPa (blue). All simulations include the modified total emissions described in

Section 2.5.3.
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2.6. Application of Modified Emissions to Year-Round Surface Air Quality in California

We use this same modified emissions simulation, based on the summertime CalNex

period evaluation, to investigate the year-round inorganic PM2.5 formation and surface-level

concentrations in California. In Figure 2.12, observed and simulated surface inorganic PM 2.5

concentration and percent mass composition are compared at nine EPA Air Quality System

(AQS) sites in California (six in Central Valley, three in Southern CA)

(www.epa.gov/ttn/airs/airsaqs) for 2010. Ion species discussed here are collected on a nylon

filter after PM 2.5 inlet, extracted and analyzed using ion chromatography. The model is sampled

for valid observation days for the grid box containing each of the sites. The seasonality of the

simulated concentrations generally compares well with the observations in both regions,

supporting the validity of the emissions modifications year round and the model's usefulness to

address air quality issues throughout the year. The notable exception is the high bias in simulated

nitrate in the Southern CA region through the summer and fall. However, the AQS sites in the

Southern CA region are close to LA and represent near-source air masses rather than the regional

averages shown elsewhere in this study, and therefore, reported concentrations are higher.

Ammonium nitrate formation is highly sensitive to changes in NHx and total nitrate under these

conditions, so a slight high bias in either of these, perhaps due to overly rapid oxidation of NOx

to nitric acid, could cause an overprediction of the particle mass. The mean ammonium nitrate

concentrations at the surface shown here are not sensitive to the stable/metastable assumption in

the model, consistent with Heald et al. [2012]. This is the result of both somewhat higher RH

conditions at the surface, and an averaging out of localized increases and decreases (refer to

Figure 2.10). The only exception to this is in LA where concentrations of nitric acid and

ammonia are consistently high enough to promote greater ammonium nitrate formation under

stable conditions. However, this leads to a maximum regional mean increase in nitrate of about

0.5 ptg sm-3 at the Southern CA sites and makes up at most about 25% of the difference between

model and observations in Figure 2.12.

Figure 2.13 contrasts the mean regional simulated surface concentrations for both gas and

aerosol species in the Southern CA and Central Valley regions in June and December. These

results are insensitive to the stable/metastable assumption in the model. In the Central Valley, the
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Figure 2.12. Mean monthly surface concentrations and percent of total particle species for 2010 in

California. Comparing EPA Air Quality System (AQS) sites (solid line) and GEOS-Chem simulation
with modified emissions (dashed line) in each of two regions. Simulated values are sampled for grid box
corresponding to surface site and days with valid observed concentrations.

mean regional simulated surface inorganic aerosol concentrations are three times higher in

December (7.07 pg sm-3) compared to June (2.32 pg sm-3). This relative change is supported by

the seasonal variation shown by the AQS observations. Despite wintertime ammonia emissions

reductions, there remains abundant available ammonia in the atmosphere in the Central Valley.

The nitrate fraction of inorganic PM in the Central Valley increases from 30% in June to 64% in

December. A higher wintertime frequency of inversion events and a lower mean PBL height trap

pollutants in the Central Valley region and contribute to these higher PM levels. The mean

simulated PBL height in this region decreases from 1.7 km in June to 0.7 km in December.

About 75% of the simulated increase in ammonium nitrate is due to effects of the lower

wintertime PBL height, while the remainder is due to colder temperatures enhancing ammonium

formation balanced with lower ammonia emissions. Given this high sensitivity, PBL height

measurements could be useful to investigate whether the modest ammonium nitrate

underestimate in the winter, shown in Figure 2.12, is a result of errors in meteorology and/or
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Figure 2.13. Regional mean simulated species concentrations at the surface for June and December 2010

for model with modified emissions. Comparing (top) gas species with (bottom) aerosol species. Southern

CA region on left with Central Valley region on right.

mixing. Frequent winter rain, cloud, and fog activity in the Central Valley can also accelerate the

deposition of PM species during this time [Jacob et al., 1986]. This removal counters the

increase in sulfate production which occurs when more liquid water is available, leaving sulfate

concentrations relatively constant throughout the year.

Conversely, in Southern CA, the simulated regional mean inorganic PM2.5 concentration

is two times lower in December (2.80 pg sm-3) than in June (5.52 pg sm-3), while the relative

composition of the inorganic PM2.5 remains the same. The thermodynamic potential for

ammonium nitrate formation and total nitrate levels is comparable in Southern CA and the

Central Valley in the wintertime. However, unlike in the Central Valley, the Southern CA region

is ammonia limited in the winter. While the relative wintertime decrease in ammonia emissions

is similar in both regions, the absolute ammonia supply is considerably lower in Southern CA,

restricting ammonium nitrate formation. This effect is larger than seasonal changes in
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temperature and PBL height, which are more moderate than in the Central Valley, and would

otherwise increase the ammonium nitrate concentrations. Like in the Central Valley, the

wintertime change in sulfate concentration is a balance between increased production and wet

deposition. A series of widespread, gas- and particle-phase concentration measurements (with

colocated profilers to help characterize mixing depth) are required to further investigate the

relative role of emissions, meteorology, and mixing on surface PM air quality in California in

different seasons.

By removing all anthropogenic ammonia emissions from our simulation with modified

emissions, we estimate that about 40-60% of surface inorganic PM 2 .5 in California during the

summer and up to 78% in the Central Valley region in the winter (56% in the Southern CA) are

attributable to anthropogenic sources of ammonia. Ammonia that is not partitioned into aerosol

or deposited near its emission region can be transported, given the proper meteorological

conditions, and react or be deposited elsewhere. This excess ammonia often occurs due to the

very large emission rates in certain areas, such as in the Central Valley. Future flight campaigns

in these remote areas or the use of space-based remote sensing instruments could help evaluate

the effects of increasing ammonia emissions on air quality and ecosystems downwind of the

CalNex region.

2.7. Conclusions

We have evaluated the representation of the ammonia and inorganic aerosol system in the

GEOS-Chem chemical transport model using aircraft observations from the CalNex campaign in

May and June 2010. Initial comparisons of observations with the simulation show

underprediction of ammonia and sulfur dioxide in two regions in California, near LA and the

Central Valley. Median concentrations of ammonium, sulfate, and nitrate are underpredicted near

LA as well but overpredicted in the Central Valley. NOx is overpredicted in the region near LA.

Sensitivity analysis of several processes within the model indicates that underestimated/

overestimated emissions are most likely to account for model biases. Increasing anthropogenic

emissions of ammonia and sulfur dioxide enhance inorganic PM formation in both regions. A

decrease in anthropogenic NOx, as suggested by Russell et al. [2012], counters some of this
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formation. These modifications reduce the initial model bias in all species, except aerosols in the

Central Valley. This suggests that the NEI-2005 does not adequately describe livestock ammonia

and anthropogenic NOx throughout California and anthropogenic sulfur dioxide sources in the

Central Valley. This trend is consistent with the trends in emissions suggested by the NEI-2008.

Furthermore, we find that ammonium nitrate concentrations simulated along the CalNex flight

tracks may be sensitive to thermodynamic assumptions made in the model, but this sensitivity is

negligible for mean surface concentrations (with the exception of LA).

We use this model with improved emissions to investigate surface inorganic fine PM,

which contributes to poor air quality in California. The simulated concentrations confirm

observations, where inorganic PM2.5 is highest in the Central Valley during the winter and

highest in Southern CA during the summer. June PM2.5 concentrations are more than a factor of

2 higher near LA than in the Central Valley. This is reversed in December when ammonium

nitrate formation is favored in the Central Valley. Central Valley inorganic PM2.5 concentrations

are three times as high during this time than in June. Nitrate accounts for the largest portion of

mass and seasonal variation in fine inorganic PM in both regions. Unlike in most of the US,

inorganic PM2.5 in California is not dominated by sulfate, so ammonia emissions control could

be an effective method to lower the inorganic PM 2.5 concentration in the region. Our simulations

suggest that more than half of the inorganic PM2.s throughout California is produced as a result

of anthropogenic ammonia emissions.

The remaining reservoir of ammonia in the Central Valley indicates that the formation of

inorganic PM2 .s and its associated air quality degradation could dramatically increase should the

concentration of atmospheric acids increase. This seems possible given current projections of

southern Central Valley human population: about 20% increase over 2010 population by 2020

and 60% increase by 2040 [State of California, 2012]. However, advances in emissions

technology and implementation may counteract some or all of the effects of population growth

[Steiner et al., 2006]. The balance of these trends will likely dictate future PM2.5 air quality in

California.
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Chapter 3. Interannual Variability of Ammonia Concentrations over the

United States: Sources and Implications

Adaptedfrom: Schiferl, L. D., C. L. Heald, M. Van Damme, L. Clarisse, C. Clerbaux, P.-F.

Coheur, J. B. Nowak, J. A. Neuman, S. C. Hemdon, J. R. Roscioli, and S. J. Eilerman (2016),

Interannual variability of ammonia concentrations over the United States: sources and

implications, Atmos. Chem. Phys., 16, 12305-12328, doi:10.5194/acp-16-12305-2016.

3.1. Introduction

The modem agricultural system developed to feed an increasing human population relies

heavily on artificially produced reactive nitrogen in the form of ammonia (NH 3). The

intensification of agricultural practices has significantly perturbed the global nitrogen cycle over

the past century, including increases in ammonia emissions into the atmosphere [Galloway and

Cowling, 2002; Erisman et al., 2008; Sutton et al., 2008]. Agricultural ammonia emissions

contribute to inorganic fine particulate matter (PM2.s formation (e.g., ammonium sulfate and

ammonium nitrate) in the atmosphere [Seinfeld and Pandis, 2006]. PM2.s has numerous negative

effects on human health, including respiratory and cardiovascular distress and an overall

decrease in life expectancy [Pope et al., 2009]. Agriculture has a large impact on PM2.5

throughout the world, contributing up to 40% of premature mortality due to outdoor air pollution

in parts of Europe [Lelieveld et al., 2015]. In the United States (US), ammonia emissions from

agriculture exports alone react to increase population-weighted PM2.s concentration domestically

by 0.36 tg m-3, with contributions greater than 1 jig m-3 in parts of the Midwest [Paulot and

Jacob, 2014]. Thus, the regulation of ammonia emissions may have the potential to reduce PM2.5

in ammonia-limited areas [Pinder et al., 2006b], and in a sulfate-limited environment (sulfate

SO4
2-), ammonia can play a more important role, leading to ammonium nitrate formation.

However, this potential for ammonia emissions reductions to reduce PM2 .5 may be decreasing as

sulfur dioxide (SO 2 ) and NOx (nitric oxide (NO) + nitrogen dioxide (NO 2) regulation is

implemented in the US [Holt et al., 2015]. PM2.5 also contributes to reduced environmental

visibility and affects the radiative budget of the earth [IPCC, 2013]. Finally, the release of excess

nitrogen from agricultural sources into the atmosphere will also increase nitrogen deposition

fluxes, which can cause negative ecosystem effects such as acidification and eutrophication
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[Erisman et al., 2007]. This is of particular concern in sensitive ecosystems such as alpine terrain

and wetlands [Beem et al., 2010; Ellis et al., 2013].

The magnitude and timing of the ammonia emissions from agriculture are generally less

well understood than for other anthropogenic emissions (e.g., mobile sources of NOx, power

plant emissions of SOx (S02 + sulfate)). A sticky gas, ammonia is difficult to measure in situ,

and this can lead to a low bias in measured concentrations [von Bobrutzki et al., 2010]. The

paucity of observational constraints has also limited the evaluation of emission inventories and

the resulting PM 2.5 formation simulated by models. Agricultural emission inventories are often

based on emission factors from animals or fertilizers under certain field conditions, which are

generalized to -known populations or mass applied, respectively. These conditions are highly

variable due to meteorology, local livestock diet, and waste management and storage [Hristov et

al., 2011]. Recent studies have established that these bottom-up inventories often underestimate

ammonia emissions due to difficulties in effectively scaling the low-biased measurements

[Walker et al., 2012]. Studies in California, in particular, show evidence of this ammonia

underestimate in areas with rapidly increasing livestock populations, and they encourage

improvements in ammonia emissions estimates to better predict PM2.5 [Nowak et al., 2012;

Schiferl et al., 2014]. This is a key finding in Chapter 2. Models that underestimate the ammonia

emissions will underestimate the surface PM 2 .5 if sufficient acid is available, negatively affecting

air quality management. However, Paulot et al. [2016] suggest that ammonium nitrate formation

globally is more limited by nitric acid (HNO 3) than ammonia, and that the uncertainty associated

with the formation of nitric acid via N 205 uptake has a greater impact on ammonium nitrate

formation than the uncertainty associated with ammonia emissions. Regardless, as regulations in

the US restrict SO2 and NOx, the proportion of reactive nitrogen deposition is shifting from

oxidized to reduced forms [Pinder et al., 2011; Lloret and Valiela, 2016], and thus the need to

understand ammonia emissions and their role in the environment is growing. This importance

has been recognized as new observations of ammonia have become available over longer time

periods and with more spatial coverage.

Given these new observations and their relevance to understanding inorganic PM2.5

formation, our goal is to understand the factors that control ammonia concentrations and their
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variability in the atmosphere. This study uses newly available observations to investigate the

variability of ammonia in the US during a 5-year time period (2008-2012). We first identify

observed ammonia variability and investigate the ability of a chemical transport model to

reproduce these observations. Then, we attribute sources of the model ammonia concentration

variability and use known relationships in an attempt to more accurately represent the variability

of agricultural ammonia emissions.

3.2. GEOS-Chem Model Simulation

3.2.1. General Description

We use the GEOS-Chem chemical transport model (www.geos-chem.org) to simulate

ammonia concentrations over the US. The scenarios described throughout this paper are driven

by GEOS-5 assimilated meteorology for 2008 to 2012from the NASA Global Modeling and

Assimilation Office. We use v9-02 of the GEOS-Chem model in a nested configuration over

North America at a horizontal resolution of 0.50 x 0.6670 [Wang et al., 2004; Chen et al., 2009].

The chemistry and transport time steps for these nested simulations are 20 and 10 min,

respectively. A global simulation at 2' x 2.5' horizontal resolution is used to generate the

boundary conditions necessary for the nested simulations. There are 47 vertical layers in all

cases. The representation of the sulfate-nitrate-ammonium aerosol system and its relevant

precursor gases in the standard version, including emissions, chemistry, and deposition schemes,

generally remains as that described previously in Chapter 2. Briefly, the coupling of gas-phase

chemistry to aerosol chemistry in GEOS-Chem is described by Park et al. [2004]. The gas-

particle partitioning of ammonium nitrate is calculated by ISORROPIA II [Fountoukis and

Nenes, 2007] as implemented by Pye et al. [2009], where the aerosols are assumed to exist on the

metastable branch of the hygroscopic hysteresis curve. Relevant modifications from v9-01-01

used in Chapter 2 to v9-02 used here include updates to the seasonal cycle of the US

Environmental Protection Agency's (EPA) National Emissions Inventory for 2005 (NEI-2005)

ammonia emissions [Zhang et al., 2012] and to the algorithm controlling soil NOx emissions

[Hudman et al., 2012] (described in Section 3.2.2).
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3.2.2. Emissions and Emission Trends in Base Scenario

The "base scenario" referred to in this analysis incorporates modifications to the standard

GEOS-Chem v9-02 simulation that have been made to the emissions in order to more accurately

represent the study time period. In the base scenario, annual scale factors applied to

anthropogenic SO,, and NO,, emissions to capture the emissions trends over time (which end in

2010 in the standard model version) are extended uniformly spatially to 2011 and 2012 from

EPA Trends data (www.epa.gov/ttn/chief/trends/). Mean anthropogenic SO, largely from power

generation, and NO, largely from automobiles, emission rates over the US in summer (JJA)

2008 are 18 mg S km-2 s-1 and 16 mg N km-2 s-1, respectively. As shown in Figure 3.1,

anthropogenic SOx and NOx emissions are highest in the eastern US and are often associated

with rural point or dense urban sources. These emission rates decrease by 30 and 33%,

respectively, by 2012. The majority of the magnitude of these decreases occurs in the eastern

regions of the US. For 2008, anthropogenic SO, makes up 98% of total SOx emissions, and

anthropogenic NOx makes up 65% of total NOx emissions. Other major sources of NO, with

large interannual variability are soils and fertilizer use. In the entire US, these summertime

emission rates vary from -23 to +20% of the mean from 2008 to 2012, with most of the

variability occurring in the Plains and the Midwest regions. The soil and fertilizer NOx emission

rates are simulated online and are controlled by a combination of nitrogen storage and

meteorology [Hudman et al., 2012]. In 2012, high temperatures increase soil and fertilizer NOx

emissions, offsetting the decrease in anthropogenic NO, emissions (Figure 3.1).

As in the standard version, our base scenario uses anthropogenic ammonia emissions

from the EPA NEI-2005 inventory, which includes livestock, fertilizer, and non-agricultural

sources. These emissions are for August and scaled uniformly spatially each month as

determined by Zhang et al. [2012]. The summer mean anthropogenic ammonia emission rate for

the US is 12 mg N km- 2 s- 1. Livestock and fertilizer use comprise 71 and 15% of this emission

rate, respectively. This proportion is unrealistically constant throughout the year as the scaling

above does not, for example, account for springtime crop fertilization. The Plains and the

Midwest exhibit higher total anthropogenic emission rates of 20 and 19 mg N km-2 S-1,

respectively, with larger contributions from agriculture. The spatial distribution of these high
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Figure 3.1. Summer (JJA) (top row) ammonia, (middle row) SO, and (bottom row) NO, emissions as
implemented in the GEOS-Chem base scenario. Maps show values for 2008; US emission rate shown for
2008 through 2012 on the right. Color bar is saturated at 60; local values may exceed this emission rate.
Data outside the continental US are not shown here, nor in all subsequent figures.

ammonia emission regions are shown in Figure 3.1. For the entire US, anthropogenic ammonia

emissions make up 78% of the total ammonia emissions in the summer. Other sources include

natural emissions (16%), biofuel (3.7%) and biomass burning (1.8%). Biomass burning

emissions are highly variable over the study period (by a factor of 2), which causes slight

differences in the proportions mentioned above. In our base scenario, we use daily biomass

burning emissions from the Fire INventory from NCAR (FINN) through 2012 [ Wiedinmyer et

al., 2011]. Given a nearly constant rate of ammonia emission and the large changes in NOx

emissions mentioned above, changes in the ammonia concentrations may be driven by changes

in the acid supply, which would affect gas-particle partitioning of ammonium nitrate and the

overall PM 2.5 concentration.

There is no diurnal or interannual variability in the ammonia emissions in our base

scenario. When we implement a diurnal emission scaling determined by the local daily diurnal

surface temperature profile, the mean surface summer ammonia concentration in the US is

reduced by 12% (1.62 ppb without vs. 1.43 ppb with diurnal emission scaling). This mean value

is heavily influenced by a large daily overnight decrease in concentration of 24%, while the
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daytime concentration decrease is minimal, only 1%. There is substantial uncertainty associated

with any diurnal emission scaling scheme, and given its modest impact on ammonia

concentrations (particularly in the daytime) and the minimal resulting impact on seasonal mean

PM2. 5 concentrations, the diurnal emission scheme is not used in this study.

We have not included any scheme that accounts for the bidirectional flux (deposition and

re-emission) of ammonia in our base scenario. Rather, ammonia is permanently removed via wet

scavenging in convective and stratiform precipitation [Mari et al., 2000; Amos et al., 2012] and

via surface resistance-driven dry deposition [ Wesely, 1989]. Ongoing research suggests that a

unidirectional dry deposition scheme may be inappropriate with regards to ammonia [Massad

et al., 2010; Zhang et al., 2010]. Under a bidirectional scheme, ammonia can be either taken up

or re-emitted by a plant based on the comparison of the ambient ammonia concentration with a

varying compensation point (an ambient concentration greater than the compensation point leads

to deposition). Re-emitted ammonia has the potential to affect ecosystems farther downwind.

Failing to account for this re-emission may locally cause an overestimation in dry deposition,

resulting in low ammonia concentrations. Zhu et al. [2015] incorporate the bidirectional flux

scheme of Pleim et al. [2013] into GEOS-Chem, which increases the July ammonia emissions

and concentration in the US. This slightly reduces the July model bias compared to

measurements at Ammonia Monitoring Network (AMoN) sites. However, the bidirectional

scheme causes a decrease in ammonia emissions and concentration in April and October, which

worsens the comparison with observations and does not account for missing primary emissions.

Such bidirectional flux schemes, developed largely to simulate field conditions, require higher

resolution observations for evaluation at finer scales than those offered by current observations

and global models.

3.2.3. GEOS-Chem Simulation of Ammonia in Previous Studies

A number of previous studies have evaluated the GEOS-Chem simulation of ammonia.

These studies are often limited in their comparison with ammonia observations and instead use

measurements of PM 2.5 concentration and wet deposition flux, which are more commonly

measured, to indirectly evaluate the model. The initial evaluation of the implementation of the

gas-particle partitioning mechanism by Pye et al. [2009] reveals an underprediction of inorganic
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aerosol in the US, but they do not attribute this bias to problems with the ammonia emissions

inventory. Zhang et al. [2012] apply an updated monthly scaling to the NEI-2005 ammonia

emissions to improve the model bias in NHx (NH3 + ammonium (NH4 +) based on network

measurements of wet deposition fluxes over a limited timeframe. Even with these improvements,

the model remains biased high for nitric acid, ammonium, and nitrate (NO3), which they suggest

is due to excess production of nitric acid from N 205 hydrolysis, though Heald et al. [2012] show

that altering this uptake process does not improve the simulation of nitrate in the model. An

underestimate of ammonia emissions in California is suggested by Heald et al. [2012] and in

Chapter 2 using Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements

and aircraft measurements of ammonia, respectively. Walker et al. [2012] also suggest that an

increase in ammonia emissions in California is required to reduce the model bias compared to

ammonium nitrate observations. The GEOS-Chem adjoint is used along with Tropospheric

Emission Spectrometer (TES) measurements by Zhu et al. [2013] to constrain ammonia

emissions over the US. They find an optimized solution that increases ammonia emissions in

California and other parts of the western US and improves comparison of simulated surface

concentration with observations from AMoN. Paulot et al. [2014] also use the GEOS-Chem

adjoint along with ammonium wet deposition measurements to similarly optimize ammonia

emissions. These results increase ammonia emissions in California and the Midwest, consistent

with underestimates described in previous studies, and decrease emissions in some regions of the

northeast and southeast. Their optimization also suggests errors in the seasonality of emissions,

particularly relating to fertilizer emissions in the Midwest.

3.3. Ammonia Observations

3.3.1. IASI Satellite Column Measurements

Recent work has shown that atmospheric ammonia concentration can be retrieved from

satellite observations at thermal infrared wavelengths [Clarisse et al., 2009, 2010; Shephard et

al., 2011; Shephard and Cady-Pereira, 2015; Warner et al., 2016]. These retrievals provide

greater spatial coverage of ammonia concentrations than current surface networks. Here we use a

product from the IASI mission, which is designed to take full advantage of the hyperspectral

character of the instrument [Van Damme et al., 2014a]. An infrared radiance index, calculated

from a wider spectral range than previous ammonia satellite products to increase sensitivity, is
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converted to a total ammonia column value using look-up tables that depend on this index and

the thermal contrast (temperature difference between the surface (skin) and the air above). These

look-up tables are computed using the Atmosphit forward radiative transfer model. The

observations provide high spatial resolution (circular 12 km footprint at nadir) and up to twice

daily temporal resolution. Although there is vertical variation in the concentration sensitivity in

the infrared retrieval, this information (e.g., an averaging kernel) is not available with this IASI

product. However, an uncertainty estimate (retrieval error) is associated with each individual

measurement. In general, relative uncertainties are smaller for larger column concentration and

larger thermal contrasts. These errors range from more than 100% to less than 25% under good

conditions. This IASI product was initially used to examine both regional and global ammonia

concentration variation, highlighting the influence of biomass burning events on the global scale

as well as the ability to capture smaller ammonia emission features [Van Damme et al., 2014a].

