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Asymptotic Hecke algebras and involutions

G. Lusztig

Introduction and statement of results

0.1. In [11], a Hecke algebra module structure on a vector space spanned by
the involutions in a Weyl group was defined and studied. In this paper this study
is continued by relating it to the asymptotic Hecke algebra introduced in [6]. In
particular we define a module over the asymptotic Hecke algebra which is spanned
by the involutions in the Weyl group. We present a conjecture relating this module
to equivariant vector bundles with respect to a group action on a finite set. This
gives an explanation (not a proof) of a result of Kottwitz [3] in the case of classical
Weyl groups, see 2.5. We also present a conjecture which realizes the module in
[11] terms of an ideal in the Hecke algebra generated by a single element, see 3.4.

0.2. Let W be a Coxeter group with set of simple reflections S and with length
function l : W → N.

Let A = Z[v, v−1] where v be an indeterminate. We set u = v2. Let A be
the subring Z[u, u−1] of A. Let H (resp. H) be the free A-module (resp. free

A-module) with basis (Ṫw)w∈W (resp. (Tw)w∈W ). We regard H (resp. H) as an

associative A-algebra (resp. A-algebra) with multiplication defined by ṪwṪw′ =

Ṫww′ if l(ww′) = l(w) + l(w′), (Ṫs + 1)(Ṫs − u) = 0 if s ∈ S (resp. TwTw′ = Tww′ if
l(ww′) = l(w)+ l(w′), (Ts+1)(Ts−u2) = 0 if s ∈ S). For y, w ∈ W let Py,w be the

polynomial defined in [2]. For w ∈ W let ċw = v−l(w)
∑

y∈W ;y≤w Py,w(u)Ṫy ∈ H,

cw = u−l(w)
∑

y∈W ;y≤w Py,w(u
2)Ty ∈ H, see [2]. Let y ≤LR w, y ∼LR w, y ∼L w

be the relations defined in [2]. We shall write �,∼ instead of ≤LR,∼LR. The
equivalence classes in W under ∼ (resp. ∼L) are called two-sided cells (resp. left
cells).

For x, y, z ∈ W we define ḣx,y,z ∈ A, hx,y,z ∈ A by ċxċy =
∑

z∈W ḣx,y,z ċz,

cxcy =
∑

z∈W hx,y,zcz. Note that hx,y,z is obtained from ḣx,y,z by the substitution
v �→ u.

0.3. In this subsection we assume that W is a Weyl group or an (irreducible)
affine Weyl group. From the definitions we have:

(a) if ḣx,y,z �= 0 (or if hx,y,z �= 0) then z � x and z � y.

For z ∈ W there is a unique a(z) ∈ N such that ḣx,y,z ∈ va(z)Z[v−1] for all x, y ∈ W
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268 G. LUSZTIG

and ḣx,y,z /∈ va(z)−1Z[v−1] for some x, y ∈ W . (See [5].) Hence for z ∈ W we have

hx,y,z ∈ ua(z)Z[u−1] for all x, y ∈ W and hx,y,z /∈ ua(z)−1Z[u−1] for some x, y ∈ W .

For x, y, z ∈ W we have ḣx,y,z = γx,y,z−1va(z) mod va(z)−1Z[v−1], γx,y,z−1 ∈ Z;

hence we have hx,y,z = γx,y,z−1ua(z) mod ua(z)−1Z[u−1].
(b) If x, y ∈ W satisfy x � y then a(x) ≥ a(y). Hence if x ∼ y then a(x) = a(y).

(See [5].)
Let D be the set of distinguished involutions of W (a finite set); see [6, 2.2]).
Let J be the free abelian group with basis (tw)w∈W . For x, y ∈ W we set

txty =
∑

z∈W γx,y,z−1 tz ∈ J (the sum is finite). This defines an associative ring
structure on J with unit element 1 =

∑
d∈D td (see [6, 2.3]).

0.4. Let ∗ : W → W (or w �→ w∗) be an automorphism of W such that S∗ = S,
∗2 = 1. Let I∗ = {w ∈ W ;w∗ = w−1}; if ∗ = 1 this is the set of involutions in W .
Let M be the free A-module with basis (aw)w∈I∗ . Following [11] for any s ∈ S we
define an A-linear map Ts : M → M by

Tsaw = uaw + (u+ 1)asw if sw = ws∗ > w;
Tsaw = (u2 − u− 1)aw + (u2 − u)asw if sw = ws∗ < w;
Tsaw = asws∗ if sw �= ws∗ > w;
Tsaw = (u2 − 1)aw + u2asws∗ if sw �= ws∗ < w.

The following result was proved in the setup of 0.3 in [11] and then in the general
case in [10].

(a) These linear maps define an H-module structure on M .
Let H = A ⊗A H, M = A ⊗A M . We regard H as a subring of H and M as a
subgroup of M by ξ �→ 1 ⊗ ξ. Note that the H-module structure on M extends
naturally to an H-module structure on M .

