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Abstract

The concept of shared mobility-on-demand (MoD) systems describes an innovative mode of
transportation in which rides are tailored as per the immediate requests in a shared manner.
Convenience of hailing, ease of transactions, and economic efficiency of crowd-sourcing the
rides have made these services very attractive today. It is anticipated that autonomous
vehicle (AV) technology may further improve the economics of such services by reducing
the operational costs. The design and operation of such an shared autonomous mobility-on-
demand (AMoD) system is therefore an important research direction that requires significant
investigation.

This thesis mainly addresses three issues revolving around the dispatching strategies of
shared AMoD systems. First, it responds to the special dispatching need that is critical for
effective AMoD operation. This includes a dynamic request-vehicle assignment heuristic and
an optimal rebalancing policy. In addition, the dispatching strategies also reflect transit-
oriented designs in two ways: (a) the objective function embodies the considerations of
service availability and equity through the support of various hailing policies; and (b),
the service facilitates first-mile connections to public transportation. Second, this thesis
models the interaction between demand and supply through simulation. Using the level of
service as interface, this mechanism enables feedback between operators and travelers to
more closely represent the choices of both parties. A fixed-point approach is then applied to
reach balance iteratively, estimating both the demand volume and the system performance
at equilibrium. The results from the simulation support decision-making with regard to
comprehensive system design problems such as fleet sizing, vehicle capacities and hailing
policies. Third, the thesis evaluates the value of demand information through simulation
experiments. To quantify the system performance gain that can be derived from the demand
information, this thesis proposes to study two dimensions, level of information and value
of information, and builds up the relationship between them. The numerical results help
rationalize the efforts operators should spend on data collection, information inference and
advanced dispatching algorithms.

This thesis also implements an agent-based modeling platform, amod-abm, for simulat-
ing large-scale shared AMoD applications. Specifically, it models individual travelers and
vehicles with demand-supply interaction and analyzes system performance through various
metrics of indicators. This includes wait time, travel time, detour factor and service rate at
the traveler's side, as well as vehicle distance traveled, load and profit at the operator's side.
A case study area in London is selected to support the presentation of methodology. Results
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show that encouraging ride-sharing and allowing in-advance requests are powerful tools to
enhance service efficiency and equity. Demand information from in-advance requests also
enables the operator to plan service ahead of time, which leads to better performance and
higher profit.

The thesis concludes that the demand-supply interaction can be effective for defining
and assessing the roles of AV technology in our future transportation systems. Combining
efficient dispatching strategies and demand information management tools is also important
for more affordable and efficient services.

Thesis Supervisor: Jinhua Zhao
Title: Associate Professor of City and Transportation Planning

Thesis Supervisor: Neema Nassir
Title: Senior Postdoctoral Associate of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Research Questions

We are seeing three emerging trends in the field of urban transportation: mobility on de-

mand, sharing and autonomous vehicles. The concept of mobility-on-demand (MoD) sys-

tems describes an innovative mode of transportation in which services are tailored as per the

immediate requests. In many applications, non-commercial vehicles from the independent

drivers are used and the MoD service providers only operate an online-enabled platform to

pair requests with drivers for compensation. Despite many of the debates with regards to

regulation and societal impact, getting private vehicles shared ("ride-sourcing") in an on-

demand manner does improve the availability of service and enable more affordable trips.

In addition, sharing also takes the form of ride-sharing, which makes a way to better utilize

the empty seats and therefore reduces the cost per traveler even further. In this thesis, we

refer to an MoD system as "shared MoD" only when ride-sharing is enabled1 .

Researchers have been seeking solutions to optimize the design and operation of MoD

and shared MoD systems. The efforts have led to system design evaluation [1, 2, 3, 4, 5, 61,

advanced dispatching algorithms [7, 8, 9], demand prediction tools [10, 11], dynamic pricing

[12, 13], and the pursuit of full autonomy. Powered by the autonomous vehicles (AV) tech-

nologies, the conceptual shared autonomous mobility-on-demand (AMoD) systems represent

the potentially disruptive and innovative changes to urban transportation in the future. The

'Some papers use "shared" for vehicle-sharing (e.g. in car-rental systems and taxi-like hailing systems).
In the sense of vehicle-sharing, "shared system" is the opposite to personal trips based on traveler's private
car ownership. In this thesis, in order to avoid confusion, we do not adopt this definition. Moreover, "MoD
system" itself implies the sharing of vehicles by nature.
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design and operation of such a system is therefore an important research direction that re-

quires significant investigation.

The core research questions for this thesis revolve around the dispatching strategies of

shared AMoD systems. Based on the defined dispatching methodology, topics such as system

design and value of information will also be expanded upon. Collectively, the contribution

of this thesis is therefore threefold:

" It addresses the special dispatching need that is critical for effective AMoD operation.

This includes a dynamic request-vehicle assignment heuristic for pairing rides on the fly

and an optimal rebalancing policy to offset the imbalance between vehicle supply and

travel demand. In order to align with the goals for sustainable and integrated urban

mobility, the dispatching strategies also reflect transit-oriented designs in two ways.

First, the objective function embodies the considerations of service availability and

equity through the support of various hailing policies. Second, the service facilitates

first-mile connections to public transportation (PT). Dispatching strategies are also

customized to deal with the time constraints accordingly.

" It models the interaction between demand and supply through simulation. Using the

level of service as interface, this mechanism enables feedback between operators and

travelers to more closely represent the choices of both parties. A fixed-point approach is

then applied to reach balance iteratively, estimating both the demand volume and the

system performance at equilibrium. The results from the simulation support decision-

making with regard to comprehensive system design problems such as fleet sizing,

vehicle capacities, fare schemes and hailing policies.

" It evaluates the value of demand information through simulation experiments. The

different levels of knowledge of demand reflect the uncertainty operators face in col-

lecting travel data, predicting future demand and dispatching vehicles in response to

it. To understand the value of information, this part of research quantifies the system

performance gain that can be derived from the demand information, thus helps ratio-

nalize the efforts operators should spend on data collection, information inference and

advanced dispatching algorithms. It eventually contributes to the long-term goal of

designing and managing information flow for shared AMoD systems.

This thesis also proposes an agent-based modeling platform, amod-abm, for simulating large-
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scale shared AMoD applications [14]. Agent-based framework has been popular in AMoD

research for its advantages in capturing individual behaviors, enabling dynamic operations

and accounting for stochasticity. The amod-abm platform, specifically, models individual

travelers and vehicles with demand-supply interaction and analyzes system performance

through a metrics of indicators. This includes wait time, travel time, detour and service

rate at the traveler's side, as well as vehicle distance traveled, load and profit at the operator's

side. A case study area in London is selected in this thesis to support the presentation of

methodology, although the general simulation-based framework can be applied to a variety

of urban settings with different operational objectives.

1.2 Organization

The remainder of the thesis is structured as follows.

Chapter 2 reviews some of the most relevant works in the literature and identifies the

research areas to which we can contribute. It begins with a presentation of the state-of-the-

art large-scale agent-based simulations. The discussion on dynamic dispatching strategies

follows, in which existing studies on assignment, rebalancing and integrated AV+PT systems

are examined. Chapter 2 also presents applications to information theory to support the

research on value of information.

Chapter 3 proposes a demand-supply interaction mechanism for AMoD systems and for-

mulates it as a fixed-point problem. Based on the agent-based simulation platform amod-abm,

iterative methods are applied to the problem to reach the system balance. This mechanism

also reflects the system design needs in operating the shared AMoD service in a real urban

setting, for which the case study area of Orpington, London comes in.

Chapter 4 responds to each of the technological challenges in dispatching shared AMoD

systems. Request-vehicle assignment, as a variant of the vehicle routing problem, is solved

using insertion heuristics and simulated annealing. As for rebalancing, both network-based

optimization approach and reinforcement learning approach are presented and compared

with each other. The transit-oriented considerations are discussed in the end.

Chapter 5 applies the proposed methodology to the case study and makes recommen-

dations to system design decisions. Decision variables here include hailing policy, fleet size

and vehicle capacity and preference to service. A subset of scenarios with ranging variables
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are deliberately selected for our simulation experiments in order to test the viability of the

proposed service in the area.

Chapter 6 presents the role demand information plays in conceptual AMoD systems and

connects it to dependent factors such as data collection, information inference and advanced

dispatching algorithms. It then proposes two dimensions, level of information and value of

information, and builds up the relationship between them through simulation experiments.

The results quantify the system performance gain that can be derived from aggregated and

individual demand information.

Chapter 7 draws the conclusion and points the directions to future works. It also presents

a careful rethink of the system design of the simulation platform.

1.3 Relation with Papers

The author also has two papers that are closely related to this research.

The content in Chapter 3 and Chapter 5 is based on the paper "Transit-Oriented Au-

tonomous Vehicle Operation with Integrated Demand-Supply Interaction" by Jian Wen, Yu

Xin Chen, Neema Nassir and Jinhua Zhao [15]. This paper is currently under review at

Transportation Research Part C.

The content in Section 4.2 is based on the paper "Rebalancing Shared Mobility-on-

Demand Systems: a Reinforcement Learning Approach" by Jian Wen, Jinhua Zhao and

Patrick Jaillet [161. This paper has been published in the conference proceedings of IEEE

ITSC 2017 International Conference on Intelligent Transportation.
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Chapter 2

Literature Review

2.1 AMoD Simulation

Spieser et al. [171 are among the first to conceptualize the AMoD system as an enabling

technology for future urban mobility. Based on the analytical models and actual data,

they prove that ideally the total number of vehicles in Singapore could be reduced to one

third, assuming all modes of personal transportation are replaced by non-shared AMoD

service. They also argue that AMoD reduces the trip cost by half since it eliminates the

time consumed for active driving, parking and maintenance in the case of a private vehicle

ownership.

Agent-based simulation has recently become popular in AMoD research for its advan-

tages in capturing individual behaviors, enabling dynamic operations and accounting for

stochasticity. It also provides analytical tools for evaluating the performance of the defined

systems. The successive works by Fagnant and Kockelman are representative for agent-based

simulation applications, in which issues such as dynamic ride-sharing, fleet sizing and oper-

ational costs have been discussed using a case study in Austin [18, 191. Similar simulation

frameworks could also be found in the applications in Lisbon [4, 5], Shanghai [6], Singapore

[3, 7], Seoul [8] and New York [9]. As shown in Table 2.1, the scale and scope of research

are being expanded gradually to include fleet management problems, emissions and energy

consumptions, and implications on city-level traffic.

Under simplifications with regard to both supply and demand, the aforementioned re-

search papers are able to demonstrate the potential productivity of AMoD systems. On the

supply side, early works often assume station-based system. By discretizing the decision

17



Table 2.1: Large-scale Agent-based Simulation Applications in Literature

Assumptions

Paper Study Area Supply Demand Dispatching Research Questions

Assignment Rebalancing

fleet size, system performance,
[18] gridded map AMoD random trips nearest block balance emission, e er omption

emissions, energy consumption

[19( Austin ao d 2%-10% of all trips nearest block balance fleet size, system performance
(station-based)

[41 Lisbon Shared MoD all taxi trips insertion fleet size, vehicle capacity,
(station-based) heuristics system performance, cost

[5] Lisbon Shared AMoD mode choice model insertion fleet size, system performance,
(station-based) heuristics modal shift, emissions

[6] hanhai AMoD
[6 Shanghai ao ) all taxi trips nearest block balance system performance, charging strategy

(station-based)

[3] Singapore AMoD car trips in CBD nearest / fleet size, system performance

[7] Singapore A~Dcar trips in CBD nearest otml fleet size, system performance
(station-based) (online/offline)

[8] Seoul Shared AMoD all taxi trips / fleet size, system performance
annealing

19] New York Shared AMoD all taxi trips optimal fleet size, vehicle capacity,
[ e Yr S (online) system performance

"Shared AMoD" follows the definition made in Section 1.1. It could be inconsistent with the definition used in the referred papers.



space, station-based systems reduce the complexity in dispatching and routing. They can

also take advantage of the existing studies in graph theories. The latest simulations are

gradually moving to free-floating system with door-to-door service. Dynamic ride-sharing

has been enabled as well. Some also assume using electronic autonomous vehicles (EAV).

In this case, the discussion on charging strategies comes high on the list of priorities.

On the demand side, most of the works only assume arbitrary shift from existing modes.

The work by Martinez and Viegas [5] is exceptional. They take time to investigate travel

behavior, include non-shared AV as a competing mode and build a nested Logit mode choice

model to predict its mode share. Similar method can also be found in [201, which concludes

that private AV will result in sharp decline in transit ridership and road congestion will

increase consequently. Childress et al. [21] use activity-based travel demand simulation and

reach the same conclusion. In response to the induced traffic, many researchers insist on the

necessity of ride-sharing. Dynamic pricing has also come into play. Chen and Kockelman

[22] and Qiu et al. [23] argue that, if shared AV is used instead of non-shared AV and

pricing strategies are designed deliberately, AMoD could capture significant market share

to be profitable without inducing extra vehicle miles traveled.