In Van Damme et al. [2015b], seasonal patterns and interannual variability at subcontinental

scale are identified and an IASI derived climatology of the month of maximum columns is used

to attribute major source processes. Ammonia column measurements from the retrieval scheme

were also evaluated in Europe against a regional air quality model by Van Damme et al. [2014b].

This comparison shows good agreement between observed and simulated ammonia column

concentrations in both agricultural and remote regions, although average measured columns are

higher than those simulated. When accounting for the lack of retrieval sensitivity during colder

months, the observations capture the seasonality simulated in the agricultural regions. Van

Damme et al. [2015a] attempt to validate the IASI product against in situ ammonia

measurements, although this is challenging given the lack of highly spatially distributed

measurements and the difference in measured quantities. The measured IASI columns tend to

show less variability compared to surface measurements.

Our study uses data from the morning overpass (09:30 local solar time when crossing the

Equator) of IASI onboard the MetOp-A satellite from 2008 to 2012. Each day is gridded by

computing the mean column concentration (and other properties) weighted by relative error of

the native retrievals within each GEOS-Chem horizontal grid box at the nested resolution (0.5' x

0.6670). The results of this gridding and averaging scheme are shown in Figure 3.2 as the mean
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Figure 3.2. (left) Mean gridded daily summer (JJA) 2008-2012 IASI ammonia column concentrations,

filtered for cloud cover (< 25% cloud cover), skin temperature (> -10 C), and relative error (< 75%). (top
center) Distribution of column concentrations with (red) and without (black) described filtering.
Accompanying retrieval parameters and properties: (top right) relative error, (bottom center) thermal
contrast, and (bottom right) number of retrievals.

of all summers during the study period. We filter out retrievals with cloud cover greater than or

equal to 25% and skin temperature less than or equal to -1 00C as recommended by Van Damme

et al. [2014a]. Post-gridded values are filtered by removing grid boxes with greater than 75%

relative error. This filtering alters the distribution of the column concentration by removing the

smallest values, as shown in Figure 3.2. We also isolate the continental US by removing grid

boxes over Canada, Mexico and the ocean, but due to their size, some grid boxes along the

border may exhibit outside influence (such as ocean retrievals along the Pacific Northwest

coast). We calculate seasonal means as the simple arithmetic mean of all valid gridded daily

values within that time period. This method weights each day with at least one valid retrieval

evenly, rather than biasing the seasonal mean toward days with multiple valid retrievals in a grid

box on a single day.

The gridded IASI values used in our analysis are more likely to be valid (meeting the

retrieval and filtering restrictions) on warm, cloud-free days with high ammonia concentrations.

The mean reported IASI concentrations are therefore biased, as low ammonia concentrations are

harder to detect with confidence, and are thus often filtered out. Most valid retrievals occur

during the summer, the time of highest concentration (and emissions in most areas) and better

53

.1



infrared retrieval conditions. As shown in Figure 3.2, the range of mean (2008-2012) summer

gridded and filtered concentrations is from 0.4 to 7 x 1016 molec cm- 2. The IASI column

concentrations are highest in known agricultural regions such as the Central Valley of California,

the Plains, and the Midwest. Individual spatial features are well defined and benefit from the

high horizontal resolution satellite product.

Although filtered to exclude a maximum relative error, the remaining errors remain

higher along the eastern coast and throughout the southeastern US, which has lower ammonia

concentrations and lower thermal contrast. The relative error is also inversely related to the

number of valid retrievals present in each grid box for a certain timeframe. These parameters are

shown for comparison in Figure 3.2. The hot, dry, and cloud-free conditions experienced in the

western US in the summer are ideal conditions for infrared retrievals. The higher emissions and

concentrations of ammonia during the summer months also yield more information and higher

confidence during this time. Thus, we restrict much of our analysis and discussion to the

summers of 2008-2012. The lack of an averaging kernel provided with the IASI product makes a

traditional model-measurement comparison challenging. We therefore focus on the qualitative

spatial and temporal constraints from IASI.

We do not use other satellite measurements of ammonia, available from TES aboard the

Aura satellite, the Cross-track Infrared Sounder (CrIS) aboard the Suomi National Polar-orbiting

Partnership (NPP) satellite, and the Atmospheric InfraRed Sounder (AIRS) aboard the Aqua

satellite [Shephard et al., 2011; Shephard and Cady-Pereira, 2015; Warner et al., 2016]. While

the footprint of TES (-8 km) is smaller than that of IASI (-12 kin), IASI has substantially better

spatial coverage given TES's limited cross-track scanning. Thus, the measurement frequency

over the same area is much higher for IASI and more useful for studying ammonia variability.

The CrIS and AIRS products have only recently been developed. Further, CrIS has been active

since only 2011, providing a limited timeframe for studying the variability of ammonia, and

AIRS focuses on ammonia concentrations at a vertical height of 918 hPa, the location of highest

instrument sensitivity, which excludes much of the western US, which is located above this

height, from analysis.
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3.3.2. AMoN Surface Measurements

AMoN (http://nadp.sws.uiuc.edu/amon/) reports integrated 2-week measurements of

ammonia surface concentration at fixed ground sites across the US. While 14 days is the goal

measurement frequency, this can vary by up to a week in either direction. AMoN was established

in 2007, and we use measurements from 2008 through 2012 in our study. The number of sites

and spatial coverage of the network has increased greatly throughout this timeframe (Figure 3.3).

Fourteen sites provide measurements for the entire study period, with 57 sites operating by 2012.

Measurements are made using triplicate passive diffusion samplers, where ammonia sorbs to a

phosphoric acid-coated surface. The resulting ammonium is removed via sonication and

measured with flow injection analysis [Puchalski et al., 2011]. The passive sampler

measurements used by AMoN have a 2a uncertainty of 6.5% (www.radiello.com). Evaluation of

these samplers against annular denuder measurements shows a consistent low bias, especially

when measuring concentrations below 0.75 pg m- 3 (at 20'C and 1 atm, which is 0.99 ppb at

standard temperature and pressure - STP) [Puchalski et al., 2011]. However, we note that AMoN

does not report blank corrections that could bias these measurements high [Day et al., 2012].

AMoN measurements, reported in ptg m-3, are converted to ppb using local temperature and

pressure from the GEOS-5 meteorology in this study. The summer seasonal mean surface

ammonia concentrations measured by AMoN range from 0.43 ppb in Coweeta, North Carolina,

to 31 ppb in Logan, Utah, during our study period. When calculating seasonal mean AMoN

surface ammonia concentrations, we define the date of an individual AMoN measurement as the

center date of its measurement time period. AMoN measurements from 27 sites from November

2007 to June 2010 have previously been used by Zhu et al. [2013] to evaluate the optimization of

ammonia emissions used in GEOS-Chem. Their initial comparison prior to optimization showed

that GEOS-Chem was generally biased low for surface ammonia concentrations throughout the

year, with particularly poor performance in the spring.

3.3.3. Airborne Measurements

High resolution measurements of ammonia have recently been made in three dimensions

aboard aircraft during field campaigns throughout the US. We use data from seven campaigns,

which we separate into seven regions, for a total of nine snapshots of the vertical distribution of

ammonia concentration. Specific information regarding these cases, including locations, dates,
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Figure 3.3. Mean summer (JJA) ammonia concentrations for (columns) 2008 to 2012: (rows, top to

bottom) gridded and filtered IASI observed column concentration, GEOS-Chem simulated column

concentration sampled to valid IASI days, changes in GEOS-Chem simulated column concentration due

to sampling to coincident IASI measurements, and AMoN observed surface concentration (circles)

overlaid on GEOS-Chem surface concentration.

instrumentation, and uncertainty, is listed in Table 3.1. All measurements were made with a 1 s

interval, except those made during DISCOVER-AQ in California, which used a 3 s interval, and

those made during ICARTT in the northeastern US, which used a 5 s interval. In all cases, the

ammonia concentration measurements are averaged to 1 min time resolution. The horizontal

spatial distributions of these measurements are shown in Figure 3.4a.

3.3.4. Observed Year-to-Year Ammonia Variability

The observed ammonia concentration can be modulated by numerous anthropogenic and

environmental factors, including ammonia emissions, meteorology, and the emission of acid

precursors (i.e., SOx and NOx). Emissions of anthropogenic ammonia are affected by changes in

agricultural activities such as livestock population and fertilizer application, as well as the

implementation of catalytic converters in urban areas. These emissions are sensitive to

meteorology that modulates volatilization from the agricultural ammonia sources, increasing

with higher temperature and wind speed. Biomass burning events are highly variable and

temporarily increase ammonia emissions. Our baseline simulation captures only the year-to-year

variation in biomass burning emissions of ammonia; emissions from all other sectors are fixed.
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Table 3.1. Relevant details for the observed ammonia concentrations shown in Figure 3.4, including the
aircraft campaign, geographic location, dates, ammonia instrument, instrument sample rate, and typical
instrument uncertainty range (calibration uncertainty + measurement imprecision), which show flight-to-
flight variability detailed in the respective archived data files.

Campaign
ICARTT
[Nowak et al.,
TexAQS
[Nowak et al.,
CalNex
[Nowak et al.,
CalNex

2007]

2010]

2012]

DISCOVER-AQ

SENEX

FRAPPE

SONGNEX

SONGNEX

Region
(lat.; Ion. range)
Northeastern US
(38-47'N; 67-83'W)
Eastern Texas
(27-35'N; 90-100 0 W)
Southern California (CA)
(see Chapter 2)
Central Valley, CA
(see Chapter 2)
Central Valley, CA
(see Chapter 2)
Southeastern US
(31-43'N; 75-96'W)
Colorado
(38-42'N; 101-110 0W)
Colorado
(38-42'N; 101-110 0W)
Southern Plains
(26-36'N; 93-105 0W)

Dates
Jul-Aug 2004

Sep-Oct 2006

May-Jun 2010

May-Jun 2010

Jan-Feb 2013

Jun-Jul 2013

Jul-Aug 2014

Mar-Apr 2015

Mar-Apr 2015

Instrument
NH 3 CIMSa

NH 3 CIMS

NH 3 CIMS

NH 3 CIMS

CRDSb
(Picarro G2103)
NH 3 CIMS

Aerodyne Dual
NH3/HNO 3 QCLC
NH3 CIMS

NH3 CIMS

Uncertainty
a(30% + 0.115 ppb)
+ 0.045 ppb

(25%+ 0.070 ppb)
+ 0.035 ppb

(30% + 0.200 ppb)
+ 0.080 ppb

(30% + 0.200 ppb)
+ 0.080 ppb

(35% + 1.7 ppb)
+ 0.2 ppb

(25%+ 0.070 ppb)
+ 0.020 ppb

(22% + 0.305 ppb)
+ 0.058 ppb

(35% + 0.500 ppb)
+ 0.035 ppb

(35% + 0.500 ppb)
+ 0.035 ppb

a CIMS: chemical ionization mass spectrometer. b CRDS: cavity ring down spectrometer. c QCL: quantum cascade laser.

Meteorology affects the partitioning of ammonia into ammonium nitrate, where higher

temperature and lower relative humidity favor the gas phase, as well as the removal of ammonia

from the atmosphere by changing the rates of both wet and dry deposition [Russell et al., 1983;

Mozurkewich, 1993]. Even in a well-mixed boundary layer, ammonia concentrations may have

strong gradients caused by temperature variations with altitude that alter gas-to-particle

partitioning of ammonium [Neuman et al., 2003]. Figure 3.5 shows the year-to-year variation in

key meteorological parameters across the US from 2008 to 2012 from the GEOS-5 assimilated

meteorological product. Emissions of SOx and NOx also affect the ammonia concentration by

regulating the amount of acid available to convert ammonia into ammonium sulfate and

ammonium nitrate particles. Figure 3.1 shows that the anthropogenic component of these

emissions decreases substantially in the US during our study period. Meteorology can also affect

the rate of soil and fertilizer NOx emissions by changing the storage and volatilization processes

(simulated changes also shown in Figure 3.5).
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Figure 3.4. (a) Spatial distribution of 1 min mean observed ammonia concentrations for several aircraft
campaigns throughout the US listed in Table 3.1. (b) Vertical profiles of median observed ammonia
concentration (black) and median GEOS-Chem simulated ammonia concentration (red) averaged in
500 m vertical bins from these campaigns. Simulated concentrations matched to the year and flight tracks

of the campaign are shown in solid red, while approximately sampled concentrations (mean 2008-2012
simulated concentrations) are shown in dashed red. Gray bars show the standard deviation of observations

in each bin. The number of observations in each bin are shown in blue. The 2 months during which the

campaign took place are indicated in the top right of each profile.
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Figure 3.5. Mean summer (JJA) assimilated GEOS-5 meteorology parameters and meteorologically

driven NO, emissions used in GEOS-Chem simulation for (columns) 2008 to 2012: (rows, top to bottom)

temperature, relative humidity, planetary boundary layer (PBL) height, precipitation, and soil+fertilizer

NOx emissions. Absolute values for 2008 shown along with changes from 2008 for 2009 to 2012.

Using IASI column concentration and AMoN surface concentration measurements, we

show in Figure 3.3 that observed ammonia concentrations vary significantly from year to year

over the US. The mean IASI column concentration observed over the US in the summers of 2008

through 2012 is 0.95 x 1016 molec cm-2, which ranges from a low of 0.90 x 1016 molec cm 2 in

2010 to a high of 1.1 x 1016 molec cm-2 in 2012 (indicating that the mean ammonia column

concentrations over the US range from -5.3 to +16% of the mean during these 5 years). At the

surface, the mean AMoN observed ammonia concentration in the summer from all sites with

records from 2008 to 2012 is 3.4 ppb, ranging from 3.0 ppb in 2009 to 4.3 ppb in 2012 (or

between -11 and +25% of the mean). The IASI and AMoN observations differ on the year with

the lowest mean summer concentration (2010 for IASI and 2009 for AMoN); this difference is

likely due to a lack of AMoN sites distributed throughout areas that have low IASI column

concentrations in 2010. The regions of high agricultural production, including California and the

Plains, exhibit higher year-to-year variability in the magnitude of IASI column concentrations.

For example, in the Plains region, maximum summer IASI values are 23% higher in 2012 than
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the mean of the 5 study years. This is also the case for surface concentrations at several AMoN

sites in the Midwest and the west.

In what follows, we will use the GEOS-Chem model to examine the source of the

observed year-to-year variation in ammonia concentrations.

3.4. Base Scenario Simulation of Ammonia Measurements

Throughout this section, we use the GEOS-Chem model to investigate how well the

model captures the observed magnitude and variability in ammonia concentrations. We sample

the model to simulate the ammonia concentrations observed in both temporal and spatial

dimensions.

3.4.1. Column Comparison

To evaluate the ammonia concentration throughout the column, the simulated column

concentrations are recorded at the local 09:00-10:00 overpass time, and this 1 h mean is

compared to the IASI retrievals at 09:30 local time. It is not straightforward to compare this

value in an unbiased way with the IASI measurements since the vertical sensitivity of the

instrument may not be consistent with the model. For this reason, this value cannot be

quantitatively compared to the IASI retrieved column with confidence; however, we qualitatively

compare trends and spatial features here. When sampling is applied, only simulated days with

valid IASI retrievals (at least one per grid box) are included. Seasonal means are calculated as

the mean of all days (no sampling) or of only days with valid IASI retrievals (with sampling).

The simulated ammonia column concentrations are generally well correlated with the IASI

observations (Figure 3.6) over the summer, particularly in the Plains and the Midwest

(correlation (R) = 0.6-0.8). Sampled simulated column concentrations shown in Figure 3.3 have

a summer mean of 0.64 x 1016 molec cm-2, ranging from 0.52 x 1016 molec cm- 2 in 2009 to

0.80 x 1016 molec cm- 2 in 2012 (or between -19 and +25% of the mean). We find considerable

year-to-year variation in the simulated ammonia concentration, even with fixed ammonia

emissions.
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Figure 3.6. Summer (JJA) correlation (R) for all years (2008-2012) between daily gridded and filtered
IASI ammonia column concentration and daily GEOS-Chem base scenario ammonia column
concentration.

Sampling the model to match IASI observations, as shown in Figure 3.3, increases the

concentrations in regions with more invalid IASI days according to the filtering process

described in Section 3.3.1. Valid days tend to have higher concentrations as they meet the filter

requirements due to more favorable retrieval conditions, which include a higher retrieved

ammonia signal. Cloudy days, being cooler and having greater probability of rain, also tend to

have lower ammonia concentrations, and these cannot be retrieved. In the southeastern US,

sampling increases the regional summer mean simulated ammonia column concentration

significantly, by 26% (2011) to 58% (2012). Even after accounting for this sampling bias, the

simulated column concentrations are consistently lower than those observed by IASI, which is

consistent with the findings of Van Damme et al. [2014b] over Europe. This underestimate is

because the filter requirement restricting high relative error inherently favors larger observed

columns. Consequently, there is lower year-to-year variability in the mean summer IASI column

concentrations (21% of the mean between the highest and lowest years) than those simulated by

the model (44%). This discrepancy in variability may also be due to our use of total column

values, rather than isolating the layers where the satellite has greater sensitivity. For example,

removing the more variable near-surface layers, where the satellite is presumed to be less

sensitive, could reduce the model variability in the comparison mentioned above.

The distribution of ammonia throughout the column is also relevant to assessing the

ability of the model to represent the ammonia column concentration observed by IASI, as the

retrieval has varying sensitivity at different vertical levels. In Figure 3.4b we use measurements

of ammonia from several aircraft campaigns throughout the US to evaluate the simulated
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ammonia vertical profile. We show the median, rather than the mean, to account for the inherent

inability of the model to reproduce highly concentrated plumes occasionally observed by the

aircraft. To compare the observations with the simulation during campaigns that take place in our

study period (extended to February 2013), we sample the model directly in time and space for

each flight of the campaign. For campaigns outside of this time period, we sample directly in

space for each flight but approximate the time component by using the 5-year mean (2008-2012)

of each 2-month campaign window. As shown in Figure 3.4b, the observed median ammonia

vertical profile is highly variable in magnitude and shape between different regions. In high

ammonia emission regions, the observed ammonia concentration increases greatly toward the

surface, and the median ammonia vertical profile is less variable between different campaigns in

the same region (e.g., Central Valley in 2010 and 2013, Colorado in 2014 and 2015) than

between different regions. As with the observations, the model performance varies greatly

between regions. Over areas such as Central Valley, previously examined in Chapter 2, the

model underestimates ammonia throughout the vertical profile, especially near the surface. The

model also performs more poorly in the spring according to measurements in Colorado and the

southern Plains in 2015, but limited sampling across seasons makes it difficult to be conclusive.

Other regions, like southern California, eastern Texas, Colorado in summer 2014, and the

southeastern US have a much smaller bias. The slight high bias in the model at the surface in the

northeastern and southeastern US regions is consistent with previous evaluation of NEI-2005 in

GEOS-Chem against AMoN measurements [Paulot et al., 2014]. Local conditions clearly

influence the model simulation of the observed concentrations. Overall, the model shows less

variability than the observations, but the model profile shape is generally consistent with the

observed shape outside of large source regions. This suggests that, outside of these source

regions, model biases in the shape of the vertical profile are unlikely to bias comparisons with

satellite column observations.

3.4.2. Surface Comparison

Summer seasonal mean simulated surface concentrations are compared with the seasonal

mean AMoN surface concentration observations in Figure 3.3. For a more direct comparison of

individual observations, we match the hours of the AMoN sampling period with the

corresponding hourly values from the simulation, and the mean of these hours is used for
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comparison. We also apply a spatial interpolation scheme to this comparison, where the four

nearest grid box values are averaged based on the distance between their center and the

observation site location. This adjusts the simulated concentration to account for the influence of

nearby grid boxes at sites near grid box edges and in regions that exhibit strong horizontal

gradients. The mean summer simulated surface concentration at AMoN sites with measurements

from 2008 to 2012 (11 sites) is 2.5 ppb, which varies from a low of 2.1 ppb in 2008 (-16% of the

mean) to a high of 2.8 ppb in 2012 (+13% of the mean) over the study time period. This mean

simulated concentration is lower than that observed (2.5 ppb vs. 3.4 ppb). The range of simulated

surface concentrations between high and low years is also half of the range observed (0.73 ppb

vs. 1.3 ppb). These ranges are shown for comparison in Figure 3.7 along with the range in

surface ammonia concentrations over the entire US. The range in summertime mean ammonia

concentrations across the US is smaller, and the mean is lower (by more than 25%) than when

sampled to the AMoN sites. This suggests that the AMoN network does not adequately represent

the range of ammonia concentrations across the US; as many AMoN sites are located near high

ammonia source regions, there is a sampling bias for this network. The near-source location of

many of these AMoN sites provides an additional challenge for the regional-scale resolution

model simulation used here and is likely responsible for some of the model underestimate.
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Figure 3.7. Yearly summer (JJA) mean surface ammonia concentration (black circles) and mean of all
years (red bar) for observed AMoN sites valid from 2008 to 2012 and four GEOS-Chem scenarios: (left
to right) base scenario, fixed anthropogenic SOx and NOx emissions, fixed meteorology, and including
agricultural ammonia emission variability. Vertical bars indicate the range of all years: simulation
sampled to AMoN sites (gray) and simulation for the entire US (blue).
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By limiting the above analysis to only summers 2011 and 2012, the number of sites with

measurements in both years increases to 48. The mean bias in this case is more modest

(-0.02 ppb), with 2011 biased slightly high and 2012 biased slightly low. There is a consistent

high bias at many of the eastern US sites, which is offset by a low bias in the west in 2012, likely

due to local biomass burning that is not adequately captured in the model. However, even for this

limited time period, the model fails to reproduce the observed year-to-year variation (observed

0.80 ppb increase in the summertime mean from 2011 to 2012, with a simulated increase of only

0.11 ppb). This difference is dominated by high measurements in 2012 in the west, but the

observed increase from 2011 to 2012 in the Midwest is also underestimated.

Figure 3.8 shows a detailed comparison of observed and base scenario simulated surface

ammonia concentrations at three AMoN sites with records from 2008 to 2012; these are selected

as representative regional sites and demonstrate the varying degree of model skill. Simulated

concentrations at all three sites reproduce the observed seasonal cycle, with highest

concentrations in the summer and lowest in the winter. The Indianapolis, Indiana, site represents

typical Midwestern sites, with nearby urban SOx and NOx emission sources surrounded by rural

ammonia sources. This site is located in central Indianapolis, and the corresponding model grid

box is made up of about 30% city and 60% rural land. The overall comparison at Indianapolis is

good throughout the study period, with an R of 0.56 and a normalized mean bias (NMB) of -0. 14

(mean bias of -0.41 ppb). There is a noticeable increasing trend in the observed ammonia

concentrations from 2008 to 2012; the model captures much of this upward trend.

