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STABILITY OF STATIONARY EQUIVARIANT WAVE MAPS

FROM THE HYPERBOLIC PLANE

ANDREW LAWRIE, SUNG-JIN OH, AND SOHRAB SHAHSHAHANI

Abstract. In this paper we initiate the study of equivariant wave maps from
2d hyperbolic space, H2, into rotationally symmetric surfaces. This problem
exhibits markedly different phenomena than its Euclidean counterpart due to
the exponential volume growth of concentric geodesic spheres on the domain.

In particular, when the target is S2, we find a family of equivariant harmonic
maps H2

→ S2, indexed by a parameter that measures how far the image of
each harmonic map wraps around the sphere. These maps have energies taking
all values between zero and the energy of the unique co-rotational Euclidean
harmonic map, Qeuc, from R2 to S2, given by stereographic projection. We
prove that the harmonic maps are asymptotically stable for values of the pa-
rameter smaller than a threshold that is large enough to allow for maps that
wrap more than halfway around the sphere. Indeed, we prove Strichartz esti-
mates for the operator obtained by linearizing around such a harmonic map.
However, for harmonic maps with energies approaching the Euclidean energy
of Qeuc, asymptotic stability via a perturbative argument based on Strichartz
estimates is precluded by the existence of gap eigenvalues in the spectrum of
the linearized operator.

When the target is H2, we find a continuous family of asymptotically stable
equivariant harmonic maps H2

→ H2 with arbitrarily small and arbitrarily
large energies. This stands in sharp contrast to the corresponding problem on
Euclidean space, where all finite energy solutions scatter to zero as time tends
to infinity.

1. Introduction

In recent years there has been increased interest in the study of dispersive equa-
tions on curved spaces. Here we begin the investigation of a simple model problem,
namely, equivariant wave maps from 2d hyperbolic space, H2, into rotationally
symmetric surfaces M . In local coordinates the equation is given by

ψtt − ψrr − coth r ψr +
g(ψ)g′(ψ)

sinh2 r
= 0, (1.1)

where (ψ, θ) are geodesic polar coordinates on the target surface M , and g deter-
mines the metric, ds2 = dψ2 + g2(ψ)dθ2.

An intriguing feature of this problem is that there is an abundance of finite
energy stationary solutions. This fact stems from two well-known geometric facts:
conformal invariance of 2d harmonic maps (which are time independent solutions to
the problem) and conformal equivalence between H2 and the unit disk D2. Another
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notable feature of this problem is the lack of scaling symmetry. This feature,
which is in stark contrast to the Euclidean case and akin to the exterior wave map
problem considered by Kenig, Schlag and the first author [14, 16], rules out an a
priori obstruction to asymptotic stability of stationary solutions. However, while
the curved background eliminates any natural scaling invariance for the problem,
the model still exhibits features of an energy critical equation. Indeed, solutions
with highly localized initial data do not see the global geometry of the domain and
thus can be well approximated by solutions to the corresponding scale invariant
energy critical Euclidean equation R1+2 → M . We believe that such properties
make (1.1) an interesting model for investigating stability of stationary solutions,
and more ambitiously, asymptotic resolution for large general finite energy solutions
into solitons (soliton resolution) in the case of negatively curved targets such as H2,
and characterization of blow-up solutions in the case of positively curved targets
such as S2.

In this paper we establish asymptotic stability of various time independent solu-
tions (i.e., harmonic maps) to the equivariant wave map equation (1.1) on R×H2.
More specifically, we consider two targets, namely the two sphere S2 and the hy-
perbolic plane H2. In each case we classify all finite energy equivariant harmonic
maps, which exist in abundance in contrast to the Euclidean case. We then study
the stability of each harmonic map by analyzing spectral properties of the linearized
operator.

We begin with our results when the target is H2, as these are easier to describe.
In this case, we show that the spectrum of the linearized operator about each har-
monic map consists purely of the absolutely continuous part with no eigenvalue or
resonance at the edge. This spectral information allows us to prove Strichartz esti-
mates for the linearized operator, from which asymptotic stability of the harmonic
map follows by a Picard iteration argument.

The picture changes drastically in the case of the S2 target. Let Qλ be the
family of finite energy equivariant harmonic maps from H2 to S2. These maps can
be parametrized by λ ∈ [0,∞) in such a way that as λ → 0+ the image of Qλ
contracts to the north pole, and as λ→ ∞ the image of Qλ covers the whole of S2

except for the south pole. For Qλ with small λ, we prove that the spectrum of the
linearized operator is absolutely continuous as in the case of H2. This allows us to
prove Strichartz estimates in this case and therefore asymptotic stability holds by
a perturbative argument. This scenario applies, in particular, to the harmonic map
covering the northern hemisphere of S2. On the other hand, for Qλ with large λ,
we show that there exists a unique simple gap eigenvalue µ2

λ in (0, 14 ) (
1
4 is the edge

of the a.c. spectrum). Moreover, we demonstrate that µ2
λ migrates toward zero

as λ → ∞. While this phenomenon precludes the possibility of scattering to Qλ
by a linear mechanism, it nevertheless suggests an interesting picture concerning
nonlinear stability of Qλ and the rate of scattering; we refer the reader to Remark 3.

1.1. Additional context for the problem. Although the authors are not aware
of any previous investigations into the model at hand, there has been substantial
activity of late regarding dispersive equations on R×Hd, and it is partially in this
context in which this problem can be viewed. Perhaps the most relevant recent
works are the proofs of Strichartz estimates for the free wave equation on R × Hd

together with global small data theory for semi-linear equations with power-type
nonlinearities in [18, 19, 3], see also the many references therein. There has also
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been substantial activity in this direction for the Schrödinger equation on R× Hd

and we refer the reader to [4, 5, 6, 13, 12, 2] as well as the references therein for more
details. For treatments of the semi-linear elliptic problem, see [9, 17]. As we are
investigating the asymptotic stability of certain stationary solutions to (1.1), we are
forced to confront the linearized operator, which amounts to a radial free evolution
operator on hyperbolic space plus a potential term. The dispersive estimates for
the free evolution from [3] thus make up an essential ingredient in the proof.

1.2. Setup. To explain the main results in more detail, we now give a more precise
account of our setup. Consider polar coordinates on the hyperboloid model of H2:

[0,∞)× S1 ∋ (r, ω) 7→ (sinh r sinω, sinh r cosω, cosh r) ∈ R2+1.

Denote this map by Ψ : [0,∞)×S1 → (R2+1,m), where m is the Minkowski metric
on R2+1. The hyperbolic metric h in these coordinates is given by the pull-back of
the Minkowski metric on R2+1 by the map Ψ, i.e., h = Ψ∗m. We have

(hjk) =

(
1 0

0 sinh2 r

)
.

The volume element is
√
|h(r, ω)| = sinh r, and hence for f : H2 → R we have

∫

H2

f(x) dVolh =

∫ 2π

0

∫ ∞

0

f(Ψ(r, ω)) sinh r dr dω.

For radial functions, f : H2 → R we abuse notation and write f(x) = f(r) and
∫

H2

f(x) dVolh = 2π

∫ ∞

0

f(r) sinh r dr.

We will focus attention on two rotationally symmetric target manifolds, namely,
M = S2 and M = H2. We begin with the positively curved case, S2.

1.3. Equivariant wave maps: R × H2 → S2. In this section we consider wave
maps U : R× H2 → S2. As both the domain and the target are rotationally sym-
metric we can consider a restricted class of maps, U, satisfying the equivariance
U ◦ ρ = ρ ◦ U , for all rotations ρ ∈ SO(2). In fact we consider the special sub-
class of such maps known as 1-equivariant, or co-rotational, which corresponds to
equivariant maps which in local coordinates take the form

U(t, r, ω) = (ψ(t, r), ω) →֒ (sinψ sinω, sinψ cosω, cosψ),

where ψ is the azimuth angle measured from the north pole of the sphere and
the metric on S2 is given by ds2 = dψ2 + sin2 ψ dω2 (for a more general class of
equivariant maps one can consider an ansatz of the form U(t, r, ω) = (ψ(t, r), ω +
χ(t, r))). In this formulation, 1-equivariant wave maps are formal critical points of
the Lagrangian

L(U) =
1

2

∫

R

∫ ∞

0

(
−ψ2

t (t, r) + ψ2
r(t, r) +

sin2 ψ(t, r)

sinh2 r

)
sinh r dr dt.

The Euler-Lagrange equations reduce to an equation for the azimuth angle ψ and
we are led to the Cauchy problem:

ψtt − ψrr − coth r ψr +
sin(2ψ)

2 sinh2 r
= 0,

~ψ(0) = (ψ0, ψ1).

(1.2)
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We will often use the notation ~ψ(t) to denote the pair ~ψ(t, r) := (ψ(t, r), ψt(t, r)).
The conserved energy is given by

E(~ψ)(t) = 1

2

∫ ∞

0

(
ψ2
t + ψ2

r +
sin2 ψ

sinh2 r

)
sinh r dr = constant. (1.3)

Note that for initial data ~ψ(0) = (ψ0, ψ1) to have finite energy we need ψ0(0) = kπ
for some k ∈ Z. For the solution to depend continuously on the initial data this
integer k must be preserved by the evolution. Here we consider the case k = 0,
corresponding to maps that send r = 0 (the vertex of the hyperboloid) to the north
pole of S2, as the other cases are similar.

The behavior of finite energy data at r = ∞ is more flexible. One can check
that ψ0(r) has a well defined limit as r → ∞, but that this limit can be any finite
number, i.e., E(ψ0, ψ1) < ∞ implies there exists α ∈ R so that limr→∞ ψ0(r) = α.
This stands in sharp contrast to the corresponding problem for wave maps R1+2 →
S2 where the endpoint can only be an integer multiple of π giving such maps a
fixed topological degree. Here, the fact that any finite endpoint is allowed can be
attributed to the rapid decay of sinh−1 r as r → ∞ in the last term in the integrand
of (1.3), and is ultimately responsible for the existence of the family of harmonic
maps mentioned in the abstract.

In this paper we will consider initial data with endpoints ψ0(∞) = α for α ∈
[0, π), which means that we will only consider those ψ0 which do not reach the
south pole. This leads us to define the energy classes

Eλ := {(ψ0, ψ1) | E(ψ0, ψ1) <∞, ψ0(0) = 0, ψ0(∞) = 2 arctan(λ)}. (1.4)

for λ ∈ [0,∞). The reason for this restriction to α ∈ [0, π) is given by the presence
of a 1−parameter family, Qλ, of finite energy harmonic maps with such endpoints,
i.e., solutions to

Qrr + coth r Qr =
sin 2Q

2 sinh2 r
,

Q(0) = 0, lim
r→∞

Q(r) = 2 arctan(λ).
(1.5)

For every λ ∈ [0,∞) there is a unique finite energy solution Qλ to (1.5), given by

Qλ(r) = 2 arctan(λ tanh(r/2)). (1.6)

Moreover, (Qλ, 0) has energy

E(Qλ, 0) = 1− cos(Qλ(∞)) = 2
λ2

λ2 + 1

which is minimal in Eλ – in other words for each angle α ∈ [0, π), there exists a
map connecting 0 to α which uses the minimum possible amount of energy and this
map is, in fact, the harmonic map Qλ with λ = tan(α/2). For endpoints α ≥ π
there are no finite energy harmonic maps. We provide a more detailed description
of the Qλ with proofs of the preceding statements in Section 2.1.

The existence of the Qλ stands in stark contrast to the corresponding Euclidean
problem, equivariant wave maps R1+2 → S2, which reduce to the following equation
for the azimuth angle ψ:

ψtt − ψrr −
1

r
ψr +

sin 2ψ

2r2
= 0. (1.7)
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In fact, the unique (up to scaling) Euclidean equivariant harmonic map is given
by Qeuc(r) = 2 arctan(r) which connects the north pole to the south pole of the
sphere. Qeuc is the unique, nontrivial, finite energy solution to

Qrr +
1

r
Qr =

sin 2Q

2r2
, Q(0) = 0. (1.8)

We remark that Qeuc minimizes the Euclidean energy

Eeuc(ψ0, ψ1) =
1

2

∫ ∞

0

[
(∂rψ0)

2 + ψ2
1 +

sin2 ψ0

r2

]
r dr (1.9)

amongst all degree one maps, i.e., those which satisfy ψ0(0) = 0, ψ0(∞) = π and by
direct computation one sees that Eeuc(Qeuc, 0) = 2. We note that for the hyperbolic
harmonic maps Qλ we have

E(Qλ, 0) → Eeuc(Qeuc, 0) as λ→ ∞,

E(Qλ, 0) → 0 as λ→ 0.

1.3.1. Asymptotic stability of Qλ. It is well known thatQeuc is unstable with respect
to the Euclidean equivariant wave map flow and in fact, leads to finite time blow-up,
see [10, 15].

A natural question to ask is whether (Qλ, 0) is asymptotically stable for fixed
λ ∈ [0,∞) under the wave map evolution, (1.2), in Eλ. It is this question that we
address here. The natural space in which to consider solutions to (1.2) is the energy
space

‖(ψ0, ψ1)‖2H0
:=

∫ ∞

0

[
(∂rψ0)

2(r) + ψ2
1(r) +

ψ2
0(r)

sinh2 r

]
sinh r dr. (1.10)

Indeed, we endow Eλ with the “norm”

‖(ψ0, ψ1)‖Eλ
:= ‖(ψ0, ψ1)− (Qλ, 0)‖H0

. (1.11)

The first result is an affirmative answer to the above question for a range of λ ∈
[0, λ0) for some λ0 ≥

√
15/8.

Theorem 1.1. There exists λ0 ≥
√
15/8 so that for every 0 ≤ λ < λ0, the

harmonic map Qλ is asymptotically stable in the space Eλ. In particular, there
exists a δ0 > 0 such that for every (ψ0, ψ1) ∈ Eλ with

‖(ψ0, ψ1)− (Qλ, 0)‖H0
< δ0

there exists a unique global solution ~ψ(t) ∈ Eλ to (1.2). Moreover, ~ψ(t) scatters to
(Qλ, 0) as t→ ±∞.

Remark 1. The phrase ~ψ(t) scatters to (Qλ, 0) as t → ±∞ means that there exist
solutions ~ϕ±

L (t) to the linearized equation

ϕtt − ϕrr − coth r ϕr +
1

sinh2 r
ϕ = 0, (1.12)

so that

‖~ψ(t)− (Qλ, 0)− ~ϕ±
L (t)‖H0

→ 0 as t→ ±∞. (1.13)
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Remark 2. We note that the number
√
15/8 appears for a technical reason that

will be further explained in Section 3. In short, it is the largest value for λ for
which we have a simple proof that the linearized operator about Qλ has no discrete
spectrum. The number 2 arctan

√
15/8 is slightly less than 3π/5 which means that

our stability result holds for maps which wrap more that halfway around the sphere.

The proof of Theorem 1.1 reduces to Strichartz estimates for the linearized op-
erator after first passing to a radial wave equation on R× H4. The reason we can
pass to waves on H4 comes from the fact that the nonlinearity in (1.2) contains a
repulsive potential term:

sin 2ψ

2 sinh2 r
=

1

sinh2 r
ψ +

sin 2ψ − 2ψ

2 sinh2 r
.

This indicates that the linear part of (1.2) has more dispersion than a free wave on
R×H2. In fact, after linearizing about (Qλ, 0) we prove that for λ as in Theorem 1.1,
the linear part has the same dispersion as a free wave on R×H4. This can be seen

by making the following change of variables. For a solution ~ψ(t) ∈ Eλ define u(t)
by

sinh r u(t, r) := ψ(t, r) −Qλ(r). (1.14)

We obtain the following equation for ~u(t),

utt − urr − 3 coth r ur − 2u+ Vλ(r)u = NS2(r, u)

~u(0) = (u0, u1)
(1.15)

where the attractive potential Vλ and the nonlinearity NS2 are given by

Vλ(r) :=
cos 2Qλ − 1

sinh2 r
≤ 0 (1.16)

NS2(r, u) :=
sin 2Qλ

sinh3 r
sin2(2 sinh r u) + cos 2Qλ

2 sinh r u− sin(2 sinh r u)

2 sinh3 r
(1.17)

The underlying linear equation under consideration is then given by

vtt −∆H4v − 2v + Vλv = 0 (1.18)

for radially symmetric functions v. In Section 4 we prove Strichartz estimates in
Proposition 4.2 for (1.18) with λ ∈ [0, λ0) using the spectral transformation, or the
distorted Fourier transform, for the self-adjoint Schrödinger operators

H0 := −∂rr − 3 coth r ∂r − 2,

HVλ
:= −∂rr − 3 coth r ∂r − 2 + Vλ,

(1.19)

following roughly the argument in [16], which was based on techniques from [22], see
also [24, 25]. The spectrum σ(HVλ

) plays a central role in determining the dispersive
properties of the wave equation (1.18). It is well known that the spectrum of the

Laplacian on H4 is given by σ(∆H4 ) = [9/4,∞) where here 9/4 =
(
d−1
2

)2
for d = 4,

and thus we have σ(H0) = [1/4,∞) for the shifted operator H0 = −∆H4 − 2.
The key to our analysis is the existence of λ0 ∈ (0,∞) (in fact we can prove

that λ0 ≥
√
15/8) so that for all 0 ≤ λ < λ0, the perturbed operator HVλ

has
purely absolutely continuous spectrum equal to [1/4,∞). In particular, HVλ

has
no negative spectrum, no eigenvalues in the gap [0, 1/4), and the threshold 1/4 is
neither an eigenvalue nor a resonance.
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However, as λ becomes large, which means that the harmonic map Qλ wraps
further around the sphere, we observe a change in the spectrum ofHVλ

which results
in a breakdown in the dispersive behavior of solutions to the linear equation (1.18).
In particular, as λ → ∞ we establish the existence of a simple gap eigenvalue
µ2
λ ∈ (0, 1/4). Moreover we show that as λ → ∞ the eigenvalue µ2

λ migrates to 0.
In particular, we prove the following result.