Let (Aw)w∈I∗ be the A-basis of M defined in [11, 0.3]. (More precisely, in
[11, 0.3] only the case where W is a Weyl group and ∗ = 1 is considered in detail;
the other cases are briefly mentioned in [11, 7.1]. A definition, valid in all cases is
given in [10, 0.3].)

0.5. In the remainder of this section we assume that W is as in 0.3. For
x ∈ W , w,w′ ∈ I∗ we define fx,w,w′ ∈ A by cxAw =

∑
w′∈I∗

fx,w,w′Aw′ . The
following result is proved in 1.1:

(a) For x ∈ W , w,w′ ∈ I∗ we have fx,w,w′ = βx,w,w′v2a(w
′) mod v2a(w

′)−1Z[v−1]
where βx,w,w′ ∈ Z. Moreover, if βx,w,w′ �= 0 then x ∼ w ∼ w′.
Let M be the free abelian group with basis (τw)w∈I∗ . For x ∈ W , w ∈ I∗ we set
txτw =

∑
w′∈I∗

βx,w,w′τw′ . (The last sum is finite: if βx,w,w′ �= 0 then fx,w,w′ �= 0
and we use the fact that cxAw is a well defined element of M .) We have the
following result.

0.6 Theorem. The bilinear pairing J ×M → M defined by tx, τw �→ txτw is
a (unital) J-module structure on M.

The proof is given in §1.
0.7 Notation. Let C be the field of complex numbers. For any abelian group

A we set A = C⊗A.

1. Proof of Theorem 0.6

1.1. In this section we assume that W is as in 0.3. For any x,w ∈ W we have
ċxċw ċx∗−1 =

∑
w′∈W Hx,w,w′ ċw′ where Hx,w,w′ ∈ A satisfies
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ASYMPTOTIC HECKE ALGEBRAS AND INVOLUTIONS 269

(a) Hx,w,w′ =
∑

y∈W ḣ(x,w, y)ḣ(y, x∗−1, w′).

From the geometric description of the elements Aw in [11] one can deduce that:
(b) if x ∈ W and w,w′ ∈ I∗ then there exist elements H+

x,w,w′ , H
−
x,w,w′ of

N[v, v−1] such that Hx,w,w′ = H+
x,w,w′ +H−

x,w,w′ and fx,w,w′ = H+
x,w,w′ −H−

x,w,w′ .

(This fact has been already used in [11, 5.1] in the case where W is finite and
∗ = 1.) Let n ∈ Z, x ∈ W and w,w′ ∈ I∗; from (b) we deduce:

(c) If the coefficient of vn in Hx,w,w′ is 0 then the coefficient of vn in fx,w,w′

is 0.
(d) If the coefficient of vn in Hx,w,w′ is 1 then the coefficient of vn in fx,w,w′

is ±1.
We can now prove 0.5(a). Setting a0 = a(w′) we have

Hx,w,w′ =
∑

y∈W ;w′�y

ḣ(x,w, y)ḣ(y, x∗−1, w′) =
∑

y∈W ;a(y)≤a0)

ḣ(x,w, y)ḣ(y, x∗−1, w′)

=
∑

y∈W ;a(y)≤a0

(γx,w,y−1va(y) + lin.comb.of va(y)−1, va(y)−2, . . . )

× (γy,x∗−1,w′−1va0 + lin.comb.of va0−1, va0−2, . . . )

=
∑

y∈W ;a(y)=a0

γx,w,y−1γy,x∗−1,w′−1)v2a0 + lin.comb.of v2a0−1, v2a0−2, . . . .

Using this and (c) we deduce that

fx,w,w′ = βx,w,w′v2a0 + lin.comb.of v2a0−1, v2a0−2, . . . )

where βx,w,w′ ∈ Z and that if βx,w,w′ �= 0 then γx,w,y−1 �= 0, γy,x∗−1,w′−1 �= 0 for
some y ∈ W . For such y we have x ∼ w ∼ y−1, y ∼ x∗ ∼ w′−1, see [6, 1.9]. We see
that 0.5(a) holds.

The proof above shows also:
(e) if βx,w,w′ �= 0 then for some y ∈ W we have γx,w,y−1 �= 0, γy,x∗−1,w′−1 �= 0.

We show:
(f) If x ∈ W and w,w′ ∈ I∗ satisfy fx,w,w′ �= 0 then w′ � w and w′ � x.

Using (c) we see that Hx,w,w′ �= 0 hence for some y ∈ W we have ḣ(x,w, y) �= 0

and ḣ(y, x−1, w′) �= 0. It follows that y � x, y � w,w′ � y and (f) follows.

1.2. Let x, y ∈ W,w ∈ I∗. We show that (txty)τw = tx(tyτw) or equivalently
that, for any w′ ∈ I∗,

(a)
∑

y′∈W γx,y,y′−1βy′,w,w′ =
∑

z∈I∗
βx,z,w′βy,w,z

From the equality (cxcy)Aw = cx(cyAw) in M we deduce that
(b)

∑
y′∈W hx,y,y′fy′,w,w′ =

∑
z∈I∗

fx,z,w′fy,w,z .

