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Electric routing and concurrent flow cutting

Jonathan Kelner ∗ Petar Maymounkov ∗

September 15, 2009

Abstract: We investigate an oblivious routing scheme, amenable to distributed computation and
resilient to graph changes, based on electrical flow. Our main technical contribution is a new round-
ing method which we use to obtain a bound on the `1 → `1 operator norm of the inverse graph
Laplacian. We show how this norm reflects both latency and congestion of electric routing.

1 Introduction

Overview We address a vision of the Internet where every participant exchanges messages with their
direct friends and no one else. Yet such an Internet should be able to support reliable and efficient
routing to remote locations identified by unchanging names in the presence of an ever changing graph
of connectivity.

Modestly to this end, this paper investigates the properties of routing along the electric flow in a
graph (electric routing for short) for intended use in such distributed systems, whose topology changes
over time. We focus on the class of expanding graphs which, we believe, gives a good trade-off between
applicability and precision in modeling a large class of real-world networks. We address distributed
representation and computation. As a measure of performanace, we show that electric routing, being
an oblivious routing scheme, achieves minimal maximum edge congestion (as compared to a demand-
dependent optimal scheme). Furthermore, we show that electric routing continues to work (on average)
in the presence of large edge failures ocurring after the routing scheme has been computed, which attests
to its applicability in changing environments. We now proceed to a formal definition of oblivious routing
and statement of our results.
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JONATHAN KELNER AND PETAR MAYMOUNKOV

Oblivious routing The object of interest is a graph G = (V, E) (with V = [n] and |E| = m) undirected,
positively edge-weighted by wu,v > 0, and not necessarily simple. The intention is that higher wu,v

signifies stronger connectivity between u and v; in particular, wu,v = 0 indicates the absence of edge
(u, v). For analysis purposes, we fix an arbitrary orientation “→” on the edges (u, v) of G, i.e. if (u, v)
is an edge then exactly one of u → v or v → u holds. Two important operators are associated to every
G. The discrete gradient operator B ∈ RE×V , sending functions on V to functions on the undirected
edge set E, is defined as χ∗(u,v)B := χu − χv if u → v, and χ∗(u,v)B := χv − χu otherwise, where χy is the
Kronecker delta function with mass on y. For e ∈ E, we use the shorthand Be := (χeB)∗. The discrete
divergence operator is defined as B∗.

A (single-commodity) demand of amount α > 0 between s ∈ V and t ∈ V is defined as the vector
d = α(χs − χt) ∈ RV . A (single-commodity) flow on G is defined as a vector f ∈ RE , so that f(u,v)
equals the flow value from u towards v if u → v, and the negative of this value otherwise. We also use
the notation fu→v := f(u,v) if u → v, and fu→v := − f(u,v) otherwise. We say that flow f routes demand d
if B∗ f = d. This is a linear algebraic way of encoding the fact that f is an (s, t)-flow of amount α. A
multi-commodity demand, also called a demand set, is a matrix whose columns constitute the individual
demands’ vectors. It is given as the direct product ⊕τdτ of its columns. A multi-commodity flow is
represented as a matrix ⊕τ fτ, given as a direct product of its columns, the single-commodity flows. For
clarity, we write fτ,e for ( fτ)e. The flow ⊕τ fτ routes the demand set ⊕τdτ if B∗ fτ = dτ, for all τ, or in
matrix notation B∗(⊕τ fτ) = ⊕τdτ. The congestion ‖ · ‖G of a multi-commodity flow measures the load of
the most-loaded edge, relative to its capacity. It is given by

‖ ⊕τ fτ‖G := max
e

∑
τ

∣∣∣ fτ,e/we
∣∣∣ = ‖(⊕τ fτ)∗W−1‖1→1, where ‖A‖1→1 := sup

x,0

‖Ax‖1
‖x‖1

. (1.1)

An oblivious routing scheme is a (not necessarily linear) function R : RV → R
E which has the

property that R(d) routes d when d is a valid single-commodity demand (according to our definition).
We extend R to a function over demand sets by defining R(⊕τdτ) := ⊕τR(dτ). This says that each demand
in a set is routed independently of the others by its corresponding R-flow. We measure the “goodness”
of an oblivious routing scheme by the maximum traffic that it incurs on an edge (relative to its capacity)
compared to that of the optimal (demand-dependent) routing. This is captured by the competitive ratio
ηR of the routing scheme R, defined

ηR := sup
⊕τdτ

sup
⊕τ fτ

B∗(⊕τ fτ)=⊕τdτ

‖R(⊕τdτ)‖G
‖ ⊕τ fτ‖G

. (1.2)

Let E denote the (yet undefined) function corresponding to electric routing. Our main theorem states:

THEOREM 1.1 — For every undirected graph G with unit capacity edges, maximum degree dmax

and vertex expansion α := minS⊆V
|E(S ,S{)|

min{|S |,|S{ |}
, one has ηE 6

(
4 ln n

2

)
·
(
α ln 2dmax

2dmax−α

)−1
. This is tight up to

a factor of O(ln ln n).
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ELECTRIC ROUTING AND CONCURRENT FLOW CUTTING

The competitive ratio in Theorem 1.1 is best achievable for any oblivious routing scheme up to a
factor of O(ln ln n) due to a lower bound for expanders, i.e. the case α = O(1), given in [7]. Theorem 1.1
can be extended to other definitions of graph expansion, weighted and unbounded-degree graphs. We
omit these extensions for brevity. We also give an unconditional, albeit much worse, bound on ηE:

THEOREM 1.2 — For every unweighted graph on m edges, electrical routing has ηE 6 O(m1/2).
Furthermore, there are families of graphs with corresponding demand sets for which ηE = Ω(m1/2).