However, none of the existing papers has modeled the interaction between demand and

supply as traveler behavior changes in reaction to the system performance. Some assumes

private AV ownership [20, 21]. Others study AMoD systems, but their models still ignore

travelers' sensitivity to service availability and travel time [5]. Yap et al. [24] survey the

preference of travelers to AMoD systems. Based on the mode choice model, they successfully

estimate the sensitivity towards different services. However, the connection with supply is

still missing in the study. This thesis will address the identified issues with the motivation

of developing a systematic approach for demand prediction and system evaluation. The

proposed demand-supply interaction will be discussed in full details in Chapter 3.

2.2 Dispatching Strategies

2.2.1 Request-Vehicle Assignment

The assignment of requests to vehicles in real time is critical to the operation of AMoD

systems. When ride-sharing is not permitted in the system, simulations often use "nearest"

method, which assigns the nearest idle vehicle to the incoming request. If rides are shared,
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heuristic methods are often used to speed up the problem-solving. One example is the

"insertion heuristics", which "inserts" the new request to the job list of an available vehicle

while minimizing the total cost imposed on the entire system. Both nearest method and

insertion heuristics prevail in large-scale real-time applications for reasons combined with

low cost in computation and satisfactory accuracy in solutions.

Researchers are also looking for dynamic algorithms that give better solutions. Jung et al.

[8] propose a hybrid simulated annealing algorithm for dynamic request-vehicle assignment.

Alonso-Mora et al. [9] devise a more general mathematical model for optimal assignment

and use metaheuristics for solutions. The results show that ideally taxi fleet size in New

York City could be reduced by 75% when shared AV takes over. However, both dynamic

algorithms consume large amount of computational resource. It is proposed that when scale

is large, they should be used with limited frequency (e.g. every 10 to 30 seconds) and only

when computational capacity allows.

In this thesis, the insertion heuristics and the hybrid simulated annealing defined in [81

are implemented.

2.2.2 Rebalancing

The problem of rebalancing stems from the spatial and temporal mismatch between demand

and supply. Within the realm of urban transportation, the existing research works have been

largely focused on rebalancing car rental systems [25, 26] and public bike sharing systems

[27, 28]. Rebalancing AMoD, on the contrary, is a relatively new topic. Early AMoD

applications often adopt naive "block balance" approach, which balances the number of

vehicles in each block in an empirical manner.

State-of-the-art works draw on the experience of the car rental and bike sharing counter-

parts and adopt network-based optimization approaches. Pavone et al. [29] are among the

first. Based on the fluid model, the paper proposes an optimal rebalancing model and sim-

ulates it on a 12-station AMoD system. In this system, every station will reach equilibrium

so that there are excess vehicles and no waiting customers. However, under the influence of

its car-rental predecessors, the proposed method is only limited to station-based systems.

In addition, it does not address the issue of stochasticity in the demand-supply interplay. In

continuation to this work, Spieser et al. [17] transform the model into an analytical guideline

for AMoD fleet sizing and validate it in a Singapore case study. This strategical work still
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remains static and provides little insights to real-time operation.

Zhang and Pavone [30] extend the idea of the fluid model and present a queueing-

theoretical approach within the framework of Jackson networks. Many efforts in their work

have been made to prove that, as a closed Jackson network, the system is most efficient when

inward and outward vehicle flows (including rebalancing flows) are equal at each station.

The solution to an offline optimal rebalancing problem is given. They continue that, if

taking only current information at a specific time point, the problem could be adopted to

online applications. A case study in New York City with around 8,000 non-shared vehicles

demonstrates the effectiveness of the method.

Marczuk et al. [71 test both offline and online policies with an agent-based simulation

platform using Singapore travel data as input. The results show that about 28% and 23% less

vehicles are required to guarantee the same service rate when offline and online rebalancing

are in use respectively. Moreover, online policy outperforms the offline one by reducing the

average wait time from 11 minutes to 9. Using a similar approach, Spieser et al. [31] tackle the

rebalancing issues from the perspective of the fleet operators. They evaluate the operational

cost as a function of fleet size, service rate and vehicle utilization and demonstrate that

rebalancing can reduce the cost significantly.

Existing works adopting network-based optimization approaches are usually computa-

tionally demanding. In addition, as far as the author is aware, all of the works are limited

to station-based systems and ride-sharing has also been omitted for the sake of simplicity.

However, free-floating and ride-sharing are indeed two key elements that ensure the connec-

tivity and affordability of the AMoD service. The thesis extends the online model in [30] to

incorporate both door-to-door service and ride-sharing. It also introduces a reinforcement

learning approach for comparison.

2.2.3 Transit-oriented Considerations

As shared AMoD grows, it will take some of the market share of public transportation (PT),

unless planned on a mutually complementary basis. The idea of integrated AV+PT systems

is first illustrated in [32] as "broadening service options of public transport" by providing

multimodal service in less dense areas. Liang et al. [33] use integer programming models

to study AV as a last-mile connection to train trips. Vakayil et al. [34] then develop an

AV+PT hybrid system and emphasize its potential for reducing total vehicle miles traveled
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and the corresponding negative externalities such as congestion and emissions. Shen et al.

[351 use agent-based simulation to explore the idea of supporting bus operation and planning

with AV service as complement. In their paper, high-demand bus routes are preserved while

low-demand ones are repurposed and shared AV comes in as an alternative. Results indicate

that the integrated system would benefit both AV and PT operators.

In this thesis, the system design reflects transit-oriented designs in two ways. First, the

design framework embodies the considerations of transit agencies including service availabil-

ity and equity. Second, the service includes transit-specific characteristics such as first-mile

connections to public transportation. Dispatching strategies are also customized to deal with

the in-advance requests and time constraints. It shows that in-advance requests will largely

improve the service availability if hailing policy is designed properly. The time-constrained

connections are important for seamless transfers to public transportation as well.

2.3 Value of Information

The operation of the mobility-on-demand systems involves the management of the requests

in an online manner. On-demand services are essentially desirable for travelers because it

provides absolute flexibility both in time and space. However, the dispatching of vehicles

would be more efficient and economical if the requests are known in advance. The operators

are therefore motivated to understand travel demand, as well as the value that resides in

the information.

Borodin and El-Yaniv [36] present the competitive ratio criteria as a metric to evaluate

the performance of online algorithms. The competitive ratio is defined as the worst case

ratio of the cost of the online (dynamic) algorithm to the cost of an optimal offline (static)

algorithm. An algorithm is c-competitive if the competitive ratio of the algorithm is at most

c. The c-competitiveness is important to evaluate the gain in performance of an algorithm

when moving from zero knowledge to full knowledge of the demand. Jaillet and Wagner [37]

then demonstrate that, the best possible competitive ratio of an online algorithm is 2 for

the vehicle routing problem with m vehicles, infinite capacity and no precedence constraints.

They also give an algorithm that is (2 - a/(1 + a))-competitive when request information is

known in advance. a is a measure that is proportional to the reaction time, defined as the

period between the time a request is known, and the time it is supposed be picked up. The
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online algorithms are almost surely asymptotically optimal when a is large enough, that is

to say, when all requests are known a priori.

Pillac et al. [38] argue that the competitive ratio criteria has drawbacks when it's applied

to real-world applications, since it requires the proof of the c-competitiveness. The value of

information presented by Mitrovi6-Mini6 et al. [39] constitutes a more flexible and practical

metric. This metric indicates the performance of an algorithm based on empirical results

and captures the impact of the dynamism on the solution yielded by the algorithm. The

larger the value is, the bigger the performance gap of the algorithm will be when a static

system becomes completely dynamic. Gendreau et al. [40] report a value of information

between 2.5% and 4.1% using their tabu search algorithm for the vehicle routing problem

without capacity constraints. Tagmouti et al. [41] report a value larger than 10% for a

neighborhood search descent heuristic when arcs in the graph are capacitated.

Given a specific algorithm, the value of information metric can also be used to study the

benefits of partial demand information. Larsen et al. [42] define the degree of dynamism

as the proportion of requests that are sent on-demand. The simulation results show that

increasing the degree of dynamism results in a linear increase in operational cost. They also

extend the concept to include temporal attributes such as request time and pick-up window.

Diana [43] studies the impact of fleet size and assignment interval (cycle time) on dynamic

and partially dynamic systems under different degrees of dynamism. The paper concludes

that, when fleet size is small, the performance is more susceptible to the lack of a priori

information. The cycle time does not significantly affect the solution.

As far as the author is aware, the scale and scope of the relevant studies have been

limited to algorithmic progress and theoretical analysis. None of the existing agent-based

simulation applications have addressed the operational needs of determining the value of

demand information. In this thesis, the value of information metric incorporates a cost-

benefit analysis based on real operational settings. It also extends the degree of dynamism

with the motivation of developing a comprehensive approach for the evaluation of various

request patterns.
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Chapter 3

Simulation Framework

3.1 System Design

Depending on existing transportation systems, demand patterns, traveler behaviors, social

norms, and culture, AMoD services may take different forms to fit the unique travel needs

of each individual city. In Wen et al. [15], a guideline to AMoD system design has been

proposed. This guideline addresses system design issues in three parts:

e operating modes, including sharing policy, hailing policy and service availability;

9 operational variables, which involve determining the best fleet size, vehicle capacity

and dispatching strategies;

e pricing scheme, including regular fare structure, discounts and surge.

The system design decisions should reflect the considerations of each party in the system. To

that end, Table 3.1 has identified the key stakeholders - travelers, AV operator, PT operator

and government - as well as their interests. Note, this table is designed only for evaluating

the system performance in this thesis. It is not intended to present a comprehensive list of

interests for all stakeholders.

Performance metrics should be selected to evaluate the extent to which the interests

of each stakeholder are met. In this thesis, we evaluate the performance using a series of

indicators listed in the rightmost column in Table 3.1. For travelers, the level-of-service

indicators include availability and total travel time. Availability is represented by service

rate, the percentage of travelers being served given their time constraints. Total travel time

25



Table 3.1: Stakeholders, Interests, Performance Metrics and Indicators

Stakeholder Interests Performance Metrics Indicators

availability service rate

level of service wait time
Traveler total travel time

detour factor

travel cost pricing scheme N/A

vehicle distance traveled
cost

AV Operator financial viability distance-based load

revenue AV mode share

ridership PT mode share

PT Operator performance availability N/A
punctuality N/A

financial viability cost/revenue N/A

availability service rate

public equiaccessibility N/A
Government

motorized traffic vehicle distance traveled
sustainability

non-motorized trips active mode share

"N/A" implies indicators not applicable in the scope of this simulation. These indicators (and
those omitted in this table) are important and will be explored more in-depth in following studies.

* We assume PT operator to be not profit-driven.
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consists of wait time and in-vehicle travel time. The in-vehicle travel time, when shared,

is proportional to the detour factor, defined as the ratio of actual in-vehicle travel time to

shortest travel time. As for the AV operator, the supply performance is evaluated by the

operational cost. Specifically, the cost of operating one vehicle is represented by average

vehicle distance traveled, which indicates the service and rebalancing distance traveled by

a single vehicle within an hour. Another indicator related to supply performance is the

distance-based average load which measures the average load (number of travelers on board)

weighted by the distance it travels. Based on these indicators, the design decisions such as

fleet size, vehicle capacity, fare scheme and sharing/hailing policies can be simulated and

evaluated. The indicators and jointly the shares of existing modes also shed light on the

transport performance of the city as a whole. As such, the stakes of PT operator as well as

active mode users will be taken into account.

3.2 Simulation Platform

3.2.1 Demand-Supply Interaction

In this section, we model the interaction between demand and supply in AMoD systems.

As shown in Figure 3-1, the interaction mechanism consists of two loops representing the

choices of travelers and operators respectively. The closed loop on the left side contributes

the fixed-point problem for demand prediction equilibrium, even if level-of-service indicators

are unknown beforehand. The open loop on the right side supports the shared AMoD system

design by providing feedback to supply performance analysis. The overlapping part of the

loops situates the agent-based simulation platform.

Using the level of service as interface, the iterative loop on the left side enables explicit

feedback for travelers. To start, the level-of-service indicators are set to arbitrary values.

Based on the historical data on all-mode trips, the level of service as well as assumptions

with regard to fare and preference to service, the mode choice model predicts the demand

volumes for each OD pair. The simulation platform then evaluates the system performance

based on the predicted demand matrix, predefined supply settings as well as other system

assumptions including dispatching strategies. It outputs both the level-of-service indicators

for travelers and the supply performance indicators for operators. The former is returned

to the mode choice model as feedback. The results of the demand prediction are updated
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Demand Supply
(requests) (vehicles) -

Mode Choice Agent-based I Service
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(wait time, detour (load, distance

etc.) traveled, etc.)

Figure 3-1: The demand-supply interaction mechanism.

accordingly and we establish the iterative loop.

The formulation of the problem is presented as below:

D = MODECHOICE(T, L, Vd,SO (3.1)

L,P = SIMULATION(D, VS, S)

MODECHOICE is the demand prediction subproblem and SIMULATION is the simulation

subproblem. MODECHOICE takes total current trips T, level-of-service indicators L, demand

decision variables Vd (e.g. fare) and other demand assumptions Sd as input. The output D

is a vector of predicted OD-specific demand for AMoD service. Symmetrically, SIMULATION

takes in predicted demand D, supply decision variables V, (e.g. vehicle capacity, fleet size,

hailing policy) and system assumptions S, and gives estimates of level of service L and

supply performance P.