The Horicon Marsh, Wisconsin, site represents rural regions where ammonia emissions

are primarily from agricultural sources. This site is located in a grid box that is nearly 90% farm

land (the remaining 10% is made up of small towns and wetlands). This uniformity should be

easier for the model to represent. The comparison between observed and simulated ammonia

concentration is generally very good when considering the entire time period (R = 0.65,

NMB = 0.06, mean bias = +0.19 ppb). However, this comparison is somewhat worse in the

summer (R = 0.44), as the model does not properly simulate the timing or magnitude of the peak

concentrations.
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Figure 3.8. Observed (black circles) and base scenario simulated (red circles) surface ammonia
concentration time series at three AMoN sites from 2008 to 2012: (top, urban) Indianapolis, Indiana (IN),
(middle, agricultural) Horicon Marsh, Wisconsin (WI), and (bottom, varying topography/high horizontal
gradient) Fort Collins, Colorado (CO). Standard deviation of simulated hours shown as vertical red lines.
Gray vertical lines indicate the transition between calendar years.

Finally, the Fort Collins, Colorado, site represents one of several sites in the western US

that present a challenge to simulate due to large horizontal concentration gradients over areas

with highly varying topography. This is an area of high livestock ammonia emissions to the east

bounded on the west by the Front Range of the Rocky Mountains. Ammonia is advected from

feedlots to the east and observed high concentrations result. The site is located on the eastern

side of a grid box that is made up of 75% mountains and forest toward the west. There is
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considerable elevation increase as well from east to west. As a result, simulated concentrations in

this grid box take on the characteristics of the mountain region rather than the agricultural plain.

There is a large low bias at the Fort Collins site of -4.7 ppb (R = 0.50, NMB = -0.77) for the

entire time period. If we compare the observations with simulated values of the next grid box

east in the agricultural region (without weighting neighboring grid boxes), the bias drops

significantly (about 35%), so that only -3.0 ppb bias in all months remains. However, even with

this adjustment to account for site location, the model performance here is among the poorest.

Similar comparisons for the eight remaining sites with records during this time period are shown

in Figures S1-S3 in Supplement.

3.4.3. Integrated Comparison: Colorado, Summer 2012

The variation of both the observed column and surface ammonia concentrations in the

western US is influenced by biomass burning events in the summer of 2012. The wildfire activity

in the Colorado Front Range during this time (May-September 2012) provides an opportunity to

synthesize the different ammonia concentration information discussed above as this is an area

that is also known for high agricultural ammonia emissions.

IASI measurements during days without fire emission influence (determined by visual

inspection of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery, with at least

75% domain retrieval coverage) show a peak mean column concentration of 2.1 x 1016 molec

cm-2 just to the east of Fort Collins (FC) (Figure 3.9), corresponding to the location of feedlots.

The mountains to the west of FC, along with ridges to the north and south, cause the

agriculturally emitted ammonia to circulate throughout the Front Range, with only limited

transport westward [ Wilczak and Glendening, 1988]. Column concentrations remain elevated to

the south and east throughout the plain of eastern Colorado, while concentrations in western

areas of the domain at high elevations are quite low. Aircraft measurements in Colorado during

the FRAPPE (summer 2014) and SONGNEX (spring 2015) campaigns confirm this distribution

of ammonia in the region (Figure 3.4a). Figure 3.9 shows that IASI column concentrations are

considerably higher on days with wildfire activity. The largest increase takes place over the

Front Range near FC and to the east due to fires located in the Colorado mountains during late

June-early July, when the mean IASI column over the region more than doubles. In August,

66



IASI column NH3
Non-fire days Fire days

W41 N WY NE
CN

40* N -

1070 W 1050 W 1030 W

0 1

40.50 N E

E
Elevation 0

070 W 1050 W 1030 W

IASI
GEOS-Che-m -~ *

May Jun Jul

107 W 105, W 103 W

2 3 [10 '0 molec cm-]
5 Non-fire day

~Fire days
3-
2-
1.
0.
1070 W 1050 W 1030 W

20
LP AMoN - 16
F AMr41oN 11

- 12

Aug Sep

8
4
0

Oct

Figure 3.9. Mean gridded IASI column ammonia concentration over the Colorado Front Range from May

to September 2012 during (top left) non-fire days and (top right) fire days. (middle left) Elevation of each

grid box center at 40.5*N over the longitude range above. (middle right) Mean IASI column ammonia

concentration at each gridbox at 4005 N over the longitude and time range above for non-fire days (red)

and fire days (green). (bottom) Mean daily IASI (blue) and GEOS-Chem (orange) column ammonia

concentrations over the domain above and observed surface ammonia concentrations at the Longs Peak

(LP) (purple) and Fort Collins (FC) (pink) AMoN sites.

column concentrations are enhanced in the north and west of the domain due to the transport of

wildfire plumes into the region from fires in other areas of the northwestern US. Thus, we see in

Figure 3.9 that the average ammonia concentrations observed by IASI during the season are

elevated throughout the region due to fire emissions. These wildfire emissions are present in

addition to the persistent agricultural ammonia sources throughout the time period, as the feedlot

grid box east of FC has the highest column concentration even on wildfire-influenced days

(3.4 x 1016 molec cm-2 , increase of 62 %). However, the IASI retrieval is more sensitive to

ammonia lofted vertically, as is the case in biomass burning outflow. The GEOS-Chem

67

4
3

E 2

0
1

-'5
E 4
w3

z

0,- 2
1
0

*S

Cr

z

.11

4



simulated ammonia column concentrations in this domain do not capture the peaks observed by

IASI throughout the time period. This suggests that the model inventory underestimates the fire

emissions of ammonia or their injection height; these biases are likely exacerbated by the IASI

vertical sensitivity.

AMoN surface concentrations at the FC site, also in Figure 3.9, follow the peaks in

concentration observed by IASI in both June and August and show a similar relative increase

(factor of~2 in late June), while surface concentrations at the Longs Peak (LP) AMoN site show

no evidence of an enhancement due to fire, likely because the site is isolated from the Front

Range source region. It is difficult to quantify the contribution of the wildfire ammonia source

from these observations because the fire events also correspond to the highest surface

temperatures of the year, thereby affecting ammonia volatilization and partitioning chemistry.

Additional observations of ammonia concentrations in fire plumes could help improve emissions

estimates and clarify the importance of this source (e.g., Whitburn et al. [2015]).

3.4.4. Updated Inventory Comparison

A more recent anthropogenic emission inventory, NEI-20 11, is available over the US for

2011 (available from www.epa.gov/air-emissions-inventories/20 11-national-emissions-

inventory-nei-data, adapted for GEOS-Chem by Travis et al. [2016]). This inventory includes

changes in both the magnitude and timing of anthropogenic ammonia, SOx, and NOx when

compared to NEI-2005. Averaged over the summers during the study period of 2008 to 2012,

anthropogenic ammonia emissions are 26% higher, anthropogenic SOx emissions are 13%

higher, and anthropogenic NOx emissions are 11% lower in NEI-20 11 compared to in NEI-2005

as applied to GEOS-Chem over the US. Variable spatial seasonality for ammonia emissions has

been included in NEI-2011 such that known emissions events like springtime fertilizer

application in the Midwest are now accounted for.

We repeat our GEOS-Chem simulations with NEI-2011 for 2008 and 2012 and compare

the simulated surface concentrations with the observed AMoN surface concentration in these 2

years. Generally, the summer high concentration bias at the eastern US sites is reduced using the

updated inventory. The simulation improves at a few of the western sites as well, but many
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biases remain or worsen. Strong gradients in local sources and geography still likely play a large

role at many of these sites. At Midwestern sites, the new seasonality often better represents the

springtime and summer peak concentration, but the comparison during the transition to late

summer and fall is degraded. For Horicon Marsh, Wisconsin, the summer R in 2008 and 2012

between observed and simulated surface concentrations decreases from 0.63 to 0.48 when using

NEI-201 1 rather than NEI-2005. While NEI-201 1 may better represent the magnitude and timing

of emissions in some locations, it is also a year-specific inventory and does not provide a better

constraint than NEI-2005 on the year-to-year variations in ammonia emissions that are the main

focus of this study.

3.4.5 Summary of Base Scenario to Observation Comparisons

From the comparisons described here, we conclude that the model generally captures the

vertical, temporal, and regional variability of ammonia but underestimates the summertime

ammonia concentration observed in both the column and at the surface, particularly near source

regions (including both agricultural and fire emissions). The year-to-year variability in the model

at the surface is lower than the variability observed, but the trends and variability captured by the

simulation are significant considering that ammonia emissions in the model are fixed. We next

explore the processes in the model that contribute to this variability.

3.5. Attributing Sources of Ammonia Variability

3.5.1 SOx and NOx emissions reductions

In order to identify the drivers of year-to-year variation in simulated ammonia

concentrations, we run sensitivity studies that isolate individual factors affecting the ammonia

concentrations. The first sensitivity simulation holds anthropogenic SOx and NOx emissions

constant at 2008 levels for 2009 to 2012 in order to gauge the effects of these emissions

reductions on the ammonia concentration in the base scenario. This analysis relies on an accurate

simulation of the trends in sulfate and nitrate in areas of significant ammonia concentration.

Briefly, we evaluate our base scenario against observations from all available sites (148) in the

Interagency Monitoring of Protected Visual Environment (IMPROVE) network

(vista.cira.colostate.edu/improve) over our study period. Comparison of the trend in summer

mean indicates that GEOS-Chem reproduces well the decreasing trend in sulfate over the eastern
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US and the Pacific coast (not shown). In the Intermountain West, which generally lacks high

ammonia concentrations, the simulation predicts a decreasing trend in sulfate, while the

observations show an increase. The model generally reproduces the trend in nitrate, although the

decline in nitrate in the eastern US is somewhat stronger than observed. This indicates a possible

oversensitivity to changing NOx emissions in the model.

Figure 3.10 shows that SOx and NOx reductions over the US act to significantly increase

the ammonia column concentration over time. Much of this increase takes place over the eastern

US, where anthropogenic SO, and NOx emissions are highest (Figure 3.1), and therefore where

absolute reductions in SOx and NOx are largest. Decreases in the sulfate and total nitrate (TNO3

= HNO3 + NO 3-) availability caused by the SOx and NOx emission reductions, respectively,

require less ammonium to neutralize particle-phase acids, leaving more ammonia in the gas

phase. For the US summer mean, the simulated ammonia surface concentrations increase by

8.8% from 2008 to 2012 due to the anthropogenic emissions changes, compared to the 29%

decrease in total SOx emissions and the 17% decrease in total NOx emissions. We attribute 32%

(0.17 ppb) of the range of summer surface ammonia concentration simulated by the base

scenario to anthropogenic SOx and NOx emissions reductions. In the column, 26%

(0.07 x 1016 molec cm-2) of the range is due to these reductions.
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Figure 3.10. Simulated mean summer (JJA) ammonia column concentration changes for (columns) 2009
to 2012 caused by (rows, top to bottom) anthropogenic SOx and NO, emissions reductions, assimilated

meteorology variability, and meteorology variability affecting only ammonium nitrate partitioning.

Compare to the baseline ammonia column shown in Figure 3.3.
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3.5.2. Meteorology Variability

The second sensitivity simulation tests the effects that meteorological variability has on

the simulated ammonia concentration. In this simulation, we hold the GEOS-5 assimilated

meteorology constant at year 2008 conditions for all years of our simulation (2008-2012).

Meteorology can alter the distribution and phase of ammonia via changes in transport,

deposition, oxidation, and gas-particle partitioning. Soil and fertilizer NOx emissions are also

effectively held constant in this simulation given that their variability is largely controlled by

meteorology. While meteorology may indirectly affect biomass burning emissions, such as by

leading to more fires during a dry and hot year, we do not account for this here, as these

emissions are allowed to vary in all cases. Comparison with both 10- and 35-year mean Modern-

era Retrospective Analysis for Research and Applications (MERRA) meteorology from the

NASA GMAO [Rienecker et al., 2011] shows that 2008 is a typical meteorological year in the

US. Thus, anomalies from 2008 in 2009-2012 can be seen as realistic deviations from an

average condition.

Figure 3.10 shows that the effects of meteorology on the ammonia concentration are

highly variable both spatially and temporally. The spatial variability is generally greater at the

surface (not shown) than in the column. Variations in simulated ammonia concentration can be

connected with the meteorological features shown in Figure 3.5. For example, the summer of

2010 in the southeastern US is a high precipitation year that contributed to lower ammonia

concentration throughout the column due to increased wet removal. Higher relative humidity

also likely contributes to this decrease by favoring the particle phase of the ammonium nitrate

equilibrium. Another example is the high-temperature, low-humidity and low-precipitation

summer of 2012 in the Plains and the Midwest, which favors the gas phase of the ammonium

nitrate equilibrium and generally higher concentrations (due to reduced removal). However,

these same high temperatures in 2012 lead to higher emissions of soil and fertilizer NOx, which

modestly counteract this effect at the surface by encouraging more ammonia to partition to the

particle phase to neutralize this supply of acid (Figure 3.5). Lower planetary boundary layer

(PBL) heights, such as in the upper Midwest in summer 2011, can trap ammonia near the

surface. More ammonia nearer the surface could increase the dry deposition flux as this is the

primary direct removal method for gaseous ammonia, slightly offsetting the increased
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concentration due to trapping and decreasing the concentration throughout the column. We

attribute 64% (0.34 ppb) of the range of summer surface ammonia concentration simulated by

the base scenario to meteorology. In the column, 67% (0.18 x 1016 molec cm- 2) of the range is

due to these variations. Meteorology clearly dominates the year-to-year variability in simulated

ammonia concentration.

A third sensitivity simulation isolates the effects of two-way partitioning of ammonia on

the simulated ammonia concentration. This partitioning is driven by the ambient temperature and

relative humidity as inputs into ISOROPPIA II. In this simulation, we hold these inputs constant

at year 2008 conditions for all years of our simulation (2008-2012). Higher temperature and

lower relative humidity generally favor partitioning into the gas phase and an increase in

ammonia concentration. The results of this simulation, shown in Figure 3.10, indicate that the

effects of partitioning are less spatially and temporally variable than those of all meteorology

discussed above. The variability due to partitioning can make up a significant portion of the

change due to all meteorology, such as in the warm summer of 2012 when partitioning accounts

for 73% of the net change due to all meteorology. This is also true to a smaller degree during the

cool summer of 2009 (13%). In relatively wet summers, such as 2010 and 2011, enhanced

partitioning acts to offset the losses due to all meteorology (likely caused by increased wet

deposition) by 10 and 73%, respectively. Overall, partitioning accounts for 23%

(0.06 x 1016 molec cm- 2) of the range in the summer base scenario column concentrations, which

is 33% of the range due to all meteorology. Thus, the phase partitioning due to meteorology

plays a significant, but not always dominant, role in controlling the variability of ammonia.

3.5.3. Missing Simulated Ammonia Variability

The simulated ammonia concentrations do show significant year-to-year variability

despite constant ammonia emissions, but this variability is generally lower than that observed by

IASI and AMoN at individual locations (Figures 3.3 and 3.7). However, maximum observed

column concentrations in the western US in 2012 are likely from smoke enhancements at the

vertical levels at which IASI is more sensitive; the model cannot reproduce this column

variability without properly weighting the different vertical levels sensitive to these

concentrations. There are also not enough AMoN sites over the entire time period to robustly
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indicate either regional variations in surface ammonia concentration or whether a particular site

is impacted by local emission changes. The range of simulated mean ammonia concentrations is

0.53 ppb less than the range observed at the available sites over the summers of 2008 to 2012

(Figure 3.7). Most of this missing range is from sites in the west and the Midwest, where

agricultural ammonia emissions are higher. The observed range is likely influenced by high

biomass burning emissions in the west and high temperature effects on partitioning in the Plains

and the Midwest, which are greater than in the model. In addition, the base scenario does not

account for variations in year-to-year changes in agricultural ammonia emissions, so we next

assess how much influence these variations may have on the ammonia concentration.

3.6. Implementing Agricultural Ammonia Emissions Variability

3.6.1. Activity Scaling

The base scenario anthropogenic ammonia emissions are constant for all years of study.

This is not realistic due to year-to-year changes in agricultural activity and the meteorological

dependence of emissions (Section 3.6.2). We define agricultural activity as livestock population

and fertilizer application. Using data from the US Department of Agriculture National

Agricultural Statistics Service (USDA NASS) (www.nass.usda.gov), we compute annual scale

factors for agricultural activity based on the changes in these sources (for a description of the

methods, see Section Al in Appendix A).

As shown in Figure 3.11, this scaling results in large increases in livestock ammonia

emissions compared to the base scenario in Iowa (13% by 2012), although this is relatively

constant during the study period (only a 2.3% increase between 2008 and 2012). The more

dramatic change occurs over Texas and Oklahoma where livestock populations, largely beef

cattle, decrease by 18% between 2008 and 2012 with a net loss of 20% compared to the base

year by 2012. This large decrease in beef cattle population is due to extended extreme drought

that reduces cattle food supply and forces higher cull rates [Peel, 2012].

The changes in ammonia emissions due to fertilizer application variations are smaller

than those for livestock population (Figure 3.11). There is a noticeable decreasing trend in

fertilizer application in the Texas and Oklahoma region due to a decrease in crop planting during
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Figure 3.11. Differences in summer (JJA) agricultural ammonia emissions compared to base scenario
emissions for (columns) 2008 to 2012 by including various emissions variability scenarios: (rows, top to

bottom) livestock population variability, fertilizer application variability, volatilization variability, and all

three combined.

the drought mentioned above (18% loss between 2008 and 2012), and an increase in the northern

Plains of 20% compared to the base year by 2012. Our approach likely underestimates the year-

to-year variation in fertilizer ammonia emissions in the Midwest (see Section Al for details).

Although some locations experience large changes in total anthropogenic ammonia

emissions due to activity variations (e.g., -13% in Texas and Oklahoma), the US mean change is

only about -2.5 %. This is consistent with the EPA Trends data, which suggest a 3.0% decline in

ammonia emissions between 2008 and 2012. Our changes present a spatial distribution of these

shifts, however, rather than one national trend value.

3.6.2. Volatilization Scaling

The anthropogenic ammonia emissions in the base scenario also do not account for

changes in the transfer of ammonia from the surface to the atmosphere due to temperature and

wind speed variability (referred to together here as changes in volatilization). Higher
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temperatures (increased volatility) and greater wind speeds (increased transport) lead to higher

ammonia emissions. We compute monthly scale factors that account for the effects of

temperature and wind speed on both livestock and fertilizer emissions. This generally follows the

methods used by Paulot et al. (2014) for the Magnitude and Seasonality of Agricultural

Emissions model for NH 3 (MASAGENH3) and is described in Section A2.

The changes in ammonia emissions computed from volatilization scaling are overall

smaller, but they are more spatially variable compared to those due to agricultural activity

(Figure 3.11). The scenario with volatilization scaling increases US mean summertime ammonia

emissions by 0.1% in 2012 and decreases emissions by 3.2% in 2009 compared to the base

scenario. Together, activity and volatilization scaling add 2.8% variability compared to the mean

of the base scenario over the US. This variability is largest over the Midwest (6.4%) and the

Texas and Oklahoma (14%) regions.

3.6.3. Resulting Changes to Ammonia Concentration

We simulate the ammonia concentrations for two cases as described above: (1) with

added activity (livestock + fertilizer) variability of ammonia emissions and (2) with both activity

and volatilization variability of ammonia emissions. The results from these simulations are

shown for column concentrations in Figure 3.12. Changes for volatilization alone are calculated

as the difference between the two scenarios (not shown). Since summer meteorology generally

favors the gas phase of the ammonium nitrate equilibrium, most ammonia resides in the gas

phase, and nearly all changes to the ammonia concentrations in our scenarios correspond directly

to changes in the ammonia emissions. Thus, changes for both simulations are of similar

magnitude, with more spatial and temporal variability caused by incorporating volatilization

variability into the emissions. Activity emission variability decreases the mean US summer

column by only 0.01 x 1016 molec cm- 2 (2%) throughout 2008 to 2012 compared to the base

scenario, and adding volatilization variability has no further effect on this mean. Activity and

volatilization variability oppose one another, leading to a net decrease of only

0.01 x 1016 molec cm-2 (4% of the base scenario range). Summertime R between daily IASI

observations and the simulated column concentrations in 2011 and 2012 increases by up to 0.1 in

the Midwest, but decreases by a similar magnitude in Texas and Oklahoma (compared with base
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scenario magnitude R in Figure 3.6). At the surface, activity and volatilization emission

variability decreases the mean US summer concentration by similarly small proportions (1-2%)

and has a limited effect on the range of values between minimum and maximum year surface

concentrations for this domain (Figure 3.7). The largest changes in surface ammonia

concentration take place where the largest emission changes occur. In Texas and Oklahoma,

ammonia concentration decreases by 0.5 ppb or 17% of the base scenario for summer 2012, the

year with the largest changes.
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Figure 3.12. Changes in simulated summer (JJA) surface ammonia concentration from the base scenario
caused by including variable ammonia emissions for (columns) 2008 to 2012: (rows, top to bottom)
activity (livestock population and fertilizer application) variability and activity with volatilization
variability. Compare to the baseline ammonia column shown in Figure 3.3.

The "best" scenario (including both activity and volatilization emission variability) also

does not greatly improve the simulation bias or range compared to AMoN observations. For the

sites with observations from 2008 to 2012, the scenario with activity and volatilization

agricultural ammonia variability further degrades the simulation in summertime, increasing the

bias from -0.93 to -1.02 ppb (Figure 3.7). For the 2011-2012 timeframe when more sites are

available, the magnitude of the mean summer bias increases from -0.02 to -0.07 ppb. This is

likely skewed toward the numerous low-concentration sites in the eastern US that start observing

in 2011. However, variations in the ammonia emissions do moderately improve the ability of the

model to capture year-to-year variations in surface ammonia concentrations measured at some

AMoN sites, with increases in R during the entire study period of up to about 0.07 (mean

increase of 0.01). At Horicon Marsh, Wisconsin, the R between observation and model improves

from 0.65 to 0.67 in all seasons, but from 0.44 to 0.54 in summer only.

We find that year-to-year variations in regional ammonia emissions play a modest role in

controlling observed variations in summertime ammonia concentrations. Our simulation
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including this variation remains biased compared to observations throughout many regions of the

US. There are several factors that may contribute to the remaining simulation bias of ammonia

concentration magnitude and variability compared to the observations. Much higher spatial

resolution may be required to adequately capture ammonia concentrations in areas with high

horizontal concentration gradients (see Figure 3.4a); however, given the sparse coverage of the

AMoN network, it is challenging to assess the role that site placement plays in biasing our

comparisons. Additionally, better observational constraints, such as satellite products with

vertical sensitivity information, could help identify the source of bias in the model.

3.7. Impacts of Ammonia Variability on Surface PM2.5 and Nitrogen Deposition

Ammonia neutralizes acids in the atmosphere to produce PM2.5 under appropriately cool

and humid meteorological conditions. Changes in ammonia emissions, acid-precursor emissions,

climate, and meteorology may all influence the surface PM2.5 concentration. The potential for

further formation of PM2.5 (defined here as the sum of ammonium, sulfate, and nitrate) can be

described by the gas ratio (GR) [Ansari and Pandis, 1998], as defined by Equation (3.1):

[N,-[S02-]GR =N,- . (3.1)
TNO 3

The concentrations in Equation (3.1) are in molar units. The seasonal mean GR over all 5 years

(2008-2012) as simulated by our GEOS-Chem base scenario is shown over the US in Figure

3.13. A GR >> 1 indicates little potential for further ammonium nitrate formation given

additional ammonia emissions, while 0 < GR < 1 generally indicates that this potential does

exist, under the appropriate meteorological conditions. None of the simulated seasonal mean GR

values are below 0, which would indicate incomplete neutralization of sulfate. We recognize that

the transition around GR = 1 occurs gradually as ammonia increases, but note that a large portion

of the US exhibits a GR well above or below 1 in all seasons.