Electric routing Let W = diag(. . . , we, . . . ) ∈ RE×E be the edge weights matrix. We appeal to a known
connection between graph Laplacians and electric current [5, 13]. Graph edges are viewed as wires of
resistance w−1

e and vertices are viewed as connection points. If ϕ ∈ RV is a vector of vertex potentials
then, by Ohm’s law, the electric flow (over the edge set) is given by f = WBϕ and the corresponding
demand is B∗ f = Lϕ where the (un-normalized) Laplacian L is defined as L = B∗WB. Central to the
present work will be the vertex potentials that induce a desired (s, t)-flow, given by ϕ[s,t] = L†(χs − χt),
where L† is the pseudo-inverse of L. Thus, the electric flow corresponding to the demand pair (s, t) is
WBϕ[s,t] = WBL†(χs − χt). We define the electric routing operator as

E(d) = WBL†d (1.3)

The vector E(χs−χt) ∈ RE encodes a unit flow from s to t supported on G, where the flow along an edge
(u, v) is given by Jst, uvK := E(χs − χt)u→v = (ϕ[s,t]

u − ϕ[s,t]
v )wu,v.1 (Our convention is that current flows

towards lower potential.) When routing an indivisible message (an IP packet e.g.), we can view the unit
flow E(χs − χt) as a distribution over (s, t)-paths defined recursively as follows: Start at s. At any vertex
u, forward the message along an edge with positive flow, with probability proportional to the edge flow
value. Stop when t is reached. This rule defines the electric walk from s to t. It is immediate that the
flow value over an edge (u, v) equals the probability that the electric walk traverses that edge.

Let “∼” denote the vertex adjacency relation of G. In order to make a (divisible or indivisible)
forwarding decision, a vertex u must be able to compute Jst, uvK for all neighbors v ∼ u and all pairs
(s, t) ∈

(
V
2

)
. We address this next.

Representation In order to compute Jst, uvK (for all s, t ∈ V and all v ∼ u) at u, it suffices that u stores
the vector ϕ[w] := L†χw, for all w ∈ {w : w ∼ u} ∪ {u}. This is apparent from writing

Jst, uvK = (χu − χv)L†(χs − χt) = (ϕ[u] − ϕ[v])∗(χs − χt), (1.4)

where we have (crucially) used the fact that L† is symmetric. The vectors ϕ[w] stored at u comprise the
(routing) table of u, which consists of deg(u) · n real numbers. Thus the per-vertex table sizes of our
scheme grow linearly with the vertex degree – a property we call fair representation. It seems that fair
representation is key for routing in heterogenous sytems consisting of devices with varying capabilities.

1The bilinear form Jst, uvK = χs,tBL†B∗χu,v acts like a “representation” of G, hence the custom bracket notation.
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Equation (1.4), written as Jst, uvK = (χs−χt)∗(ϕ[u]−ϕ[v]), shows that in order to compute Jst, uvK at u,
it suffices to know the indices of s and t (in the ϕ[w]’s). These indices could be represented by O(ln n)-bit
opaque vertex ID’s and could be carried in the message headers. Routing schemes that support opaque
vertex addressing are called name-independent. Name independence allows for vertex name persistence
across time (i.e. changing graph topology) and across multiple co-existing routing schemes.

Computation We use an idealized computational model to facilitate this exposition. The vertices of G
are viewed as processors, synchronized by a global step counter. During a time step, pairs of processors
can exchange messages of arbitrary (finite) size as long as they are connected by an edge. We describe
an algorithm for computing approximations ϕ̃[v] to all ϕ[v] in O(ln n/λ) steps, where λ is the Fiedler
eigenvalue of G (the smallest non-zero eigenvalue of L). If G is an expander, then λ = O(1). At every
step the algorithm sends messages consisting of O(n) real numbers across every edge and performs
O(deg(v) · n) arithmetic operations on each processor v. Using standard techniques, this algorithm can
be converted into a relatively easy-to-implement asynchronous one. (We omit this detail from here.) It
is assumed that no graph changes occur during the computation of vertex tables.

A vector ζ ∈ RV is distributed if ζv is stored at v, for all v. A matrix M ∈ RV×V is local (with
respect to G) if Mu,v , 0 implies u ∼ v or u = v. It is straightforward that if ζ is distributed and M is
local, then Mζ can be computed in a single step, resulting in a new distributed vector. Extending this
technique shows that for any polynomial q(·), the vector q(M)ζ can be computed in deg(q) steps.

The Power Method gives us a matrix polynomial q(·) of degree O(ln n/λ) such that q(L) is a “good”
approximation of L†. We compute the distributed vectors ζ[w] := q(L)χw, for all w, in parallel. As a
result, each vertex u obtains ϕ̃[u] = (ζ[1]

u , . . . , ζ[n]
u ), which approximates ϕ[u] according to Theorem 1.3

and the symmetry of L. In one last step, every processor u sends ϕ̃[u] to its neighbors. The approximation
error n−5 is chosen to suffice (in accordance with Corollary 5.2) as discussed next.

THEOREM 1.3 — Let λ be the Fiedler (smallest non-zero) eigenvalue of G’s Laplacian L, and
let G be of bounded degree dmax. Then ‖ζ[v] − ϕ[v]‖2 6 n−5, where ζ[v] = (2dmax)−1 ∑k

ω=0 Mωχv and
M = I − L/2dmax, as long as k > Ω(λ−1 · ln n).

Robustness and latency In order to get a handle on the analysis of routing in an ever-changing net-
work we use a simplifying assumption: the graph does not change during the computation phase while
it can change afterwards, during the routing phase. This assumption is informally justified because the
computation phase in expander graphs (which we consider to be the typical case) is relatively fast, it
takes O(ln n) steps. The routing phase, on the other hand, should be as “long” as possible before we
have to recompute the scheme. Roughly, a routing scheme can be used until the graph changes so much
from its shape when the scheme was computed that both the probability of reaching destinations and the
congestion properties of the scheme deteriorate with respect to the new shape of the graph. We quantify
the robustness of electric routing against edge removals in the following two theorems:
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THEOREM 1.4 — Let G be an unweighted graph with Fiedler eigenvalue λ = Θ(1) and max-
imum degree dmax, and let f [s,t] denote the unit electric flow between s and t. For any 0 < p 6 1,
let Qp = {e ∈ E : | f [s,t]

e | > p} be the set of edges carrying more than p flow. Then, |Qp| 6

min{2/(λp2), 2dmax‖L†‖1→1/p}.

Note that part one of this theorem, i.e. |Qp| 6 2/(λp2), distinguishes electric routing from simple
schemes like shortest-path routing. The next theorem studies how edge removals affect demands when
“the entire graph is in use:”

THEOREM 1.5 — Let graph G be unweighted of bounded degree dmax and vertex expansion α.
Let f be a routing of the uniform multi-commodity demand set over V (single unit of demand between
every pair of vertices), produced by an η-competitive oblivious routing scheme. Then, for any 0 6 x 6 1,
removing a x-fraction of edges from G removes at most x · (η · dmax · ln n · α−1)-fraction of flow from f .