Theorem 1.2. There exists Λ0 > 0 so that for all λ > Λ0, the Schrödinger operator
HVλ

has a unique, simple eigenvalue, µ2
λ, in the spectral gap (0, 1/4). That is, there

exists a solution ϕλ ∈ L2(H4) to

HVλ
ϕλ = µ2

λϕλ. (1.20)

where µ2
λ ∈ (0, 1/4). Moreover, we have

µ2
λ → 0 as λ→ ∞. (1.21)

Finally, if we define

λsup := sup{λ | HVλ̃
has no e-vals and no threshold resonance ∀ λ̃ < λ}

Λinf := inf{λ | HVλ̃
has a gap e-val µ2

λ̃
∈ (0, 1/4) ∀ λ̃ > λ}

(1.22)

Then both Hλsup
and HΛinf

have threshold resonances.

Remark 3. One immediate consequence of the presence of the gap eigenvalues for
large λ is that we can no longer prove a stability result as in Theorem 1.1, by a
perturbative argument based on the dispersive properties of the underlying linear
equation, i.e., Strichartz estimates. On the other hand, a Struwe-type bubbling

argument [29] suggests that any solution ~ψ(t) to (1.2) that blows up in finite time
must bubble off a Euclidean harmonic map Qeuc and thus must have enough energy
to wrap completely around the sphere. This gives some evidence towards a conjec-
ture that in fact every Qλ is stable – as small perturbations of Qλ will not have
enough energy to bubble off a Qeuc – but for large λ, the stability manifests via a
completely nonlinear mechanism, possibly as in the work of Soffer, Weinstein [27].

Remark 4. At this point we do not know the precise location of λ0 = λsup in
Theorem 1.1, or of Λ0 = Λinf in Theorem 1.2 or whether these two values are
equal. Indeed, the existence of gap eigenvalues for large λ is demonstrated by a
contradiction argument and thus does not reveal a precise geometric reason for
the breakdown in linear stability described in Remark 3. On the other hand, this
asymptotic-in-λ failure of linear stability is natural in view of the bubbling men-
tioned in Remark 3 and the explicit blow-up constructions for the corresponding
Euclidean problem from [15, 23, 21]. Indeed the Euclidean blow-up constructions
rely on energy concentration schemes which see only the local geometry of space,
which suggests similar behavior is possible for the hyperbolic problem at hand, as
long as the solution has enough energy to bubble off a Qeuc.

Remark 5. The existence of gap eigenvalues is a rather surprising feature of this
model, as this contrasts greatly with the corresponding Euclidean wave maps prob-
lem. Key to the proof of Theorem 1.2 is the fact that after a renormalization,
the Schrödinger operator HVλ

formally approaches (as λ→ ∞) the operator HVeuc

obtained by linearizing (1.7) about Qeuc. Assuming, for contradiction, the nonex-
istence of a gap eigenvalue, this formal approximation can be made precise on a
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region that increases in size as λ increases. This fact allows us to treat the hyper-
bolic spectral picture as a perturbation of its Euclidean counterpart. We can then
pair the existence of a threshold resonance for the Euclidean problem together with
the existence of the spectral gap in the hyperbolic problem to force a contradiction.
We refer the reader to Sections 3.2–3.5 for details.

1.4. Equivariant wave maps: R × H2 → H2. We next consider wave maps
U : R×H2 → H2, again restricting attention to co-rotational maps, meaning maps
U , which in coordinates take the form

U(t, r, ω) = (ψ(t, r), ω) →֒ (sinhψ sinω, sinhψ cosω, coshψ) ∈ R2+1,

where the metric on the target H2 is given by ds2 = dψ2 + sinh2 ψ dω2. In this
formulation, 1-equivariant wave maps are formal critical points of the Largrangian

L(U) =
1

2

∫

R

∫ ∞

0

(
−ψ2

t (t, r) + ψ2
r(t, r) +

sinh2 ψ(t, r)

sinh2 r

)
sinh r dr dt.

The Euler-Lagrange equations reduce to an equation for ψ and we are led to the
Cauchy problem:

ψtt − ψrr − coth r ψr +
sinh(2ψ)

2 sinh2 r
= 0,

~ψ(0) = (ψ0, ψ1).

(1.23)

The conserved energy is given by

E (~ψ)(t) =
1

2

∫ ∞

0

(
ψ2
t + ψ2

r +
sinh2 ψ

sinh2 r

)
sinh r dr = constant. (1.24)

Note that for initial data ~ψ(0) = (ψ0, ψ1) to have finite energy we need ψ0(0) = 0,
which means that a finite energy map must fix the vertex of the hyperboloid. The
behavior of ψ at r = ∞ is again more flexible than the corresponding Euclidean
equation for wave maps R1+2 → H2 due to the rapid decay of sinh−1 r as r → ∞.
We note that for any finite energy data (ψ0, ψ1) the limit limr→∞ ψ0(r) = α exists
but can take any value α ∈ [0,∞). We thus again define the energy classes

Eλ := {(ψ0, ψ1) | E (~ψ) <∞, ψ0(0) = 0, ψ0(∞) = 2arctanh (λ)} (1.25)

with λ ∈ [0, 1).We will demonstrate the presence of a family of nontrivial harmonic
maps taking all energies ranging from 0 to infinity. This is a surprising and dis-
tinctive feature of this model in light of the fact that no such maps exist in the
corresponding Euclidean problem. In this context a harmonic map is a solution P
to the equation

Prr + coth r Pr =
sinh 2P

2 sinh2 r
,

P (0) = 0, lim
r→∞

P (r) = 2arctanh (λ).
(1.26)

For every λ ∈ [0, 1) there is a unique finite energy solution Pλ to (1.26) given by

Pλ(r) := 2arctanh (λ tanh(r/2)) (1.27)

In Section 2.2 we show that Pλ has energy

E (Pλ, 0) = 2
λ2

1− λ2
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which minimizes the energy in Eλ. Note that E (Pλ, 0) → ∞ as λ → 1− and
E (Pλ, 0) → 0 as λ→ 0.

We recall the well known fact that for the Euclidean case of wave maps from
R1+2 → H2 there are no finite energy nontrivial harmonic maps due to the negative
curvature of the target H2.

1.4.1. Asymptotic stability of Pλ. We now turn to the question of the asymptotic
stability of Pλ in Eλ for fixed λ ∈ [0, 1). We prove the following result.

Theorem 1.3. For every λ ∈ [0, 1) the harmonic map Pλ is asymptotically stable
in Eλ. In particular, for each λ ∈ [0, 1) there exists a δ0 > 0 so that for every
(ψ0, ψ1) ∈ Eλ with

‖(ψ0, ψ1)− (Pλ, 0)‖H0
< δ0

there exists a unique, global solution ~ψ(t) ∈ Eλ to (1.23). Moreover, ~ψ(t) scatters
to (Pλ, 0) as t→ ±∞.

The proof of Theorem 1.3 follows the same outline as in the previous subsec-
tion. In particular we establish Strichartz estimates for the operator obtained by
linearizing about Pλ and then passing to an equation on R × H4. For a solution
~ψ(t) ∈ Eλ to (1.23) we define ~u(t) by

sinh r u(t, r) := ψ(t, r) − Pλ(r). (1.28)

Then ~u(t) solves

utt − urr − 3 coth r ur − 2u+ Uλ(r)u = NH2(r, u)

~u(0) = (u0, u1)
(1.29)

where the repulsive potential Uλ and the nonlinearity NH2 are given by

Uλ(r) :=
cosh 2Pλ − 1

sinh2 r
≥ 0 (1.30)

NH2(r, u) := − sinh 2Pλ

sinh3 r
sinh2(2 sinh r u) + cosh 2Pλ

2 sinh r u− sinh(2 sinh r u)

2 sinh3 r
(1.31)

The underlying linear equation under consideration is then given by

vtt −∆H4v − 2v + Uλv = 0 (1.32)

for radially symmetric functions v. In Section 4 we prove Strichartz estimates in
Proposition 4.2 for (1.32) using the spectral transformation, or the distorted Fourier
transform, for the self-adjoint Schrödinger operators

H0 := −∂rr − 3 coth r ∂r − 2,

HUλ
:= −∂rr − 3 coth r ∂r − 2 + Uλ,

(1.33)

again following roughly the argument in [16, 22, 24, 25]. The key point here is that
the repulsive potential Uλ rules out the possibility of discrete spectrum for σ(HUλ

),
and thus HUλ

has essential spectrum [1/4,∞), with no negative spectrum, no gap
eigenvalues, and no eigenvalue or resonance at the threshold 1/4.
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1.5. Brief outline of the paper. In Section 2 we establish the various facts about
the harmonic maps Qλ and Pλ defined above. We also give more details concerning
the passage to equations on R×H4 outlined above. In particular, we show that the
small data Cauchy problems, the 2d linearized problem in H0 and the 4d problem
in H1 × L2(H4) are equivalent.

In Section 3 we study the spectrum of the linearized operator HVλ
, which cor-

responds to S2 valued maps. We begin by showing that σ(HVλ
) has no discrete

spectrum for λ <
√
15/8. Beginning from Section 3.2, we then present the proof

of Theorem 1.2.
In Section 4 we prove Strichartz estimates – Proposition 4.2– for the linearized

equations (1.18) and (1.32). In the former case, we need to restrict to values of λ
as in Theorem 1.1. In the latter case, the Strichartz estimates hold for all λ ∈ [0, 1)
since the potential Uλ is repulsive.

Finally, in Section 5 we prove Theorem 1.1 and Theorem 1.3 by the usual contrac-
tion mapping argument based on the Strichartz estimates proved in Proposition 4.2.

2. Preliminaries

In this section we establish the existence and uniqueness of the harmonic maps
Qλ and Pλ described in the introduction. We give simple geometric descriptions of
these maps and prove several properties that we will need in the ensuing arguments.
We also prove some additional preliminary facts including an equivalence between
the 2d and 4d Cauchy problems described in the introduction.

We begin with the case of harmonic maps into S2.

2.1. Harmonic maps into S2. Here we prove various facts about the harmonic
maps Qλ. For convenience we collect these facts into a proposition.

Proposition 2.1. For every 0 ≤ α < π there exists a unique, finite energy sta-
tionary solution to (1.2), i.e., a harmonic map, (Qλ, 0) ∈ Eλ which solves (1.5),
where

Qλ(r) = 2 arctan(λ tanh(r/2))

λ ∈ [0,∞), α = α(λ) = 2 arctan(λ) = lim
r→∞

Qλ(r).
(2.1)

Moreover, (Qλ, 0) ∈ Eλ has energy

E(Qλ, 0) = 2
λ2

1 + λ2
, (2.2)

which is minimal in Eλ. Finally, the Qλ with λ ∈ [0,∞) are the only finite energy
stationary solutions to (1.2).

Proof. We are seeking to classify all stationary finite energy solutions to (1.2).
Recall from the introduction that any finite energy harmonic map Q must have
Q(0) = 0 and Q(∞) = α ∈ [0,∞). Thus we would like to find all solutions Q to

Qrr + coth r Qr =
sin 2Q

2 sinh2 r
,

Q(0) = 0, lim
r→∞

Q(r) = α ∈ [0,∞).
(2.3)

One can check directly that Qλ, as defined in (2.1), satisfies (2.3) with α =
2 arctan(λ). One can also directly compute the energy to verify (2.2).
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To prove the remaining statements in Proposition 2.1 we begin by giving a simple
geometric interpretation of Qλ. Recall that stereographic projection of H2 onto the
Poincaré disc, D, viewed as a subset of R2, is given by the map

(sinh r cosω, sinh r sinω, cosh r) 7→ (tanh(r/2) cosω, tanh(r/2) sinω).

Next, we rescale the disc by λ ∈ [0,∞) via

(tanh(r/2) cosω, tanh(r/2) sinω) 7→ (λ tanh(r/2) cosω, λ tanh(r/2) sinω).

Finally, recall that the inverse of stereographic projection, R2 → S2 −{south pole}
is given by

(ρ cosω, ρ sinω) 7→ (sin(2 arctanρ) cosω, sin(2 arctanρ) sinω, cos(2 arctan ρ)).

Then as solutions to (1.2) or (1.5) are expressed in terms of the azimuth angle on
S2, we see that Qλ is simply the composition of the above three maps.

This geometric interpretation motivates the following change of variables in (2.3).
Setting

s := log(tanh(r/2)), ϕ(s) := Q(r), (2.4)

we see that (2.3) reduces to the following equation for ϕ:

ϕ′′ =
1

2
sin 2ϕ,

ϕ(−∞) = 0, ϕ(0) = α.
(2.5)

which is an autonomous ode and none other than the equation for the pendulum.
Multiplying the first line in (2.5) by ϕ′ and integrating from s1 to s2 yields the
energy identity

ϕ2
s(s2)− ϕ2

s(s1) = sin2(ϕ(s2))− sin2(ϕ(s1)) (2.6)

A standard analysis of the phase portrait in (ϕ, ϕ′) coordinates together with (2.6)
mandates the condition that any nontrivial solution satisfies 0 < ϕ(0) < π. In
particular, we note that a solution with ϕ(−∞) = 0 corresponds to the unstable
manifold at (0, 0), (which connects to the stable manifold at (π, 0) as s → +∞).
Using (2.6) one sees that if there existed a nontrivial trajectory emanating from
(0, 0) at s = −∞ and such that ϕ(s0) = π for some s0 ∈ R, then we would have
ϕs(s0) = 0. But then (ϕ, ϕs)(s0) = (π, 0) and therefore ϕ must be a trivial solution,
which contradicts our assumption.

One can also see this by noting that the unique positive solution (up to trans-
lation in s) is given by ϕ(s) = 2 arctan(es). In particular, we have shown that for
each α ∈ [0, π) there is a unique solution to (2.3). For α ≥ π there are no solutions.

It remains to show that (Qλ, 0) minimizes the energy in Eλ. This follows as

a direct consequence of the following “Bogomol’nyi factorization”: Let ~ψ(t) =
(ψ(t), ψt(t)) ∈ Eλ. Then we have

E(~ψ) = 1

2

∫ ∞

0

ψ2
t sinh r dr +

1

2

∫ ∞

0

(
ψr −

sinψ

sinh r

)2

sinh r dr +

∫ ∞

0

sinψψr dr

=
1

2

∫ ∞

0

ψ2
t sinh r dr +

1

2

∫ ∞

0

(
ψr −

sinψ

sinh r

)2

sinh r dr + cosψ(t, 0)− cosψ(t,∞)

=
1

2

∫ ∞

0

ψ2
t sinh r dr +

1

2

∫ ∞

0

(
ψr −

sinψ

sinh r

)2

sinh r dr + 1− cos(2 arctan(λ))
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For the solution ~ψ(t) = (Qλ, 0) the first two integrals–which we note are always
non-negative–vanish identically, which proves that (Qλ, 0) uniquely minimizes the
energy in Eλ. Finally, a simple calculation yields

E(Qλ, 0) = 1− cos(2 arctan(λ)) = 2
λ2

1 + λ2

and this completes the proof. �

2.2. Harmonic maps into H2. Here we prove the analogous result for Pλ while
providing a simple geometric interpretation.

Proposition 2.2. For every β ∈ [0,∞) there exists a unique, finite energy sta-
tionary solution to (1.23), i.e., a harmonic map, (Pλ, 0) ∈ Eλ which solves (1.26),
where

Pλ(r) = 2 arctanh (λ tanh(r/2))

λ ∈ [0, 1), β = β(λ) = 2arctanh (λ) = lim
r→∞

Pλ(r).
(2.7)

Moreover, (Pλ, 0) ∈ Eλ has energy

E (Pλ, 0) = 2
λ2

1− λ2
, (2.8)

which is minimal in Eλ. Finally, the Pλ with λ ∈ [0, 1) are the only finite energy
stationary solutions to (1.23).

Proof. We would like to classify solutions to

Prr + coth r Pr =
sinh 2P

2 sinh2 r
,

P (0) = 0, lim
r→∞

P (r) = β.
(2.9)

for β ∈ [0,∞). One can check directly that Pλ as defined in (2.7) solves (2.9) with
β = 2arctanh (λ), and the energy of (Pλ, 0) satisfies (2.8).

For a geometric interpretation of the Pλ we recall again the stereographic of
H2 onto the Poincaré disc, D, which is a conformal isomorphism and is given, in
coordinates by

(sinh r cosω, sinh r sinω, cosh r) 7→ (tanh(r/2) cosω, tanh(r/2) sinω).

Next, we perform the map z 7→ λz, z ∈ D, which is finite energy harmonic map
from D → D for λ ∈ [0, 1). In coordinates this is given by

(tanh(r/2) cosω, tanh(r/2) sinω) 7→ (λ tanh(r/2) cosω, λ tanh(r/2) sinω).

Finally, recall that the inverse of stereographic projection, D → H2 given by

(ρ cosω, ρ sinω) 7→ (sinh(2arctanh ρ) cosω, sinh(2arctanh ρ) sinω, cosh(2arctanh ρ)).