Let a0 = a(w′). In (b), the sum over y′ can be restricted to those y′ such that
fy′,w,w′ �= 0 hence (by 1.1(f)) such that w′ � y′ (hence a(y′) ≤ a0); the sum over z
can be restricted to those z such that fx,z,w′ �= 0 hence (by 1.1(f)) such that w′ � z
(hence a(z) ≤ a0). Thus we have

∑

y′∈W ;a(y′)≤a0

hx,y,y′fy′,w,w′ =
∑

z∈I∗;a(z)≤a0

fx,z,w′fy,w,z .
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270 G. LUSZTIG

Using 0.5(a) this can be written as follows
∑

y′∈W ;a(y′)≤a0

(γx,y,y′−1v2a(y
′) + lin.comb.of va(y

′)−1, va(y
′)−2, . . . )

× (βy′,w,w′v2a0 + lin.comb.of v2a0−1, v2a0−2, . . . )

=
∑

z∈I∗;a(z)≤a0

(βx,z,w′v2a0 + lin.comb.of v2a0−1, v2a0−2, . . . )

× (βy,w,zv
2a(z) + lin.comb.of v2a(z)−1, v2a(z)−2, . . . )

that is,
∑

y′∈W ;a(y′)=a0

γx,y,y′−1v2a0βy′,w,w′v2a0 + lin.comb.of v4a0−1, v4a0−2,

=
∑

z∈I∗;a(z)=a0

βx,z,w′v2a0βy,w,zv
2a0) + lin.comb.of v4a0−1, v4a0−2, . . . .

Taking the coefficient of v4a0 in both sides we obtain
∑

y′∈W ;a(y′)=a0

γx,y,y′−1βy′,w,w′ =
∑

z∈I∗;a(z)=a0

βx,z,w′βy,w,z .

Now, if γx,y,y′−1 �= 0 then a(y′) = a0 and if βx,z,w′ �= 0 then a(z) = a0. Hence we
deduce ∑

y′∈W

γx,y,y′−1βy′,w,w′ =
∑

z∈I∗

βx,z,w′βy,w,z .

This proves (a).

1.3. Let w ∈ I∗. We show that 1τw = τw or equivalently that, for any w′ ∈ I∗,
(a)

∑
d∈D βd,w,w′ = δw,w′

Let d0 be the unique element of D contained in the left cell of w−1 (see [6, 1.10]).
If βd,w,w′ �= 0 with d ∈ D then using 1.1(e) we can find y ∈ W such that γd,w,y−1 �=
0, γy,d∗,w′−1 �= 0. (Note that d∗ ∈ D.) Using [6, 1.8,1.4,1.9,1.10] we deduce
γw,y−1,d �= 0, γw′−1,y,d∗ �= 0 and y = w, y = w′, d = d0, γw,y−1,d = γw′−1,y,d∗ = 1.
Thus

∑
d∈D βd,w,w′ = βd0,w,w′ and

∑

y∈W

γd0,w,y−1γy,d∗,w′−1 = γd0,w,w−1γw,d∗
0 ,w

−1δw,w′ = δw,w′ .

Thus the coefficient of v2a(w
′) in Hd0,w,w′ is δw,w′ . Using 1.1(c),(d) we deduce that

the coefficient of v2a(w
′) in fd0,w,w′ is ±δw,w′ that is, βd0,w,w′ = ±δw,w′ . Thus

(b) 1τw = ε(w)τw
where ε(w) = ±1. Applying 1 =

∑
d∈D td to both sides of (b) and using the identity

(11)τw = 1(1τw) that is 1τw = 1(1τw) we obtain ε(w)τw = 1(ε(w)τw) = ε(w)2τw
hence ε(w)2 = ε(w). Since ε(w) = ±1 it follows that ε(w) = 1. This completes the
proof of (a). Theorem 0.6 is proved.

1.4. For any two-sided cell c ofW let Jc (resp. Mc) be the subgroup of J (resp.
M) generated by {tx;x ∈ c} (resp. {τw;w ∈ c ∩ I∗}. Note that Jc is a subring
of J with unit element 1c =

∑
d∈D∩c τd and J = ⊕cJc (direct sum of rings). We

have M = ⊕cMc. From the last sentence in 0.5(a) we see that JcMc ⊂ Mc and
JcMc′ = 0 and for any two sided cells c �= c′. It follows that the J-module structure
on M restricts for any c as above to a (unital) Jc-module structure on Mc.
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ASYMPTOTIC HECKE ALGEBRAS AND INVOLUTIONS 271

1.5. For any left cell λ ofW such that λ = λ∗ let Jλ∩λ−1 (resp. Mλ∩λ−1) be the
subgroup of J (resp. M) generated by {tx;x ∈ λ∩λ−1} (resp. {τw;w ∈ λ∩λ−1∩I∗}.
Note that Jλ∩λ−1 is a subring of J with unit element td where d is the unique element
of D∩λ. Since λ = λ∗ we have d = d∗. If x ∈ λ∩λ−1, w ∈ λ∩λ−1∩ I∗, w