The expected number of edges traversed between source and sink reflects the latency of a routing.
We establish (Proven in Appendix D):

THEOREM 1.6 — The latency of every electric walk on an undirected graph of bounded degree
dmax and vertex expansion α is at most O(min{m1/2, dmaxα

−2 ln n}).

Analysis The main hurdle is Theorem 1.1, which we attack in two steps. First, we show that any
linear routing scheme R (i.e. scheme for which the operator R : RV → R

E is linear) has a distinct
worst-case demand set, known as uniform demands, consisting of a unit demand between the endpoints
of every edge of G. Combinging this with the formulaic expression for electric flow (1.3) gives us
an operator-based geometric bound for ηE, which in the case of a bounded degree graph is simply
ηE 6 O(‖L†‖1→1) where the operator norm ‖ · ‖1→1 is defined by ‖A‖1→1 := supx,0 ‖Ax‖1/‖x‖1. This is
shown in Theorem 3.1. Second, we give a rounding-type argument that establishes the desired bound
on ‖L†‖1→1. This argument relies on a novel technique we dub concurrent flow cutting and is our key
technical contribution. This is done in Theorem 4.1. This concludes the analysis of the congestion
properties of electric flow.

The computational procedure for the vertex potentials ϕ[v]’s (above) only affords us approximate
versions ϕ̃[v] with `2 error guarantees. We need to ensure that, when using these in place of the exact
ones, all properties of the exact electric flow are preserved. For this purpose, it is convenient to view
the electric flow as a distribution over paths (i.e. the electric walk, defined above) and measure the
total variation distance between the walks induced by exact and approximate vertex potentials. This is
achieved in Theorem 5.1 and Corollary 5.2. It is then easy to verify that any two multi-commodity flows,
whose respective individual flows have sufficiently small variation distance, have essentially identical
congestion and robustness properties.
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Related work Two bodies of prior literature concern themselves with oblivious routing. One focuses
on approximating the shortest-path metric [16, 15, 1, 2], the other focuses on approximating the min-
imal congestion universally across all possible demand sets [12, 8]. The algorithms in these works
are essentially best possible in terms of competitive characteristics, however they are not distributed
and do not address (competitive) performance in the presence of churn. It is not obvious how to pro-
vide efficient distributed variants for these routing schemes that are additionally resistant to churn. The
primary reason for this are the algorithmic primitives used. Common techniques are landmark (a.k.a.
beacon) selection [16, 15], hierarchical tree-decomposition or tree-packings [12]. These approaches
place disproportiantely larger importance on “root” nodes, which makes the resulting schemes vulner-
able to individual failures. Furthermore, these algorithms require more than (quasi-)linear time (in the
centralized model), which translates to prohibitively slow distributed times.

We are aware of one other work in the theoretical literature by Goyal, et al. [6] that relates to
efficient and churn-tolerant distributed routing. Motivated by the proliferation of routing schemes for
trees, they show that expanders are well-approximated by the union of O(1) spanning trees. However,
they do not provide a routing scheme, since routing over unions of trees is not understood.

Concurrently with this paper, Lawler, et al. [10] study just the congestion of electric flow in isolation
from other considerations like computation, representation or tolerance to churn. Their main result is
a variant of our graph expansion-based bound on ‖L†‖1→1, given by Theorem 4.1. Our approaches,
however, are different. We use a geometric approach, compared to a less direct probabilistic one. Our
proof exposes structural information about the electric flow, which makes the fault-tolerance of electric
routing against edge removal an easy consequence. This is not the case for the proofs found in [10].

Organization Section 2 covers definitions and preliminaries. Section 3 relates the congestion of elec-
tric flow to ‖L†‖1→1. Section 4 obtains a bound on ‖L†‖1→1 by introducing the concurrent flow cutting
method. Section 5 relates the electric walk to the electric flow and proves (i) stability against perturba-
tion of vertex potentials, (ii) latency bounds and (iii) robustness theorems. Section 6 contains remarks
and open problems.

2 Preliminaries

The Spectral Theory of graphs is comprehensively covered in [3]. The object of interest is a graph
G = (V, E) (with V = [n] and |E| = m) undirected, positively edge-weighted by wu,v > 0, and not
necessarily simple. Whenever we use unweighted graphs, we have wu,v = 1 if u ∼ v and wu,v = 0
otherwise. The Laplacian is positive semi-definite, L < 0, and thus can be diagonalized as L = UΛU∗,
where U ∈ Rn×n is unitary and Λ = diag(λ1, . . . , λn). By convention, we write 0 6 λ1 6 λ2 6 · · · 6 λn.
For every G, λn 6 2D, where D is the maximum degree. When G is connected, Ker(L) = 1, and so
LL† = L†L = π⊥1 where πW denotes projection onto W and L† denotes the pseudo-inverse of L. On
occasion we use λmin := λ2 and λmax := λn. The vertex expansion of an unweighted G is defined as

6
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α := minS⊆V
|E(S ,S{)|

min{|S |,|S{ |}
.

3 The geometry of congestion

Recall that given a multi-commodity demand, electric routing assigns to each demand the corresponding
electric flow in G, which we express (1.3) in operator form E(⊕τdτ) := WBL†(⊕τdτ). Electric routing
is oblivious, since E(⊕τdτ) = ⊕τE(dτ) ensures that individual demands are routed independently from
each other. The first key step in our analysis, Theorem 3.1, entails bounding ηE by the ‖ · ‖1→1 matrix
norm of a certain natural graph operator on G. This step hinges on the observation that all linear routing
schemes have an easy-to-express worst-case demand set:

THEOREM 3.1 — For every undirected, weighted graph G, let Π = W1/2BL†B∗W1/2, then

ηE 6 ‖W1/2ΠW−1/2‖1→1. (3.1)

Proof of Theorem 3.1. It is sufficient to consider demand sets that can be routed in G with unit conges-
tion, since both electric and optimal routing scale linearly with scaling the entire demand set. Let ⊕τdτ
be any demand set, which can be (optimally) routed in G with unit congestion via the multi-commodity
flow ⊕τ fτ. Thus, dτ =

∑
e fτ,eBe, for all τ.