DJF MAM JJA SON
GEOS-Chem 40N

surface
gas ratio 360 N --

No data 0.6 1.0 1.4 280 N- e

115 W 95 W 750 W115 W 95 W 75 W115 W 95 0 W 75 W115 W 95 W 75 W

Figure 3.13. Base scenario simulated mean seasonal gas ratio (GR) for all years (2008-2012): (left to
right) winter (DJF), spring (MAM), summer (JJA), and fall (SON). All values are greater than zero.
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In the summer, we find that the surface PM2.5 concentration is weakly sensitive to

ammonia emission changes described in Section 3.6 (-0.6% in summer 2012 compared to the

base simulation) (Figure 3.14). The gas phase of the ammonium nitrate equilibrium is favored

under summer meteorological conditions, and the GR values in Figure 3.13 show that

ammonium nitrate formation potential exists only in the Intermountain West. Thus, nearly all

change (89%) in the NHx concentration from changing ammonia emissions remains in the gas

phase. There is essentially no change in ammonium sulfate as all sulfate in ammonia emissions

regions has already been neutralized (GR > 0). Rather, Figure 3.14 shows that changes in the

surface PM2 .5 are driven by anthropogenic SO, and NOx emission reductions (34% PM2.5

reduction from 2008 to 2012) and meteorology. Although not evaluated here, summertime PM2.S

may be affected during overnight periods when temperature decreases and relative humidity

increases and via formation of minor salts such as ammonium oxalate, which are more likely to

form during periods of high photochemistry.
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Figure 3.14. Mean summer (JJA) surface concentrations over the US for relevant gas and particle species
(ammonia gas (light orange), ammonium particle (dark orange), sulfate particle (red), and nitrate particle
(blue)) for 2008 to 2012 for several scenarios: (left to right) base scenario, changes from the base scenario
due to anthropogenic SO, and NOx emissions reductions, assimilated meteorology variability, and added
agricultural ammonia emissions variability.

Although changes in ammonia emissions are much smaller in the winter, both the

meteorological and chemical conditions promote a higher potential for PM2.5 formation in certain

regions. Figure 3.13 shows that winter is chemically unique such that there is potential for

ammonium nitrate to form throughout the eastern US should ammonia emissions increase.

Averaged over the entire US, 78% of the change in the NHx concentration from changing

ammonia emissions remains in the gas phase during the winter in our final simulation, which

includes ammonia emissions variability. This value remains fairly high since most of the change

in ammonia emissions occurs in the area of GR > 1 (Plains) during the winter (Figure 3.13).
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However, as SO, and NOx emissions decrease throughout the study period, this area where GR >

1 expands, reducing ammonium nitrate formation potential (not shown). Given the potential for

ammonium nitrate formation, it may be more important to understand the variability of ammonia

emissions during the winter (coldest temperatures, lowest ammonia emissions) to accurately

simulate PM2 .5. Unfortunately, this is the time period when infrared satellite data exhibit the

lowest sensitivity.

The spring (MAM) and fall (SON) seasons (which are colder, but with more moderate

ammonia emissions) represent transition periods when ammonium nitrate may form under

certain conditions (e.g., Chow et al., [1994]). Although the distribution of GR is generally

consistent with summer during both seasons as a whole, Figure 3.13 shows that this potential

ammonium nitrate response to changing ammonia emissions may exist just south of the Great

Lakes. Examination of GR during individual months shows that the transition to GR > 1 in the

eastern US occurs between March and April, and the reverse happens between October and

November. This further narrows the range of time when ammonium nitrate formation may

respond to ammonia emissions changes.

The reduction of NOx emissions dominates changes in the total simulated nitrogen (N,

sum of ammonia, ammonium, nitric acid and nitrate) over our study period and results in a total

summertime N deposition decrease of 12% from 2008 to 2012. In the base scenario, this

decrease is partially offset by meteorologically driven factors that increase NOx emissions in

2012. The SO, and NOx emission reductions create no net effect on total NHx deposition, but

there is a shift away from the particle-phase flux (ammonium) toward the deposition of the gas

phase (ammonia). As the simulated lifetime to total deposition of ammonia is shorter than that of

ammonium (2.6 days vs. 7.5 days over the US in summer 2008), this shift in phase preference

decreases the overall lifetime of NHx. The shortening of the NHx lifetime to deposition means

that reduced N from agricultural sources will deposit closer to the source, perhaps reducing

required fertilizer inputs, but also putting sensitive ecosystems located close to source regions at

risk.
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Meteorology greatly influences the variability in the magnitude of NHx deposition.

Simulated summertime NHx deposition flux is dominated by gas-phase ammonia, rather than

particle-phase ammonium. The summertime ammonium deposition that does occur is largely

removed via wet processes, which is more sensitive to meteorology changes than to ammonia

emissions changes. In the winter, ammonium deposition dominates the total NHx deposition flux;

however, changes during this season may not be representative of the entire year, as only 11% of

US agricultural ammonia emissions in our base scenario occur during the winter, compared to

36% in summer. Together, these results indicate that wet ammonium deposition may not always

be a good proxy for ammonia emission changes. This is especially true in dry locations or during

particularly dry summers, which in turn also have higher ammonia emissions.

3.8. Conclusions

We use a combination of surface, column, and aircraft ammonia concentration

measurements along with a chemical transport model to assess simulated ammonia

concentrations and analyze the variability of ammonia over the US from 2008 to 2012. The

model often underestimates the observed ammonia concentrations at the surface and those

measured by aircraft throughout the column; however, these observations are most often located

near large source regions. The model performs well in areas of lower observed concentrations,

such as in the eastern US. The observed seasonality at the surface is well captured by the model,

outside of the timing of springtime fertilizer application. However, concentration gradients are

more difficult to represent, both horizontally and vertically, as the model is not able to simulate

plumes of observed high concentrations.

The simulated concentrations are generally less variable than the observed year-to-year

concentrations, but this variability is larger than previously expected given constant ammonia

emissions in the model. The variability in simulated ammonia concentrations is largely driven by

changes in meteorology, and including year-to-year variation in ammonia emissions from

agricultural sources has minimal impact on this variability. This suggests that year-specific

agricultural emissions are not critical to the simulation of summertime ammonia and PM 2.5 in

regions that are not experiencing dramatic changes in agricultural activity. Summertime PM2.S

formation is relatively insensitive to ammonia emissions changes, but the impacts of ammonia
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emission changes may be more important in cool conditions such as wintertime livestock

emissions and spring crop planting.

The large role that meteorology plays in controlling atmospheric ammonia concentrations

(coupled to the dynamic gas-particle partitioning) suggests that it can be challenging to use a

global model to test simulated ammonia concentrations, understand how these concentrations

correlate spatially with emissions sources, and assess whether emissions controls have led to

expected trends in ammonia concentration. Indeed, changes in observed atmospheric ammonia

concentrations may often be a poor proxy for changes in ammonia emissions. These challenges

support the need for better observing systems for ammonia to test regional simulations. New

satellite ammonia products (e.g., from CrIS) with dense observations may better provide

observational constraints, allowing for a more quantitative comparison with models. Future

surface monitoring sites should be distributed across source and background regions, make

higher temporal resolution measurements, and measure both gas- and particle-phase NHx. This

will reduce the variability due to meteorology and source condition, shown in our study to be

large, and better constrain the entire NHx budget.
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Appendix A: Description of Ammonia Emission Scaling Methods

Al. Activity Scaling

Scaling of agricultural activity refers to the influence changing livestock population and

fertilizer application has on ammonia emissions. For livestock population, we use data from the

USDA NASS for cattle, goats, chickens, hogs, and sheep. The portion of beef cattle vs. dairy

cattle is determined by the ratio of beef cows to dairy cows. The census population of each

species per county is gridded to the nested simulation grid box resolution for 2002, 2007, and

2012 to obtain the animal density in each grid box. We weight each species density by its relative

emission factor (emission per head) to calculate the emissions value per grid box [Pinder et al.,

2004; Faulkner and Shaw, 2008; Velthof et al., 2012; Paulot et al., 2014]. Linear interpolation of

effective emission is applied between census dates, and the emission for each year is scaled

against the base year of 2005, as that corresponds to the NEI-2005 used in the base scenario, to

achieve an annual scale factor for livestock population. These scale factors are applied to the

livestock portion of the anthropogenic ammonia emissions.

We use data for county-wide fertilizer expense (gridded to nested resolution grid boxes)

and the national fertilizer price index from the USDA NASS to develop annual scaling factors

for fertilizer application. Fertilizer expense census data are available for 2002, 2007, and 2012.

Each of these years is matched with the fertilizer price index (price per mass) for that year to

calculate the total fertilizer mass purchased in each grid box. We assume all fertilizer purchased

is applied to a field or that a similar fraction of fertilizer purchases is left unused in each year.

Fertilizer mass for each of these years is interpolated linearly and then scaled in comparison to

2005 values as with livestock population above. These scale factors are then applied to the

fertilizer portion of the anthropogenic ammonia inventory.

One weakness in scaling the base NEI-2005 is that the emissions for that inventory are

specified for August, when fertilizer application is low, and thus there is limited fertilizer

magnitude to scale in the Midwest. Fertilizer emissions from NEI-2005 in the Midwest make up

about 5% of total anthropogenic emissions in that region at all times. In NEI-20 11, however,

fertilizer emissions make up about 10% of total anthropogenic emissions in August, and this

increases to about 30% for summer and about 60% for spring. Any fertilizer activity scale factor
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applied to NEI-2005 in the spring and summer will have a much smaller effect on the magnitude

of the fertilizer ammonia emissions than if applied to NEI-20 11, and thus our scaling on fertilizer

emissions is likely to be underestimated. Resulting emission magnitude changes are shown in

Figure 3.11.

A2. Volatilization Scaling

Scaling of due to volatilization refers to the effects temperature and wind speed have on

ammonia emissions from both livestock and fertilizer sources. We develop monthly scale factors

(individually for all 5 years) to approximate these effects. This procedure generally follows the

methods used by Paulot et al. [2014] for MASAGENH3. Emissions magnitudes are not needed,

since we scale all variability to the 2005 base year. Therefore, we weight each emission source

by the relative importance of temperature and wind speed. Fertilizer ammonia emission (E) is

similarly dependent on temperature and wind speed everywhere, and is represented by Equation

(Al) [Sogaard et al., 2002]:

E = 1.02T x 1.04w, (A1)

where the 2 m temperature (T) and 10 m wind speed (w) values used in the calculation are from

the GEOS-5 meteorology used in the simulation. Livestock manure emissions vary differently

depending on the location of the manure: application, housing, or storage. The application

portion varies as fertilizer above in Equation (Al). The housing and storage portions vary by a

different relationship, Equation (A2) [Gyldenkwrne et al., 2005]:

E = Te 0.89 x VO.26, (A2)

where ammonia emissions (E) incorporate effective temperature (Te) and ventilation rate (V).

Storage temperature (Te) and ventilation rate (V = w) are not species-dependent, but housing Te

and V do vary by species and their housing types. The relative weight of each manure emissions

component (application, housing, and storage) is also species dependent [ Velthofet al., 2012].

Each month is scaled from the base year (2005) emissions in that month, and so the emissions

changes depend on the meteorology of 2005. For example, the T in the Midwest in both summers

2005 and 2012 are similarly above the 10- and 35-year mean T from MERRA. This decreases

the effect of volatilization on ammonia emissions in the Midwest in summer 2012 while using

this method. These scale factors are then applied separately to the livestock and fertilizer
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portions of the anthropogenic ammonia inventory as appropriate. Resulting emission magnitude

changes are shown in Figure 3.11.
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Chapter 4. The Impact of Ozone and Particulate Matter Air Pollution on

Global Crop Production

4.1. Introduction

Exposure to air pollution leads to over 4 million premature deaths per year [Cohen et al.,

2017]. At the same time, pressure on food production continues to rise with increasing global

population. The close proximity of human population to crop production areas means that

anthropogenic influences on air quality (defined here as ozone and particulate matter (PM)) have

had and will continue to have an impact on our ability to adequately feed this growing human

population. As of 2014, the United States (US), Canada, Europe, India, and China make up 52%

of the global population and together are responsible for 72%, 76% and 51% of global maize,

wheat and rice production, respectively [FA OSTA T, 2017; United Nations, 2017]. In China,

which accounts for 19% of global population, rapid industrialization contributes to frequent air

quality problems [Guo et al., 2014]. These air quality concerns occur alongside intense food

production schemes, illustrated by crop production often exceeding the county's population

proportion (21%, 17% and 28%). In less developed countries, such as India where population is

expected to increase by more than 25% by 2050, food-related stress may accompany the push to

industrialize. Given the importance of these intense food production areas, it is vital to quantify

the relevant air quality impacts on crop growth in order ensure proper guidance for future air

quality and agricultural policy.

Surface-level ozone (03), usually associated with urban air pollution, is formed from the

oxidation of carbon monoxide (CO), methane (CH4) and non-methane volatile organic

compounds (NMVOCs) in the presence of nitrogen oxides (NOx = NO + N02). Ozone has a

negative impact on crop production by reducing gas-exchange and inflicting phytotoxic damage

on plant tissues [Sitch et al., 2007; Wilkinson et al., 2011; Lombardozzi et al., 2012]. The crop-

specific relationships between surface ozone concentration and crop yield loss have been

established using several exposure metrics. These metrics either account for mean exposure (e.g.,

M12, M7) or cumulative exposure over a threshold concentration (e.g., AOT40). Observations

relate the individual metric for ozone exposure to relative yield (RY) for a specific crop [Adams

et al., 1989; Lesser et al., 1990; Mills et al., 2007]. For example, wheat is found to be more
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sensitive to ozone damage than maize and rice. These relationships have been used by other

studies to perform global crop-damage assessments. Van Dingenen et al. [2009] find present day

(2000) RY losses due to ozone to be 3-5% for maize, 7-12% for wheat and 3-4% for rice, with

ranges due to variation in exposure metric. Shindell et al. [2011] show that future (2000 to 2030)

changes in vehicle emissions will reduce RY losses due to ozone for all crops in North America

and Western Europe, while the opposite is expected in India and China. Similar methodology is

applied by Tai et al. [2014] to examine the confounding effects of ozone pollution control and

climate change on crop production.

Much less studied is the effect of PM on crop production. PM can be directly emitted

(e.g., mineral dust, sea salt, and black carbon particles) or formed through chemical processes

(e.g., sulfate, nitrate and ammonium inorganic and organic carbon particles). The make-up of PM

in a particular location is dependent on its source and chemical environment. PM scatters light,

reducing the total shortwave (SW) light which reaches the surface, but also increases the diffuse

fraction (DF) of this light (SW = direct + diffuse, DF = disfuse ). Whereas direct light only reaches

the top leaves of the plant, an increase in diffuse light allows the radiation to penetrate farther

down to lower levels [Kanniah et al., 2012]. The overall change (both sign and magnitude) in

crop productivity from these competing effects (SW vs. DF) depends on local light conditions

and crop type. For example, crops with a C3 photosynthetic pathway (e.g., wheat) are much more

likely to become light saturated than C4 crops (e.g., maize) [Chapin et al., 2002]. Depending on

the saturation levels of both the sunlit and shaded leaves of a plant, a reduction in SW from full

sunlight would affect C4 plants more, but an increase in DF to shaded leaves would more quickly

cause an increase in C3 plant productivity than for C4 plants.

Greenwald et al. [2006] modify an existing process-based crop model to incorporate

effects from scattered and diffuse light. This study uses offline meteorology and specified

aerosol optical depth (AOD) at specific sites to quantify the effect of PM on yields of maize,

wheat and rice. They find relationships between yield and AOD for each crop at each location by

relating the DF to the radiation use efficiency (RUE). RUE refers to how well the plant uses its

available light, accounting for physiological and environmental differences such as those

mentioned above. They modify the RUE in their simulation as a function of DF according to
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various possible levels (e.g., max ARUE = 0%, 50% or 100%), following from Sinclair et al.

[1992]. Under the most realistic scenario at various sites, the effect of PM on yield was found to

be -10 to 0% for maize, -5 to +5 % for wheat and -10% to +10% for rice. This assumes that the

RUE of maize (C4) is less sensitive to DF (max ARUE = 0-50%) than the RUE of wheat and rice

(C3) (max ARUE = 50-100%). The relationship between DF and RUE is highly uncertain, both

in magnitude (max ARUE) and in shape. For example, Rochette et al. [1996] observe a linear

relationship over a maize field, rather than the hyperbolic relationship used in Greenwald et al.

[2006]. These various DF-to-ARUE relationships are shown in Figure 4.1. The enhancing effect

of aerosol diffuse light on plant productivity, related by AOD, has also been observed by Cirino

et al. [2014] and Strada et al. [2015]. However, these relationships are not easily translatable to

DF and RUE values, and it is difficult to remove the impacts of clouds from such observations.
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Figure 4.1. Relationship between DF and ARUE for various assumptions: max ARUE=0% (orange), 10%
(blue), 50% (red), and 100% (black) from Greenwald et al. [2006], and linear (green) from Rochette et al.
[1996].

Previous global modeling studies have focused on the effects of diffuse light on total

carbon or net primary productivity. For example, Mercado et al. [2009] quantify the spatially-

varying effects of aerosols on carbon flux and productivity as a whole using a land-surface

scheme along with AOD from a separate chemistry simulation, but they do not focus on crop

production. They find that the changing global diffuse fraction increased the land carbon sink by

25% between 1960 and 1999. Matsui et al. [2008] study the effect of aerosol light scattering on

photosynthesis on a regional level with high spatial resolution using a land surface model. They

find the effect to be largest (and positive) at noontime under cloudless conditions, but less over

croplands than over forests due to a lower leaf area index (LAI) in these regions. Previous

studies have also looked at how ozone and/or PM impact natural vegetation and the carbon cycle,
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often by incorporating more advanced canopy or leaf-scale process modeling [Yue and Unger,

2014; Strada and Unger, 2016; Yue et al., 2017]. Our study is the first to contrast the large-scale

impact of ozone and PM on global managed vegetation (crops).

This study uses the GEOS-Chem chemical transport model to simulate ozone and PM

along with the Rapid Radiative Transfer Model for GCMs (RRTMG) to simulate PM's impact

on radiation. We then use existing relationships from previous studies described above to

quantify the effects of both ozone and PM on crop production globally under both current and

future emissions scenarios. We contrast only the light scattering effects of PM with the negative

impacts of ozone and do not consider all other secondary effects (indirect on clouds, hydrology,

temperature, etc.).

4.2. Tools

4.2.1. GAEZ Crop Production

The base crop production used in this study comes from the Global Agro-Ecological

Zones (GAEZ) assessment for 2000 (www.fao.org/nr/gaez), developed by the Food and

Agriculture Organization (FAO) of the United Nations along with the International Institute for

Applied Systems Analysis (IIASA).We scale the 2000 base production to 2010 values

determined by the country-level trend between 2000 and 2010 from the FAO

(http://www.fao.org/faostat). GAEZ crop production information is available at 5' x 5' horizontal

resolution and we maintain this high spatial resolution when adjusting production by the relative

air quality effects calculated on the GEOS-Chem grid.

The global baseline crop production is 871 Tg for maize, 667 Tg for wheat, and 705 Tg

for rice according to GAEZ values scaled to 2010. Maize production is largest in the US+Canada

region, accounting for 37% of global production. China+Southeast (SE) Asia follows with 23%

of global maize production. Wheat production is greatest in Europe and makes up 31% of global

production, while China+SE Asia and India hold about a 15% share of wheat production each.

China+SE Asia and India dominate rice production, with 44% and 33% of the global total,

respectively. While we present global numbers, the domain of our figures focuses mainly on the

industrialized, developed regions of the northern hemisphere and the staple crops found there:
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maize, wheat, and rice. Over three-quarters of these crops are grown in this domain. On average,

the southern hemisphere air quality is cleaner. Food crops in those regions are more varied (e.g.,

pulses in Africa), and their response to environmental stress is not as well understood. We

neglect soybean production, because a metric relating potential carbon production to SW and DF

consistent with the other crops (see Section 4.3.2) is not available.

4.2.2. GEOS-Chem Simulation

4.2.2.1. General Description

We simulate emissions, chemistry, and wet and dry deposition processes relevant to

ozone and PM concentrations in the troposphere in three dimensions using the GEOS-Chem

chemical transport model (www.geos-chem.org). The model is driven by GEOS-5 meteorology

from the NASA Global Modeling and Assimilation Office (GMAO) and is run globally at 2' x

2.50 horizontal resolution with 47 vertical hybrid sigma layers for 2009 and 2010. Model time

steps are set to 15 min for transport and convection and 30 min for emissions and chemistry. The

model description generally follows standard GEOS-Chem v 10-01 as we have only implemented

minor bug fixes. GEOS-Chem contains sulfate-nitrate-ammonium thermodynamics coupled to an

ozone-VOC-NOx-oxidant chemical mechanism [Park et al., 2004; Pye et al., 2009].

ISORROPIA II partitions ammonium nitrate between the gas and particle phase [Fountoukis and

Nenes, 2007]. The wet deposition scheme in the model is described by Liu et al. [2001] for

aerosols and by Amos et al. [2012] for gases, and the dry deposition processes are described by

Wang et al. [ 1998] and Zhang et al. [2001 ].

Global anthropogenic emissions of NOx, carbon monoxide, and sulfur dioxide (SO 2)

come from the Emission Database for Global Atmospheric Research (EDGAR) v4.2 [EC-

JRC/PBL, 2011]. The global Reanalysis of the TROpospheric chemical composition (RETRO)

inventory is used for anthropogenic NMVOC emissions [Hu et al., 2015a], with global

anthropogenic and natural ammonia emissions from the Global Emission Inventory Activity

(GEIA) inventory. Biofuel emissions follow Yevich and Logan [2003]. For anthropogenic (and in

some cases biofuel) emissions, regional inventories overlay these global inventories in the US

(National Emissions Inventory for 2011 (NEI-201 1) vI implemented by Travis et al. [2016]),

Canada (Criteria Air Contaminants (CAC) inventory), Mexico (Big Bend Regional Aerosol and
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Visibility Observational (BRAVO) Study Emissions Inventory [Kuhns et al., 2005], Europe

(European Monitoring and Evaluation Programme (EMEP) (www.ceip.at)), and East Asia (MIX

Asian emissions inventory [Li et al., 2014]). We modify NEI-2011 by reducing non-electric

generating unit (non-EGU) NOx emissions by 60% as suggested by Travis et al. [2016]. Black

carbon (BC) and organic carbon (OC) from anthropogenic sources are emitted globally,

described by Bond et al. [2007] and implemented by Leibensperger et al. [2012]. Global biomass

burning emissions come from the Global Fire Emissions Database v4.1 (GFED4) [van der Werf

et al., 2017]. Dust emissions are described by Fairlie et al. [2007], and sea salt emissions are

described by Jaegld et al. [2011]. Lightning NOx emissions are from Murray et al. [2012], soil

NOx emissions are from Hudman et al. [2012], and biogenic VOC emissions are from the Model

of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1 from Guenther et al. [2012]

and implemented by Hu et al. [2015b]. 10% of monoterpene emissions by carbon are added to

OC emissions as done by Park et al. [2003].

We output the hourly surface ozone concentration for use in quantifying the ozone impact

on crop production. The ozone concentration in the surface grid box, nominally 120 m deep, is

scaled to a 1 m canopy height using the simulated aerodynamic resistance and dry deposition

velocity for cropland. This method for accounting for the near-surface concentration gradient is

described by Zhang et al. [2012] and has been previously implemented for ozone by Lapina et

al. [2016] and Travis et al. [2017]. Hourly PM concentrations at all vertical levels are read into

RRTMG for calculation of their radiative impacts. In our simulation, PM refers to the sum of all

simulated aerosol species: sulfate (S042-), nitrate (NO3), ammonium (NH4'), BC, OC, sea salt

and dust.