It is clear that Pλ is a composition of these three maps.
As is the case for maps to the sphere, we can also view (2.9) as an autonomous

equation, with the change of variables

s = log(tanh(r/2)), φ(s) = P (r).
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Then (2.9) reduces to

φ′′ =
1

2
sinh 2φ

φ(−∞) = 0, φ(0) = β

from which the existence and uniqueness of the Pλ is also apparent.
Finally, to show that Pλ minimizes the energy in Eλ we again preform the “Bo-

gomol’nyi factorization”: Let ~ψ(t) = (ψ(t), ψt(t)) ∈ Eλ. Then we have

E(~ψ) = 1

2

∫ ∞

0

ψ2
t sinh r dr +

1

2

∫ ∞

0

(
ψr −

sinhψ

sinh r

)2

sinh r dr +

∫ ∞

0

sinhψψr dr

=
1

2

∫ ∞

0

ψ2
t sinh r dr +

1

2

∫ ∞

0

(
ψr −

sinhψ

sinh r

)2

sinh r dr + cosh(2arctanh (λ))− 1

For the solution ~ψ(t) = (Pλ, 0) the first two integrals–which are always non-
negative–vanish identically, which proves that (Pλ, 0) uniquely minimizes the energy
in Eλ. Finally, a simple calculation yields

E (Pλ, 0) = cosh(2 arctan(λ))− 1 = 2
λ2

1− λ2

and this completes the proof. �

2.3. Reduction to equations on R×H4. Next, we provide more details related
to the 4d reductions to the Cauchy problems (1.15) and (1.29) outlined in the
introduction.

First, we prove an estimate that gives an L∞ bound on solutions to (1.2) and
to (1.23) in terms of their energy. As the proof is the same in both cases we shorten
the exposition by considering solutions to (1.1), namely

ψtt − ψrr − coth r ψr +
g(ψ)g′(ψ)

sinh2 r
= 0,

E(~ψ) :=
1

2

∫ ∞

0

(
ψ2
t + ψ2

r +
g2(ψ)

sinh2 r

)
sinh r dr.

(2.10)

where in the cases under consideration we have g(ψ) = sinψ, E = E for maps into
S2, and g(ψ) = sinhψ, E = E for maps into H2.

Lemma 2.3. Let ~ψ(t) be a finite energy solution to (2.10) defined on the interval
t ∈ I with ψ(t, 0) = 0 for every t ∈ I. Then there exists a function C with C(ρ) → 0
as ρ→ 0 so that

sup
t∈I

‖ψ(t)‖L∞ ≤ C(E(~ψ)). (2.11)

Proof. Following, e.g., [26, Chapter 8] we define the function

G(ψ) =

∫ ψ

0

|g(ρ)| dρ,
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and we note that G(0) = 0, G is increasing, and G(ψ) → ∞ as ψ → ∞. For any
fixed t ∈ I we have

|G(ψ(t, r))| = |G(ψ(t, r)) −G(ψ(t, 0))| =
∣∣∣∣∣

∫ ψ(t,r)

ψ(t,0)

|g(ρ)| dρ
∣∣∣∣∣

=

∫ r

0

|g(ψ(t, r))| |ψr(t, r)| dr ≤ E(~ψ)

(2.12)

Then (2.11) follows from (2.12) and the fact that G is increasing. �

Next, we establish an equivalence of the Cauchy problems (1.2) with (1.15) as
well as (1.23) with (1.29) by proving an isomorphism between the spaces H0 and
H1 × L2(H4), where H0 is defined as in (1.10) and where for radially symmetric
u, v : H4 → R we set

‖(u, v)‖2H1×L2(H4) :=

∫ ∞

0

(
u2r(r) + v2(r)

)
sinh3 r dr.

We use the notation H1 for the above as opposed to Ḣ1 due to the embed-
ding Ḣ1(Hd) →֒ L2(Hd) for d ≥ 2. We prove the following simple lemma.

Lemma 2.4. Let (ψ, φ) ∈ H0(H
2) with ψ(0) = 0, ψ(∞) = 0. Then if we define

(u, v) by

(ψ(r), φ(r)) = (sinh ru(r), sinh rv(r))

we have

‖(ψ, φ)‖2H0
≤ ‖(u, v)‖2H1×L2(H4) ≤ 9‖(ψ, φ)‖2H0

. (2.13)

Remark 6. We note that Lemma 2.4 implies that in order to prove Theorem 1.1
and Theorem 1.3 it suffices to consider the corresponding results for the Cauchy
problems (1.15), respectively (1.29), with initial data ~u(0) = (u0, u1) ∈ H1 ×
L2(H4).

Proof. Since ‖φ‖2L2(H2) = ‖v‖2L2(H4) it suffices to just consider u and ψ = sinh ru.

Integration by parts yields the following identity:
∫ ∞

0

(
ψ2
r +

ψ2

sinh2 r

)
sinh r dr =

∫ ∞

0

u2r sinh
3 r dr − 2

∫ ∞

0

u2 sinh3 r dr, (2.14)

which implies that
∫ ∞

0

(
ψ2
r +

ψ2

sinh2 r

)
sinh r dr ≤

∫ ∞

0

u2r sinh
3 r dr,

giving the left-hand inequality in (2.13). On the other hand,
∫ ∞

0

ψ2 sinh r dr ≤
∫ ∞

0

ψ2 cosh r dr = −2

∫ ∞

0

ψψr sinh r dr

≤ 2

(∫ ∞

0

ψ2
r sinh r dr

) 1
2
(∫ ∞

0

ψ2 sinh r dr

) 1
2

,

which means that∫ ∞

0

u2 sinh3 r dr =

∫ ∞

0

ψ2 sinh r dr ≤ 4

∫ ∞

0

ψ2
r sinh r dr.

Combining the above with (2.14) yields the right-hand-side of (2.13). �
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3. The linearized operator HVλ
: Analysis of the Spectrum

This section gives a detailed analysis of the spectrum of the Schrödinger operator
HVλ

defined in (1.19), which is self-adjoint on the domain D := H2(H4), restricted
to radial functions. In Section 3.1, we establish a positive result, Proposition 3.2,
for a range of λ, namely 0 ≤ λ <

√
15/8. We prove that for λ in this range the

spectrum of HVλ
coincides with that of the unperturbed operator H0 := −∆H4 − 2.

Next, we show that this breaks down for large λ. In particular, in the rest of this
section, we prove that for λ large there is a unique simple eigenvalue µ2

λ in the
spectral gap (0, 14 ) and µ

2
λ → 0 as λ→ ∞. This is the content of Theorem 1.2.

First we pass to the half-line by conjugating by sinh
3
2 r. Indeed, the map

L2(H4) ∋ ϕ 7→ sinh
3
2 r ϕ =: φ ∈ L2(0,∞) (3.1)

is an isomorphism of L2(H4), restricted to radial functions, onto L2([0,∞)). If we
define L0,LVλ

by

L0 := −∂rr +
1

4
+

3

4 sinh2 r
,

LVλ
:= −∂rr +

1

4
+

3

4 sinh2 r
+ Vλ(r),

(3.2)

we have

(H0ϕ)(r) = sinh−
3
2 r(L0φ)(r),

(HVλ
ϕ)(r) = sinh−

3
2 r(LVλ

φ)(r).
(3.3)

Hence it suffices to work with L0 and with LVλ
on the half-line. We recall that Vλ

is an attractive potential and is given by

Vλ(r) =
cos 2Qλ − 1

sinh2 r
≤ 0. (3.4)

Some elementary computations using the definition of Qλ give us the explicit rep-
resentation

Vλ(r) =
−8λ2

[(1 + λ2) cosh r + (1 − λ2)]2
. (3.5)

Below, we collect a few useful facts about Vλ.

Lemma 3.1. The following statements hold for Vλ.

(1) We have

V ′
λ =

16λ2(1 + λ2) sinh r

[(1 + λ)2 cosh r + (1 − λ2)]3
.

(2) The potential Vλ is attractive. More precisely, Vλ is always non-decreasing
on [0,∞) and

Vλ(0) = −2λ2, lim
r→∞

Vλ(r) = 0.

(3) For λ = 0, V0 = 0. For λ = 1,

V1 = − 2

cosh2 r
.

(4) For 0 ≤ λ ≤ 1, we have

Vλ ≥ V1.
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Proof. Statements (1)–(3) are trivial. To see why (4) holds, note that for 0 ≤ λ ≤ 1,

−Vλ ≤ 8λ2

(1 + λ2)2 cosh2 r
≤ −V1.

where we used 4λ2 ≤ (1 + λ2)2. �

3.1. Spectrum of HVλ
for small λ. We note that the spectrum for the self-adjoint

operator L0 is purely absolutely continuous and is given by σ(L0) = [1/4,∞), and
in particular there is no negative spectrum, no eigenvalue in the gap [0, 1/4), and
the threshold 1/4 is neither an eigenvalue nor a resonance. The following result

shows that in the case 0 < λ <
√
15/8, the same can be said of the spectrum

σ(LVλ
).

Proposition 3.2. Let 0 ≤ λ <
√
15/8. Then the spectrum for the self-adjoint

operator LVλ
is purely absolutely continuous and given by

σ(LVλ
) = [1/4,∞). (3.6)

In particular, there is no negative spectrum, there are no eigenvalues in the gap
[0, 1/4), and the threshold 1

4 is neither an eigenvalue nor a resonance.

Before we prove Proposition 3.2 we observe a few preliminary facts concerning
solutions to

LVλ
φ = µ2φ, for µ2 ∈ R, µ ∈ C. (3.7)

Lemma 3.3. Let µ ∈ C, µ2 ∈ R and suppose that φµ is a solution to (3.7) such
that φµ ∈ L2([0, c)) for some c > 0. Then, there exists a ∈ R so that

φµ(r) = a r
3
2 + o(r

3
2 ) as r → 0. (3.8)

Proof. This follows from the fact that the operator L0 − 1/4 is well approximated
near r = 0 by the singular operator

L0 := −∂rr +
3

4r2
.

L0 is in the limit point case at r = 0 and a fundamental system for L0f = 0 is given

by {r 3
2 , r−

1
2 }. It follows that a solution φµ as in Lemma 3.7 can be written in terms

of these two solutions via the variation of parameters formula which converges for
small r. The L2([0, c)) requirement then guarantees that the coefficient in front of

r−
1
2 must be 0 and the leading order behavior is given by r

3
2 . �

Lemma 3.4. Suppose φ0 is a solution to (3.7) with µ2 = 1
4 . Then there exist

constants a, b ∈ R so that

φ0(r) = a+ b r +O(re−2r) as r → ∞. (3.9)

Proof. This follows from the fact that we can find constants Cλ, C > 0 so that for
r large we have Vλ(r) ≤ Cλe

−2r and 3
4 sinh2 r

≤ Ce−2r. Thus the operator

L∞ := −∂rr
is a good approximation of LVλ

− 1/4 near r = ∞. A fundamental system for
L∞f = 0 is given by {1, r}. The variation of parameters formula then yields the
conclusions of Lemma 3.4. �
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Definition 1. Given the conclusions of Lemma 3.7 and Lemma 3.4 we can give a
precise definition of what we mean by threshold resonance. We say that that φ0 is
a threshold resonance for LVλ

if φ0 is not in L2(0,∞) and it is a bounded solution
to

LVλ
φ0 =

1

4
φ0.

In particular we can find non-zero a, b ∈ R so that

φ0(r) = ar
3
2 + o(r

3
2 ) as r → 0,

φ0(r) = b+O(re−2r) as r → ∞.
(3.10)

We can now prove Proposition 3.2.

Proof of Proposition 3.2. Let µ ∈ C with µ2 ≤ 1
4 . Suppose that φµ is a solution to

LVλ
φµ = µ2φµ (3.11)

If µ2 ≤ 1/4 is an eigenvalue, we can assume that it is the smallest eigenvalue, and
by a variational principle, we can further assume that corresponding eigenfunction
φµ ∈ L2 is unique, (i.e., µ2 is simple) and strictly positive. If µ2 = 1

4 and is
not an eigenvalue, we assume that φµ is a threshold resonance. In either case, we

know by Lemma 1.2 that φµ(r) = O(r
3
2 ) as r → 0. If φµ is an eigenvalue, then

φµ(r) → 0 as r → ∞. If φµ(r) is a threshold resonance, we know by Definition 1
that φµ(r) → b > 0 as r → ∞.

Now, define the operator

K := −∂rr +
3

4 sinh2 r
. (3.12)

Observe that the function

f(r) = tanh
3
2 r, (3.13)

solves

Kf =
15

4 cosh2 r
f. (3.14)

Then, for any R > 0 we can integrate by parts, using (3.11) and (3.14) to obtain

(
µ2 − 1

4

)∫ R

0

tanh
3
2 r φµ(r) dr = −φ′µ(R) tanh

3
2 R+

3

2
φµ(R)

tanh
1
2 R

cosh2R

+

∫ R

0

(
15

4 cosh2 r
+ Vλ(r)

)
tanh

3
2 r φµ(r) dr (3.15)

Since µ2 ≤ 1
4 and 3

2φµ(R)
tanh

1
2 R

cosh2R
≥ 0 for all R > 0, we can deduce that

∫ R

0

(
15

4 cosh2 r
+ Vλ(r)

)
tanh

3
2 r φµ(r) dr ≤ φ′µ(R) tanh

3
2 R (3.16)

for all R > 0. For 0 < λ <
√
15/8, we can plug in the definition (3.5) to see that

for such a λ fixed, we have

15

4 cosh2 r
+ Vλ(r) > 0, ∀r ∈ [0,∞). (3.17)
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This means that the left-hand-side of (3.16) is strictly positive and increasing in R
and hence we can find δ > 0 so that

0 < δ ≤ φ′µ(R) tanh
3
2 R (3.18)

for all R > 0. However, we know that φ′µ(R) tanh
3
2 R → 0 as R → ∞, which means

that (3.18) gives a contradiction for R large enough. This completes the proof of
Proposition 3.2. �

3.2. Spectrum of HVλ
for large λ: Beginning of the proof of Theorem

1.2. The rest of this section is devoted to the proof of Theorem 1.2 which asserts,
in particular, existence of a unique simple gap eigenvalue µ2

λ ∈ (0, 1/4) of LVλ
for

large λ and migration of µ2
λ to 0 as λ tends to ∞. We remind the reader that LVλ

is L2-equivalent to HVλ
.

In this subsection, we begin our proof of Theorem 1.2 by establishing some
elementary facts concerning the spectrum of LVλ

for all λ ∈ [0,∞). In particular,
we prove that if an eigenvalue exists, then it must occur in the spectral gap (0, 1/4).
We also show that LVλ

has a threshold resonance when λ = λsup or λ = Λinf , where
λsup and Λinf were defined in Theorem 1.2. Next, we briefly explain the idea of
renormalization, which is key to the rest of our proof of Theorem 1.2. At the end
of this subsection, we give an outline of the structure of the proof of Theorem 1.2.

To begin, we state and prove some general facts about the spectrum of LVλ
.

Proposition 3.5. The following statements concerning LVλ
hold.

(i) For every λ ≥ 0, the spectrum of LVλ
does not contain any non-positive reals,

i.e.,
σ(LVλ

) ∩ (−∞, 0] = ∅.
(ii) There does not exist any eigenvalue in [ 14 ,∞).

As a consequence of this proposition, any eigenvalue of the operator LVλ
must

occur in the spectral gap (0, 1/4).
In our proof of the first statement of Proposition 3.5, we make use of the positive

solution ζ
(λ)
0 to the equation

LVλ
ζ
(λ)
0 = 0, (3.19)

which is obtained by differentiating Qλ with respect to λ and conjugating by

sinh1/2 r. It can be computed explicitly to be

ζ
(λ)
0 (r) =

tanh(r/2)

1 + λ2 tanh2(r/2)
sinh1/2 r. (3.20)

The explicit solution ζ
(λ)
0 (more precisely, its conjugate ζ

(λ)
∞ ) will make another

entrance in our proof of migration of the gap eigenvalue in Section 3.5.

Proof of Proposition 3.5. The existence of the solution ζλ0 rules out the possibility
of an eigenvlaue at µ = 0. Therefore, to prove the first statement, it suffices to
rule out eigenvalues in (−∞, 0). Suppose that such an eigenvalue exists. Then, as
in the proof of Proposition 3.2, there exists µ ∈ C with µ2 ≤ 0 and an L2 solution

φµ to (3.11) which is strictly positive. Proceeding as in (3.15) with ζ
(λ)
0 in place of

tanh3/2 r, for any R > 0 we obtain

µ2

∫ R

0

ζ
(λ)
0 (r)φµ(r) dr = −φ′µ(R)ζ(λ)0 (R) + φµ(R)(ζ

(λ)
0 )′(R).
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Arguing as in Proposition 3.2, we see that the left-hand side is strictly negative
and decreasing in R. On the other hand, the right-hand side is non-negative for
sufficiently large R, which is a contradiction.

The second statement follows from the fact that if µ2 ≥ 1/4 then there does not
exist any non-zero solution to LVλ

φ = µ2φ in L2([1,∞)). To prove this fact, observe
that LVλ

− µ2 is well-approximated by −∂rr − (µ2 − 1/4), near r = ∞. Moreover,

note that a fundamental system for −∂rrf − (µ2 − 1/4)f = 0 is {e±i
√
µ2−1/4 r}

when µ2 > 1/4 and {1, r} when µ2 = 1/4, all of which do not decay as r → ∞. �

Next we show, roughly speaking, that the transition from a λ-regime with no
eigenvalue and threshold resonance to a λ-regime with a gap eigenvalue must be
accompanied by a threshold resonance.

Proposition 3.6. As in Theorem 1.2, define

λsup = sup{λ | LVλ̃
has no e-vals and no threshold resonance ∀ λ̃ < λ}

Λinf = inf{λ | LVλ̃
has a gap e-val µ2

λ̃
∈ (0, 1/4) ∀ λ̃ > λ}

Then both LVλsup
and LVΛinf

have threshold resonances.

In view of the result that we will prove Section 3.3 (existence of a gap eigenvalue),
we have λsup ≤ Λinf <∞.