The proof involves two steps:

∥∥∥E(⊕τdτ)
∥∥∥

G

(i)
6

∥∥∥E(⊕eweBe)
∥∥∥

G
(ii)
=

∥∥∥W1/2ΠW−1/2
∥∥∥

1→1

Step (i) shows that congestion incurred when routing ⊕τdτ is no more than that incurred when
routing G’s edges, viewed as demands, through G:∥∥∥E(⊕τdτ)

∥∥∥
G =

∥∥∥ ⊕τ E(dτ)
∥∥∥

G (i)

=
∥∥∥ ⊕τ E

(∑
e

fτ,eBe
)∥∥∥

G use dτ =
∑

e

fτ,eBe

=
∥∥∥ ⊕τ ∑

e

E( fτ,eBe)
∥∥∥

G use E
(∑

j

d j
)

=
∑

j

E(d j)

6
∥∥∥ ⊕τ,e E( fτ,eBe)

∥∥∥
G use

∥∥∥∑
j

f j
∥∥∥

G 6
∥∥∥ ⊕ j f j

∥∥∥
G

=
∥∥∥ ⊕e E

(∑
τ

| fτ,e|Be
)∥∥∥

G use
∥∥∥ ⊕ j α j f

∥∥∥
G =

∥∥∥∑
j

|α j| f
∥∥∥

G

6
∥∥∥ ⊕e E(weBe)

∥∥∥
G use

∑
τ

| fτ,e| 6 we

=
∥∥∥E(⊕eweBe)

∥∥∥
G

7
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∥∥∥E(⊕eweBe)
∥∥∥

G
(1.1)
=

∥∥∥E(⊕eweBe)∗W−1
∥∥∥

1→1 (ii)
(1.3)
=

∥∥∥WBL†B∗WW−1
∥∥∥

1→1 = ‖W1/2ΠW−1/2‖1→1. z

Remark 3.2 — Note that the proof of step (i) uses only the linearity of E and so it holds for any
linear routing scheme R, i.e. one has ‖R(⊕τdτ)‖G 6 ‖R(⊕eweBe)‖G.

Using Theorem 3.1, the unconditional upper bound in Theorem 1.2 is simply a consequence of
basic norm inequalities. (See Appendix A for a proof.) Theorem 1.1 provides a much stronger bound
on ηE when the underlying graph has high vertex expansion. The lower bound in Theorem 1.1 is due to
Hajiaghayi, et al. [7]. They show that every oblivious routing scheme is bound to incur congestion of at
least Ω(ln n/ ln ln n) on a certain family of expander graphs. The upper bound in Theorem 1.1 follows
from Theorem 3.1, Theorem 4.1 and using that ‖Π‖1→1 = O(‖L†‖1→1) for unweighted bounded-degree
graphs. Thus in the next section we derive a bound on ‖L†‖1→1 in terms of vertex expansion.

4 L1 operator inequalities

The main results here are an upper and lower bound on ‖L†‖1→1, which match for bounded-degree
expander graphs. In this section, we present vertex expansion versions of these bounds that assume
bounded-degree.

THEOREM 4.1 — Let graph G = (V, E) be unweigthed, of bounded degree dmax, and vertex
expansion

α = min
S⊆V

|E(S , S {)|

min{|S |, |S {|}
, then ‖L†‖1→1 6

(
4 ln

n
2

)
·
(
α ln

2dmax

2dmax − α

)−1
. (4.1)

The proof of this theorem (given in the next Section) boils down to a structural decomposition of
unit (s, t)-electric flows in a graph (not necessarily an expander). We believe that this decomposition is of
independent interest. In the case of bounded-degree expanders, one can informally say that the electric
walk corresponding to the electric flow between s and t takes every path with probability exponentially
inversely proportional to its length. We complement Theorem 4.1 with a lower bound on ‖L†‖1→1 proven
in Appendix B:

THEOREM 4.2 — Let graph G = (V, E) be unweighted, of bounded degree dmax, with metric
diameter D. Then, ‖L†‖1→1 > 2D/dmax and, in particular, ‖L†‖1→1 >

(
2 ln n

)
·
(
dmax ln dmax

)−1 for all
bounded-degree, unweighted graphs with vertex expansion α = O(1).
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4.1 Proof of upper bound on ‖L†‖1→1 for expanders

Proof of Theorem 4.1. Reformulation: We start by transforming the problem in a more manageable
form,

‖L†‖1→1 := sup
y,0

‖L†y‖1
‖y‖1

= max
w
‖L†χw‖1

(∗)
6

n − 1
n

max
s,t
‖L†(χs − χt)‖1, (4.2)

where the latter inequality comes from

‖L†χs‖1 = ‖L†π⊥1χs‖1 = ‖n−1
∑
t,s

L†(χs − χt)‖1 6
n − 1

n
max

t
‖L†(χs − χt)‖1.

Pick any vertices s , t and set ψ = L†(χs − χt). In light of (4.2) our goal is to bound ‖ψ‖1. We
think of ψ as the vertex potentials corresponding to electric flow with imbalance χs − χt. By an easy
perturbation argument we can assume that no two vertex potentials coincide.

Index the vertices in [n] by increasing potential as ψ1 < · · · < ψn. Further, assume that n is even
and choose a median c0 so that ψ1 < · · · < ψn/2 < c0 < ψn/2+1 < · · · < ψn. (If n is odd, then set c0 to
equal the pottential of the middle vertex.)

We aim to upper bound ‖ψ‖1, given as ‖ψ‖1 =
∑
v |ψv| =

∑
v:ψv>0 ψv −

∑
u:ψu<0 ψu. Using that∑

w ψw = 0, we get ‖ψ‖1 = 2
∑
v:ψv>0 ψv = −2

∑
u:ψu<0 ψu.

Assume, without loss of generality, that 0 < c0, in which case

‖ψ‖1 = −2
∑

u:ψu<0

ψu 6 2
n/2∑
i=1

|ψi − c0| =: 2N (4.3)

In what follows we aim to upper-bound N.