4.2.2.2. RRTMG

RRTMG [Iacono et al., 2008] uses the correlated-k method to quickly calculate the

atmospheric radiation flux throughout the vertical column and was implemented online into

GEOS-Chem by Heald et al. [2014], together referred to as GC-RT. RRTMG simulates

extinction from water vapor, ozone, greenhouse gases, aerosols, clouds and Rayleigh scattering

over 16 longwave and 14 SW bands. In GC-RT, ozone and aerosol concentrations are simulated

in GEOS-Chem, greenhouse gas concentrations are prescribed from climatology, and water
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vapor concentration and cloud properties are taken from the GEOS-5 assimilated meteorology. A

log-normal size distributed bulk scheme is used for all aerosols (2 bins for sea salt, 4 for dust),

and consistent optical properties have been set in GC-RT. Using GC-RT, we output hourly

downward SW radiation at the surface with and without PM under simulated real-time

cloudiness (all-sky) conditions. We modify the GC-RT code to output the direct and diffuse

components of SW under the same conditions in order to calculate the DF. In our analysis, we

consider the radiative impacts of PM as a whole, rather than individual aerosol composition

properties such as those exhibited by scattering vs. absorbing particles.

4.2.2.3. Evaluation with Observations

We compare the mean daytime GEOS-Chem surface ozone concentrations (scaled to 4 m

height) with observations from the Air Quality System (AQS) network (www.epa.gov/aqs) in the

US during summer (JJA) 2010. We find that the model is biased high by about 8 ppb. This high

bias is consistent with previous studies (e.g., Travis et al. [2016]). When comparing observations

from the EMEP network (www.emep.int) in Europe to GEOS-Chem during the same time

period, the model is biased high by about 9 ppb. This comparison is shown in Figure 4.2. The

addition of halogen chemistry by Sherwen et al. [2016] suggests that future versions of the model

will have lower ozone concentrations. Similar network surface ozone measurements are not

available for India and China during this time period.

We also compare ozone and PM surface observations from a site at the Indian Institute of

Science Education and Research (IISER) Mohali in Chandigarh, India provided by Sinha et al.

[2015] and Pawar et al. [2015], respectively, with simulated concentrations from GEOS-Chem

(Figure 4.3). While an exact comparison between our 2010 simulation and the 2011-2014

observations is not possible, we find the model is biased slightly high, but does a good job

reproducing the seasonal cycle of ozone concentration, with elevated concentrations during the

dry phase (October-June) and lower concentrations during the wet phase of the monsoon.

However, the model is unable to reproduce the magnitude of decline in ozone concentration at

the peak of the wet season (July-September). For PM, the model generally reproduces the

magnitude of the observed concentrations. The model fails, however, to capture the observed
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higher concentrations during the dry phase of the seasonal cycle, especially over the winter

(November-February).

Finally, we compare the observed SW and DF at an AmeriFlux site over a maize field in

Mead, Nebraska with those simulated parameters from GC-RT during JJA 2010. Overall, the
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magnitudes of the observed parameters compare well with the model. By including PM and

clouds in the calculation of the SW and DF in GC-RT, we improve the comparison in terms of

variability simulated throughout the time period compared to a simulation without clouds and

PM. For example, including clouds and PM results in the simulation of a range of lower SW

values (slope reduces from 1.17 to 1.11) and higher DF values (slope increases from 0.44 to

0.93), more consistent with those observed.

4.3. Methodology

4.3.1 Ozone

Using the hourly surface ozone concentrations from GEOS-Chem, we calculate ozone

exposure metrics over the final 92 days (roughly 3 months) of a growing season ending in 2010

as by Tai et al. [2014]. This growing season is determined by the University of Wisconsin Center

for Sustainability and the Global Environment (UW SAGE) global crop calendar containing the

planting and harvest dates by crop species and variety (maize, spring wheat, winter wheat, and

rice) [Sacks et al., 2010]. The spring (28% by mass, globally) and winter (72%) wheat

distribution at each location is taken from the crop planting dates used in the pSIMS/DSSAT

crop model [Elliott et al., 2014]. Although double-cropping does occur significantly in some

regions, such as the sub-tropics, our study assumes mutual exclusivity at a given location. We

calculate AOT40 (Equation 4.1) for maize, wheat and rice, M12 (Equation 4.2) for maize, and

M7 (Equation 4.3) for wheat and rice:

t=19:59

AOT40= 10 3([O 3]t-40) (4.1)

t=08:00

t=19:59

M12= E [0] (4.2)
t=08:00

t=15:59

M7 = [03]t (4.3)
t=09:00

where [O3]t is the hourly surface ozone concentration in ppb, t the time each day in the

summation and listed in local time, and n is the total number of hours in the growing season.
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The global distribution of surface ozone using the M12 exposure metric is shown in

Figure 4.4 for each crop. This figure has been filtered for grid boxes with a baseline crop

production (see Section 4.2.1) of greater than 0.01 Mg km-2 . M12 is generally higher over areas

with large anthropogenic influence, including the US, Europe, India and China. This is especially

true for summertime crops, such as maize and rice, whose growing seasons correspond with

higher ozone concentrations. Lower ozone concentrations occur during the winter wheat growing

season period, and this seasonal contrast is particularly noticeable in China, but also in the US.

Each exposure metric is then related to RY using empirical relationships as listed in Table 4.1.

Following Van Dingenen et al. [2009] and Shindell et al. [2011], we use the mean of these

metrics for each species to calculate the total production change due to ozone.
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Figure 4.4. (top row) Mean daytime (8:00-20:00 local time) GEOS-Chem simulated ozone
concentrations. Mean change in daytime (SW > 0) (middle row) downward SW radiation and (bottom
row) DF of the SW radiation at the surface due to PM from GC-RT. Sampled to growing season ending in

2010 for (left column) maize, (middle column) wheat, and (right column) rice. Filtered for base crop

production greater than 0.01 Mg km-2.
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Table 4.1. Relationships between ozone exposure metric and relative yield (RY) due to ozone.

Crop
Maize

Spring Wheat

Winter Wheat

Winter Wheat,
China
Rice

Rice, China

AOT40
RY = 1 - (0.00356 x AOT40)
[Mills et al., 2007]
RY = 1 - (0.0163 x AOT40)
[Mills et al., 2007]
Same as spring wheat

RY = 1 - (0.0228 x AOT40)
[Wang et al., 2012]
RY = 1 - (0.00415 x AOT40)
[Mills et al., 2007]
RY = 1 - (0.00949 x AOT40)
[Wang et al., 2012]

M12/M7
RY = exp[-(M 12/124) 2.83]/exp[-(20/124)2.83]
[Lesser et al., 1990]
RY = exp[-(M7/186) 3.2]/exp[-(25/186)3.2]
[Adams et al., 1989]
RY = exp[-(M7/137) 2.34]/exp[-(25/137)2.34]
[Lesser et al., 1990]

RY = exp[-(M7/202) 2.47]/exp[-(25/202) 2.47]
[Adams et al., 1989]

4.3.2. Particulate Matter

We calculate the mean daily daytime (hours with SW > 0) SW and DF from the hourly

GC-RT output, both with and without PM under all-sky (cloudy) conditions. We sample these

days to the entire crop calendar growing season ending in 2010 using the same calendar

described in Section 4.3.1. The mean change in SW and DF due to PM over the growing season

for each crop is shown in Figure 4.4. As expected, PM has a negative impact on SW at the

surface and a positive impact on DF. The largest PM impacts (both for SW and DF) are over

China. While similar in magnitude between seasons (crops) in northern China, the effect of PM

is smaller in southern China during summer (maize and rice) due to increased cloud cover. Under

cloudy skies, PM has a proportionally smaller positive impact on DF compared to the negative

impact on SW. However, both of these impacts are smaller under cloudy conditions compared to

when the sky is clear. Similarly, there is also a large seasonal variation in India caused by the

monsoonal pattern. Cloudy conditions present during the wet season, the growing season for

maize and rice, mask much of the impact of PM on radiation. The opposite is true during the dry

season (winter wheat) when cloud-free skies allow for an enhancement in the effect of PM on

SW and DF. The PM impacts on radiation are comparatively small in magnitude in other

regions, although areas are still significant in terms of total productivity.
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The potential carbon production for a crop is calculated on a daily basis with and without

PM using the above daily SW and DF values and then summed over the growing season for the

total potential carbon. Potential carbon is calculated following the DSSAT model for maize and

wheat (Equation 4.4) and rice (Equation 4.5):

Pcarb oc 0.5 x SW x RUEs,DF (4.4)

Pcarb OC (0.5 x SW) 0 _65 x RUEs,DF, (4.5)

where Pcarb is the potential carbon production, SW is the daily mean shortwave radiation from

GC-RT and RUEs is crop-specific radiation use efficiency. In the equations above, RUEs is

modified according to various DF-to-ARUE relationships. We calculate the effect of PM on crop

production across 3 levels of impact: max ARUE = 0% (changes in SW only, direct effect), max

ARUE = 50% (maximum 1.5 x RUE at DF=0.8), and max ARUE = 100% (maximum 2 x RUE at

DF=0.8) [Greenwald et al., 2006]. Finally, we calculate the relative carbon production with PM

compared to without PM for each crop under each relationship.

4.3.3. Relative Crop Production

To calculate the crop production change due to ozone and due to PM at each ARUE

relationship, we multiply the relative yield with ozone and the relative carbon production with

PM, respectively, by global base production values for each crop from GAEZ as described in

Section 4.2.1.

4.4. Results

4.4.1. Present-Day Impact of Air Pollution on Crops

The crop production changes due to air quality under current emissions (2009-2010) are

shown in Figure 4.5. Crop production changes due to ozone is negative everywhere, with

significant reductions globally. This negative effect ranges from wheat, which is most sensitive

to ozone damage, at -11.9% to maize at -4.4% to rice at -3.4% global production change. This is

consistent with the results of Van Dingenen et al. [2009].The high wheat sensitivity to ozone

damage is reduced in terms of total production by the relatively lower winter ozone

concentrations affecting winter wheat. Figure 4.6 shows regional crop production changes, and

the ozone impact on wheat is consistently high in all regions. There is also a greater ozone
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Figure 4.5. Change in crop production due to (top row) ozone, (middle row) PM with max ARUE=100%,

and (bottom row) both ozone and PM. Sampled to growing season ending in 2010 for (left column)

maize, (middle column) wheat, and (right column) rice. Filtered for base crop production greater than

0.01 Mg km 2. Global relative production change shown in upper right.

impact on maize and rice production in China+SE Asia compared to other regions, due to high

ozone concentrations in this region (Figure 4.4).

PM causes a significant enhancement in crop production throughout the globe, when the

diffuse effect is calculated at max ARUE=100% (Figure 4.5). Given the high bias in our ozone

simulation, we contrast the ozone impact with the largest possible impact of diffuse light. The

impact of assuming lower sensitivity to the diffuse fraction explored in Section 4.4.2. Assuming

max ARUE=100%, global crop production increase due to PM is +11.5% for maize, +16.4% for

wheat, and +8.9% for rice. Figure 4.6 shows that the PM effect on crop production is especially

large in China+SE Asia and India, regions with high PM concentrations. This is particularly

dramatic for India wheat during the dry season with a gain of over 25%.

When the ozone and PM effects are combined using max ARUE= 100% for PM to

calculate the total impact of air quality on crop production (Figure 4.5), the net negative impact
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Figure 4.6. Regional relative change in crop production due to ozone (red bars), PM with max
ARUE=100% (blue bars), and both ozone and PM (gray bars). Sampled to growing season ending in 2010
for (top row) maize, (middle row) wheat, and (bottom row) rice. Light red, light blue, and light gray lines
indicate range of production from 0 to -10 ppb surface ozone concentration correction, from max
ARUE=O% to max ARUE= 100%, and from both effects, respectively. Black lines indicate range of
production change over 10 years of variable meteorology. Regions with a base production lower than 5%
of the global total are not shown.

is smaller than for ozone alone. In many regions, the net impact is positive, such as for China,

northern US and Europe maize, India wheat, and India and China rice. This means that the

diffuse effect from PM outweighs that of ozone damage in these locations. The net global

production change due to air quality in this case is +6.0% for maize, +0.5% for wheat and +4.9%

for rice. In this analysis, the ozone and PM effects are calculated separately, and we do not

account for compounding effects. We also do not examine the effects of PM on cloud formation

or PM deposition onto plant surfaces.
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While we show detailed results from one particular growing season, it is important

examine how this magnitude may change from year-to-year. Thus, we use Modem-Era

Retrospective Analysis for Research and Applications v2 (MERRA2) meteorology from the

GMAO to simulate the impacts of air quality on crop production for 10 growing seasons (9 for

wheat) for 2001-2010. We hold anthropogenic emissions constant from year-to-year, varying

only those emissions affected by meteorology. The 10 year range (min to max) of crop

production change due to ozone alone, due to PM alone with max ARUE= 100% and due to net

air quality is plotted as bars in Figure 4.6 around the standard base run for a growing season

ending in 2010 previously discussed. This range in production change is small compared to the

ozone effect alone and to the variability in the ARUE relationship, which increases confidence

that the results above are a robust representation of air quality impacts on crop growth beyond

the 2010 growing season.

This analysis takes into account the total current ozone and PM from all sources. When

isolating the impact of anthropogenic influenced air quality (since 1850) on crop production, we

find that a significant portion of the PM effect (roughly half) is from natural sources (mainly

dust). Nearly all of the ozone impact is anthropogenic in origin (influenced by the AOT40

threshold metric). Understanding the anthropogenic influences on crop production can have

implications for air quality management strategies. For example, a policy which reduces ozone

concentrations at the surface would be beneficial by enhancing food production, especially in

regions like China and India. In contrast, a policy which causes a reduction in anthropogenic PM

for the purpose of improving air quality would have a negative impact on crop production. As

such, it is important to target air quality management such that the net gain is maximized and

balanced with improvements for human exposure.

4.4.2. Uncertainty in the DF-to-ARUE Relationship

The relationship between DF and ARUE is uncertain, and we have calculated a range of

possible impacts on crop production by changing the DF-to-ARUE relationship. This range is

shown in Figure 4.6 for the PM effect only and for the net effect of air quality on crop

production. For the case of max ARUE=0%, which can be referred to as the effect of direct

radiation on PM on crop production, only the decrease in SW caused by PM is applicable. As
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such, crop production decreases everywhere both when alone and when added to the impact of

ozone damage. As the sensitivity to DF (max ARUE) increases, the impact of PM on crop

production becomes more positive. For many regions and crops, this range is greater than the

negative impact of ozone alone. The sensitivity of these results to the assumed response to

diffuse radiation highlights the critical need for additional observational constraints on the

response of crops to light. Further, the difference between C3 and C4 plants is not taken into

account here since ARUE only varies by DF. A canopy model could better predict the

distribution of light onto sunny and shaded leaves and the resulting RUE of the plant.

The most realistic relationship value may be closer to the max ARUE=50% assumption,

especially for maize, which is less sensitive to an enhancement from DF, in which case at least

some significant negative ozone impact is offset by the diffuse PM effect. However, we know

that the model is biased high for surface ozone (see Section 4.2.2.3), so the net crop production

change due to air quality when including the diffuse effect may be closer to the results we show

with max ARUE=100%. For completeness, we include in Figure 4.6 the range of crop production

change when a -10 ppb ozone concentration bias correction is applied both for ozone alone and

for the net effect of air quality on crop production. While the absolute impact of air quality on

crop production depends on the accurate simulation of ozone, PM, and the response of crop

growth to these constituents, it is clear from these results that the PM impact on crop growth has

the potential to be a major environmental factor in global food production.

4.5. Implications for Future Scenarios

In order to examine possible future scenarios for global crop production, we repeat the

single growing season analysis using 2009-2010 GEOS-5 meteorology along with anthropogenic

emissions for ammonia (NH3), sulfur dioxide, sulfate, nitric oxide, BC, OC, and VOCs from the

RCP 4.5 and RCP 8.5 future scenarios (tntcat.iiasa.ac.at/RcpDb). The difference between crop

production change due to ozone, PM and net air quality in 2050 and 2010, which represents

future change, under these scenarios is shown in Figure 4.7.

In the RCP 4.5 scenario, air quality is projected to improve (annual ozone and PM

concentrations will decrease by about 10% and 50%, respectively) in all regions except India.
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Light red, light blue, and light gray lines are as in Figure 4.6. Regions with a base production lower than

5% of the global total are not shown.

These improvements counteract each other, and there is little net impact on crop production for

maize and rice, unless PM sensitivity to DF is less than estimated here (assuming max

ARUE=100%). Production of wheat may increase by about 2% globally given its higher

sensitivity to the ozone clean-up measures. In India, however, an increase in diffuse fraction

given air quality degradation under RCP 4.5 dampens the crop production loss from ozone, with

about 2% reduction expected.

Declines in crop production are more likely in the RCP 8.5 scenario, which is pessimistic

in terms of air quality. Ozone increases in most regions, while anthropogenic PM continues to go

down. Globally, this leads to a net total crop production loss for maize, wheat, and rice. As in

RCP 4.5, both PM and ozone increase in India, but crop production decreases to a greater extent
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as a larger increase in ozone is expected. In all cases, the impact of PM is reduced if a lower

sensitivity to DF (max ARUE) is assumed.

4.6. Conclusions

Previous studies have quantified the reduction in crop yields and associated economic

costs based on surface ozone alone, but it is imperative to understand all of the environmental

impacts and limitations on crop growth given the pressure to enhance food production in the

coming decades. This study broadens the study of environmental impacts on crop production by

quantifying the impacts of both ozone and PM on current and future global crop production. We

demonstrate that including the diffuse effect of PM on crop production can offset the negative

impacts due to ozone. This offsetting nature of PM and ozone on crop production should feature

in air quality management; future improvements in air quality may not be entirely beneficial to

crop production, as would be assumed when considering only the impact of ozone damage. Such

a scenario may even cause a net negative impact on crop production. Aerosol composition has

not been examined in this study, however, we note that targeting specific aerosol types may have

different effects on crop production. The range of uncertainty regarding the relationship between

diffuse radiation (DF) and the response of the crop (ARUE) is large and warrants further

experimental study. More work is also needed to understand the timing of these effects during

the growing season. Finally, it may be important to consider how resource restrictions (e.g.,

limited water and nutrients) can impact these results.
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Chapter 5. Resource and Physiological Constraints on Global Crop

Production Enhancement from Particulate Matter and Nitrogen Deposition

5.1. Introduction

Stress on global food production continues to grow due to population growth.

Simultaneously, anthropogenic activities are changing many aspects of the earth system. This

supports the need to better understand how crop production may be limited by environmental

impacts on the water, air, light, and soil required for efficient growth. For example, several

studies have explored the impacts of climate and air quality on crop production, but this has

generally been done without considering physiological limitations and other environmental

stresses (e.g., water and nutrients) [Greenwald et al., 2006; Shindell et al., 2011; Tai et al.,

2014].

Particulate matter (PM), emitted through combustion and natural processes and forned

through chemistry, is a source of air quality issues including reduced visibility and negative

human health effects. PM also impacts crop production by modifying shortwave radiation at the

surface. Through the scattering of light, PM decreases the total shortwave (SW) radiation at the

surface, which is made up of direct and diffuse light (SW = direct + diffuse). PM also increases

diffuse
the diffuse fraction (DF) of this SW radiation (DF = W ). Increased DF more evenly

SW

distributes light throughout the canopy of a plant, redirecting light away from (at times over-

saturated) leaves in direct sunlight and onto shaded leaves. In this way, plants can more

efficiently make use of incoming solar radiation. In the case of crops, PM can increase growth

and production when the increase in efficiency outweighs the loss of SW radiation. This effect

and previous work to understand it are fully introduced in Chapter 4. Briefly, Greenwald et

al. [2006] use relationships between DF and a crop's radiative use efficiency (RUE), a measure of

how effective a plant converts light into carbon, from Sinclair et al. [1992] along with varying

meteorology and a crop model to estimate the impact of PM on crop yield. Assuming no

restrictions on growth due to stresses at several sites, they find a large variation in impacts based

on the DF-to-ARUE relationship chosen. Under the maximum relationship, maize increases by

0-10%, wheat increases by 0-5% and rice increases by 0-40% under varying cloud conditions.
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Industrial agriculture, driven by the need to produce food for a growing human

population, has modified the global nitrogen (N) cycle. By artificially fixing inert nitrogen gas

into reactive forms, humans have increased the fluxes of nitrogen throughout the environment,

including in the atmospheric, on land and in the water [Galloway and Cowling, 2002]. Nitrogen

species in the atmosphere, both reduced and oxidized, return to the surface through deposition

processes after being transported away from source regions. Anthropogenic influences on these

fluxes change the nitrogen balance in land and water ecosystems. In natural systems, this can

cause acidification and eutrophication, which negatively impacts the biosphere [Erisman et al.,

2007; Beem et al., 2010]. The nitrogen can also impact crop production, by providing additional

fertilization, increasing yields in areas which are nitrogen limited [Goulding et al., 1998].

PM and nitrogen deposition are also connected: The release of excess nitrogen from

fertilizer application and livestock production in the form of ammonia contributes to PM

formation in the atmosphere under acidic conditions [Seinfeld and Pandis, 2006].Nitric acid

(I-INO3), an oxidized form of nitrogen oxides (NOx) emissions from mobile and industrial

sources, contributes both to the nitrogen burden and these acid conditions. Nitrogen can also be

incorporated in PM as organic nitrates when biogenic volatile organic compounds (BVOCs)

react with NOx [Mao et al., 2013].

In Chapter 4, we quantify the impact air quality (ozone and particulate matter (PM)) has

on current and future global crop production. This analysis, while consistent with the approach

generally applied to estimate air quality impacts on crops, fails to account for the set of physical

and biological restrictions placed on crop growth and production. In particular, crop production

enhancement due to the diffuse effect of PM is considered to be unlimited. It is important,

however, to consider the more realistic system, including water and nitrogen stresses and

physiological caps placed on crop production. In this study, we employ a crop production model

to better simulate impacts of PM on crop production with these constraints. This expands on the

unstressed assumptions of Greenwald et al. [2006]. We then extend our examination of

atmospheric impacts on crop production by applying nitrogen deposition to the simulated crop

production.
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5.2. GEOS-Chem Atmospheric Chemistry Model

The GEOS-Chem model (www.geos-chem.org) simulates the global concentration of

gases and particles in three dimensions. Simulated PM concentrations are read into the Rapid

Radiative Transfer Model for GCMs (RRTMG) to estimate the impact of PM on radiation

throughout the atmosphere [Heald et al., 2014]. Together these models are referred to as GC-RT.

The model version and setup used here is the same as for the standard 2010 emissions scenario in

Schiferl and Heald [in prep] and is fully described in Chapter 4. In this study, we use hourly

output of surface SW radiation and the diffuse and direct portions of this SW radiation from GC-

RT both with and without PM under all-sky (real time variation in cloudiness) conditions. These

are used to calculate the DF of the SW radiation. As in Chapter 4, PM refers to the sum of all

simulated aerosol species: sulfate (S042-), nitrate (NO3 ), ammonium (NH4'), black carbon (BC),

organic carbon (OC), sea salt and dust. We also use daily output of nitrogen deposition flux,

including the wet and dry deposition simulated for all nitrogen species. Nitrogen mass deposited

from five species, ammonia (NH 3), ammonium, nitric acid (HN03), nitrate, and nitrogen dioxide

(N02), make up 97% of the total simulated nitrogen deposition for 2010.