Proof. To prove this proposition, we study the solution φλ0 to LVλ
φλ0 = (1/4)φλ0

such that φλ0 (r) = r3/2 + o(r3/2). By Sturm’s oscillation theory and Proposition
3.5 (which rules out negative spectrum), existence of an eigenvalue in (0, 1/4) is
equivalent to existence of a zero (i.e., a sign change) of φλ0 . As a consequence, we
have the following alternative characterization of λsup and Λinf in terms of φλ0 :

λsup = sup{λ | φλ̃0 does not change sign and is not a threshold resonance∀ λ̃ < λ}
Λinf = inf{λ | φλ̃0 changes sign ∀ λ̃ > λ}
Observe that A) “changing sign” and B) “not changing sign and not being a

threshold resonance” are open conditions in λ for φλ0 . Indeed, that A) is an open
condition is an easy consequence of pointwise continuity of φλ0 (r) in λ, r. That B)
is an open condition follows from the fact that the coefficient b = b(λ) from Lemma
3.4 is continuous in λ. By the above characterization of λsup and Λinf , the only
remaining possibility is that φλ0 is a threshold resonance for λ = λsup or λ = Λinf ,
which proves the proposition. �

We now explain the idea of renormalization, which will play an important role
in our arguments in the rest of this section. For each λ > 0, we define the rescaled

Schrödinger operator L̃λ by

L̃λ := −∂ρρ +
3

4

1

λ2 sinh2(ρ/λ)
+

1

4λ2
+

1

λ2
Vλ(ρ/λ). (3.21)

We will refer to ρ = λr as the renormalized coordinate. The operator L̃λ is related

to LVλ
as follows: Given a function φ(r) on (0,∞), define φ̃(ρ) := φ(ρ/λ). Then

L̃λφ̃ =
1

λ2
(LVλ

φ)(·/λ) = 1

λ2
˜(LVλ

φ).
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A simple but important observation is that in the limit λ → ∞, L̃λ formally
tends to the operator

Leucϕ :=− ϕρρ +
3

4

1

ρ2
ϕ+ Veuc(ρ)ϕ,

Veuc(ρ) :=− 2

(1 + (ρ/2)2)2
.

(3.22)

The equation Leucϕ = 0 possesses an explicit solution

ϕ0(ρ) :=
ρ

3
2

1 + (ρ/2)2
. (3.23)

The Schrödinger operator Leuc arises in linearizing the co-rotational wave maps
equation R2+1 → S2 around the ground state harmonic map Qeuc. The explicit
solution ϕ0 is obtained from the scaling invariance of the problem, and is a resonance
at zero of Leuc. See [15] for more details.

The idea of renormalization is to exploit the formal resemblance of L̃λ and Leuc

by (essentially) working with a fundamental system for Leucϕ = 0 consisting of
the explicit solution ϕ0 and its conjugate. More precisely, given a solution ψ to
LVλ

ψ = µ2ψ, we define its renormalization g(ρ) by making a change of variable
ρ = λr and dividing by ϕ0(ρ), i.e.,

g(ρ) :=
ψ(ρ/λ)

ϕ0(ρ)
. (3.24)

Then g(ρ) obeys the equation

(g′ϕ2
0)

′ = ϕ2
0Wλ,µg

where

Wλ,µ(ρ) :=
3

4

1

λ2 sinh2(ρ/λ)
− 3

4

1

ρ2
+

1

4λ2
− µ2

λ2
+

1

λ2
Vλ(ρ/λ)− Veuc(ρ).

We call Wλ,µ the renormalized potential. By the same computation that shows

L̃λ → Leuc, it follows that Wλ,µ(ρ) → 0 for each ρ > 0 as λ→ ∞. This simple fact
already suggests that we have a good control on g(ρ) for 0 ≤ ρ . 1. This will be
one of the main ideas of our proof of uniqueness of the gap eigenvalue.

Remarkably, the renormalization technique can be also made effective in a ρ-
interval of the form 0 ≤ ρ . λ, which can be made arbitrarily long, provided that
an appropriate a priori estimate for g holds. This observation is crucial in our
proofs of existence and migration of the gap eigenvalue below, where we obtain an
appropriate a priori estimate from a contradiction hypothesis.

We conclude this subsection with an outline of the structure of the proof of
Theorem 1.2. In Section 3.3, we establish existence of an eigenvalue of LVλ

in
(0, 1/4) for sufficiently large λ. Then in Section 3.4, we show that if an eigenvalue
exists in (0, 1/4), then it must be simple and unique if λ is sufficiently large. We
also rule out threshold resonance for large λ. Finally, in Section 3.5, we show that
the gap eigenvalue µ2

λ tends to 0 as λ → ∞. Combined with Propositions 3.5 and
3.6, Theorem 1.2 then follows.
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3.3. Existence of gap eigenvalues for large λ. The goal of this subsection is to
prove existence of an eigenvalue of LVλ

in the spectral gap (0, 1/4) for sufficiently
large λ. The main result of this subsection is the following proposition:

Proposition 3.7. There exists Λ0 > 0 with the following property: Let λ ≥ Λ0

and let φ0 be the solution to

LVλ
φ0 =

1

4
φ0 (3.25)

that satisfies φ0(r) = r3/2 + o(r3/2) as r → 0. Then φ0(r) changes sign on [0,∞)
at least once.

Existence of an eigenvalue µ2 < 1
4 is then a direct consequence of Sturm’s oscil-

lation theory. By Proposition 3.5, it follows furthermore that µ2 ∈ (0, 1/4).
Henceforth, we will work with the rescaled solution ψλ0 (ρ) := λ3/2φ0(ρ/λ) with

λ > 1, in anticipation of the application of the renormalization technique. Then
ψλ0 solves the equation

L̃λψλ0 =
1

4λ2
ψλ0 . (3.26)

Moreover, ψλ0 (ρ) = ρ3/2 + o(ρ3/2) as ρ→ 0.
Proposition 3.7 will be a consequence of the following two lemmas.

Lemma 3.8. For every λ > 1, there exists a unique solution ψλ∞ to (3.26) so that

ψλ∞(ρ) = 1 +O(e−2ρ/λ) as ρ→ ∞
(ψλ∞)′(ρ) = O(e−2ρ/λ) as ρ→ ∞

(3.27)

Moreover, for sufficiently large λ, ψλ∞(ρ) satisfies

ψλ∞(ρ) > 0 ∀ρ ∈ [λ,∞) (3.28)

Lemma 3.9. For sufficiently large λ, the following statement holds: Let ψλ0 be the
solution to (3.26) that satisfies

ψλ0 (ρ) = ρ3/2 + o(ρ3/2) as ρ→ 0. (3.29)

Then, either ψλ0 changes sign on [0, λ], or

(ψλ0 )
′(λ)

ψλ0 (λ)
<

(ψλ∞)′(λ)

ψλ∞(λ)
(3.30)

where ψλ∞ is the function given by Lemma 3.8.

Before proving Lemma 3.8 and Lemma 3.9, we assume their conclusions and
establish Proposition 3.7.

Proof of Propositon 3.7. Let ψ0 := ψλ0 be as in Lemma 3.9, and let ψ∞ := ψλ∞ be
as in Lemma 3.8.

Assume, for the sake of contradiction that ψ0 does not change signs on [0,∞).
Without loss of generality, we assume that ψ0(ρ) ≥ 0 for all r ∈ [0,∞).

Since there is no first order term in L̃λ, the Wronskian of ψ0 and ψ∞ is constant.
Hence we are free to evaluate it at any point ρ ∈ [0,∞). Since we are assuming
that ψ0 does not change its sign, (3.30) gives

W [ψ0, ψ∞](λ) = ψ0(λ)ψ
′
∞(λ)− ψ′

0(λ)ψ∞(λ) > 0. (3.31)
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Due to the rapid decay as ρ→ ∞ of

3

4

1

λ2 sinh2(ρ/λ)
+

1

λ2
Vλ(ρ/λ)

we can view any solution of (3.26) as a perturbation of a solution to the free equation

−∂ρρψ = 0 (3.32)

at ρ = ∞. Since a fundamental system for (3.32) is given by {1, ρ}, we can use a
variation of parameters argument to find a, b ∈ R such that

ψ0(ρ) = a+ bρ+ o(1) as ρ→ ∞,

ψ′
0(ρ) → b as ρ→ ∞.

(3.33)

Combining the above with (3.27) we can deduce that

lim
ρ→∞

W [ψ0, ψ∞](ρ) = −b. (3.34)

By (3.31) we can conclude that b < 0. But this means that ψ0(ρ) < 0 for large ρ,
which contradicts our assumption that ψ0(ρ) > 0 for all ρ ∈ [0,∞). �

Lemma 3.8 follows from a standard Volterra iteration argument combined with
an easy observation concerning the sign of (3/4 sinh2 r) + Vλ(r).

Proof of Lemma 3.8. Note that if φ∞ is a solution of LVλ
φ∞ = (1/4)φ∞, then

ψλ∞(·) := φ∞(·/λ) is a solution of L̃λψλ∞ = (1/4λ2)ψλ∞. Hence it suffices to prove
the lemma for φ∞, where the positivity statement is now φ∞(r) > 0 for r ≥ 1.

Existence and uniqueness of φ∞ can be proved by a standard iteration argument
applied to the Volterra equation

φ∞(r) = 1 +

∫ ∞

r

(s− r)N(s)φ∞(s)ds, (3.35)

where

N(r) :=
3

4 sinh2 r
+ Vλ(r).

From the definition (3.5) of Vλ(r), it is not difficult to see that if λ is sufficiently
large, then N(r) ≥ 0 for r ≥ 1 (for a proof of a stronger statement, see Lemma
3.13). Now it follows from a simple continuity argument that φ∞(r) ≥ 1 for r ≥ 1,
which proves the desired positivity statement. �

We have thus reduced matters to proving Lemma 3.9. In the proof we will make
use of the following estimates for the renormalized potential Wλ,1/2.

Lemma 3.10. Let W (ρ, λ) :=Wλ, 1
2
(ρ), i.e.,

W (ρ, λ) =
3

4

1

λ2 sinh2(ρ/λ)
+

1

λ2
Vλ(ρ/λ)−

3

4ρ2
− Veuc(ρ).

Then there exists Λ1 such that the following hold.

(i)
∣∣λ2W (ρ, λ)

∣∣ is uniformly bounded for λ > Λ1 and ρ ≤ λ. Moreover we can

find ρ1 < Λ1 such that if λ > Λ1 then λ2W (ρ, λ) < −b in the region ρ > ρ1,
where b > 0 is a constant independent of ρ and λ.

(ii) W (ρ, λ) < 0 for ρ ≥ λ ≥ Λ1.
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Proof of Lemma 3.10. It is convenient to introduce the notation β = 1
λ . Then the

region ρ ≤ λ corresponds to ρβ ≤ 1. With this in mind we first note that

3

4λ2 sinh2(ρ/λ)
− 3

4ρ2
=

3

4

(
(ρβ)2 − sinh2(ρβ)

(ρβ)2 sinh2(ρβ)

)
β2 ≤ −β

2

10
(3.36)

in the region ρβ ≤ 1. Next we write λ−2Vλ(ρ/λ) = Ṽ (ρ, β) where

Ṽ (ρ, β) :=
−8

(
cosh(ρβ)−1

β2 + cosh(ρβ) + 1
)2

and note that limβ→0 Ṽ (ρ, β) = Veuc(ρ), where Veuc was defined in (3.22). This,
of course, is just a restatement of the fact that in the limit λ → ∞ the hyperbolic
potential approaches its Euclidean counterpart. It follows that

Veuc(ρ)−
Vλ(ρ/λ)

λ2
= Veuc(ρ)− Ṽ (ρ, β) = −

∫ β

0

∂β Ṽ (ρ, τ)dτ. (3.37)

Now

∂β Ṽ (ρ, β) =
16

((
(ρβ) sinh(ρβ)−2(cosh(ρβ)−1)

(ρβ)3

)
ρ3 + ρ sinh(ρβ)

)

((
cosh(ρβ)−1

(ρβ)2

)
ρ2 + cosh(ρβ) + 1

)3 . (3.38)

But in the region ρβ ≤ 1
∣∣∣∣
(ρβ) sinh(ρβ) − 2(cosh(ρβ)− 1)

(ρβ)3

∣∣∣∣+ | sinh(ρβ)| . ρβ,

(
cosh(ρβ) − 1

(ρβ)2

)
& 1,

and therefore

|∂β Ṽ (ρ, β)| . (1 + ρ2)−3(1 + ρ4)β .
β

(1 + ρ2)
.

Inserting this into (3.37) we get
∣∣∣∣Veuc(ρ)−

Vλ(ρ/λ)

λ2

∣∣∣∣ .
β2

(1 + ρ2)
. (3.39)

The conclusions of the first part of the lemma now follow from an inspection of
(3.36) and (3.39).

The second part of the lemma concerns the region ρβ ≥ 1. We first write

3

4λ2 sinh2(ρ/λ)
− 3

4ρ2
=

3

4ρ2

(
(ρβ)2 − sinh2(ρβ)

sinh2(ρβ)

)
≤ − c

ρ2
, (3.40)

for some positive constant c and for ρβ ≥ 1. Next note that x sinh(x) > 2(cosh(x)−
1) for all real x, and therefore by (3.38) if ρβ ≥ 1 and λ is sufficiently large,

|∂β Ṽ (ρ, β)| .

(
sinh(ρβ)
(ρβ)2

)
ρ3 + ρ sinh(ρβ)

(
cosh(ρβ)−1

(ρβ)2

)3

ρ6 + (cosh(ρβ) + 1)3
.

1

ρ3
.

The second part of the lemma now follows from combining this estimate with (3.40)
and (3.37). �
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Proof of Lemma 3.9. For simplicity, we will write ψ0 := ψλ0 , ψ∞ := ψλ∞ and
W (ρ, λ) :=Wλ,1/2(ρ). We divide the proof into two steps.

Step 1: The first step in the proof consists of establishing the following claim,
which compares ψ∞ with the renormalized Euclidean resonance, ϕ0 at ρ = λ.

Claim 3.11. For sufficiently large λ, we have

ϕ′
0(λ)

ϕ0(λ)
<
ψ′
∞(λ)

ψ∞(λ)
(3.41)

Proof. The proof follows from another comparison argument. Using that ψ∞
solves (3.26) and ϕ0 solves (3.22) we have

ψ′
∞(λ)ϕ0(λ)− ψ∞(λ)ϕ′

0(λ) =

∫ ∞

λ

d

dρ
(ψ∞(ρ)ϕ′

0(ρ)− ψ′
∞(ρ)ϕ0(ρ)) dρ

=

∫ ∞

λ

ψ∞(ρ)ϕ′′
0 (ρ)− ψ′′

∞(ρ)ϕ0(ρ) dρ

=

∫ ∞

λ

[
3

4

(
1

ρ2
− 1

λ2 sinh2(ρ/λ)

)
− Veuc(ρ) +

1

λ2
Vλ(ρ/λ)

]
ψ∞(ρ)ϕ0(ρ) dρ

= −
∫ ∞

λ

W (ρ, λ)ψ∞(ρ)ϕ0(ρ) dρ.

Therefore,

ψ′
∞(λ)

ψ∞(λ)
− ϕ′

0(λ)

ϕ0(λ)
=

−1

ψ∞(λ)ϕ0(λ)

∫ ∞

λ

W (ρ, λ)ψ∞(ρ)ϕ0(ρ) dρ

Note that by Lemma 3.8 we have that ψ∞(ρ) > 0 for all ρ ∈ [λ,∞). Also, ϕ0(ρ) ≥ 0
for all ρ ≥ 0. Therefore, the claim follows from the second part of Lemma 3.10 �

Step 2: In this second step we prove the following claim.

Claim 3.12. For sufficiently large λ, we have

ψ′
0(λ)

ψ0(λ)
<
ϕ′
0(λ)

ϕ0(λ)
. (3.42)

Proof. We apply the renormalization technique introduced in Section 3.2. For
simplicity of notation we write W (ρ) = Wλ,1/2(ρ). We define g by the relation
ψ0(ρ) = g(ρ)ϕ0(ρ). Since by assumption ψ0 does not change sign in [0, λ] and since
ϕ0 is positive there, we must have g(ρ) > 0 for ρ ∈ [0, λ]. It follows that (3.42) is
equivalent to

g′(λ) < 0. (3.43)

Notice that g satisfies the equation
(
g′ϕ2

0

)′
= ϕ2

0Wg.

Moreover, by our normalization ψ0(ρ) = ρ3/2 + o(ρ3/2), it follows that (g, g′)(0) =
(1, 0). Therefore

g′(ρ) =
1

ϕ2
0(ρ)

∫ ρ

0

ϕ2
0(σ)W (σ)g(σ) dσ, (3.44)

g(ρ) = 1 +

∫ ρ

0

∫ τ

0

ϕ2
0(σ)

ϕ2
0(τ)

W (σ)g(σ) dσdτ. (3.45)
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Assume by contradiction that (3.43) does not hold, or in other words

g′(λ) ≥ 0. (3.46)

Take λ large enough so that Lemma 3.10 applies. Then in view of the representation
(3.44) and the fact that W (ρ) is negative for ρ1 ≤ ρ ≤ λ we must have g′(ρ) ≥ 0
for ρ ∈ [ρ1, λ].