Flow cutting: Define a collection of cuts (S i, S
{
i ) of the form S i = {v : ψv 6 ci}, for integers

i > 0, where S i will be the smaller side of the cut by construction. Let ki be the number of edges cut by
(S i, S

{
i ) and pi j be the length of the jth edge across the same cut. The cut points ci, for i > 1, are defined

according to ci = ci−1 − ∆i−1, where ∆i−1 := 2
∑

j
pi−1, j

ki−1
. The last cut, (S r+1, S

{
r+1), is the first cut in the

sequence c0, c1, . . . , cr+1 with kr+1 = 0 or, equivalently, S r+1 = ∅.

Bound on number of cuts: Let ni = |S i|. The isoperimetric inequality for vertex expansion (4.1)
applied to (S i, S

{
i ) and the fact that ni 6 n/2, by construction, imply

ki

ni
> α. (4.4)

Let li be the number of edges crossing (S i, S
{
i ) that do not extend across ci+1, i.e. edges that are not

adjacent to S i+1. The choice ∆i := 2
∑

j pi j/ki ensures that li > ki/2. These edges are supported on at

9



JONATHAN KELNER AND PETAR MAYMOUNKOV

least li/dmax vertices in S i, and therefore ni+1 6 ni − li/dmax. Thus,

ni+1 6 ni −
li

dmax
6 ni −

ki

2dmax

(4.4)
6 ni −

αni

2dmax
= ni

(
1 −

α

2dmax

)
, (4.5)

Combining inequality (4.5) with n0 = n/2, we get

ni 6
n
2

(
1 −

α

2dmax

)i
(4.6)

The stopping condition implies S r , ∅, or nr > 1, and together with (4.6) this results in

r 6 log1/θ
n
2
, with θ = 1 −

α

2dmax
. (4.7)

Amortization argument: Continuing from (4.3),

N =

n/2∑
i=1

|ψi − c0|
(∗)
6

r∑
i=0

(ni − ni+1)
i∑

j=0

∆ j, (4.8)

where (∗) follows from the fact that for every vertex v ∈ S i − S i+1 we can write |ψv − c0| 6
∑i

j=0 ∆ j.

Because BL†(χs − χt) is a unit flow, we have the crucial (and easy to verify) property that, for all i,∑
j pi j = 1. In other words, the total flow of “simulatenous” edges is 1. So,

∆i = 2
∑

j

pi j

ki
=

2
ki

(4.4)
6

2
αni

(4.9)

Now we can use this bound on ∆ j in (4.8),

r∑
i=0

(ni − ni+1)
i∑

j=0

∆ j
(∗)
=

r∑
i=1

ni∆i 6
2
α

r∑
i=0

1 =
2
α

(r + 1),

where to derive (∗) we use nr+1 = 0. Combining the above inequality with (4.7) concludes the proof. z

5 Electric walk

To every unit flow f ∈ RE , not necessarily electric, we associate a random walk W = W0,W1, . . . called
the flow walk, defined as follows. Let σ := B∗ f and so

∑
v σv = 0. The walk starts at W0, with

P{W0 = v} =
2 ·max{0, σv}∑

w |σw|
=

∑
w fv→w −

∑
w fw→v∑

u
(∑

w fu→w −
∑
w fw→u

)
10
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If the walk is currently at Wt, the next vertex is chosen according to P
{
Wt+1 = v |Wt = u

}
=

fu→v∑
w fu→w

,

where

fu→v =

| f(u,v)|, (u, v) ∈ E and f flows from u to v

0, otherwise.
(5.1)

When the underlying flow f is an electric flow, i.e. when f = E(B∗ f ), the flow walk deserves the special-
ized name electric walk. We study two aspects of electric walks here: (i) stability against perturbations
of the vertex potentials, and (ii) robustness against edge removal.

5.1 Stability

The set of vertex potential vectors ϕ[v] = L†χv, for all v ∈ V , encodes all electric flows, as argued
in (1.4). In an algorithmic setting, only approximations ϕ̃[v] of these vectors are available. We ensure that
when these approximations are sufficiently good in an `2 sense, the path probabilities (and congestion
properties) of electric walks are virtually unchanged. The next theorem is proven in Appendix C:

THEOREM 5.1 — Let ϕ̃[v] be an approximation of ϕ[v], for all v ∈ G, in the sense that

‖ϕ[v] − ϕ̃[v]‖2 6 ν, for all v ∈ V , with ν = n−A, (5.2)

where A > 4 is a constant. Then for every electric walk, defined by vertex potentials ϕ =
∑
v αvϕ

[v], the
corresponding “approximate” walk, defined by vertex potentials ϕ̃ =

∑
v αvϕ̃

[v], induces a distribution
over paths γ with ∑

γ

∣∣∣∣Pϕ{W = γ} −Pϕ̃{W = γ}
∣∣∣∣ 6 O(n2− A

2 ), (5.3)

where γ ranges over all paths in G, and Pϕ{W = γ} denotes the probability of γ under ϕ (respectively
for Pϕ̃{W = γ}).

As shown in Theorem F.1, the Power Method affords us any sufficiently large exponent A, say
A = 5, without sacrificing efficiency in terms of distributed computation time. In this case, the following
corollary asserts that routing with approximate potentials preserves both the congestion properties of the
exact electrical flow as well as the probability of reaching the sink.

COROLLARY 5.2 — Under the assumptions of Theorem 5.1 and A = 5, the electric walk defined
by vertex potentials ϕ̃ = ϕ̃[s]− ϕ̃[t] reaches t with probability 1−on(1). Furthermore, for every edge (u, v)
with non-negligible load, i.e. |ϕ̃u − ϕ̃v| = ω(n−2), we have |ϕ̃u − ϕ̃v| →n |ϕu − ϕv|, where ϕ = ϕ[s] − ϕ[t].

5.2 Robustness

We prove Theorem 1.4 here, since its proof interestingly relies on the flow cutting techniques developed
in this paper. Theorem 1.5 is proved in Appendix E.

11
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Proof of Theorem 1.4. For the first part, let {(u1, v1), . . . , (uk, vk)} = Qp and let pi = | f [s,t]
(ui,vi)
| = |(χui −

χvi)
∗L†(χs − χt)|. Consider the embedding ζ : V → R, defined by ζ(v) = χ∗vL

†(δs − δt). Assume for
convenience that ζ(ui) 6 ζ(vi) for all i. Let ζmin = minv ζ(v) and ζmax = maxv ζ(v).