Assuming both sub-problems have been solved, the solution to the interaction problem

could be found by applying fixed-point iteration approach. The pseudo code is shown below

in Algorithm 1. To deal with the stochasticity inside the simulation, the method of successive

averages (MSA) is used to guarantee the convergence as shown in line 9 of the algorithm [44].

The procedure keeps updating D, L and P iteratively unless D has converged by definition.

At this time, the demand-supply interaction reaches balance and SOLVEFIXEDPOINT Will

return indicators with regard to travelers and operators.
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Algorithm 1 Fixed-point Solution

1: procedure SOLVEFIXEDPOINT(T, Vd, Sd, Vs, Ss)
2: let level-of-service indicators be arbitrary values L(0)
3: D(O) = MODECHOICE(T, L(0) Vd, Sd)
4: let step counter i = 0
5: do
6: ii+ 1
7: L), P(i) = SIMULATION(D('- 1), Vs, Ss)
8: D = MODECHOICE(T, L(0), Vd, S)
9: D) = -D() + I-D('-')

10: while |1DW) - D('-'11| > 6
11: return DW), 0), Pi)

On the right side of Figure 3-1, the system design decisions are represented by a dashed

line as we do not model the loop explicitly. According to the discussion in Section 3.1, design-

ing an AMoD service involves multiple stakeholders and the system design decisions should

be made to reflect the interest of each party. In practice, the comprehensive performance

metrics should be defined and examined on a case-by-case basis. Due to limited space, this

thesis only evaluates the most important system design decisions from the perspective of

key stakeholders in an empirical fashion (as in Table 3.1).

Subsections 3.2.2 and 3.2.3 will discuss the sub-problem SIMULATION. A short presen-

tation to MODECHOICE can be found in Subsection 3.3.2. For full details, please see [151.

The parameters and variables used in the rest of the thesis are listed in Table 3.2 and classi-

fied as "input", "output", "decision", "assumption" or "intermediate". Specifically, the supply

decision variables are system design decisions that we will discuss in Chapter 5 with various

scenarios. The values of the "assumption" variables as well as the demand decision variables

are set in Table 5.2 before we start the simulation experiments.

3.2.2 Simulation Framework

The level-of-service indicators in L that have impact on the mode choice behavior are service

rate SR, wait time WT and detour factor DF. L is largely dependent on system design

and operational strategies and should be consequently studied together with the supply

side. For that reason, we cast the sub-problem L, P = SIMULATION(D, Vs, S,) into a

continuous-time agent-based simulation platform. The platform is able to simulate door-to-

door shared AMoD service with a fixed-size fleet of dedicated autonomous vehicles (defined
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Table 3.2: Parameters and Variables

Vector Parameter/Variable Type

service rate (SR) output

level of service (L) wait time (WT) output

detour factor (DF) output

vehicle distance traveled (VMT) output

distance-based load (L) output

vehicle capacity (K) supply decision
supply decision variables (V8 ) fetsz V

fleet size (V) supply decision

maximum wait time (MWT) assumption

maximum detour factor (MDF) assumption

period of simulation (T) assumption

period of study (T,) assumption

supply assumptions (S,) period of warm-up (Tm) assumption

period of cool-down (Tc) assumption

interval of assignment (Ta) assumption

interval of rebalancing (T,) assumption

(others, see Subsection 3.2.2) assumption

base fare (Cbase) demand decision

per-unit-time fare (ctime) demand decision

per-unit-distance fare (cdiSt) demand decision

discount for sharing (DC) demand decision

predicted demand matrix (D) (see Subsection 3.3.2) intermediate

total current trips (T) (see Subsection 3.3.2) input

preference to AV (ASC) assumption

demand assumptions (Sd) penalty wait time (PWT) assumption

(others, see Subsection 3.3.2) assumption

cost of an AMoD trip (C) intermediate

actual travel time (TT) intermediate

supporting variables shortest travel time (ST) intermediate

shortest travel distance (SD) intermediate

adjusted wait time (AWT) intermediate

Types "input" and "output" represent the inputs and outputs of the model respectively. Type "in-
termediate" represents the intermediate variables in the formulation. Type "demand decision" and
"supply decision" for decision variables. Type "assumption" for assumptions.

** SR, WT and DF require being initialized to start the iteration.
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by vehicle capacity K and fleet size V in V,), requests (reflecting the predicted demand

D from MODECHOICE) and the necessary operational models and dispatching strategies at

operator's disposal (as assumptions in S,). The pseudo code for SIMULATION is shown in

Algorithm 2.

Algorithm 2 Agent-based Simulation

1: procedure SIMULATION(D, V8 , S8 )
2: initialize the system according to V, and S,,
3: t = 0, taO 0, t = 0
4: while t < T do
5: generate next request with arrival interval At and push into queue
6: t = t + At
7: ift>ta then
8: assign pending requests in queue to vehicles
9: ta = ta + Ta

10: if t > tr then
11: rebalance the idle vehicles
12: tr = tr + Tr
13: route the vehicles to t
14: return L, P based on service performance during T,

Three modules are fundamental in the agent-based simulation platform: request gener-

ator, vehicle dispatcher and routing server.

* The demand generator draws requests from the predefined OD list D. The arrival of

the requests follows a Poisson process of constant arrival rate, which is proportional to

the OD-specific demand volume. Depending on hailing policy, a request can be either

on-demand or in-advance and have specific constraints including maximum wait time

(MWT) and maximum detour factor (MDF). Earliest possible departure time and

latest possible arrival time also apply accordingly. The latest possible arrival time is

important especially when travelers are making first-mile trips and transfers to PT are

necessary.

" On-demand requests are then dynamically assigned to vehicles by the central dis-

patcher based on insertion heuristics. If a request cannot be served within the wait

time window due to vehicle availability and request constraints, it times out and the

traveler is assumed to "walk away", i.e., leave the system. The service rate is then

defined as the percentage of requests being served. The insertion heuristics also ap-

ply to in-advance requests. The only distinguishing characteristic is that in-advance
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requests are known to the dispatcher beforehand and travelers will be notified of their

assignment 30 minutes before the earliest departure time. In addition, the dispatcher

rebalances idle vehicles periodically to regain the balance between demand and supply

and plan for the coming requests in the short future. In order to balance the trade-

off between optimality and computational efficiency, the request-vehicle assignment is

performed every Ta simulated seconds and rebalancing is performed every T, seconds.

Details on both assignment and rebalancing strategies will be discussed in Chapter 4.

* After dispatching, the routing server updates the shortest routes in real-time. Each

vehicle, behaving as an individual agent, moves accordingly to pickup/drop-off travel-

ers as well as to rebalance. The travel time between two locations is static, based on

the average morning peak-hour travel time provided by OpenStreetMap.

The simulation runs for T seconds, of which T, seconds makes the period of study.

Requesting generated during T, are used in the evaluation of level of service L and supply

performance P. L includes service rate, wait time and detour factor. P consists of vehicle

distance traveled and distance-based load. The rest of the simulation time before and after

T are warm-up and cool-down buffers. T = T + T, + T.

To start the interaction and solve the fixed-point problem, we initiate service rate, wait

time and detour factor in L with arbitrary values. MODECHOICE takes L as input and out-

puts D. SIMULATION then takes D for L and P. The demand-supply interaction continues

iteratively. It reaches the balance and stops when MSA condition is satisfied.

3.2.3 Implementation

The simulation platform is implemented in Python 3 and C++. An open-source version of

the code can be found in the GitHub repository amod-abm [141. The implementation follows

the object-oriented design approach so that data structures are encapsulated in multiple

classes and interfaces are provided to define how an object can interact with others. As of

today, the following parts have been ready:

* class Model for shared AMoD systems, with a fleet of autonomous vehicles and a

central dispatcher;

" the demand matrix D from MODECHOICE sub-problem, with time-invariant demand

volumes for a list of OD pairs;
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" class Veh for (shared) autonomous vehicles, the capacity of which can be set to 1 (no

sharing), 2 (at most 2 travelers sharing at a time) or more;

* class Req for requests generated based on the demand matrix; requests can be either

on-demand or in-advance depending on hailing policy;

" class OSRMEngine for connecting to the Open Source Routing Machine (OSRM), an

internal routing server linked to OpenStreetMap database [451;

* class Leg and class Step for formating route information; the route of a vehicle may

include one or several legs and each leg consists of multiple steps; each step is a

connected sequence of straight line segments (polyline) and the travel speed within a

step is constant;

" class DQNAgent and class RebalancingEnv for a deep Q network (DQN), which provides

a reinforcement learning environment for the rebalancing problem; DQN works as a

complement of the network-based rebalancing approach.

The dependency between classes is illustrated in Figure 3-2.

3.3 Case Study

3.3.1 Case Study Area Selection

In order to demonstrate the capability of the simulation platform in a real urban setting,

we select a case study area in the southeast of London. The Greater London Area (GLA)

has an extensive and developed transportation network in which public transport has a high

mode share (45% in 2015). Commuter rail has shown strong growth over the past decade,

providing good service from the outskirt of GLA to central London ("downtown").

The case study area, Orpington, is a spread-out residential area located about 25 kilo-

meters outside of central London. It is centered around a commuter rail station (Orpington

station) with frequent and high-speed train service to downtown. However, bus service in

this area is infrequent and not economically efficient as a result of the low residential den-

sity. Consequently, local trips are particularly car-dependent. The area is chosen as the

case study area because (a) it possesses a significant first-mile demand to the train station,

(b) the inefficient bus service requires improvement, and (c) it has appropriate density and
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road infrastructure for initial AV trials. In this thesis, the local administrative boundary of

Orpington is enlarged to include all significant bus routes originating from the rail station.

This enlarged area, 15kmx 10km and home to around 159 thousand people, will be referred

to as the Case Study Area (CSA).

3.3.2 Mode Choice Model

The mode choice sub-problem D = MODECHOICE(T, L, Vd, S) is built upon a Nested

Logit model. It is driven by historical trip data T and responsive to the level of service L

as well as supply characteristics defined in Vd and Sd.

Current Trips

T relies on an annually sampled travel survey of local households. Pseudonymized trips

made by households in CSA during the morning peak (6:30am to 9:30am) from 2005 to

2014 are used. This proportion contains 2709 respondents and accounts for around 74,000

trips made by all residents after expansion. The all-mode demand is around 28,000 trips/h.

Table 3.3 outlines the current mode share of the seven modes: walk, bike, car, taxi,

bus, rail and park/kiss+ride (P/K+R). "Trips to Downtown" represents trips that have

origins in CSA and destinations in downtown (account for 11% of all trips). "Intrazonal

Trip" represents trips that have both origins and destination in CSA (account for 54% of

all trips). Note that "All Trips" consists of trip segments other than"Intrazonal Trips" and

"Trips to Downtown", e.g. the trips from CSA to another area.

It can be noticed that CSA is very car-dependent with 58% of all trips and 57% of

intrazonal trips using car. Trips to downtown are dominated by rail service because of the

strong rail connection. 74% of them are using rail as main mode, another 16% rely on car

as the first-mile access. The mode share of bus is very small due to the inefficient service.

Walk is popular for short intrazonal trips. Bike and taxi trips are very rare for all trips.

AMoD Demand Analysis

We suppose that individual traveler chooses among all available transportation modes for a

specific trip and the discrete choice behavior follows the Nested Logit model. When AMoD

service becomes available, the probability of shifting from any existing mode to AV depends
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Table 3.3: Current Mode Share in CSA

Mode All Trips Trips to Downtown Intrazonal Trips

Walk 20% 0% 32%

Bike 1% 0% 1%

Car 58% 10% 57%

Taxi 0% 0% 0%

Bus 8% 0% 10%

Rail 11% 74% 0%

P/K+R 2% 16% 0%

on the utility of the new mode as well as

assume no latent demand in this research.

the competence of the existing modes. We also

As for the utility, assuming L is ready, average wait time and detour factor can jointly

determine the travel time of AMoD service. When service rate goes below 100%, a penalty

wait time is also introduced for those who walk away. Equations are therefore:

AWT =WT x SR +PWT x (1 - SR) (3.2)

and

TT = AWT + ST x DF (3.3)

AWT represents the adjusted wait time, which is calculated using the average wait time WT

for those served, the service rate SR, and the penalty wait time PWT for those rejected.

We also have detour factor DT and ST for shortest travel time. TT is therefore the actual

travel time for an AV leg.

Another assumption that should be made is ASC. ASC reveals the intrinsic preference

of travelers to the proposed AMoD service when all independent variables such as travel

time and travel cost are controlled. However, due to the lack of existing services and the

uncertainty in system design, the knowledge of the preference is still limited. In this thesis,

we propose to test a wide range of ASC in the simulation. Since the new mode inherently

takes characteristics of both car and transit modes, in this case, three ASCs are chosen

to reflect this range: -3.58 (lower bound benchmarked by P/K+R), -2.35 (upper bound
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benchmarked by car) and -3.00 (the midpoint case, average of bus and rail).

Decision variables Vd in the utility function includes fare, which is important for AV

operator as well as other stakeholders as discussed in Section 3.1. In this thesis, the fare

scheme using base fare, per-unit-distance, and per-unit-time is adopted:

C = (Cbase + ctimeST + cdistSD)(1 - DC) (3.4)

C is the cost. ST and SD are shortest travel time and shortest travel distance. Cbase, ctime

and Cdist are base, per-unit-distance, and per-unit-time parameters respectively. To promote

service goals relating to traffic congestion and sustainability, we also assume every trip has

a chance to be shared and travelers cannot reject sharing. In that case, a universal sharing

discount DC is applied to remunerate travelers.