To derive the desired contradiction we begin by showing that g is bounded away
from zero. According to the observation above, g can decrease only on the interval
[0, ρ1]. From Lemma 3.10, we see that supσ∈[0,ρ1] |W (σ)| → 0 as λ→ ∞. Recalling

the definition of ϕ0 in (3.23), it follows (by carrying out an explicit integration)
that ∫ ρ1

0

(∫ ρ1

σ

1

ϕ2
0(τ)

dτ
)
ϕ2
0(σ) |W (σ)| dσ .ρ1 sup

σ∈[0,ρ1]

|W (σ)| → 0

as λ→ ∞. By a Volterra-type iteration argument, we conclude that

sup
ρ∈[0,ρ1]

|g(ρ)− 1| = o(1) as λ→ ∞.

Taking λ larger if necessary we can guarantee that g(ρ) ≥ 1/2 for ρ ≤ ρ1. Since
g′(ρ) ≥ 0 for ρ ∈ [ρ1, λ] we have a global bound g(ρ) ≥ 1/2 on ρ ≤ λ. It follows
that

∫ λ

ρ1

ϕ2
0(σ)W (σ)g(σ) dσ ≤ − b

2λ2

∫ λ

ρ1

ϕ2
0(σ)dσ

≤ −C1b logλ

λ2

for some universal constant C1 independent of λ. On the other hand
∫ ρ1

0

ϕ2
0(σ)|W (σ)|g(σ) dσ ≤ C2

λ2

for another universal constant C2 also independent of λ. Inserting the last two
estimates into the representation (3.44) we conclude that if λ is sufficiently large,
g′(λ) < 0 contradicting (3.46). �

Lemma 3.9 now follows from combining the conclusions of Steps 1 and 2. �

3.4. Uniqueness of gap eigenvalues for HVλ
for large λ. Our next goal is

to prove that for large λ, the eigenvalue found in the previous section is simple
and unique, and moreover that LVλ

does not have a threshold resonance at 1/4.
This will be accomplished by showing that eigenfunctions in the spectral gap and
threshold resonances cannot change sign.

As before we need to treat the case of large and small r separately. We begin
with the following technical lemma.

Lemma 3.13. For λ sufficiently large, there is a constant C independent of λ such
that for r ≥ C

λ

3

4 sinh2 r
+ Vλ(r) ≥ 0.

Proof. Note that since

|Vλ(r)| ≤
8

λ2(cosh r − 1)2
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it suffices to show that for r ≥ Cλ

3

4 sinh2 r
− 8

λ2(cosh r − 1)2
≥ 0.

Writing sinh2 r = cosh2 r − 1, we see that this is equivalent to
(3
4
− 8

λ2

)
cosh r ≥ 3

4
+

8

λ2
.

Assume that λ is large enough so that 3/4 − 8/λ2 > 1/2. Then from the ele-
mentary fact that cosh r ≥ 1 + (1/2)r2, the preceding inequality holds for r ≥ C/λ
with an absolute constant C > 0. �

We can now carry out the analysis for large r.

Lemma 3.14. Let φ be either an eigenfunction (i.e., a nonzero L2 solution) of
LVλ

φ = µ2φ with µ2 ∈ (0, 14 ) or a threshold resonance at µ2 = 1/4. Let C be as
in Lemma 3.13. Then for sufficiently large λ, φ cannot change sign in the region
r ∈ (Cλ ,∞).

Proof. We begin with the case of an eigenvalue µ2 ∈ (0, 14 ). Define m > 0 by

m2 = 1
4 − µ2. The idea is to compare φ with f = e−mr, which up to scaling is the

unique nonzero L2 solution of ∂rrf = m2f . As usual, after suitable renormalization
we may assume that φ(r) = e−mr + o(e−mr) as r → ∞. Defining

W (r) :=W [φ, f ](r) = φ(r)f ′(r) − φ′(r)f(r),

we have

W ′(r) = −
( 3

4 sinh2 r
+ Vλ(r)

)
φ(r)f(r).

Therefore, in view of Lemma 3.13, we see that W ′(r) ≤ 0 for r ≥ C/λ and so long
as φ is positive (note that f > 0 everywhere). Now let R denote the largest zero
of φ and for contradiction assume R ≥ C/λ. Then W ′(r) < 0 and φ ∼ e−mr as
r → ∞ imply that W (R) ≥ 0. This means that

lim
r→R+

f ′(r)

f(r)
≥ lim

r→R+

φ′(r)

φ(r)
= ∞,

and therefore we must have f(R) = 0 which is impossible.
In the case of a threshold resonance, we compare φ with g = 1, which up to

scaling is the unique nonzero bounded solution of ∂rrg = 0. We omit the details,
which are very similar to the previous case. �

Our task now is to show that φ as in Lemma 3.14 does not change sign in the
interval r ≤ C/λ. For this purpose we use the technique of renormalization.

Lemma 3.15. Let φ be either an eigenfunction (i.e., a nonzero L2 solution) of
LVλ

φ = µ2φ with µ2 ∈ (0, 14 ) or a threshold resonance at µ2 = 1/4. Let C be as
in Lemma 3.13. Then for sufficiently large λ, φ cannot change sign in the region
r ∈ (0, Cλ ].

Proof. We work with the rescaled operator L̃λ. It suffices to show that if ψ(ρ)

is a solution of L̃λψ = (µ2/λ2)ψ in L2((0, C]), then ψ(ρ) does not change sign
in the region 0 ≤ ρ ≤ C. Arguing as in Lemma 3.3, we see that any L2((0, C])

solution of L̃λψ = (µ2/λ2)ψ, after suitable normalization, has the behavior ψ(ρ) =
ρ3/2 + o(ρ3/2) and ψ′(ρ) = (3/2)ρ1/2 + o(ρ1/2) as ρ→ 0.
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Define g(ρ) := ψ(ρ)/ϕ0(ρ), where ϕ0 is the Euclidean resonance defined in (3.23).
Since ϕ0 is always positive, we need to show that g is bounded away from zero in
the region 0 ≤ r ≤ C. Recall from Section 3.2 that g satisfies the equation

(g′ϕ2
0)

′ = ϕ2
0Wλ,µg.

Note furthermore that we have (g, g′)(0) = (1, 0), thanks to our normalization of
ψ. Therefore, we have the integral formula

g(ρ) = 1 +

∫ ρ

0

∫ τ

0

ϕ2
0(σ)

ϕ2
0(τ)

Wλ,µ(σ)g(σ) dσdτ. (3.47)

By a Volterra-type iteration argument as in the proof of Lemma 3.9 (see the
proof of Claim 3.12), we see that

sup
ρ∈[0,C]

|g(ρ)− 1| = o(1) as λ→ ∞,

from which the lemma follows. �

Proposition 3.16. If λ is sufficiently large, then LVλ
has a unique simple eigen-

value in (0, 14 ), with no threshold resonance at 1/4.

Proof. Existence was seen in the previous subsection, so it suffices to establish
uniqueness and simpleness. Let φ be an eigenfunction corresponding to any eigen-
value µ2 ∈ (0, 14 ), or a threshold resonance at µ2 = 1

4 . Combining Lemmas 3.14 and
3.15, it follows that φ cannot change sign on (0,∞). It follows by the variational
principle that there is no eigenvalue below µ2, and when µ2 ∈ (0, 14 ) is an eigenvalue
it is simple. The proposition follows. �

3.5. Migration of the gap eigenvalue. In this subsection, we conclude the proof
of Theorem 1.2 by demonstrating that the gap eigenvalue µ2

λ approaches 0 as λ→
∞. By Sturm’s oscillation theory, Proposition 3.5 and the uniqueness of the gap
eigenvalue, it suffices to establish the following proposition:

Proposition 3.17. Let µ2 ∈ (0, 1/4]. Then for λ sufficiently large (depending on
µ2), the solution φ0 to the ODE

{
LVλ

φ0 =µ2φ0

φ0 =r3/2 + o(r3/2) as r → 0

must change sign.

We will prove Proposition 3.17 by a contradiction argument, which is similar in

spirit to the proof of Proposition 3.7. The key additional idea is to use ζ
(λ)
∞ , which

is the solution to the problem
{
LVλ

ζ(λ)∞ =0,

ζ(λ)∞ ∼cλe−r/2 as r → ∞,
(3.48)

for an appropriate cλ > 0. An interesting feature of ζ
(λ)
∞ is that it is a conjugate

solution to the explicit solution ζ
(λ)
0 used in the proof of Proposition 3.5. By

standard ODE theory, it follows that ζ
(λ)
∞ can also be explicitly determined.
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We now briefly explain why ζ
(λ)
∞ is useful for proving Proposition 3.17. By a

comparison argument, the contradiction hypothesis φ0 > 0 leads to a lower bound

for φ0 in terms of ζ
(λ)
∞ , i.e.,

φ0(r) ≥
φ0(r0)

ζ∞(r0)
ζ∞(r) for 0 < r0 ≤ r.

(For details, see the proof of (3.56) below.) Thanks to the explicit expression for

ζ
(λ)
∞ , we are able to derive from this inequality a uniform lower bound for φ0 in an
r-interval of length ≃ 1. In the renormalized coordinate, this lower bound holds on
a ρ-interval of length ≃ λ, which can be made arbitrarily large. This gives enough
‘time’ for the renormalized potential (which is negative since µ2 > 0) to force a sign
change of φ0, which is a contradiction.

Remark 7. In fact, our proof of Proposition 3.17 does not depend on Proposition
3.7, and therefore furnishes an alternative proof of existence of a gap eigenvalue.
We have nevertheless elected to include both proofs in this paper, since the proof of
Proposition 3.7 presented in Section 3.3 requires a weaker hypothesis (in particular,

there is no need for the knowledge of the explicit solution ζ
(λ)
∞ ) and therefore might

be of independent interest.

Some lemmas needed for proving Proposition 3.17 are in order. The first lemma

consists of an upper and lower bound on the explicit solution ζ
(λ)
∞ .

Lemma 3.18. There exist ǫ1 > 0 such that

ζ(λ)∞ (r) ≃ λ1/2
(
λ2 +

1

λ2r2

) (λr)3/2

1 + λ2r2
for 0 ≤ r ≤ ǫ1, λ > 0, (3.49)

where the implicit constants are independent of r and λ.

Proof. We begin by computing ζ
(λ)
∞ explicitly. For simplicity, we will omit writing

the superscript (λ).
Since ζ0 and ζ∞ solve the same equation (with no first order term), their Wron-

skian is constant. We choose cλ in the definition of ζ∞ so that

W [ζ0, ζ∞] = ζ0ζ
′
∞ − ζ′0ζ∞ = −1

Dividing by ζ20 , we have (ζ∞
ζ0

)′
= − 1

ζ20
.

Because of the vanishing condition as r → ∞, it follows that

ζ∞(r) =
(∫ ∞

r

1

ζ20 (s)
ds

)
ζ0(r)

=
(∫ ∞

r

1

ζ20 (s)
ds

) tanh(r/2)

1 + λ2 tanh2(r/2)
sinh1/2 r.

We now compute the s-integral. Using the identity

sinh s = 2 cosh(s/2) sinh(s/2) =
2 tanh(s/2)

1− tanh2(s/2)
,

we see that
1

ζ20 (s)
=

(1 + λ2 tanh2(s/2))2(1 − tanh2(s/2))

2 tanh3(r/2)
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Therefore, making a change of variables u = tanh(s/2), we have
∫ ∞

r

1

ζ20 (s)
ds

=

∫ 1

tanh(r/2)

(1 + λ2u2)2

u3
du (3.50)

= −1

2
(1− tanh−2(r/2))− 2λ2 log tanh(r/2) +

λ4

2
(1 − tanh2(r/2)).

To prove (3.49), it suffices to establish

tanh(r/2)

1 + λ2 tanh2(r/2)
sinh1/2 r ≃ r3/2

1 + λ2r2
, (3.51)

∫ ∞

r

1

ζ20 (s)
ds ≃λ2

(
λ2 +

1

λ2r2

)
, (3.52)

for 0 ≤ r ≤ ǫ1, where ǫ1 > 0 is to be chosen below.
Estimate (3.51) is an immediate consequence of the easier estimates

tanh(r/2) ≃ r, sinh r ≃ r, 1 + λ tanh(r/2) ≃ 1 + λr.

which holds when ǫ1 > 0 is sufficiently small. On the other hand, (3.52) is easy to
prove (taking ǫ1 > 0 smaller if necessary) by directly estimating the integral (3.50),
whose integrand is positive. We leave the details to the reader. �

In the following lemma, we collect useful facts for estimating the renormalized
potential Wλ,µ.

Lemma 3.19. For 0 ≤ ρ ≤ λ we have
∣∣∣3
4

1

λ2 sinh2(ρ/λ)
− 3

4

1

ρ2
+

1

4λ2
− µ2

λ2

∣∣∣ . 1

λ2
, (3.53)

∣∣∣ 1
λ2
Vλ(ρ/λ)− Veuc(ρ)

∣∣∣ . 1

λ2
1

(1 + ρ2)
. (3.54)

Moreover, there exists ǫ2 = ǫ2(µ
2) > 0, which are independent of ρ and λ, such

that for 0 ≤ ρ ≤ ǫ2λ we have

3

4

1

λ2 sinh2(ρ/λ)
− 3

4

1

ρ2
+

1

4λ2
− µ2

λ2
≤ − µ2

2λ2
. (3.55)

Proof. Estimate (3.53) follows from (3.36) and estimate (3.54) is exactly (3.39) in
the proof of Lemma 3.10. To prove (3.55), we begin by observing that the Taylor
expansion of r2/ sinh2 r at r = 0 is given by

r2

sinh2 r
= 1− 1

3
r2 +

1

2

∫ r

0

(r − r′)2E(r′) dr′

where

E(r) =
d3

dr3

( r2

sinh2 r

)
.

Note that E(r) obviously enjoys the bound supr∈[0,1] |E(r)| ≤ C for some abso-
lute constant C > 0. Therefore,

∣∣∣ r2

sinh2 r
− 1 +

1

3
r2
∣∣∣ ≤ Cr3
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for 0 ≤ r ≤ 1. Making a change of variable r = ρ/λ and restricting to 0 ≤ ρ ≤ ǫ2λ,
it follows that

∣∣∣3
4

1

λ2 sinh2(ρ/λ)
− 3

4

1

ρ2
+

1

4λ2

∣∣∣ ≤ ǫ2
C

λ2
.

Choosing ǫ2 > 0 sufficiently small compared to µ2 > 0, (3.55) follows. �

We are now ready to prove Proposition 3.17.

Proof of Proposition 3.17. In what follows, we will omit the superscript (λ) in ζ
(λ)
∞

for simplicity. For the sake of contradiction, suppose that φ0 does not change sign,
i.e., φ0 is positive.

Step 1: We claim that

W [φ0, ζ∞] = φ0(ζ∞)′ − φ′0ζ∞ ≤ 0. (3.56)

Indeed, suppose the contrary. Then at some R > 0, we must have

W [φ0, ζ∞](R) > 0.

We introduce an auxiliary function ζ which solves the equation
{

LVλ
ζ =0,

(ζ, ζ′)(R) =(φ0, φ
′
0)(R).

Since ζ and ζ∞ solve the same equation, their Wronskian is constant. Therefore,

W [ζ, ζ∞](r) =W [ζ, ζ∞](R) =W [φ0, ζ∞](R) > 0

for all r ≥ 0. It follows that ζ must tend to −∞ as r → ∞, thus changing sign.
Then a comparison argument between φ0 and ζ as in Propositions 3.2 and 3.5,
using crucially the fact that µ2 > 0, shows that φ0 must also change sign, which is
a contradiction.

Step 2: As discussed earlier, the benefit of (3.56) is that it gives a lower bound
on φ0 in terms of ζ∞ on an arbitrarily long interval in the renormalized coordinate.
Indeed, by (3.56), we have

d

dr
logφ0(r) ≥

d

dr
log ζ∞(r). (3.57)

Thus, for any r ≥ r0 > 0,

φ0(r) ≥
φ0(r0)

ζ∞(r0)
ζ∞(r). (3.58)

To translate this lower bound to the renormalized picture, we make the change
of variable ρ = λr (thus ρ0 = λr0) and define

ζ̃∞(ρ) :=λ−1/2ζ∞(ρ/λ),

g(ρ) :=
λ3/2φ0(ρ/λ)

ϕ0(ρ)
,

where we remind the reader that

ϕ0(ρ) =
ρ3/2

1 + (ρ/2)2
.
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Since ϕ0 > 0, our contradiction hypothesis φ0 > 0 is equivalent to g > 0. Moreover,
(3.58) translates to

g(ρ) ≥ g(ρ0)
( ζ̃∞(ρ0)

ϕ0(ρ0)

)−1( ζ̃∞(ρ)

ϕ0(ρ)

)
. (3.59)

Applying Lemma 3.18 and plugging in the definition of ϕ0, we see that

g(ρ) ≥ Cρ0g(ρ0), for ρ0 ≤ ρ ≤ ǫ1λ, λ ≥ 1, (3.60)

where C > 0 is independent of ρ and λ.

Step 3: Note that g satisfies (g, g′)(0) = (1, 0) and
(
g′ϕ2

0

)′
= ϕ2

0Wλ,µg (3.61)

where

Wλ,µ(ρ) =
3

4

1

λ2 sinh2(ρ/λ)
− 3

4

1

ρ2
+

1

4λ2
− µ2

λ2
+

1

λ2
Vλ(ρ/λ)− Veuc(ρ).