Choose c uniformly at random from [ζmin, ζmax] and let Xi = pi · I{ζ(ui) 6 c 6 ζ(vi)}, where I{·} is
the indicator function. Observe that the random variable X =

∑
i Xi equals the total electric flow of all

edges in Qp cut by c. Since these edges are concurrent (in the electric flow) by construction, we have
X 6 1. On the other hand,

EX =
∑

i

pi ·P
{
ζ(ui) 6 c 6 ζ(vi)

}
>

∑
i

pi
pi

ζmax − ζmin
>

∑
i

λp2
i

2
> k

λp2

2

Combining this with EX 6 1 produces |Qp| 6 2/(λp2).

For the second part, kp 6
∑

e∈Qp | f
[s,t]
e | 6

∑
e∈E | f

[s,t]
e | = ‖BL†(χs − χt)‖1 6 2dmax · ‖L†‖1→1. This

gives |Qp| 6 2dmax · ‖L†‖1→1/p. z

6 Conclusions

Our main result in Theorem 1.1 attests to the good congestion properties on graphs of bounded degree
and high vertex expansion, i.e. α = O(1). A variation on the proof of this theorem establishes a
similar bound on ηE, however, independent of the degree bound and as a function of the edge expansion

β = minS⊆V
vol(E(S ,S{))

min{vol(S ),vol(S{)}
, where vol(S ) :=

∑
v∈S

∑
u:u∼v wu,v and vol(E(S , S {)) :=

∑
(u,v):u∈S ,v∈S{ wu,v.

The bounded degree assumption is also implicit in our computational procedure in that all vertices
must know an upper bound on dmax in order to apply M in Theorem 1.3. Using a generous bound,
anything ω(1), on dmax is bad because it slows down the mixing of the power polynomial. To avoid this
complication, one must use a symmetrization trick outlined in Appendix G.

We conclude with a couple of open questions. A central concern, widely-studied in social-networks,
are Sybil Attacks [4]. These can be modeled as graph-theoretic noise, as defined in [9]. It is interesting
to understand how such noise affects electric routing. We suspect that any O(ln n)-competitive oblivious
routing scheme, which outputs its routes in the “next hop” model, must maintain Ω(n)-size routing tables
at every vertex. In the next hop model, every vertex v must be able to answer the question “What is the
flow of the (s, t)-route in the neighborhood of v?” in time O(polylog(n)), using its own routing table
alone and for every source-sink pair (s, t).
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A Proof of Theorem 1.2

Proof of Theorem 1.2. The upper bound follows from:

η
(3.1)
6 ‖Π‖1→1

(A.2)
6 m1/2 · ‖Π‖2→2

(A.3)
= m1/2 (A.1)

The second step is justified as follows

‖Π‖1→1 = max
e
‖Πχe‖1 6 m1/2 ·max

e
‖Πχe‖2 6 m1/2 · ‖Π‖2→2. (A.2)

The third step is the assertion

‖Π‖2→2 6 1, (A.3)

which follows from the (easy) fact that Π is a projection, shown by Spielman, et al. in Lemma A.1.

The lower bound is achieved by a graph obtained by gluing the endpoints of
√

n copies of a path
of length

√
n and a single edge. Routing a flow of value

√
n between these endpoints incurs congestion

√
n/2. z

LEMMA A.1 (Proven in [14]) — Π is a projection; Im(Π) = Im(W1/2B); The eigenvalues of Π

are 1 with multiplicity n − 1 and 0 with multiplicity m − n + 1; and Πe,e = ‖Πχe‖
2.

B Proof of Theorem 4.2

Proof of Theorem 4.2. Let s , t be a pair of vertices in G at distance D. We consider the flow f =

BL†(χs − χt). Set ψ = L†(χs − χt), and note that we can use ‖ f ‖1 as a lower bound on ‖L†‖1→1,

‖ f ‖1 =
∑
(u,v)

|ψu − ψv| 6 dmax

∑
v

|ψv| 6 dmax‖L†(χs − χt)‖1 6
dmax

2
‖L†‖1→1.

Now, let {πi}i be a path decomposition of f and let l(πi) and f (πi) denote the length and value, respec-
tively, of πi. Then,

‖ f ‖1 =
∑
(u,v)

|ψu − ψv| =
∑

i

l(πi) f (πi) > D
∑

i

f (πi) = D. z

14
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C Proof of Theorem 5.1

Proof of Theorem 5.1. Notation: Note that in this proof we use the notation of (5.1). So, for a potential
vector ψ, we have ψu→v := ψu − ψv if (u, v) is an edge and ψu > ψv, and ψu→v := 0 otherwise. So,
for example, the potential difference on (u, v) can be written as ψu→v + ψv→u. On the other hand, we
use the single letter edge notation ϕe to denote the signed (according to B) potential difference on e, so
ϕe := ϕu − ϕv if Be = δu − δv. Let D be the maximum degree.

Edge approximation: Fix any unit electric flow, defined by potentials ϕ :=
∑
v αvϕ

[v], and write its
approximation as ϕ̃ :=

∑
v αvϕ̃

[s]. All unit flows can be so expressed under the restriction that
∑
v αv = 0

and
∑
v |αv| = 2. The approximation condition (5.2) combined with Lemma C.1 gives us, for every edge

e = (u, v),

|ϕe − ϕ̃e| =
∣∣∣∑

v

αv(ϕ
[v]
e − ϕ̃

[v]
e )

∣∣∣
6

∑
v

|αv| ·
∣∣∣ϕ[v]

e − ϕ̃
[v]
e

∣∣∣
6

∑
v

|αv| · 2ν apply Lemma C.1

= 4ν

We call this the additive edge approximation condition

ϕe − 4ν 6 ϕ̃e 6 ϕe + 4ν (C.1)

Now, consider a fixed path γ along the electric flow defined by ϕ, traversing vertices w0, w1, . . . , wk.
Let Pϕ{W = γ} and Pϕ̃{W = γ} denote the probability of this path under the potentials ϕ and ϕ̃,
respectively. In most of what follows, we build machinery to relate one to the other.

Path probabilities: For a general unit flow (not necessarily an (s, t)-flow), defined by vertex poten-
tials ψ, Pψ{W = γ} equals

Pψ{W0 = w0}

( k−1∏
i=0

Pψ{Wi+1 = wi+1 |Wi = wi}

)
Pψ{W∞ = wk |wk}, (C.2)

where next we explain each factor in turn.