Based on the utility function of AMoD service for each of the OD pairs, the mode choice

model is able to predict its demand volume. The output list of OD-specific demand volumes

D is used in the simulation.
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Chapter 4

Dispatching Strategies

4.1 Request-Vehicle Assignment

4.1.1 Vehicle Routing Problem

The static version of the request-vehicle assignment problem has been intensively studied

in the literature as the vehicle routing problem (VRP). A typical VRP describes an integer

programming problem for designing optimal collection/delivery routes from one or several

depots to a number of geographically scattered customers, subject to side constraints. The

most common side constraints include vehicle capacity, time windows as well as the prece-

dence relations between collections and deliveries. Exact algorithms for the VRP can be

classified into three broad categories: (a) direct tree search methods; (b) dynamic program-

ming, and (c) integer linear programming [46]. Depending on formulation, constraints and

size of problem, many variants of the aforementioned algorithms have been ready to use for

fast and optimal solutions.

When it comes to dynamic ride-sharing problem, heuristic methods are often used in

the literature for the purpose of speeding up the assignment process. Fundamental heuristic

methods such as the nearest neighbor algorithm, insertion algorithms and tour improvement

procedures can be applied to various VRPs almost without modifications. Metaheuristic al-

gorithms including simulated annealing and tabu search may also follow up to "reoptimize"

a feasible solution in the pursuit of better accuracy. Due to the limitation in time and com-

putational capacity, metaheuristics in large-scale applications are often interrupted before

optimality can be achieved.
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Most studies on dynamic ride-sharing consider one of the following specific objectives

when assigning requests to vehicles:

" minimize the system-wide vehicle miles traveled for the operator;

" minimize the system-wide travel time for the travelers;

" maximize the profit/benefit for the entire system assuming profit-driven or publicly-

owned operator [471.

The last objective function is most comprehensive, which usually takes the form of a mone-

tary combination of the first two items. However, due to the uncertainty in many aspects, the

cost and revenue of operating a shared AMoD system still remain unknown. For simplicity

and measurability, many state-of-the-art agent-based simulations mentioned in Section 2.1

continue with either travel time or vehicle miles as the objective.

In this thesis, we propose to use system-wide travel time. Consider a shared AMoD

system with a fleet of shareable autonomous vehicles. V represents the entire fleet of V

vehicles; each vehicle v E V can be shared by at most K travelers at a time. sv and ev are

the start and end locations of vehicle v. The group of all start locations sv for all v E V

makes the set .NT; the group of ev makes Ae. At the time of study, vehicle v has n, travelers

on board. A traveler r on board of vehicle v (noted as r E R,,v) has an drop-off node d, in

the graph. An incoming traveler pending to be paired (noted as r E Ri) has both pick-up

node Pr and drop-off node dr. The pick-up and drop-off nodes are grouped into two sets

Kr, and N . We also let IZ = uvEVRO,R, 7Z= Z0 U Ri, and K = o u e u Kr U Ar. The

formulation to the request-vehicle assignment problem is therefore as below:

min ZrER tdr + ZTRei, (/3tpr + (td, - t,,)) (4.1)

s.t. tO > 0,Vn E A

Xi'j'E {G , 1}, Vi,j CA, i / j, Vv E V

ni,j,v E {0, 1,... ,K},Vi,j E .A, i # j,Vv E V

The decision variables are the visit times of all nodes, in which tn represents the visit time

of node n. The objective of the problem is therefore to minimize the total travel time of

all travelers in the system. This includes the remaining in-vehicle travel times for those on
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board, as well as the sum of the wait times (weighted by coefficient 3 > 1) and the in-vehicle

travel times for those pending to be paired.

We also have xi,j,, and ni,j,, for all pairs of i, j E K, i y j and all vehicles in V as the

supporting variables. xi,j,, is binary, indicating the existence of a leg from i to j in the

planned route of vehicle v. ni,j,, is an integer not greater than K, representing the number

of travelers on board of vehicle v in the journey from i to j. The optimization problem is

therefore a mixed integer linear programming problem (MILP).

The problem is also subject to the following constraints.

ti > ti + tij, ]v E V, xi'j'V = 1 (4.2)

Constraint 4.2 states that, the visit time of node j should be at least ti, time units later

than the visit time of node i if j is visited by vehicle v right after i. tij is the static travel

time from i to j in a predefined road network. We also assume there is no depot and a

vehicle ends its service just at the location it drops off the last traveler. Consequently, tij

is zero for all i G K if j c .,

Tn t, < Tn, Vn E K U Ad (4.3)

tp, td,, Vr C Ri (4.4)

Constraint 4.3 assures that the pick-up and drop-off times of any node n should satisfy

the earliest service time t. and the latest service time T defined by the hailing policy.

Constraint 4.4 states that for any traveler in the system, the pick-up should be always made

before the drop-off.

r0, jcEK3
I : X.v 0 rVj c K, v e V (4.5)

1, otherwise

z 3'Y fo0, i ce ,Vi CE,v E V (4.6)
i 1, otherwise

Constraints 4.5 to 4.6 assure that each vehicle should start and end its route at its predefined

start and end locations. Also, each pick-up node and drop-off node in the graph should be
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visited exactly once.

SE Xs,,',3 ' = 0, Vv E V (4.7)
j'74 sv v'$v

E vE Xi/,ev,v' = 0,Vv C V (4.8)

Constraints 4.7 to 4.8 state that the start and end locations of any vehicle must not be

visited by the rest of the fleet.

Xi,d,,v = 1 Xd,,j',v = 1, if ]v E V, r E Ro,v (4.9)
i'#dr j'od,

Xi' ,pEv XPrj',V = Xidr,v Xdr,j',VV E V, if r E Ri (4.10)
i'#Pr J'#Pr i'$d, j'dr

Constraints 4.9 to 4.10 guarantee that, if a traveler is already on board of vehicle v, its

drop-off node should also be visited by vehicle v; otherwise, a traveler should be picked up

and dropped off by the same vehicle.

nijv = 0 if xi,j,v = 0, Vi,j C I, i Vvj, E V (4.11)

nsv,j',,v nv, VV C V (4.12)

Zlniev,,v 0, Vv C V (4.13)
i'Oev

niZjv + 1 = 7Ij,k,v, if j E Ap (4.14)
i'4iv k'#j v

E E nIi,j,v - 1 = nj,k',v, if j E Ad (4.15)
i'pA v k'#Aj v

Constraints 4.11 to 4.15 set the rules for loading. A vehicle v should start at sv with nv

travelers on board and finishes the service at ev being vacant. Also, the number of travelers

on board should increment or decrement as the vehicle picks up or drops off travelers along

the planned route respectively.

4.1.2 Algorithms

The aforementioned formulation describes a shared AMoD system at any time point. As

discussed, heuristic methods are appropriate for solving such an MILP problem. This part
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of the thesis will present two methods that are popular in the literature: insertion heuristics

(IH) for fast and feasible solutions, and simulated annealing (SA) for reoptimization. Both

methods have been tested in this study using the agent-based simulation platform. Re-

sults show that, insertion heuristics outperforms simulated annealing for its computational

efficiency. The performance of IH is also close to that of SA. Since large-scale real-time

applications should always guarantee feasible solutions within short time constraints, we

propose to use IH in the following chapters of the thesis.

Insertion Heuristics

Insertion heuristics finds an approximate solution to the problem by considering each new

request individually and independently from other passenger requests. In this case, the

global optimality is traded in exchange of a series of local optima for computational speed.

In this thesis, the proposed IH serves the requests on a first-come-first-serve basis, and it

searches for the best available vehicle for each of the new requests unless none of the vehicles

satisfies its time and capacity constraints.

The algorithm for IH is as below:

Algorithm 3 Insertion Heuristics

1: procedure ASSIGNREQUEST(Ri, V)
2: c = 00
3: pop all pending requests from queue Ri
4: for each request do
5: for each vehicle in V do
6: 1 = length of the vehicle's job list
7: for i from 0 to l do
8: for j from i to I do
9: insert pick-up and drop-off into the job list at positions i and j

10: if new job list satisfies all constraints then
11: if incremental cost < c then
12: update c with the incremental cost
13: update v*, i*, j* accordingly

14: if c remains +oc then
15: if request is still in the wait time window then
16: push the request back to queue
17: else
18: request times out

19: else
20: insert request to v*: pick-up at position i*, drop-off at j*
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The job list of a vehicle is defined as "a series of pick-ups and drop-offs with scheduled

time". Each vehicle then follows its individual job list to provide service to travelers. For

each of the new requests, Algorithm 3 inserts its pick-up and drop-off jobs to the best

positions by minimizing the incremental cost it imposes on all the travelers including itself.

The cost defined in Equation 4.1 is used. If none of the vehicles is able to serve, Algorithm 3

pushes the request back to the pending queue. Request times out and is removed from the

queue as long as the system time goes beyond its latest pickup time.

Insertion heuristics shows reasonable computational efficiency with the time complexity

of O(R - V - K2 ), in which R is the total number of requests, V is the fleet size and K is

the vehicle capacity. Since IH does not consider all new requests at the same time, it may

potentially lead to a sub-optimal solution. This leads to the reoptimization discussion in

the next part.

Simulated Annealing

Simulated annealing is a generic probabilistic metaheuristic method which improves the

accuracy of existing solutions in systems with large search space. The name of SA comes from

annealing in metallurgy, a technique involving heating and controlled cooling of a material

to improve its performance. SA implements controlled cooling by denoting a temperature

Temp. It then explores the search space and accepts better solution with probability 1

and worse solution with probability proportional to exp(-1/Temp). During the search, the

temperature is progressively decreased and SA ends with an accepted solution other than

the original one.

Simulated annealing provides a reoptimization scheme to the solution of IH. The algo-

rithm for SA is as below. Typical perturbations of a solution include swap and move. A

"swap" exchanges two random requests from the job lists of two vehicles; a "move" removes

a random request from its vehicle's job list and inserts it into a new vehicle.

The complexity of the simulated annealing depends on the speed of cooling down. Low

start temperature leads to low probability of accepting worse solutions, therefore makes

it less probable to jump out of the local optimum. Unnecessarily high start temperature,

on the other hand, may result in totally random search in the beginning. The selection

of the parameters also has significant impact on the quality of the solution, thus should

be performed with great caution. In order to achieve better accuracy, we may also call
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Algorithm 4 Simulated Annealing

1: procedure REOPTIMIZE(V)
2: initialize Temp, ATemp, k
3: let So be the initial solution according to the job lists from V
4: let new solution S = So
5: while Temp > cool-down temperature do
6: randomly select a perturbation of S as S'
7: if S' is better than S then
8: accept and S = S'
9: else

10: accept and S = S' with probability exp(-k(S' - S)/Temp)

11: decrease Temp by ATemp

12: if S is better than So then
13: return new solution S
14: else
15: return original solution So

Algorithm 4 iteratively until the solution converges.

4.2 Rebalancing

4.2.1 Algorithms

In this section, we incorporate ride-sharing into the proposed free-floating shared AMoD

system and propose three rebalancing approaches. The first approach extends the network-

based online model in [301, to which a branch-and-bound heuristic is applied for fast solution.

The second approach is based on reinforcement learning, which adopts a deep Q network

(DQN) and adaptively moves idle vehicles to regain balance. This approach takes a very

different perspective from the state-of-the-art network-based methods since it's model-free

and able to cope with real-time systems with partial or full data availability. The last one

is a simple anticipatory approach for performance comparison.

The contribution of this part is therefore twofold: (1) it makes a transition from the

station-based systems (discrete space) to free-floating systems (continuous space) and adds

ride-sharing features to the model; (2) the proposed DQN-based approach for rebalancing is

real-time, demand predictive, computationally scalable and has good performance in terms

of both level of service and operational cost.

Consider a shared AMoD system covering a predefined service area. For operational

purposes, the area is divided into S transport analysis zones S = {1, 2,... , S}. The set of
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fleet V consists of V shareable vehicles of capacity K. Travelers with origins and destinations

in S send requests and queue up. Travelers are then assigned to vehicles dynamically by the

central dispatcher on a first-come-first-serve basis and no traveler will "walk away" despite

the possible long wait.

A vehicle having been assigned to travelers is "in service". Otherwise, it is "idle" and

available to be rebalanced. We assume that the online rebalancing algorithm is run every T,

seconds and at time t = T, one run is triggered. The period of study is therefore [T, T + T,].

We also assume that, over the period, the number of incoming requests Ai in zone i follows

the Poisson process with predicted arrival intensity Ai, that is to say, Ai ~ Poisson(AiT).

Knowing both the demand distribution and the vehicle status, the objective of rebalancing

is therefore to maximize the service availability while limiting the rebalancing cost. Service

availability is evaluated by the average wait time of requests emerging within the period;

rebalancing cost is represented by total vehicle rebalancing distance traveled, that is, the

total distance covered by all vehicles in the fleet due to rebalancing.