At this point, we fix a large enough ρ0 > 0 so that we have

Wλ,µ(ρ) ≤ − µ2

4λ2
for ρ0 ≤ ρ ≤ ǫ2λ. (3.62)

Indeed, (3.62) follows by combining (3.54) and (3.55). We now claim that the
following bounds hold for g(ρ) and g′(ρ): For 0 ≤ ρ ≤ ρ0 and λ ≥ ρ0, we have

|g(ρ)− 1| ≤Cρ0
λ2

, (3.63)

|g′(ρ)| ≤Cρ0
λ2

. (3.64)

These bounds are proved in a similar fashion to the proof of uniqueness of µ2
λ,

cf. Lemma 3.15. From (3.61) it follows that

g′(ρ) =
1

ϕ2
0(ρ)

∫ ρ

0

ϕ2
0(σ)Wλ,µ(σ)g(σ) dσ,

g(ρ) =1 +

∫ ρ

0

∫ τ

0

ϕ2
0(σ)

ϕ2
0(τ)

Wλ,µ(σ)g(σ) dσdτ.

Using (3.53) and (3.54) to estimateWλ,µ, substituting ϕ0 by its explicit definition
and estimating the resulting integral, it follows that

∫ ρ0

0

ϕ2
0(σ) |Wλ,µ(σ)| dσ .ρ0

1

λ2
,

∫ ρ0

0

(∫ ρ0

σ

1

ϕ2
0(τ)

dτ
)
ϕ2
0(σ) |Wλ,µ(σ)| dσ .ρ0

1

λ2
.

Then by a Volterra-type iteration, (3.63) follows. Moreover, (3.64) is an immediate
consequence of plugging in (3.63) to the formula for g′(ρ).

Step 4: We now derive a contradiction. Our starting point is the identity

g(ρ) = g(ρ0) + g′(ρ0)

∫ ρ

ρ0

ϕ2
0(ρ0)

ϕ2
0(τ)

dτ +

∫ ρ

ρ0

∫ τ

ρ0

ϕ2
0(σ)

ϕ2
0(τ)

Wλ,µ(σ)g(σ) dσdτ,

for ρ ≥ ρ0, which is obtained by integrating (3.61) twice.
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Fix ǫ > 0 so that ǫ = min{ǫ1, ǫ2}. Taking λ ≥ ρ0/ǫ, let ρ = ǫλ in the preceding
identity. Then since ǫ ≤ ǫ2, we can apply (3.55) and conclude the following one-
sided inequality:

g(ǫλ) ≤ g(ρ0)
(
1− Cµ2

λ2

∫ ǫλ

ρ0

∫ τ

ρ0

ϕ2
0(σ)

ϕ2
0(τ)

dσdτ
)
+ |g′(ρ0)|

∫ ǫλ

ρ0

ϕ2
0(ρ0)

ϕ2
0(τ)

dτ. (3.65)

Recalling the definition of ϕ0, we easily compute
∫ ǫλ

ρ0

1

ϕ2
0(τ)

dτ ≤Cρ0ǫ2λ2,

− 1

λ2

∫ ǫλ

ρ0

∫ τ

ρ0

ϕ2
0(σ)

ϕ2
0(τ)

dσdτ ≤ − Cρ0ǫ
2 log(2 + ǫλ).

Therefore, we obtain

g(ǫλ) ≤ g(ρ0)
(
1− Cρ0,ǫ µ

2 log(2 + ǫλ)
)
+ Cρ0ǫ

2(λ2 |g′(ρ0)|).
We now recall the bounds (3.63) and (3.64) for g(ρ0) and λ2 |g′(ρ0)|. Thanks to
the term log(2 + ǫλ), we then see that the right-hand side is negative when λ is
sufficiently large. It follows that φ0(ǫ) = g(ǫλ)ϕ(ǫλ) < 0, which contradicts our
hypothesis that φ0 > 0. �

4. Strichartz estimates for the linearized operators

The goal of this section is to prove Strichartz estimates for a radial shifted 1

linear wave equation in R×H4, perturbed by a radial potential V , i.e.,

utt − urr − 3 coth r ur − 2u+ V u = F,

~u(0) = (u0, u1).
(4.1)

We will make several assumptions about V , which are consistent with the potentials
Vλ, Uλ, where Vλ is as in Proposition 3.2, and Uλ is as in (1.30). First define

HV := −∂rr − 3 coth r ∂r − 2 + V (r).

We will work under the assumptions that

(A) V is real-valued, smooth, radial, and bounded on H4, and HV is self-adjoint
on the domain D = H2(H4). Moreover V (r) ≤ Ce−2r as r → ∞.

(B) The operator HV defined above has purely absolutely continuous spectrum

σ(HV ) = [1/4,∞) .

In particular, HV has no negative spectrum and no eigenvalues in the gap
[0, 1/4). Moreover, the threshold energy 1

4 is neither an eigenvalue nor a
resonance.

Remark 8. We note that by Proposition 3.2, HVλ
satisfies (A) and (B) above for

0 ≤ λ <
√
15/8. On the other hand, HUλ

satisfies (A) and (B) for all λ ∈ [0, 1),
because Uλ ≥ 0 is a repulsive potential. In fact, we have

Uλ(r) :=
cosh 2Pλ − 1

sinh2 r
=

8λ2

[cosh r + 1− λ2(cosh r − 1)]2
≥ 0. (4.2)

1In [3] and most of the related literature “the shifted wave equation” refers to the equation

(�g −
9

4
)u = F because the spectrum of the Laplacian ∆g on H4 is [9/4,∞). Nevertheless, we

have preferred to use the term “a shifted wave equation” here as well since there is little risk for
confusion.
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Strichartz estimates for the free equation, that is with V ≡ 0, were proved
by Anker-Pierfelice, [3], and we briefly recall their set-up and main result. The
corresponding free shifted linear wave equation on R×H4 is given by

(�g − 2)v := vtt −∆gv − 2v = F,

~v(0) = (v0, v1).
(4.3)

A triple (p, q, σ) is called hyperbolic-admissible if

p, q > 2,
1

p
+

3

2q
≤ 3

4
,

1

p
+

4

q
= 2− σ. (4.4)

Proposition 4.1. [3, Corollary 5.3] Suppose ~v(t) is a solution to (4.3) with initial
data ~v(0) = (v0, v1) and let 0 ∈ I ⊂ R be any time interval. Let (p, q, σ) and (a, b, γ)
be any two hyperbolic-admissible triples. Then we have the estimates

‖v‖Lp(I;W 1−σ,q(H4)) + ‖∂tv‖Lp(I;W−σ,q(H4)) . ‖~v(0)‖H1×L2(H4) + ‖F‖La′(I;Wγ,b′ (H4)).

(4.5)

We will use Proposition 4.1 together with a perturbative argument to establish
the corresponding estimates for (4.1). In particular we prove the following result.

Proposition 4.2. Suppose ~u(t) is a solution to (4.1) with initial data ~u(0) =
(u0, u1) and with V satisfying assumptions (A) and (B) above. Let 0 ∈ I ⊂ R be
any time interval. Let (p, q, σ) and (a, b, γ) be any two hyperbolic-admissible triples.
Then we have the estimates

‖u‖Lp(I;W 1−σ,q(H4)) + ‖∂tu‖Lp(I;W−σ,q(H4)) . ‖~u(0)‖H1×L2(H4) + ‖F‖La′(I;Wγ,b′ (H4)).

(4.6)

Proof of Proposition 4.2. The proof roughly follows the approach in [16, Section 5],
which in turn is a variant of an argument in [22]. Note that by the standard TT ∗

argument and Minkowski’s inequality it suffices to consider the case F = 0.
The argument hinges on certain estimates related to the distorted Fourier trans-

forms relative to the self-adjoint operators H0 := −∆g − 2 and HV = −∆g − 2+V
on the domain D := H2(H4), restricted to radial functions. First though, we can
reduce the proof of Proposition (4.2) to a pair of local energy estimates, in partic-
ular (4.11) and (4.12) below.

Indeed, define the operator

A :=
√
−∆g − 2,

and note that

‖Af‖L2(H4) ≃ ‖f‖H1(H4). (4.7)

For any real valued ~u = (u0, u1) ∈ H1 × L2(H4) we set

w := Au0 + iu1

Then (4.7) implies that ‖w‖L2 ≃ ‖~u‖H1×L2 . Moreover, ~u(t) solves (4.1) if and only
if

i∂tw = Aw + V u,

w(0) = Au0 + iu1.
(4.8)

The Duhamel formula then gives us

w(t) = e−itAw(0)− i

∫ t

0

e−i(t−s)AV u(s) ds
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and by (4.7) we need to show that

‖Pw‖X ≤ C‖w(0)‖L2

where P := A−1 Re, and X := LptW
1−σ,q
x is any Strichartz norm, i.e., (p, q, σ) is

hyperbolic admissible. By Proposition 4.1, we have

‖Pe−itAw(0)‖X ≤ C‖w(0)‖L2 .

By the Christ-Kislelev lemma, see [8, 28], it then suffices to show
∥∥∥∥P

∫ ∞

−∞
e−i(t−s)AV u(s) ds

∥∥∥∥
X

. ‖w(0)‖L2 ≃ ‖~u(0)‖H1×L2 . (4.9)

To prove (4.9) we factor the potential V (r) = V1(r)V2(r) so that each factor decays
like e−r as r → ∞. Then,

∥∥∥∥P
∫ ∞

−∞
e−i(t−s)AV u(s) ds

∥∥∥∥
X

≤ ‖K‖L2
t,x→X‖V2u‖L2

t,x

(Kf)(t) := P

∫ ∞

−∞
e−i(t−s)AV1f(s) ds

(4.10)

Next, note that for each f ∈ L2
t,x(R×H4) we have

‖Kf‖X ≤ ‖Pe−itA‖L2
x→X

∥∥∥∥
∫ ∞

−∞
eisAV1f(s) ds

∥∥∥∥
L2

x

The first factor on the right-hand-side above is bounded by a fixed constant by
Proposition 4.1. We claim that the second factor is bounded by C‖f‖L2

t,x
. By

duality, this is equivalent to the localized energy bound:

‖V1e−itAϕ‖L2
t,x

≤ C‖ϕ‖L2
x
, ∀ϕ ∈ L2(H4) (4.11)

Therefore, by (4.10) we have reduced the proof of Proposition 4.2 to proving (4.11)
in addition to a local energy estimate for the perturbed evolution, namely

‖V2u‖L2
t,x

≤ C‖~u(0)‖H1×L2 ≃ C‖w(0)‖L2 (4.12)

To prove (4.11) and (4.12) we will need to develop some machinery. First we pass

to an equation on the half-line by conjugating by sinh
3
2 r. Indeed, the map

L2(H4) ∋ ϕ 7→ sinh
3
2 r ϕ =: φ ∈ L2(0,∞) (4.13)

is an isomorphism of L2(H4), restricted to radial functions, onto L2([0,∞)). If we
define L0,LV by

L0 := −∂rr +
1

4
+

3

4 sinh2 r
,

LV := −∂rr +
1

4
+

3

4 sinh2 r
+ V (r),

(4.14)

we have

(H0ϕ)(r) = sinh−
3
2 r(L0φ)(r),

(HV ϕ)(r) = sinh−
3
2 r(LV φ)(r).

(4.15)
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We claim that we can associate with L0 and LV distorted Fourier bases, φ0(r; ξ),
respectively φ(r; ξ), that satisfy

L0φ0(r; ξ) = (
1

4
+ ξ2)φ0(r; ξ), φ0(r; ξ) ∈ L2([0, b]), ∀ 0 < b <∞ (4.16)

LV φ(r; ξ) = (
1

4
+ ξ2)φ(r; ξ), φ(r; ξ) ∈ L2([0, b]), ∀ 0 < b <∞. (4.17)

To prove (4.11) we will need the following additional information about φ0(r; ξ).
For all g ∈ L2([0,∞)), set

g̃(ξ) :=

∫ ∞

0

φ0(r; ξ)g(r) dr. (4.18)

We can find a positive measure ρ0(dξ) = ω0(ξ) dξ so that

g(r) =

∫ ∞

0

φ0(r; ξ) g̃(ξ) ρ0(dξ), (4.19)

‖g‖2L2(0,∞) =

∫ ∞

0

|g̃(ξ)|2 ρ0(dξ), (4.20)

sup
r>0,ξ>0

|φ0(r; ξ)|2
(r + 1)2

〈ξ〉
ξ
ω0(ξ) ≤ C <∞, (4.21)

where we are using the notation 〈ξ〉 :=
√
ξ2 + 1

4 . We remark here that the distorted

Fourier basis (4.16) is explicit and is obtained by setting φ0(r, ξ) := sinh
3
2 rΦξ(r)

where the Φξ are the hyperbolic spherical functions in H4. The spectral measure

ρ0(dξ) := |c(ξ)|−2
dξ where c(ξ) is the Harish-Chandra c-function. Then (4.19)

and (4.20) follow from the corresponding facts about the Helgason-Fourier trans-
form on L2(H4). The estimates (4.21) will follow from well known estimates for Φξ
and c(ξ) and we will sketch the proof in Lemma 4.3 below.

With (4.19)–(4.21) we can easily prove (4.11). First, note that after passing to

the half-line formulation via conjugation by sinh
3
2 r, (4.11) is equivalent to proving

‖V1e−it
√
L0g‖L2

t,x(R×(0,∞)) . ‖g‖L2(0,∞), (4.22)

for g ∈ L2(0,∞). As L0 is given by multiplication by 〈ξ〉 on the Fourier side, the
above, using (4.19), reduces to showing that

∫ ∞

−∞

∥∥∥∥V1
∫ ∞

0

e−it〈ξ〉φ0(r; ξ)g̃(ξ)ρ0(dξ)

∥∥∥∥
2

L2(0,∞)

dt . ‖g‖2L2(0,∞). (4.23)

Expanding and carrying out the t-integration, the left-hand-side becomes

∫ ∞

0

V 2
1 (r)

∫ ∞

0

∫ ∞

0

φ0(r; ξ)φ0(r;µ)g̃(ξ)g̃(µ)δ(〈ξ〉 − 〈µ〉)ω0(ξ)dξ ω0(µ)dµ dr

=

∫ ∞

0

V 2
1 (r)

∫ ∞

0

φ20(r; ξ) |g̃(ξ)|2 ω2
0(ξ)

〈ξ〉
ξ
dξ dr

(4.24)
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Using the estimates (4.21), the exponential decay of V1(r), and (4.20), we can bound
the above as follows:

∫ ∞

0

V 2
1 (r)

∫ ∞

0

φ20(r; ξ) |g̃(ξ)|2 ω2
0(ξ)

〈ξ〉
ξ
dξ dr .

∫ ∞

0

V1(r)(r + 1)2 dr

∫ ∞

0

|g̃(ξ)|2 ω0(ξ) dξ .

∫ ∞

0

|g̃(ξ)|2 ω0(ξ) dξ = ‖g‖L2(0,∞),

which proves (4.23) and hence (4.11).
The key point here is that we can establish the analogs of (4.18)–(4.21) for the

perturbed operator LV and φ(r; ξ) as in (4.17). In particular, for f ∈ L2(0,∞) we
set

f̂(ξ) :=

∫ ∞

0

φ(r; ξ)f(r) dr. (4.25)

We can find a positive measure ρ(dξ) = ω(ξ) dξ so that

f(r) =

∫ ∞

0

φ(r; ξ) f̂ (ξ) ρ(dξ), (4.26)

‖f‖2L2(0,∞) =

∫ ∞

0

∣∣∣f̂(ξ)
∣∣∣
2

ρ(dξ), (4.27)

‖
√
LV f‖L2(0,∞) =

∫ ∞

0

〈ξ〉2
∣∣∣f̂(ξ)

∣∣∣
2

ρ(dξ), (4.28)

sup
r>0,ξ>0

|φ(r; ξ)|2
(r + 1)3

〈ξ〉
ξ
ω(ξ) ≤ C <∞. (4.29)

The proof of (4.29) is where the spectral information for HV plays a crucial role.
In particular, the fact that the spectrum of HV is supported on (1/4,∞) and that
the threshold energy 1/4 is not a resonance allows us to establish the same rate of
decay for ω(ξ) as for the free spectral measure ω0(ξ) as ξ → 0+. We postpone the
proof of (4.17), (4.25)–(4.29) to Lemma 4.4 below, and first use these estimates to
prove (4.12).

In light of (4.17), (4.26), and (4.7), conjugating by sinh
3
2 r reduces the local

energy estimate (4.12) to showing that

∫ ∞

−∞

∫ ∞

0

∣∣∣∣V2(r)
∫ ∞

0

φ(r; ξ)

(
cos(t 〈ξ〉)f̂(ξ) + sin(t 〈ξ〉)

〈ξ〉 ĝ(ξ)

)
ρ0(dξ)

∣∣∣∣
2

dt

. ‖(
√
LV f, g)‖2L2×L2(0,∞). (4.30)

For simplicity, we first consider the case g = 0 above. After expanding and carrying
out the t-integration on the left-hand-side as before, one obtains

∫ ∞

0

V 2
2 (r)

∫ ∞

0

φ2(r; ξ)
∣∣∣f̂(ξ)

∣∣∣
2

ω2(ξ)
〈ξ〉
ξ
dξ dr .

. sup
r>0,ξ>0

[
|φ(r; ξ)|2
(r + 1)3

1

ξ 〈ξ〉ω(ξ)
] ∫ ∞

0

V 2
2 (r)(r + 1)3 dr

∫ ∞

0

〈ξ〉2
∣∣∣f̂(ξ)

∣∣∣
2

ω(ξ) dξ

.

∫ ∞

0

〈ξ〉2
∣∣∣f̂(ξ)

∣∣∣
2

ω(ξ) dξ = ‖
√
LV f‖L2(0,∞)
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The case f = 0 is similar. This proves (4.30) and hence (4.12). This finishes the
proof of Proposition 4.2 pending the proofs of the technical statements regarding
the distorted Fourier transform in Lemma 4.3 and Lemma 4.4 below. �

4.1. Distorted Fourier Transform for L0 and LV . In this subsection we es-
tablish the technical statements regarding the distorted Fourier transforms for L0

and LV .
We begin with the free case, L0, which will follow from well known estimates for

the Helgason-Fourier transform in H4 restricted to radial functions.