5.3. pDSSAT Crop Model

5.3.1. Description

We use v4.6 of the Decision Support System for Agrotechnology Transfer (DSSAT) crop

system model (www.dssat.net), along with v2.0 of the parallel System for Integrating Impact

Models and Sectors (pSIMS) (www.github.com/RDCEP/psims), together called pDSSAT, to

simulate the global production of maize, wheat, and rice. DSSAT provides a unified interface

which combines various crop simulation models [Jones et al., 2003]. Inherently a point model,

DSSAT uses daily meteorological data (minimum temperature, maximum temperature,

precipitation and solar radiation) along with soil and management information at a given

location. The model then calculates a crop yield at harvest taking into account soil-plant-

atmosphere dynamics throughout the growing season. Plant growth, in our case, is determined by

the Crop-Environment Resource Synthesis (CERES) model module for each crop.

pSIMS allows for the globally gridded simulation of crop yield at 0.5' x 0.50 horizontal

resolution by running DSSAT in parallel at each grid box using consistent input data and settings
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[Elliott et al., 2014]. pDSSAT uses daily meteorological information from AgMERRA [Ruane et

al., 2015], a version of the NASA Modem-Era Retrospective Analysis for Research and

Applications (MERRA) product developed for use in the Agricultural Model Intercomparison

and Improvement Project (AgMIP) [Rosenzweig et al., 2013]. Soil inputs come from the Global

Soil Dataset for Earth System Modeling (GSDE) [Shangguan et al., 2014]. Additional required

information includes the range of planting dates [Portmann et al., 2010; Sacks et al., 2010],

distribution of cultivars (based on local growing degree days (GDD)), and fertilizer application

amounts [You et al., 2000] at each grid box. Except for the soil inputs, which are modified in

pSIMS v2.0, these data are consistent with those used by the global gridded crop model (GGCM)

intercomparison portion of AgMIP [Rosenzweig et al., 2014].

5.3.2. Integration of GEOS-Chem with pDSSAT

Using the hourly SW, diffuse and direct radiation output from GC-RT, we calculate the

daily mean daytime (SW > 0) SW and DF for each GEOS-Chem gridbox (20 x 2.5' horizontal

resolution) for all of 2009 and 2010. We group the nitrogen deposition fluxes of individual

species into two groups, reduced nitrogen (NHx) and oxidized nitrogen (NOy), and calculate the

daily total flux for each group for the same time period. The daily SW and DF values, along with

the daily NHx and NOy deposition flux values, are regridded to the pDSSAT resolution and

integrated into the input meteorology.

For the particulate matter simulations (see Section 4.1), the daily SW and DF are used in

the pDSSAT crop-specific plant growth modules to modify the potential carbon production as in

Chapter 4. Equation 5.1 is used for maize and wheat, and Equation 5.2 is used for rice.

Pcarb oC 0.5 x SW x RUEs,DF (5.1)

Pcarb CC (0.5 x SW) 0 .65 x RUEs,DF, (5.2)

where Pcarb is the potential carbon production, SW is the daily mean shortwave radiation from

GC-RT and RUEs is crop-specific radiation use efficiency [Ritchie et al., 1998]. For simulations

with PM affecting SW and DF, SW modified by PM from GC-RT is used as input for these

relationships only and is not used in other functions dependent on solar radiation, such as

evaporation (i.e., the GC-RT SW without PM remains applied to these processes). In this study,
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we apply only the maximum DF-to-ARUE relationship discussed in Chapter 4, where max

ARUE=100% at DF=0.8 [Greenwald et al., 2006].

For the nitrogen deposition simulations (see Section 4.2), NHx and NOy nitrogen

deposition fluxes are applied daily as fertilizer on the surface layer of the soil as NH4' and NO3,

respectively. We apply these deposition fluxes beginning 30 days prior to the planting date at

each location. The timing of this initiation is uncertain, as the fate of deposited nitrogen is

unknown and impacts can be assessed over both short and multi-year time scales [Goulding et

al., 1998]. We discuss the impact of this assumption in Section 4.2.

5.3.3. Base Simulation

We configure pDSSAT to run for 2009 and 2010 with water and nitrogen stress turned

off. Our modification for potential carbon production using input from GC-RT is applied to SW

only (with SW values from GC-RT without PM). Maize, wheat and rice are simulated

independently. We sample the results for each crop for the growing season ending in 2010. For

example, crops planted in northern hemisphere spring and harvested in fall are grown entirely

within 2010, while winter crops are planted in fall 2009 and harvested in spring 2010. Crop

production is determined by multiplying the pDSSAT crop yield by the crop area from the

Global Agro-Ecological Zones (GAEZ) assessment for 2000 (www.fao.org/nr/gaez) scaled to

2010 as in Chapter 4. The results from this simulation, our base simulation, are shown in Figure

5.1. As in Chapter 4, we focus our figures on the industrialized areas of the northern hemisphere,

which rely heavily on maize, wheat and rice, while maintaining the global simulation results for

reference. Since our base simulation has no restrictions on water and nitrogen use, the simulated

crop production vastly surpasses that from GAEZ. For maize, this is 2066 Tg from pDSSAT

compared to only 871 from GAEZ. Simulated wheat production is 2617 Tg, and simulated rice

production is 1253 Tg compared to GAEZ values of 667 Tg and 705 Tg, respectively.

We rerun the crop model with water stress only, nitrogen stress only, and both stresses

together to test the sensitivity of the base simulation to these resources (Figure 5.1). Water stress

occurs when the amount of soil water available is below the potential transpiration rate of the
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Figure 5.1. (top row) Crop production from base pDSSAT scenario (GC-RT SW only, no PM) with no

stress applied for growing season ending in 2010. Difference in crop production due to (second row)

water stress, (third row) nitrogen stress, and (bottom row) both water and nitrogen stresses. For each row:

(left column) maize, (middle column) wheat, and (right column) rice. Filtered for GAEZ base crop

production greater than 0.01 Mg km-. Global production (top) or relative production change (second

row-bottom) shown in upper right.

plant. For maize, the negative effect of water stress on production is most evident in the US

Plains and northern China and causes a 27% production reduction globally. The effect of water

stress is larger globally on wheat, 33% reduction, and is located in the southern US Plains,

northern China, and throughout western Asia. Rice production is impacted the least by water

stress, with only a 14% reduction, mostly in northern India. Water stress is dependent on the

precipitation prescribed from the meteorology of that growing season, so these results will vary

from year to year.

Nitrogen stress occurs when the plant tissue nitrogen concentration is less than the critical

nitrogen concentration determined to provide optimal growth. In our base simulation, nitrogen
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stress follows different patterns compared to water stress for many regions and crops, although

the global magnitudes in production reduction are similar (Figure 5.1). Maize production

affected by nitrogen stress occurs mostly in the US Plains and Midwest. Nitrogen stress for

wheat is distributed into all regions, while the effect on rice production is again lowest and

mostly in southeast (SE) Asia. Nitrogen stress is more similar from year to year in the model as

fertilizer application, which provides nitrogen to the soil, and inherent soil nitrogen content is the

same. Total production change due to both water and nitrogen stress does not combine linearly.

This illustrates the interconnected system simulated by the crop model. Overall, these

environmental and management constraints greatly reduce global crop production from its

unstressed potential. They are important to consider when analyzing the impact of PM and

nitrogen deposition on crop production.

5.4. Results

5.4.1. Impact of Particulate Matter on Crop Growth

To simulate the effect of PM on crop production, we run pDSSAT as above with SW and

DF input from GC-RT with and without PM. The differences in SW and DF due to PM over the

pDSSAT growing season are shown in Figure 5.2. PM has a negative effect on SW everywhere

and positive effect on DF. The largest influence of PM is over China for all three crops. The

influence is especially noticeable for wheat, where a growing season over the winter corresponds

Maize Wheat Rice
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Figure 5.2. Mean change in daytime (SW > 0) (top row) downward SW radiation and (bottom row) DF of
the SW radiation at the surface due to PM from GC-RT. For pDSSAT growing season ending in 2010 for
(left column) maize, (middle column) wheat, and (right column) rice. Filtered for GAEZ base crop
production greater than 0.01 Mg km 2.

112

= - - - - - -= 4 - -- W.1011NQMNINN - I



- -~ -~ -- - --

to higher PM concentrations. The difference between the simulations with and without PM

(using max ARUE=100%) is the change in production due to PM, and this is shown in Figure

5.3. We perform this procedure first with no stress factors applied. Under no stress, global maize

production increases by 1.7%, wheat increases by 17.1%, and rice increases by 6.2%. Wheat

production in the India and China+SE Asia regions is most affected by PM, and the regional

proportional change is show in Figure 5.4. For wheat and rice, pDSSAT reproduces well the

proportional enhancement in crop production due to PM found in Chapter 4 using our offline

relativistic methodology (Figure 5.4). This is true globally and within each region. The pDSSAT

scenario with no stress is closely related to the offline analysis, which was unrestricted in

production enhancement, so this good comparison is expected.
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Figure 5.3. Change in pDSSAT crop production due to PM with max ARUE=100% with (top row) no
stress and (bottom row) water and nitrogen stresses applied. For growing season ending in 2010 for (left
column) maize, (middle column) wheat, and (right column) rice. Filtered for GAEZ base crop production
greater than 0.01 Mg km 2 . Global relative production change shown in upper right.

The proportional increase in maize production due to PM simulated by the pDSSAT

model is much lower than that from our offline analysis. This can be explained by a

physiological restriction within the model which limits the maximum number of kernels per

maize plant based on its genetic potential. Within pDSSAT, hybrid cultivars are limited to about

900 kernels per plant, while open-pollinated cultivars are limited to about 550 kernels per plant.

In the scenario above with no stress, PM only causes a 1.3% increase in maize production over

the US (Figure 5.5). For most locations in this domain, pDSSAT simulates the maximum maize

production dictated by the kernel number both with and without PM. When we increase the limit

by 500 kernels per plant, the maize production increases widely. Production without PM
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Figure 5.4. Regional relative change in crop production due to PM with max ARUE=100%: offline
analysis from Chapter 4 (blue bars with hatching), pDSSAT simulation with no stress (dark blue bars),
and pDSSAT simulation with water and nitrogen stresses (light blue bars). Change due to nitrogen

deposition in orange. For growing season ending in 2010 for (top row) maize, (middle row) wheat, and

(bottom row) rice. Regions with a base production lower than 5% of the global total are not shown.

increases by 25%, and production with PM increases by 34%. This results in an 8.8% increase in

maize production due to PM over the US under no stress, which is similar to the approximately

10% increase found in the offline analysis. Including stress factors under the standard kernel

restriction lowers the total production with and without PM, but allows for a larger proportional

change due to PM in most areas (i.e., 1.3% global production increase without stress, but 2.4%

with stresses) as more areas are producing below the production limit. When additional kernels

are allowed with stresses turned on, production due to also PM increases, but to a lesser

percentage compared to without stress (not shown).
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Figure 5.5. For (top row) pDSSAT base production and (bottom row) production with increased
maximum kernels per plant: (left column) maize production with no PM, middle column) maize
production with PM, and (right column) maize production due to PM. Filtered for GAEZ base crop
production greater than 0.01 Mg km 2 . Global production (left and middle) or relative production change
(right) shown in upper right.

To investigate the more realistic effect of PM on crop production, we impose both water

and nitrogen stress on our pDSSAT simulations. The results for this scenario (Figures 5.3 and

5.4) indicate an 11% increase in global wheat production due to PM and a 3.4% increase in rice.

These proportional enhancements are about one-third lower with stresses for wheat compared to

without and about one-half for rice. While similar declines occur on a regional bases, these

stresses have a larger impact on India for wheat, where nearly one-half of additional simulated

wheat production is lost.

5.4.2. Impact of Nitrogen Deposition on Crop Growth

We run pDSSAT as above with NHx and NOy nitrogen deposition fluxes from GEOS-

Chem and compare the results to the base simulation to quantify the impact of nitrogen

deposition on crop production. No PM effects are considered. The total nitrogen deposition flux

for each crop over the base scenario growing season is shown in Figure 5.6. There is high

nitrogen deposition in India and China for all three crops, but especially wheat in China. The

magnitude of nitrogen deposition from GEOS-Chem is generally lower than that applied as

fertilizer. For example, two fertilizer applications for maize span roughly 50-100 kg ha- 1 each

over the US, Europe and China. We also plot the fraction of total nitrogen deposition made up of
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Figure 5.6. (top row) Total nitrogen deposition from GEOS-Chem and (bottom row) reduced nitrogen

(NHx) fraction of this total. For pDSSAT growing season ending in 2010 for (left column) maize, (middle

column) wheat, and (right column) rice. Filtered for GAEZ base crop production greater than 0.01 Mg
k-2.

NHx. This fraction is slightly higher in agricultural areas of the US, Europe and China, where

reduced species from agriculture mix with oxidized species from industry. In India, the NHx

fraction is very high, as there is little industrial emission to offset the large agricultural

emissions.

With nitrogen stress only, crop production increases globally by 2.1% for maize, 2.6%

for wheat and 1.9% for rice due to nitrogen deposition applied beginning 30 days before the

planting date (Figure 5.7). The largest impact of nitrogen deposition is for wheat in China, which

receives large amounts of nitrogen deposition and is highly sensitive to nitrogen stress (Figure

1). Nitrogen deposited to the surface accumulates in the soil throughout the growing season,

moving quickly to lower levels of the soil profile. When fertilizer applied toward the beginning

of the growing season runs out, this additional nitrogen reservoir from deposition allows for a

mitigation of nitrogen stress and further plant growth. The fate of nitrogen in soil is not well

constrained, and the length of time nitrogen is retained in the soil and useful to the plant is

uncertain. When we apply nitrogen deposition to pDSSAT at the onset of the growing season,

rather than 30 days prior to planting, we find that 18% of maize production enhancement due to

nitrogen deposition is lost (20% loss for wheat and 23% loss for rice). Conversely, applying the

deposition flux in the crop model earlier enhances the increase in crop production.
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Figure 5.7. Change in pDSSAT crop production due nitrogen deposition with (top row) nitrogen stress
and (bottom row) water and nitrogen stresses applied. For growing season ending in 2010 for (left
column) maize, (middle column) wheat, and (right column) rice. Filtered for GAEZ base crop production
greater than 0.01 Mg km 2 . Global relative production change shown in upper right.

The addition of water stress lowers the proportional enhancement of nitrogen deposition

on crop production slightly, as shown in Figure 5.7. The largest change is for wheat, which is

more water stressed than maize and rice in the model globally. The regional impacts of nitrogen

deposition on crop production for the scenario with water and nitrogen stress are shown in Figure

5.4. In all cases except for rice in India, this nitrogen deposition effect is smaller proportionally

than the enhancing effect of PM (disregarding the restrictive maize simulation in Europe). While

we do apply reduced and oxidized nitrogen deposition (NHx vs NOy) separately in our

simulations, this effort has little impact on the above results as soil nitrification quickly converts

all soil NH4 -into N0 3 in the pDSSAT model.

5.5. Conclusions

To our knowledge, this is the first effort to integrate atmospheric air quality inputs into

the dynamic simulation of a crop model. Using realistic restrictions on water and nitrogen

availability and physiological limitations we update estimates of the impact of PM on crop

production made in Chapter 4 using the offline analysis. Maize production increases by only

2.4% due to PM (11.5% in Chapter 4) using the max ARUE = 100% relationship, while wheat

increases by 11.0% (16.4%) and rice increases by 3.4% (8.9%). The positive effect of PM on

crop production is lessened when considering realistic restrictions to crop growth, but remains
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significant throughout the globe, especially in northern China, and will be important to consider

for air quality policy decisions which may reduce PM and thereby reduce crop production.

The coupling with a crop model also provides an opportunity to explore the impact of

atmospheric nitrogen deposition on crop production. We find that the impact of nitrogen

deposition on crop production is low compared to the effect of PM. This may change in the

future as ammonia emissions are expected to increase with future pressure on food production.

Lower future NOx emissions are likely due to regulatory efforts, which will reduce the nitrogen

deposition flux. These reductions could also reduce PM in areas prone to ammonium nitrate

formation.

The crop model responses to DF and nitrogen deposition examined in this study are

uncertain. More work is needed, especially in the form of observations, to understand and

evaluate these responses. It is critical to develop realistic crop models with reliable sensitivity to

environmental factors to understand the pressure on future food security.
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Chapter 6. Conclusions and Implications

In many areas of the globe, the current era of rising food demand and increasing

industrialization is being accompanied by a deterioration in air quality and enhancement in

agricultural activity. As both air quality and the food supply are vitally important to sustaining

human enterprise, understanding their interactions is critical. The work in this thesis makes

strides toward this goal. Here we highlight those advances, work left to be done, and additional

interactions to explore.

In Chapter 2, we find that ammonia from agriculture is a major contributor to inorganic

fine particulate matter (PM2.5) under the appropriate chemical and meteorological conditions.

Accurately quantifying agricultural ammonia emissions, the uncertainty of which outweighs that

of other contributing factors, is critical to predicting the concentration of inorganic PM2.5. In

Chapter 3, the inclusion of variable ammonia emissions from agriculture does not improve the

simulation of ammonia concentrations compared to newly available observations. These variable

emissions also do not contribute much to the variability of inorganic PM 2.5 during the summer.

Rather, inorganic PM2.5 concentrations are more so driven by meteorology and acid-precursor

emissions. This highlights the confounding nature of simultaneous ammonia emission and

partitioning.

Motivated by the uncertainties in the above work, future work on understanding the role

of ammonia in PM2.s formation would benefit greatly from quantitative observations of all

relevant chemical species and meteorology at high spatial and high temporal resolution. Surface

site density (in developed countries) is increasing, and higher quality satellite products with

global coverage are being developed, but more is required. Co-located observations of multiple

species over a long term period is key. An ideal study of the system would concentrate gas and

particle observations in regions of either homogeneous landscape, such as large agricultural

regions, or highly varying terrain, such as the transition from plain to mountainous areas. By

combining these observations with a high resolution model we can better understand each

individual region as well as address contrast between the regions. This method would increase

confidence in the results as each region is isolated and analyzed individually, rather than

combining limited data in many regions with differing environmental and chemical conditions. It
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seems likely different processes are dominate in each area and teasing these out would contribute

to our understanding of the ammonia and inorganic PM2.5 system. Further, higher temporally

resolved observations, both in situ and geostationary, will allow for a better understanding of the

diurnal variations in this system and its role in controlling day and nighttime air quality.

Chapter 4 provides the first compete picture of the effects of air quality on global crop

production, taking into account both total particulate matter (PM) and ozone. While uncertain,

we find crop enhancement due to PM may contribute to a net positive air quality impact on crop

production. Consequently, future air quality improvements may cause a decrease in crop

production in some locations. Chapter 5 uses a crop model to constrain the PM impact on crop

production to more realistic values under environmental stresses and physiological constraints,

another first. We find that the effect of atmospheric nitrogen deposition on crop production is

small, but highly sensitive to uncertain timing assumptions. Future work will characterize how

different PM types impact the radiation reaching crops and how this might relate to air quality

management strategies. We could also take a regional focus and use measurements or reported

crop yields along with air quality measurements over multiple years to verify the simulated

response demonstrated in our work.

Constraining plant physiological responses to particulate matter, ozone and nitrogen

deposition impacts is also vital for further advancement in this area. Our work motivates future

collaboration with plant and crop scientists who could investigate how air pollution impacts the

biological processes affecting plant growth and crop production. This collaboration could come

through modeling studies which take into account biological mechanisms at the leaf level or finer

and propagate the air quality impacts through the system. Perhaps of greater impact, however,

would be controlled experiments to better quantify the relationships between air quality

parameters such as the diffuse fraction (DF) of shortwave radiation and plant growth, crop yield,

or grain weight. In addition, studies that explore how ozone exposure and changes in radiation

simultaneously impact crop production are needed. While laboratory conditions may not

replicate real world conditions for resource and meteorological restrictions, they do provide

better constrains on the varying impacts of PM on crops as it is not possible to control for PM in

ambient conditions (only DF as a whole, which is influenced by clouds, can be measured).
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Laboratory experiments with measurements of soil composition could also provide insight into

the timing and transport of nitrogen deposition.

In the studies presented in this thesis, we have largely considered each direction in the

agriculture and air quality system independently. In Chapters 2 and 3, agriculture impacts air

quality, but this does not in turn affect agriculture, and vice versa for Chapter 4. Only in Chapter

5 do we begin to close the system loop by simulating the impact of nitrogen deposition, which is

in part emitted by agricultural activities, on crop production. In reality, the interactions are more

complicated, and additional exploration of these feedbacks could be insightful. As an exercise,

we discuss one such situation and potential economic impacts below.

In the case of crop production, fertilizer is applied toward the beginning of the growing

season based on the nitrogen content of the soil. If air quality regulations reduce nitrogen

emissions and therefore the nitrogen deposition flux, the initial soil nitrogen content may be

lower. The producer would then be required to purchase additional fertilizer to meet the needs of

the crop. If the producer decides not to purchase additional fertilizer due to financial constraints,

the crop production suffers, but emissions from volatilization during application is also reduced.

This may further reduce nitrogen deposition downwind and so on. The net effect on air quality

and crop production depends on the assumptions made for each individual component.

The same regulations above which restrict nitrogen emissions in order to improve air

quality (and possibly increase producer fertilizer expense) may reduce crop production though a

reduction in diffuse light caused by PM, as is possible in the future scenarios presented in

Chapter 4. In this case, the regulators favor improving human health and visibility over the loss

of food production and profitability for crop producers. This can be justified through a simple

monetary comparison. The global total crop production losses for maize, wheat and rice due to

total PM2.5 reduction in RCP 4.5 is 27.7 Mt. This becomes a loss of approximately $7 billion in

revenue using a mean producer price of $250 tonnel [FA OSTA T, 2017]. Using a rough value of

a statistical life set at $1 million [Doucouliagos et al., 2012], this means only 7000 lives must be

saved by PM2.5 reduction to offset the loss of crop revenue. This figure is extremely small

compared to the estimated 4 million premature deaths due to PM 2.5 pollution worldwide [Cohen
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et al., 2017]. While this simple calculation could be refined by considering regional values and

the costs of malnourishment, the overall cost of PM2.5 on human health will substantially exceed

the financial benefits associated with enhanced crop growth under any scenario.

Finally, we have not considered the role of climate in the interactions between agriculture

and air quality. It is important to keep in mind that all of the mechanisms which are dependent on

temperature described in this thesis, including chemical reactions and partitioning, emissions

volatilization, and plant growth, take place in the context of increasing global temperatures.

Higher temperatures favor increased ozone concentrations, decreased ammonium nitrate

concentrations, increased ammonia emissions, and varying impacts on plants, depending on the

plant type and location. Future work could bring the expected temperature changes (either

generalized or from a climate model) into these systems to quantify the changes in the effects

previously studied and discover any changes in the dominance of certain relationships. Changes

in precipitation should also be examined as rainfall and moisture impact partitioning, deposition

and plant growth in non-irrigated systems. The possibility of interesting feedbacks, which occur

between greenhouse gas emissions from agriculture and the interactions between air quality and

agriculture itself, should also be explored. However, there are large uncertainties associated with

future climate scenarios, especially with regards to changes in precipitation. Therefore, in

addition to the need for further observational constraints on how air quality and agriculture

interact, we must also consider multiple scenarios to bracket how air quality, food production,

and their interactions will be impacted by global change.

122



References

Adams, R. M., J. D. Glyer, S. L. Johnson, and B. A. McCarl (1989), A reassessment of the
economic effects of ozone on U.S. agriculture, JAPCA, 39(7), 960-968,
doi: 10.1080/08940630.1989.10466583.

Amos, H. M. et al. (2012), Gas-particle partitioning of atmospheric Hg(II) and its effect on
global mercury deposition, Atmos. Chem. Phys., 12(1), 591-603, doi:10.5194/acp-12-
591-2012.