′ ∈ I∗ are
such that βx,w,w′ �= 0 then w′ ∈ λ ∩ λ−1 ∩ I∗. (Indeed, as we have seen earlier, we
have γx,w,y−1 �= 0, γy,x∗−1,w′−1 �= 0 for some y ∈ W . For such y we have x ∼L w−1,
w ∼L y, y−1 ∼L x−1, y ∼L x∗, x∗−1 ∼L w′, w′−1 ∼L y−1, see [6, 1.9]. Hence
y ∈ λ, y−1 ∈ λ w′−1 ∈ λ, w′ ∈ λ∗ = λ, so that w′ ∈ λ∩λ−1, as required.) It follows
that the J-module structure on M restricts for any λ as above to a Jλ∩λ−1-module
structure on Mλ∩λ−1 . Now if d′ ∈ D−λ, w ∈ λ∩λ−1∩I∗, w

′ ∈ I∗ then βd′,w,w′ = 0
so that td′τw = 0. (Indeed, assume that βd′,w,w′ �= 0. Then, as we have seen earlier
we have γd′,w,y−1 �= 0 for some y ∈ W . We then have d′ ∼L w−1, see [6, 1.9], hence
d′ ∈ λ, contradiction.) Since 1τw = τw it follows that tdτw = tw. We see that the
Jλ∩λ−1-module structure on Mλ∩λ−1 is unital.

2. Γ-equivariant vector bundles

2.1. Let V ec be the category of finite dimensional vector spaces over C.
Let Γ be a finite group and let X be a finite set with a given Γ-action (a Γ-

set). A Γ-equivariant C-vector bundle (or Γ-v.b.) V on X is just a collection of
objects Vx ∈ V ec (x ∈ X) with a given representation of Γ on ⊕x∈XVx such that
gVx = Vgx for all g ∈ Γ, x ∈ X. We say that Vx is the fibre of V at x. Now X ×X
is a Γ-set for the diagonal Γ-action. Let C0 be the category whose objects are the
Γ-v.b. on X ×X. For V ∈ C0 let Vx,y ∈ V ec be the fibre of V at (x, y); for g ∈ Γ
let Tg : Vx,y → Vgx,gy be the isomorphism given by the equivariant structure of V .

For V, V ′ ∈ C0 we define the convolution V�V ′ ∈ C0 by
(V�V ′)x,y = ⊕z∈XVx,z ⊗ V ′

z,y

for all x, y in X with the obvious Γ-equivariant structure. For V, V ′, V ′′ ∈ C0 we
have an obvious identification (V�V ′)�V ′′ = V�(V ′�V ′′). Let Cδ ∈ C0 be the
Γ-v.b. given by (Cδ)x,x = C for all x ∈ X and (Cδ)x,y = 0 for all x �= y in X (with
the obvious Γ-equivariant structure). For V ∈ C0 we have obvious identifications
Cδ�V = V = V�Cδ. Define σ : X ×X → X ×X by σ(x, y) = (y, x). For V ∈ C0
we set V σ = σ∗V that is V σ

x,y = Vy,x for all x, y in X. For V, V ′ ∈ C0 we have an
obvious identification (V�V ′)σ = V ′σ�V σ. Note that � is compatible with direct
sums in both the V and V ′ factor. Hence if K(C0) is the Grothendieck group of C0
then � induces an associative ring structure on K(C0) with unit element defined
by Cδ; moreover, V �→ V σ induces an antiautomorphism of the ring K(C0). Thus
K(C0) is an associative C-algebra with 1.

2.2. Let C be the category whose objects are pairs (U, κ) where U ∈ C0 and

κ : U
∼→ Uσ is an isomorphism in C0 (that is a collection of isomorphisms κx,y :

Ux,y → Uy,x for each x, y ∈ X such that κgx,gyTg = Tgκx,y for all g ∈ Γ, ξ, y ∈ X);
it is assumed that κy,xκx,y = 1 : Ux,y → Ux,y for all x, y ∈ X.

For V ∈ C0 we define an isomorphism ζ : V ⊕ V σ → (V ⊕ V σ)σ = V σ ⊕ V by
a ⊕ b �→ b ⊕ a. We have (V ⊕ V σ, ζ) ∈ C and V �→ (V ⊕ V σ, ζ) can be viewed as
functor Θ : C0 → C. Let K(C) be the Grothendieck group of C and let K ′(C) be
the subgroup of K(C) generated by the elements of the form Θ(V ) with V ∈ C0.
Let K̄(C) = K(C)/K ′(C). (This definition of K̄(C) is a special case of a definition
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272 G. LUSZTIG

in [9, 11.1.5] which applies to a category with a periodic functor.) Note that if
(U, κ) ∈ C then (U,−κ) ∈ C and (U, κ) + (U,−κ) = 0 in K̄(C).