Lemma 4.3. The half-line operator L0 admits a distorted Fourier basis satisfy-
ing (4.16), (4.18)–(4.21),

Proof. As we remarked earlier, the distorted Fourier basis associated to L0 is ex-
plicit and is given by

φ0(r; ξ) := sinh
3
2 rΦξ(r)

= C sinh
3
2 r

∫ π

0

(cosh r − sinh r cos θ)−iξ−
3
2 sin2 θ dθ, (4.31)

where here Φξ(r) are the elementary spherical functions and serve as the Helgason-
Fourier basis for ∆H4 . Indeed, the elementary spherical functions Φξ(r) in H4

satisfy

H0Φξ(r) = (ξ2 + 1/4)Φξ(r).

For radial functions G ∈ L2(H4) we can define the Helgason-Fourier transform by

G̃(ξ) =

∫ ∞

0

Φξ(r)G(r) sinh
3 r dr.

The associated inversion formula is

G(r) = C

∫ ∞

0

Φξ(r) G̃(ξ) |c(ξ)|−2
dξ, (4.32)

where C is a normalizing constant and c(ξ) is the Harish-Chandra c-function

c(ξ) =
4Γ(iξ)

π1/2Γ(32 + iξ)
.

The Plancherel theorem also holds. In particular, the Helgason-Fourier transform

extends to an isometry of radial functions L2
rad(H

4) → L2(R+, |c(ξ)|−2
dξ) with

∫ ∞

0

f1(r)f2(r) sinh
3 r dr = C

∫ ∞

0

f̃1(ξ)f̃2(ξ) |c(ξ)|−2
dξ. (4.33)

For the estimates, it follows from the definition that |c(ξ)|−2
satisfies the bound

|c(ξ)|−2
. |ξ|2 (1 + |ξ|). (4.34)

For the spherical functions Φξ(r) we separate two cases and we refer the reader to
[7, 13, 3] for more details. We will follow the notation of [13]. For r ≥ r0 > 0 with
r0 < 1 fixed, we can write

Φξ(r) = e−
3
2
r(eirξc(ξ)m1(r, ξ) + e−irξc(−ξ)m1(r,−ξ)) (4.35)
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where the function |m1(r, ξ)| is uniformly bounded in r and ξ. For small r, say
r ≤ 1, we can write

Φξ(r) = eirξm2(r, ξ) + e−irξm2(r,−ξ) (4.36)

where m2(r, ξ) satisfies

|m2(r, ξ)| . (1 + r |ξ|)− 3
2 (4.37)

Finally, we recall the uniform estimate

sup
ξ≥0

|Φξ(r)| ≤ Φ0(r) . e−
3
2
r(1 + r) (4.38)

which can be proved directly from (4.31).
We can now transfer these results to φ0(r; ξ) and define the distorted Fourier

transform relative to L0. First note that since

sinh
3
2 r(H0Φξ)(r) = (L0φ0(·; ξ))(r),

we have

L0φ0(r; ξ) = (ξ2 + 1/4)φ0(r; ξ)

For g ∈ L2(0,∞) we can then define

g̃(ξ) =

∫ ∞

0

φ0(r; ξ)g(r) dr

It then follows from (4.32) and the isometry

L2
rad(H

4) ∋ G 7→ sinh
3
2 r G =: g ∈ L2(0,∞)

that the following inversion formula holds

g(r) = C

∫ ∞

0

φ0(r; ξ)g̃(ξ) |c(ξ)|−2
dξ

Hence we can define the spectral measure ρ0(dξ) = ω0(ξ) dξ := C |c(ξ)|−2
dξ, which

proves (4.19). Plancherel’s theorem (4.20) follows directly from (4.33).
The estimates (4.21) now follow easily as well. Recall that

φ0(r; ξ) = sinh3/2 rΦξ(r).

For r ≥ r0 > 0, with r0 < 1 fixed, (4.35) implies

|φ0(r; ξ)|2 . |c(ξ)|2 , for r ≥ r0 > 0. (4.39)

For r ≤ 1, (4.36) and (4.37) translate to

|φ0(r, ξ)|2 . r3(1 + r |ξ|)−3 for r ≤ 1 (4.40)

We also note that (4.38) allows us to deduce that

sup
ξ≥0

|φ0(r, ξ)| . 1 + r (4.41)

Therefore, using (4.39), (4.40), and (4.34) for ξ ≥ ξ0 > 0, we have

|φ0(r; ξ)|2
(r + 1)2

〈ξ〉
ξ

|c(ξ)|−2
.

{
1

(1+r)2 ≤ C if r ≥ r0 > 0
r3

(1+r)2
|ξ|3

(1+r|ξ|)3 ≤ C if r ≤ 1
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For ξ ≤ ξ0 ≤ 1 the uniform estimate (4.41) as well as (4.34) imply

|φ0(r; ξ)|2
(r + 1)2

〈ξ〉
ξ

|c(ξ)|−2
.

|φ0(r; ξ)|2
(r + 1)2

〈ξ〉2 |ξ| . |ξ| . 1

This completes the proof of Lemma 4.3. �

We now extend these results to LV via a perturbation argument. The key point
that allows the analysis to go through is that the threshold 1

4 is neither a resonance
nor an eigenvalue for LV . The Weyl-Titchmarsh theory for half-line operators with
a singular potential used below is standard and can be found in [11, Section 3].

Lemma 4.4. The half-line operator LV admits a distorted Fourier basis satisfy-
ing (4.17), as well as (4.25)– (4.29).

Proof. First, we remark that LV is in the limit-point case at both r = 0 and r = ∞.
Moreover, LV admits an entire Weyl-Titchmarsh solution φ(r; z) of

LV φ(r; z) = z2φ(r; z), z ∈ C, r ∈ (0,∞), (4.42)

which satisfies

(a) For all r ∈ (0,∞), φ(r; ·) is entire.
(b) φ(r; z) is real-valued for z ∈ R.
(c) φ(·, z) ∈ L2([0, b]) for all b ∈ (0,∞) and z ∈ C.

The above follows from [11, Lemma 3.12]. In addition, by [11, Lemma 3.3] we can
find θ(r; z) so that

LV θ(r; z) = z2θ(r; z) z ∈ C, r ∈ (0,∞),

where θ(r; z) is real-valued for z ∈ R, entire in z ∈ C and so that

W (θ(·, z), φ(·; z)) = 1, z ∈ C (4.43)

We also introduce another solution, namely the Weyl-Titchmarsh solution at in-
finity, ψ(r; z), which, since LV is in the limit-point case at r = ∞, is uniquely
characterized (up to constant multiples) by

LV ψ(r; z) = z2ψ(r; z)

ψ(r; z) ∈ L2[a,∞) ∀z ∈ C with Im (z) > 0 and ∀a > 0
(4.44)

Since {φ(·, z), θ(·, z)} form a fundamental system we can find a function m(z) so
that

ψ(r; z) = θ(r; z) +m(z)φ(r; z). (4.45)

This function m(z) is analytic in Im (z) > 0 and is referred to as the Weyl-
Titchmarsh function. We note that m(z) determines the spectral measure. Indeed,

ρ(dξ) = 2ξImm(ξ + i0) dξ (4.46)

If for f ∈ L2(0,∞) we define the Distorted Fourier transform

f̂(ξ) :=

∫ ∞

0

φ(r; ξ) f(r) dr

then (4.26)–(4.28) hold.
We also record some useful relations. Note that for ξ ∈ (0,∞) we have

2iImm(ξ) =W (ψ(·; ξ), ψ(·; ξ)) (4.47)
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and

φ(r; ξ) =
Imψ(r; ξ)

Imm(ξ)
(4.48)

Our goal now, is to approximate φ(r; ξ) and ω(ξ) := 2ξImm(ξ+ i0) well enough
to prove the estimate (4.29). We will accomplish this in two steps. The first step
addresses the case 0 < ξ ≪ 1 and the second provides estimates for ξ ≫ 1.

Step 1: We begin by considering the case of small ξ, i.e., 0 < ξ ≪ 1. We will
construct φ(r; ξ) in this case by perturbing around a fundamental system at
energy 1/4. In particular, we first establish:

Claim 4.5. There exists a fundamental system, {φ(r), θ(r)} to LV f = 1
4f with

W (φ, θ) = 1. Moreover we have the asymptotic behavior

φ(r) = r
3
2 + o(r

3
2 ) as r → 0,

θ(r) = −1

2
r−

1
2 + o(r−

1
2 ) as r → 0,

(4.49)

as well as

φ(r) = a1 + b1r + o(1) as r → ∞, with b1 6= 0,

θ(r) = a2 + b2r + o(1) as r → ∞,
(4.50)

where a1b2 − a2b1 = 1. The fact that LV has no point spectrum allows us to ensure
that b1 6= 0.

To prove the claim, we begin by constructing solutions with the desired behavior at
r = 0. The behavior at r = ∞, in particular the fact that b1 6= 0, will then follow
from the fact that 1

4 is neither an eigenvalue, nor a resonance for LV .
Since V (r) is smooth, we can write

V (r) = V (0) + O(r) as r → 0

Similarly, we have

3

4 sinh2 r
− 3

4r2
= −1

4
+O(r2) as r → 0

For small r we can thus view solutions to LV as a perturbations of solutions to

LEf = (1/4− V (0))f (4.51)

where LE := −∂rr + 3
4r2 . A fundamental system for (4.51) is given by

f0(r) = c0r
1
2J1(ar) = r

3
2 + o(r

3
2 ) as r → 0

f1(r) = c1r
1
2Y1(ar) = −1

2
r−

1
2 + o(r−

1
2 ) as r → 0

a :=

√
1

4
− V (0)

(4.52)

where J1, Y1 are the order one Bessel functions and c0, c1 are chosen to obtain the
desired behavior at r = 0 on the right above. Indeed, if we set

N0(r) := − 3

4 sinh2 r
+

3

4r2
− 1

4
− V (r) + V (0) = O(r) as r → 0 (4.53)
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then using the variation of constants formula we can write,

φ(r) = f0(r) +

∫ r

0

G(s, r)N0(s)φ(s) ds

θ(r) = f1(r) +

∫ r

0

G(s, r)N0(s)θ(s) ds

(4.54)

where the Green’s function G(r, s) is given by

G(r, s) = −f0(s)f1(r) + f0(r)f1(s)

The Volterra iterations in (4.54) converge for r small enough and yield the desired
behavior (4.49). Since both V (r) and 3

4 sinh2 r
decay exponentially as r → ∞, the

behavior (4.50) is the only possible one. The fact that b1 6= 0 is the important
consequence of the fact that LV is non-resonant at 1

4 . This completes the proof of
Claim 4.5.

We can now construct φ(r; ξ) for small ξ and r . ξ−1/3. In particular we claim
that there exists ε > 0 and ξ0 > 0 such that for all ξ ≤ ξ0 we have the estimates

φ(r; ξ) = φ(r) +O(rξ), for 0 ≤ r ≤ εξ−
1
3 ,

φ′(r; ξ) = φ′(r) +O(ξ) for 0 ≤ r ≤ εξ−
1
3

(4.55)

Moreover we can require the fixed normalization

φ(r; ξ) = φ(r) + o(r
3
2 ) as r → 0. (4.56)

To prove (4.55) we first define a function u0(r; ξ) by

u0(r; ξ) = φ(r) − ξ2
∫ r

0

θ(r)φ(s)u0(s; ξ) ds− ξ2
∫ εξ−1/3

r

φ(r)θ(s)u0(s; ξ) ds (4.57)

We will then obtain φ(r; ξ) from u0(r; ξ) by a renormalization so as to obtain the
precise behavior (4.56) in addition to (4.55).

Although (4.57) is not a Volterra integral equation, it can still be solved by a
contraction argument. To see this, define u1(r; ξ) by

u0(r; ξ) = φ(r) + rξu1(r; ξ) (4.58)

Rewriting (4.57) in terms of u1 we can define a linear map Tε,ξ by

u1(r; ξ) = −r−1ξθ(r)

∫ r

0

φ(s)[φ(s) + sξu1(s; ξ)] ds

− r−1ξφ(r)

∫ εξ−
1
3

r

θ(s)[φ(s) + sξu1(s; ξ)] ds

=: Tε,ξu1(r; ξ)

(4.59)

One can then check that there exists ξ0 > 0 and ε > 0 fixed so that for all 0 ≤ ξ ≤ ξ0,
the map Tε,ξ is a contraction in a ball of fixed size in the space C([0, εξ−

1
3 ]). Hence,

there is a unique solution u1(r; ξ) to (4.59) satisfying

|u1(r; ξ)| ≤ C, ∀ 0 ≤ r ≤ εξ−1/3

and all 0 < ξ ≤ ξ0. By plugging these estimates for u1 into (4.58) we establish that

u0(r; ξ) = φ(r) +O(rξ), for 0 ≤ r ≤ εξ−
1
3 ,
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Next, from (4.57) we see that

u0(r, ξ) = r
3
2 (1 +O(ε3ξ + ξ2)) + o(r

3
2 ) as r → 0 (4.60)

Finally, we obtain φ(r; ξ) from u0(r, ξ) by multiplication by a constant C = C(ε, ξ)
determined by (4.60) to ensure that (4.56) holds. A similar argument can be made
for the derivative φ′(r; ξ) to prove the second line in (4.55).

To estimate φ(r, ξ) in the regime r ≥ εξ−1/3 and to find the spectral measure

ω(ξ), we define the function ψ̃(r; ξ) by

ψ̃(r; ξ) = eirξ −
∫ ∞

r

sin ξ(r − s)

ξ
N2(s)ψ̃(s; ξ) ds

N2(r) := − 3

4 sinh2 r
− V (r)

(4.61)

Because of the exponential decay ofN2(r) as r → ∞ the Volterra iteration converges

for r large enough and ψ̃(r; ξ) solves

LV ψ̃(r; ξ) = (1/4 + ξ2)ψ̃(r; ξ)

In addition, we can deduce that

ψ̃(r; ξ) = eirξ +O(re−2r) as r → ∞
ψ̃′(r; ξ) = iξeirξ +O(re−2r) as r → ∞

(4.62)

This implies that

W (ψ̃(·; ξ), ψ̃(·; ξ)) =W (eirξ, e−irξ) = −2iξ (4.63)

Moreover, since the Weyl-Titchmarsh solution ψ(r; z) is uniquely characterized up
to constant multiples by ψ(·; z) ∈ L2([c,∞)) for all Im (z) > 0 and c > 0 we can
find a smooth function a(ξ) so that

a(ξ)ψ̃(r; ξ) = ψ(r; ξ) (4.64)

Observe that in light of (4.43) and (4.45), a(ξ) is given by

a(ξ) =
1

W (ψ̃(·; ξ), φ(·; ξ)) (4.65)

By (4.47) and (4.63), estimates for the function a(ξ) can then be used to estimate
the m-function. Indeed we have the relation

2iImm(ξ) =W (ψ(·, ξ), ψ(·; ξ)) = |a(ξ)|2W (ψ̃(·; ξ), ψ̃(·; ξ)) = 2iξ |a(ξ)|2 (4.66)

We therefore look to bound the right hand side of (4.65). We will show that

W (ψ̃(·; ξ), φ(·; ξ)) is bounded away from 0 for small ξ. To see this we evaluate the
Wronskian at r = ξ−1/6, which is large enough for small ξ so that we can accurately
approximate ψ̃(r; ξ), but also within the range in which we have good control of
φ(r; ξ) by (4.55). The spectral information on LV enters crucially at this point as
evaluating the Wronksian at r = ξ−1/6 yields∣∣∣W (ψ̃(·; ξ), φ(·; ξ))|r=ξ−1/6

∣∣∣ ≥ c |b1| > 0 (4.67)

where we have used (4.55) and (4.62) as well as (4.50) above. Hence |a(ξ)| ≃ 1 and
we can conclude that

Imm(ξ) ≃ |ξ| as ξ → 0 (4.68)
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For the spectral measure ω(ξ)dξ we then have

ω(ξ) ≃ |ξ|2 as ξ → 0 (4.69)

Finally, we would like to estimate φ(r; ξ) for small ξ and r ≥ εξ−1/3. Since the

functions ψ̃(r; ξ) and ψ̃(r; ξ) form a fundamental system and since φ(r; ξ) ∈ R for
ξ ∈ R, we can find b(ξ) so that

φ(r; ξ) = b(ξ)ψ̃(r; ξ) + b(ξ)ψ̃(r; ξ) (4.70)

We then have

b(ξ) =
W (φ(·; ξ), ψ̃(·; ξ))
W (ψ̃(·; ξ), ψ̃(·; ξ))

(4.71)

We use (4.63) for the denominator whereas we evaluate the numerate again at
r = ξ−1/6 as above to prove that

|b(ξ)| = O(ξ−1) as ξ → 0

This gives us the estimate

sup
r≥εξ−1/3

ξ |φ(r; ξ)| = O(1) as ξ → 0 (4.72)

We can now prove (4.29) for small ξ → 0. Using (4.69) we can deduce that

|φ(r; ξ)|2
(r + 1)3

〈ξ〉
ξ
ω(ξ) .

|φ(r; ξ)|2
(r + 1)3

|ξ| ∀ξ ≤ ξ0 (4.73)

For r ≤ εξ−1/3 we can use the estimate (4.55) together with the conclusions of
Claim 4.5 to see that

|φ(r; ξ)| . min(1, r), ∀ r ≤ εξ−1/3

Hence the right hand side of (4.73) is bounded by a constant in the regime r ≤
εξ−1/3. If r ≥ εξ−1/3 then we use (4.72) to conclude that

|φ(r; ξ)|2
(r + 1)3

|ξ| . 1

r3ξ
. 1, ∀ r ≥ εξ−1/3

This finishes the proof of (4.29) for ξ ≪ 1.