Ansari, A. S., and S. N. Pandis (1998), Response of inorganic PM to precursor concentrations,
Environ. Sci. Technol., 32(18), 2706-2714, doi:10.1021/es971130j.

Bahreini, R., et al. (2009), Organic aerosol formation in urban and industrial plumes near
Houston and Dallas, Texas, J. Geophys. Res., 114, DOOF16, doi:10.1029/2008JD011493.

Beem, K. B., et al. (2010), Deposition of reactive nitrogen during the Rocky Mountain Airborne
Nitrogen and Sulfur (RoMANS) study, Environ. Pollut., 158(3), 862-872,
doi: 10.101 6/j.envpol.2009.09.023.

Bond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets, and N. M.
Trautmann (2007), Historical emissions of black and organic carbon aerosol from energy-
related combustion, 1850-2000, Glob. Biogeochem. Cycles, 21(2), GB2018,
doi: 10.1029/2006GB002840.

Bouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J. G. J.
Olivier (1997), A global high-resolution emission inventory for ammonia, Global
Biogeochem. Cycles, 11(4), 561, doi:10. 1029/97GB02266.

Burnett, R. T., M. Smith-Doiron, D. Stieb, M. E. Raizenne, J. R. Brook, R. E. Dales, J. A. Leech,
S. Cakmak, and D. Krewski (2001), Association between ozone and hospitalization for
acute respiratory diseases in children less than 2 years of age, Am. J Epidemiol., 153(5),
444-452, doi:10.1093/aje/153.5.444.

Canagaratna, M. R., et al. (2007), Chemical and microphysical characterization of ambient
aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26(2), 185-
222, doi:10.1002/mas.20115.

Chapin, F. S., P. A. Matson, and H. A. Mooney (2002), Principles of Terrestrial Ecosystems
Ecology, Springer, New York.

Chen, D., Y. Wang, M. B. McElroy, K. He, R. M. Yantosca, and P. Le Sager (2009), Regional
CO pollution and export in China simulated by the high-resolution nested-grid GEOS-
Chem model, Atmos. Chem. Phys., 9(11), 3825-3839, doi:10.5194/acp-9-3825-2009.

Chow, J. C., J. G. Watson, E. M. Fujita, Z. Lu, D. R. Lawson, and L. L. Ashbaugh (1994),
Temporal and spatial variations of PM 2 .s and PMio aerosol in the Southern California air
quality study, Atmos. Environ., 28(12), 2061-2080, doi: 10.1016/1352-2310(94)90474-X.

Chow, J. C., J. G. Watson, Z. Lu, D. H. Lowenthal, C. A. Frazier, P. A. Solomon, R. H.
Thuillier, and K.Magliano (1996), Descriptive analysis of PM2 .5 and PMio at regionally
representative locations during SJVAQS/AUSPEX, Atmos. Environ., 30(12), 2079-2112,
doi: 10.1016/1352-2310(95)00402-5.

Chow, J. C., J. G. Watson, D. H. Lowenthal, R. T. Egami, P. A. Solomon, R. H. Thuillier, K.
Magliano, and A. Ranzieri (1998), Spatial and temporal variations of particulate
precursor gases and photochemical reaction products during SJVAQS/AUSPEX ozone
episodes, Atmos. Environ., 32(16), 2835-2844, doi:10.1016/S1352-2310(97)00449-4.

123



Cirino, G. G., R. A. F. Souza, D. K. Adams, and P. Artaxo (2014), The effect of atmospheric
aerosol particles and clouds on net ecosystem exchange in the Amazon, Atmos. Chem.
Phys., 14(13), 6523-6543, doi:10.5194/acp-14-6523-2014.

Clarisse, L., C. Clerbaux, F. Dentener, D. Hurtmans, and P.-F. Coheur (2009), Global ammonia
distribution derived from infrared satellite observations, Nat. Geosci., 2(7), 479-483,
doi:10.1038/ngeo551.

Clarisse, L., M. W. Shephard, F. Dentener, D. Hurtmans, K. Cady-Pereira, F. Karagulian, M.
Van Damme, C. Clerbaux, and P.-F. Coheur (2010), Satellite monitoring of ammonia: A
case study of the San Joaquin Valley, J. Geophys. Res., 115, D13302,
doi: 10.1029/2009JD013291.

Cohen, A. J. et al. (2017), Estimates and 25-year trends of the global burden of disease
attributable to ambient air pollution: an analysis of data from the Global Burden of
Diseases Study 2015, The Lancet, 389(10082), 1907-1918, doi:10.1016/S0140-
6736(17)30505-6.

Cooper, 0. R., R.-S. Gao, D. Tarasick, T. Leblanc, and C. Sweeney (2012), Long-term ozone
trends at rural ozone monitoring sites across the United States, 1990-2010, J. Geophys.
Res. Atmos., 117(D22), D22307, doi:10.1029/2012JD018261.

Cox, P., A. Delao, A. Komorniczak, and R. Weller (2009), Air basin trends and forecasts-
Criteria pollutants, Air Resources Board Almanac.

Day, D. E., X. Chen, K. A. Gebhart, C. M. Carrico, F. M. Schwandner, K. B. Benedict, B. A.
Schichtel, and J. L. Collett Jr. (2012), Spatial and temporal variability of ammonia and
other inorganic aerosol species, Atmos. Environ., 61, 490-498,
doi: 10.101 6/j.atmosenv.2012.06.045.

Dentener, F. J., and P. J. Crutzen (1994), A three-dimensional model of the global ammonia
cycle, J. Atmos. Chem., 19(4), 331-369, doi:10.1007/BF00694492.

Doucouliagos, C., T. D. Stanley, and M. Giles (2012), Are estimates of the value of a statistical
life exaggerated?, J. Health Econ., 31(1), 197-206, doi: 10.101 6/j .jhealeco.20 11.10.001.

Elliott, J., D. Kelly, J. Chryssanthacopoulos, M. Glotter, K. Jhunjhnuwala, N. Best, M. Wilde,
and I. Foster (2014), The parallel system for integrating impact models and sectors
(pSIMS), Environ. Model. Softw., 62, 509-516, doi: 10.101 6/j.envsoft.2014.04.008.

Ellis, R. A., D. J. Jacob, M. P. Sulprizio, L. Zhang, C. D. Holmes, B. A. Schichtel, T. Blett, E.
Porter, L. H. Pardo, and J. A. Lynch (2013), Present and future nitrogen deposition to
national parks in the United States: critical load exceedances, Atmos. Chem. Phys.,
13(17), 9083-9095, doi:10.5194/acp-13-9083-2013.

Erisman, J. W., A. Bleeker, J. Galloway, and M. S. Sutton (2007), Reduced nitrogen in ecology
and the environment, Environ. Pollut., 150(1), 140-149,
doi: 10. 1016/j.envpol.2007.06.033.

Erisman, J. W., M. A. Sutton, J. Galloway, Z. Klimont, and W. Winiwarter (2008), How a
century of ammonia synthesis changed the world, Nat. Geosci., 1(10), 636-639,
doi:10.1038/ngeo325.

Fairlie, T. D., D. J. Jacob, J. E. Dibb, B. Alexander, M. A. Avery, A. van Donkelaar, and L.
Zhang (2010), Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian
pollution plumes, Atmos. Chem. Phys., 10(8), 3999-4012, doi: 10.5194/acp-10-3999-
2010.

124



Fang, Y., A. M. Fiore, L. W. Horowitz, A. Gnanadesikan, I. Held, G. Chen, G. Vecchi, and H.
Levy (2011), The impacts of changing transport and precipitation on pollutant
distributions in a future climate, J Geophys. Res. Atmos., 116(D18), D18303,
doi:10.1029/2011JD015642.

FAOSTAT (2017), FAOSTAT,
Faulkner, W. B., and B. W. Shaw (2008), Review of ammonia emission factors for United States

animal agriculture, Atmos. Environ., 42(27), 6567-6574,
doi: 10.101 6/j.atmosenv.2008.04.02 1.

Fountoukis, C., and A. Nenes (2007), ISORROPIA II: A computationally efficient
thermodynamic equilibrium model for K'-Ca2+-Mg2+-NH4 -Na+-SO4 2--NO3--Cl--H20
aerosols, Atmos. Chem. Phys., 7(17), 4639-4659, doi: 10.5194/acp-7-4639-2007.

Galloway, J. N., and E. B. Cowling (2002), Reactive nitrogen and the world: 200 years of
change, AMBIO J. Hum. Environ., 31(2), 64-71, doi: 10.1579/0044-7447-31.2.64.

Goebes, M. D., R. Strader, and C. Davidson (2003), An ammonia emission inventory for
fertilizer application in the United States, Atmos. Environ., 37(18), 2539-2550,
doi: 10.1016/S1352-2310(03)00129-8.

Goulding, K. W. T., N. J. Bailey, N. J. Bradbury, P. Hargreaves, M. Howe, D. V. Murphy, P. R.
Poulton, and T. W. Willison (1998), Nitrogen deposition and its contribution to nitrogen
cycling and associated soil processes, New Phytol., 139(1), 49-58.

Greenwald, R., M. H. Bergin, J. Xu, D. Cohan, G. Hoogenboom, and W. L. Chameides (2006),
The influence of aerosols on crop production: A study using the CERES crop model,
Agric. Syst., 89(2-3), 390-413, doi: 10.101 6/j.agsy.2005.10.004.

Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X.
Wang (2012), The Model of Emissions of Gases and Aerosols from Nature version 2.1
(MEGAN2. 1): an extended and updated framework for modeling biogenic emissions,
Geosci Model Dev Discuss, 5(2), 1503-1560, doi: 10.5194/gmdd-5-1503-2012.

Guo, S. et al. (2014), Elucidating severe urban haze formation in China, Proc. NatL. Acad. Sci.,
111(49), 17373-17378, doi:10.1073/pnas.1419604111.

Gyldenkome, S., C. Ambelas Skjoth, 0. Hertel, and T. Ellermann (2005), A dynamical ammonia
emission parameterization for use in air pollution models, J. Geophys. Res. A tmos.,
1 10(D7), D07108, doi:10.1029/2004JD005459.

Hall, J. V., V. Brajer, and F. W. Lurmann (2008), Measuring the gains from improved air quality
in the San Joaquin Valley, J. Environ. Manage., 88(4), 1003-1015,
doi: 10.101 6/j.jenvman.2007.05.002.

Hand, J. L., B. A. Schichtel, M. Pitchford, W. C. Malm, and N. H. Frank (2012), Seasonal
composition of remote and urban fine particulate matter in the United States, J. Geophys.
Res., 117, D05209, doi:10.1029/2011JD017122.

Heald, C. L., et al. (2012), Atmospheric ammonia and particulate inorganic nitrogen over the
United States, Atmos. Chem. Phys., 12(21), 10,295-10,312, doi: 10.5194/acp- 12-10295-
2012.

Heald, C. L., D. A. Ridley, J. H. Kroll, S. R. H. Barrett, K. E. Cady-Pereira, M. J. Alvarado, and
C. D. Holmes (2014), Contrasting the direct radiative effect and direct radiative forcing
of aerosols, Atmos. Chem. Phys., 14(11), 5513-5527, doi:10.5194/acp-14-5513-2014.

125



Holland, E. A., F. J. Dentener, B. H. Braswell, and J. M. Sulzman (1999), Contemporary and
pre-industrial global reactive nitrogen budgets, Biogeochemistry, 46(1), 7-43,
doi: 10.1007/BFO1007572.

Holt, J., N. E. Selin, and S. Solomon (2015), Changes in inorganic fine particulate matter
sensitivities to precursors due to large-scale US emissions reductions, Environ. Sci.
Technol., 49(8), 4834-4841, doi: 10.102 1/acs.est.5b00008.

Horton, D. E., C. B. Skinner, D. Singh, and N. S. Diffenbaugh (2014), Occurrence and
persistence of future atmospheric stagnation events, Nat. Clim. Change, 4(8), 698-703,
doi: 10.1038/nclimate2272.

Hristov, A. N., M. Hanigan, A. Cole, R. Todd, T. A. McAllister, P. M. Ndegwa, and A. Rotz
(2011), Review: Ammonia emissions from dairy farms and beef feedlots, Can. J Anim.
Sci., 91(1), 1-35, doi:10.4141/CJAS10034.

Hu, L. et al. (2015a), Emissions of C6-C8 aromatic compounds in the United States: Constraints
from tall tower and aircraft measurements, J. Geophys. Res. Atmos., 120(2),
2014JD022627, doi: 10.1002/2014JD022627.

Hu, L., D. B. Millet, M. Baasandorj, T. J. Griffis, P. Turner, D. Helmig, A. J. Curtis, and J.
Hueber (2015b), Isoprene emissions and impacts over an ecological transition region in
the U.S. Upper Midwest inferred from tall tower measurements, J. Geophys. Res. A tmos.,
120(8), 2014JD022732, doi: 10. 1002/2014JD022732.

Hudman, R. C., N. E. Moore, A. K. Mebust, R. V. Martin, A. R. Russell, L. C. Valin, and R. C.
Cohen (2012), Steps towards a mechanistic model of global soil nitric oxide emissions:
implementation and space based-constraints, Atmos. Chem. Phys., 12(16), 7779-7795,
doi: 10.5194/acp-12-7779-2012.

Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins
(2008), Radiative forcing by long-lived greenhouse gases: Calculations with the AER
radiative transfer models, J. Geophys. Res. Atmos., 113(D13), D13103,
doi: 10.1029/2008JD009944.

IPCC (2007), Climate change 2007: The physical science basis, in Contribution of Working
Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.,
and New York.

IPCC (2013), Climate change 2013: The physical science basis. Working Group I contribution to
the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited
by T. F. Stocker et al., 1535 pp., Cambridge Univ. Press, Cambridge, U. K., and New
York.

Jacob, D. J., J. W. Munger, J. M. Waldman, and M. R. Hoffmann (1986), The H2 SO4-HNO 3-
NH3 system at high humidities and in fogs 1. Spatial and temporal patterns in the San
Joaquin Valley of California, J. Geophys. Res., 91(D1), 1073-1088,
doi:10. 1029/JD091iDO1pO1073.

Jaegl6, L., P. K. Quinn, T. S. Bates, B. Alexander, and J.-T. Lin (2011), Global distribution of
sea salt aerosols: new constraints from in situ and remote sensing observations, Atmos.
Chem. Phys., 11(7), 3137-3157, doi:10.5194/acp-11-3137-2011.

Jayne, J. T., D. C. Leard, X. Zhang, P. Davidovits, K. A. Smith, C. E. Kolb, and D. R. Worsnop
(2000), Development of an aerosol mass spectrometer for size and composition analysis

126



of submicron particles, Aerosol Sci. Technol., 33(1-2), 49-70,
doi: 10.1080/027868200410840.

Jimenez, J. L., et al. (2003), Ambient aerosol sampling using the Aerodyne Aerosol Mass
Spectrometer, J Geophys. Res., 108(D7), 8425, doi: 10.1029/2001 JDOO 1213.

Jones, J. W., G. Hoogenboom, C. H. Porter, K. J. Boote, W. D. Batchelor, L. A. Hunt, P. W.
Wilkens, U. Singh, A. J. Gijsman, and J. T. Ritchie (2003), The DSSAT cropping system
model, Eur. J. Agron., 18(3-4), 235-265, doi:10.1016/S1161-0301(02)00107-7.

Kaneyasu, N., H. Yoshikado, T. Mizuno, K. Sakamoto, and M. Soufuku (1999), Chemical forms
and sources of extremely high nitrate and chloride in winter aerosol pollution in the
Kanto Plain of Japan, Atmos. Environ., 33(11), 1745-1756, doi:10.1016/S1352-
2310(98)00396-3.

Kanniah, K. D., J. Beringer, P. North, and L. Hutley (2012), Control of atmospheric particles on
diffuse radiation and terrestrial plant productivity A review, Prog. Phys. Geogr., 36(2),
209-237, doi:10.1177/0309133311434244.

Kim, S.-W., et al. (2011), Evaluations of NOx and highly reactive VOC emission inventories in
Texas and their implications for ozone plume simulations during the Texas Air Quality
Study 2006, Atmos. Chem. Phys., 11(22), 11,361-11,386, doi:10.5194/acp-l1-11361-
2011.

Kuhns, H., E. M. Knipping, and J. M. Vukovich (2005), Development of a United States-Mexico
emissions inventory for the Big Bend Regional Aerosol and Visibility Observational
(BRAVO) study, J. Air Waste Manag. Assoc. 1995, 55(5), 677-692.

Lapina, K., D. K. Henze, J. B. Milford, and K. Travis (2016), Impacts of foreign, domestic, and
state-level emissions on ozone-induced vegetation loss in the United States, Environ. Sci.
Technol., 50(2), 806-813, doi:10.1021/acs.est.5b04887.

Leibensperger, E. M., L. J. Mickley, D. J. Jacob, W.-T. Chen, J. H. Seinfeld, A. Nenes, P. J.
Adams, D. G. Streets, N. Kumar, and D. Rind (2012), Climatic effects of 1950-2050
changes in US anthropogenic aerosols - Part 1: Aerosol trends and radiative forcing,
Atmos. Chem. Phys., 12(7), 3333-3348, doi:10.5194/acp-12-3333-2012.

Lelieveld, J., J. S. Evans, M. Fnais, D. Giannadaki, and A. Pozzer (2015), The contribution of
outdoor air pollution sources to premature mortality on a global scale, Nature, 525(7569),
367-371, doi:10.1038/naturel5371.

Lemieux, P. M., C. C. Lutes, and D. A. Santoianni (2004), Emissions of organic air toxics from
open burning: a comprehensive review, Prog. Energy Combust. Sci., 30(1), 1-32,
doi: 10. 1016/j.pecs.2003.08.001.

Lesser, V. M., J. 0. Rawlings, S. E. Spruill, and M. C. Somerville (1990), Ozone effects on
agricultural crops: statistical methodologies and estimated dose-response relationships,
Crop Sci., 30(1), 148-155, doi:10.2135/cropscil990.0011183X003000010033x.

Levy, H., L. W. Horowitz, M. D. Schwarzkopf, Y. Ming, J.-C. Golaz, V. Naik, and V.
Ramaswamy (2013), The roles of aerosol direct and indirect effects in past and future
climate change, J Geophys. Res. Atmos., 118(10), 4521-4532, doi:10.1002/jgrd.50192.

Li, M. et al. (2014), Mapping Asian anthropogenic emissions of non-methane volatile organic
compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14(11), 5617-5638,
doi: 10.5194/acp-14-5617-2014.

127



Liu, H., D. J. Jacob, I. Bey, and R. M. Yantosca (2001), Constraints from 2 0Pb and 7Be on wet
deposition and transport in a global three-dimensional chemical tracer model driven by
assimilated meteorological fields, J. Geophys. Res., 106(D 11), 12,109-12,128,
doi: 10.1029/2000JD900839.

Liu, P. S. K., R. Deng, K. A. Smith, L. R. Williams, J. T. Jayne, M. R. Canagaratna, K. Moore,
T. B. Onasch, D. R. Worsnop, and T. Deshler (2007), Transmission efficiency of an
aerodynamic focusing lens system: Comparison of model calculations and laboratory
measurements for the aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41(8),
721-733, doi:10.1080/02786820701422278.

Lloret, J., and I. Valiela (2016), Unprecedented decrease in deposition of nitrogen oxides over
North America: the relative effects of emission controls and prevailing air-mass
trajectories, Biogeochemistry, 129(1-2), 165-180, doi:10.1007/si0533-016-0225-5.

Lombardozzi, D., J. P. Sparks, G. Bonan, and S. Levis (2012), Ozone exposure causes a
decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal
conductance model, Oecologia, 169(3), 651-659, doi: 10.1007/s00442-011-2242-3.

Mao, J., F. Paulot, D. J. Jacob, R. C. Cohen, J. D. Crounse, P. 0. Wennberg, C. A. Keller, R. C.
Hudman, M. P. Barkley, and L. W. Horowitz (2013), Ozone and organic nitrates over the
eastern United States: sensitivity to isoprene chemistry, J. Geophys. Res. Atmos., 118(19),
2013JD020231, doi:10.1002/jgrd.50817.

Mari, C., D. J. Jacob, and P. Bechtold (2000), Transport and scavenging of soluble gases in a
deep convective cloud, J. Geophys. Res., 105(D17), 22,255-22,267,
doi: 10. 1029/2000JD90021 1.

Massad, R.-S., E. Nemitz, and M. A. Sutton (2010), Review and parameterisation of bi-
directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem.
Phys., 10(21), 10359-10386, doi:10.5194/acp-10-10359-2010.

Matsui, T., A. Beltrain-Przekurat, D. Niyogi, R. A. Pielke, and M. Coughenour (2008), Aerosol
light scattering effect on terrestrial plant productivity and energy fluxes over the eastern
United States, J. Geophys. Res. Atmos., 113(D 14), D14S 14, doi:10.1029/2007JD009658.

Mercado, L. M., N. Bellouin, S. Sitch, 0. Boucher, C. Huntingford, M. Wild, and P. M. Cox
(2009), Impact of changes in diffuse radiation on the global land carbon sink, Nature,
458(7241), 1014-1017, doi:10.1038/nature07949.

Mills, G., A. Buse, B. Gimeno, V. Bermejo, M. Holland, L. Emberson, and H. Pleijel (2007), A
synthesis of AOT40-based response functions and critical levels of ozone for agricultural
and horticultural crops, Atmos. Environ., 41(12), 2630-2643,
doi:10.1016/j.atmosenv.2006.11.016.

Mozurkewich, M. (1993), The dissociation constant of ammonium nitrate and its dependence on
temperature, relative humidity and particle size, Atmos. Environ. A-Gen., 27(2), 261-270,
doi: 10.1016/0960-1686(93)90356-4.

Murray, L. T., D. J. Jacob, J. A. Logan, R. C. Hudman, and W. J. Koshak (2012), Optimized
regional and interannual variability of lightning in a global chemical transport model
constrained by LIS/OTD satellite data, J. Geophys. Res., 117, D20307,
doi: 10.1029/2012JDO 17934.

Myriokefalitakis, S., K. Tsigaridis, N. Mihalopoulos, J. Sciare, A. Nenes, K. Kawamura, A.
Segers, and M. Kanakidou (2011), In-cloud oxalate formation in the global troposphere:

128



A 3-D modeling study, Atmos. Chem. Phys., 11(12), 5761-5782, doi:10.5194/acp-11-
5761-2011.

Neuman, J. A., et al. (2002), Fast-response airborne in situ measurements of HNO 3 during the
Texas 2000 Air Quality Study, J. Geophys. Res., 107(D20), 4436,
doi: 10. 1029/2001JD001437.

Neuman, J. A., et al. (2003), Variability in ammonium nitrate formation and nitric acid depletion
with altitude and location over California, J Geophys. Res., 108(D17), 4557,
doi: 10. 1029/2003JD003616.

Nowak, J.B., J.A. Neuman, K.Kozai, L.G.Huey, D. J. Tanner, J. S.Holloway, T.B.Ryerson,G. J.
Frost, S.A.McKeen, and F.C. Fehsenfeld (2007), A chemical ionization mass
spectrometry technique for airborne measurements of ammonia, J. Geophys. Res., 112,
D1OSO2, doi:10.1029/2006JD007589.

Nowak, J. B., J. A. Neuman, R. Bahreini, C. A. Brock, A. M. Middlebrook, A. G. Wollny, J. S.
Holloway, J. Peischl, T. B. Ryerson, and F. C. Fehsenfeld (2010), Airborne observations
of ammonia and ammonium nitrate formation over Houston, Texas, J. Geophys. Res.,
115(D22), doi:10.1029/2010JD014195.