For V ∈ C0, (U, κ) ∈ C we define V ◦ (U, κ) ∈ C by V ◦ (U, κ) = (V�U�V σ, κ′)
where for x, y in X,

κ′
x,y : ⊕z,z′∈XVx,z ⊗ Uz,z′ ⊗ Vy,z′ → ⊕z′,z∈XVy,z′ ⊗ Uz′,z ⊗ Vx,z

maps a⊗ b⊗ c (in the z, z′ summand) to c⊗ κ(b)⊗ a (in the z′, z summand). Now
let V, V ′ ∈ C0 and (U, κ) ∈ C. We have canonically

(V ⊕ V ′) ◦ (U, κ) = V ◦ (U, κ)⊕ V ′ ◦ (U, κ)⊕Θ(V�U�V ′σ).
Moreover, we have canonically V ◦ Θ(V ′) = Θ(V�V ′�V σ). For V, V ′ ∈ C0 and
(U, κ) ∈ C we have an obvious identification (V ′�V ) ◦ (U, κ) = V ′ ◦ (V ◦ (U, κ)).
For (U, κ) ∈ C we have an obvious identification Cδ ◦ (U, κ) = (U, κ). We see that
◦ defines a (unital) K(C0)-module structure on K̄(C) (but not on K(C)). Hence
K̄(C) is naturally a (unital) K(C0)-module.

2.3. Note that K(C0) has a Z-basis consisting of the the isomorphism classes
of indecomposable Γ-v.b. V on X ×X (these are indexed by a Γ-orbit in X ×X
and an irreducible representation of the isotropy group of a point in that orbit).
Moreover, K̄(C) has a signed Z-basis consisting of the classes of (V, κ) where V is
an indecomposable Γ-v.b. on X × X satisfying V ∼= V σ and κ is defined up to a
sign (so the class of (V, κ) is defined up to a sign).

2.4. Let CΓ be the category of Γ-v.b. on Γ viewed as a Γ-set under conjuga-
tion. An object Y of CΓ is a collection of objects Yg ∈ V ec (g ∈ Γ) with a given
representation of Γ on ⊕g∈ΓYg such that gYg′ = Ygg′g−1 for all g, g′ ∈ Γ, x ∈ X.
For Y, Y ′ ∈ CΓ we define the convolution Y�Y ′ ∈ CΓ by

(Y�Y ′)g = ⊕g1,g2∈Γ;g1g2=gYg1 ⊗ Y ′
g2

for all g ∈ Γ with the obvious Γ-equivariant structure. This defines a structure
of associative ring with 1 on the Grothendieck group K(CΓ). The unit element is
given by the Γ-v.b. whose fibre at g = 1 is C and whose fibre at any other element
is 0. Hence K(CΓ) is an associative C-algebra with 1; by [8, 2.2], it is commutative
and semisimple.

With X, C0, C as in 2.1, for any Y ∈ CG, we define as in [8, 2.2(h)] an object
Ψ(Y ) ∈ C0 by Ψ(Y )x,y = ⊕g∈Γ;x=gyYg (with the obvious equivariant structure).
Now Y �→ Ψ(Y ) defines a ring homomorphism K(CΓ) → K(C0) and a C-algebra
homomorphism K(CΓ) → K(C0). By [8, 2.2],

(a) K(C0) is a semisimple C-algebra and the image of the homomorphism

K(CΓ) → K(C0) is exactly the centre of K(C0).
We see that theK(C0)-module structure on K̄(C) restricts to aK(CΓ)-module struc-
ture on K̄(C) in which the product of the class of Y ∈ CΓ with the class of (V, κ) ∈ C
is the class of (V ′, κ′) ∈ C where

V ′
x,y = ⊕g,g′∈Γ,z,z′∈X;x=gz,y=g′z′Yg ⊗ Vz,z′ ⊗ Yg′

that is,

(b) V ′
x,y = ⊕g,g′∈ΓYg ⊗ Vg−1x,g′−1y ⊗ Yg′

and, for x, y in X,

κ′
x,y : ⊕g,g′∈ΓYg ⊗ Vg−1x,g′−1y ⊗ Yg′ → ⊕g′,g∈ΓYg′ ⊗ Vg′−1y,g−1x ⊗ Yg
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maps a ⊗ b ⊗ c (in the g, g′ summand) to c ⊗ κ(b) ⊗ a (in the g′, g summand). It
follows also that K̄(C) is naturally a K(CΓ)-module.

Now assume in addition that
(c) Γ is an elementary abelian 2-group

and that Y ∈ CΓ is such that for some g0 ∈ Γ, Y |Γ−{g0} is zero and dimYg0 = 1.
Then (b) becomes

V ′
x,y = Yg0 ⊗ Vg0x,g0y ⊗ Yg0

Now Yg0⊗Yg0 is isomorphic to C as a representation of Γ and Vg0x,g0y is canonically
isomorphic to Vx,y. We see that (V ′, κ′) = (V, κ). Thus Y acts as identity in
the K(CΓ)-module structure of K̄(C). It follows that if Y is any object of CΓ
then Y acts in the K(CΓ)-module structure of K̄(C) as multiplication by ν(Y ) =∑

g∈Γ dimYg. Note that ν defines a ring homomorphism K(CΓ) → Z and a C-

algebra homomorphism K(CΓ) → C (taking 1 to 1). We see that:

(d) If Γ is as in (c) then for any ξ ∈ K(CΓ), ξ′ ∈ K̄(C) we have ξξ′ = ν(ξ)ξ′.