Optimal Rebalancing Problem

The decision variables in the rebalancing problem are rij for i, j E S. ri, represents the

number of rebalancing vehicles sent from zone i to zone j at t = T, i.e., the beginning of

the period. Specially, if i = j, it represents the number of idle vehicles in zone i that remain

unmoved during the period. The decision variables satisfy EjES rij = ri, in which ri is the

number of idle vehicles available to be rebalanced in zone i when t = T.

The cost of rebalancing one vehicle from i to j is noted as cij. In this thesis, cij is

defined as below:

{ cdi,j if j is accessible from i within Tr (4.16a)

E otherwise (4.16b)

In Equation 4.16a, di, is the distance from i to j and the cost is proportional to the distance

with a multiplier c; in Equation 4.16b, the cost is set to be a large constant i when j is too

far away from i. This is to discourage long rebalancing and guarantee that all rebalanced

vehicles can arrive at their destinations before the period ends.

We assume that both in-service and idle vehicles follow the shortest routes when picking

up/dropping off travelers and rebalancing. We also assume that the planned routes are
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not influenced by the incoming requests over the period and travel time is deterministic.

Consequently, the level of supply at t = T + T, i.e., the end of the period, could be

measured by the availability of both idle and in-service vehicles at that time. Note, a

vehicle is classified as "idle" or "in-service" only according to its status before rebalancing

starts.

The availability of idle vehicles at t = T + T, is measured by r9, the number of idle

vehicles that zone j will receive at the end. r' Eics rij. An in-service vehicle may also

become available (if all on-board passengers have been dropped off) or partially available (if

it still has passenger(s) on board but admits ride-sharing) at the end. Similarly, we define

s as the availability of in-service vehicles in zone j at t = T + Tr. s could be expressed as:

s= ZI(v)w(l ),Vj e S (4.17)
vEV

I (v) is the indicator function that equals 1 if v is in zone j when t = T+T, and 0 otherwise.

w(l') is the load-availability factor, defined as:

w(l') =- , for 0 < 1' < K (4.18)

l is the load of v when t = T + Tr. In a shared AMoD system with fixed settings, k(l,) is

the empirical probability that a vehicle of load l' will be assigned to the new request based

on simulation results. Similarly, P(O) is the empirical probability that an empty vehicle

will be assigned to the new request. For a vehicle of capacity 4, we have w(0) = 1.0 and

w(.) = 0.4, 0.2, 0.1, 0.0 when load is 1, 2, 3,4 respectively. The estimated total supply v'

when t = T + T, is therefore:

v = [r. + s'j, Vj E S (4.19)

The objective of maximizing the areawide service availability is translated to maximizing

the total expected number of requests b that can be served by vehicles from the same zone

at the end of the period. b = EjES bj(v) and bj(v5) represents the expected number of

served requests in zone j during Tr, knowing that v; vehicles are in supply:

bj (vj) = E min(k,v')IP (Aj = k) (4.20)
k=O
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Based on the definitions and assumptions, the optimal rebalancing problem (ORP) is as

follows:

max E s bj(v) - Ei,jsS ci,jrij (4.21)

s.t. E CS ri, = ri, Vi E S

rij E N, Vi, j E S

The equation 4.21 is a Mixed Integer Nonlinear Programming (MINLP) problem. When

problem size is large, solving MINLP is extremely computationally burdensome and in this

thesis, we use a combination of incremental-optimal and branch-and-bound methods to give

a close approximation to the optimum. This approximated solution is referred to as heuristic

optimal rebalancing (HOR).

Simple Anticipatory Rebalancing

Despite the good quality in solutions, the wide use of optimal rebalancing policies is still

constrained by the limit of computational capacity. Large-scale applications and simulations

often opt for locally executable algorithms which decentralize the decision-making and solve

the problem empirically. By bounding the problem to a small area, it reduces the complex-

ity in real-time vehicle operation and also naturally caps the induced rebalancing distance

without explicitly describing the cost. One representative example is [19], which gives an

intuitive method for local rebalancing called "block balance": if a block's supply exceeds

its expected demand or vice versa, system pushes or pulls idle vehicles to or from adjacent

blocks. The paper then justifies this empirical method through simulation.

We extend this method and develop here a simple anticipatory rebalancing (SAR) ap-

proach for free-floating systems: a vehicle makes decision based on local knowledge within

its neighboring area S of S zones; the probability that it moves to zone j is proportional to

the number of predicted requests in that zone, that is:

P(vehicle moves to j) = A (4.22)

Under this policy, a vehicle could rebalance itself with its local knowledge and avoid causing

increased workload on the central dispatcher. Decisions can be made in parallel.
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Deep Q Network

Solving the rebalancing problem requires modeling the shared AMoD system deliberately.

However, delicate models are barely solvable and transferable from system to system, which

unfortunately discourages its use in practice.

Reinforcement learning provides a very different approach to tackling the rebalancing

problem since it's model-free and requires little adjustment of the generic architecture. Re-

cent advances in deep Q networks [48, 49] have also made it possible to handle the delay

between actions and rewards as well as the sequences of highly correlated states. Research

works have demonstrated that DQN has the ability to master difficult control policies in-

cluding traffic controls and taxi dispatching [50, 51J.

In this thesis, the neural network is trained with a variant of the Q-learning algorithm

[48]. The neighboring area S of a specific vehicle is divided into grids and thus makes the

reinforcement learning environment. The distribution of idle vehicles, in-service vehicles

together with the predicted demand around it (i.e. rj, s, A3 for all j E S) build up the

state. Based on an action-value function, the DQN agent takes the current state as input

and returns the policy by simply selecting the action with the highest value from the set of

{noop, ne, e, se, s, sw, w, nw, n}. "noop" indicates no rebalancing operation; "ne" indicates

rebalancing to the northeast adjacent zone and so on and so forth. The vehicle then executes

the action and returns the reward.

The rewards is evaluated under the following rules: (1) if the vehicle is assigned to

traveler(s) during the rebalancing period, we compare the environment to the one without

rebalancing and calculate the save in wait time as reward; the episode terminates and the

system moves on until the vehicle becomes idle again; (2) if the vehicle remains idle during

the rebalancing period, we use a penalty (a negative constant) as reward to "punish" this

rebalancing action; the episode continues. The penalty is designed as such to discourage

empty-running rebalancing distance and limit the operational cost. The rewarded episodes

are stored into a replay memory and we update action-value function using batched samples

drawn from the memory. After the training, this action-value function is used to guide the

rebalancing actions of all idle vehicles in the online algorithm.

The framework of DQN is illustrated in Figure 4-1. The architecture and parameteri-

zation are described in the next subsection together with the simulation experiments, with
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which we'll compare the effectiveness of DQN with HOR and SAR based on the simulation

experiments.

4.2.2 Performance Comparison

Benchmarking

For the sake of training efficiency, we begin the test with an abstract 5kmx5km map with

no road networks. Requests are drawn from a pool of origin-destination pairs with arrival

rate of 100 trips/h, following the exponential distribution. 20 vehicles of capacity 4 forms

the fleet, moving straight from point to point based on Euclidean distance with a constant

speed of 21.6 km/h. Despite its simplification in describing the road network and the traffic,

this presentation is sufficient to evaluate the effectiveness of the algorithms.

As shown in Figure 4-2a, HOR discretizes the entire map into 10x10 fixed cells of

0.5kmx0.5km. As for the local algorithms, each vehicle in both SAR and DQN has knowl-

edge of a neighboring area of 2.5kmx2.5km, which is centered at the location of the vehicle

and discretized into 5x5 moving cells of the same size. Points on the figure represent

vehicles; lines (dashed line) originating from points represent planned routes (rebalancing

routes); dotted grids represent the discretized cells for both HOR (10x 10) and SAR/DQN

(5x5 with red vehicle as center). For each of the rebalancing methods, simulation runs 50

times with a simulation time of 3 hours. Rebalancing is performed every 150 seconds. The

DQN is trained with a three-layer neural network beforehand for 6000 steps, using c-greedy

behavior policy and a replay memory of 2000 most recent steps in batches of size 32. The

learning rate is set to be 0.001 with no decay for the Adam optimizer [52] and the penalty for

empty rebalancing is -5. Figure 4-2b shows that the average reward increases and reaches

its height after around 400 episodes during one typical training (irregular ups and downs

are due to randomness in training). The best DQN in terms of the shortest average wait

time is used in the following analysis.

We distinguish three demand scenarios: (1) the balanced scenario, in which the trip ODs

are uniformly distributed on the map at random; (2) the imbalanced scenario, in which the

trip origins are concentrated to two production areas and destinations to two attraction

areas; and (3) the first-mile scenario, in which trip origins are uniformly distributed while

the destinations are fixed to one point (e.g. an access station). The level of imbalance

51



25-

20

4ii
S5-

10-

-5

-10

0 200 460 600 800 1000
Tr.In~ng Ep~sofe

(a) Discretization. (b) Average reward per episode during one
typical training.

Figure 4-2: Discretizing and training the Deep Q Network.

increases from scenarios 1 to 3 as the distributions of origins (where requests are sent, i.e.,

demand) and destinations (where vehicles become idle, i.e., supply) mismatch each other to

a greater and greater extent. The necessity of rebalancing is therefore expected to increase.

Performance Comparison

Figure 4-3 compares the performance of the rebalancing methods under the balanced sce-

nario. When HOR is applied, the average traveler wait time according to 50 three-hour

runs is 146.2 seconds. This is a great leap from 170.6 seconds (+16.7%) in the case with

no rebalancing policy as shown in the rightmost box. With the same system settings, SAR

scores 155.6 (+6.4%) and DQN scores 150.1 (+2.7%). It indicates that DQN has superiority

over its local counterpart SAR with regard to high service accessibility, yet it falls behind

HOR. The suboptimality of DQN could be explained by its design of individual rewarding.

Without coordination with other vehicles in the training the agent (vehicle) tends to over-

react to the imbalance. It is also noticed that both HOR and DQN produce smaller wait

time variance. SAR, in contrast, performs in a rather random manner and the results are

more dispersed. When it comes to the vehicle distance traveled, the simulation points out

that all rebalancing methods would induce average vehicle distance traveled by around 30%

to 35%. The rebalancing distance could be controlled by adjusting cj in HOR and the size

of the neighboring area in SAR and DQN.
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Figure 4-3: Comparison of rebalancing methods: the balanced scenario.

Various Demand Patterns

Table 4.1 shows how rebalancing responds to different demand patterns. As the level of
imbalance increases from scenario 1 to scenario 3, the wait time with no rebalancing soars

up from 170.6 to 232.8. If HOR is in action, the system performs surprisingly better when

productions/attractions are more unevenly distributed, owing to the fact that agglomerated

trip distribution reduces the routing difficulties in ride-sharing. The performance of DQN
still resides in between HOR and SAR. However, limited to the local knowledge, SAR and
DQN gradually loss their competitiveness when the demand-supply imbalance is significant
only at the areawide level.

Table 4.1: Comparison of Wait Times under Different Demand Scenarios

HOR SAR DQN No Rebl
Scenario 1 146.2 155.6 150.1 170.6
(balanced) (+6.4%) (+2.7%) (+16.7%)
Scenario 2 138.5 172.5 155.8 211.4

(imbalanced) (+24.5%) (+12.5%) (+52.6%)
Scenario 3 129.2 161.9 151.6 232.8
(first-mile) (+25.3%) (+17.3%) (+80.2%)

* Wait times (in seconds)
percentage) in the middle.

on top; changes compared to HOR (in
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Scalability

We enlarge the map from 5kmx5km to 10kmx10km and 20kmx20km and augment the

demand intensity proportionally under the scenario 1. The fleet size also increases from 20

to 125 and 810 to maintain the same level of service under HOR. As shown in Table 4.2, the

increasing wait time from 170.6 to 240.7 shows a manifest necessity for vehicle rebalancing

when map is large. DQN stays very close to the optimal solution, demonstrating its robust

performance over different map sizes.

The computational times are also shown in Table 4.2. Each value represents the average

running time for one rebalancing solution using a machine with 2.7 GHz Intel Core i5 and 8

GB memory. HOR is undoubtedly the most computationally demanding one. The compu-

tational time increases drastically as the map expands since its complexity is proportional

to the product of the fleet size and the number of cells in the area. This might raise a

challenge when the scale of application grows. SAR and DQN, in contrast, perform much

faster when the area is large and could be further distributed and computed in parallel.

This structure evidently facilitates the application to large-scale networks, especially when

autonomous vehicles are used.

Table 4.2: Comparison of Wait Times and Computational Times with Different Map Sizes

HOR SAR DQN No Rebl

Map 1 146.2 155.6 150.1 170.6

(5kmx5km) (+6.4%) (+2.7%) (+16.7%)

0.033 0.027 0.034

Map 2 147.9 164.3 154.4 176.3

(10kmxl0km) (+11.1%) (+4.4%) (+19.2%)

1.893 0.682 0.822

Map 3 147.2 182.4 158.2 240.7

(20km x 20km) (+23.9%) (+7.5%) (+63.5%)

259.185 42.976 41.209

* Wait times (in seconds) on top; changes compared to HOR (in per-
centage) in the middle; computational times (in seconds) on bottom
in italics.
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Wrap-up

Results using an abstract map show that DQN performs effectively by reducing the wait

time of travelers and limiting the distance traveled by vehicles. With these simulation

experiments, the model-free DQN has revealed its potential in this field originally dominated

by operation research models, particularly when scales are large and stochasticity hinders

the quality of the optimal formulation.