The first, Pψ{W0 = w0}, is the probability that the walk starts from w0, and is expressed as

Pψ{W0 = w0} = max
(
0,

∑
u

ψw0→u −
∑

u

ψu→w0

)
. (C.3)

The second and trickiest, Pψ{Wi+1 = wi+1 |Wi = wi}, is the probability that having reached wi the
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walk traverses the edge leading to wi+1, and
∑

u ψwi→u >
∑

u ψu→wi , we write

Pψ{Wi+1 = wi+1 |Wi = wi} =
ψwi→wi+1

max
(∑

u

ψu→wi ,
∑

u

ψwi→u
) . (C.4)

To grasp the meaning of the denominator, note that the quantity |
∑

u ψu→wi −
∑

u ψwi→u| is the magnitude
of the in or out flow (depending on the case) at wi.

The third, Pψ{W∞ = wk |wk}, is the probability that the walk ends (or exits) at wk conditioned on
having reached wk, and

Pψ{W∞ = wk |wk} = max
(
0,

∑
u

ψu→wk −
∑

u

ψwk→u
)
. (C.5)

Next, we are going to find multiplicative bounds for all three factors by focusing on “dominant”
paths, and discarding ones with overall negligible probability.

Dominant paths: It is straightforward to verify (from first principles) that the probability that an
edge (u, v) occurs in the electric walk equals |ϕe| = ϕu→v + ϕv→u. We call an edge short if |ϕe| 6 ε,
where the exact asymptotic of ε > 0 is determined later, but for the moment ν � e � 1. We restrict our
attention to dominant paths γ that traverse no short edges, and have Pϕ{W0 = w0} > ε and Pϕ{W∞ =

wk |wk} > ε.

Indeed, by a union bound, the probability that the electric walk traverses a non-dominant path is at
most 2nε + n2ε. This will be negligible and such paths will be of no interest. In summary,

Pϕ{W dominant} > 1 − 2nε − n2ε (C.6)

We now condition on the event that γ is dominant.

The no short edge condition gives ε 6 |ϕe| 6 1, and using (C.1) we derive the stronger multiplicative
edge approximation condition

1
σ
6
ϕ̃e

ϕe
6 σ, where σ = 1 +

8Dν
ε
, (C.7)

which holds as long as ε > 4ν, as guaranteed by the asymptotics of ε. Also note that the latter condition
ensures that ϕe and ϕ̃e have the same sign. An extra factor of 2D is included in σ with foresight.

For the first factor (C.3), we have

Pϕ̃{W0 = w0} =
∑

u

ϕ̃w0→u −
∑

u

ϕ̃u→w0 (C.8)

>
∑

u

ϕw0→u −
∑

u

ϕu→w0 − 4Dν use (C.1)

> Pϕ{W0 = w0}
(
1 −

4Dν
ε

)
use Pϕ{W0 = w0} > ε

>
1
σ
Pϕ{W0 = w0} use ε 6 1/2.
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For the second factor (C.4), assume
∑

u ψu→wi >
∑

u ψwi→u. An identical argument holds in the
other case. Abbreviate

Pϕ̃{wi+1 |wi} := Pϕ̃{Wi+1 = wi+1 |Wi = wi}.

Path dominance implies
∑

u ϕu→wi > ε, and so

Pϕ̃{wi+1 |wi} =
ϕ̃wi→wi+1∑
u

ϕ̃u→wi

(C.9)

>
σ−1 · ϕwi→wi+1∑
u

ϕu→wi + 4Dν
use (C.7) and (C.1)

> σ−2 ϕwi→wi+1∑
u ϕu→wi

use ε 6 1/2 and
∑

u

ϕu→wi > ε

=
1
σ2Pϕ{wi+1 |wi}.

For the third factor (C.5), similarly to the first, we have

Pϕ̃{W∞ = wk |wk} = (C.10)

=
∑

u

ϕ̃u→wk −
∑

u

ϕ̃wk→u

>
∑

u

ϕu→wk −
∑

u

ϕwk→u − 4Dν use (C.1)

> Pϕ{W∞ = wk |wk}
(
1 −

4Dν
ε

)
use Pϕ{W∞ = wk |wk} > ε

>
1
σ
Pϕ{W∞ = wk |wk} use ε 6 1/2.

Dominant path bound: We now obtain a relation between Pϕ{W = γ} andPϕ̃{W = γ} by combing-
ing the bounds (C.8), (C.9) and (C.10) with (C.2):

Pϕ̃{W = γ}

Pϕ{W = γ}
>

1
σ2n+2 apply bounds, and path length 6 n (C.11)

>
(
1 −

8Dν
ε

)2n+2
use σ−1 > 1 − 8Dν/ε

> exp
(
−

16Dν
ε

)2n+2
use 1 − x > e−2x

=: θ

Statistical difference: Abbreviate p(γ) := Pϕ{W = γ} and q(γ) := Pϕ{W = γ}. Below, γ iterates
through all paths, ζ iterates through dominant paths and ξ iterates through non-dominant paths. We
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bound the statistical difference (5.3), using (C.11) which says q(ζ) > θ · p(ζ),

∑
γ

|p(γ) − q(γ)| =

=
∑
ζ

|p(ζ) − q(ζ)| +
∑
ξ

|p(ξ) − q(ξ)|

6
∑
ζ

|(1 − θ)p(ζ) −
(
q(ζ) − θp(ζ)

)
| +

∑
ξ

q(ξ) use θ < 1

6
∑
ζ

|q(ζ) − θp(ζ)| +
∑
ξ

q(ξ)

= 1 −
∑
ζ

p(ζ)

= (1 − θ) + θ
∑
ζ

p(ζ) (C.12)

In this final step, we pin-point the asymptotics of ε that simultaneously minimize the two terms of (C.12).
In the following, we parameterize ε = n−B and use (C.6),

(1 − θ) + θ
∑
ζ

p(ζ) =

= 1 − exp
(
−

16Dν
ε

)2n+2
+ exp

(
−

16Dν
ε

)2n+2(
2nε + n2ε

)
= 1 − exp O

(
− DnB−A+1) + n2−B · exp O

(
− DnB−A+1)

= O
(
DnB−A+1) + n2−B · exp O

(
− DnB−A+1), use 1 − e−x 6 x

= O
(
nB−A+2) + O

(
n2−B) use D 6 n

= O
(
n2− A

2
)
, set B = A/2. z

LEMMA C.1 — If x, y ∈ `2 and ‖x − y‖2 6 ν, then for all i , j,

(xi − x j) − 2ν 6 yi − y j 6 (xi − x j) + 2ν.