In particular, the K(CΓ)-module K̄(C) is ν-isotypic.
Using this and (a) we see that the first assertion in (e) below holds.

(e) If Γ is as in (c) then the K(C0)-module K̄(C) is isotypic. Moreover dimC K̄(C)
is equal to |Γ| times the number of Γ-orbits in X.
We now prove the second assertion in (e). By 2.3, dimC K̄(C) is equal to nΓ,X , the

number of indecomposable Γ-v.b. on XτX (up to isomorphism) such that V ∼= V σ.
For such V there exists a unique Γ-orbit O on X such that Vx,y �= 0 implies x ∈ O
and y ∈ O. Hence nΓ,X =

∑
O nΓ,O where O runs over the Γ-orbits in X. This

reduces the proof to the case where X is a single Γ-orbit. Let H be the isotropy
group in Γ of some point in X; this is independent of the choice of point since Γ
is commutative. Now any (x, y) ∈ X × X is in the same Γ-orbit as (y, x). (In-
deed, we can find g ∈ Γ such that y = gx. Then (x, y) is in the same orbit as
(gx, gy) = (y, g2x) = (y, x) since g2 = 1.) For a given Γ-orbit O′ in XτX the num-
ber of indecomposable Γ-v.b. on X ×X (up to isomorphism) with support equal
to O′ is the number of characters of characters of the isotropy group of any point
in the orbit which is H. Thus nΓ,X is equal to |H| times the number of Γ-orbits in
X ×X that is to |H| × |Γ/H| = |Γ|. This proves (e).

2.5. In this subsection we assume that W is an irreducible Weyl group and
∗ = 1. Let c be a two-sided cell of W such that for z ∈ c we have a(z) �= 11 (if W
is of type E7) and a(z) �= 11, a(z) �= 26 (if W is of type E8). Let Γ be the finite
group associated to c in [8, 3.15]. For each left cell λ in c let Γλ be the subgroup of
Γ associated to λ in [8]. Let X = �λ(Γ/Γλ) (λ runs over the left cells in c). Note
that Γ acts naturally on X. For any λ as above let Cλ be the Γ-v.b. on X × X
which is C at any point of form (x, x), x ∈ Γ/Gλ, and is zero at all other points.
Let C0 be defined in terms of this X. The following statement was conjectured in
[8, 3.15] and proved in [1]:

(a) There exists a isomorphism φ : Jc
∼→ K(C0) which carries the basis {tx;x ∈

c} onto the canonical basis 2.3 of K(C0) and is such that for any left cell λ in c,
φ(td) (where D ∩ λ = {d}) is the class of Cλ.
The isomorphism φ has the following property conjectured in [7, 10.5(b)] in a closely
related situation.
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(b) Let x ∈ c and let φ(tx) be the class of the indecomposable Γ-v.b. V on
XτX. Then φ(tx−1) is the class of (V̌ )σ where V̌ is the dual Γ-v.b. to V .
(As R. Bezrukavnikov pointed out to me, (b) follows immediately from (a).) Next
we note the following property.

(c) V̌ ∼= V for any Γ-v.b. on X ×X.
It is enough to show that for any (x, y) ∈ X×X, the stabilizer of (x, y) in Γ (that is
the intersection of a Γ-conjugate of Γλ with a Γ-conjugate of Γλ′ where λ, λ′ are two
left cells in c) is isomorphic to a Weyl group (hence its irreducible representations
are selfdual). This can be verified from the explicit description of the subgroups Γλ

in [8].
Using (b),(c) we see that φ has the following property.
(d) Let x ∈ c and let φ(tx) be the class of the indecomposable Γ-v.b. V on

XτX. Then φ(tx−1) is the class of V σ.
I want to formulate a refinement of (a).

(e) Conjecture. There exists an isomorphism of abelian groups ψ : Mc → K̄(C)
(C is defined in terms of X) with the following properties :

-if w ∈ c∩ I∗ and φ(tw) = V (an indecomposable Γ-v.b. such that V ∼= V σ, see

(d)) then ψ(τw) = (V, κ) for a unique choice of κ : V
∼→ V σ;

-the Jc-module structure on Mc corresponds under φ and ψ to the K(C0)-
module structure on K̄(C).
Now let J

c
= C ⊗ Jc, Mc

= C ⊗ Mc. Note that J
c
is a semisimple algebra, see

[8, 1.2, 3.1(j)]. Assuming that (e) holds we deduce:
(f) If Γ is as in 2.4(c) then the J

c
-module M

c
is isotypic. Moreover, dimC M

c
is equal to |Γ| times the number of left cells contained in c.
(Note that the number of Γ-orbits on X is equal to the number of left cells contained
in c.)

Now if W is of classical type, then Γ is as in 2.4(c) and (f) gives an explanation
for the known structure of theW -module obtained fromM for u = 1 (a consequence
of the results of Kottwitz [3]); this can be viewed as evidence for the conjecture (e).
(In this case, the second assertion of (f) was already known in [4, 12.17].)