Step 2: We now consider the case ξ ≥ Ξ0 for Ξ0 large. This is somewhat easier
than the small ξ case as we can perturb around explicit solutions to a well
understood Euclidean problem. Define the half-line Schrödinger operator

LEf := −frr +
3

4r2
f

Then LEf = z2f are Bessel equations and we define the Weyl-Titchmarsh solution
at r = 0, by

φE(r; z) := 2z−1r
1
2J1(zr). (4.74)

Together with

θE(r, z) :=
π

4
zr

1
2 [−Y1(zr) + π−1 log(z2)J1(zr)], (4.75)
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we have a fundamental system with W (θE(·; z), φE(·; z)) = 1 for all z ∈ C, see [11,
Section 4] for more discussion of this system. The Weyl-Titchmarsh solution at
r = ∞ is given by

ψE(r; z) := zr
1
2 iH

(1)
1 (zr) = θE(r; z) +mE(z)φE(r; z), (4.76)

where above J1, Y1 are the order one Bessel functions and H
(1)
1 is the order one

Hankel function. The Weyl-Titchmarsh m-function is also explicit and is given by

mE(z) =
π

4
z2[i− π−1 log(z2)]. (4.77)

We now rewrite LV f = (14 + ξ2)f as

−frr +
3

4r2
f − ξ2f =

3

4

(
1

r2
− 1

sinh2 r

)
f − V (r)f.

The variation of parameters formula then gives the Volterra integral equation for
the outgoing solutions

ψ̃+(r; ξ) = ψE(r; ξ) +

∫ ∞

r

GE(r, s, ξ)N3(s)ψ̃+(s; ξ) ds, (4.78)

where

GE(r, s, ξ) :=
ψE(r; ξ)ψE(s; ξ)− ψE(s; ξ)ψE(r; ξ)

W (ψE(·; ξ), ψE(·; ξ))
,

and

N3(r) :=
3

4

(
1

r2
− 1

sinh2 r

)
− V (r).

The Wronskian is given by

W (ψE(·; ξ), ψE(·; ξ)) = 2iImmE(ξ) =
π

2
iξ2. (4.79)

Let ε > 0 be a small number to be determined below. We will solve (4.78) on the
region r ∈ [ 12ǫξ

−1,∞). Combining (4.79) with (4.76), we note that the Green’s
function GE takes the form

GE(r, s, ξ) =
2

iπ
r1/2s1/22 Im

(
H

(1)
1 (rξ)H

(1)
1 (sξ)

)
(4.80)

Using the standard asymptotic expansions and estimates for the Hankel func-

tion, H
(1)
1 (x) with x > 0 large (see for example [1, 20]), we can deduce the bound

|GE(r, s, ξ)| .ε |ξ|−1
, ∀ ε

2ξ
≤ r, s (4.81)

Moreover, we have the estimate

N3(r) .
1

(1 + r)2
, ∀ r > 0 (4.82)

Thus, if we set K(r, s, ξ) := GE(r, s, ξ)N3(s) we have the estimate

|K(r, s, ξ)| .ε ξ−1 〈s〉−2
, ∀ ε

2ξ
≤ r, s

and thus ∫ ∞

ε
2ξ

sup
r> ε

2ξ

|K(r, s, ξ)| ds .ε ξ−1
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This means that the Volterra integral (4.78) has a unique solution ψ̃+(r; ξ) defined
for all r ≥ 1

2εξ
−1 and satisfying

ψ̃+(r; ξ) = ψE(r; ξ)(1 +O(ξ−1 〈r〉−1
)), ∀ r ≥ ε

2ξ
(4.83)

We can then deduce that

W (ψ̃+(·; ξ), ψ̃+(·; ξ)) =W (ψE(·; ξ), ψE(·; ξ)) =
πi

2
ξ2 (4.84)

Since the Weyl-Titchmarsh solution at r = ∞,

ψ(r; ξ) := θ(r; ξ) +m(ξ)φ(r; ξ) (4.85)

is uniquely determined up to constant multiples by (4.44), we can find a smooth
function d(ξ) such that

ψ(r; ξ) = d(ξ)ψ̃+(r; ξ) (4.86)

Using (4.85) we see that

d(ξ) =
1

W (ψ̃+(·; ξ), φ(·; ξ))
(4.87)

We claim that

|d(ξ)| ≃ 1 as ξ → ∞ (4.88)

To prove (4.88), we first note that for ε > 0 small enough, we can find constants
c1, C2, which are independent of ξ, so that

c1r
3
2 ≤ φ(r; ξ) ≤ C2r

3
2 , ∀r ≤ 2εξ−1

c1r
1
2 ≤ φ′(r; ξ) ≤ C2r

1
2 , ∀r ≤ 2εξ−1

(4.89)

By rewriting the equation for φ(r; ξ) as

− φ′′ +
3

4r2
φ = N4(r, ξ)φ

N4(r) = ξ2 +
3

4
(
1

r2
− 1

sinh2 r
) + V (r)

we see that (4.89) follows directly from an iteration argument on the interval
[0, 2εξ−1] for

φ(r; ξ) = r
3
2 − 1

2

∫ r

0

(r3/2s−1/2 − r−1/2s3/2)N4(s, ξ)φ(s, ξ) ds

as long as ε > 0 is chosen small enough. Now (4.88) follows by combining (4.83)
and (4.89) to evaluate the right-hand-side of (4.87) at the point r = εξ−1, and then

taking ξ → ∞. Here we remark that after closing the Volterra iteration for ψ̃+(r, ξ)

in (4.78), the control of ψ̃′
+(r; ξ) near the point r = εξ−1 needed for (4.88) follows

by essentially differentiating (4.78), plugging in the bound (4.83) for ψ̃+(r; ξ) and

using the asymptotics of the derivative of the Hankel function, H
(1)
1 , which can be

found for example in Abramowitz-Stegun [1, p. 364, 9.2.13].
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By (4.47) and (4.63), estimate (4.88) for the function d(ξ) can then be used to
estimate the m-function. Indeed we have the relation

2iImm(ξ) =W (ψ(·, ξ), ψ(·; ξ)) = |d(ξ)|2W (ψ̃+(·; ξ), ψ̃+(·; ξ))

=
πi

2
ξ2 +O(1) as ξ → ∞

(4.90)

We therefore have proved that

Imm(ξ) ≃ |ξ|2 as ξ → ∞. (4.91)

For the spectral measure ρ(dξ) = ω(ξ)dξ we then have

ω(ξ) ≃ |ξ|3 as ξ → ∞ (4.92)

Finally we estimate φ(r; ξ) using the relation (4.48).

φ(r; ξ) =
Imψ(r; ξ)

Imm(ξ)
≃ ξ−2Im [ψE(r; ξ)(1 +O(ξ−1 〈r〉−1

))]

= ξ−1(r1/2J1(rξ)(1 +O(〈r〉−1
))

(4.93)

Using asymptotic formulas for J1(z) we obtain the estimate

ξ
3
2 |φ(r; ξ)| . 1 as ξ → ∞ (4.94)

for all r > 0. Together with (4.92) this establishes (4.29) for all ξ ≥ Ξ0 for some
Ξ0 > 0 large. This completes the proof of Lemma 4.4. �

5. Proofs of Theorem 1.1 and Theorem 1.3

In this final section we prove the two asymptotic stability results, Theorem 1.1
and Theorem 1.3. We remark that due to Lemma 2.4 it will suffice to work in the
4d setting and consider the Cauchy problems (1.15) for the case of maps into S2

and (1.29) for the case of maps into H2.
As we will be working with initial data ~u(0) = (u0, u1) that is small in the

energy space H1 ×L2(H4), we will also require only rough estimates on the size of
the nonlinearities NS2 and NH2 . In particular, we will make use of the following
simple lemmas.

Lemma 5.1. Let ~ψ ∈ Eλ and define u by sinh r u(r) = ψ(r)−Qλ(r). Let NS2(r, u)
be defined as in (1.17), i.e.,

NS2(r, u) :=
sin 2Qλ

sinh3 r
sin2(2 sinh r u) + cos 2Qλ

2 sinh r u− sin(2 sinh r u)

2 sinh3 r
=: FS2(r, u) + GS2(r, u).

Then, there exist constants C1 = C(λ) > 0 and C2 > 0 so that

|FS2(r, u)| ≤ C1 〈sinh r〉−1 |u|2

|GS2(r, u| ≤ C2 |u|3
(5.1)

Proof. To prove the first estimate in (5.1) we consider two regions, r ≤ 1 and r ≥ 1.
When r ≥ 1 we use the estimate,

|FS2(r, u)| ≤ C sinh−1 r |u|2
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Next, recall that Qλ(r) = 2 arctan(λ tanh(r/2)). Then

sin 2Qλ = 4 tan(Qλ/2) cos
2(Qλ/2) cos(Qλ)

= 4λ tanh(r/2) cos2(Qλ/2) cos(Qλ)

Therefore, for r ≤ 1 we can conclude that

|FS2(r, u)| ≤ Cλ tanh(r/2) sinh−1 r |u|2 ≤ C(λ) |u|2

which proves the first estimate in (5.1). The second estimate in (5.1) is clear. �

Lemma 5.2. Let (ψ, 0) ∈ Eλ and define u by sinh r u(r) = ψ(r) − Pλ(r). Suppose
that

‖(ψ, 0)− (Pλ, 0)‖H0
≤ A (5.2)

Let NH2(r, u) be defined as in (1.31), i.e.,

NH2(r, u) := − sinh 2Pλ

sinh3 r
sinh2(2 sinh r u) + cosh 2Pλ

2 sinh r u− sinh(2 sinh r u)

2 sinh3 r
=: FH2(r, u) + GH2(r, u).

Then, there exists a constant K = K(λ,A) > 0 so that

|FH2(r, u)| ≤ K 〈sinh r〉−1 |u|2 ,
|GH2(r, u)| ≤ K |u|3 .

(5.3)

Proof. First we note that the estimate (5.2) gives us an a priori estimate on the
size of ψ. Indeed, since ψ(0)− Pλ(0) = 0 we have

(ψ(ρ)− Pλ(ρ))
2 =

∫ ρ

0

∂r(ψ(r) − Pλ(r))
2 dr

= 2

∫ ρ

0

(ψr(r) − ∂rPλ(r))(ψ(r) − Pλ(r)) dr

≤ ‖(ψ, 0)− (Pλ, 0)‖2H0

This means that

sup
r∈[0,∞)

|sinh ru(r)| = sup
r∈[0,∞)

|ψ(r) − Pλ(r)| ≤ A. (5.4)

Next, note that

sinh 4ϑ =2 sinh 2ϑ cosh 2ϑ

=4 sinhϑ coshϑ(cosh2 ϑ+ sinh2 ϑ)

=4
tanhϑ(1 + tanh2 ϑ)

(1 − tanh2 ϑ)2
.

Plugging in ϑ = arctanh (λ tanh(r/2)), we see that

sinh(2Pλ(r)) = 4

(
λ tanh(r/2)(1 + λ2 tanh2(r/2)

(1− λ2 tanh2(r/2))2
)

)

≤ 4λ tanh(r/2)

(
1 + λ2

1− λ2

)

≤ C(λ)λ tanh(r/2)

(5.5)
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In light of (5.4) and (5.5) we can find K = K(λ,A) so that

|FH2(r, u)| =
∣∣∣∣
sinh 2Pλ

sinh3 r
sinh2(2 sinh r u)

∣∣∣∣ ≤ K(λ,A)
tanh(r/2)

sinh3 r
sinh2 r |u|2

and this proves the first estimate in (5.3). To prove the second estimate we define

Z(ρ) := 4
ρ− sinh(ρ)

ρ3

Then,

GH2(r, u) = cosh 2PλZ(sinh ru)u
3

By (5.4), and the fact that cosh 2Pλ ≤ cosh(4arctanhλ), we can find K = K(λ,A)
so that |cosh 2PλZ(sinh r u(r))| ≤ K(λ,A), which completes the proof of the second
estimate in (5.3). �

In light, of Lemma 5.1 and Lemma 5.2 we can handle the small data theory
for (1.15) and (1.29) simultaneously. Indeed, consider the more general Cauchy
problem

utt − urr − 3 coth r ur − 2u+ V u = F(r, u) +G(r, u)

~u(0) = (u0, u1) ∈ H1 × L2(H4)
(5.6)

where V = V (r) is a radial potential satisfying assumptions (A) and (B) as defined
in the beginning of Section 4 so that Proposition 4.2 applies. We assume that for
~u and A > 0 such that

‖~u‖H1×L2 ≤ A, (5.7)

the nonlinearities F ,G satisfy

|F(r, u)| .A 〈sinh r〉−1 |u|2 ,
|G(r, u)| .A |u|3 .

(5.8)

We can now formulate the local well-posedness theory for (5.6). For a time
interval 0 ∈ I ⊂ R , define the norms S(I) and N(I) by

‖u‖S(I) := ‖u‖L3
t(I;L

6(H4))

‖F‖N(I) := ‖F‖
L1

t(I;L
2(H4))+L

3
2
t (I;L

12
7 (H4))

(5.9)

Proposition 5.3. Let ~u(0) = (u0, u1) ∈ H1 × L2(H4) be radial. Then there is
a unique solution ~u(t) ∈ H1 × L2(H4) to (5.6) defined on a maximal interval of
existence 0 ∈ Imax(~u) = (−T−, T+), and for any compact interval J ⊂ Imax we have

‖u‖S(J) + ‖~u‖L∞

t (J;H1×L2) <∞.

Moreover, a globally defined solution ~u(t) to (5.6) for t ∈ [0,∞) scatters as t→ ∞
to a free shifted wave, i.e., a solution ~uL(t) ∈ H1 × L2(H4) of

vtt − vrr − 3 coth r vr − 2v = 0, (5.10)

if and only if

‖u‖S([0,∞)) + ‖~u‖L∞

t ([0,∞);H1×L2) <∞.

Here scattering as t→ ∞ means that

‖~u(t)− ~uL(t)‖H1×L2(H4) → 0 as t→ ∞. (5.11)
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In particular, there exists a constant δ > 0 so that

‖~u(0)‖H1×L2 < δ ⇒ ‖u‖S(R) + ‖~u‖L∞

t (R;H1×L2) . ‖~u(0)‖H1×L2 . δ (5.12)

and hence ~u(t) scatters to free waves as t→ ±∞.

Remark 9. In our applications of this proposition to the equivariant wave map
equation, we note that an a priori L∞

t (H1×L2) bound holds thanks to conservation
of energy. In particular, the criterion for scattering as t→ ∞ is simply

‖u‖S([0,∞)) <∞,

where u is defined as in (1.14) or (1.28) depending on the targetM and the param-
eter λ.

Proof. The proof of Proposition 5.3 follows from the usual contraction mapping
argument based on the Strichartz estimates in Proposition 4.2 and we give a brief
sketch as the details are standard. Indeed, suppose that the bootstrap assumption

‖~u‖L∞

t (I;H1×L2) ≤ A (5.13)

holds for some A > 0. Then applying Proposition 4.2 to any time interval I we
have

‖u‖S(I) + ‖~u(t)‖L∞(I;H1×L2)

. ‖~u(0)‖H1×L2 + ‖F(·, u) + G(·, u)‖N(I)

. ‖~u(0)‖H1×L2 + CA(‖ 〈sinh r〉−1
u2‖

L
3
2
t (I;L

12
7

x )
+ ‖u3‖L1

t(I;L
2
x)
)

. ‖~u(0)‖H1×L2 + CA(‖ 〈sinh r〉−1 ‖L∞

t L
4
x
‖u2‖

L
3
2
t L

3
x

+ ‖u‖3S(I))

. ‖~u(0)‖H1×L2 + CA(‖u‖2S(I) + ‖u‖3S(I)).
By the usual continuity argument, (expanding I), this implies the a priori esti-
mate (5.12) for small data. The scattering is also standard and based on a global
Strichartz estimate. Indeed, if we denote by S−2+V (t) the propagator of the free
shifted wave equation on H4 perturbed by the radial potential V (r), i.e., the prop-
agator for (4.1) with F = 0, we seek initial data ~vL(0) ∈ H1 × L2 so that

~u(t) = S−2+V (t)~vL(0) + oH1×L2(1) as t→ ∞
In view of the Duhamel representation for ~u(t) and using the group property and
unitarity of S−2+V this is tantamount to

~vL(0) = ~u(0) +

∫ ∞

0

S−2+V (−s)(0, (F + G)(·, u)(s)) ds

The integral on the right-hand side above is absolutely convergent in H1 × L2 as
long as ‖u‖S([0,∞)) + ‖~u‖L∞([0,∞);H1×L2) < ∞. That the finiteness of these norms
of u is a necessary condition is due the fact that free shifted waves satisfy it, whence
by the small data theory (applied to large times) it carries over to any nonlinear
wave that scatters. Now that we have found the linear wave ~vL(t) = S−2+V (t)~vL(0)
which approaches ~u(t) in the energy space we can easily pass to a solution to (5.10)
with the same property. Indeed we can define the scattering data

~uL(0) = ~vL(0) +

∫ ∞

0

S−2(−s)(0, V vL)(s) ds (5.14)
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where S−2 is the free propagator for (5.10). The fact that (5.14) is in H1 × L2

follows from (4.9) with the space X = L∞
t H

1
x. �

Finally, we remark that in light of the reductions to the 4d equations, (1.15)
and (1.29), as well as the estimates in Lemma 5.1 and Lemma 5.2 we have also
completed the proofs of Theorem 1.1 and Theorem 1.3.
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