However, its performance is still second to the network-based optimal problem with

heuristic solution (HOR). Several directions might be worthy to follow up to further improve

its performance, including:

o moving from discrete action space to continuous one to avoid discretizing rebalancing

actions;

o extending the deep Q network to multi-agent models to correct overreacting;

o redefining the reward to represent different performance metrics from the perspective

of both operators and travelers.

We choose to use HOR in the following chapters of the thesis.

4.3 Transit-oriented Considerations

The dispatching strategies should also reflect transit-oriented designs, especially when the

shared AMoD system is run by a non-profit-driven government-owned operator and AV and

PT are integrated as a multimodal public service. In this thesis, we embody the consid-

erations of service availability and equity through the support of various hailing policies.

Allowing in-advance requests with prioritized service and ahead-of-time notification will be

especially important as it fundamentally changes the degree to which daily commuters and

other first-mile trips can rely on the service to access the rail station.

For first-mile travelers, by setting constraints on latest drop-off time at the PT station,

seamless connections to public transportation can be ensured. Symmetrically, last-mile

travelers can take advantage of the in-advance requests and customize their earliest pick-up

time at the station. In addition, we also observe that trips in areas distant from the main

service zone are underserved. These trips usually have little attraction to the operator due
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to low probability of getting shared and costly empty running for picking up. Travelers from

there experience long wait as well. In-advance requests can improve the availability in such

areas by encouraging operator to plan ahead. The impact of different hailing policies on the

level of service will be discussed in Section 5.2.3.

From the operator's perspective, although service priority constraints associated to in-

advance requests do bring burden on operation, the knowledge of demand beforehand has

more benefits. On one hand, the demand information improves operator's ability to opti-

mize both request-vehicle assignment and rebalancing. On the other hand, the mechanism

that communicates travel needs to the operator reduces the efforts required for inferring

information and predicting future trips from noisy data. Chapter 6 will discuss the value of

demand information for AMoD operators in great details.
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Chapter 5

System Design Experiments

5.1 System Settings and Simulation Scenarios

In this chapter, the shared AMoD system's performance is studied through the simulation

platform amod-abm. The system has a fixed-size fleet of taxi-like vehicles to provide service.

Each vehicle may have more than one traveler on board at a time and every trip has a

chance to be shared. The focus of this research is to test the viability of a first-mile AMoD

service. As a result, for intrazonal trips only those with currently chosen modes as bus and

car are selected for the simulation. For trips to downtown, all modes are included.

Table 5.2 is a list of values that has been applied to the assumption variables and demand

decision variables in the simulation. These values are determined empirically and remain

constant throughout the chapter.

In addition, service rate, wait time and detour factor are initiated to be 100%, 300

seconds and 1.00 for the demand-supply interaction. We also define that the balance is

reached when the relative change of D is less than 0.5% of the total volume.

For simulating one scenario, the necessary system settings for the simulation experiments

are the ASC for the service, fleet size and vehicle capacity. Decision variables also include

the choice of hailing policies. In fact, the combinations of all variable levels for all possible

scenarios are exponential. This prohibits exhaustion of all combinations. Systematic op-

timization of service variables is not in the scope of this thesis. Therefore, for illustration

purposes, we select only a subset of scenarios as in Table 5.1 for our simulation experiments.
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Table 5.1: System Settings and Simulation Scenarios (System Design)

Parameters/Variable

Simulation Scenario Fleet Vehicle Fare Hailing ASCav~pt Scenarios for Target of Interest
Size Capacity Policy Policy

Fleet Sizing (5.2.1) target 4 as in 5.1 as in 5.2.3 -3.00 200, 220, 240, 260, 280
capacity=1: fleet=520, 560, 600, 640, 680
capacity-2: fleet=280, 300, 320, 340, 360Vehicle Capacity (5.2.2) dependent target as in 5.1 as in 5.2.3 -3.00 capacity--3: fleet=220, 240,320,320,30
capacity=3: fleet=220, 240, 260, 280, 300
capacity=4: fleet=200, 220, 240, 260, 280

Hailing Policy (5.2.3) 220 4 as in 5.1 target -3.00 on-demand requests vs. in-advance requests

ASC=-3.58: fleet=100, 120, 140, 160, 180
Preference to AV (5.3) dependent 4 as in 5.1 as in 5.2.3 target ASC=-3.00: fleet=200, 220, 240, 260, 280

ASC=-2.35: fleet=350, 400, 450, 500, 550
A parameter/variable being "target" indicates it's isolated and tested with a range of scenarios.
A parameter/variable being "dependent" indicates the choice of its value is dependent on that of the target.



Table 5.2: Assumed Values for Assumption Variables and Demand Decision Variables

Variable Value

maximum wait time (MWT) 10 minutes

maximum detour factor (MDF) 1.5

period of simulation (T) 7200 seconds

period of study (T,) 3600 seconds

period of warm-up (T) 1800 seconds

period of cool-down (Tc) 1800 seconds

interval of assignment (Ta) 30 seconds

interval of rebalancing (T,) 150 seconds

penalty wait time (PWT) 20 minutes

base fare (Cbase) $0.83

per-unit-time fare (ctime) $0.11/min

per-unit-distance fare (cdist) $0.55/km

discount for sharing (DC) 25%

5.2 Impact of Service Design

5.2.1 Fleet Sizing

Service rate, wait time and detour factor are unknown parameters in the utility function.

Starting with initial values, the demand-supply interaction is able to reach balance in about

ten steps. As illustrated in Figure 5-la, demand volume converges to different levels when

fleet size varies. A larger fleet leads to higher service rates and shorter wait times. This

is shown in Figure 5-1b. Consequently, travelers are more likely to choose the service and

demand grows. In contrast, the fleet size has little impact on detour factor. This stabilizes

at a very low level (1.15), shown by the orange curve in Figure 5-1d. Average travel time is

also steady (around 520s) regardless of the changing fleet size.

From the operator's point of view, providing more vehicles will result in increased total

vehicle service distance traveled, this is shown in Figure 5-1c. The average load also drops

from 1.30 to 1.16 as shown in the blue curve in Figure 5-1d. This indicates that, although

a larger fleet size does improve the level of service, it also boosts the operational costs and

decreases the vehicle occupancy. The nature of the fleet sizing problem is therefore the trade-

off between the benefits to travelers and operators. Assuming the operator is contracted to

guarantee high service rates (above 99%) and the operator is cost-averse to large capital
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on travelers and the operator.

investment, a fleet size of 230 might be a good point of balance. At this fleet size, we will

have around 1950 trips per hour. The rebalancing distance accounts for less than 10% of

the total distance traveled.

5.2.2 Vehicle Capacity

A taxi-like vehicle usually accommodates 4 travelers. However, allowing trips to be shared

between many travelers does have side effects on travel experience: each traveler has less

space in the vehicle, has higher uncertainty in estimated arrival time as well as experiences

more delay due to pickups and drop-offs of fellow passengers. The operator may limit

the capacity of sharing to 2 or 3 in order to improve the travel experience; they can also
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choose to provide non-shared rides if capacity is set to be 1. We assume that the same

discount for sharing still applies and test here the different capacities. Figure 5-2a shows

that, the operator need around 560 vehicles to guarantee the 99% service rate if sharing is

not available. If vehicles can be shared by at most 2, 3 and 4 travelers, the required fleet

size would be 310, 260 and 230 respectively. This demonstrates the power of sharing. When

sharing becomes the common practice, the number of vehicles on road can be reduced by

more than half.
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(a) The vehicle capacity-fleet size curve is de- (b) Both load factor and detour factor in-
creasing and above the ideal curve. creases as vehicle capacity becomes larger.

Figure 5-2: Impact of vehicle capacities on travelers and the operator.

We also compare the results with the ideal scenario where all trips can be shared perfectly.

In that case, the necessary fleet size should be cut to 1/4 when capacity increases from 1 to

4 as shown by the dotted curve in Figure 5-2a. However, the perfectly-shared trips (with

same origin, destination and departure time) can only be found very occasionally in real

life, especially in the real-time systems. Therefore, the benefit of moving to larger vehicles

becomes less significant when vehicle capacity is already sufficiently large. This conclusion

neglects the existence of micro-transit services which do use vans/buses. Additionally, since

most mobility-on-demand services use shared rides, the commonality of cars means that

they are the predominant choice of shared vehicle. The travel experience, as mentioned in

the beginning of this part, is indeed another consideration.

The power of sharing to reduce vehicles on road can also be explained by the increase in

vehicle load factor. When sharing is not allowed, each vehicle has an average load of 0.40,
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which implies that during more than half of the operation time vehicles are traveling empty.

The low efficiency of vehicle use is also a result of the first-mile service. Since most of the

travelers use AV from home to rail station for downtown in the morning, the pickup trips

(from station to another trip origin) are usually empty. If vehicles are shared, the load factor

increases from 0.40 to up to 1.18, leading to a much higher efficiency and lower operational

cost. We also notice that sharing also causes detour, with the factor ranging between 1.10

to 1.15. This indicates that travelers would experience around a 10% to 15% increase in

their in-vehicle travel times if sharing is activated

5.2.3 Hailing Policy

Providing more vehicles and rebalancing idle vehicles can help to improve the availability

the service. However, due to the asymmetrical pattern of first-mile trips and the nature

on-demand dispatching, it's nearly impossible for operator to ensure 100% service rate.

of

of

(a) Scatter of the origins of the
predicted trips. The satellite
town, Biggin Hill, is the ag-
glomeration in the southwest.

(b) Likelihood of walking away
assuming on-demand requests
only. Dark marker indicates
high chance.

(c) Likelihood of walking away
if in-advance requests are al-
lowed in satellite town.

Figure 5-3: Impact of hailing policy on service availability.

The origins of the predicted trips are geographically scattered in CSA this shown in

Figure 5-3a. Given that there is a limited number of vehicles and only on-demand requests

are allowed, it's likely that some travelers would walk away due to long wait times. In this

case, the origin-specific likelihood of walking away is shown in Figure 5-3b. The darker the

marker is, the less likely a traveler from there will get a vehicle. We notice that the satellite

town, Biggin Hill, in the southwest of CSA is particularly underserved because it's distant

from the main concentration of demand. Only 34.7% of trips from there are served there.
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In contrast, the service rate of the rest of CSA is 99.2%.

To respond to the low availability of service, we propose that in the rest of the scenarios

travelers from Biggin Hill are able to request in advance and assume that half of them choose

to do so. In this case, the service rate there is largely improved (85.5%) as shown in Figure 5-

3, with the availability in the rest of CSA experiencing a relatively small decrease (98.5%).

This could be a result of planning for the in-advance requests and moving vehicles from main

area to southwest. In practice, the operator might charge differently for in-advance requests

and provide differentiated fares for products with high service guarantee to travelers with

high willingness-to-pay. For the sake of simplicity, we use the in-advance requesting policy

in the rest of the scenarios and maintain the universal fare structure.

5.3 Preference to AV

ASC reveals the intrinsic preference of travelers to the proposed AMoD service. However,

there is a lack of empirical evidences in the literature evaluating such a preference. In this

part of the simulation, we test three ASCs to reflect the uncertainty in travelers' preference

to the service: -3.58 (lower bound), -3.00 (midpoint) and -2.35 (upper bound). Figure 5-4a

implies that, as ASC becomes less negative, the utility of traveling by AV increases and the

demand volume grows exponentially (from around 700 to 1950 to 3950).
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Figure 5-4: Impact of preference (ASC) on system scale and performance.

In order to maintain the same level of service, the operator should deploy a much larger
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fleet if the service rate of 99% is still guaranteed. When ASC grows from -3.58 to -3.00

and -2.35, the fleet size increases from 110 to 230 and 400 respectively. Figure 5-4a also

depicts the relation between demand volume and fleet size. The concave curve indicates the

economies of scale of the system as the increased volume of demand results in decreased

number of vehicles per traveler. The economies of scale can be explained by the fact that

travelers are more likely to get paired together when more requests emerge at the same time.

The increasing load factor in Figure 5-4b also supports this observation. In contrast, the

detour factor remains at the level of around 1.15.

5.4 Before-and-After Mode Shares

Table 5.3 shows the total trips made by all modes before and after the launch of the AMoD

service. "Before" and "After" are the number of trips and mode shares for each of the modes

in the system. "Shift to AMoD" shows the number and percentage of trips shifted from car,

bus, rail and P/K+R to the AMoD service. Trips to downtown, despite the mode, have much

higher loss rate because AV as the first-mile connection to rail produces more attractive trip

characteristics in terms of shorter travel time and higher availability. The total ridership

of rail does not decrease in this case, since AV only serves the first-mile connection. The

conversion from car trips to AMoD will bring even more travelers to rail.