Here we use the following property which can be easily verified for any Weyl
group.

(g) Let M�c (resp. M�c−c) be the A submodule of M spanned by {Ax;x �
y for some y ∈ c} (resp. {Ax;x � y for some y ∈ c, x /∈ c}). The decomposition
pattern of the (semisimple) J

c
-moduleM

c
is the same as the decomposition pattern

of the (semisimple) C(v)⊗AH-module C(v)⊗A (M�c/M�c−c); in particular if the
first module is isotypic then so is the second module.
One can show, using results in [6, 2.8, 2.9], that this property also holds when W
is replaced by an affine Weyl group and c by a finite two-sided cell in that affine
Weyl group.

3. A conjectural realization of the H-module M

3.1. Let H• = Q(u)⊗A H (an algebra over Q(u)) and let M• = Q(u) ⊗A M .
We regard H as a subset of H• and M as a subset of M• by ξ �→ 1 ⊗ ξ. The
H-module structure on M extends in an obvious way to an H•-module structure

on M•. Let Ĥ be the vector space consisting of all formal (possibly infinite) sums∑
x∈W cxTx where cx ∈ Q(u). We can view H• as a subspace of Ĥ in an obvious

way. The H•-module structure on H• (left multiplication) extends in an obvious
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way to a H•-module structure on Ĥ. We set

X∅ =
∑

x∈W ;x∗=x

u−l(x)Tx ∈ Ĥ.

Let M = H•X∅ be the H•-submodule of Ĥ generated by X∅. In this section we will
give a conjectural realization of the H•-module M• in terms of M.

We write S = {si; i ∈ I} where I is an indexing set. For any sequence
i1, i2, . . . , ik in I we write i1i2 . . . ik instead of si1si2 . . . sik ∈ W .

3.2. In this subsection we assume that W is of type A2, ∗ = 1 and S = {s1, s2}.
We set

X∅ = (−u)−3T121 + u−2T12 + u−2T21 + u−1T1 + u−1T2 + 1,
X1 = (1 + u)−1(T1 − u)X ′

∅ = (u− 1)(u−3T121 + u−2T12 + u−1T1),

X2 = (1 + u)−1(T2 − u)X ′
∅ = (u− 1)(u−3T121 + u−2T21 + u−1T2),

X121 = T1X2 = T2X1 = (u− 1)((u−1 + u−2 − u−3)T121 + u−1T12 + u−1T21).
Clearly, X∅, X1, X2, X121 form a basis of M. In the H•-module M• we have

a1 = (u+ 1)−1(T1 − u)a∅, a2 = (u+ 1)−1(T2 − u)a∅, a121 = T1a2 = T2a1.

We see that we have a (unique) isomorphism of H•-modules M
∼→ M• such that

X∅ �→ a∅, X1 �→ a1, X2 �→ a2, X121 �→ a121.

3.3. In this subsection we assume that W is of type A1, ∗ = 1 and S = {s1}.
We set X∅ = u−1T1 + 1, X1 = (u − 1)u−1T1. Clearly, X∅, X1 form a basis of M.
In the H•-module M• we have a1 = (u + 1)−1(T1 − u)a∅. We see that we have a

(unique) isomorphism of H•-modules M
∼→ M• such that X∅ �→ a∅, Xs �→ a1.

3.4. We return to the setup in 3.1. Based on the examples in 3.2, 3.3 we state:
(a) Conjecture. There exists a unique isomorphism of H•-modules η : M

∼→ M•

such that X∅ �→ a∅.
By 3.3, 3.2, conjecture (a) is true when W is of type A1, A2 (wth ∗ = 1). It can be
shown that it is also true when W is a dihedral group (any ∗) or of type A3 (any
∗).

Assuming that (a) holds we set Xw = η−1(aw) for any w ∈ I∗.

3.5. We describe below the elements Xw for various w ∈ I∗ when W is of type
A3 and ∗ = 1. We write S = {s1, s2, s3} (s1s3 = s3s1).

X∅ has been described in 3.4;

X1 = (u− 1)(u−1T1 + u−2T12 + u−2T13 + u−3T121 + u−3T123 + u−3T132

+ u−4T1213 + u−4T1232 + u−4T1321 + u−5T13213 + u−5T12132 + u−6T121321);

X3 = (u− 1)(u−1T3 + u−2T32 + u−2T13 + u−3T323 + u−3T321 + u−3T132

+ u−4T3231 + u−4T3212 + u−4T1323 + u−5T13213 + u−5T32312 + u−6T121321);

X2 = (u− 1)(u−1T2 + u−2T21 + u−2T23 + u−3T121

+ u−3T323 + u−3T213 + u−4T1213 + u−4T3231 + u−4T2132

+ u−5T32312 + u−5T12132 + u−6T121321);

X13 = (u−1)2(u−2T13+u−3T132+u−4T1321+u−4T1323+u−5T13213+u−6T121321);
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X121 = (u− 1)(u−1T12 + u−1T21 + (u−1 + u−2 − u−3)T121 + u−2T123