Proof. We have (xi − yi)2 6 ‖x − y‖22 6 ν
2, implying |xi − yi| 6 ν. Similarly for j. Combining the two

proves the lemma. z
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D Proof of Theorem 1.6

Proof of Theorem 1.6. Let X[s,t]
e be the indicator that edge e participates in the electric walk between s

and t. Then the latency can be expressed as

max
s,t

∑
e

EX[s,t]
e = max

s,t

∑
(u,v)

∣∣∣(δu − δv)L†(δs − δt)
∣∣∣

= max
s,t
‖BL†(δs − δt)‖1 = ‖BL†B∗‖1→1 = ‖Π‖1→1.

The latter is bounded by Theorem 4.1 and ‖Π‖1→1 6 m1/2, as in (A.1) e.g. z

Remark D.1 — For expanders, this theorem is not trivial. In fact, there exist path realizations of
the electric walk which can traverse up to O(n) edges. Theorem 1.6 asserts that this happens with small
probability. On the other hand, in a bounded-degree expander, even if s and t are adjacent the walk will
still take a O(log n)-length path with constant probability.

E Proof of Theorem 1.5

Proof of Theorem 1.5. Let fopt be a max-flow routing of the uniform demands and let θ be the fraction of
the demand set that is routed by fopt. The Multi-commodity Min-cut Max-flow Gap Theorem (Theorem
2, in [11]) asserts

O(ln n) · θ > min
S⊂V

|E(S , S {)|

|S | · |S {|
>

1
n
·min

S⊂V

|E(S , S {)|

min{|S |, |S {|}
=
α

n

Thus the total demand flown by fopt is no less than θ
(
n
2

)
> Ω(αn/ ln n). Normalize f (by scaling) so it

routes the same demands as fopt. If k edges are removed, then at most ηk flow is removed from f , which
is at most a fraction ηk ·O(ln n/αn) of the total flow. Substitute x = k/m and use m 6 dmaxn to complete
the proof. z

F Proof of Theorem 1.3

Theorem 1.3 is implied by the following theorem by specializing ε = O(n−5):

THEOREM F.1 — Let G be a graph, whose Laplacian L has smallest eigenvalue λ and whose
maximum degree is D. Then, for every y with ‖y‖2 = 1 the vector x = L†y can be approximated using

x̃ =
1

2D

d∑
i=0

(
I −

L
2D

)iy,
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so that for every ε > 0,

‖x − x̃‖2 6 ε, as long as d > Ω(1) · ln
1
λεD

·
(

ln
1

1 − λ

)−1
.

Proof of Theorem F.1. We normalize L via N = L/τ (and so L−1 = N−1/τ), where τ = 2D. Since
τ = 2D > λmax(L), the eigenvalues of N are in [0, 1]. In this case, the Moore-Penrose inverse of N is
given by N† =

∑∞
i=0(I − N)i. Set N†0 =

∑d
i=0(I − N)i and N†1 = N† − N†0 . Our aim is to minimize d so that

‖x − x̃‖2 =
∥∥∥∥N†0 + N†1

τ
y −

N†0
τ
y
∥∥∥∥

2
=

∥∥∥∥N†1
τ
y
∥∥∥∥

2
6

∥∥∥∥N†1
τ

∥∥∥∥
2→2
6 ε,

where ‖A‖2→2 := supx,0 ‖Ax‖2/‖x‖2 denotes the matrix spectral norm. Set κ := τ/λmin, so that κ−1 is the
smallest eigenvalue of N,

‖N†1‖2→2 =
∥∥∥ ∞∑

i=d+1

(I − N)i
∥∥∥

2→2 6
∞∑

i=d+1

‖(I − N)i‖2→2

6
∞∑

i=d+1

(
1 − κ−1

)i
= (1 − κ−1)d+1κ (F.1)

Setting (F.1) less than τε gives

d >
ln κ/(τε)

ln κ/(κ − 1)
. z

G Symmetrized algorithm

In this section we discuss how to modify the computational procedure, given in the Section 1, in order
to apply it to graphs of unbounded degree. The described algorithm for computing ϕ[w] = L†χw relies
on the approximation of L† via the Taylor series 1

1−x =
∑∞

i=0(1 − x)i. The series converges only when
‖x‖2 < 1, which is ensured by setting x = L

2dmax
, and using that ‖L‖2→2 < 2dmax. Thus we arrive at

2dmax · L† =
∑∞

i=0(I − L
2dmax

)i. This approach continues to work if we replace dmax with any upper bound
hmax > dmax, obtaining L† = 1

2hmax

∑∞
i=0(I −M)i where M = L

2hmax
, however this is done at the expense of

slower convergence of the series. Since in a distributed setting all vertices must agree on what M is, a
worst-case upper bound hmax = n must be used, which results in a prohibitively slow convergence even
for expander graphs.

Instead, we pursue a differnt route. Let L = D−1/2LD−1/2 be the normalized Laplacian of G, where
D ∈ Rn×n is diagonal with Dv,v = deg(v). One always has ‖L‖2→2 6 2 (Lemma 1.7 in [3]) while at the
same time λmin(L) > max

{β2

2 ,
α2

4dmax+2dmaxα

}
(Theorems 2.2 and 2.6 in [3]), where α and β are the vertex-

and edge-expansion of G, respectively. Set M = L/3, so that ‖M‖2→2 < 1. Recall that the aim of our
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distributed procedure is to compute ϕ[w]
u at u (for all w). We achieve this using the following:

ϕ[w]
u = χ∗uL†χw = χ∗uD−1/2 M†

3
D−1/2χw =

χ∗u√
deg(u)

∑∞
i=0(I − M)i

3
χw√

deg(w)

The key facts about the series in the left-hand side are that (i) it converges quickly when G is an expander
and (ii) all vertices can compute M locally, in particular, without requiring any global knowledge like
e.g. an upper bound on dmax.
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