Nowak, J. B., J. A. Neuman, R. Bahreini, A. M. Middlebrook, J. S. Holloway, S. A. McKeen, D.
D. Parrish, T. B. Ryerson, and M. Trainer (2012), Ammonia sources in the California
South Coast Air Basin and their impact on ammonium nitrate formation, Geophys. Res.
Lett., 39, L07804, doi:10.1029/2012GL051197.

OECD (2012), OECD Environmental Outlook to 2050, Organisation for Economic Co-operation
and Development, Paris.

Park, R. J., D. J. Jacob, M. Chin, and R. V. Martin (2003), Sources of carbonaceous aerosols
over the United States and implications for natural visibility, J. Geophys. Res. Atmos.,
108(D 12), 4355, doi:10.1029/2002JD003190.

Park, R. J., D. J. Jacob, B. D. Field, R. M. Yantosca, and M. Chin (2004), Natural and
transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United
States: Implications for policy, J. Geophys. Res., 109, D15204,
doi: 10.1 029/2003JD004473.

Paulot, F., and D. J. Jacob (2014), Hidden cost of U.S. agricultural exports: particulate matter
from ammonia emissions, Environ. Sci. Technol., 48(2), 903-908,
doi: 10.102 1/es4034793.

Paulot, F., D. J. Jacob, R. W. Pinder, J. 0. Bash, K. Travis, and D. K. Henze (2014), Ammonia
emissions in the United States, European Union, and China derived by high-resolution
inversion of ammonium wet deposition data: Interpretation with a new agricultural
emissions inventory (MASAGE NH3), J. Geophys. Res. Atmos., 119(7), 4343-4364,
doi: 10.1002/2013JD021130.

Paulot, F., P. Ginoux, W. F. Cooke, L. J. Donner, S. Fan, M.-Y. Lin, J. Mao, V. Naik, and L. W.
Horowitz (2016), Sensitivity of nitrate aerosols to ammonia emissions and to nitrate
chemistry: implications for present and future nitrate optical depth, Atmos. Chem. Phys.,
16(3), 1459-1477, doi:10.5194/acp-16-1459-2016.

Pawar, H., S. Garg, V. Kumar, H. Sachan, R. Arya, C. Sarkar, B. P. Chandra, and B. Sinha
(2015), Quantifying the contribution of long-range transport to particulate matter (PM)

129



mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP),
Atmos. Chem. Phys., 15(16), 9501-9520, doi:10.5194/acp-15-9501-2015.

Peel, D. (2012), Current Economic Climate of the Beef Cattle Industry, Combelt Cow-Calf Conf.
Pinder, R. W., R. Strader, C. I. Davidson, and P. J. Adams (2004), A temporally and spatially

resolved ammonia emission inventory for dairy cows in the United States, Atmos.
Environ., 38(23), 3747-3756, doi:10.1016/j.atmosenv.2004.04.008.

Pinder, R. W., P. J. Adams, S. N. Pandis, and A. B. Gilliland (2006a), Temporally resolved
ammonia emission inventories: Current estimates, evaluation tools, and measurement
needs, J. Geophys. Res., 111, D16310, doi:10.1029/2005JD006603.

Pinder, R. W., P. J. Adams, and S. N. Pandis (2006b), Ammonia emission controls as a cost-
effective strategy for reducing atmospheric particulate matter in the Eastern United
States, Env. Sci. Technol., 41(2), 380-386, doi:10.1021/es060379a.

Pinder, R. W., K. W. Appel, and R. L. Dennis (2011), Trends in atmospheric reactive nitrogen
for the Eastern United States, Environ. Pollut., 159(10), 3138-3141,
doi:10.1016/j.envpol.2011.04.042.

Pleim, J. E., J. 0. Bash, J. T. Walker, and E. J. Cooter (2013), Development and evaluation of an
ammonia bidirectional flux parameterization for air quality models, J. Geophys. Res.
Atmos., 118(9), 3794-3806, doi:10.1002/jgrd.50262.

Pollack, I. B., B. M. Lerner, and T. B. Ryerson (2010), Evaluation of ultraviolet light-emitting
diodes for detection of atmospheric NO 2 by photolysis-chemiluminescence, J. Atmos.
Chem., 65(2-3), 111-125, doi:10.1007/s10874-01l-9184-3.

Pope, C. A., M. Ezzati, and D. W. Dockery (2009), Fine-particulate air pollution and life
expectancy in the United States, New Engl. J. Med., 360(4), 376-386,
doi: 10. 1056/NEJMsaO8O5646.

Portmann, F. T., S. Siebert, and P. D611 (2010), MIRCA2000-Global monthly irrigated and
rainfed crop areas around the year 2000: a new high-resolution data set for agricultural
and hydrological modeling, Glob. Biogeochem. Cycles, 24(1), GB 1011,
doi: 10. 1029/2008GB003435.

Puchalski, M. A., M. E. Sather, J. T. Walker, C. M. B. Lehmann, D. A. Gay, J. Mathew, and W.
P. Robarge (2011), Passive ammonia monitoring in the United States: Comparing three
different sampling devices, J. Environ. Monit., 13(11), 3156-3167,
doi:10.1039/C1EM10553A.

Pye, H. 0. T., H. Liao, S. Wu, L. J. Mickley, D. J. Jacob, D. K. Henze, and J. H. Seinfeld (2009),
Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol
levels in the United States, J. Geophys. Res., 114, D01205, doi:10.1029/2008JD010701.

Qi, M., K. Lin, X. Li, T. W. Sammis, D. R. Miller, and J. Wang (2015), Particulate matter
contributions from agricultural tilling operations in an irrigated desert region, PLOS
ONE, 10(9), e0138577, doi:10.1371/joumal.pone.0138577.

Rastigejev, Y., R. Park, M. P. Brenner, and D. J. Jacob (2010), Resolving intercontinental
pollution plumes in global models of atmospheric transport, J. Geophys. Res., 115,
D02302, doi:10.1029/2009JD012568.

Rienecker, M. M. et al. (2011), MERRA: NASA's Modern-Era Retrospective Analysis for
Research and Applications, J. Clim., 24(14), 3624-3648, doi:10.1 175/JCLI-D-11-
00015.1.

130



Ritchie, J.T., U. Singh, D.C. Godwin, and W.T. Bowen (1998), Cereal growth, development and
yield. In: Tsuji, G.Y., Hoogenboom, G., Thornton, P.K. (Eds.), Understanding Options
for Agricultural Production. Kluwer Academic Publishers, Dordrecht, Netherlands.

Rochette, P., R. L. Desjardins, E. Pattey, and R. Lessard (1996), Instantaneous measurement of
radiation and water use efficiencies of a maize crop, Agron. J., 88(4), 627,
doi: 10.2134/agronj 1996.00021962008800040022x.

Rosenzweig, C. et al. (2013), The Agricultural Model Intercomparison and Improvement Project
(AgMIP): protocols and pilot studies, Agric. For. Meteorol., 170, 166-182,
doi:10.1016/j.agrformet.2012.09.011.

Rosenzweig, C. et al. (2014), Assessing agricultural risks of climate change in the 21st century in
a global gridded crop model intercomparison, Proc. Natl. Acad. Sci., 111(9), 3268-3273,
doi:10.1073/pnas.1222463110.

Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos (2015), Climate forcing datasets for
agricultural modeling: merged products for gap-filling and historical climate series
estimation, Agric. For. Meteorol., 200, 233-248, doi:10. 101 6/j.agrformet.2014.09.016.

Russell, A. G., G. J. McRae, and G. R. Cass (1983), Mathematical modeling of the formation and
transport of ammonium nitrate aerosol, Atmos. Environ., 17(5), 949-964,
doi: 10.1016/0004-6981(83)90247-0.

Russell, A. G., and G. R. Cass (1986), Verification of a mathematical model for aerosol nitrate
and nitric acid formation and its use for control measure evaluation, Atmos. Environ.,
20(10), 2011-2025, doi:10.1016/0004-6981(86)90342-2.

Russell, A. R., L. C. Valin, and R. C. Cohen (2012), Trends in OMI N02 observations over the
United States: effects of emission control technology and the economic recession, Atmos.
Chem. Phys., 12(24), 12,197-12,209, doi:10.5194/acp-12-12197-2012.

Ryerson, T. B., et al. (1998), Emissions lifetimes and ozone formation in power plant plumes, J.
Geophys. Res., 103(D17), 22,569-22,583, doi:10.1029/98JD01620.

Ryerson, T. B., E. J. Williams, and F. C. Fehsenfeld (2000), An efficient photolysis system for
fast-response NO 2 measurements, J. Geophys. Res., 105(D21), 26,447-26,461,
doi: 10. 1029/2000JD900389.

Ryerson, T. B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and
Climate Change (CalNex) field study, J. Geophys. Res. A tmos., 118, 5830-5866,
doi: 10. 1002/jgrd.50331.

Sacks, W. J., D. Deryng, J. A. Foley, and N. Ramankutty (2010), Crop planting dates: an
analysis of global patterns, Glob. Ecol. Biogeogr., 19(5), 607-620, doi:10. 1111/j.1466-
8238.2010.00551.x.

Schiferl, L. D. and C. L. Heald, The impact of ozone and particulate matter air pollution on
global crop production, in prep.

Schiferl, L. D., C. L. Heald, J. B. Nowak, J. S. Holloway, J. A. Neuman, R. Bahreini, I. B.
Pollack, T. B. Ryerson, C. Wiedinmyer, and J. G. Murphy (2014), An investigation of
ammonia and inorganic particulate matter in California during the CalNex campaign, J.
Geophys. Res. Atmos., 119(4), 2013JD020765, doi: 10.1002/2013JD020765.

Schiferl, L. D. et al. (2016), Interannual variability of ammonia concentrations over the United
States: sources and implications, Atmos. Chem. Phys., 16(18), 12305-12328,
doi: 10.5194/acp-16-12305-2016.

131



Seinfeld, J. H., and S. N. Pandis (2006), Atmospheric Chemistry and Physics - From Air
Pollution to Climate Change, 2nd ed., John Wiley, Hoboken, N. J.

Shangguan, W., Y. Dai, Q. Duan, B. Liu, and H. Yuan (2014), A global soil data set for earth
system modeling, J. Adv. Model. Earth Syst., 6(1), 249-263,
doi: 10.1002/2013MS000293.

Shephard, M. W., and K. E. Cady-Pereira (2015), Cross-track Infrared Sounder (CrIS) satellite
observations of tropospheric ammonia, Atmos. Meas. Tech., 8(3), 1323-1336,
doi: 10.5194/amt-8-1323-2015.

Shephard, M. W. et al. (2011), TES ammonia retrieval strategy and global observations of the
spatial and seasonal variability of ammonia, Atmos. Chem. Phys., 11(20), 10743-10763,
doi:10.5194/acp-1 1-10743-2011.

Sherwen, T. et al. (2016), Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and
composition in GEOS-Chem, Atmos. Chem. Phys., 16(18), 12239-1227 1,
doi: 10.5194/acp-16-12239-2016.

Shindell, D., G. Faluvegi, M. Walsh, S. C. Anenberg, R. Van Dingenen, N. Z. Muller, J. Austin,
D. Koch, and G. Milly (2011), Climate, health, agricultural and economic impacts of
tighter vehicle-emission standards, Nat. Clim. Change, 1(1), 59-66,
doi: 10.1038/nclimate1066.

Sinclair, T. R., T. Shiraiwa, and G. L. Hammer (1992), Variation in crop radiation use efficiency
with increased diffuse radiation, Crop Sci., 32(5), 1281,
doi:10.2135/cropscil992.0011183X003200050043x.

Sinha, B., K. Singh Sangwan, Y. Maurya, V. Kumar, C. Sarkar, B. P. Chandra, and V. Sinha
(2015), Assessment of crop yield losses in Punjab and Haryana using 2 years of
continuous in situ ozone measurements, Atmos. Chem. Phys., 15(16), 9555-9576,
doi: 10.5194/acp-15-9555-2015.

Sitch, S., P. M. Cox, W. J. Collins, and C. Huntingford (2007), Indirect radiative forcing of
climate change through ozone effects on the land-carbon sink, Nature, 448(7155), 791-
794, doi: 10.103 8/nature06059.

Sogaard, H. T., S. G. Sommer, N. J. Hutchings, J. F. M. Huijsmans, D. W. Bussink, and F.
Nicholson (2002), Ammonia volatilization from field-applied animal slurry-the
ALFAM model, Atmos. Environ., 36(20), 3309-3319, doi:10.1016/S1352-
2310(02)00300-X.

State of California (2012), Interim population projections for California and its counties 2010-
2050, Department of Finance.

Steiner, A. L., S. Tonse, R. C. Cohen, A. H. Goldstein, and R. A. Harley (2006), Influence of
future climate and emissions on regional air quality in California, J. Geophys. Res., 111,
D18303, doi:10.1029/2005JD006935.

Strada, S., and N. Unger (2016), Potential sensitivity of photosynthesis and isoprene emission to
direct radiative effects of atmospheric aerosol pollution, Atmos. Chem. Phys., 16(7),
4213-4234, doi:10.5194/acp-16-4213-2016.

Strada, S., N. Unger, and X. Yue (2015), Observed aerosol-induced radiative effect on plant
productivity in the eastern United States, Atmos. Environ., 122, 463-476,
doi: 10. 1016/j.atmosenv.2015.09.051.

132



Sutton, M. A., J. W. Erisman, F. Dentener, and D. M611er (2008), Ammonia in the environment:
From ancient times to the present, Environ. Pollut., 156(3), 583-604,
doi: 10.1016/j.envpol.2008.03.013.

Tai, A. P. K., M. V. Martin, and C. L. Heald (2014), Threat to future global food security from
climate change and ozone air pollution, Nat. Clim. Change, 4(9), 817-821,
doi: 10.1038/nclimate2317.

Tan, Z., and Y. Zhang (2004), A review of effects and control methods of particulate matter in
animal indoor environments, J. Air Waste Manag. Assoc., 54(7), 845-854,
doi: 10.1080/10473289.2004.10470950.

Travis, K. R. et al. (2016), Why do models overestimate surface ozone in the Southeast United
States?, Atmos. Chem. Phys., 16(21), 13561-13577, doi:10.5194/acp-16-13561-2016.

Travis, K. R., D. J. Jacob, C. A. Keller, S. Kuang, J. Lin, M. J. Newchurch, and A. M. Thompson
(2017), Resolving ozone vertical gradients in air quality models, Atmos. Chem. Phys.
Discuss, 2017, 1-18, doi:10.5194/acp-2017-596.

United Nations, Department of Economic and Social Affairs, Population Division (2017), World
population prospects: the 2017 revision.

US Environmental Protection Agency (2015), 2011 National Emissions Inventory data, Version
2. Retrieved from http://www3.epa.gov/ttnchiel/net/2011inventory.html.

Van Damme, M., L. Clarisse, C. L. Heald, D. Hurtmans, Y. Ngadi, C. Clerbaux, A. J. Dolman, J.
W. Erisman, and P. F. Coheur (2014a), Global distributions, time series and error
characterization of atmospheric ammonia (NH3) from IASI satellite observations, Atmos.
Chem. Phys., 14(6), 2905-2922, doi: 10.5194/acp-14-2905-2014.

Van Damme, M., R. J. Wichink Kruit, M. Schaap, L. Clarisse, C. Clerbaux, P.-F. Coheur, E.
Dammers, A. J. Dolman, and J. W. Erisman (2014b), Evaluating 4 years of atmospheric
ammonia (NH 3) over Europe using IASI satellite observations and LOTOS-EUROS
model results, J Geophys. Res. Atmos., 119(15), 9549-9566,
doi:10.1002/2014JD02191 1.

Van Damme, M. et al. (2015a), Towards validation of ammonia (NH3) measurements from the
IASI satellite, Atmos. Meas. Tech., 8(3), 1575-1591, doi:10.5194/amt-8-1575-2015.

Van Damme, M., J. W. Erisman, L. Clarisse, E. Dammers, S. Whitburn, C. Clerbaux, A. J.
Dolman, and P.-F. Coheur (2015b), Worldwide spatiotemporal atmospheric ammonia
(NH3) columns variability revealed by satellite, Geophys. Res. Lett., 42(20),
2015GL065496, doi: 10.1002/2015GL065496.

Van Dingenen, R., F. J. Dentener, F. Raes, M. C. Krol, L. Emberson, and J. Cofala (2009), The
global impact of ozone on agricultural crop yields under current and future air quality
legislation, Atmos. Environ., 43(3), 604-618, doi: 10.1016/j.atmosenv.2008.10.033.

Van Donkelaar, A., et al. (2008), Analysis of aircraft and satellite measurements from the
Intercontinental Chemical Transport Experiment (INTEX-B) to quantify long-range
transport of East Asian sulfur to Canada, Atmos. Chem. Phys., 8(11), 2999-3014,
doi: 10.5194/acp-8-2999-2008.

Velthof, G. L., C. van Bruggen, C. M. Groenestein, B. J. de Haan, M. W. Hoogeveen, and J. F.
M. Huijsmans (2012), A model for inventory of ammonia emissions from agriculture in
the Netherlands, Atmos. Environ., 46, 248-255, doi:10.1016/j.atmosenv.2011.09.075.

Vingarzan, R. (2004), A review of surface ozone background levels and trends, Atmos. Environ.,
38(21), 3431-3442, doi:10.1016/j.atmosenv.2004.03.030.

133



Von Bobrutzki, K., et al. (2010), Field inter-comparison of eleven atmospheric ammonia
measurement techniques, Atmos. Meas. Tech., 3(1), 91-112, doi: 10.5194/amt-3-91-2010.

Walker, J. M., S. Philip, R. V. Martin, and J. H. Seinfeld (2012), Simulation of nitrate, sulfate,
and ammonium aerosols over the United States, A tmos. Chem. Phys., 12(22), 11,213-
11,227, doi:10.5194/acp-12-11213-2012.

Wang, X. et al. (2012), Effects of elevated 03 concentration on winter wheat and rice yields in
the Yangtze River Delta, China, Environ. Pollut., 171, 118-125,
doi: 10.1016/j.envpol.2012.07.028.

Wang, Y., D. J. Jacob, and J. A. Logan (1998), Global simulation of tropospheric 03-NOx -
hydrocarbon chemistry: 3. Origin of tropospheric ozone and effects of nonmethane
hydrocarbons, J. Geophys. Res. Atmos., 103(D9), 10757-10767, doi:10.1029/98JD00156.

Wang, Y. X., M. B. McElroy, D. J. Jacob, and R. M. Yantosca (2004), A nested grid formulation
for chemical transport over Asia: Applications to CO, J. Geophys. Res., 109, D22307,
doi: 10.1029/2004JD005237.

Warner, J. X., Z. Wei, L. L. Strow, R. R. Dickerson, and J. B. Nowak (2016), The global
tropospheric ammonia distribution as seen in the 13 year AIRS measurement record,
Atmos. Chem. Phys., 16(8), 5467-5479, doi: 10.5194/acp- 16-5467-2016.

van der Werf, G. R. et al. (2017), Global fire emissions estimates during 1997-2015, Earth Syst.
Sci. Data Discuss., 1-43, doi:https://doi.org/10.5194/essd-2016-62.

Wesely, M. L. (1989), Parameterization of surface resistances to gaseous dry deposition in
regional-scale numerical models, Atmos. Environ., 23(6), 1293-1304, doi: 10.1016/0004-
6981(89)90153-4.

Whitburn, S., M. Van Damme, J. W. Kaiser, G. R. van der Werf, S. Turquety, D. Hurtmans, L.
Clarisse, C. Clerbaux, and P.-F. Coheur (2015), Ammonia emissions in tropical biomass
burning regions: Comparison between satellite-derived emissions and bottom-up fire
inventories, Atmos Environ., 121, 42-54, doi: 10.101 6/j.atmosenv.2015.03.015.

Wiedinmyer, C., and J. C. Neff (2007), Estimates of C02 from fires in the United States:
Implications for carbon management, Carbon Balance Manage., 2(1), 10,
doi:10. 1186/1750-0680-2-10.

Wiedinmyer,C., S. K.Akagi, R. J. Yokelson, L. K. Emmons, J.A.Al-Saadi, J. J. Orlando, andA. J.
Soja (2011), The Fire INventory fromNCAR (FINN):A high resolution global model to
estimate the emissions from open burning, Geosci. Model Dev., 4(3), 625-641,
doi: 10.5194/gmd-4-625-2011.

Wilczak, J. M., and J. W. Glendening (1988), Observations and Mixed-Layer Modeling of a
Terrain-Induced Mesoscale Gyre: The Denver Cyclone, Mon. Weather Rev., 116(12),
2688-2711, doi:10.1175/1520-0493(1988)116<2688:OAMLMO>2.0.CO;2.

Wilkinson, S., G. Mills, R. Illidge, and W. J. Davies (2011), How is ozone pollution reducing our
food supply?, J. Exp. Bot., err317, doi:10.1093/jxb/err317.

Wu, S., L. J. Mickley, J. 0. Kaplan, and D. J. Jacob (2012), Impacts of changes in land use and
land cover on atmospheric chemistry and air quality over the 21st century, A tmos. Chem.
Phys., 12(3), 1597-1609, doi:10.5194/acp-12-1597-2012.

Yevich, R., and J. A. Logan (2003), An assessment of biofuel use and burning of agricultural
waste in the developing world, Glob. Biogeochem. Cycles, 17, 40 PP.,
doi:200310.1029/2002GB00 1952.

134



You, L., et al. (2000) Spatial Production Allocation Model (SPAM) 2000 Version 3 Release 1.
http://MapSPAM.info. (Accessed Feb, 2012).

Yue, X., and N. Unger (2014), Ozone vegetation damage effects on gross primary productivity in
the United States, Atmos. Chem. Phys., 14(17), 9137-9153, doi: 10.5194/acp-14-9137-
2014.

Yue, X., N. Unger, K. Harper, X. Xia, H. Liao, T. Zhu, J. Xiao, Z. Feng, and J. Li (2017), Ozone
and haze pollution weakens net primary productivity in China, Atmos. Chem. Phys.,
17(9), 6073-6089, doi:10.5194/acp-17-6073-2017.

Zhang, L., L. P. Wright, and W. A. H. Asman (2010), Bi-directional air-surface exchange of
atmospheric ammonia: A review of measurements and a development of a big-leaf model
for applications in regional-scale air-quality models, J. Geophys. Res., 11 5(D20),
doi:10.1029/2009JD013589.

Zhang, L., D. J. Jacob, E. M. Knipping, N. Kumar, J. W. Munger, C. C. Carouge,A.
vanDonkelaar, Y. X.Wang, andD. Chen (2012), Nitrogen deposition to the United States:
Distribution, sources, and processes, Atmos. Chem. Phys., 12(10), 4539-4554,
doi: 10.5194/acp-12-4539-2012.

Zhu, L., D. K. Henze, K. E. Cady-Pereira, M. W. Shephard, M. Luo, R. W. Pinder, J. 0. Bash,
and G.-R. Jeong (2013), Constraining U.S. ammonia emissions using TES remote sensing
observations and the GEOS-Chem adjoint model, J. Geophys. Res. Atmos., 118(8), 3355-
3368, doi:10.1002/jgrd.50166.

Zhu, L., D. Henze, J. Bash, G.-R. Jeong, K. Cady-Pereira, M. Shephard, M. Luo, F. Paulot, and
S. Capps (2015), Global evaluation of ammonia bidirectional exchange and livestock
diurnal variation schemes, Atmos. Chem. Phys., 15(22), 12823-12843, doi: 10.5194/acp-
15-12823-2015.

135