+ u−2T213 + (u−2 + u−3 − u−4)T1213 + u−3T1323 + u−3T2132

+ (u−3 + u−4 − u−5)T12132 + u−4T13213 + u−4T21321

+ (u−4 + u−5 − u−6)T121321);

X323 = (u− 1)(u−1T32 + u−1T23 + (u−1 + u−2 − u−3)T323 + u−2T321

+ u−2T213 + (u−2 + u−3 − u−4)T3213 + u−3T1321 + u−3T2132

+ (u−3 + u−4 − u−5)T32132 + u−4T13213 + u−4T21323

+ (u−4 + u−5 − u−6)T121321);

X2132 = (u− 1)2(u−2T213 + u−3T2132 + u−4T21321

+ u−4T21323 + u−4T12321 + (u−4 + u−5 − u−6)T121321);

X13213 = (u− 1)(u−1T132 + u−1T123 + u−1T321 + (u−1 + u−2 − u−3)T1321

+ u−2T3213 + (u−1 + u−2 − u−3)T1323 + u−2T1213 + u−2T2132

+ (u−2 + u−3 − u−4)T21323 + (u−2 + u−3 − u−4)T21321

+ (2u−2 + u−3 − 2u−4)T13213 + (u−2 + 2u−3 − u−4 − 2u−5 + u−6)T121321);

X213213 = (u− 1)2(u−2T1213 + u−2T2132 + u−2T2321

+ (u−2 + u−3 − u−4)T21323 + (u−2 + u−3 − u−4)T21321

+ (u−2 − u−4)T13231 + (u−2 + u−3 − u−4 − u−5 + u−6)T121321).

3.6. We describe below the elements Xw for various w ∈ I∗ when W is an
infinite dihedral group and ∗ = 1. We write S = {s1, s2}. X∅ has been described
in 3.4;

X1 = (u− 1)(u−1T1 + u−2T12 + u−3T121 + u−4T1212 + . . . );

X2 = (u− 1)(u−1T2 + u−2T21 + u−3T212 + u−4T2121 + . . . );

X121 = (u− 1)(u−1T12 + u−2T121 + u−3T1212 + u−4T12121 + . . . );

X212 = (u− 1)(u−1T21 + u−2T212 + u−3T2121 + u−4T21212 + . . . );

X12121 = (u− 1)(u−1T121 + u−2T1212 + u−3T12121 + u−4T121212 + . . . );

X21212 = (u− 1)(u−1T212 + u−2T2121 + u−3T21212 + u−4T212121 + . . . );

X1212121 = (u− 1)(u−1T1212 + u−2T12121 + u−3T121212 + u−4T1212121 + . . . );

X2121212 = (u− 1)(u−1T2121 + u−2T21212 + u−3T212121 + u−4T2121212 + . . . );

. . .
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3.7. Assume that Conjecture 3.4(a) holds for W, ∗. From the examples above
we see that it is likely that the elements Xw (w ∈ I∗) are formal Z[u−1]-linear
combinations of elements Tx (x ∈ W ). In particular the specializations (Xw)u−1=0

are well defined Z-linear combinations of Tx (x ∈ W ). From the example above
it appears that there is a well defined (surjective) function π : W → I∗ such that
(Xw)u−1=0 =

∑
x∈π−1(w) Tx. We describe the sets π−1(w) in a few cases with ∗ = 1.

If W is of type A1 we have π−1(∅) = {∅}, π−1(1) = {1}.
If W is of type A2 we have
π−1(∅) = {∅}, π−1(1) = {1}, π−1(2) = {2}, π−1(121) = {12, 21, 121}.
If W is of type A3 we have
π−1(∅) = {∅}, π−1(1) = {1}, π−1(2) = {2}, π−1(3) = {3}, π−1(13) = {13},
π−1(121) = {12, 21, 121}, π−1(323) = {32, 23, 323}, π−1(2132) = {213},
π−1(13213) = {132, 123, 321, 1321, 1323},
π−1(121321) = {1213, 2132, 2321, 21323, 21321, 13231, 121321}.

If W is infinite dihedral we have
π−1(∅) = {∅}, π−1(1) = {1}, π−1(2) = {2}, π−1(121) = {12}, π−1(212) = {21},
π−1(12121) = {121}, π−1(21212) = {212}, π−1(1212121) = {1212},
π−1(2121212) = {2121}, . . .

In each of these examples π is given by the following inductive rule. We have
π(∅) = ∅. If x ∈ W is of the form x = six

′ with i ∈ I, x′ ∈ W , l(x) > l(x′) so that
π(x′) can be assumed known, then

π(x) = siπ(x
′) if siπ(x

′) = π(x′)si > π(x′),
π(x) = siπ(x

′)si if siπ(x
′) �= π(x′)si > π(x′),

π(x) = π(x′) if π(x′)si < π(x′).
In each of the examples above the following holds: if x ∈ W , w = π(x) ∈ I∗, then
l(w) = l(x) + l(x−1w). We expect that these properties hold in general.
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