Table 5.3: AMoD Service Ridership and Mode Share Analysis

Before After Shift to AMoD
Trip Type Mode Trips Share Trips Share Trips % Shift

Car 775 10% 441 5% 334 43%
Rail 5968 74% 3661 46% 2307 39%

Downtown P/K+R 1277 16% 723 9% 554 43%
AMoD 0 0% 3195 40% N/A N/A
Total 8020 100% 8020 100% 3195 40%
Car 22715 86% 20373 77% 2342 10%
Bus 3629 14% 3109 12% 520 14%

Intrazonal AMoD 0 0% 2862 11% N/A N/A
Total 26344 100% 26344 100% 2862 11%

No observations for walk, bike and taxi.
All of the downtown trips use AV for rail connection, while only 10% of the intrazonal
trips involves bus or rail. The rest of them are AV-only.

As for intrazonal trips, conversion from car is the smallest. This is likely the result of the

high car ownership in CSA. In the long term, the new service may change the attitude of the
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residents towards owning private vehicles. However, bus operator does see a decrease of 14%

in ridership. This confirms that AV service would have negative impact on the ridership

and revenue of PT operators.

CarRail

P/K+R

Car

Bus

Figure 5-5: Percentage of AMoD trips from each existing mode (left: downtown trips; right:
intrazonal trips).

Figure 5-5 shows the percentage of AMoD trips from each mode. Car trips were domi-

nating the CSA, and if AMoD service is introduced, they contribute to around 45% of the

AMoD market (10% for downtown trips, and 82% for intrazonal trips). Also, we notice that

for downtown trips, more than 73% of the AMoD travelers were using rail for downtown.

They will continue using rail but will take advantage of AV as their access mode. Bus and

P/K+R travelers contribute equally to the rest of the AMoD trips.
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Chapter 6

Value of Information

6.1 AMoD Systems with Information

Information and communication technologies are critical factors in successful AMoD applica-

tions. A good information system allows smooth exchange of information between travelers

and the operator, enabling both parties to be better informed and make more coordinated

use of the resources. Current MoD applications often rely on online-enabled platforms for

communication, and the conceptual autonomous systems are highly likely to follow the same

technology choice. However, as the amount of data is multiplying and the desire for real-

time solutions continues to grow, the effective management of information in such AMoD

systems becomes critical and should require more investigation.

In this chapter, the discussion will be focused on the demand information in AMoD sys-

tems as well as its value for the operation. The demand information is defined to include all

details about the requests at both aggregated level and individual level. Minimum informa-

tion such as the origins, destinations and time constraints of the on-demand requests is the

baseline of providing the AMoD service. By gaining more details of the demand information

and knowing them ahead of time, the operator also has a chance to improve the dispatching

decisions relating to both assignment and rebalancing. Potentially, it will help to achieve

higher level of service and better financial profitability.

Travel information prepared for the travelers is also important for advising on their

travel choices and guiding their behaviors. However, this topic is beyond the scope of the

discussion in this chapter.
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6.1.1 Individual Demand Information

The individual demand information includes the origins, destinations, and time constraints

(typically, earliest pick-up time, latest pick-up time and latest drop-off time) of the upcoming

requests. The dataflow of the individual information often involves the mutual communi-

cation between the travelers and the operator: travelers send on-demand or in-advance

requests to the operator; based on the constraints of a request as well as the availability at

the supply side, the operator responds by either assigning a vehicle for its service or rejecting

the request.

In most of the cases, the MoD system only serves on-demand requests. As a result, the

individual request information becomes known to the system in a fully dynamic way, and

the operator responds to the requests in real time. For travelers, on-demand services seem

to be particularly desirable because it provides absolute flexibility both in time and space.

However, from the operator's perspective, having individual information a priori is beneficial

since it enlarges the search space and makes better dispatching solutions possible. For this

reason, the operator may want to nudge for in-advance requests from travelers.

One way of doing so is by incentivizing travelers through either monetary leverage or

product differentiation. The latter approach consists of prioritizing in-advance requests in

the dispatching algorithms. In fact, the in-advance requests are associated naturally with

the service priority: by sending a request in advance, the traveler avoids competing with

other on-demand requests traveling at the same time and has a higher probability of getting

assigned a vehicle. Once assigned, the service is secured as we assume there is no turning

down after the assignment has been made.

Under this assumption, in-advance requests reduce the uncertainty in the making of the

trip, including the potential long wait, late arrival and even rejection of service. Therefore,

it can be attractive to some travelers, despite the loss of flexibility in travel time. For the

operator, the trade-off of in-advance requests is also evident: the operator benefits from

the information a priori to improve the dispatching efficiency; however, it has to pay for

it by promising service priority to these trips, although some trips may turn out to be not

profitable.

The operator may also infer future trips based on the historical data at its disposition.

Technically, this involves predicting the individual spatio-temporal behavior of frequent
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travelers based on Bayesian models or Markov chain-based models. A very relevant research

work can be found in Zhao et al. [531. However, predicting the exact starting time and

location of a trip is still extremely challenging, and the state-of-the-art algorithms often

give probability distributions for the values instead of point estimates. To incorporate the

distributions into dispatching as input, stochastic assignment algorithms are preferred to

their deterministic counterparts. The performance of such algorithms varies, depending on

not only the form and quality of the prediction, but also the computational capacities, as

stochastic methods often have high complexity. Therefore, the algorithms should be selected

on a case-by-case basis.

6.1.2 Aggregated Demand Information

The aggregated demand information usually takes the form of OD-specific demand vol-

umes or zonal demand volumes. Although aggregated information has little impact on the

performance of deterministic assignment and routing algorithms, it does contribute to the

system-level decisions such as determining the best fleet size and rebalancing the idles ve-

hicles dynamically. Specifically, the optimal rebalancing algorithm discussed in Section 4.2

and used in the following simulations relies on the predicted demand volumes to estimate

the potential benefit of rebalancing vehicles to each zone.

In contrast to the individual case, the models for predicting the aggregated demand

information have been well established in the literature. To estimate the potential demand

of a new service, mode choice models are powerful tools, which permit comparison between

the importance of attributes of the new mode and that of the existing alternatives. If the

service is currently running, the operator could take advantage of the existing data to predict

the aggregated demand in short and long terms.

6.2 Value of Demand Information

6.2.1 Level of Information

Depend on the different system settings, operating modes, data collection mechanisms and

prediction/inference models, an AMoD operator may have different levels of knowledge

of demand information. When evaluating the level of information in dynamic systems,

dynamism, accuracy and granularity are three important attributes.
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" Dynamism measures the reaction time between the time a piece of information is

available, and the time it expires. When it comes to individual demand information,

the reaction time is defined as the period between the time a request is known to the

dispatcher, and the time it is supposed be picked up [421. A system which allows only

on-demand requests is said to be fully dynamic; a system that has all information a

priori is fully static.

" Accuracy represents the closeness of a piece of information to the true value using

statistical and probabilistic tools. Requests directly communicated with the operator

often accurately describe the actual trips the travelers will make. For this reason,

when making dispatching decisions, large-scale MoD applications often ignore the un-

certainty, such as potential delayed pick-up, changed destination and cancellation due

to travelers. In contrast, demand information inferred from the data is much less

accurate. Point estimate that gives a single value of estimate is unlikely to happen.

Instead, we may use confidence interval to specify a range within which the value

is estimated to lie as well as its probability to lie; some other forms of probability

distribution including normal distribution are also widely used.

" Granularity in both spatial and temporal dimensions indicates the level of detail pre-

sented in a set of data. When conducting demand analysis, the operator often divides

the service area into transport analysis zones and choose appropriate size of zones for

desired level of detail. The period of study may also be separated into multiple time

segments to deal with fluctuating demand. The confidence interval is another example

of the granularity, as the interval itself could be treated as a level of fineness. Highly

granular (finer) information is often desirable, yet it increases the scale of the problem

in almost every aspect.

Given the different levels of information, the operator should plan the dispatching strate-

gies accordingly to take the best advantage of the available information and fit the special

operational needs. In general, the state-of-the-art algorithms have no special difficulty when

moving from static systems to dynamic ones, and from low granularity to high granularity.

The only challenge arises from the probability distributions, for which complex stochastic

algorithms are required.

A compromised balance that stems from the information inference is the trade-off be-
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tween accuracy and granularity. As in interval estimates, the confidence interval is tightly

coupled with the confidence level: the narrower the range is (higher granularity), the less

probable that the true value falls into the estimated range (lower accuracy). A larger sample

size will normally lead to better estimate. However, in practice, the cost of collecting and

processing large amount of data should be taken into account.

Another concern tied to the accuracy-granularity trade-off is the privacy. The travel

information often contains sensitive personal information that may be used to locate a single

person's home and workplace, to follow its activities, even to distinguish the individual

identity. In this sense, travelers may find it unwanted to share highly granular data. In

response to this concern, some MoD operators propose selected spots for picking up and

dropping off as an alternative of the door-to-door service. This option also facilitates the

operation, as multiple riders are more likely to be grouped together. By deliberately avoiding

locations that require long detour and recommending selected spots instead, the routing part

of the algorithms can also be improved.

Spatial Granularity for Aggregated Information

In this chapter, we will compare scenarios with different levels of spatial granularity with

regard to the aggregated demand information. The base scenario treats the entire service

area as a whole and the operator is only informed of the estimated total demand. This

scenario has the coarsest granularity. Each of the remaining scenarios divide the area into

a selected number of gridded zones. For each specific zone, the predicted demand volume

is made available to the operator. Finer griding indicates higher spatial granularity of the

aggregated demand information.

We also assume that the predicted volumes are known a priori (no dynamism), exact

(prefect accuracy) and constant throughout the simulation period (zero temporal granu-

larity). As long as the aggregated demand information is available at the zonal level, the

operator rebalances the idle vehicles dynamically following the optimal rebalancing strategy

presented in Section 4.2.

Degree of Dynamism for Individual Information

In the following simulation experiments, we assume that the individual demand information

comes directly from the requests of travelers. We also suppose that a portion of the travelers
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are allowed to send requests in advance. The partially dynamic system then serves a mix of

in-advance and on-demand requests in real time.

The information of a request r is described as a combination of origin or, destination

dr, earliest pick-up time te,r and latest pick-up time ti,r. We further assume that these

values have prefect accuracy and granularity. Consequently, dynamism becomes the only

determining factor of the level of information. Following Larsen et al. [421, the degree of

dynamism is defined as the average reaction time of all requests, divided by the total time

of study T.

1 / ter -ts'rdod = ( I - 'T' (6.1)

7Z is the set of all requests including on-demand requests Ro.d and in-advance requests lZadv.

The sizes of the sets are R, Rond and Radv respectively. R = Rond U IZadv . R = Rond + Radv.

ts,, is the sending time of request r; te,,r is the earliest pick-up time. The difference between

te,r and t,,, is the reaction time for system to dispatch. For any on-demand request r E lZon,

the system should respond in real time and we have thus t,,= ts,r. The reaction time for

r E Rnd is therefore zero.

It is easy to see that dod = 100% when system is totally dynamic and all requests are

sent on demand. The degree of dynamism decreases as the proportion of in-advance requests

increases. Longer reaction time also leads to less dynamic system.

Multiple scenarios have also been created to compare different levels of individual demand

information. The base scenario assumes a fully dynamic system with on-demand requests

only. This is compared with systems under two different hailing policies: (a) a portion of

travelers from the underserved Biggin Hill send requests in advance; (b) a portion of travelers

randomly selected from the entire area are in-advance users. The degree of dynamism reflects

the percentage of in-advance requests in the system; however, the spatial distribution of the

in-advance requests is omitted in this metric and requires further discussion together with

the simulation results.

We also assume that the reaction time for all in-advance requests is 30 minutes (1800s),

same as the value used in Chapter 5. The period of study T, remains one hour (3600s),

with both warm-up and cool-down periods before and after. Under these assumptions, the

degree of dynamism of a system with perfect in-advance information is 50%.
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6.2.2 Value of Information

Inspired by Mitrovid-Mini6 et al. [39], the value of information in this chapter is defined as:

voi = F' (6.2)

The metric measures the objective gain in percentage. F is the value of the objective

function when additional information is available; F' is the objective of the base scenario in

which information is limited to the necessary minimum. Generally speaking, the value of

information is positive since information enlarges the search space and has the potential of

improving the performance of the system. However, it is still probable that in some scenarios

information may lead to negative value of information.

The operation of the AMoD system may have different objectives. Profit-driven oper-

ators seek for maximum profit; travelers care about level of service and travel cost; and

the government have more considerations in mind regarding system-level performance. The

interests of multiple stakeholders may either correlate or contradict with each other. In this

thesis, the shared AMoD system is run by a non-profit-driven government-owned operator

so as to reflect the consensus among stakeholders. The ultimate objective of the service is

therefore the common good at the system level. To this end, the dispatching algorithms have

also embodied the considerations of service availability and equity and have the objective of

minimizing the system-wide travel time, as illustrated in Chapter 4.

However, the system-wide travel time as an objective is not appropriate for the evaluation

of the performance when system is running over capacity and all requests can not be served.

In this chapter, we propose to use the average number of served requests instead. The

average number of served requests, simple in its form, is representative of the interests of

all stakeholders. From the system-level point of view, it reflects the size of the population

that can benefit from the service. Travelers also prefer higher value since it indicates higher

service availability. As for the operator, the average number of served requests implies

revenue. As long as the AMoD service is in good profitability, a higher value is always

preferred as it leads to higher profit.

Two more indicators are also used in the analysis. For travelers, the adjust wait time is

a critical indicator for the attractiveness of the service. For the operator, it can not always

afford running a service with very short wait time, since it requires very large fleet and
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reduces the vehicle occupancy. This to some extent contradicts with the ultimate interests

of profitability, even if it's assumed to be not profit-driven. In this chapter, we use profit

made during the period of study as an indicator for the AMoD operator. The profit can be

derived from its fare revenue and operational cost.

The revenue is generated from the farebox. In Section 3.3.2, the price of a single trip is

defined based -on the fare structure in Equation 3.4. The total revenue of the operator will

be the sum of fares collected from all trips served during T. In the following analysis, we

keep using the assumed values in Section 3.3.2: the base fare Cbase = $0.83, per-unit-time

fare ctime = $0.11/min, per-unit-distance fare Cdist = $0.55/km and the discount for sharing

DC remains 25%.

The cost of operating a fleet can break down into fixed cost and variable cost. Wen

et al. [151 propose that the current fare Zipcar adopts for renting cars to Uber drivers can

be used. This makes a fixed cost of $0.06/min and a variable cost of $0.29/km. Based on

the vehicle distance traveled and the operating hours of each vehicle, we can then get the

total operating cost.

6.3 Value of Information Experiments

6.3.1 System Settings and Simulation Scenarios

In this section, the value of demand information is studied through agent-based simulation

experiments. The values determined in Table 5.2 remain unchanged throughout the simula-

tion. As for the system settings, we further assume that ASC is -3.58 for all scenarios; fleet

size is 110; and vehicle capacity is 4.

For illustration purposes, only a few scenarios are selected and simulated, as shown in

Table 6.1. This table is designed to demonstrate the impact of the level of information on

the value of information using metrics such as spatial granularity for aggregated information

and degree of dynamism for individual information. Due to the limitation of deterministic

and heuristic dispatching algorithms, we do not seek to exhaust all possible scenarios, as

many of them require major modification to the current algorithms.

Scenario 1 represents the base scenario of a mobility-on-demand system with minimum

information, in which all requests are sent on demand and the operator has no knowledge of

the demand beforehand. Scenarios 2a and 2b assume that demand volumes are known at the

74



Table 6.1: System Settings and Simulation Scenarios (Value of Information)

Level of Information
Simulation Scenario Aggregated Individual

Spatial Granularity Other Attributes Dynamism Other Attributes
Scenario 1 total demand (coarsest) as in 6.2.1 on-demand requests only (fully dynamic) as in 6.2.1
Scenario 2a zonal demand, 5 x 5 griding as in 6.2.1 on-demand requests only (fully dynamic) as in 6.2.1
Scenario 2b zonal demand, 10 x 10 griding as in 6.2.1 on-demand requests only (fully dynamic) as in 6.2.1
Scenario 3a zonal demand, 10 x 10 griding as in 6.2.1 50% in-advance requests from Biggin Hill as in 6.2.1
Scenario 3b zonal demand, 10 x 10 griding as in 6.2.1 5% in-advance requests from entire CSA as in 6.2.1
Scenario 3b zonal demand, 10 x 10 griding as in 6.2.1 10% in-advance requests from entire CSA as in 6.2.1

n-advance is equivalent to

__4

The number of trips from Biggin Hill accounts for 10% of the total number of trips. In this case, 50% of the Biggin Hill trips being i
5% of the total trips in terms of the degree of dynamism.

** In simulation, a request is in-advance request with the aforementioned probability. The choice of a request is independent to others.



zonal level, which is true for most of the current MoD operators. However, current systems

barely rebalance idle vehicles due to the difficulty in negotiating with human drivers. The

conceptual autonomous systems, in contrast, comply perfectly with the dispatching decisions

and make the execution of optimal rebalancing algorithms almost effortless.

Scenarios 3a, 3b and 3c are not widely seen in real-world applications. However, as

the share of the service continues to grow, we expect that differentiated products such as

in-advance requests and prioritized services will emerge in the market. Huge amount of

data collected during the service will also contribute to individual trip prediction. This in

return pushes forward the intelligent operation and product differentiation. Travelers will

also have the freedom to choose from a variety of products. In the sense of free choice,

Scenario 3a appears to be more realistic, since travelers from Biggin Hill are more likely to

take advantage of the in-advance requests in order to secure service. The service rate in

the rest of the area is above 99% in general (see Section 5.2.3). With almost perfect service

availability, travelers would prefer to travel as they like. In this case, on-demand request

outperforms its in-advance counterpart for its flexibility in time and space.

6.3.2 Results and Analysis

Aggregated Information

As illustrated in Figure 6-la, rebalancing is effective for increasing the service availability.

The more granular the aggregated demand information is, the better the performance of

rebalancing will be. Higher granularity also leads to shorter adjusted wait times as shown

in Figure 6-1b. This could be explained by two reasons: (a) rebalancing moves idle vehicles

to be closer to the potential demand; (b) higher service availability imposes less penalty on

the adjusted value.

From the operator's perspective, applying rebalancing strategies has slightly negative

impact on profitability. On one hand, when rebalancing is enabled, the revenue increases

as more travelers are served during the period of study. On the other hand, rebalancing

will inevitably increase the operational cost since it induces empty rebalancing distance.

Unfortunately, the revenue could not compensate for all the induced cost. As shown in

Figure 6-1c, the profit the operator makes each hour drops from $610 to less than $550.
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Figure 6-1: Impact of aggregated demand information on system performance.
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Individual Information

We also compare the different degrees of dynamism: Scenario 2b allows only on-demand

requests and has 100% degree of dynamism; in Scenario 3b, 5% of the travelers are in-advance

users and the degree of dynamism is 97.5%. Scenario 3c has 10% in-advance requests and

therefore a degree of dynamism of 95.0%

Figure 6-2a and Figure 6-2b show the performance at the system level and from traveler's

point of view. The number of served requests increases as the percentage of in-advance

requests grows from 0% to 5%, which corresponds with our expectation that information

brings value. However, as the percentage of in-advance requests continues to grow from

5% to 10%, its impact on the system becomes negative. The negative value of information

can be explained by the associated service priority. In Section 6.1.1, the assumption has

been made that a traveler can not be turned down (i.e. rejected service) after it has been

assigned a vehicle. In this case, the in-advance requests become naturally prioritized and

this imposes constraints on the dispatching. Heuristic assignment methods that reoptimize

the pairing may alleviate the problem.

Surprisingly, the decrease in level of service does not lead to the reduction in profit, as

shown in Figure 6-2c. In contrast, the profit keeps growing when more in-advance requests

are coming in. This might be due to the fact that having demand information a priori

makes ride-sharing more possible and enables better assignment solutions (for travelers,

more sharing increases the detour factor from 1.11 to 1.13). This reduces the service distance

traveled by the vehicles from 19.0km to 17.0km per vehicle per hour, thus decreases the

operational cost. If the operator is profit-driven, the in-advance requests could be even

more profitable. It could charge differently for products with prioritized service, since some

of the travelers that are more sensitive to travel time have higher willingness-to-pay.

Lastly, we compare Scenario 3b with Scenario 3a. According to the demand prediction,

the number of trips from Biggin Hill accounts for 10% of the total number of trips. Scenario

3a assumes that 50% of the travelers from Biggin Hill send requests in-advance, equivalent

to 5% of the total trips. The degree of dynamism is therefore 97.5%, same as Scenario 3b.

The only factor that makes difference is the spatial distribution of the in-advance requests.

Simulation results show that, by having travelers from Biggin Hill send requests in ad-

vance, the number of served requests per hour increases significantly from 663 to 723. Ad-
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justed wait time also decreases from 364 seconds to 328 seconds. Using the number of served

requests as the objective in Equation 6.2 and Scenario 2b as the base, the value that the

in-advance requests in Biggin Hill brings to the system is more than 9%. As a comparison,

the value of information in Scenario 3b is only 4%. As for the operator, in Scenario 3a,

the profit it makes increases from $538 to $726 (+35%), while in Scenario 3b the profit is

only $592 (+10%). We notice that, the travelers that the base scenario rejects are generally

from Biggin Hill and other remote areas and have relatively longer travel distance. Once in-

advance requests are enabled and they can served, these travelers contribute a much higher

portion to the farebox. The growth of profit is therefore much more significant that the

growth of number of served requests.
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Chapter 7

Conclusion

7.1 Future Research Needs

This thesis offers a systematic approach to the design, simulation and evaluation of AMoD

systems and demonstrates specific AMoD service designs. The system design and model-

ing framework reflect the transit-oriented considerations that are important for high service

availability, seamless connections, and equity. Using demand-supply interaction, the sim-

ulation platform represents the choices of both travelers and operators. System design

experiments show the trade-off between improving level of service and traveler experience,

and the cost of larger fleet size and low occupancy, providing the starting point of identifying

the optimal balance. We also observe that encouraging ride-sharing and allowing in-advance

requests are tools to enable efficient service and sustainable travel.

The thesis also identifies the critical role of demand information in successful AMoD

operation. Multiple attributes, including dynamism, accuracy and granularity of informa-

tion, collectively shape the performance of a system. The numerical results help rationalize

the efforts operators should spend on data collection, information inference and advanced

dispatching algorithms. If the demand information is managed effectively, it has significant

impact on the value the system can bring to either traveler, operator, or society as a whole.

We point the future research needs in three broad areas:

The first is to explore a range of service design scenarios and value of information scenar-

ios. Due to the time limit as well as the technological constraints, this thesis only examines

part of the scenarios through simulation in an empirical manner. Introducing differentiated

products, various fare structures, and different hailing policies will change both the travel
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behavior and the system design, and all these scenarios could be evaluated through simula-

tion. Based on the interests of different stakeholders, the objective function of dispatching

should also be carefully designed to reflect this need.

The second is to develop advanced dispatching strategies so as to accommodate proba-

bilistic information. The probability distribution blurs the boundary of assigning vehicles

to the known requests and rebalancing idle vehicles for the unknown. In this case, stochas-

tic algorithms should come into play to replace the deterministic methods. Moreover, high

percentage of in-advance requests enlarges the search space. The gap between the accuracy

of current algorithms and that of optimum is therefore widen. This also requires the imple-

mentation of metaheuristic algorithms with higher accuracy; although the accuracy could

be at the sacrifice of the computational speed.

The third is to examine how AMoD system will impact the transportation system, es-

pecially active modes and public transit. The convenience of the door-to-door service may

deprive people of the opportunity to walk and cycle. Simulations, state preference surveys,

and field studies could help empirically assess the impact of AVs on these modes. Similarly,

it is also important to examine how bus service needs to be reoptimized. More broadly the

simulation model should to be expanded to include bus service so that we can consider the

AV fleet and bus fleet management jointly.

Other potential directions include:

e to understand the cost of operating and maintaining the AV fleet in AMoD systems;

9 to evaluate performance of different system designs under uncertainty, as many factors,

parameters and assumptions made in the thesis are uncertain and different sources of

uncertainty have different impacts on system performance;

e to close the system design loop in Figure 3-1 by incorporating design variables into

the interaction mechanism.

7.2 Rethinking amod-abm

System design is the process of conceptually defining infrastructure and elements of a system

to satisfy the specified requirements and constraints. The design of the agent-based simula-

tion platform, amod-abm, which has been intensively used in this research, also followed the
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system design guideline. However, during the past one year and half, the scale and scope of

the project have grown continuously, much faster than expected. The research objective and

requirements have also been redefined throughout the period to answer new questions. In

this case, many of the original elements in amod-abm have become incompatible with present

needs. Although the author has been adding new modules to replace old ones and create

new features at a good pace, the development of amod-abm is still far from complete.

The following features and modifications have been planned and the development of

them should be prioritized in the near future:

" to move from constant demand to time-variant demand so as to simulate the AMoD

operation of an entire day;

" to shift from static travel time to stochastic time and upgrade routing modules.

" to implement stochastic algorithms that are compatible with the probabilistic demand

information;

" to develop partially dynamic assignment algorithms to accommodate high percentage

of in-advance requests and decouple with service priority.

" to extend the deep Q network to multi-agent models to correct overreacting and im-

prove training performance;

It would also be very helpful to rethink the original system design. Impossible though,

if the following points could have been thought of in the very beginning, the development

would follow a clearer path and be more efficient.

* The first is the framework of the interaction mechanism. In fact, in this research,

the concept of interaction was developed a posteriori, and the original simulation

infrastructure did not explicitly include the mode choice model. The model was not

incorporated into the system until we realized that the demand and supply in the

system were interdependent. Even today, part of the mode choice model still relies on

Excel files: ugly, inconsistent and slow.

* The second is the modularization and interfacing. Initially, the author alone was re-

sponsible for the development of the platform. However, with the expanding scope of

research, the team has also grown rapidly and more researchers have been involved.
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Consequently, the collaboration on coding becomes necessary and multiple new mod-

ules have been planned. However, the original system design underestimated the

importance of extensibility.

* The third is the forever trade-off between the computational speed and the solution

accuracy. Specifically, the design of the offline routing engine and static map database

all targeted at fast computation for scalability. However, the current computational

performance is still limited due to the capacity of single machine. As the number

of decision variables increases and more sophisticated algorithms come in use, the

problem of computational speed will become even more severe. Applying heuristics

can alleviate this, rewriting Python code in C++ and redesigning the data structure

also help, but the ultimate solution should be undoubtedly parallelization.
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